1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <drm/drm_print.h>
7
8 #include "gem/i915_gem_context.h"
9
10 #include "i915_drv.h"
11
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_user.h"
17 #include "intel_execlists_submission.h"
18 #include "intel_gt.h"
19 #include "intel_gt_requests.h"
20 #include "intel_gt_pm.h"
21 #include "intel_lrc_reg.h"
22 #include "intel_reset.h"
23 #include "intel_ring.h"
24 #include "uc/intel_guc_submission.h"
25
26 /* Haswell does have the CXT_SIZE register however it does not appear to be
27 * valid. Now, docs explain in dwords what is in the context object. The full
28 * size is 70720 bytes, however, the power context and execlist context will
29 * never be saved (power context is stored elsewhere, and execlists don't work
30 * on HSW) - so the final size, including the extra state required for the
31 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
32 */
33 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
34
35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
36 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
37 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
38 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
39
40 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
41
42 #define MAX_MMIO_BASES 3
43 struct engine_info {
44 u8 class;
45 u8 instance;
46 /* mmio bases table *must* be sorted in reverse graphics_ver order */
47 struct engine_mmio_base {
48 u32 graphics_ver : 8;
49 u32 base : 24;
50 } mmio_bases[MAX_MMIO_BASES];
51 };
52
53 static const struct engine_info intel_engines[] = {
54 [RCS0] = {
55 .class = RENDER_CLASS,
56 .instance = 0,
57 .mmio_bases = {
58 { .graphics_ver = 1, .base = RENDER_RING_BASE }
59 },
60 },
61 [BCS0] = {
62 .class = COPY_ENGINE_CLASS,
63 .instance = 0,
64 .mmio_bases = {
65 { .graphics_ver = 6, .base = BLT_RING_BASE }
66 },
67 },
68 [VCS0] = {
69 .class = VIDEO_DECODE_CLASS,
70 .instance = 0,
71 .mmio_bases = {
72 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
73 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
74 { .graphics_ver = 4, .base = BSD_RING_BASE }
75 },
76 },
77 [VCS1] = {
78 .class = VIDEO_DECODE_CLASS,
79 .instance = 1,
80 .mmio_bases = {
81 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
82 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83 },
84 },
85 [VCS2] = {
86 .class = VIDEO_DECODE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90 },
91 },
92 [VCS3] = {
93 .class = VIDEO_DECODE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97 },
98 },
99 [VCS4] = {
100 .class = VIDEO_DECODE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
104 },
105 },
106 [VCS5] = {
107 .class = VIDEO_DECODE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
111 },
112 },
113 [VCS6] = {
114 .class = VIDEO_DECODE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
118 },
119 },
120 [VCS7] = {
121 .class = VIDEO_DECODE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
125 },
126 },
127 [VECS0] = {
128 .class = VIDEO_ENHANCEMENT_CLASS,
129 .instance = 0,
130 .mmio_bases = {
131 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
132 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
133 },
134 },
135 [VECS1] = {
136 .class = VIDEO_ENHANCEMENT_CLASS,
137 .instance = 1,
138 .mmio_bases = {
139 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140 },
141 },
142 [VECS2] = {
143 .class = VIDEO_ENHANCEMENT_CLASS,
144 .instance = 2,
145 .mmio_bases = {
146 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
147 },
148 },
149 [VECS3] = {
150 .class = VIDEO_ENHANCEMENT_CLASS,
151 .instance = 3,
152 .mmio_bases = {
153 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
154 },
155 },
156 };
157
158 /**
159 * intel_engine_context_size() - return the size of the context for an engine
160 * @gt: the gt
161 * @class: engine class
162 *
163 * Each engine class may require a different amount of space for a context
164 * image.
165 *
166 * Return: size (in bytes) of an engine class specific context image
167 *
168 * Note: this size includes the HWSP, which is part of the context image
169 * in LRC mode, but does not include the "shared data page" used with
170 * GuC submission. The caller should account for this if using the GuC.
171 */
intel_engine_context_size(struct intel_gt * gt,u8 class)172 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173 {
174 struct intel_uncore *uncore = gt->uncore;
175 u32 cxt_size;
176
177 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
178
179 switch (class) {
180 case RENDER_CLASS:
181 switch (GRAPHICS_VER(gt->i915)) {
182 default:
183 MISSING_CASE(GRAPHICS_VER(gt->i915));
184 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185 case 12:
186 case 11:
187 return GEN11_LR_CONTEXT_RENDER_SIZE;
188 case 9:
189 return GEN9_LR_CONTEXT_RENDER_SIZE;
190 case 8:
191 return GEN8_LR_CONTEXT_RENDER_SIZE;
192 case 7:
193 if (IS_HASWELL(gt->i915))
194 return HSW_CXT_TOTAL_SIZE;
195
196 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
198 PAGE_SIZE);
199 case 6:
200 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
202 PAGE_SIZE);
203 case 5:
204 case 4:
205 /*
206 * There is a discrepancy here between the size reported
207 * by the register and the size of the context layout
208 * in the docs. Both are described as authorative!
209 *
210 * The discrepancy is on the order of a few cachelines,
211 * but the total is under one page (4k), which is our
212 * minimum allocation anyway so it should all come
213 * out in the wash.
214 */
215 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216 drm_dbg(>->i915->drm,
217 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
218 GRAPHICS_VER(gt->i915), cxt_size * 64,
219 cxt_size - 1);
220 return round_up(cxt_size * 64, PAGE_SIZE);
221 case 3:
222 case 2:
223 /* For the special day when i810 gets merged. */
224 case 1:
225 return 0;
226 }
227 break;
228 default:
229 MISSING_CASE(class);
230 fallthrough;
231 case VIDEO_DECODE_CLASS:
232 case VIDEO_ENHANCEMENT_CLASS:
233 case COPY_ENGINE_CLASS:
234 if (GRAPHICS_VER(gt->i915) < 8)
235 return 0;
236 return GEN8_LR_CONTEXT_OTHER_SIZE;
237 }
238 }
239
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)240 static u32 __engine_mmio_base(struct drm_i915_private *i915,
241 const struct engine_mmio_base *bases)
242 {
243 int i;
244
245 for (i = 0; i < MAX_MMIO_BASES; i++)
246 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 break;
248
249 GEM_BUG_ON(i == MAX_MMIO_BASES);
250 GEM_BUG_ON(!bases[i].base);
251
252 return bases[i].base;
253 }
254
__sprint_engine_name(struct intel_engine_cs * engine)255 static void __sprint_engine_name(struct intel_engine_cs *engine)
256 {
257 /*
258 * Before we know what the uABI name for this engine will be,
259 * we still would like to keep track of this engine in the debug logs.
260 * We throw in a ' here as a reminder that this isn't its final name.
261 */
262 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
263 intel_engine_class_repr(engine->class),
264 engine->instance) >= sizeof(engine->name));
265 }
266
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)267 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
268 {
269 /*
270 * Though they added more rings on g4x/ilk, they did not add
271 * per-engine HWSTAM until gen6.
272 */
273 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 return;
275
276 if (GRAPHICS_VER(engine->i915) >= 3)
277 ENGINE_WRITE(engine, RING_HWSTAM, mask);
278 else
279 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 }
281
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)282 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
283 {
284 /* Mask off all writes into the unknown HWSP */
285 intel_engine_set_hwsp_writemask(engine, ~0u);
286 }
287
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)288 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
289 {
290 GEM_DEBUG_WARN_ON(iir);
291 }
292
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id)293 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
294 {
295 const struct engine_info *info = &intel_engines[id];
296 struct drm_i915_private *i915 = gt->i915;
297 struct intel_engine_cs *engine;
298 u8 guc_class;
299
300 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
301 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
302 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
303 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
304
305 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
306 return -EINVAL;
307
308 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
309 return -EINVAL;
310
311 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
312 return -EINVAL;
313
314 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
315 return -EINVAL;
316
317 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
318 if (!engine)
319 return -ENOMEM;
320
321 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
322
323 INIT_LIST_HEAD(&engine->pinned_contexts_list);
324 engine->id = id;
325 engine->legacy_idx = INVALID_ENGINE;
326 engine->mask = BIT(id);
327 engine->i915 = i915;
328 engine->gt = gt;
329 engine->uncore = gt->uncore;
330 guc_class = engine_class_to_guc_class(info->class);
331 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
332 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
333
334 engine->irq_handler = nop_irq_handler;
335
336 engine->class = info->class;
337 engine->instance = info->instance;
338 __sprint_engine_name(engine);
339
340 engine->props.heartbeat_interval_ms =
341 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
342 engine->props.max_busywait_duration_ns =
343 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
344 engine->props.preempt_timeout_ms =
345 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
346 engine->props.stop_timeout_ms =
347 CONFIG_DRM_I915_STOP_TIMEOUT;
348 engine->props.timeslice_duration_ms =
349 CONFIG_DRM_I915_TIMESLICE_DURATION;
350
351 /* Override to uninterruptible for OpenCL workloads. */
352 if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
353 engine->props.preempt_timeout_ms = 0;
354
355 engine->defaults = engine->props; /* never to change again */
356
357 engine->context_size = intel_engine_context_size(gt, engine->class);
358 if (WARN_ON(engine->context_size > BIT(20)))
359 engine->context_size = 0;
360 if (engine->context_size)
361 DRIVER_CAPS(i915)->has_logical_contexts = true;
362
363 ewma__engine_latency_init(&engine->latency);
364 seqcount_init(&engine->stats.lock);
365
366 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
367
368 /* Scrub mmio state on takeover */
369 intel_engine_sanitize_mmio(engine);
370
371 gt->engine_class[info->class][info->instance] = engine;
372 gt->engine[id] = engine;
373
374 return 0;
375 }
376
__setup_engine_capabilities(struct intel_engine_cs * engine)377 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
378 {
379 struct drm_i915_private *i915 = engine->i915;
380
381 if (engine->class == VIDEO_DECODE_CLASS) {
382 /*
383 * HEVC support is present on first engine instance
384 * before Gen11 and on all instances afterwards.
385 */
386 if (GRAPHICS_VER(i915) >= 11 ||
387 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
388 engine->uabi_capabilities |=
389 I915_VIDEO_CLASS_CAPABILITY_HEVC;
390
391 /*
392 * SFC block is present only on even logical engine
393 * instances.
394 */
395 if ((GRAPHICS_VER(i915) >= 11 &&
396 (engine->gt->info.vdbox_sfc_access &
397 BIT(engine->instance))) ||
398 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
399 engine->uabi_capabilities |=
400 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
401 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
402 if (GRAPHICS_VER(i915) >= 9)
403 engine->uabi_capabilities |=
404 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
405 }
406 }
407
intel_setup_engine_capabilities(struct intel_gt * gt)408 static void intel_setup_engine_capabilities(struct intel_gt *gt)
409 {
410 struct intel_engine_cs *engine;
411 enum intel_engine_id id;
412
413 for_each_engine(engine, gt, id)
414 __setup_engine_capabilities(engine);
415 }
416
417 /**
418 * intel_engines_release() - free the resources allocated for Command Streamers
419 * @gt: pointer to struct intel_gt
420 */
intel_engines_release(struct intel_gt * gt)421 void intel_engines_release(struct intel_gt *gt)
422 {
423 struct intel_engine_cs *engine;
424 enum intel_engine_id id;
425
426 /*
427 * Before we release the resources held by engine, we must be certain
428 * that the HW is no longer accessing them -- having the GPU scribble
429 * to or read from a page being used for something else causes no end
430 * of fun.
431 *
432 * The GPU should be reset by this point, but assume the worst just
433 * in case we aborted before completely initialising the engines.
434 */
435 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
436 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
437 __intel_gt_reset(gt, ALL_ENGINES);
438
439 /* Decouple the backend; but keep the layout for late GPU resets */
440 for_each_engine(engine, gt, id) {
441 if (!engine->release)
442 continue;
443
444 intel_wakeref_wait_for_idle(&engine->wakeref);
445 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
446
447 engine->release(engine);
448 engine->release = NULL;
449
450 memset(&engine->reset, 0, sizeof(engine->reset));
451 }
452 }
453
intel_engine_free_request_pool(struct intel_engine_cs * engine)454 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
455 {
456 if (!engine->request_pool)
457 return;
458
459 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
460 }
461
intel_engines_free(struct intel_gt * gt)462 void intel_engines_free(struct intel_gt *gt)
463 {
464 struct intel_engine_cs *engine;
465 enum intel_engine_id id;
466
467 /* Free the requests! dma-resv keeps fences around for an eternity */
468 rcu_barrier();
469
470 for_each_engine(engine, gt, id) {
471 intel_engine_free_request_pool(engine);
472 kfree(engine);
473 gt->engine[id] = NULL;
474 }
475 }
476
477 static
gen11_vdbox_has_sfc(struct drm_i915_private * i915,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)478 bool gen11_vdbox_has_sfc(struct drm_i915_private *i915,
479 unsigned int physical_vdbox,
480 unsigned int logical_vdbox, u16 vdbox_mask)
481 {
482 /*
483 * In Gen11, only even numbered logical VDBOXes are hooked
484 * up to an SFC (Scaler & Format Converter) unit.
485 * In Gen12, Even numbered physical instance always are connected
486 * to an SFC. Odd numbered physical instances have SFC only if
487 * previous even instance is fused off.
488 */
489 if (GRAPHICS_VER(i915) == 12)
490 return (physical_vdbox % 2 == 0) ||
491 !(BIT(physical_vdbox - 1) & vdbox_mask);
492 else if (GRAPHICS_VER(i915) == 11)
493 return logical_vdbox % 2 == 0;
494
495 MISSING_CASE(GRAPHICS_VER(i915));
496 return false;
497 }
498
499 /*
500 * Determine which engines are fused off in our particular hardware.
501 * Note that we have a catch-22 situation where we need to be able to access
502 * the blitter forcewake domain to read the engine fuses, but at the same time
503 * we need to know which engines are available on the system to know which
504 * forcewake domains are present. We solve this by intializing the forcewake
505 * domains based on the full engine mask in the platform capabilities before
506 * calling this function and pruning the domains for fused-off engines
507 * afterwards.
508 */
init_engine_mask(struct intel_gt * gt)509 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
510 {
511 struct drm_i915_private *i915 = gt->i915;
512 struct intel_gt_info *info = >->info;
513 struct intel_uncore *uncore = gt->uncore;
514 unsigned int logical_vdbox = 0;
515 unsigned int i;
516 u32 media_fuse;
517 u16 vdbox_mask;
518 u16 vebox_mask;
519
520 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
521
522 if (GRAPHICS_VER(i915) < 11)
523 return info->engine_mask;
524
525 /*
526 * On newer platforms the fusing register is called 'enable' and has
527 * enable semantics, while on older platforms it is called 'disable'
528 * and bits have disable semantices.
529 */
530 media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
531 if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
532 media_fuse = ~media_fuse;
533
534 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
535 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
536 GEN11_GT_VEBOX_DISABLE_SHIFT;
537
538 for (i = 0; i < I915_MAX_VCS; i++) {
539 if (!HAS_ENGINE(gt, _VCS(i))) {
540 vdbox_mask &= ~BIT(i);
541 continue;
542 }
543
544 if (!(BIT(i) & vdbox_mask)) {
545 info->engine_mask &= ~BIT(_VCS(i));
546 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
547 continue;
548 }
549
550 if (gen11_vdbox_has_sfc(i915, i, logical_vdbox, vdbox_mask))
551 gt->info.vdbox_sfc_access |= BIT(i);
552 logical_vdbox++;
553 }
554 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
555 vdbox_mask, VDBOX_MASK(gt));
556 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
557
558 for (i = 0; i < I915_MAX_VECS; i++) {
559 if (!HAS_ENGINE(gt, _VECS(i))) {
560 vebox_mask &= ~BIT(i);
561 continue;
562 }
563
564 if (!(BIT(i) & vebox_mask)) {
565 info->engine_mask &= ~BIT(_VECS(i));
566 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
567 }
568 }
569 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
570 vebox_mask, VEBOX_MASK(gt));
571 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
572
573 return info->engine_mask;
574 }
575
576 /**
577 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
578 * @gt: pointer to struct intel_gt
579 *
580 * Return: non-zero if the initialization failed.
581 */
intel_engines_init_mmio(struct intel_gt * gt)582 int intel_engines_init_mmio(struct intel_gt *gt)
583 {
584 struct drm_i915_private *i915 = gt->i915;
585 const unsigned int engine_mask = init_engine_mask(gt);
586 unsigned int mask = 0;
587 unsigned int i;
588 int err;
589
590 drm_WARN_ON(&i915->drm, engine_mask == 0);
591 drm_WARN_ON(&i915->drm, engine_mask &
592 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
593
594 if (i915_inject_probe_failure(i915))
595 return -ENODEV;
596
597 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
598 if (!HAS_ENGINE(gt, i))
599 continue;
600
601 err = intel_engine_setup(gt, i);
602 if (err)
603 goto cleanup;
604
605 mask |= BIT(i);
606 }
607
608 /*
609 * Catch failures to update intel_engines table when the new engines
610 * are added to the driver by a warning and disabling the forgotten
611 * engines.
612 */
613 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
614 gt->info.engine_mask = mask;
615
616 gt->info.num_engines = hweight32(mask);
617
618 intel_gt_check_and_clear_faults(gt);
619
620 intel_setup_engine_capabilities(gt);
621
622 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
623
624 return 0;
625
626 cleanup:
627 intel_engines_free(gt);
628 return err;
629 }
630
intel_engine_init_execlists(struct intel_engine_cs * engine)631 void intel_engine_init_execlists(struct intel_engine_cs *engine)
632 {
633 struct intel_engine_execlists * const execlists = &engine->execlists;
634
635 execlists->port_mask = 1;
636 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
637 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
638
639 memset(execlists->pending, 0, sizeof(execlists->pending));
640 execlists->active =
641 memset(execlists->inflight, 0, sizeof(execlists->inflight));
642 }
643
cleanup_status_page(struct intel_engine_cs * engine)644 static void cleanup_status_page(struct intel_engine_cs *engine)
645 {
646 struct i915_vma *vma;
647
648 /* Prevent writes into HWSP after returning the page to the system */
649 intel_engine_set_hwsp_writemask(engine, ~0u);
650
651 vma = fetch_and_zero(&engine->status_page.vma);
652 if (!vma)
653 return;
654
655 if (!HWS_NEEDS_PHYSICAL(engine->i915))
656 i915_vma_unpin(vma);
657
658 i915_gem_object_unpin_map(vma->obj);
659 i915_gem_object_put(vma->obj);
660 }
661
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)662 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
663 struct i915_gem_ww_ctx *ww,
664 struct i915_vma *vma)
665 {
666 unsigned int flags;
667
668 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
669 /*
670 * On g33, we cannot place HWS above 256MiB, so
671 * restrict its pinning to the low mappable arena.
672 * Though this restriction is not documented for
673 * gen4, gen5, or byt, they also behave similarly
674 * and hang if the HWS is placed at the top of the
675 * GTT. To generalise, it appears that all !llc
676 * platforms have issues with us placing the HWS
677 * above the mappable region (even though we never
678 * actually map it).
679 */
680 flags = PIN_MAPPABLE;
681 else
682 flags = PIN_HIGH;
683
684 return i915_ggtt_pin(vma, ww, 0, flags);
685 }
686
init_status_page(struct intel_engine_cs * engine)687 static int init_status_page(struct intel_engine_cs *engine)
688 {
689 struct drm_i915_gem_object *obj;
690 struct i915_gem_ww_ctx ww;
691 struct i915_vma *vma;
692 void *vaddr;
693 int ret;
694
695 INIT_LIST_HEAD(&engine->status_page.timelines);
696
697 /*
698 * Though the HWS register does support 36bit addresses, historically
699 * we have had hangs and corruption reported due to wild writes if
700 * the HWS is placed above 4G. We only allow objects to be allocated
701 * in GFP_DMA32 for i965, and no earlier physical address users had
702 * access to more than 4G.
703 */
704 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
705 if (IS_ERR(obj)) {
706 drm_err(&engine->i915->drm,
707 "Failed to allocate status page\n");
708 return PTR_ERR(obj);
709 }
710
711 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
712
713 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
714 if (IS_ERR(vma)) {
715 ret = PTR_ERR(vma);
716 goto err_put;
717 }
718
719 i915_gem_ww_ctx_init(&ww, true);
720 retry:
721 ret = i915_gem_object_lock(obj, &ww);
722 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
723 ret = pin_ggtt_status_page(engine, &ww, vma);
724 if (ret)
725 goto err;
726
727 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
728 if (IS_ERR(vaddr)) {
729 ret = PTR_ERR(vaddr);
730 goto err_unpin;
731 }
732
733 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
734 engine->status_page.vma = vma;
735
736 err_unpin:
737 if (ret)
738 i915_vma_unpin(vma);
739 err:
740 if (ret == -EDEADLK) {
741 ret = i915_gem_ww_ctx_backoff(&ww);
742 if (!ret)
743 goto retry;
744 }
745 i915_gem_ww_ctx_fini(&ww);
746 err_put:
747 if (ret)
748 i915_gem_object_put(obj);
749 return ret;
750 }
751
engine_setup_common(struct intel_engine_cs * engine)752 static int engine_setup_common(struct intel_engine_cs *engine)
753 {
754 int err;
755
756 init_llist_head(&engine->barrier_tasks);
757
758 err = init_status_page(engine);
759 if (err)
760 return err;
761
762 engine->breadcrumbs = intel_breadcrumbs_create(engine);
763 if (!engine->breadcrumbs) {
764 err = -ENOMEM;
765 goto err_status;
766 }
767
768 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
769 if (!engine->sched_engine) {
770 err = -ENOMEM;
771 goto err_sched_engine;
772 }
773 engine->sched_engine->private_data = engine;
774
775 err = intel_engine_init_cmd_parser(engine);
776 if (err)
777 goto err_cmd_parser;
778
779 intel_engine_init_execlists(engine);
780 intel_engine_init__pm(engine);
781 intel_engine_init_retire(engine);
782
783 /* Use the whole device by default */
784 engine->sseu =
785 intel_sseu_from_device_info(&engine->gt->info.sseu);
786
787 intel_engine_init_workarounds(engine);
788 intel_engine_init_whitelist(engine);
789 intel_engine_init_ctx_wa(engine);
790
791 if (GRAPHICS_VER(engine->i915) >= 12)
792 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
793
794 return 0;
795
796 err_cmd_parser:
797 i915_sched_engine_put(engine->sched_engine);
798 err_sched_engine:
799 intel_breadcrumbs_put(engine->breadcrumbs);
800 err_status:
801 cleanup_status_page(engine);
802 return err;
803 }
804
805 struct measure_breadcrumb {
806 struct i915_request rq;
807 struct intel_ring ring;
808 u32 cs[2048];
809 };
810
measure_breadcrumb_dw(struct intel_context * ce)811 static int measure_breadcrumb_dw(struct intel_context *ce)
812 {
813 struct intel_engine_cs *engine = ce->engine;
814 struct measure_breadcrumb *frame;
815 int dw;
816
817 GEM_BUG_ON(!engine->gt->scratch);
818
819 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
820 if (!frame)
821 return -ENOMEM;
822
823 frame->rq.engine = engine;
824 frame->rq.context = ce;
825 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
826 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
827
828 frame->ring.vaddr = frame->cs;
829 frame->ring.size = sizeof(frame->cs);
830 frame->ring.wrap =
831 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
832 frame->ring.effective_size = frame->ring.size;
833 intel_ring_update_space(&frame->ring);
834 frame->rq.ring = &frame->ring;
835
836 mutex_lock(&ce->timeline->mutex);
837 spin_lock_irq(&engine->sched_engine->lock);
838
839 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
840
841 spin_unlock_irq(&engine->sched_engine->lock);
842 mutex_unlock(&ce->timeline->mutex);
843
844 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
845
846 kfree(frame);
847 return dw;
848 }
849
850 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)851 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
852 struct i915_address_space *vm,
853 unsigned int ring_size,
854 unsigned int hwsp,
855 struct lock_class_key *key,
856 const char *name)
857 {
858 struct intel_context *ce;
859 int err;
860
861 ce = intel_context_create(engine);
862 if (IS_ERR(ce))
863 return ce;
864
865 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
866 ce->timeline = page_pack_bits(NULL, hwsp);
867 ce->ring = NULL;
868 ce->ring_size = ring_size;
869
870 i915_vm_put(ce->vm);
871 ce->vm = i915_vm_get(vm);
872
873 err = intel_context_pin(ce); /* perma-pin so it is always available */
874 if (err) {
875 intel_context_put(ce);
876 return ERR_PTR(err);
877 }
878
879 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
880
881 /*
882 * Give our perma-pinned kernel timelines a separate lockdep class,
883 * so that we can use them from within the normal user timelines
884 * should we need to inject GPU operations during their request
885 * construction.
886 */
887 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
888
889 return ce;
890 }
891
intel_engine_destroy_pinned_context(struct intel_context * ce)892 void intel_engine_destroy_pinned_context(struct intel_context *ce)
893 {
894 struct intel_engine_cs *engine = ce->engine;
895 struct i915_vma *hwsp = engine->status_page.vma;
896
897 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
898
899 mutex_lock(&hwsp->vm->mutex);
900 list_del(&ce->timeline->engine_link);
901 mutex_unlock(&hwsp->vm->mutex);
902
903 list_del(&ce->pinned_contexts_link);
904 intel_context_unpin(ce);
905 intel_context_put(ce);
906 }
907
908 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)909 create_kernel_context(struct intel_engine_cs *engine)
910 {
911 static struct lock_class_key kernel;
912
913 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
914 I915_GEM_HWS_SEQNO_ADDR,
915 &kernel, "kernel_context");
916 }
917
918 /**
919 * intel_engines_init_common - initialize cengine state which might require hw access
920 * @engine: Engine to initialize.
921 *
922 * Initializes @engine@ structure members shared between legacy and execlists
923 * submission modes which do require hardware access.
924 *
925 * Typcally done at later stages of submission mode specific engine setup.
926 *
927 * Returns zero on success or an error code on failure.
928 */
engine_init_common(struct intel_engine_cs * engine)929 static int engine_init_common(struct intel_engine_cs *engine)
930 {
931 struct intel_context *ce;
932 int ret;
933
934 engine->set_default_submission(engine);
935
936 /*
937 * We may need to do things with the shrinker which
938 * require us to immediately switch back to the default
939 * context. This can cause a problem as pinning the
940 * default context also requires GTT space which may not
941 * be available. To avoid this we always pin the default
942 * context.
943 */
944 ce = create_kernel_context(engine);
945 if (IS_ERR(ce))
946 return PTR_ERR(ce);
947
948 ret = measure_breadcrumb_dw(ce);
949 if (ret < 0)
950 goto err_context;
951
952 engine->emit_fini_breadcrumb_dw = ret;
953 engine->kernel_context = ce;
954
955 return 0;
956
957 err_context:
958 intel_engine_destroy_pinned_context(ce);
959 return ret;
960 }
961
intel_engines_init(struct intel_gt * gt)962 int intel_engines_init(struct intel_gt *gt)
963 {
964 int (*setup)(struct intel_engine_cs *engine);
965 struct intel_engine_cs *engine;
966 enum intel_engine_id id;
967 int err;
968
969 if (intel_uc_uses_guc_submission(>->uc)) {
970 gt->submission_method = INTEL_SUBMISSION_GUC;
971 setup = intel_guc_submission_setup;
972 } else if (HAS_EXECLISTS(gt->i915)) {
973 gt->submission_method = INTEL_SUBMISSION_ELSP;
974 setup = intel_execlists_submission_setup;
975 } else {
976 gt->submission_method = INTEL_SUBMISSION_RING;
977 setup = intel_ring_submission_setup;
978 }
979
980 for_each_engine(engine, gt, id) {
981 err = engine_setup_common(engine);
982 if (err)
983 return err;
984
985 err = setup(engine);
986 if (err)
987 return err;
988
989 err = engine_init_common(engine);
990 if (err)
991 return err;
992
993 intel_engine_add_user(engine);
994 }
995
996 return 0;
997 }
998
999 /**
1000 * intel_engines_cleanup_common - cleans up the engine state created by
1001 * the common initiailizers.
1002 * @engine: Engine to cleanup.
1003 *
1004 * This cleans up everything created by the common helpers.
1005 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1006 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1007 {
1008 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1009
1010 i915_sched_engine_put(engine->sched_engine);
1011 intel_breadcrumbs_put(engine->breadcrumbs);
1012
1013 intel_engine_fini_retire(engine);
1014 intel_engine_cleanup_cmd_parser(engine);
1015
1016 if (engine->default_state)
1017 fput(engine->default_state);
1018
1019 if (engine->kernel_context)
1020 intel_engine_destroy_pinned_context(engine->kernel_context);
1021
1022 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1023 cleanup_status_page(engine);
1024
1025 intel_wa_list_free(&engine->ctx_wa_list);
1026 intel_wa_list_free(&engine->wa_list);
1027 intel_wa_list_free(&engine->whitelist);
1028 }
1029
1030 /**
1031 * intel_engine_resume - re-initializes the HW state of the engine
1032 * @engine: Engine to resume.
1033 *
1034 * Returns zero on success or an error code on failure.
1035 */
intel_engine_resume(struct intel_engine_cs * engine)1036 int intel_engine_resume(struct intel_engine_cs *engine)
1037 {
1038 intel_engine_apply_workarounds(engine);
1039 intel_engine_apply_whitelist(engine);
1040
1041 return engine->resume(engine);
1042 }
1043
intel_engine_get_active_head(const struct intel_engine_cs * engine)1044 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1045 {
1046 struct drm_i915_private *i915 = engine->i915;
1047
1048 u64 acthd;
1049
1050 if (GRAPHICS_VER(i915) >= 8)
1051 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1052 else if (GRAPHICS_VER(i915) >= 4)
1053 acthd = ENGINE_READ(engine, RING_ACTHD);
1054 else
1055 acthd = ENGINE_READ(engine, ACTHD);
1056
1057 return acthd;
1058 }
1059
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1060 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1061 {
1062 u64 bbaddr;
1063
1064 if (GRAPHICS_VER(engine->i915) >= 8)
1065 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1066 else
1067 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1068
1069 return bbaddr;
1070 }
1071
stop_timeout(const struct intel_engine_cs * engine)1072 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1073 {
1074 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1075 return 0;
1076
1077 /*
1078 * If we are doing a normal GPU reset, we can take our time and allow
1079 * the engine to quiesce. We've stopped submission to the engine, and
1080 * if we wait long enough an innocent context should complete and
1081 * leave the engine idle. So they should not be caught unaware by
1082 * the forthcoming GPU reset (which usually follows the stop_cs)!
1083 */
1084 return READ_ONCE(engine->props.stop_timeout_ms);
1085 }
1086
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1087 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1088 int fast_timeout_us,
1089 int slow_timeout_ms)
1090 {
1091 struct intel_uncore *uncore = engine->uncore;
1092 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1093 int err;
1094
1095 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1096 err = __intel_wait_for_register_fw(engine->uncore, mode,
1097 MODE_IDLE, MODE_IDLE,
1098 fast_timeout_us,
1099 slow_timeout_ms,
1100 NULL);
1101
1102 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1103 intel_uncore_posting_read_fw(uncore, mode);
1104 return err;
1105 }
1106
intel_engine_stop_cs(struct intel_engine_cs * engine)1107 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1108 {
1109 int err = 0;
1110
1111 if (GRAPHICS_VER(engine->i915) < 3)
1112 return -ENODEV;
1113
1114 ENGINE_TRACE(engine, "\n");
1115 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1116 ENGINE_TRACE(engine,
1117 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1118 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1119 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1120
1121 /*
1122 * Sometimes we observe that the idle flag is not
1123 * set even though the ring is empty. So double
1124 * check before giving up.
1125 */
1126 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1127 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1128 err = -ETIMEDOUT;
1129 }
1130
1131 return err;
1132 }
1133
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1134 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1135 {
1136 ENGINE_TRACE(engine, "\n");
1137
1138 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1139 }
1140
i915_cache_level_str(struct drm_i915_private * i915,int type)1141 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1142 {
1143 switch (type) {
1144 case I915_CACHE_NONE: return " uncached";
1145 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1146 case I915_CACHE_L3_LLC: return " L3+LLC";
1147 case I915_CACHE_WT: return " WT";
1148 default: return "";
1149 }
1150 }
1151
1152 static u32
read_subslice_reg(const struct intel_engine_cs * engine,int slice,int subslice,i915_reg_t reg)1153 read_subslice_reg(const struct intel_engine_cs *engine,
1154 int slice, int subslice, i915_reg_t reg)
1155 {
1156 return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
1157 slice, subslice);
1158 }
1159
1160 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1161 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1162 struct intel_instdone *instdone)
1163 {
1164 struct drm_i915_private *i915 = engine->i915;
1165 const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1166 struct intel_uncore *uncore = engine->uncore;
1167 u32 mmio_base = engine->mmio_base;
1168 int slice;
1169 int subslice;
1170
1171 memset(instdone, 0, sizeof(*instdone));
1172
1173 switch (GRAPHICS_VER(i915)) {
1174 default:
1175 instdone->instdone =
1176 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1177
1178 if (engine->id != RCS0)
1179 break;
1180
1181 instdone->slice_common =
1182 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1183 if (GRAPHICS_VER(i915) >= 12) {
1184 instdone->slice_common_extra[0] =
1185 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1186 instdone->slice_common_extra[1] =
1187 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1188 }
1189 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1190 instdone->sampler[slice][subslice] =
1191 read_subslice_reg(engine, slice, subslice,
1192 GEN7_SAMPLER_INSTDONE);
1193 instdone->row[slice][subslice] =
1194 read_subslice_reg(engine, slice, subslice,
1195 GEN7_ROW_INSTDONE);
1196 }
1197 break;
1198 case 7:
1199 instdone->instdone =
1200 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1201
1202 if (engine->id != RCS0)
1203 break;
1204
1205 instdone->slice_common =
1206 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1207 instdone->sampler[0][0] =
1208 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1209 instdone->row[0][0] =
1210 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1211
1212 break;
1213 case 6:
1214 case 5:
1215 case 4:
1216 instdone->instdone =
1217 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1218 if (engine->id == RCS0)
1219 /* HACK: Using the wrong struct member */
1220 instdone->slice_common =
1221 intel_uncore_read(uncore, GEN4_INSTDONE1);
1222 break;
1223 case 3:
1224 case 2:
1225 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1226 break;
1227 }
1228 }
1229
ring_is_idle(struct intel_engine_cs * engine)1230 static bool ring_is_idle(struct intel_engine_cs *engine)
1231 {
1232 bool idle = true;
1233
1234 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1235 return true;
1236
1237 if (!intel_engine_pm_get_if_awake(engine))
1238 return true;
1239
1240 /* First check that no commands are left in the ring */
1241 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1242 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1243 idle = false;
1244
1245 /* No bit for gen2, so assume the CS parser is idle */
1246 if (GRAPHICS_VER(engine->i915) > 2 &&
1247 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1248 idle = false;
1249
1250 intel_engine_pm_put(engine);
1251
1252 return idle;
1253 }
1254
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1255 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1256 {
1257 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1258
1259 if (!t->callback)
1260 return;
1261
1262 local_bh_disable();
1263 if (tasklet_trylock(t)) {
1264 /* Must wait for any GPU reset in progress. */
1265 if (__tasklet_is_enabled(t))
1266 t->callback(t);
1267 tasklet_unlock(t);
1268 }
1269 local_bh_enable();
1270
1271 /* Synchronise and wait for the tasklet on another CPU */
1272 if (sync)
1273 tasklet_unlock_wait(t);
1274 }
1275
1276 /**
1277 * intel_engine_is_idle() - Report if the engine has finished process all work
1278 * @engine: the intel_engine_cs
1279 *
1280 * Return true if there are no requests pending, nothing left to be submitted
1281 * to hardware, and that the engine is idle.
1282 */
intel_engine_is_idle(struct intel_engine_cs * engine)1283 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1284 {
1285 /* More white lies, if wedged, hw state is inconsistent */
1286 if (intel_gt_is_wedged(engine->gt))
1287 return true;
1288
1289 if (!intel_engine_pm_is_awake(engine))
1290 return true;
1291
1292 /* Waiting to drain ELSP? */
1293 intel_synchronize_hardirq(engine->i915);
1294 intel_engine_flush_submission(engine);
1295
1296 /* ELSP is empty, but there are ready requests? E.g. after reset */
1297 if (!i915_sched_engine_is_empty(engine->sched_engine))
1298 return false;
1299
1300 /* Ring stopped? */
1301 return ring_is_idle(engine);
1302 }
1303
intel_engines_are_idle(struct intel_gt * gt)1304 bool intel_engines_are_idle(struct intel_gt *gt)
1305 {
1306 struct intel_engine_cs *engine;
1307 enum intel_engine_id id;
1308
1309 /*
1310 * If the driver is wedged, HW state may be very inconsistent and
1311 * report that it is still busy, even though we have stopped using it.
1312 */
1313 if (intel_gt_is_wedged(gt))
1314 return true;
1315
1316 /* Already parked (and passed an idleness test); must still be idle */
1317 if (!READ_ONCE(gt->awake))
1318 return true;
1319
1320 for_each_engine(engine, gt, id) {
1321 if (!intel_engine_is_idle(engine))
1322 return false;
1323 }
1324
1325 return true;
1326 }
1327
intel_engine_irq_enable(struct intel_engine_cs * engine)1328 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1329 {
1330 if (!engine->irq_enable)
1331 return false;
1332
1333 /* Caller disables interrupts */
1334 spin_lock(&engine->gt->irq_lock);
1335 engine->irq_enable(engine);
1336 spin_unlock(&engine->gt->irq_lock);
1337
1338 return true;
1339 }
1340
intel_engine_irq_disable(struct intel_engine_cs * engine)1341 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1342 {
1343 if (!engine->irq_disable)
1344 return;
1345
1346 /* Caller disables interrupts */
1347 spin_lock(&engine->gt->irq_lock);
1348 engine->irq_disable(engine);
1349 spin_unlock(&engine->gt->irq_lock);
1350 }
1351
intel_engines_reset_default_submission(struct intel_gt * gt)1352 void intel_engines_reset_default_submission(struct intel_gt *gt)
1353 {
1354 struct intel_engine_cs *engine;
1355 enum intel_engine_id id;
1356
1357 for_each_engine(engine, gt, id) {
1358 if (engine->sanitize)
1359 engine->sanitize(engine);
1360
1361 engine->set_default_submission(engine);
1362 }
1363 }
1364
intel_engine_can_store_dword(struct intel_engine_cs * engine)1365 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1366 {
1367 switch (GRAPHICS_VER(engine->i915)) {
1368 case 2:
1369 return false; /* uses physical not virtual addresses */
1370 case 3:
1371 /* maybe only uses physical not virtual addresses */
1372 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1373 case 4:
1374 return !IS_I965G(engine->i915); /* who knows! */
1375 case 6:
1376 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1377 default:
1378 return true;
1379 }
1380 }
1381
get_timeline(struct i915_request * rq)1382 static struct intel_timeline *get_timeline(struct i915_request *rq)
1383 {
1384 struct intel_timeline *tl;
1385
1386 /*
1387 * Even though we are holding the engine->sched_engine->lock here, there
1388 * is no control over the submission queue per-se and we are
1389 * inspecting the active state at a random point in time, with an
1390 * unknown queue. Play safe and make sure the timeline remains valid.
1391 * (Only being used for pretty printing, one extra kref shouldn't
1392 * cause a camel stampede!)
1393 */
1394 rcu_read_lock();
1395 tl = rcu_dereference(rq->timeline);
1396 if (!kref_get_unless_zero(&tl->kref))
1397 tl = NULL;
1398 rcu_read_unlock();
1399
1400 return tl;
1401 }
1402
print_ring(char * buf,int sz,struct i915_request * rq)1403 static int print_ring(char *buf, int sz, struct i915_request *rq)
1404 {
1405 int len = 0;
1406
1407 if (!i915_request_signaled(rq)) {
1408 struct intel_timeline *tl = get_timeline(rq);
1409
1410 len = scnprintf(buf, sz,
1411 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1412 i915_ggtt_offset(rq->ring->vma),
1413 tl ? tl->hwsp_offset : 0,
1414 hwsp_seqno(rq),
1415 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1416 1000 * 1000));
1417
1418 if (tl)
1419 intel_timeline_put(tl);
1420 }
1421
1422 return len;
1423 }
1424
hexdump(struct drm_printer * m,const void * buf,size_t len)1425 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1426 {
1427 const size_t rowsize = 8 * sizeof(u32);
1428 const void *prev = NULL;
1429 bool skip = false;
1430 size_t pos;
1431
1432 for (pos = 0; pos < len; pos += rowsize) {
1433 char line[128];
1434
1435 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1436 if (!skip) {
1437 drm_printf(m, "*\n");
1438 skip = true;
1439 }
1440 continue;
1441 }
1442
1443 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1444 rowsize, sizeof(u32),
1445 line, sizeof(line),
1446 false) >= sizeof(line));
1447 drm_printf(m, "[%04zx] %s\n", pos, line);
1448
1449 prev = buf + pos;
1450 skip = false;
1451 }
1452 }
1453
repr_timer(const struct timer_list * t)1454 static const char *repr_timer(const struct timer_list *t)
1455 {
1456 if (!READ_ONCE(t->expires))
1457 return "inactive";
1458
1459 if (timer_pending(t))
1460 return "active";
1461
1462 return "expired";
1463 }
1464
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1465 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1466 struct drm_printer *m)
1467 {
1468 struct drm_i915_private *dev_priv = engine->i915;
1469 struct intel_engine_execlists * const execlists = &engine->execlists;
1470 u64 addr;
1471
1472 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1473 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1474 if (HAS_EXECLISTS(dev_priv)) {
1475 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1476 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1477 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1478 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1479 }
1480 drm_printf(m, "\tRING_START: 0x%08x\n",
1481 ENGINE_READ(engine, RING_START));
1482 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1483 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1484 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1485 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1486 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1487 ENGINE_READ(engine, RING_CTL),
1488 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1489 if (GRAPHICS_VER(engine->i915) > 2) {
1490 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1491 ENGINE_READ(engine, RING_MI_MODE),
1492 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1493 }
1494
1495 if (GRAPHICS_VER(dev_priv) >= 6) {
1496 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1497 ENGINE_READ(engine, RING_IMR));
1498 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1499 ENGINE_READ(engine, RING_ESR));
1500 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1501 ENGINE_READ(engine, RING_EMR));
1502 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1503 ENGINE_READ(engine, RING_EIR));
1504 }
1505
1506 addr = intel_engine_get_active_head(engine);
1507 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1508 upper_32_bits(addr), lower_32_bits(addr));
1509 addr = intel_engine_get_last_batch_head(engine);
1510 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1511 upper_32_bits(addr), lower_32_bits(addr));
1512 if (GRAPHICS_VER(dev_priv) >= 8)
1513 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1514 else if (GRAPHICS_VER(dev_priv) >= 4)
1515 addr = ENGINE_READ(engine, RING_DMA_FADD);
1516 else
1517 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1518 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1519 upper_32_bits(addr), lower_32_bits(addr));
1520 if (GRAPHICS_VER(dev_priv) >= 4) {
1521 drm_printf(m, "\tIPEIR: 0x%08x\n",
1522 ENGINE_READ(engine, RING_IPEIR));
1523 drm_printf(m, "\tIPEHR: 0x%08x\n",
1524 ENGINE_READ(engine, RING_IPEHR));
1525 } else {
1526 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1527 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1528 }
1529
1530 if (intel_engine_uses_guc(engine)) {
1531 /* nothing to print yet */
1532 } else if (HAS_EXECLISTS(dev_priv)) {
1533 struct i915_request * const *port, *rq;
1534 const u32 *hws =
1535 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1536 const u8 num_entries = execlists->csb_size;
1537 unsigned int idx;
1538 u8 read, write;
1539
1540 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1541 yesno(test_bit(TASKLET_STATE_SCHED,
1542 &engine->sched_engine->tasklet.state)),
1543 enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1544 repr_timer(&engine->execlists.preempt),
1545 repr_timer(&engine->execlists.timer));
1546
1547 read = execlists->csb_head;
1548 write = READ_ONCE(*execlists->csb_write);
1549
1550 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1551 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1552 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1553 read, write, num_entries);
1554
1555 if (read >= num_entries)
1556 read = 0;
1557 if (write >= num_entries)
1558 write = 0;
1559 if (read > write)
1560 write += num_entries;
1561 while (read < write) {
1562 idx = ++read % num_entries;
1563 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1564 idx, hws[idx * 2], hws[idx * 2 + 1]);
1565 }
1566
1567 i915_sched_engine_active_lock_bh(engine->sched_engine);
1568 rcu_read_lock();
1569 for (port = execlists->active; (rq = *port); port++) {
1570 char hdr[160];
1571 int len;
1572
1573 len = scnprintf(hdr, sizeof(hdr),
1574 "\t\tActive[%d]: ccid:%08x%s%s, ",
1575 (int)(port - execlists->active),
1576 rq->context->lrc.ccid,
1577 intel_context_is_closed(rq->context) ? "!" : "",
1578 intel_context_is_banned(rq->context) ? "*" : "");
1579 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1580 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1581 i915_request_show(m, rq, hdr, 0);
1582 }
1583 for (port = execlists->pending; (rq = *port); port++) {
1584 char hdr[160];
1585 int len;
1586
1587 len = scnprintf(hdr, sizeof(hdr),
1588 "\t\tPending[%d]: ccid:%08x%s%s, ",
1589 (int)(port - execlists->pending),
1590 rq->context->lrc.ccid,
1591 intel_context_is_closed(rq->context) ? "!" : "",
1592 intel_context_is_banned(rq->context) ? "*" : "");
1593 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1594 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1595 i915_request_show(m, rq, hdr, 0);
1596 }
1597 rcu_read_unlock();
1598 i915_sched_engine_active_unlock_bh(engine->sched_engine);
1599 } else if (GRAPHICS_VER(dev_priv) > 6) {
1600 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1601 ENGINE_READ(engine, RING_PP_DIR_BASE));
1602 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1603 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1604 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1605 ENGINE_READ(engine, RING_PP_DIR_DCLV));
1606 }
1607 }
1608
print_request_ring(struct drm_printer * m,struct i915_request * rq)1609 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1610 {
1611 void *ring;
1612 int size;
1613
1614 drm_printf(m,
1615 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1616 rq->head, rq->postfix, rq->tail,
1617 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1618 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1619
1620 size = rq->tail - rq->head;
1621 if (rq->tail < rq->head)
1622 size += rq->ring->size;
1623
1624 ring = kmalloc(size, GFP_ATOMIC);
1625 if (ring) {
1626 const void *vaddr = rq->ring->vaddr;
1627 unsigned int head = rq->head;
1628 unsigned int len = 0;
1629
1630 if (rq->tail < head) {
1631 len = rq->ring->size - head;
1632 memcpy(ring, vaddr + head, len);
1633 head = 0;
1634 }
1635 memcpy(ring + len, vaddr + head, size - len);
1636
1637 hexdump(m, ring, size);
1638 kfree(ring);
1639 }
1640 }
1641
list_count(struct list_head * list)1642 static unsigned long list_count(struct list_head *list)
1643 {
1644 struct list_head *pos;
1645 unsigned long count = 0;
1646
1647 list_for_each(pos, list)
1648 count++;
1649
1650 return count;
1651 }
1652
read_ul(void * p,size_t x)1653 static unsigned long read_ul(void *p, size_t x)
1654 {
1655 return *(unsigned long *)(p + x);
1656 }
1657
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)1658 static void print_properties(struct intel_engine_cs *engine,
1659 struct drm_printer *m)
1660 {
1661 static const struct pmap {
1662 size_t offset;
1663 const char *name;
1664 } props[] = {
1665 #define P(x) { \
1666 .offset = offsetof(typeof(engine->props), x), \
1667 .name = #x \
1668 }
1669 P(heartbeat_interval_ms),
1670 P(max_busywait_duration_ns),
1671 P(preempt_timeout_ms),
1672 P(stop_timeout_ms),
1673 P(timeslice_duration_ms),
1674
1675 {},
1676 #undef P
1677 };
1678 const struct pmap *p;
1679
1680 drm_printf(m, "\tProperties:\n");
1681 for (p = props; p->name; p++)
1682 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1683 p->name,
1684 read_ul(&engine->props, p->offset),
1685 read_ul(&engine->defaults, p->offset));
1686 }
1687
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)1688 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
1689 {
1690 struct intel_timeline *tl = get_timeline(rq);
1691
1692 i915_request_show(m, rq, msg, 0);
1693
1694 drm_printf(m, "\t\tring->start: 0x%08x\n",
1695 i915_ggtt_offset(rq->ring->vma));
1696 drm_printf(m, "\t\tring->head: 0x%08x\n",
1697 rq->ring->head);
1698 drm_printf(m, "\t\tring->tail: 0x%08x\n",
1699 rq->ring->tail);
1700 drm_printf(m, "\t\tring->emit: 0x%08x\n",
1701 rq->ring->emit);
1702 drm_printf(m, "\t\tring->space: 0x%08x\n",
1703 rq->ring->space);
1704
1705 if (tl) {
1706 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
1707 tl->hwsp_offset);
1708 intel_timeline_put(tl);
1709 }
1710
1711 print_request_ring(m, rq);
1712
1713 if (rq->context->lrc_reg_state) {
1714 drm_printf(m, "Logical Ring Context:\n");
1715 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1716 }
1717 }
1718
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)1719 void intel_engine_dump_active_requests(struct list_head *requests,
1720 struct i915_request *hung_rq,
1721 struct drm_printer *m)
1722 {
1723 struct i915_request *rq;
1724 const char *msg;
1725 enum i915_request_state state;
1726
1727 list_for_each_entry(rq, requests, sched.link) {
1728 if (rq == hung_rq)
1729 continue;
1730
1731 state = i915_test_request_state(rq);
1732 if (state < I915_REQUEST_QUEUED)
1733 continue;
1734
1735 if (state == I915_REQUEST_ACTIVE)
1736 msg = "\t\tactive on engine";
1737 else
1738 msg = "\t\tactive in queue";
1739
1740 engine_dump_request(rq, m, msg);
1741 }
1742 }
1743
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)1744 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
1745 {
1746 struct i915_request *hung_rq = NULL;
1747 struct intel_context *ce;
1748 bool guc;
1749
1750 /*
1751 * No need for an engine->irq_seqno_barrier() before the seqno reads.
1752 * The GPU is still running so requests are still executing and any
1753 * hardware reads will be out of date by the time they are reported.
1754 * But the intention here is just to report an instantaneous snapshot
1755 * so that's fine.
1756 */
1757 lockdep_assert_held(&engine->sched_engine->lock);
1758
1759 drm_printf(m, "\tRequests:\n");
1760
1761 guc = intel_uc_uses_guc_submission(&engine->gt->uc);
1762 if (guc) {
1763 ce = intel_engine_get_hung_context(engine);
1764 if (ce)
1765 hung_rq = intel_context_find_active_request(ce);
1766 } else {
1767 hung_rq = intel_engine_execlist_find_hung_request(engine);
1768 }
1769
1770 if (hung_rq)
1771 engine_dump_request(hung_rq, m, "\t\thung");
1772
1773 if (guc)
1774 intel_guc_dump_active_requests(engine, hung_rq, m);
1775 else
1776 intel_engine_dump_active_requests(&engine->sched_engine->requests,
1777 hung_rq, m);
1778 }
1779
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)1780 void intel_engine_dump(struct intel_engine_cs *engine,
1781 struct drm_printer *m,
1782 const char *header, ...)
1783 {
1784 struct i915_gpu_error * const error = &engine->i915->gpu_error;
1785 struct i915_request *rq;
1786 intel_wakeref_t wakeref;
1787 unsigned long flags;
1788 ktime_t dummy;
1789
1790 if (header) {
1791 va_list ap;
1792
1793 va_start(ap, header);
1794 drm_vprintf(m, header, &ap);
1795 va_end(ap);
1796 }
1797
1798 if (intel_gt_is_wedged(engine->gt))
1799 drm_printf(m, "*** WEDGED ***\n");
1800
1801 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1802 drm_printf(m, "\tBarriers?: %s\n",
1803 yesno(!llist_empty(&engine->barrier_tasks)));
1804 drm_printf(m, "\tLatency: %luus\n",
1805 ewma__engine_latency_read(&engine->latency));
1806 if (intel_engine_supports_stats(engine))
1807 drm_printf(m, "\tRuntime: %llums\n",
1808 ktime_to_ms(intel_engine_get_busy_time(engine,
1809 &dummy)));
1810 drm_printf(m, "\tForcewake: %x domains, %d active\n",
1811 engine->fw_domain, READ_ONCE(engine->fw_active));
1812
1813 rcu_read_lock();
1814 rq = READ_ONCE(engine->heartbeat.systole);
1815 if (rq)
1816 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1817 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1818 rcu_read_unlock();
1819 drm_printf(m, "\tReset count: %d (global %d)\n",
1820 i915_reset_engine_count(error, engine),
1821 i915_reset_count(error));
1822 print_properties(engine, m);
1823
1824 spin_lock_irqsave(&engine->sched_engine->lock, flags);
1825 engine_dump_active_requests(engine, m);
1826
1827 drm_printf(m, "\tOn hold?: %lu\n",
1828 list_count(&engine->sched_engine->hold));
1829 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1830
1831 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
1832 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1833 if (wakeref) {
1834 intel_engine_print_registers(engine, m);
1835 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1836 } else {
1837 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1838 }
1839
1840 intel_execlists_show_requests(engine, m, i915_request_show, 8);
1841
1842 drm_printf(m, "HWSP:\n");
1843 hexdump(m, engine->status_page.addr, PAGE_SIZE);
1844
1845 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1846
1847 intel_engine_print_breadcrumbs(engine, m);
1848 }
1849
__intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1850 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1851 ktime_t *now)
1852 {
1853 ktime_t total = engine->stats.total;
1854
1855 /*
1856 * If the engine is executing something at the moment
1857 * add it to the total.
1858 */
1859 *now = ktime_get();
1860 if (READ_ONCE(engine->stats.active))
1861 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1862
1863 return total;
1864 }
1865
1866 /**
1867 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1868 * @engine: engine to report on
1869 * @now: monotonic timestamp of sampling
1870 *
1871 * Returns accumulated time @engine was busy since engine stats were enabled.
1872 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1873 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1874 {
1875 unsigned int seq;
1876 ktime_t total;
1877
1878 do {
1879 seq = read_seqcount_begin(&engine->stats.lock);
1880 total = __intel_engine_get_busy_time(engine, now);
1881 } while (read_seqcount_retry(&engine->stats.lock, seq));
1882
1883 return total;
1884 }
1885
1886 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count)1887 intel_engine_create_virtual(struct intel_engine_cs **siblings,
1888 unsigned int count)
1889 {
1890 if (count == 0)
1891 return ERR_PTR(-EINVAL);
1892
1893 if (count == 1)
1894 return intel_context_create(siblings[0]);
1895
1896 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
1897 return siblings[0]->cops->create_virtual(siblings, count);
1898 }
1899
1900 struct i915_request *
intel_engine_execlist_find_hung_request(struct intel_engine_cs * engine)1901 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1902 {
1903 struct i915_request *request, *active = NULL;
1904
1905 /*
1906 * This search does not work in GuC submission mode. However, the GuC
1907 * will report the hanging context directly to the driver itself. So
1908 * the driver should never get here when in GuC mode.
1909 */
1910 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
1911
1912 /*
1913 * We are called by the error capture, reset and to dump engine
1914 * state at random points in time. In particular, note that neither is
1915 * crucially ordered with an interrupt. After a hang, the GPU is dead
1916 * and we assume that no more writes can happen (we waited long enough
1917 * for all writes that were in transaction to be flushed) - adding an
1918 * extra delay for a recent interrupt is pointless. Hence, we do
1919 * not need an engine->irq_seqno_barrier() before the seqno reads.
1920 * At all other times, we must assume the GPU is still running, but
1921 * we only care about the snapshot of this moment.
1922 */
1923 lockdep_assert_held(&engine->sched_engine->lock);
1924
1925 rcu_read_lock();
1926 request = execlists_active(&engine->execlists);
1927 if (request) {
1928 struct intel_timeline *tl = request->context->timeline;
1929
1930 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1931 if (__i915_request_is_complete(request))
1932 break;
1933
1934 active = request;
1935 }
1936 }
1937 rcu_read_unlock();
1938 if (active)
1939 return active;
1940
1941 list_for_each_entry(request, &engine->sched_engine->requests,
1942 sched.link) {
1943 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
1944 continue;
1945
1946 active = request;
1947 break;
1948 }
1949
1950 return active;
1951 }
1952
1953 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1954 #include "mock_engine.c"
1955 #include "selftest_engine.c"
1956 #include "selftest_engine_cs.c"
1957 #endif
1958