• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7 
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 
20 #include <crypto/ctr.h>
21 #include <crypto/internal/des.h>
22 #include <crypto/aes.h>
23 #include <crypto/hmac.h>
24 #include <crypto/sha1.h>
25 #include <crypto/algapi.h>
26 #include <crypto/internal/aead.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <linux/soc/ixp4xx/npe.h>
32 #include <linux/soc/ixp4xx/qmgr.h>
33 
34 /* Intermittent includes, delete this after v5.14-rc1 */
35 #include <linux/soc/ixp4xx/cpu.h>
36 #include <mach/ixp4xx-regs.h>
37 
38 #define MAX_KEYLEN 32
39 
40 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
41 #define NPE_CTX_LEN 80
42 #define AES_BLOCK128 16
43 
44 #define NPE_OP_HASH_VERIFY   0x01
45 #define NPE_OP_CCM_ENABLE    0x04
46 #define NPE_OP_CRYPT_ENABLE  0x08
47 #define NPE_OP_HASH_ENABLE   0x10
48 #define NPE_OP_NOT_IN_PLACE  0x20
49 #define NPE_OP_HMAC_DISABLE  0x40
50 #define NPE_OP_CRYPT_ENCRYPT 0x80
51 
52 #define NPE_OP_CCM_GEN_MIC   0xcc
53 #define NPE_OP_HASH_GEN_ICV  0x50
54 #define NPE_OP_ENC_GEN_KEY   0xc9
55 
56 #define MOD_ECB     0x0000
57 #define MOD_CTR     0x1000
58 #define MOD_CBC_ENC 0x2000
59 #define MOD_CBC_DEC 0x3000
60 #define MOD_CCM_ENC 0x4000
61 #define MOD_CCM_DEC 0x5000
62 
63 #define KEYLEN_128  4
64 #define KEYLEN_192  6
65 #define KEYLEN_256  8
66 
67 #define CIPH_DECR   0x0000
68 #define CIPH_ENCR   0x0400
69 
70 #define MOD_DES     0x0000
71 #define MOD_TDEA2   0x0100
72 #define MOD_3DES   0x0200
73 #define MOD_AES     0x0800
74 #define MOD_AES128  (0x0800 | KEYLEN_128)
75 #define MOD_AES192  (0x0900 | KEYLEN_192)
76 #define MOD_AES256  (0x0a00 | KEYLEN_256)
77 
78 #define MAX_IVLEN   16
79 #define NPE_QLEN    16
80 /* Space for registering when the first
81  * NPE_QLEN crypt_ctl are busy */
82 #define NPE_QLEN_TOTAL 64
83 
84 #define CTL_FLAG_UNUSED		0x0000
85 #define CTL_FLAG_USED		0x1000
86 #define CTL_FLAG_PERFORM_ABLK	0x0001
87 #define CTL_FLAG_GEN_ICV	0x0002
88 #define CTL_FLAG_GEN_REVAES	0x0004
89 #define CTL_FLAG_PERFORM_AEAD	0x0008
90 #define CTL_FLAG_MASK		0x000f
91 
92 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
93 
94 #define MD5_DIGEST_SIZE   16
95 
96 struct buffer_desc {
97 	u32 phys_next;
98 #ifdef __ARMEB__
99 	u16 buf_len;
100 	u16 pkt_len;
101 #else
102 	u16 pkt_len;
103 	u16 buf_len;
104 #endif
105 	dma_addr_t phys_addr;
106 	u32 __reserved[4];
107 	struct buffer_desc *next;
108 	enum dma_data_direction dir;
109 };
110 
111 struct crypt_ctl {
112 #ifdef __ARMEB__
113 	u8 mode;		/* NPE_OP_*  operation mode */
114 	u8 init_len;
115 	u16 reserved;
116 #else
117 	u16 reserved;
118 	u8 init_len;
119 	u8 mode;		/* NPE_OP_*  operation mode */
120 #endif
121 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
122 	dma_addr_t icv_rev_aes;	/* icv or rev aes */
123 	dma_addr_t src_buf;
124 	dma_addr_t dst_buf;
125 #ifdef __ARMEB__
126 	u16 auth_offs;		/* Authentication start offset */
127 	u16 auth_len;		/* Authentication data length */
128 	u16 crypt_offs;		/* Cryption start offset */
129 	u16 crypt_len;		/* Cryption data length */
130 #else
131 	u16 auth_len;		/* Authentication data length */
132 	u16 auth_offs;		/* Authentication start offset */
133 	u16 crypt_len;		/* Cryption data length */
134 	u16 crypt_offs;		/* Cryption start offset */
135 #endif
136 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
137 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
138 
139 	/* Used by Host: 4*4 bytes*/
140 	unsigned int ctl_flags;
141 	union {
142 		struct skcipher_request *ablk_req;
143 		struct aead_request *aead_req;
144 		struct crypto_tfm *tfm;
145 	} data;
146 	struct buffer_desc *regist_buf;
147 	u8 *regist_ptr;
148 };
149 
150 struct ablk_ctx {
151 	struct buffer_desc *src;
152 	struct buffer_desc *dst;
153 	u8 iv[MAX_IVLEN];
154 	bool encrypt;
155 	struct skcipher_request fallback_req;   // keep at the end
156 };
157 
158 struct aead_ctx {
159 	struct buffer_desc *src;
160 	struct buffer_desc *dst;
161 	struct scatterlist ivlist;
162 	/* used when the hmac is not on one sg entry */
163 	u8 *hmac_virt;
164 	int encrypt;
165 };
166 
167 struct ix_hash_algo {
168 	u32 cfgword;
169 	unsigned char *icv;
170 };
171 
172 struct ix_sa_dir {
173 	unsigned char *npe_ctx;
174 	dma_addr_t npe_ctx_phys;
175 	int npe_ctx_idx;
176 	u8 npe_mode;
177 };
178 
179 struct ixp_ctx {
180 	struct ix_sa_dir encrypt;
181 	struct ix_sa_dir decrypt;
182 	int authkey_len;
183 	u8 authkey[MAX_KEYLEN];
184 	int enckey_len;
185 	u8 enckey[MAX_KEYLEN];
186 	u8 salt[MAX_IVLEN];
187 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
188 	unsigned int salted;
189 	atomic_t configuring;
190 	struct completion completion;
191 	struct crypto_skcipher *fallback_tfm;
192 };
193 
194 struct ixp_alg {
195 	struct skcipher_alg crypto;
196 	const struct ix_hash_algo *hash;
197 	u32 cfg_enc;
198 	u32 cfg_dec;
199 
200 	int registered;
201 };
202 
203 struct ixp_aead_alg {
204 	struct aead_alg crypto;
205 	const struct ix_hash_algo *hash;
206 	u32 cfg_enc;
207 	u32 cfg_dec;
208 
209 	int registered;
210 };
211 
212 static const struct ix_hash_algo hash_alg_md5 = {
213 	.cfgword	= 0xAA010004,
214 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
215 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
216 };
217 
218 static const struct ix_hash_algo hash_alg_sha1 = {
219 	.cfgword	= 0x00000005,
220 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
221 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
222 };
223 
224 static struct npe *npe_c;
225 
226 static unsigned int send_qid;
227 static unsigned int recv_qid;
228 static struct dma_pool *buffer_pool;
229 static struct dma_pool *ctx_pool;
230 
231 static struct crypt_ctl *crypt_virt;
232 static dma_addr_t crypt_phys;
233 
234 static int support_aes = 1;
235 
236 static struct platform_device *pdev;
237 
crypt_virt2phys(struct crypt_ctl * virt)238 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
239 {
240 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
241 }
242 
crypt_phys2virt(dma_addr_t phys)243 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
244 {
245 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
246 }
247 
cipher_cfg_enc(struct crypto_tfm * tfm)248 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
249 {
250 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
251 }
252 
cipher_cfg_dec(struct crypto_tfm * tfm)253 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
254 {
255 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
256 }
257 
ix_hash(struct crypto_tfm * tfm)258 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
259 {
260 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
261 }
262 
setup_crypt_desc(void)263 static int setup_crypt_desc(void)
264 {
265 	struct device *dev = &pdev->dev;
266 
267 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
268 	crypt_virt = dma_alloc_coherent(dev,
269 					NPE_QLEN * sizeof(struct crypt_ctl),
270 					&crypt_phys, GFP_ATOMIC);
271 	if (!crypt_virt)
272 		return -ENOMEM;
273 	return 0;
274 }
275 
276 static DEFINE_SPINLOCK(desc_lock);
get_crypt_desc(void)277 static struct crypt_ctl *get_crypt_desc(void)
278 {
279 	int i;
280 	static int idx;
281 	unsigned long flags;
282 
283 	spin_lock_irqsave(&desc_lock, flags);
284 
285 	if (unlikely(!crypt_virt))
286 		setup_crypt_desc();
287 	if (unlikely(!crypt_virt)) {
288 		spin_unlock_irqrestore(&desc_lock, flags);
289 		return NULL;
290 	}
291 	i = idx;
292 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
293 		if (++idx >= NPE_QLEN)
294 			idx = 0;
295 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
296 		spin_unlock_irqrestore(&desc_lock, flags);
297 		return crypt_virt + i;
298 	} else {
299 		spin_unlock_irqrestore(&desc_lock, flags);
300 		return NULL;
301 	}
302 }
303 
304 static DEFINE_SPINLOCK(emerg_lock);
get_crypt_desc_emerg(void)305 static struct crypt_ctl *get_crypt_desc_emerg(void)
306 {
307 	int i;
308 	static int idx = NPE_QLEN;
309 	struct crypt_ctl *desc;
310 	unsigned long flags;
311 
312 	desc = get_crypt_desc();
313 	if (desc)
314 		return desc;
315 	if (unlikely(!crypt_virt))
316 		return NULL;
317 
318 	spin_lock_irqsave(&emerg_lock, flags);
319 	i = idx;
320 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
321 		if (++idx >= NPE_QLEN_TOTAL)
322 			idx = NPE_QLEN;
323 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
324 		spin_unlock_irqrestore(&emerg_lock, flags);
325 		return crypt_virt + i;
326 	} else {
327 		spin_unlock_irqrestore(&emerg_lock, flags);
328 		return NULL;
329 	}
330 }
331 
free_buf_chain(struct device * dev,struct buffer_desc * buf,dma_addr_t phys)332 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
333 			   dma_addr_t phys)
334 {
335 	while (buf) {
336 		struct buffer_desc *buf1;
337 		u32 phys1;
338 
339 		buf1 = buf->next;
340 		phys1 = buf->phys_next;
341 		dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
342 		dma_pool_free(buffer_pool, buf, phys);
343 		buf = buf1;
344 		phys = phys1;
345 	}
346 }
347 
348 static struct tasklet_struct crypto_done_tasklet;
349 
finish_scattered_hmac(struct crypt_ctl * crypt)350 static void finish_scattered_hmac(struct crypt_ctl *crypt)
351 {
352 	struct aead_request *req = crypt->data.aead_req;
353 	struct aead_ctx *req_ctx = aead_request_ctx(req);
354 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
355 	int authsize = crypto_aead_authsize(tfm);
356 	int decryptlen = req->assoclen + req->cryptlen - authsize;
357 
358 	if (req_ctx->encrypt) {
359 		scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
360 					 decryptlen, authsize, 1);
361 	}
362 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
363 }
364 
one_packet(dma_addr_t phys)365 static void one_packet(dma_addr_t phys)
366 {
367 	struct device *dev = &pdev->dev;
368 	struct crypt_ctl *crypt;
369 	struct ixp_ctx *ctx;
370 	int failed;
371 
372 	failed = phys & 0x1 ? -EBADMSG : 0;
373 	phys &= ~0x3;
374 	crypt = crypt_phys2virt(phys);
375 
376 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
377 	case CTL_FLAG_PERFORM_AEAD: {
378 		struct aead_request *req = crypt->data.aead_req;
379 		struct aead_ctx *req_ctx = aead_request_ctx(req);
380 
381 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
382 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
383 		if (req_ctx->hmac_virt)
384 			finish_scattered_hmac(crypt);
385 
386 		req->base.complete(&req->base, failed);
387 		break;
388 	}
389 	case CTL_FLAG_PERFORM_ABLK: {
390 		struct skcipher_request *req = crypt->data.ablk_req;
391 		struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
392 		struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
393 		unsigned int ivsize = crypto_skcipher_ivsize(tfm);
394 		unsigned int offset;
395 
396 		if (ivsize > 0) {
397 			offset = req->cryptlen - ivsize;
398 			if (req_ctx->encrypt) {
399 				scatterwalk_map_and_copy(req->iv, req->dst,
400 							 offset, ivsize, 0);
401 			} else {
402 				memcpy(req->iv, req_ctx->iv, ivsize);
403 				memzero_explicit(req_ctx->iv, ivsize);
404 			}
405 		}
406 
407 		if (req_ctx->dst)
408 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
409 
410 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
411 		req->base.complete(&req->base, failed);
412 		break;
413 	}
414 	case CTL_FLAG_GEN_ICV:
415 		ctx = crypto_tfm_ctx(crypt->data.tfm);
416 		dma_pool_free(ctx_pool, crypt->regist_ptr,
417 			      crypt->regist_buf->phys_addr);
418 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
419 		if (atomic_dec_and_test(&ctx->configuring))
420 			complete(&ctx->completion);
421 		break;
422 	case CTL_FLAG_GEN_REVAES:
423 		ctx = crypto_tfm_ctx(crypt->data.tfm);
424 		*(u32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
425 		if (atomic_dec_and_test(&ctx->configuring))
426 			complete(&ctx->completion);
427 		break;
428 	default:
429 		BUG();
430 	}
431 	crypt->ctl_flags = CTL_FLAG_UNUSED;
432 }
433 
irqhandler(void * _unused)434 static void irqhandler(void *_unused)
435 {
436 	tasklet_schedule(&crypto_done_tasklet);
437 }
438 
crypto_done_action(unsigned long arg)439 static void crypto_done_action(unsigned long arg)
440 {
441 	int i;
442 
443 	for (i = 0; i < 4; i++) {
444 		dma_addr_t phys = qmgr_get_entry(recv_qid);
445 		if (!phys)
446 			return;
447 		one_packet(phys);
448 	}
449 	tasklet_schedule(&crypto_done_tasklet);
450 }
451 
init_ixp_crypto(struct device * dev)452 static int init_ixp_crypto(struct device *dev)
453 {
454 	struct device_node *np = dev->of_node;
455 	u32 msg[2] = { 0, 0 };
456 	int ret = -ENODEV;
457 	u32 npe_id;
458 
459 	dev_info(dev, "probing...\n");
460 
461 	/* Locate the NPE and queue manager to use from device tree */
462 	if (IS_ENABLED(CONFIG_OF) && np) {
463 		struct of_phandle_args queue_spec;
464 		struct of_phandle_args npe_spec;
465 
466 		ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
467 						       1, 0, &npe_spec);
468 		if (ret) {
469 			dev_err(dev, "no NPE engine specified\n");
470 			return -ENODEV;
471 		}
472 		npe_id = npe_spec.args[0];
473 
474 		ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
475 						       &queue_spec);
476 		if (ret) {
477 			dev_err(dev, "no rx queue phandle\n");
478 			return -ENODEV;
479 		}
480 		recv_qid = queue_spec.args[0];
481 
482 		ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
483 						       &queue_spec);
484 		if (ret) {
485 			dev_err(dev, "no txready queue phandle\n");
486 			return -ENODEV;
487 		}
488 		send_qid = queue_spec.args[0];
489 	} else {
490 		/*
491 		 * Hardcoded engine when using platform data, this goes away
492 		 * when we switch to using DT only.
493 		 */
494 		npe_id = 2;
495 		send_qid = 29;
496 		recv_qid = 30;
497 	}
498 
499 	npe_c = npe_request(npe_id);
500 	if (!npe_c)
501 		return ret;
502 
503 	if (!npe_running(npe_c)) {
504 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
505 		if (ret)
506 			goto npe_release;
507 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
508 			goto npe_error;
509 	} else {
510 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
511 			goto npe_error;
512 
513 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
514 			goto npe_error;
515 	}
516 
517 	switch ((msg[1] >> 16) & 0xff) {
518 	case 3:
519 		dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
520 		support_aes = 0;
521 		break;
522 	case 4:
523 	case 5:
524 		support_aes = 1;
525 		break;
526 	default:
527 		dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
528 		ret = -ENODEV;
529 		goto npe_release;
530 	}
531 	/* buffer_pool will also be used to sometimes store the hmac,
532 	 * so assure it is large enough
533 	 */
534 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
535 	buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
536 				      32, 0);
537 	ret = -ENOMEM;
538 	if (!buffer_pool)
539 		goto err;
540 
541 	ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
542 	if (!ctx_pool)
543 		goto err;
544 
545 	ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
546 				 "ixp_crypto:out", NULL);
547 	if (ret)
548 		goto err;
549 	ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
550 				 "ixp_crypto:in", NULL);
551 	if (ret) {
552 		qmgr_release_queue(send_qid);
553 		goto err;
554 	}
555 	qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
556 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
557 
558 	qmgr_enable_irq(recv_qid);
559 	return 0;
560 
561 npe_error:
562 	dev_err(dev, "%s not responding\n", npe_name(npe_c));
563 	ret = -EIO;
564 err:
565 	dma_pool_destroy(ctx_pool);
566 	dma_pool_destroy(buffer_pool);
567 npe_release:
568 	npe_release(npe_c);
569 	return ret;
570 }
571 
release_ixp_crypto(struct device * dev)572 static void release_ixp_crypto(struct device *dev)
573 {
574 	qmgr_disable_irq(recv_qid);
575 	tasklet_kill(&crypto_done_tasklet);
576 
577 	qmgr_release_queue(send_qid);
578 	qmgr_release_queue(recv_qid);
579 
580 	dma_pool_destroy(ctx_pool);
581 	dma_pool_destroy(buffer_pool);
582 
583 	npe_release(npe_c);
584 
585 	if (crypt_virt)
586 		dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
587 				  crypt_virt, crypt_phys);
588 }
589 
reset_sa_dir(struct ix_sa_dir * dir)590 static void reset_sa_dir(struct ix_sa_dir *dir)
591 {
592 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
593 	dir->npe_ctx_idx = 0;
594 	dir->npe_mode = 0;
595 }
596 
init_sa_dir(struct ix_sa_dir * dir)597 static int init_sa_dir(struct ix_sa_dir *dir)
598 {
599 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
600 	if (!dir->npe_ctx)
601 		return -ENOMEM;
602 
603 	reset_sa_dir(dir);
604 	return 0;
605 }
606 
free_sa_dir(struct ix_sa_dir * dir)607 static void free_sa_dir(struct ix_sa_dir *dir)
608 {
609 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
610 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
611 }
612 
init_tfm(struct crypto_tfm * tfm)613 static int init_tfm(struct crypto_tfm *tfm)
614 {
615 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
616 	int ret;
617 
618 	atomic_set(&ctx->configuring, 0);
619 	ret = init_sa_dir(&ctx->encrypt);
620 	if (ret)
621 		return ret;
622 	ret = init_sa_dir(&ctx->decrypt);
623 	if (ret)
624 		free_sa_dir(&ctx->encrypt);
625 
626 	return ret;
627 }
628 
init_tfm_ablk(struct crypto_skcipher * tfm)629 static int init_tfm_ablk(struct crypto_skcipher *tfm)
630 {
631 	struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
632 	struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
633 	const char *name = crypto_tfm_alg_name(ctfm);
634 
635 	ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
636 	if (IS_ERR(ctx->fallback_tfm)) {
637 		pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
638 			name, PTR_ERR(ctx->fallback_tfm));
639 		return PTR_ERR(ctx->fallback_tfm);
640 	}
641 
642 	pr_info("Fallback for %s is %s\n",
643 		 crypto_tfm_alg_driver_name(&tfm->base),
644 		 crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
645 		 );
646 
647 	crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
648 	return init_tfm(crypto_skcipher_tfm(tfm));
649 }
650 
init_tfm_aead(struct crypto_aead * tfm)651 static int init_tfm_aead(struct crypto_aead *tfm)
652 {
653 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
654 	return init_tfm(crypto_aead_tfm(tfm));
655 }
656 
exit_tfm(struct crypto_tfm * tfm)657 static void exit_tfm(struct crypto_tfm *tfm)
658 {
659 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
660 
661 	free_sa_dir(&ctx->encrypt);
662 	free_sa_dir(&ctx->decrypt);
663 }
664 
exit_tfm_ablk(struct crypto_skcipher * tfm)665 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
666 {
667 	struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
668 	struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
669 
670 	crypto_free_skcipher(ctx->fallback_tfm);
671 	exit_tfm(crypto_skcipher_tfm(tfm));
672 }
673 
exit_tfm_aead(struct crypto_aead * tfm)674 static void exit_tfm_aead(struct crypto_aead *tfm)
675 {
676 	exit_tfm(crypto_aead_tfm(tfm));
677 }
678 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)679 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
680 			      int init_len, u32 ctx_addr, const u8 *key,
681 			      int key_len)
682 {
683 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
684 	struct crypt_ctl *crypt;
685 	struct buffer_desc *buf;
686 	int i;
687 	u8 *pad;
688 	dma_addr_t pad_phys, buf_phys;
689 
690 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
691 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
692 	if (!pad)
693 		return -ENOMEM;
694 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
695 	if (!buf) {
696 		dma_pool_free(ctx_pool, pad, pad_phys);
697 		return -ENOMEM;
698 	}
699 	crypt = get_crypt_desc_emerg();
700 	if (!crypt) {
701 		dma_pool_free(ctx_pool, pad, pad_phys);
702 		dma_pool_free(buffer_pool, buf, buf_phys);
703 		return -EAGAIN;
704 	}
705 
706 	memcpy(pad, key, key_len);
707 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
708 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
709 		pad[i] ^= xpad;
710 
711 	crypt->data.tfm = tfm;
712 	crypt->regist_ptr = pad;
713 	crypt->regist_buf = buf;
714 
715 	crypt->auth_offs = 0;
716 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
717 	crypt->crypto_ctx = ctx_addr;
718 	crypt->src_buf = buf_phys;
719 	crypt->icv_rev_aes = target;
720 	crypt->mode = NPE_OP_HASH_GEN_ICV;
721 	crypt->init_len = init_len;
722 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
723 
724 	buf->next = 0;
725 	buf->buf_len = HMAC_PAD_BLOCKLEN;
726 	buf->pkt_len = 0;
727 	buf->phys_addr = pad_phys;
728 
729 	atomic_inc(&ctx->configuring);
730 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
731 	BUG_ON(qmgr_stat_overflow(send_qid));
732 	return 0;
733 }
734 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned int authsize,const u8 * key,int key_len,unsigned int digest_len)735 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
736 		      const u8 *key, int key_len, unsigned int digest_len)
737 {
738 	u32 itarget, otarget, npe_ctx_addr;
739 	unsigned char *cinfo;
740 	int init_len, ret = 0;
741 	u32 cfgword;
742 	struct ix_sa_dir *dir;
743 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
744 	const struct ix_hash_algo *algo;
745 
746 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
747 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
748 	algo = ix_hash(tfm);
749 
750 	/* write cfg word to cryptinfo */
751 	cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
752 #ifndef __ARMEB__
753 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
754 #endif
755 	*(u32 *)cinfo = cpu_to_be32(cfgword);
756 	cinfo += sizeof(cfgword);
757 
758 	/* write ICV to cryptinfo */
759 	memcpy(cinfo, algo->icv, digest_len);
760 	cinfo += digest_len;
761 
762 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
763 				+ sizeof(algo->cfgword);
764 	otarget = itarget + digest_len;
765 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
766 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
767 
768 	dir->npe_ctx_idx += init_len;
769 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
770 
771 	if (!encrypt)
772 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
773 
774 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
775 				 init_len, npe_ctx_addr, key, key_len);
776 	if (ret)
777 		return ret;
778 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
779 				  init_len, npe_ctx_addr, key, key_len);
780 }
781 
gen_rev_aes_key(struct crypto_tfm * tfm)782 static int gen_rev_aes_key(struct crypto_tfm *tfm)
783 {
784 	struct crypt_ctl *crypt;
785 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
786 	struct ix_sa_dir *dir = &ctx->decrypt;
787 
788 	crypt = get_crypt_desc_emerg();
789 	if (!crypt)
790 		return -EAGAIN;
791 
792 	*(u32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
793 
794 	crypt->data.tfm = tfm;
795 	crypt->crypt_offs = 0;
796 	crypt->crypt_len = AES_BLOCK128;
797 	crypt->src_buf = 0;
798 	crypt->crypto_ctx = dir->npe_ctx_phys;
799 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
800 	crypt->mode = NPE_OP_ENC_GEN_KEY;
801 	crypt->init_len = dir->npe_ctx_idx;
802 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
803 
804 	atomic_inc(&ctx->configuring);
805 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
806 	BUG_ON(qmgr_stat_overflow(send_qid));
807 	return 0;
808 }
809 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)810 static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
811 			int key_len)
812 {
813 	u8 *cinfo;
814 	u32 cipher_cfg;
815 	u32 keylen_cfg = 0;
816 	struct ix_sa_dir *dir;
817 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
818 	int err;
819 
820 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
821 	cinfo = dir->npe_ctx;
822 
823 	if (encrypt) {
824 		cipher_cfg = cipher_cfg_enc(tfm);
825 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
826 	} else {
827 		cipher_cfg = cipher_cfg_dec(tfm);
828 	}
829 	if (cipher_cfg & MOD_AES) {
830 		switch (key_len) {
831 		case 16:
832 			keylen_cfg = MOD_AES128;
833 			break;
834 		case 24:
835 			keylen_cfg = MOD_AES192;
836 			break;
837 		case 32:
838 			keylen_cfg = MOD_AES256;
839 			break;
840 		default:
841 			return -EINVAL;
842 		}
843 		cipher_cfg |= keylen_cfg;
844 	} else {
845 		err = crypto_des_verify_key(tfm, key);
846 		if (err)
847 			return err;
848 	}
849 	/* write cfg word to cryptinfo */
850 	*(u32 *)cinfo = cpu_to_be32(cipher_cfg);
851 	cinfo += sizeof(cipher_cfg);
852 
853 	/* write cipher key to cryptinfo */
854 	memcpy(cinfo, key, key_len);
855 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
856 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
857 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
858 		key_len = DES3_EDE_KEY_SIZE;
859 	}
860 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
861 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
862 	if ((cipher_cfg & MOD_AES) && !encrypt)
863 		return gen_rev_aes_key(tfm);
864 
865 	return 0;
866 }
867 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned int nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)868 static struct buffer_desc *chainup_buffers(struct device *dev,
869 		struct scatterlist *sg,	unsigned int nbytes,
870 		struct buffer_desc *buf, gfp_t flags,
871 		enum dma_data_direction dir)
872 {
873 	for (; nbytes > 0; sg = sg_next(sg)) {
874 		unsigned int len = min(nbytes, sg->length);
875 		struct buffer_desc *next_buf;
876 		dma_addr_t next_buf_phys;
877 		void *ptr;
878 
879 		nbytes -= len;
880 		ptr = sg_virt(sg);
881 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
882 		if (!next_buf) {
883 			buf = NULL;
884 			break;
885 		}
886 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
887 		buf->next = next_buf;
888 		buf->phys_next = next_buf_phys;
889 		buf = next_buf;
890 
891 		buf->phys_addr = sg_dma_address(sg);
892 		buf->buf_len = len;
893 		buf->dir = dir;
894 	}
895 	buf->next = NULL;
896 	buf->phys_next = 0;
897 	return buf;
898 }
899 
ablk_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)900 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
901 		       unsigned int key_len)
902 {
903 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
904 	int ret;
905 
906 	init_completion(&ctx->completion);
907 	atomic_inc(&ctx->configuring);
908 
909 	reset_sa_dir(&ctx->encrypt);
910 	reset_sa_dir(&ctx->decrypt);
911 
912 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
913 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
914 
915 	ret = setup_cipher(&tfm->base, 0, key, key_len);
916 	if (ret)
917 		goto out;
918 	ret = setup_cipher(&tfm->base, 1, key, key_len);
919 out:
920 	if (!atomic_dec_and_test(&ctx->configuring))
921 		wait_for_completion(&ctx->completion);
922 	if (ret)
923 		return ret;
924 	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
925 	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
926 
927 	return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
928 }
929 
ablk_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)930 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
931 			    unsigned int key_len)
932 {
933 	return verify_skcipher_des3_key(tfm, key) ?:
934 	       ablk_setkey(tfm, key, key_len);
935 }
936 
ablk_rfc3686_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)937 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
938 			       unsigned int key_len)
939 {
940 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
941 
942 	/* the nonce is stored in bytes at end of key */
943 	if (key_len < CTR_RFC3686_NONCE_SIZE)
944 		return -EINVAL;
945 
946 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
947 	       CTR_RFC3686_NONCE_SIZE);
948 
949 	key_len -= CTR_RFC3686_NONCE_SIZE;
950 	return ablk_setkey(tfm, key, key_len);
951 }
952 
ixp4xx_cipher_fallback(struct skcipher_request * areq,int encrypt)953 static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
954 {
955 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
956 	struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
957 	struct ablk_ctx *rctx = skcipher_request_ctx(areq);
958 	int err;
959 
960 	skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
961 	skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
962 				      areq->base.complete, areq->base.data);
963 	skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
964 				   areq->cryptlen, areq->iv);
965 	if (encrypt)
966 		err = crypto_skcipher_encrypt(&rctx->fallback_req);
967 	else
968 		err = crypto_skcipher_decrypt(&rctx->fallback_req);
969 	return err;
970 }
971 
ablk_perform(struct skcipher_request * req,int encrypt)972 static int ablk_perform(struct skcipher_request *req, int encrypt)
973 {
974 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
975 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
976 	unsigned int ivsize = crypto_skcipher_ivsize(tfm);
977 	struct ix_sa_dir *dir;
978 	struct crypt_ctl *crypt;
979 	unsigned int nbytes = req->cryptlen;
980 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
981 	struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
982 	struct buffer_desc src_hook;
983 	struct device *dev = &pdev->dev;
984 	unsigned int offset;
985 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
986 				GFP_KERNEL : GFP_ATOMIC;
987 
988 	if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
989 		return ixp4xx_cipher_fallback(req, encrypt);
990 
991 	if (qmgr_stat_full(send_qid))
992 		return -EAGAIN;
993 	if (atomic_read(&ctx->configuring))
994 		return -EAGAIN;
995 
996 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
997 	req_ctx->encrypt = encrypt;
998 
999 	crypt = get_crypt_desc();
1000 	if (!crypt)
1001 		return -ENOMEM;
1002 
1003 	crypt->data.ablk_req = req;
1004 	crypt->crypto_ctx = dir->npe_ctx_phys;
1005 	crypt->mode = dir->npe_mode;
1006 	crypt->init_len = dir->npe_ctx_idx;
1007 
1008 	crypt->crypt_offs = 0;
1009 	crypt->crypt_len = nbytes;
1010 
1011 	BUG_ON(ivsize && !req->iv);
1012 	memcpy(crypt->iv, req->iv, ivsize);
1013 	if (ivsize > 0 && !encrypt) {
1014 		offset = req->cryptlen - ivsize;
1015 		scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1016 	}
1017 	if (req->src != req->dst) {
1018 		struct buffer_desc dst_hook;
1019 
1020 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1021 		/* This was never tested by Intel
1022 		 * for more than one dst buffer, I think. */
1023 		req_ctx->dst = NULL;
1024 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1025 				     flags, DMA_FROM_DEVICE))
1026 			goto free_buf_dest;
1027 		src_direction = DMA_TO_DEVICE;
1028 		req_ctx->dst = dst_hook.next;
1029 		crypt->dst_buf = dst_hook.phys_next;
1030 	} else {
1031 		req_ctx->dst = NULL;
1032 	}
1033 	req_ctx->src = NULL;
1034 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1035 			     src_direction))
1036 		goto free_buf_src;
1037 
1038 	req_ctx->src = src_hook.next;
1039 	crypt->src_buf = src_hook.phys_next;
1040 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1041 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1042 	BUG_ON(qmgr_stat_overflow(send_qid));
1043 	return -EINPROGRESS;
1044 
1045 free_buf_src:
1046 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1047 free_buf_dest:
1048 	if (req->src != req->dst)
1049 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1050 
1051 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1052 	return -ENOMEM;
1053 }
1054 
ablk_encrypt(struct skcipher_request * req)1055 static int ablk_encrypt(struct skcipher_request *req)
1056 {
1057 	return ablk_perform(req, 1);
1058 }
1059 
ablk_decrypt(struct skcipher_request * req)1060 static int ablk_decrypt(struct skcipher_request *req)
1061 {
1062 	return ablk_perform(req, 0);
1063 }
1064 
ablk_rfc3686_crypt(struct skcipher_request * req)1065 static int ablk_rfc3686_crypt(struct skcipher_request *req)
1066 {
1067 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1068 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1069 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
1070 	u8 *info = req->iv;
1071 	int ret;
1072 
1073 	/* set up counter block */
1074 	memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1075 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1076 
1077 	/* initialize counter portion of counter block */
1078 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1079 		cpu_to_be32(1);
1080 
1081 	req->iv = iv;
1082 	ret = ablk_perform(req, 1);
1083 	req->iv = info;
1084 	return ret;
1085 }
1086 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)1087 static int aead_perform(struct aead_request *req, int encrypt,
1088 			int cryptoffset, int eff_cryptlen, u8 *iv)
1089 {
1090 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1091 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1092 	unsigned int ivsize = crypto_aead_ivsize(tfm);
1093 	unsigned int authsize = crypto_aead_authsize(tfm);
1094 	struct ix_sa_dir *dir;
1095 	struct crypt_ctl *crypt;
1096 	unsigned int cryptlen;
1097 	struct buffer_desc *buf, src_hook;
1098 	struct aead_ctx *req_ctx = aead_request_ctx(req);
1099 	struct device *dev = &pdev->dev;
1100 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1101 				GFP_KERNEL : GFP_ATOMIC;
1102 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1103 	unsigned int lastlen;
1104 
1105 	if (qmgr_stat_full(send_qid))
1106 		return -EAGAIN;
1107 	if (atomic_read(&ctx->configuring))
1108 		return -EAGAIN;
1109 
1110 	if (encrypt) {
1111 		dir = &ctx->encrypt;
1112 		cryptlen = req->cryptlen;
1113 	} else {
1114 		dir = &ctx->decrypt;
1115 		/* req->cryptlen includes the authsize when decrypting */
1116 		cryptlen = req->cryptlen - authsize;
1117 		eff_cryptlen -= authsize;
1118 	}
1119 	crypt = get_crypt_desc();
1120 	if (!crypt)
1121 		return -ENOMEM;
1122 
1123 	crypt->data.aead_req = req;
1124 	crypt->crypto_ctx = dir->npe_ctx_phys;
1125 	crypt->mode = dir->npe_mode;
1126 	crypt->init_len = dir->npe_ctx_idx;
1127 
1128 	crypt->crypt_offs = cryptoffset;
1129 	crypt->crypt_len = eff_cryptlen;
1130 
1131 	crypt->auth_offs = 0;
1132 	crypt->auth_len = req->assoclen + cryptlen;
1133 	BUG_ON(ivsize && !req->iv);
1134 	memcpy(crypt->iv, req->iv, ivsize);
1135 
1136 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1137 			      &src_hook, flags, src_direction);
1138 	req_ctx->src = src_hook.next;
1139 	crypt->src_buf = src_hook.phys_next;
1140 	if (!buf)
1141 		goto free_buf_src;
1142 
1143 	lastlen = buf->buf_len;
1144 	if (lastlen >= authsize)
1145 		crypt->icv_rev_aes = buf->phys_addr +
1146 				     buf->buf_len - authsize;
1147 
1148 	req_ctx->dst = NULL;
1149 
1150 	if (req->src != req->dst) {
1151 		struct buffer_desc dst_hook;
1152 
1153 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1154 		src_direction = DMA_TO_DEVICE;
1155 
1156 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1157 				      &dst_hook, flags, DMA_FROM_DEVICE);
1158 		req_ctx->dst = dst_hook.next;
1159 		crypt->dst_buf = dst_hook.phys_next;
1160 
1161 		if (!buf)
1162 			goto free_buf_dst;
1163 
1164 		if (encrypt) {
1165 			lastlen = buf->buf_len;
1166 			if (lastlen >= authsize)
1167 				crypt->icv_rev_aes = buf->phys_addr +
1168 						     buf->buf_len - authsize;
1169 		}
1170 	}
1171 
1172 	if (unlikely(lastlen < authsize)) {
1173 		/* The 12 hmac bytes are scattered,
1174 		 * we need to copy them into a safe buffer */
1175 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1176 						    &crypt->icv_rev_aes);
1177 		if (unlikely(!req_ctx->hmac_virt))
1178 			goto free_buf_dst;
1179 		if (!encrypt) {
1180 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1181 						 req->src, cryptlen, authsize, 0);
1182 		}
1183 		req_ctx->encrypt = encrypt;
1184 	} else {
1185 		req_ctx->hmac_virt = NULL;
1186 	}
1187 
1188 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1189 	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1190 	BUG_ON(qmgr_stat_overflow(send_qid));
1191 	return -EINPROGRESS;
1192 
1193 free_buf_dst:
1194 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1195 free_buf_src:
1196 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1197 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1198 	return -ENOMEM;
1199 }
1200 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1201 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1202 {
1203 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1204 	unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1205 	int ret;
1206 
1207 	if (!ctx->enckey_len && !ctx->authkey_len)
1208 		return 0;
1209 	init_completion(&ctx->completion);
1210 	atomic_inc(&ctx->configuring);
1211 
1212 	reset_sa_dir(&ctx->encrypt);
1213 	reset_sa_dir(&ctx->decrypt);
1214 
1215 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1216 	if (ret)
1217 		goto out;
1218 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1219 	if (ret)
1220 		goto out;
1221 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1222 			 ctx->authkey_len, digest_len);
1223 	if (ret)
1224 		goto out;
1225 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1226 			 ctx->authkey_len, digest_len);
1227 out:
1228 	if (!atomic_dec_and_test(&ctx->configuring))
1229 		wait_for_completion(&ctx->completion);
1230 	return ret;
1231 }
1232 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1233 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1234 {
1235 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1236 
1237 	if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1238 		return -EINVAL;
1239 	return aead_setup(tfm, authsize);
1240 }
1241 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1242 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1243 		       unsigned int keylen)
1244 {
1245 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1246 	struct crypto_authenc_keys keys;
1247 
1248 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1249 		goto badkey;
1250 
1251 	if (keys.authkeylen > sizeof(ctx->authkey))
1252 		goto badkey;
1253 
1254 	if (keys.enckeylen > sizeof(ctx->enckey))
1255 		goto badkey;
1256 
1257 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1258 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1259 	ctx->authkey_len = keys.authkeylen;
1260 	ctx->enckey_len = keys.enckeylen;
1261 
1262 	memzero_explicit(&keys, sizeof(keys));
1263 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1264 badkey:
1265 	memzero_explicit(&keys, sizeof(keys));
1266 	return -EINVAL;
1267 }
1268 
des3_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1269 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1270 			    unsigned int keylen)
1271 {
1272 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1273 	struct crypto_authenc_keys keys;
1274 	int err;
1275 
1276 	err = crypto_authenc_extractkeys(&keys, key, keylen);
1277 	if (unlikely(err))
1278 		goto badkey;
1279 
1280 	err = -EINVAL;
1281 	if (keys.authkeylen > sizeof(ctx->authkey))
1282 		goto badkey;
1283 
1284 	err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1285 	if (err)
1286 		goto badkey;
1287 
1288 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1289 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1290 	ctx->authkey_len = keys.authkeylen;
1291 	ctx->enckey_len = keys.enckeylen;
1292 
1293 	memzero_explicit(&keys, sizeof(keys));
1294 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1295 badkey:
1296 	memzero_explicit(&keys, sizeof(keys));
1297 	return err;
1298 }
1299 
aead_encrypt(struct aead_request * req)1300 static int aead_encrypt(struct aead_request *req)
1301 {
1302 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1303 }
1304 
aead_decrypt(struct aead_request * req)1305 static int aead_decrypt(struct aead_request *req)
1306 {
1307 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1308 }
1309 
1310 static struct ixp_alg ixp4xx_algos[] = {
1311 {
1312 	.crypto	= {
1313 		.base.cra_name		= "cbc(des)",
1314 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1315 
1316 		.min_keysize		= DES_KEY_SIZE,
1317 		.max_keysize		= DES_KEY_SIZE,
1318 		.ivsize			= DES_BLOCK_SIZE,
1319 	},
1320 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1321 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1322 
1323 }, {
1324 	.crypto	= {
1325 		.base.cra_name		= "ecb(des)",
1326 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1327 		.min_keysize		= DES_KEY_SIZE,
1328 		.max_keysize		= DES_KEY_SIZE,
1329 	},
1330 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1331 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1332 }, {
1333 	.crypto	= {
1334 		.base.cra_name		= "cbc(des3_ede)",
1335 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1336 
1337 		.min_keysize		= DES3_EDE_KEY_SIZE,
1338 		.max_keysize		= DES3_EDE_KEY_SIZE,
1339 		.ivsize			= DES3_EDE_BLOCK_SIZE,
1340 		.setkey			= ablk_des3_setkey,
1341 	},
1342 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1343 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1344 }, {
1345 	.crypto	= {
1346 		.base.cra_name		= "ecb(des3_ede)",
1347 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1348 
1349 		.min_keysize		= DES3_EDE_KEY_SIZE,
1350 		.max_keysize		= DES3_EDE_KEY_SIZE,
1351 		.setkey			= ablk_des3_setkey,
1352 	},
1353 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1354 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1355 }, {
1356 	.crypto	= {
1357 		.base.cra_name		= "cbc(aes)",
1358 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1359 
1360 		.min_keysize		= AES_MIN_KEY_SIZE,
1361 		.max_keysize		= AES_MAX_KEY_SIZE,
1362 		.ivsize			= AES_BLOCK_SIZE,
1363 	},
1364 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1365 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1366 }, {
1367 	.crypto	= {
1368 		.base.cra_name		= "ecb(aes)",
1369 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1370 
1371 		.min_keysize		= AES_MIN_KEY_SIZE,
1372 		.max_keysize		= AES_MAX_KEY_SIZE,
1373 	},
1374 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1375 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1376 }, {
1377 	.crypto	= {
1378 		.base.cra_name		= "ctr(aes)",
1379 		.base.cra_blocksize	= 1,
1380 
1381 		.min_keysize		= AES_MIN_KEY_SIZE,
1382 		.max_keysize		= AES_MAX_KEY_SIZE,
1383 		.ivsize			= AES_BLOCK_SIZE,
1384 	},
1385 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1386 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1387 }, {
1388 	.crypto	= {
1389 		.base.cra_name		= "rfc3686(ctr(aes))",
1390 		.base.cra_blocksize	= 1,
1391 
1392 		.min_keysize		= AES_MIN_KEY_SIZE,
1393 		.max_keysize		= AES_MAX_KEY_SIZE,
1394 		.ivsize			= AES_BLOCK_SIZE,
1395 		.setkey			= ablk_rfc3686_setkey,
1396 		.encrypt		= ablk_rfc3686_crypt,
1397 		.decrypt		= ablk_rfc3686_crypt,
1398 	},
1399 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1400 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1401 } };
1402 
1403 static struct ixp_aead_alg ixp4xx_aeads[] = {
1404 {
1405 	.crypto	= {
1406 		.base = {
1407 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1408 			.cra_blocksize	= DES_BLOCK_SIZE,
1409 		},
1410 		.ivsize		= DES_BLOCK_SIZE,
1411 		.maxauthsize	= MD5_DIGEST_SIZE,
1412 	},
1413 	.hash = &hash_alg_md5,
1414 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1415 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1416 }, {
1417 	.crypto	= {
1418 		.base = {
1419 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1420 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1421 		},
1422 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1423 		.maxauthsize	= MD5_DIGEST_SIZE,
1424 		.setkey		= des3_aead_setkey,
1425 	},
1426 	.hash = &hash_alg_md5,
1427 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1428 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1429 }, {
1430 	.crypto	= {
1431 		.base = {
1432 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1433 			.cra_blocksize	= DES_BLOCK_SIZE,
1434 		},
1435 			.ivsize		= DES_BLOCK_SIZE,
1436 			.maxauthsize	= SHA1_DIGEST_SIZE,
1437 	},
1438 	.hash = &hash_alg_sha1,
1439 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1440 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1441 }, {
1442 	.crypto	= {
1443 		.base = {
1444 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1445 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1446 		},
1447 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1448 		.maxauthsize	= SHA1_DIGEST_SIZE,
1449 		.setkey		= des3_aead_setkey,
1450 	},
1451 	.hash = &hash_alg_sha1,
1452 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1453 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1454 }, {
1455 	.crypto	= {
1456 		.base = {
1457 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1458 			.cra_blocksize	= AES_BLOCK_SIZE,
1459 		},
1460 		.ivsize		= AES_BLOCK_SIZE,
1461 		.maxauthsize	= MD5_DIGEST_SIZE,
1462 	},
1463 	.hash = &hash_alg_md5,
1464 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1465 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1466 }, {
1467 	.crypto	= {
1468 		.base = {
1469 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1470 			.cra_blocksize	= AES_BLOCK_SIZE,
1471 		},
1472 		.ivsize		= AES_BLOCK_SIZE,
1473 		.maxauthsize	= SHA1_DIGEST_SIZE,
1474 	},
1475 	.hash = &hash_alg_sha1,
1476 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1477 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1478 } };
1479 
1480 #define IXP_POSTFIX "-ixp4xx"
1481 
ixp_crypto_probe(struct platform_device * _pdev)1482 static int ixp_crypto_probe(struct platform_device *_pdev)
1483 {
1484 	struct device *dev = &_pdev->dev;
1485 	int num = ARRAY_SIZE(ixp4xx_algos);
1486 	int i, err;
1487 
1488 	pdev = _pdev;
1489 
1490 	err = init_ixp_crypto(dev);
1491 	if (err)
1492 		return err;
1493 
1494 	for (i = 0; i < num; i++) {
1495 		struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1496 
1497 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1498 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1499 			     CRYPTO_MAX_ALG_NAME)
1500 			continue;
1501 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1502 			continue;
1503 
1504 		/* block ciphers */
1505 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1506 				      CRYPTO_ALG_ASYNC |
1507 				      CRYPTO_ALG_ALLOCATES_MEMORY |
1508 				      CRYPTO_ALG_NEED_FALLBACK;
1509 		if (!cra->setkey)
1510 			cra->setkey = ablk_setkey;
1511 		if (!cra->encrypt)
1512 			cra->encrypt = ablk_encrypt;
1513 		if (!cra->decrypt)
1514 			cra->decrypt = ablk_decrypt;
1515 		cra->init = init_tfm_ablk;
1516 		cra->exit = exit_tfm_ablk;
1517 
1518 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1519 		cra->base.cra_module = THIS_MODULE;
1520 		cra->base.cra_alignmask = 3;
1521 		cra->base.cra_priority = 300;
1522 		if (crypto_register_skcipher(cra))
1523 			dev_err(&pdev->dev, "Failed to register '%s'\n",
1524 				cra->base.cra_name);
1525 		else
1526 			ixp4xx_algos[i].registered = 1;
1527 	}
1528 
1529 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1530 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1531 
1532 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1533 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1534 		    CRYPTO_MAX_ALG_NAME)
1535 			continue;
1536 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1537 			continue;
1538 
1539 		/* authenc */
1540 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1541 				      CRYPTO_ALG_ASYNC |
1542 				      CRYPTO_ALG_ALLOCATES_MEMORY;
1543 		cra->setkey = cra->setkey ?: aead_setkey;
1544 		cra->setauthsize = aead_setauthsize;
1545 		cra->encrypt = aead_encrypt;
1546 		cra->decrypt = aead_decrypt;
1547 		cra->init = init_tfm_aead;
1548 		cra->exit = exit_tfm_aead;
1549 
1550 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1551 		cra->base.cra_module = THIS_MODULE;
1552 		cra->base.cra_alignmask = 3;
1553 		cra->base.cra_priority = 300;
1554 
1555 		if (crypto_register_aead(cra))
1556 			dev_err(&pdev->dev, "Failed to register '%s'\n",
1557 				cra->base.cra_driver_name);
1558 		else
1559 			ixp4xx_aeads[i].registered = 1;
1560 	}
1561 	return 0;
1562 }
1563 
ixp_crypto_remove(struct platform_device * pdev)1564 static int ixp_crypto_remove(struct platform_device *pdev)
1565 {
1566 	int num = ARRAY_SIZE(ixp4xx_algos);
1567 	int i;
1568 
1569 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1570 		if (ixp4xx_aeads[i].registered)
1571 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1572 	}
1573 
1574 	for (i = 0; i < num; i++) {
1575 		if (ixp4xx_algos[i].registered)
1576 			crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1577 	}
1578 	release_ixp_crypto(&pdev->dev);
1579 
1580 	return 0;
1581 }
1582 static const struct of_device_id ixp4xx_crypto_of_match[] = {
1583 	{
1584 		.compatible = "intel,ixp4xx-crypto",
1585 	},
1586 	{},
1587 };
1588 
1589 static struct platform_driver ixp_crypto_driver = {
1590 	.probe = ixp_crypto_probe,
1591 	.remove = ixp_crypto_remove,
1592 	.driver = {
1593 		.name = "ixp4xx_crypto",
1594 		.of_match_table = ixp4xx_crypto_of_match,
1595 	},
1596 };
1597 module_platform_driver(ixp_crypto_driver);
1598 
1599 MODULE_LICENSE("GPL");
1600 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1601 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1602 
1603