1 /*
2 * Utility functions for x86 operand and address decoding
3 *
4 * Copyright (C) Intel Corporation 2017
5 */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/vm86.h>
17
18 #undef pr_fmt
19 #define pr_fmt(fmt) "insn: " fmt
20
21 enum reg_type {
22 REG_TYPE_RM = 0,
23 REG_TYPE_REG,
24 REG_TYPE_INDEX,
25 REG_TYPE_BASE,
26 };
27
28 /**
29 * is_string_insn() - Determine if instruction is a string instruction
30 * @insn: Instruction containing the opcode to inspect
31 *
32 * Returns:
33 *
34 * true if the instruction, determined by the opcode, is any of the
35 * string instructions as defined in the Intel Software Development manual.
36 * False otherwise.
37 */
is_string_insn(struct insn * insn)38 static bool is_string_insn(struct insn *insn)
39 {
40 insn_get_opcode(insn);
41
42 /* All string instructions have a 1-byte opcode. */
43 if (insn->opcode.nbytes != 1)
44 return false;
45
46 switch (insn->opcode.bytes[0]) {
47 case 0x6c ... 0x6f: /* INS, OUTS */
48 case 0xa4 ... 0xa7: /* MOVS, CMPS */
49 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
50 return true;
51 default:
52 return false;
53 }
54 }
55
56 /**
57 * insn_has_rep_prefix() - Determine if instruction has a REP prefix
58 * @insn: Instruction containing the prefix to inspect
59 *
60 * Returns:
61 *
62 * true if the instruction has a REP prefix, false if not.
63 */
insn_has_rep_prefix(struct insn * insn)64 bool insn_has_rep_prefix(struct insn *insn)
65 {
66 insn_byte_t p;
67 int i;
68
69 insn_get_prefixes(insn);
70
71 for_each_insn_prefix(insn, i, p) {
72 if (p == 0xf2 || p == 0xf3)
73 return true;
74 }
75
76 return false;
77 }
78
79 /**
80 * get_seg_reg_override_idx() - obtain segment register override index
81 * @insn: Valid instruction with segment override prefixes
82 *
83 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
84 *
85 * Returns:
86 *
87 * A constant identifying the segment register to use, among CS, SS, DS,
88 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
89 * prefixes were found.
90 *
91 * -EINVAL in case of error.
92 */
get_seg_reg_override_idx(struct insn * insn)93 static int get_seg_reg_override_idx(struct insn *insn)
94 {
95 int idx = INAT_SEG_REG_DEFAULT;
96 int num_overrides = 0, i;
97 insn_byte_t p;
98
99 insn_get_prefixes(insn);
100
101 /* Look for any segment override prefixes. */
102 for_each_insn_prefix(insn, i, p) {
103 insn_attr_t attr;
104
105 attr = inat_get_opcode_attribute(p);
106 switch (attr) {
107 case INAT_MAKE_PREFIX(INAT_PFX_CS):
108 idx = INAT_SEG_REG_CS;
109 num_overrides++;
110 break;
111 case INAT_MAKE_PREFIX(INAT_PFX_SS):
112 idx = INAT_SEG_REG_SS;
113 num_overrides++;
114 break;
115 case INAT_MAKE_PREFIX(INAT_PFX_DS):
116 idx = INAT_SEG_REG_DS;
117 num_overrides++;
118 break;
119 case INAT_MAKE_PREFIX(INAT_PFX_ES):
120 idx = INAT_SEG_REG_ES;
121 num_overrides++;
122 break;
123 case INAT_MAKE_PREFIX(INAT_PFX_FS):
124 idx = INAT_SEG_REG_FS;
125 num_overrides++;
126 break;
127 case INAT_MAKE_PREFIX(INAT_PFX_GS):
128 idx = INAT_SEG_REG_GS;
129 num_overrides++;
130 break;
131 /* No default action needed. */
132 }
133 }
134
135 /* More than one segment override prefix leads to undefined behavior. */
136 if (num_overrides > 1)
137 return -EINVAL;
138
139 return idx;
140 }
141
142 /**
143 * check_seg_overrides() - check if segment override prefixes are allowed
144 * @insn: Valid instruction with segment override prefixes
145 * @regoff: Operand offset, in pt_regs, for which the check is performed
146 *
147 * For a particular register used in register-indirect addressing, determine if
148 * segment override prefixes can be used. Specifically, no overrides are allowed
149 * for rDI if used with a string instruction.
150 *
151 * Returns:
152 *
153 * True if segment override prefixes can be used with the register indicated
154 * in @regoff. False if otherwise.
155 */
check_seg_overrides(struct insn * insn,int regoff)156 static bool check_seg_overrides(struct insn *insn, int regoff)
157 {
158 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
159 return false;
160
161 return true;
162 }
163
164 /**
165 * resolve_default_seg() - resolve default segment register index for an operand
166 * @insn: Instruction with opcode and address size. Must be valid.
167 * @regs: Register values as seen when entering kernel mode
168 * @off: Operand offset, in pt_regs, for which resolution is needed
169 *
170 * Resolve the default segment register index associated with the instruction
171 * operand register indicated by @off. Such index is resolved based on defaults
172 * described in the Intel Software Development Manual.
173 *
174 * Returns:
175 *
176 * If in protected mode, a constant identifying the segment register to use,
177 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
178 *
179 * -EINVAL in case of error.
180 */
resolve_default_seg(struct insn * insn,struct pt_regs * regs,int off)181 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
182 {
183 if (any_64bit_mode(regs))
184 return INAT_SEG_REG_IGNORE;
185 /*
186 * Resolve the default segment register as described in Section 3.7.4
187 * of the Intel Software Development Manual Vol. 1:
188 *
189 * + DS for all references involving r[ABCD]X, and rSI.
190 * + If used in a string instruction, ES for rDI. Otherwise, DS.
191 * + AX, CX and DX are not valid register operands in 16-bit address
192 * encodings but are valid for 32-bit and 64-bit encodings.
193 * + -EDOM is reserved to identify for cases in which no register
194 * is used (i.e., displacement-only addressing). Use DS.
195 * + SS for rSP or rBP.
196 * + CS for rIP.
197 */
198
199 switch (off) {
200 case offsetof(struct pt_regs, ax):
201 case offsetof(struct pt_regs, cx):
202 case offsetof(struct pt_regs, dx):
203 /* Need insn to verify address size. */
204 if (insn->addr_bytes == 2)
205 return -EINVAL;
206
207 fallthrough;
208
209 case -EDOM:
210 case offsetof(struct pt_regs, bx):
211 case offsetof(struct pt_regs, si):
212 return INAT_SEG_REG_DS;
213
214 case offsetof(struct pt_regs, di):
215 if (is_string_insn(insn))
216 return INAT_SEG_REG_ES;
217 return INAT_SEG_REG_DS;
218
219 case offsetof(struct pt_regs, bp):
220 case offsetof(struct pt_regs, sp):
221 return INAT_SEG_REG_SS;
222
223 case offsetof(struct pt_regs, ip):
224 return INAT_SEG_REG_CS;
225
226 default:
227 return -EINVAL;
228 }
229 }
230
231 /**
232 * resolve_seg_reg() - obtain segment register index
233 * @insn: Instruction with operands
234 * @regs: Register values as seen when entering kernel mode
235 * @regoff: Operand offset, in pt_regs, used to determine segment register
236 *
237 * Determine the segment register associated with the operands and, if
238 * applicable, prefixes and the instruction pointed by @insn.
239 *
240 * The segment register associated to an operand used in register-indirect
241 * addressing depends on:
242 *
243 * a) Whether running in long mode (in such a case segments are ignored, except
244 * if FS or GS are used).
245 *
246 * b) Whether segment override prefixes can be used. Certain instructions and
247 * registers do not allow override prefixes.
248 *
249 * c) Whether segment overrides prefixes are found in the instruction prefixes.
250 *
251 * d) If there are not segment override prefixes or they cannot be used, the
252 * default segment register associated with the operand register is used.
253 *
254 * The function checks first if segment override prefixes can be used with the
255 * operand indicated by @regoff. If allowed, obtain such overridden segment
256 * register index. Lastly, if not prefixes were found or cannot be used, resolve
257 * the segment register index to use based on the defaults described in the
258 * Intel documentation. In long mode, all segment register indexes will be
259 * ignored, except if overrides were found for FS or GS. All these operations
260 * are done using helper functions.
261 *
262 * The operand register, @regoff, is represented as the offset from the base of
263 * pt_regs.
264 *
265 * As stated, the main use of this function is to determine the segment register
266 * index based on the instruction, its operands and prefixes. Hence, @insn
267 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
268 * @insn at all as in this case CS is used in all cases. This case is checked
269 * before proceeding further.
270 *
271 * Please note that this function does not return the value in the segment
272 * register (i.e., the segment selector) but our defined index. The segment
273 * selector needs to be obtained using get_segment_selector() and passing the
274 * segment register index resolved by this function.
275 *
276 * Returns:
277 *
278 * An index identifying the segment register to use, among CS, SS, DS,
279 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
280 *
281 * -EINVAL in case of error.
282 */
resolve_seg_reg(struct insn * insn,struct pt_regs * regs,int regoff)283 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
284 {
285 int idx;
286
287 /*
288 * In the unlikely event of having to resolve the segment register
289 * index for rIP, do it first. Segment override prefixes should not
290 * be used. Hence, it is not necessary to inspect the instruction,
291 * which may be invalid at this point.
292 */
293 if (regoff == offsetof(struct pt_regs, ip)) {
294 if (any_64bit_mode(regs))
295 return INAT_SEG_REG_IGNORE;
296 else
297 return INAT_SEG_REG_CS;
298 }
299
300 if (!insn)
301 return -EINVAL;
302
303 if (!check_seg_overrides(insn, regoff))
304 return resolve_default_seg(insn, regs, regoff);
305
306 idx = get_seg_reg_override_idx(insn);
307 if (idx < 0)
308 return idx;
309
310 if (idx == INAT_SEG_REG_DEFAULT)
311 return resolve_default_seg(insn, regs, regoff);
312
313 /*
314 * In long mode, segment override prefixes are ignored, except for
315 * overrides for FS and GS.
316 */
317 if (any_64bit_mode(regs)) {
318 if (idx != INAT_SEG_REG_FS &&
319 idx != INAT_SEG_REG_GS)
320 idx = INAT_SEG_REG_IGNORE;
321 }
322
323 return idx;
324 }
325
326 /**
327 * get_segment_selector() - obtain segment selector
328 * @regs: Register values as seen when entering kernel mode
329 * @seg_reg_idx: Segment register index to use
330 *
331 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
332 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
333 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
334 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
335 * registers. This done for only for completeness as in CONFIG_X86_64 segment
336 * registers are ignored.
337 *
338 * Returns:
339 *
340 * Value of the segment selector, including null when running in
341 * long mode.
342 *
343 * -EINVAL on error.
344 */
get_segment_selector(struct pt_regs * regs,int seg_reg_idx)345 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
346 {
347 #ifdef CONFIG_X86_64
348 unsigned short sel;
349
350 switch (seg_reg_idx) {
351 case INAT_SEG_REG_IGNORE:
352 return 0;
353 case INAT_SEG_REG_CS:
354 return (unsigned short)(regs->cs & 0xffff);
355 case INAT_SEG_REG_SS:
356 return (unsigned short)(regs->ss & 0xffff);
357 case INAT_SEG_REG_DS:
358 savesegment(ds, sel);
359 return sel;
360 case INAT_SEG_REG_ES:
361 savesegment(es, sel);
362 return sel;
363 case INAT_SEG_REG_FS:
364 savesegment(fs, sel);
365 return sel;
366 case INAT_SEG_REG_GS:
367 savesegment(gs, sel);
368 return sel;
369 default:
370 return -EINVAL;
371 }
372 #else /* CONFIG_X86_32 */
373 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
374
375 if (v8086_mode(regs)) {
376 switch (seg_reg_idx) {
377 case INAT_SEG_REG_CS:
378 return (unsigned short)(regs->cs & 0xffff);
379 case INAT_SEG_REG_SS:
380 return (unsigned short)(regs->ss & 0xffff);
381 case INAT_SEG_REG_DS:
382 return vm86regs->ds;
383 case INAT_SEG_REG_ES:
384 return vm86regs->es;
385 case INAT_SEG_REG_FS:
386 return vm86regs->fs;
387 case INAT_SEG_REG_GS:
388 return vm86regs->gs;
389 case INAT_SEG_REG_IGNORE:
390 default:
391 return -EINVAL;
392 }
393 }
394
395 switch (seg_reg_idx) {
396 case INAT_SEG_REG_CS:
397 return (unsigned short)(regs->cs & 0xffff);
398 case INAT_SEG_REG_SS:
399 return (unsigned short)(regs->ss & 0xffff);
400 case INAT_SEG_REG_DS:
401 return (unsigned short)(regs->ds & 0xffff);
402 case INAT_SEG_REG_ES:
403 return (unsigned short)(regs->es & 0xffff);
404 case INAT_SEG_REG_FS:
405 return (unsigned short)(regs->fs & 0xffff);
406 case INAT_SEG_REG_GS:
407 return get_user_gs(regs);
408 case INAT_SEG_REG_IGNORE:
409 default:
410 return -EINVAL;
411 }
412 #endif /* CONFIG_X86_64 */
413 }
414
415 static const int pt_regoff[] = {
416 offsetof(struct pt_regs, ax),
417 offsetof(struct pt_regs, cx),
418 offsetof(struct pt_regs, dx),
419 offsetof(struct pt_regs, bx),
420 offsetof(struct pt_regs, sp),
421 offsetof(struct pt_regs, bp),
422 offsetof(struct pt_regs, si),
423 offsetof(struct pt_regs, di),
424 #ifdef CONFIG_X86_64
425 offsetof(struct pt_regs, r8),
426 offsetof(struct pt_regs, r9),
427 offsetof(struct pt_regs, r10),
428 offsetof(struct pt_regs, r11),
429 offsetof(struct pt_regs, r12),
430 offsetof(struct pt_regs, r13),
431 offsetof(struct pt_regs, r14),
432 offsetof(struct pt_regs, r15),
433 #else
434 offsetof(struct pt_regs, ds),
435 offsetof(struct pt_regs, es),
436 offsetof(struct pt_regs, fs),
437 offsetof(struct pt_regs, gs),
438 #endif
439 };
440
pt_regs_offset(struct pt_regs * regs,int regno)441 int pt_regs_offset(struct pt_regs *regs, int regno)
442 {
443 if ((unsigned)regno < ARRAY_SIZE(pt_regoff))
444 return pt_regoff[regno];
445 return -EDOM;
446 }
447
get_regno(struct insn * insn,enum reg_type type)448 static int get_regno(struct insn *insn, enum reg_type type)
449 {
450 int nr_registers = ARRAY_SIZE(pt_regoff);
451 int regno = 0;
452
453 /*
454 * Don't possibly decode a 32-bit instructions as
455 * reading a 64-bit-only register.
456 */
457 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
458 nr_registers -= 8;
459
460 switch (type) {
461 case REG_TYPE_RM:
462 regno = X86_MODRM_RM(insn->modrm.value);
463
464 /*
465 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
466 * follows the ModRM byte.
467 */
468 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
469 return -EDOM;
470
471 if (X86_REX_B(insn->rex_prefix.value))
472 regno += 8;
473 break;
474
475 case REG_TYPE_REG:
476 regno = X86_MODRM_REG(insn->modrm.value);
477
478 if (X86_REX_R(insn->rex_prefix.value))
479 regno += 8;
480 break;
481
482 case REG_TYPE_INDEX:
483 regno = X86_SIB_INDEX(insn->sib.value);
484 if (X86_REX_X(insn->rex_prefix.value))
485 regno += 8;
486
487 /*
488 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
489 * portion of the address computation is null. This is
490 * true only if REX.X is 0. In such a case, the SIB index
491 * is used in the address computation.
492 */
493 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
494 return -EDOM;
495 break;
496
497 case REG_TYPE_BASE:
498 regno = X86_SIB_BASE(insn->sib.value);
499 /*
500 * If ModRM.mod is 0 and SIB.base == 5, the base of the
501 * register-indirect addressing is 0. In this case, a
502 * 32-bit displacement follows the SIB byte.
503 */
504 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
505 return -EDOM;
506
507 if (X86_REX_B(insn->rex_prefix.value))
508 regno += 8;
509 break;
510
511 default:
512 pr_err_ratelimited("invalid register type: %d\n", type);
513 return -EINVAL;
514 }
515
516 if (regno >= nr_registers) {
517 WARN_ONCE(1, "decoded an instruction with an invalid register");
518 return -EINVAL;
519 }
520 return regno;
521 }
522
get_reg_offset(struct insn * insn,struct pt_regs * regs,enum reg_type type)523 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
524 enum reg_type type)
525 {
526 int regno = get_regno(insn, type);
527
528 if (regno < 0)
529 return regno;
530
531 return pt_regs_offset(regs, regno);
532 }
533
534 /**
535 * get_reg_offset_16() - Obtain offset of register indicated by instruction
536 * @insn: Instruction containing ModRM byte
537 * @regs: Register values as seen when entering kernel mode
538 * @offs1: Offset of the first operand register
539 * @offs2: Offset of the second operand register, if applicable
540 *
541 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
542 * in @insn. This function is to be used with 16-bit address encodings. The
543 * @offs1 and @offs2 will be written with the offset of the two registers
544 * indicated by the instruction. In cases where any of the registers is not
545 * referenced by the instruction, the value will be set to -EDOM.
546 *
547 * Returns:
548 *
549 * 0 on success, -EINVAL on error.
550 */
get_reg_offset_16(struct insn * insn,struct pt_regs * regs,int * offs1,int * offs2)551 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
552 int *offs1, int *offs2)
553 {
554 /*
555 * 16-bit addressing can use one or two registers. Specifics of
556 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
557 * ModR/M Byte" of the Intel Software Development Manual.
558 */
559 static const int regoff1[] = {
560 offsetof(struct pt_regs, bx),
561 offsetof(struct pt_regs, bx),
562 offsetof(struct pt_regs, bp),
563 offsetof(struct pt_regs, bp),
564 offsetof(struct pt_regs, si),
565 offsetof(struct pt_regs, di),
566 offsetof(struct pt_regs, bp),
567 offsetof(struct pt_regs, bx),
568 };
569
570 static const int regoff2[] = {
571 offsetof(struct pt_regs, si),
572 offsetof(struct pt_regs, di),
573 offsetof(struct pt_regs, si),
574 offsetof(struct pt_regs, di),
575 -EDOM,
576 -EDOM,
577 -EDOM,
578 -EDOM,
579 };
580
581 if (!offs1 || !offs2)
582 return -EINVAL;
583
584 /* Operand is a register, use the generic function. */
585 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
586 *offs1 = insn_get_modrm_rm_off(insn, regs);
587 *offs2 = -EDOM;
588 return 0;
589 }
590
591 *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
592 *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
593
594 /*
595 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
596 * only addressing. This means that no registers are involved in
597 * computing the effective address. Thus, ensure that the first
598 * register offset is invalid. The second register offset is already
599 * invalid under the aforementioned conditions.
600 */
601 if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
602 (X86_MODRM_RM(insn->modrm.value) == 6))
603 *offs1 = -EDOM;
604
605 return 0;
606 }
607
608 /**
609 * get_desc() - Obtain contents of a segment descriptor
610 * @out: Segment descriptor contents on success
611 * @sel: Segment selector
612 *
613 * Given a segment selector, obtain a pointer to the segment descriptor.
614 * Both global and local descriptor tables are supported.
615 *
616 * Returns:
617 *
618 * True on success, false on failure.
619 *
620 * NULL on error.
621 */
get_desc(struct desc_struct * out,unsigned short sel)622 static bool get_desc(struct desc_struct *out, unsigned short sel)
623 {
624 struct desc_ptr gdt_desc = {0, 0};
625 unsigned long desc_base;
626
627 #ifdef CONFIG_MODIFY_LDT_SYSCALL
628 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
629 bool success = false;
630 struct ldt_struct *ldt;
631
632 /* Bits [15:3] contain the index of the desired entry. */
633 sel >>= 3;
634
635 mutex_lock(¤t->active_mm->context.lock);
636 ldt = current->active_mm->context.ldt;
637 if (ldt && sel < ldt->nr_entries) {
638 *out = ldt->entries[sel];
639 success = true;
640 }
641
642 mutex_unlock(¤t->active_mm->context.lock);
643
644 return success;
645 }
646 #endif
647 native_store_gdt(&gdt_desc);
648
649 /*
650 * Segment descriptors have a size of 8 bytes. Thus, the index is
651 * multiplied by 8 to obtain the memory offset of the desired descriptor
652 * from the base of the GDT. As bits [15:3] of the segment selector
653 * contain the index, it can be regarded as multiplied by 8 already.
654 * All that remains is to clear bits [2:0].
655 */
656 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
657
658 if (desc_base > gdt_desc.size)
659 return false;
660
661 *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
662 return true;
663 }
664
665 /**
666 * insn_get_seg_base() - Obtain base address of segment descriptor.
667 * @regs: Register values as seen when entering kernel mode
668 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
669 *
670 * Obtain the base address of the segment as indicated by the segment descriptor
671 * pointed by the segment selector. The segment selector is obtained from the
672 * input segment register index @seg_reg_idx.
673 *
674 * Returns:
675 *
676 * In protected mode, base address of the segment. Zero in long mode,
677 * except when FS or GS are used. In virtual-8086 mode, the segment
678 * selector shifted 4 bits to the right.
679 *
680 * -1L in case of error.
681 */
insn_get_seg_base(struct pt_regs * regs,int seg_reg_idx)682 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
683 {
684 struct desc_struct desc;
685 short sel;
686
687 sel = get_segment_selector(regs, seg_reg_idx);
688 if (sel < 0)
689 return -1L;
690
691 if (v8086_mode(regs))
692 /*
693 * Base is simply the segment selector shifted 4
694 * bits to the right.
695 */
696 return (unsigned long)(sel << 4);
697
698 if (any_64bit_mode(regs)) {
699 /*
700 * Only FS or GS will have a base address, the rest of
701 * the segments' bases are forced to 0.
702 */
703 unsigned long base;
704
705 if (seg_reg_idx == INAT_SEG_REG_FS) {
706 rdmsrl(MSR_FS_BASE, base);
707 } else if (seg_reg_idx == INAT_SEG_REG_GS) {
708 /*
709 * swapgs was called at the kernel entry point. Thus,
710 * MSR_KERNEL_GS_BASE will have the user-space GS base.
711 */
712 if (user_mode(regs))
713 rdmsrl(MSR_KERNEL_GS_BASE, base);
714 else
715 rdmsrl(MSR_GS_BASE, base);
716 } else {
717 base = 0;
718 }
719 return base;
720 }
721
722 /* In protected mode the segment selector cannot be null. */
723 if (!sel)
724 return -1L;
725
726 if (!get_desc(&desc, sel))
727 return -1L;
728
729 return get_desc_base(&desc);
730 }
731
732 /**
733 * get_seg_limit() - Obtain the limit of a segment descriptor
734 * @regs: Register values as seen when entering kernel mode
735 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
736 *
737 * Obtain the limit of the segment as indicated by the segment descriptor
738 * pointed by the segment selector. The segment selector is obtained from the
739 * input segment register index @seg_reg_idx.
740 *
741 * Returns:
742 *
743 * In protected mode, the limit of the segment descriptor in bytes.
744 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
745 * limit is returned as -1L to imply a limit-less segment.
746 *
747 * Zero is returned on error.
748 */
get_seg_limit(struct pt_regs * regs,int seg_reg_idx)749 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
750 {
751 struct desc_struct desc;
752 unsigned long limit;
753 short sel;
754
755 sel = get_segment_selector(regs, seg_reg_idx);
756 if (sel < 0)
757 return 0;
758
759 if (any_64bit_mode(regs) || v8086_mode(regs))
760 return -1L;
761
762 if (!sel)
763 return 0;
764
765 if (!get_desc(&desc, sel))
766 return 0;
767
768 /*
769 * If the granularity bit is set, the limit is given in multiples
770 * of 4096. This also means that the 12 least significant bits are
771 * not tested when checking the segment limits. In practice,
772 * this means that the segment ends in (limit << 12) + 0xfff.
773 */
774 limit = get_desc_limit(&desc);
775 if (desc.g)
776 limit = (limit << 12) + 0xfff;
777
778 return limit;
779 }
780
781 /**
782 * insn_get_code_seg_params() - Obtain code segment parameters
783 * @regs: Structure with register values as seen when entering kernel mode
784 *
785 * Obtain address and operand sizes of the code segment. It is obtained from the
786 * selector contained in the CS register in regs. In protected mode, the default
787 * address is determined by inspecting the L and D bits of the segment
788 * descriptor. In virtual-8086 mode, the default is always two bytes for both
789 * address and operand sizes.
790 *
791 * Returns:
792 *
793 * An int containing ORed-in default parameters on success.
794 *
795 * -EINVAL on error.
796 */
insn_get_code_seg_params(struct pt_regs * regs)797 int insn_get_code_seg_params(struct pt_regs *regs)
798 {
799 struct desc_struct desc;
800 short sel;
801
802 if (v8086_mode(regs))
803 /* Address and operand size are both 16-bit. */
804 return INSN_CODE_SEG_PARAMS(2, 2);
805
806 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
807 if (sel < 0)
808 return sel;
809
810 if (!get_desc(&desc, sel))
811 return -EINVAL;
812
813 /*
814 * The most significant byte of the Type field of the segment descriptor
815 * determines whether a segment contains data or code. If this is a data
816 * segment, return error.
817 */
818 if (!(desc.type & BIT(3)))
819 return -EINVAL;
820
821 switch ((desc.l << 1) | desc.d) {
822 case 0: /*
823 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
824 * both 16-bit.
825 */
826 return INSN_CODE_SEG_PARAMS(2, 2);
827 case 1: /*
828 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
829 * both 32-bit.
830 */
831 return INSN_CODE_SEG_PARAMS(4, 4);
832 case 2: /*
833 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
834 * operand size is 32-bit.
835 */
836 return INSN_CODE_SEG_PARAMS(4, 8);
837 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
838 fallthrough;
839 default:
840 return -EINVAL;
841 }
842 }
843
844 /**
845 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
846 * @insn: Instruction containing the ModRM byte
847 * @regs: Register values as seen when entering kernel mode
848 *
849 * Returns:
850 *
851 * The register indicated by the r/m part of the ModRM byte. The
852 * register is obtained as an offset from the base of pt_regs. In specific
853 * cases, the returned value can be -EDOM to indicate that the particular value
854 * of ModRM does not refer to a register and shall be ignored.
855 */
insn_get_modrm_rm_off(struct insn * insn,struct pt_regs * regs)856 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
857 {
858 return get_reg_offset(insn, regs, REG_TYPE_RM);
859 }
860
861 /**
862 * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
863 * @insn: Instruction containing the ModRM byte
864 * @regs: Register values as seen when entering kernel mode
865 *
866 * Returns:
867 *
868 * The register indicated by the reg part of the ModRM byte. The
869 * register is obtained as an offset from the base of pt_regs.
870 */
insn_get_modrm_reg_off(struct insn * insn,struct pt_regs * regs)871 int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
872 {
873 return get_reg_offset(insn, regs, REG_TYPE_REG);
874 }
875
876 /**
877 * get_seg_base_limit() - obtain base address and limit of a segment
878 * @insn: Instruction. Must be valid.
879 * @regs: Register values as seen when entering kernel mode
880 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
881 * @base: Obtained segment base
882 * @limit: Obtained segment limit
883 *
884 * Obtain the base address and limit of the segment associated with the operand
885 * @regoff and, if any or allowed, override prefixes in @insn. This function is
886 * different from insn_get_seg_base() as the latter does not resolve the segment
887 * associated with the instruction operand. If a limit is not needed (e.g.,
888 * when running in long mode), @limit can be NULL.
889 *
890 * Returns:
891 *
892 * 0 on success. @base and @limit will contain the base address and of the
893 * resolved segment, respectively.
894 *
895 * -EINVAL on error.
896 */
get_seg_base_limit(struct insn * insn,struct pt_regs * regs,int regoff,unsigned long * base,unsigned long * limit)897 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
898 int regoff, unsigned long *base,
899 unsigned long *limit)
900 {
901 int seg_reg_idx;
902
903 if (!base)
904 return -EINVAL;
905
906 seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
907 if (seg_reg_idx < 0)
908 return seg_reg_idx;
909
910 *base = insn_get_seg_base(regs, seg_reg_idx);
911 if (*base == -1L)
912 return -EINVAL;
913
914 if (!limit)
915 return 0;
916
917 *limit = get_seg_limit(regs, seg_reg_idx);
918 if (!(*limit))
919 return -EINVAL;
920
921 return 0;
922 }
923
924 /**
925 * get_eff_addr_reg() - Obtain effective address from register operand
926 * @insn: Instruction. Must be valid.
927 * @regs: Register values as seen when entering kernel mode
928 * @regoff: Obtained operand offset, in pt_regs, with the effective address
929 * @eff_addr: Obtained effective address
930 *
931 * Obtain the effective address stored in the register operand as indicated by
932 * the ModRM byte. This function is to be used only with register addressing
933 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
934 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
935 * such offset can then be used to resolve the segment associated with the
936 * operand. This function can be used with any of the supported address sizes
937 * in x86.
938 *
939 * Returns:
940 *
941 * 0 on success. @eff_addr will have the effective address stored in the
942 * operand indicated by ModRM. @regoff will have such operand as an offset from
943 * the base of pt_regs.
944 *
945 * -EINVAL on error.
946 */
get_eff_addr_reg(struct insn * insn,struct pt_regs * regs,int * regoff,long * eff_addr)947 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
948 int *regoff, long *eff_addr)
949 {
950 int ret;
951
952 ret = insn_get_modrm(insn);
953 if (ret)
954 return ret;
955
956 if (X86_MODRM_MOD(insn->modrm.value) != 3)
957 return -EINVAL;
958
959 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
960 if (*regoff < 0)
961 return -EINVAL;
962
963 /* Ignore bytes that are outside the address size. */
964 if (insn->addr_bytes == 2)
965 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
966 else if (insn->addr_bytes == 4)
967 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
968 else /* 64-bit address */
969 *eff_addr = regs_get_register(regs, *regoff);
970
971 return 0;
972 }
973
974 /**
975 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
976 * @insn: Instruction. Must be valid.
977 * @regs: Register values as seen when entering kernel mode
978 * @regoff: Obtained operand offset, in pt_regs, associated with segment
979 * @eff_addr: Obtained effective address
980 *
981 * Obtain the effective address referenced by the ModRM byte of @insn. After
982 * identifying the registers involved in the register-indirect memory reference,
983 * its value is obtained from the operands in @regs. The computed address is
984 * stored @eff_addr. Also, the register operand that indicates the associated
985 * segment is stored in @regoff, this parameter can later be used to determine
986 * such segment.
987 *
988 * Returns:
989 *
990 * 0 on success. @eff_addr will have the referenced effective address. @regoff
991 * will have a register, as an offset from the base of pt_regs, that can be used
992 * to resolve the associated segment.
993 *
994 * -EINVAL on error.
995 */
get_eff_addr_modrm(struct insn * insn,struct pt_regs * regs,int * regoff,long * eff_addr)996 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
997 int *regoff, long *eff_addr)
998 {
999 long tmp;
1000 int ret;
1001
1002 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1003 return -EINVAL;
1004
1005 ret = insn_get_modrm(insn);
1006 if (ret)
1007 return ret;
1008
1009 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1010 return -EINVAL;
1011
1012 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
1013
1014 /*
1015 * -EDOM means that we must ignore the address_offset. In such a case,
1016 * in 64-bit mode the effective address relative to the rIP of the
1017 * following instruction.
1018 */
1019 if (*regoff == -EDOM) {
1020 if (any_64bit_mode(regs))
1021 tmp = regs->ip + insn->length;
1022 else
1023 tmp = 0;
1024 } else if (*regoff < 0) {
1025 return -EINVAL;
1026 } else {
1027 tmp = regs_get_register(regs, *regoff);
1028 }
1029
1030 if (insn->addr_bytes == 4) {
1031 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1032
1033 *eff_addr = addr32 & 0xffffffff;
1034 } else {
1035 *eff_addr = tmp + insn->displacement.value;
1036 }
1037
1038 return 0;
1039 }
1040
1041 /**
1042 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1043 * @insn: Instruction. Must be valid.
1044 * @regs: Register values as seen when entering kernel mode
1045 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1046 * @eff_addr: Obtained effective address
1047 *
1048 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1049 * After identifying the registers involved in the register-indirect memory
1050 * reference, its value is obtained from the operands in @regs. The computed
1051 * address is stored @eff_addr. Also, the register operand that indicates
1052 * the associated segment is stored in @regoff, this parameter can later be used
1053 * to determine such segment.
1054 *
1055 * Returns:
1056 *
1057 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1058 * will have a register, as an offset from the base of pt_regs, that can be used
1059 * to resolve the associated segment.
1060 *
1061 * -EINVAL on error.
1062 */
get_eff_addr_modrm_16(struct insn * insn,struct pt_regs * regs,int * regoff,short * eff_addr)1063 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1064 int *regoff, short *eff_addr)
1065 {
1066 int addr_offset1, addr_offset2, ret;
1067 short addr1 = 0, addr2 = 0, displacement;
1068
1069 if (insn->addr_bytes != 2)
1070 return -EINVAL;
1071
1072 insn_get_modrm(insn);
1073
1074 if (!insn->modrm.nbytes)
1075 return -EINVAL;
1076
1077 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1078 return -EINVAL;
1079
1080 ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1081 if (ret < 0)
1082 return -EINVAL;
1083
1084 /*
1085 * Don't fail on invalid offset values. They might be invalid because
1086 * they cannot be used for this particular value of ModRM. Instead, use
1087 * them in the computation only if they contain a valid value.
1088 */
1089 if (addr_offset1 != -EDOM)
1090 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1091
1092 if (addr_offset2 != -EDOM)
1093 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1094
1095 displacement = insn->displacement.value & 0xffff;
1096 *eff_addr = addr1 + addr2 + displacement;
1097
1098 /*
1099 * The first operand register could indicate to use of either SS or DS
1100 * registers to obtain the segment selector. The second operand
1101 * register can only indicate the use of DS. Thus, the first operand
1102 * will be used to obtain the segment selector.
1103 */
1104 *regoff = addr_offset1;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1111 * @insn: Instruction. Must be valid.
1112 * @regs: Register values as seen when entering kernel mode
1113 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1114 * @eff_addr: Obtained effective address
1115 *
1116 * Obtain the effective address referenced by the SIB byte of @insn. After
1117 * identifying the registers involved in the indexed, register-indirect memory
1118 * reference, its value is obtained from the operands in @regs. The computed
1119 * address is stored @eff_addr. Also, the register operand that indicates the
1120 * associated segment is stored in @regoff, this parameter can later be used to
1121 * determine such segment.
1122 *
1123 * Returns:
1124 *
1125 * 0 on success. @eff_addr will have the referenced effective address.
1126 * @base_offset will have a register, as an offset from the base of pt_regs,
1127 * that can be used to resolve the associated segment.
1128 *
1129 * Negative value on error.
1130 */
get_eff_addr_sib(struct insn * insn,struct pt_regs * regs,int * base_offset,long * eff_addr)1131 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1132 int *base_offset, long *eff_addr)
1133 {
1134 long base, indx;
1135 int indx_offset;
1136 int ret;
1137
1138 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1139 return -EINVAL;
1140
1141 ret = insn_get_modrm(insn);
1142 if (ret)
1143 return ret;
1144
1145 if (!insn->modrm.nbytes)
1146 return -EINVAL;
1147
1148 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1149 return -EINVAL;
1150
1151 ret = insn_get_sib(insn);
1152 if (ret)
1153 return ret;
1154
1155 if (!insn->sib.nbytes)
1156 return -EINVAL;
1157
1158 *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1159 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1160
1161 /*
1162 * Negative values in the base and index offset means an error when
1163 * decoding the SIB byte. Except -EDOM, which means that the registers
1164 * should not be used in the address computation.
1165 */
1166 if (*base_offset == -EDOM)
1167 base = 0;
1168 else if (*base_offset < 0)
1169 return -EINVAL;
1170 else
1171 base = regs_get_register(regs, *base_offset);
1172
1173 if (indx_offset == -EDOM)
1174 indx = 0;
1175 else if (indx_offset < 0)
1176 return -EINVAL;
1177 else
1178 indx = regs_get_register(regs, indx_offset);
1179
1180 if (insn->addr_bytes == 4) {
1181 int addr32, base32, idx32;
1182
1183 base32 = base & 0xffffffff;
1184 idx32 = indx & 0xffffffff;
1185
1186 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1187 addr32 += insn->displacement.value;
1188
1189 *eff_addr = addr32 & 0xffffffff;
1190 } else {
1191 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1192 *eff_addr += insn->displacement.value;
1193 }
1194
1195 return 0;
1196 }
1197
1198 /**
1199 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1200 * @insn: Instruction containing ModRM byte and displacement
1201 * @regs: Register values as seen when entering kernel mode
1202 *
1203 * This function is to be used with 16-bit address encodings. Obtain the memory
1204 * address referred by the instruction's ModRM and displacement bytes. Also, the
1205 * segment used as base is determined by either any segment override prefixes in
1206 * @insn or the default segment of the registers involved in the address
1207 * computation. In protected mode, segment limits are enforced.
1208 *
1209 * Returns:
1210 *
1211 * Linear address referenced by the instruction operands on success.
1212 *
1213 * -1L on error.
1214 */
get_addr_ref_16(struct insn * insn,struct pt_regs * regs)1215 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1216 {
1217 unsigned long linear_addr = -1L, seg_base, seg_limit;
1218 int ret, regoff;
1219 short eff_addr;
1220 long tmp;
1221
1222 if (insn_get_displacement(insn))
1223 goto out;
1224
1225 if (insn->addr_bytes != 2)
1226 goto out;
1227
1228 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1229 ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
1230 if (ret)
1231 goto out;
1232
1233 eff_addr = tmp;
1234 } else {
1235 ret = get_eff_addr_modrm_16(insn, regs, ®off, &eff_addr);
1236 if (ret)
1237 goto out;
1238 }
1239
1240 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1241 if (ret)
1242 goto out;
1243
1244 /*
1245 * Before computing the linear address, make sure the effective address
1246 * is within the limits of the segment. In virtual-8086 mode, segment
1247 * limits are not enforced. In such a case, the segment limit is -1L to
1248 * reflect this fact.
1249 */
1250 if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1251 goto out;
1252
1253 linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1254
1255 /* Limit linear address to 20 bits */
1256 if (v8086_mode(regs))
1257 linear_addr &= 0xfffff;
1258
1259 out:
1260 return (void __user *)linear_addr;
1261 }
1262
1263 /**
1264 * get_addr_ref_32() - Obtain a 32-bit linear address
1265 * @insn: Instruction with ModRM, SIB bytes and displacement
1266 * @regs: Register values as seen when entering kernel mode
1267 *
1268 * This function is to be used with 32-bit address encodings to obtain the
1269 * linear memory address referred by the instruction's ModRM, SIB,
1270 * displacement bytes and segment base address, as applicable. If in protected
1271 * mode, segment limits are enforced.
1272 *
1273 * Returns:
1274 *
1275 * Linear address referenced by instruction and registers on success.
1276 *
1277 * -1L on error.
1278 */
get_addr_ref_32(struct insn * insn,struct pt_regs * regs)1279 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1280 {
1281 unsigned long linear_addr = -1L, seg_base, seg_limit;
1282 int eff_addr, regoff;
1283 long tmp;
1284 int ret;
1285
1286 if (insn->addr_bytes != 4)
1287 goto out;
1288
1289 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1290 ret = get_eff_addr_reg(insn, regs, ®off, &tmp);
1291 if (ret)
1292 goto out;
1293
1294 eff_addr = tmp;
1295
1296 } else {
1297 if (insn->sib.nbytes) {
1298 ret = get_eff_addr_sib(insn, regs, ®off, &tmp);
1299 if (ret)
1300 goto out;
1301
1302 eff_addr = tmp;
1303 } else {
1304 ret = get_eff_addr_modrm(insn, regs, ®off, &tmp);
1305 if (ret)
1306 goto out;
1307
1308 eff_addr = tmp;
1309 }
1310 }
1311
1312 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1313 if (ret)
1314 goto out;
1315
1316 /*
1317 * In protected mode, before computing the linear address, make sure
1318 * the effective address is within the limits of the segment.
1319 * 32-bit addresses can be used in long and virtual-8086 modes if an
1320 * address override prefix is used. In such cases, segment limits are
1321 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1322 * to reflect this situation.
1323 *
1324 * After computed, the effective address is treated as an unsigned
1325 * quantity.
1326 */
1327 if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1328 goto out;
1329
1330 /*
1331 * Even though 32-bit address encodings are allowed in virtual-8086
1332 * mode, the address range is still limited to [0x-0xffff].
1333 */
1334 if (v8086_mode(regs) && (eff_addr & ~0xffff))
1335 goto out;
1336
1337 /*
1338 * Data type long could be 64 bits in size. Ensure that our 32-bit
1339 * effective address is not sign-extended when computing the linear
1340 * address.
1341 */
1342 linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1343
1344 /* Limit linear address to 20 bits */
1345 if (v8086_mode(regs))
1346 linear_addr &= 0xfffff;
1347
1348 out:
1349 return (void __user *)linear_addr;
1350 }
1351
1352 /**
1353 * get_addr_ref_64() - Obtain a 64-bit linear address
1354 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1355 * @regs: Structure with register values as seen when entering kernel mode
1356 *
1357 * This function is to be used with 64-bit address encodings to obtain the
1358 * linear memory address referred by the instruction's ModRM, SIB,
1359 * displacement bytes and segment base address, as applicable.
1360 *
1361 * Returns:
1362 *
1363 * Linear address referenced by instruction and registers on success.
1364 *
1365 * -1L on error.
1366 */
1367 #ifndef CONFIG_X86_64
get_addr_ref_64(struct insn * insn,struct pt_regs * regs)1368 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1369 {
1370 return (void __user *)-1L;
1371 }
1372 #else
get_addr_ref_64(struct insn * insn,struct pt_regs * regs)1373 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1374 {
1375 unsigned long linear_addr = -1L, seg_base;
1376 int regoff, ret;
1377 long eff_addr;
1378
1379 if (insn->addr_bytes != 8)
1380 goto out;
1381
1382 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1383 ret = get_eff_addr_reg(insn, regs, ®off, &eff_addr);
1384 if (ret)
1385 goto out;
1386
1387 } else {
1388 if (insn->sib.nbytes) {
1389 ret = get_eff_addr_sib(insn, regs, ®off, &eff_addr);
1390 if (ret)
1391 goto out;
1392 } else {
1393 ret = get_eff_addr_modrm(insn, regs, ®off, &eff_addr);
1394 if (ret)
1395 goto out;
1396 }
1397
1398 }
1399
1400 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1401 if (ret)
1402 goto out;
1403
1404 linear_addr = (unsigned long)eff_addr + seg_base;
1405
1406 out:
1407 return (void __user *)linear_addr;
1408 }
1409 #endif /* CONFIG_X86_64 */
1410
1411 /**
1412 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1413 * @insn: Instruction structure containing ModRM byte and displacement
1414 * @regs: Structure with register values as seen when entering kernel mode
1415 *
1416 * Obtain the linear address referred by the instruction's ModRM, SIB and
1417 * displacement bytes, and segment base, as applicable. In protected mode,
1418 * segment limits are enforced.
1419 *
1420 * Returns:
1421 *
1422 * Linear address referenced by instruction and registers on success.
1423 *
1424 * -1L on error.
1425 */
insn_get_addr_ref(struct insn * insn,struct pt_regs * regs)1426 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1427 {
1428 if (!insn || !regs)
1429 return (void __user *)-1L;
1430
1431 switch (insn->addr_bytes) {
1432 case 2:
1433 return get_addr_ref_16(insn, regs);
1434 case 4:
1435 return get_addr_ref_32(insn, regs);
1436 case 8:
1437 return get_addr_ref_64(insn, regs);
1438 default:
1439 return (void __user *)-1L;
1440 }
1441 }
1442
insn_get_effective_ip(struct pt_regs * regs,unsigned long * ip)1443 int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1444 {
1445 unsigned long seg_base = 0;
1446
1447 /*
1448 * If not in user-space long mode, a custom code segment could be in
1449 * use. This is true in protected mode (if the process defined a local
1450 * descriptor table), or virtual-8086 mode. In most of the cases
1451 * seg_base will be zero as in USER_CS.
1452 */
1453 if (!user_64bit_mode(regs)) {
1454 seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1455 if (seg_base == -1L)
1456 return -EINVAL;
1457 }
1458
1459 *ip = seg_base + regs->ip;
1460
1461 return 0;
1462 }
1463
1464 /**
1465 * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1466 * @regs: Structure with register values as seen when entering kernel mode
1467 * @buf: Array to store the fetched instruction
1468 *
1469 * Gets the linear address of the instruction and copies the instruction bytes
1470 * to the buf.
1471 *
1472 * Returns:
1473 *
1474 * - number of instruction bytes copied.
1475 * - 0 if nothing was copied.
1476 * - -EINVAL if the linear address of the instruction could not be calculated
1477 */
insn_fetch_from_user(struct pt_regs * regs,unsigned char buf[MAX_INSN_SIZE])1478 int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1479 {
1480 unsigned long ip;
1481 int not_copied;
1482
1483 if (insn_get_effective_ip(regs, &ip))
1484 return -EINVAL;
1485
1486 not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1487
1488 return MAX_INSN_SIZE - not_copied;
1489 }
1490
1491 /**
1492 * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1493 * while in atomic code
1494 * @regs: Structure with register values as seen when entering kernel mode
1495 * @buf: Array to store the fetched instruction
1496 *
1497 * Gets the linear address of the instruction and copies the instruction bytes
1498 * to the buf. This function must be used in atomic context.
1499 *
1500 * Returns:
1501 *
1502 * - number of instruction bytes copied.
1503 * - 0 if nothing was copied.
1504 * - -EINVAL if the linear address of the instruction could not be calculated.
1505 */
insn_fetch_from_user_inatomic(struct pt_regs * regs,unsigned char buf[MAX_INSN_SIZE])1506 int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1507 {
1508 unsigned long ip;
1509 int not_copied;
1510
1511 if (insn_get_effective_ip(regs, &ip))
1512 return -EINVAL;
1513
1514 not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1515
1516 return MAX_INSN_SIZE - not_copied;
1517 }
1518
1519 /**
1520 * insn_decode_from_regs() - Decode an instruction
1521 * @insn: Structure to store decoded instruction
1522 * @regs: Structure with register values as seen when entering kernel mode
1523 * @buf: Buffer containing the instruction bytes
1524 * @buf_size: Number of instruction bytes available in buf
1525 *
1526 * Decodes the instruction provided in buf and stores the decoding results in
1527 * insn. Also determines the correct address and operand sizes.
1528 *
1529 * Returns:
1530 *
1531 * True if instruction was decoded, False otherwise.
1532 */
insn_decode_from_regs(struct insn * insn,struct pt_regs * regs,unsigned char buf[MAX_INSN_SIZE],int buf_size)1533 bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1534 unsigned char buf[MAX_INSN_SIZE], int buf_size)
1535 {
1536 int seg_defs;
1537
1538 insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1539
1540 /*
1541 * Override the default operand and address sizes with what is specified
1542 * in the code segment descriptor. The instruction decoder only sets
1543 * the address size it to either 4 or 8 address bytes and does nothing
1544 * for the operand bytes. This OK for most of the cases, but we could
1545 * have special cases where, for instance, a 16-bit code segment
1546 * descriptor is used.
1547 * If there is an address override prefix, the instruction decoder
1548 * correctly updates these values, even for 16-bit defaults.
1549 */
1550 seg_defs = insn_get_code_seg_params(regs);
1551 if (seg_defs == -EINVAL)
1552 return false;
1553
1554 insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1555 insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1556
1557 if (insn_get_length(insn))
1558 return false;
1559
1560 if (buf_size < insn->length)
1561 return false;
1562
1563 return true;
1564 }
1565