• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11 
12 #include "../perf_event.h"
13 
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16 
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE		24
19 
20 #define PEBS_FIXUP_SIZE		PAGE_SIZE
21 
22 /*
23  * pebs_record_32 for p4 and core not supported
24 
25 struct pebs_record_32 {
26 	u32 flags, ip;
27 	u32 ax, bc, cx, dx;
28 	u32 si, di, bp, sp;
29 };
30 
31  */
32 
33 union intel_x86_pebs_dse {
34 	u64 val;
35 	struct {
36 		unsigned int ld_dse:4;
37 		unsigned int ld_stlb_miss:1;
38 		unsigned int ld_locked:1;
39 		unsigned int ld_data_blk:1;
40 		unsigned int ld_addr_blk:1;
41 		unsigned int ld_reserved:24;
42 	};
43 	struct {
44 		unsigned int st_l1d_hit:1;
45 		unsigned int st_reserved1:3;
46 		unsigned int st_stlb_miss:1;
47 		unsigned int st_locked:1;
48 		unsigned int st_reserved2:26;
49 	};
50 	struct {
51 		unsigned int st_lat_dse:4;
52 		unsigned int st_lat_stlb_miss:1;
53 		unsigned int st_lat_locked:1;
54 		unsigned int ld_reserved3:26;
55 	};
56 };
57 
58 
59 /*
60  * Map PEBS Load Latency Data Source encodings to generic
61  * memory data source information
62  */
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
68 
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72 	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
73 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74 	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
75 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
76 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
77 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
78 	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
79 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
80 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
82 	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
83 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
84 	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85 	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86 	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
87 };
88 
89 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)90 void __init intel_pmu_pebs_data_source_nhm(void)
91 {
92 	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93 	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94 	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
95 }
96 
intel_pmu_pebs_data_source_skl(bool pmem)97 void __init intel_pmu_pebs_data_source_skl(bool pmem)
98 {
99 	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
100 
101 	pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102 	pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103 	pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104 	pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105 	pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
106 }
107 
precise_store_data(u64 status)108 static u64 precise_store_data(u64 status)
109 {
110 	union intel_x86_pebs_dse dse;
111 	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
112 
113 	dse.val = status;
114 
115 	/*
116 	 * bit 4: TLB access
117 	 * 1 = stored missed 2nd level TLB
118 	 *
119 	 * so it either hit the walker or the OS
120 	 * otherwise hit 2nd level TLB
121 	 */
122 	if (dse.st_stlb_miss)
123 		val |= P(TLB, MISS);
124 	else
125 		val |= P(TLB, HIT);
126 
127 	/*
128 	 * bit 0: hit L1 data cache
129 	 * if not set, then all we know is that
130 	 * it missed L1D
131 	 */
132 	if (dse.st_l1d_hit)
133 		val |= P(LVL, HIT);
134 	else
135 		val |= P(LVL, MISS);
136 
137 	/*
138 	 * bit 5: Locked prefix
139 	 */
140 	if (dse.st_locked)
141 		val |= P(LOCK, LOCKED);
142 
143 	return val;
144 }
145 
precise_datala_hsw(struct perf_event * event,u64 status)146 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
147 {
148 	union perf_mem_data_src dse;
149 
150 	dse.val = PERF_MEM_NA;
151 
152 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
153 		dse.mem_op = PERF_MEM_OP_STORE;
154 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
155 		dse.mem_op = PERF_MEM_OP_LOAD;
156 
157 	/*
158 	 * L1 info only valid for following events:
159 	 *
160 	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
161 	 * MEM_UOPS_RETIRED.LOCK_STORES
162 	 * MEM_UOPS_RETIRED.SPLIT_STORES
163 	 * MEM_UOPS_RETIRED.ALL_STORES
164 	 */
165 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
166 		if (status & 1)
167 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
168 		else
169 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
170 	}
171 	return dse.val;
172 }
173 
load_latency_data(u64 status)174 static u64 load_latency_data(u64 status)
175 {
176 	union intel_x86_pebs_dse dse;
177 	u64 val;
178 
179 	dse.val = status;
180 
181 	/*
182 	 * use the mapping table for bit 0-3
183 	 */
184 	val = pebs_data_source[dse.ld_dse];
185 
186 	/*
187 	 * Nehalem models do not support TLB, Lock infos
188 	 */
189 	if (x86_pmu.pebs_no_tlb) {
190 		val |= P(TLB, NA) | P(LOCK, NA);
191 		return val;
192 	}
193 	/*
194 	 * bit 4: TLB access
195 	 * 0 = did not miss 2nd level TLB
196 	 * 1 = missed 2nd level TLB
197 	 */
198 	if (dse.ld_stlb_miss)
199 		val |= P(TLB, MISS) | P(TLB, L2);
200 	else
201 		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
202 
203 	/*
204 	 * bit 5: locked prefix
205 	 */
206 	if (dse.ld_locked)
207 		val |= P(LOCK, LOCKED);
208 
209 	/*
210 	 * Ice Lake and earlier models do not support block infos.
211 	 */
212 	if (!x86_pmu.pebs_block) {
213 		val |= P(BLK, NA);
214 		return val;
215 	}
216 	/*
217 	 * bit 6: load was blocked since its data could not be forwarded
218 	 *        from a preceding store
219 	 */
220 	if (dse.ld_data_blk)
221 		val |= P(BLK, DATA);
222 
223 	/*
224 	 * bit 7: load was blocked due to potential address conflict with
225 	 *        a preceding store
226 	 */
227 	if (dse.ld_addr_blk)
228 		val |= P(BLK, ADDR);
229 
230 	if (!dse.ld_data_blk && !dse.ld_addr_blk)
231 		val |= P(BLK, NA);
232 
233 	return val;
234 }
235 
store_latency_data(u64 status)236 static u64 store_latency_data(u64 status)
237 {
238 	union intel_x86_pebs_dse dse;
239 	union perf_mem_data_src src;
240 	u64 val;
241 
242 	dse.val = status;
243 
244 	/*
245 	 * use the mapping table for bit 0-3
246 	 */
247 	val = pebs_data_source[dse.st_lat_dse];
248 
249 	/*
250 	 * bit 4: TLB access
251 	 * 0 = did not miss 2nd level TLB
252 	 * 1 = missed 2nd level TLB
253 	 */
254 	if (dse.st_lat_stlb_miss)
255 		val |= P(TLB, MISS) | P(TLB, L2);
256 	else
257 		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
258 
259 	/*
260 	 * bit 5: locked prefix
261 	 */
262 	if (dse.st_lat_locked)
263 		val |= P(LOCK, LOCKED);
264 
265 	val |= P(BLK, NA);
266 
267 	/*
268 	 * the pebs_data_source table is only for loads
269 	 * so override the mem_op to say STORE instead
270 	 */
271 	src.val = val;
272 	src.mem_op = P(OP,STORE);
273 
274 	return src.val;
275 }
276 
277 struct pebs_record_core {
278 	u64 flags, ip;
279 	u64 ax, bx, cx, dx;
280 	u64 si, di, bp, sp;
281 	u64 r8,  r9,  r10, r11;
282 	u64 r12, r13, r14, r15;
283 };
284 
285 struct pebs_record_nhm {
286 	u64 flags, ip;
287 	u64 ax, bx, cx, dx;
288 	u64 si, di, bp, sp;
289 	u64 r8,  r9,  r10, r11;
290 	u64 r12, r13, r14, r15;
291 	u64 status, dla, dse, lat;
292 };
293 
294 /*
295  * Same as pebs_record_nhm, with two additional fields.
296  */
297 struct pebs_record_hsw {
298 	u64 flags, ip;
299 	u64 ax, bx, cx, dx;
300 	u64 si, di, bp, sp;
301 	u64 r8,  r9,  r10, r11;
302 	u64 r12, r13, r14, r15;
303 	u64 status, dla, dse, lat;
304 	u64 real_ip, tsx_tuning;
305 };
306 
307 union hsw_tsx_tuning {
308 	struct {
309 		u32 cycles_last_block     : 32,
310 		    hle_abort		  : 1,
311 		    rtm_abort		  : 1,
312 		    instruction_abort     : 1,
313 		    non_instruction_abort : 1,
314 		    retry		  : 1,
315 		    data_conflict	  : 1,
316 		    capacity_writes	  : 1,
317 		    capacity_reads	  : 1;
318 	};
319 	u64	    value;
320 };
321 
322 #define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
323 
324 /* Same as HSW, plus TSC */
325 
326 struct pebs_record_skl {
327 	u64 flags, ip;
328 	u64 ax, bx, cx, dx;
329 	u64 si, di, bp, sp;
330 	u64 r8,  r9,  r10, r11;
331 	u64 r12, r13, r14, r15;
332 	u64 status, dla, dse, lat;
333 	u64 real_ip, tsx_tuning;
334 	u64 tsc;
335 };
336 
init_debug_store_on_cpu(int cpu)337 void init_debug_store_on_cpu(int cpu)
338 {
339 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
340 
341 	if (!ds)
342 		return;
343 
344 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
345 		     (u32)((u64)(unsigned long)ds),
346 		     (u32)((u64)(unsigned long)ds >> 32));
347 }
348 
fini_debug_store_on_cpu(int cpu)349 void fini_debug_store_on_cpu(int cpu)
350 {
351 	if (!per_cpu(cpu_hw_events, cpu).ds)
352 		return;
353 
354 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
355 }
356 
357 static DEFINE_PER_CPU(void *, insn_buffer);
358 
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)359 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
360 {
361 	unsigned long start = (unsigned long)cea;
362 	phys_addr_t pa;
363 	size_t msz = 0;
364 
365 	pa = virt_to_phys(addr);
366 
367 	preempt_disable();
368 	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
369 		cea_set_pte(cea, pa, prot);
370 
371 	/*
372 	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
373 	 * all TLB entries for it.
374 	 */
375 	flush_tlb_kernel_range(start, start + size);
376 	preempt_enable();
377 }
378 
ds_clear_cea(void * cea,size_t size)379 static void ds_clear_cea(void *cea, size_t size)
380 {
381 	unsigned long start = (unsigned long)cea;
382 	size_t msz = 0;
383 
384 	preempt_disable();
385 	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
386 		cea_set_pte(cea, 0, PAGE_NONE);
387 
388 	flush_tlb_kernel_range(start, start + size);
389 	preempt_enable();
390 }
391 
dsalloc_pages(size_t size,gfp_t flags,int cpu)392 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
393 {
394 	unsigned int order = get_order(size);
395 	int node = cpu_to_node(cpu);
396 	struct page *page;
397 
398 	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
399 	return page ? page_address(page) : NULL;
400 }
401 
dsfree_pages(const void * buffer,size_t size)402 static void dsfree_pages(const void *buffer, size_t size)
403 {
404 	if (buffer)
405 		free_pages((unsigned long)buffer, get_order(size));
406 }
407 
alloc_pebs_buffer(int cpu)408 static int alloc_pebs_buffer(int cpu)
409 {
410 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
411 	struct debug_store *ds = hwev->ds;
412 	size_t bsiz = x86_pmu.pebs_buffer_size;
413 	int max, node = cpu_to_node(cpu);
414 	void *buffer, *insn_buff, *cea;
415 
416 	if (!x86_pmu.pebs)
417 		return 0;
418 
419 	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
420 	if (unlikely(!buffer))
421 		return -ENOMEM;
422 
423 	/*
424 	 * HSW+ already provides us the eventing ip; no need to allocate this
425 	 * buffer then.
426 	 */
427 	if (x86_pmu.intel_cap.pebs_format < 2) {
428 		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
429 		if (!insn_buff) {
430 			dsfree_pages(buffer, bsiz);
431 			return -ENOMEM;
432 		}
433 		per_cpu(insn_buffer, cpu) = insn_buff;
434 	}
435 	hwev->ds_pebs_vaddr = buffer;
436 	/* Update the cpu entry area mapping */
437 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
438 	ds->pebs_buffer_base = (unsigned long) cea;
439 	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
440 	ds->pebs_index = ds->pebs_buffer_base;
441 	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
442 	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
443 	return 0;
444 }
445 
release_pebs_buffer(int cpu)446 static void release_pebs_buffer(int cpu)
447 {
448 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
449 	void *cea;
450 
451 	if (!x86_pmu.pebs)
452 		return;
453 
454 	kfree(per_cpu(insn_buffer, cpu));
455 	per_cpu(insn_buffer, cpu) = NULL;
456 
457 	/* Clear the fixmap */
458 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
459 	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
460 	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
461 	hwev->ds_pebs_vaddr = NULL;
462 }
463 
alloc_bts_buffer(int cpu)464 static int alloc_bts_buffer(int cpu)
465 {
466 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
467 	struct debug_store *ds = hwev->ds;
468 	void *buffer, *cea;
469 	int max;
470 
471 	if (!x86_pmu.bts)
472 		return 0;
473 
474 	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
475 	if (unlikely(!buffer)) {
476 		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
477 		return -ENOMEM;
478 	}
479 	hwev->ds_bts_vaddr = buffer;
480 	/* Update the fixmap */
481 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
482 	ds->bts_buffer_base = (unsigned long) cea;
483 	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
484 	ds->bts_index = ds->bts_buffer_base;
485 	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
486 	ds->bts_absolute_maximum = ds->bts_buffer_base +
487 					max * BTS_RECORD_SIZE;
488 	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
489 					(max / 16) * BTS_RECORD_SIZE;
490 	return 0;
491 }
492 
release_bts_buffer(int cpu)493 static void release_bts_buffer(int cpu)
494 {
495 	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
496 	void *cea;
497 
498 	if (!x86_pmu.bts)
499 		return;
500 
501 	/* Clear the fixmap */
502 	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
503 	ds_clear_cea(cea, BTS_BUFFER_SIZE);
504 	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
505 	hwev->ds_bts_vaddr = NULL;
506 }
507 
alloc_ds_buffer(int cpu)508 static int alloc_ds_buffer(int cpu)
509 {
510 	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
511 
512 	memset(ds, 0, sizeof(*ds));
513 	per_cpu(cpu_hw_events, cpu).ds = ds;
514 	return 0;
515 }
516 
release_ds_buffer(int cpu)517 static void release_ds_buffer(int cpu)
518 {
519 	per_cpu(cpu_hw_events, cpu).ds = NULL;
520 }
521 
release_ds_buffers(void)522 void release_ds_buffers(void)
523 {
524 	int cpu;
525 
526 	if (!x86_pmu.bts && !x86_pmu.pebs)
527 		return;
528 
529 	for_each_possible_cpu(cpu)
530 		release_ds_buffer(cpu);
531 
532 	for_each_possible_cpu(cpu) {
533 		/*
534 		 * Again, ignore errors from offline CPUs, they will no longer
535 		 * observe cpu_hw_events.ds and not program the DS_AREA when
536 		 * they come up.
537 		 */
538 		fini_debug_store_on_cpu(cpu);
539 	}
540 
541 	for_each_possible_cpu(cpu) {
542 		release_pebs_buffer(cpu);
543 		release_bts_buffer(cpu);
544 	}
545 }
546 
reserve_ds_buffers(void)547 void reserve_ds_buffers(void)
548 {
549 	int bts_err = 0, pebs_err = 0;
550 	int cpu;
551 
552 	x86_pmu.bts_active = 0;
553 	x86_pmu.pebs_active = 0;
554 
555 	if (!x86_pmu.bts && !x86_pmu.pebs)
556 		return;
557 
558 	if (!x86_pmu.bts)
559 		bts_err = 1;
560 
561 	if (!x86_pmu.pebs)
562 		pebs_err = 1;
563 
564 	for_each_possible_cpu(cpu) {
565 		if (alloc_ds_buffer(cpu)) {
566 			bts_err = 1;
567 			pebs_err = 1;
568 		}
569 
570 		if (!bts_err && alloc_bts_buffer(cpu))
571 			bts_err = 1;
572 
573 		if (!pebs_err && alloc_pebs_buffer(cpu))
574 			pebs_err = 1;
575 
576 		if (bts_err && pebs_err)
577 			break;
578 	}
579 
580 	if (bts_err) {
581 		for_each_possible_cpu(cpu)
582 			release_bts_buffer(cpu);
583 	}
584 
585 	if (pebs_err) {
586 		for_each_possible_cpu(cpu)
587 			release_pebs_buffer(cpu);
588 	}
589 
590 	if (bts_err && pebs_err) {
591 		for_each_possible_cpu(cpu)
592 			release_ds_buffer(cpu);
593 	} else {
594 		if (x86_pmu.bts && !bts_err)
595 			x86_pmu.bts_active = 1;
596 
597 		if (x86_pmu.pebs && !pebs_err)
598 			x86_pmu.pebs_active = 1;
599 
600 		for_each_possible_cpu(cpu) {
601 			/*
602 			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
603 			 * will get this call through intel_pmu_cpu_starting().
604 			 */
605 			init_debug_store_on_cpu(cpu);
606 		}
607 	}
608 }
609 
610 /*
611  * BTS
612  */
613 
614 struct event_constraint bts_constraint =
615 	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
616 
intel_pmu_enable_bts(u64 config)617 void intel_pmu_enable_bts(u64 config)
618 {
619 	unsigned long debugctlmsr;
620 
621 	debugctlmsr = get_debugctlmsr();
622 
623 	debugctlmsr |= DEBUGCTLMSR_TR;
624 	debugctlmsr |= DEBUGCTLMSR_BTS;
625 	if (config & ARCH_PERFMON_EVENTSEL_INT)
626 		debugctlmsr |= DEBUGCTLMSR_BTINT;
627 
628 	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
629 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
630 
631 	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
632 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
633 
634 	update_debugctlmsr(debugctlmsr);
635 }
636 
intel_pmu_disable_bts(void)637 void intel_pmu_disable_bts(void)
638 {
639 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
640 	unsigned long debugctlmsr;
641 
642 	if (!cpuc->ds)
643 		return;
644 
645 	debugctlmsr = get_debugctlmsr();
646 
647 	debugctlmsr &=
648 		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
649 		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
650 
651 	update_debugctlmsr(debugctlmsr);
652 }
653 
intel_pmu_drain_bts_buffer(void)654 int intel_pmu_drain_bts_buffer(void)
655 {
656 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
657 	struct debug_store *ds = cpuc->ds;
658 	struct bts_record {
659 		u64	from;
660 		u64	to;
661 		u64	flags;
662 	};
663 	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
664 	struct bts_record *at, *base, *top;
665 	struct perf_output_handle handle;
666 	struct perf_event_header header;
667 	struct perf_sample_data data;
668 	unsigned long skip = 0;
669 	struct pt_regs regs;
670 
671 	if (!event)
672 		return 0;
673 
674 	if (!x86_pmu.bts_active)
675 		return 0;
676 
677 	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
678 	top  = (struct bts_record *)(unsigned long)ds->bts_index;
679 
680 	if (top <= base)
681 		return 0;
682 
683 	memset(&regs, 0, sizeof(regs));
684 
685 	ds->bts_index = ds->bts_buffer_base;
686 
687 	perf_sample_data_init(&data, 0, event->hw.last_period);
688 
689 	/*
690 	 * BTS leaks kernel addresses in branches across the cpl boundary,
691 	 * such as traps or system calls, so unless the user is asking for
692 	 * kernel tracing (and right now it's not possible), we'd need to
693 	 * filter them out. But first we need to count how many of those we
694 	 * have in the current batch. This is an extra O(n) pass, however,
695 	 * it's much faster than the other one especially considering that
696 	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
697 	 * alloc_bts_buffer()).
698 	 */
699 	for (at = base; at < top; at++) {
700 		/*
701 		 * Note that right now *this* BTS code only works if
702 		 * attr::exclude_kernel is set, but let's keep this extra
703 		 * check here in case that changes.
704 		 */
705 		if (event->attr.exclude_kernel &&
706 		    (kernel_ip(at->from) || kernel_ip(at->to)))
707 			skip++;
708 	}
709 
710 	/*
711 	 * Prepare a generic sample, i.e. fill in the invariant fields.
712 	 * We will overwrite the from and to address before we output
713 	 * the sample.
714 	 */
715 	rcu_read_lock();
716 	perf_prepare_sample(&header, &data, event, &regs);
717 
718 	if (perf_output_begin(&handle, &data, event,
719 			      header.size * (top - base - skip)))
720 		goto unlock;
721 
722 	for (at = base; at < top; at++) {
723 		/* Filter out any records that contain kernel addresses. */
724 		if (event->attr.exclude_kernel &&
725 		    (kernel_ip(at->from) || kernel_ip(at->to)))
726 			continue;
727 
728 		data.ip		= at->from;
729 		data.addr	= at->to;
730 
731 		perf_output_sample(&handle, &header, &data, event);
732 	}
733 
734 	perf_output_end(&handle);
735 
736 	/* There's new data available. */
737 	event->hw.interrupts++;
738 	event->pending_kill = POLL_IN;
739 unlock:
740 	rcu_read_unlock();
741 	return 1;
742 }
743 
intel_pmu_drain_pebs_buffer(void)744 static inline void intel_pmu_drain_pebs_buffer(void)
745 {
746 	struct perf_sample_data data;
747 
748 	x86_pmu.drain_pebs(NULL, &data);
749 }
750 
751 /*
752  * PEBS
753  */
754 struct event_constraint intel_core2_pebs_event_constraints[] = {
755 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
756 	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
757 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
758 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
759 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
760 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
761 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
762 	EVENT_CONSTRAINT_END
763 };
764 
765 struct event_constraint intel_atom_pebs_event_constraints[] = {
766 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
767 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
768 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
769 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
770 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
771 	/* Allow all events as PEBS with no flags */
772 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
773 	EVENT_CONSTRAINT_END
774 };
775 
776 struct event_constraint intel_slm_pebs_event_constraints[] = {
777 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
778 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
779 	/* Allow all events as PEBS with no flags */
780 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
781 	EVENT_CONSTRAINT_END
782 };
783 
784 struct event_constraint intel_glm_pebs_event_constraints[] = {
785 	/* Allow all events as PEBS with no flags */
786 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
787 	EVENT_CONSTRAINT_END
788 };
789 
790 struct event_constraint intel_grt_pebs_event_constraints[] = {
791 	/* Allow all events as PEBS with no flags */
792 	INTEL_PLD_CONSTRAINT(0x5d0, 0xf),
793 	INTEL_PSD_CONSTRAINT(0x6d0, 0xf),
794 	EVENT_CONSTRAINT_END
795 };
796 
797 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
798 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
799 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
800 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
801 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
802 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
803 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
804 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
805 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
806 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
807 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
808 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
809 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
810 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
811 	EVENT_CONSTRAINT_END
812 };
813 
814 struct event_constraint intel_westmere_pebs_event_constraints[] = {
815 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
816 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
817 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
818 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
819 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
820 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
821 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
822 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
823 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
824 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
825 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
826 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
827 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
828 	EVENT_CONSTRAINT_END
829 };
830 
831 struct event_constraint intel_snb_pebs_event_constraints[] = {
832 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
833 	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
834 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
835 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
836 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
837         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
838         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
839         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
840         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
841 	/* Allow all events as PEBS with no flags */
842 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
843 	EVENT_CONSTRAINT_END
844 };
845 
846 struct event_constraint intel_ivb_pebs_event_constraints[] = {
847         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
848         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
849 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
850 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
851 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
852 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
853 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
854 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
855 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
856 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
857 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
858 	/* Allow all events as PEBS with no flags */
859 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
860         EVENT_CONSTRAINT_END
861 };
862 
863 struct event_constraint intel_hsw_pebs_event_constraints[] = {
864 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
865 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
866 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
867 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
868 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
869 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
870 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
871 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
872 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
873 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
874 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
875 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
876 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
877 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
878 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
879 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
880 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
881 	/* Allow all events as PEBS with no flags */
882 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
883 	EVENT_CONSTRAINT_END
884 };
885 
886 struct event_constraint intel_bdw_pebs_event_constraints[] = {
887 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
888 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
889 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
890 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
891 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
892 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
893 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
894 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
895 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
896 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
897 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
898 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
899 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
900 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
901 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
902 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
903 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
904 	/* Allow all events as PEBS with no flags */
905 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
906 	EVENT_CONSTRAINT_END
907 };
908 
909 
910 struct event_constraint intel_skl_pebs_event_constraints[] = {
911 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
912 	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
913 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
914 	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
915 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
916 	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
917 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
918 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
919 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
920 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
921 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
922 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
923 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
924 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
925 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
926 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
927 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
928 	/* Allow all events as PEBS with no flags */
929 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
930 	EVENT_CONSTRAINT_END
931 };
932 
933 struct event_constraint intel_icl_pebs_event_constraints[] = {
934 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
935 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
936 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
937 
938 	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
939 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
940 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
941 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
942 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
943 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
944 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
945 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
946 
947 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
948 
949 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
950 
951 	/*
952 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
953 	 * need the full constraints from the main table.
954 	 */
955 
956 	EVENT_CONSTRAINT_END
957 };
958 
959 struct event_constraint intel_spr_pebs_event_constraints[] = {
960 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
961 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
962 
963 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
964 	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
965 	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
966 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
967 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
968 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
969 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
970 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
971 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
972 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
973 
974 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
975 
976 	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
977 
978 	/*
979 	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
980 	 * need the full constraints from the main table.
981 	 */
982 
983 	EVENT_CONSTRAINT_END
984 };
985 
intel_pebs_constraints(struct perf_event * event)986 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
987 {
988 	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
989 	struct event_constraint *c;
990 
991 	if (!event->attr.precise_ip)
992 		return NULL;
993 
994 	if (pebs_constraints) {
995 		for_each_event_constraint(c, pebs_constraints) {
996 			if (constraint_match(c, event->hw.config)) {
997 				event->hw.flags |= c->flags;
998 				return c;
999 			}
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Extended PEBS support
1005 	 * Makes the PEBS code search the normal constraints.
1006 	 */
1007 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1008 		return NULL;
1009 
1010 	return &emptyconstraint;
1011 }
1012 
1013 /*
1014  * We need the sched_task callback even for per-cpu events when we use
1015  * the large interrupt threshold, such that we can provide PID and TID
1016  * to PEBS samples.
1017  */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1018 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1019 {
1020 	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1021 		return false;
1022 
1023 	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1024 }
1025 
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)1026 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1027 {
1028 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1029 
1030 	if (!sched_in && pebs_needs_sched_cb(cpuc))
1031 		intel_pmu_drain_pebs_buffer();
1032 }
1033 
pebs_update_threshold(struct cpu_hw_events * cpuc)1034 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1035 {
1036 	struct debug_store *ds = cpuc->ds;
1037 	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1038 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1039 	u64 threshold;
1040 	int reserved;
1041 
1042 	if (cpuc->n_pebs_via_pt)
1043 		return;
1044 
1045 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1046 		reserved = max_pebs_events + num_counters_fixed;
1047 	else
1048 		reserved = max_pebs_events;
1049 
1050 	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1051 		threshold = ds->pebs_absolute_maximum -
1052 			reserved * cpuc->pebs_record_size;
1053 	} else {
1054 		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1055 	}
1056 
1057 	ds->pebs_interrupt_threshold = threshold;
1058 }
1059 
adaptive_pebs_record_size_update(void)1060 static void adaptive_pebs_record_size_update(void)
1061 {
1062 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1063 	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1064 	int sz = sizeof(struct pebs_basic);
1065 
1066 	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1067 		sz += sizeof(struct pebs_meminfo);
1068 	if (pebs_data_cfg & PEBS_DATACFG_GP)
1069 		sz += sizeof(struct pebs_gprs);
1070 	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1071 		sz += sizeof(struct pebs_xmm);
1072 	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1073 		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1074 
1075 	cpuc->pebs_record_size = sz;
1076 }
1077 
1078 #define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1079 				PERF_SAMPLE_PHYS_ADDR |			     \
1080 				PERF_SAMPLE_WEIGHT_TYPE |		     \
1081 				PERF_SAMPLE_TRANSACTION |		     \
1082 				PERF_SAMPLE_DATA_PAGE_SIZE)
1083 
pebs_update_adaptive_cfg(struct perf_event * event)1084 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1085 {
1086 	struct perf_event_attr *attr = &event->attr;
1087 	u64 sample_type = attr->sample_type;
1088 	u64 pebs_data_cfg = 0;
1089 	bool gprs, tsx_weight;
1090 
1091 	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1092 	    attr->precise_ip > 1)
1093 		return pebs_data_cfg;
1094 
1095 	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1096 		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1097 
1098 	/*
1099 	 * We need GPRs when:
1100 	 * + user requested them
1101 	 * + precise_ip < 2 for the non event IP
1102 	 * + For RTM TSX weight we need GPRs for the abort code.
1103 	 */
1104 	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1105 	       (attr->sample_regs_intr & PEBS_GP_REGS);
1106 
1107 	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1108 		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1109 		      x86_pmu.rtm_abort_event);
1110 
1111 	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1112 		pebs_data_cfg |= PEBS_DATACFG_GP;
1113 
1114 	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1115 	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1116 		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1117 
1118 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1119 		/*
1120 		 * For now always log all LBRs. Could configure this
1121 		 * later.
1122 		 */
1123 		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1124 			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1125 	}
1126 
1127 	return pebs_data_cfg;
1128 }
1129 
1130 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1131 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1132 		  struct perf_event *event, bool add)
1133 {
1134 	struct pmu *pmu = event->ctx->pmu;
1135 	/*
1136 	 * Make sure we get updated with the first PEBS
1137 	 * event. It will trigger also during removal, but
1138 	 * that does not hurt:
1139 	 */
1140 	bool update = cpuc->n_pebs == 1;
1141 
1142 	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1143 		if (!needed_cb)
1144 			perf_sched_cb_inc(pmu);
1145 		else
1146 			perf_sched_cb_dec(pmu);
1147 
1148 		update = true;
1149 	}
1150 
1151 	/*
1152 	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1153 	 * iterating all remaining PEBS events to reconstruct the config.
1154 	 */
1155 	if (x86_pmu.intel_cap.pebs_baseline && add) {
1156 		u64 pebs_data_cfg;
1157 
1158 		/* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1159 		if (cpuc->n_pebs == 1) {
1160 			cpuc->pebs_data_cfg = 0;
1161 			cpuc->pebs_record_size = sizeof(struct pebs_basic);
1162 		}
1163 
1164 		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1165 
1166 		/* Update pebs_record_size if new event requires more data. */
1167 		if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1168 			cpuc->pebs_data_cfg |= pebs_data_cfg;
1169 			adaptive_pebs_record_size_update();
1170 			update = true;
1171 		}
1172 	}
1173 
1174 	if (update)
1175 		pebs_update_threshold(cpuc);
1176 }
1177 
intel_pmu_pebs_add(struct perf_event * event)1178 void intel_pmu_pebs_add(struct perf_event *event)
1179 {
1180 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1181 	struct hw_perf_event *hwc = &event->hw;
1182 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1183 
1184 	cpuc->n_pebs++;
1185 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1186 		cpuc->n_large_pebs++;
1187 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1188 		cpuc->n_pebs_via_pt++;
1189 
1190 	pebs_update_state(needed_cb, cpuc, event, true);
1191 }
1192 
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1193 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1194 {
1195 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1196 
1197 	if (!is_pebs_pt(event))
1198 		return;
1199 
1200 	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1201 		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1202 }
1203 
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1204 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1205 {
1206 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1207 	struct hw_perf_event *hwc = &event->hw;
1208 	struct debug_store *ds = cpuc->ds;
1209 	u64 value = ds->pebs_event_reset[hwc->idx];
1210 	u32 base = MSR_RELOAD_PMC0;
1211 	unsigned int idx = hwc->idx;
1212 
1213 	if (!is_pebs_pt(event))
1214 		return;
1215 
1216 	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1217 		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1218 
1219 	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1220 
1221 	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1222 		base = MSR_RELOAD_FIXED_CTR0;
1223 		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1224 		value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1225 	}
1226 	wrmsrl(base + idx, value);
1227 }
1228 
intel_pmu_pebs_enable(struct perf_event * event)1229 void intel_pmu_pebs_enable(struct perf_event *event)
1230 {
1231 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1232 	struct hw_perf_event *hwc = &event->hw;
1233 	struct debug_store *ds = cpuc->ds;
1234 	unsigned int idx = hwc->idx;
1235 
1236 	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1237 
1238 	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1239 
1240 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1241 		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1242 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1243 		cpuc->pebs_enabled |= 1ULL << 63;
1244 
1245 	if (x86_pmu.intel_cap.pebs_baseline) {
1246 		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1247 		if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1248 			wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1249 			cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1250 		}
1251 	}
1252 
1253 	if (idx >= INTEL_PMC_IDX_FIXED)
1254 		idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1255 
1256 	/*
1257 	 * Use auto-reload if possible to save a MSR write in the PMI.
1258 	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1259 	 */
1260 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1261 		ds->pebs_event_reset[idx] =
1262 			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1263 	} else {
1264 		ds->pebs_event_reset[idx] = 0;
1265 	}
1266 
1267 	intel_pmu_pebs_via_pt_enable(event);
1268 }
1269 
intel_pmu_pebs_del(struct perf_event * event)1270 void intel_pmu_pebs_del(struct perf_event *event)
1271 {
1272 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1273 	struct hw_perf_event *hwc = &event->hw;
1274 	bool needed_cb = pebs_needs_sched_cb(cpuc);
1275 
1276 	cpuc->n_pebs--;
1277 	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1278 		cpuc->n_large_pebs--;
1279 	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1280 		cpuc->n_pebs_via_pt--;
1281 
1282 	pebs_update_state(needed_cb, cpuc, event, false);
1283 }
1284 
intel_pmu_pebs_disable(struct perf_event * event)1285 void intel_pmu_pebs_disable(struct perf_event *event)
1286 {
1287 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1288 	struct hw_perf_event *hwc = &event->hw;
1289 
1290 	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1291 	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1292 		intel_pmu_drain_pebs_buffer();
1293 
1294 	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1295 
1296 	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1297 	    (x86_pmu.version < 5))
1298 		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1299 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1300 		cpuc->pebs_enabled &= ~(1ULL << 63);
1301 
1302 	intel_pmu_pebs_via_pt_disable(event);
1303 
1304 	if (cpuc->enabled)
1305 		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1306 
1307 	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1308 }
1309 
intel_pmu_pebs_enable_all(void)1310 void intel_pmu_pebs_enable_all(void)
1311 {
1312 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1313 
1314 	if (cpuc->pebs_enabled)
1315 		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1316 }
1317 
intel_pmu_pebs_disable_all(void)1318 void intel_pmu_pebs_disable_all(void)
1319 {
1320 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1321 
1322 	if (cpuc->pebs_enabled)
1323 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1324 }
1325 
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1326 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1327 {
1328 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1329 	unsigned long from = cpuc->lbr_entries[0].from;
1330 	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1331 	unsigned long ip = regs->ip;
1332 	int is_64bit = 0;
1333 	void *kaddr;
1334 	int size;
1335 
1336 	/*
1337 	 * We don't need to fixup if the PEBS assist is fault like
1338 	 */
1339 	if (!x86_pmu.intel_cap.pebs_trap)
1340 		return 1;
1341 
1342 	/*
1343 	 * No LBR entry, no basic block, no rewinding
1344 	 */
1345 	if (!cpuc->lbr_stack.nr || !from || !to)
1346 		return 0;
1347 
1348 	/*
1349 	 * Basic blocks should never cross user/kernel boundaries
1350 	 */
1351 	if (kernel_ip(ip) != kernel_ip(to))
1352 		return 0;
1353 
1354 	/*
1355 	 * unsigned math, either ip is before the start (impossible) or
1356 	 * the basic block is larger than 1 page (sanity)
1357 	 */
1358 	if ((ip - to) > PEBS_FIXUP_SIZE)
1359 		return 0;
1360 
1361 	/*
1362 	 * We sampled a branch insn, rewind using the LBR stack
1363 	 */
1364 	if (ip == to) {
1365 		set_linear_ip(regs, from);
1366 		return 1;
1367 	}
1368 
1369 	size = ip - to;
1370 	if (!kernel_ip(ip)) {
1371 		int bytes;
1372 		u8 *buf = this_cpu_read(insn_buffer);
1373 
1374 		/* 'size' must fit our buffer, see above */
1375 		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1376 		if (bytes != 0)
1377 			return 0;
1378 
1379 		kaddr = buf;
1380 	} else {
1381 		kaddr = (void *)to;
1382 	}
1383 
1384 	do {
1385 		struct insn insn;
1386 
1387 		old_to = to;
1388 
1389 #ifdef CONFIG_X86_64
1390 		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1391 #endif
1392 		insn_init(&insn, kaddr, size, is_64bit);
1393 
1394 		/*
1395 		 * Make sure there was not a problem decoding the instruction.
1396 		 * This is doubly important because we have an infinite loop if
1397 		 * insn.length=0.
1398 		 */
1399 		if (insn_get_length(&insn))
1400 			break;
1401 
1402 		to += insn.length;
1403 		kaddr += insn.length;
1404 		size -= insn.length;
1405 	} while (to < ip);
1406 
1407 	if (to == ip) {
1408 		set_linear_ip(regs, old_to);
1409 		return 1;
1410 	}
1411 
1412 	/*
1413 	 * Even though we decoded the basic block, the instruction stream
1414 	 * never matched the given IP, either the TO or the IP got corrupted.
1415 	 */
1416 	return 0;
1417 }
1418 
intel_get_tsx_weight(u64 tsx_tuning)1419 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1420 {
1421 	if (tsx_tuning) {
1422 		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1423 		return tsx.cycles_last_block;
1424 	}
1425 	return 0;
1426 }
1427 
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1428 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1429 {
1430 	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1431 
1432 	/* For RTM XABORTs also log the abort code from AX */
1433 	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1434 		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1435 	return txn;
1436 }
1437 
get_pebs_status(void * n)1438 static inline u64 get_pebs_status(void *n)
1439 {
1440 	if (x86_pmu.intel_cap.pebs_format < 4)
1441 		return ((struct pebs_record_nhm *)n)->status;
1442 	return ((struct pebs_basic *)n)->applicable_counters;
1443 }
1444 
1445 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1446 		(PERF_X86_EVENT_PEBS_ST_HSW | \
1447 		 PERF_X86_EVENT_PEBS_LD_HSW | \
1448 		 PERF_X86_EVENT_PEBS_NA_HSW)
1449 
get_data_src(struct perf_event * event,u64 aux)1450 static u64 get_data_src(struct perf_event *event, u64 aux)
1451 {
1452 	u64 val = PERF_MEM_NA;
1453 	int fl = event->hw.flags;
1454 	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1455 
1456 	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1457 		val = load_latency_data(aux);
1458 	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1459 		val = store_latency_data(aux);
1460 	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1461 		val = precise_datala_hsw(event, aux);
1462 	else if (fst)
1463 		val = precise_store_data(aux);
1464 	return val;
1465 }
1466 
1467 #define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1468 				 PERF_SAMPLE_PHYS_ADDR |	\
1469 				 PERF_SAMPLE_DATA_PAGE_SIZE)
1470 
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1471 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1472 				   struct pt_regs *iregs, void *__pebs,
1473 				   struct perf_sample_data *data,
1474 				   struct pt_regs *regs)
1475 {
1476 	/*
1477 	 * We cast to the biggest pebs_record but are careful not to
1478 	 * unconditionally access the 'extra' entries.
1479 	 */
1480 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1481 	struct pebs_record_skl *pebs = __pebs;
1482 	u64 sample_type;
1483 	int fll;
1484 
1485 	if (pebs == NULL)
1486 		return;
1487 
1488 	sample_type = event->attr.sample_type;
1489 	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1490 
1491 	perf_sample_data_init(data, 0, event->hw.last_period);
1492 
1493 	data->period = event->hw.last_period;
1494 
1495 	/*
1496 	 * Use latency for weight (only avail with PEBS-LL)
1497 	 */
1498 	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
1499 		data->weight.full = pebs->lat;
1500 
1501 	/*
1502 	 * data.data_src encodes the data source
1503 	 */
1504 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1505 		data->data_src.val = get_data_src(event, pebs->dse);
1506 
1507 	/*
1508 	 * We must however always use iregs for the unwinder to stay sane; the
1509 	 * record BP,SP,IP can point into thin air when the record is from a
1510 	 * previous PMI context or an (I)RET happened between the record and
1511 	 * PMI.
1512 	 */
1513 	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1514 		data->callchain = perf_callchain(event, iregs);
1515 
1516 	/*
1517 	 * We use the interrupt regs as a base because the PEBS record does not
1518 	 * contain a full regs set, specifically it seems to lack segment
1519 	 * descriptors, which get used by things like user_mode().
1520 	 *
1521 	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1522 	 */
1523 	*regs = *iregs;
1524 
1525 	/*
1526 	 * Initialize regs_>flags from PEBS,
1527 	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1528 	 * i.e., do not rely on it being zero:
1529 	 */
1530 	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1531 
1532 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1533 		regs->ax = pebs->ax;
1534 		regs->bx = pebs->bx;
1535 		regs->cx = pebs->cx;
1536 		regs->dx = pebs->dx;
1537 		regs->si = pebs->si;
1538 		regs->di = pebs->di;
1539 
1540 		regs->bp = pebs->bp;
1541 		regs->sp = pebs->sp;
1542 
1543 #ifndef CONFIG_X86_32
1544 		regs->r8 = pebs->r8;
1545 		regs->r9 = pebs->r9;
1546 		regs->r10 = pebs->r10;
1547 		regs->r11 = pebs->r11;
1548 		regs->r12 = pebs->r12;
1549 		regs->r13 = pebs->r13;
1550 		regs->r14 = pebs->r14;
1551 		regs->r15 = pebs->r15;
1552 #endif
1553 	}
1554 
1555 	if (event->attr.precise_ip > 1) {
1556 		/*
1557 		 * Haswell and later processors have an 'eventing IP'
1558 		 * (real IP) which fixes the off-by-1 skid in hardware.
1559 		 * Use it when precise_ip >= 2 :
1560 		 */
1561 		if (x86_pmu.intel_cap.pebs_format >= 2) {
1562 			set_linear_ip(regs, pebs->real_ip);
1563 			regs->flags |= PERF_EFLAGS_EXACT;
1564 		} else {
1565 			/* Otherwise, use PEBS off-by-1 IP: */
1566 			set_linear_ip(regs, pebs->ip);
1567 
1568 			/*
1569 			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1570 			 * using the LBR. If successful, the fixup function
1571 			 * corrects regs->ip and calls set_linear_ip() on regs:
1572 			 */
1573 			if (intel_pmu_pebs_fixup_ip(regs))
1574 				regs->flags |= PERF_EFLAGS_EXACT;
1575 		}
1576 	} else {
1577 		/*
1578 		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1579 		 * no fixup attempted:
1580 		 */
1581 		set_linear_ip(regs, pebs->ip);
1582 	}
1583 
1584 
1585 	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1586 	    x86_pmu.intel_cap.pebs_format >= 1)
1587 		data->addr = pebs->dla;
1588 
1589 	if (x86_pmu.intel_cap.pebs_format >= 2) {
1590 		/* Only set the TSX weight when no memory weight. */
1591 		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
1592 			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1593 
1594 		if (sample_type & PERF_SAMPLE_TRANSACTION)
1595 			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1596 							      pebs->ax);
1597 	}
1598 
1599 	/*
1600 	 * v3 supplies an accurate time stamp, so we use that
1601 	 * for the time stamp.
1602 	 *
1603 	 * We can only do this for the default trace clock.
1604 	 */
1605 	if (x86_pmu.intel_cap.pebs_format >= 3 &&
1606 		event->attr.use_clockid == 0)
1607 		data->time = native_sched_clock_from_tsc(pebs->tsc);
1608 
1609 	if (has_branch_stack(event))
1610 		data->br_stack = &cpuc->lbr_stack;
1611 }
1612 
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1613 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1614 				    struct pebs_gprs *gprs)
1615 {
1616 	regs->ax = gprs->ax;
1617 	regs->bx = gprs->bx;
1618 	regs->cx = gprs->cx;
1619 	regs->dx = gprs->dx;
1620 	regs->si = gprs->si;
1621 	regs->di = gprs->di;
1622 	regs->bp = gprs->bp;
1623 	regs->sp = gprs->sp;
1624 #ifndef CONFIG_X86_32
1625 	regs->r8 = gprs->r8;
1626 	regs->r9 = gprs->r9;
1627 	regs->r10 = gprs->r10;
1628 	regs->r11 = gprs->r11;
1629 	regs->r12 = gprs->r12;
1630 	regs->r13 = gprs->r13;
1631 	regs->r14 = gprs->r14;
1632 	regs->r15 = gprs->r15;
1633 #endif
1634 }
1635 
1636 #define PEBS_LATENCY_MASK			0xffff
1637 #define PEBS_CACHE_LATENCY_OFFSET		32
1638 
1639 /*
1640  * With adaptive PEBS the layout depends on what fields are configured.
1641  */
1642 
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1643 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1644 					    struct pt_regs *iregs, void *__pebs,
1645 					    struct perf_sample_data *data,
1646 					    struct pt_regs *regs)
1647 {
1648 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1649 	struct pebs_basic *basic = __pebs;
1650 	void *next_record = basic + 1;
1651 	u64 sample_type;
1652 	u64 format_size;
1653 	struct pebs_meminfo *meminfo = NULL;
1654 	struct pebs_gprs *gprs = NULL;
1655 	struct x86_perf_regs *perf_regs;
1656 
1657 	if (basic == NULL)
1658 		return;
1659 
1660 	perf_regs = container_of(regs, struct x86_perf_regs, regs);
1661 	perf_regs->xmm_regs = NULL;
1662 
1663 	sample_type = event->attr.sample_type;
1664 	format_size = basic->format_size;
1665 	perf_sample_data_init(data, 0, event->hw.last_period);
1666 	data->period = event->hw.last_period;
1667 
1668 	if (event->attr.use_clockid == 0)
1669 		data->time = native_sched_clock_from_tsc(basic->tsc);
1670 
1671 	/*
1672 	 * We must however always use iregs for the unwinder to stay sane; the
1673 	 * record BP,SP,IP can point into thin air when the record is from a
1674 	 * previous PMI context or an (I)RET happened between the record and
1675 	 * PMI.
1676 	 */
1677 	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1678 		data->callchain = perf_callchain(event, iregs);
1679 
1680 	*regs = *iregs;
1681 	/* The ip in basic is EventingIP */
1682 	set_linear_ip(regs, basic->ip);
1683 	regs->flags = PERF_EFLAGS_EXACT;
1684 
1685 	/*
1686 	 * The record for MEMINFO is in front of GP
1687 	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1688 	 * Save the pointer here but process later.
1689 	 */
1690 	if (format_size & PEBS_DATACFG_MEMINFO) {
1691 		meminfo = next_record;
1692 		next_record = meminfo + 1;
1693 	}
1694 
1695 	if (format_size & PEBS_DATACFG_GP) {
1696 		gprs = next_record;
1697 		next_record = gprs + 1;
1698 
1699 		if (event->attr.precise_ip < 2) {
1700 			set_linear_ip(regs, gprs->ip);
1701 			regs->flags &= ~PERF_EFLAGS_EXACT;
1702 		}
1703 
1704 		if (sample_type & PERF_SAMPLE_REGS_INTR)
1705 			adaptive_pebs_save_regs(regs, gprs);
1706 	}
1707 
1708 	if (format_size & PEBS_DATACFG_MEMINFO) {
1709 		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1710 			u64 weight = meminfo->latency;
1711 
1712 			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1713 				data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1714 				weight >>= PEBS_CACHE_LATENCY_OFFSET;
1715 			}
1716 
1717 			/*
1718 			 * Although meminfo::latency is defined as a u64,
1719 			 * only the lower 32 bits include the valid data
1720 			 * in practice on Ice Lake and earlier platforms.
1721 			 */
1722 			if (sample_type & PERF_SAMPLE_WEIGHT) {
1723 				data->weight.full = weight ?:
1724 					intel_get_tsx_weight(meminfo->tsx_tuning);
1725 			} else {
1726 				data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1727 					intel_get_tsx_weight(meminfo->tsx_tuning);
1728 			}
1729 		}
1730 
1731 		if (sample_type & PERF_SAMPLE_DATA_SRC)
1732 			data->data_src.val = get_data_src(event, meminfo->aux);
1733 
1734 		if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1735 			data->addr = meminfo->address;
1736 
1737 		if (sample_type & PERF_SAMPLE_TRANSACTION)
1738 			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1739 							  gprs ? gprs->ax : 0);
1740 	}
1741 
1742 	if (format_size & PEBS_DATACFG_XMMS) {
1743 		struct pebs_xmm *xmm = next_record;
1744 
1745 		next_record = xmm + 1;
1746 		perf_regs->xmm_regs = xmm->xmm;
1747 	}
1748 
1749 	if (format_size & PEBS_DATACFG_LBRS) {
1750 		struct lbr_entry *lbr = next_record;
1751 		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1752 					& 0xff) + 1;
1753 		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1754 
1755 		if (has_branch_stack(event)) {
1756 			intel_pmu_store_pebs_lbrs(lbr);
1757 			data->br_stack = &cpuc->lbr_stack;
1758 		}
1759 	}
1760 
1761 	WARN_ONCE(next_record != __pebs + (format_size >> 48),
1762 			"PEBS record size %llu, expected %llu, config %llx\n",
1763 			format_size >> 48,
1764 			(u64)(next_record - __pebs),
1765 			basic->format_size);
1766 }
1767 
1768 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1769 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1770 {
1771 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1772 	void *at;
1773 	u64 pebs_status;
1774 
1775 	/*
1776 	 * fmt0 does not have a status bitfield (does not use
1777 	 * perf_record_nhm format)
1778 	 */
1779 	if (x86_pmu.intel_cap.pebs_format < 1)
1780 		return base;
1781 
1782 	if (base == NULL)
1783 		return NULL;
1784 
1785 	for (at = base; at < top; at += cpuc->pebs_record_size) {
1786 		unsigned long status = get_pebs_status(at);
1787 
1788 		if (test_bit(bit, (unsigned long *)&status)) {
1789 			/* PEBS v3 has accurate status bits */
1790 			if (x86_pmu.intel_cap.pebs_format >= 3)
1791 				return at;
1792 
1793 			if (status == (1 << bit))
1794 				return at;
1795 
1796 			/* clear non-PEBS bit and re-check */
1797 			pebs_status = status & cpuc->pebs_enabled;
1798 			pebs_status &= PEBS_COUNTER_MASK;
1799 			if (pebs_status == (1 << bit))
1800 				return at;
1801 		}
1802 	}
1803 	return NULL;
1804 }
1805 
intel_pmu_auto_reload_read(struct perf_event * event)1806 void intel_pmu_auto_reload_read(struct perf_event *event)
1807 {
1808 	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1809 
1810 	perf_pmu_disable(event->pmu);
1811 	intel_pmu_drain_pebs_buffer();
1812 	perf_pmu_enable(event->pmu);
1813 }
1814 
1815 /*
1816  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1817  */
1818 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)1819 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1820 {
1821 	struct hw_perf_event *hwc = &event->hw;
1822 	int shift = 64 - x86_pmu.cntval_bits;
1823 	u64 period = hwc->sample_period;
1824 	u64 prev_raw_count, new_raw_count;
1825 	s64 new, old;
1826 
1827 	WARN_ON(!period);
1828 
1829 	/*
1830 	 * drain_pebs() only happens when the PMU is disabled.
1831 	 */
1832 	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1833 
1834 	prev_raw_count = local64_read(&hwc->prev_count);
1835 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1836 	local64_set(&hwc->prev_count, new_raw_count);
1837 
1838 	/*
1839 	 * Since the counter increments a negative counter value and
1840 	 * overflows on the sign switch, giving the interval:
1841 	 *
1842 	 *   [-period, 0]
1843 	 *
1844 	 * the difference between two consecutive reads is:
1845 	 *
1846 	 *   A) value2 - value1;
1847 	 *      when no overflows have happened in between,
1848 	 *
1849 	 *   B) (0 - value1) + (value2 - (-period));
1850 	 *      when one overflow happened in between,
1851 	 *
1852 	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1853 	 *      when @n overflows happened in between.
1854 	 *
1855 	 * Here A) is the obvious difference, B) is the extension to the
1856 	 * discrete interval, where the first term is to the top of the
1857 	 * interval and the second term is from the bottom of the next
1858 	 * interval and C) the extension to multiple intervals, where the
1859 	 * middle term is the whole intervals covered.
1860 	 *
1861 	 * An equivalent of C, by reduction, is:
1862 	 *
1863 	 *   value2 - value1 + n * period
1864 	 */
1865 	new = ((s64)(new_raw_count << shift) >> shift);
1866 	old = ((s64)(prev_raw_count << shift) >> shift);
1867 	local64_add(new - old + count * period, &event->count);
1868 
1869 	local64_set(&hwc->period_left, -new);
1870 
1871 	perf_event_update_userpage(event);
1872 
1873 	return 0;
1874 }
1875 
1876 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))1877 __intel_pmu_pebs_event(struct perf_event *event,
1878 		       struct pt_regs *iregs,
1879 		       struct perf_sample_data *data,
1880 		       void *base, void *top,
1881 		       int bit, int count,
1882 		       void (*setup_sample)(struct perf_event *,
1883 					    struct pt_regs *,
1884 					    void *,
1885 					    struct perf_sample_data *,
1886 					    struct pt_regs *))
1887 {
1888 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1889 	struct hw_perf_event *hwc = &event->hw;
1890 	struct x86_perf_regs perf_regs;
1891 	struct pt_regs *regs = &perf_regs.regs;
1892 	void *at = get_next_pebs_record_by_bit(base, top, bit);
1893 	static struct pt_regs dummy_iregs;
1894 
1895 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1896 		/*
1897 		 * Now, auto-reload is only enabled in fixed period mode.
1898 		 * The reload value is always hwc->sample_period.
1899 		 * May need to change it, if auto-reload is enabled in
1900 		 * freq mode later.
1901 		 */
1902 		intel_pmu_save_and_restart_reload(event, count);
1903 	} else if (!intel_pmu_save_and_restart(event))
1904 		return;
1905 
1906 	if (!iregs)
1907 		iregs = &dummy_iregs;
1908 
1909 	while (count > 1) {
1910 		setup_sample(event, iregs, at, data, regs);
1911 		perf_event_output(event, data, regs);
1912 		at += cpuc->pebs_record_size;
1913 		at = get_next_pebs_record_by_bit(at, top, bit);
1914 		count--;
1915 	}
1916 
1917 	setup_sample(event, iregs, at, data, regs);
1918 	if (iregs == &dummy_iregs) {
1919 		/*
1920 		 * The PEBS records may be drained in the non-overflow context,
1921 		 * e.g., large PEBS + context switch. Perf should treat the
1922 		 * last record the same as other PEBS records, and doesn't
1923 		 * invoke the generic overflow handler.
1924 		 */
1925 		perf_event_output(event, data, regs);
1926 	} else {
1927 		/*
1928 		 * All but the last records are processed.
1929 		 * The last one is left to be able to call the overflow handler.
1930 		 */
1931 		if (perf_event_overflow(event, data, regs))
1932 			x86_pmu_stop(event, 0);
1933 	}
1934 }
1935 
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)1936 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1937 {
1938 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1939 	struct debug_store *ds = cpuc->ds;
1940 	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1941 	struct pebs_record_core *at, *top;
1942 	int n;
1943 
1944 	if (!x86_pmu.pebs_active)
1945 		return;
1946 
1947 	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1948 	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1949 
1950 	/*
1951 	 * Whatever else happens, drain the thing
1952 	 */
1953 	ds->pebs_index = ds->pebs_buffer_base;
1954 
1955 	if (!test_bit(0, cpuc->active_mask))
1956 		return;
1957 
1958 	WARN_ON_ONCE(!event);
1959 
1960 	if (!event->attr.precise_ip)
1961 		return;
1962 
1963 	n = top - at;
1964 	if (n <= 0) {
1965 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1966 			intel_pmu_save_and_restart_reload(event, 0);
1967 		return;
1968 	}
1969 
1970 	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1971 			       setup_pebs_fixed_sample_data);
1972 }
1973 
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)1974 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1975 {
1976 	struct perf_event *event;
1977 	int bit;
1978 
1979 	/*
1980 	 * The drain_pebs() could be called twice in a short period
1981 	 * for auto-reload event in pmu::read(). There are no
1982 	 * overflows have happened in between.
1983 	 * It needs to call intel_pmu_save_and_restart_reload() to
1984 	 * update the event->count for this case.
1985 	 */
1986 	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1987 		event = cpuc->events[bit];
1988 		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1989 			intel_pmu_save_and_restart_reload(event, 0);
1990 	}
1991 }
1992 
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)1993 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1994 {
1995 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1996 	struct debug_store *ds = cpuc->ds;
1997 	struct perf_event *event;
1998 	void *base, *at, *top;
1999 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2000 	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2001 	int bit, i, size;
2002 	u64 mask;
2003 
2004 	if (!x86_pmu.pebs_active)
2005 		return;
2006 
2007 	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2008 	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2009 
2010 	ds->pebs_index = ds->pebs_buffer_base;
2011 
2012 	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2013 	size = x86_pmu.max_pebs_events;
2014 	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2015 		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2016 		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2017 	}
2018 
2019 	if (unlikely(base >= top)) {
2020 		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2021 		return;
2022 	}
2023 
2024 	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2025 		struct pebs_record_nhm *p = at;
2026 		u64 pebs_status;
2027 
2028 		pebs_status = p->status & cpuc->pebs_enabled;
2029 		pebs_status &= mask;
2030 
2031 		/* PEBS v3 has more accurate status bits */
2032 		if (x86_pmu.intel_cap.pebs_format >= 3) {
2033 			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2034 				counts[bit]++;
2035 
2036 			continue;
2037 		}
2038 
2039 		/*
2040 		 * On some CPUs the PEBS status can be zero when PEBS is
2041 		 * racing with clearing of GLOBAL_STATUS.
2042 		 *
2043 		 * Normally we would drop that record, but in the
2044 		 * case when there is only a single active PEBS event
2045 		 * we can assume it's for that event.
2046 		 */
2047 		if (!pebs_status && cpuc->pebs_enabled &&
2048 			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2049 			pebs_status = p->status = cpuc->pebs_enabled;
2050 
2051 		bit = find_first_bit((unsigned long *)&pebs_status,
2052 					x86_pmu.max_pebs_events);
2053 		if (bit >= x86_pmu.max_pebs_events)
2054 			continue;
2055 
2056 		/*
2057 		 * The PEBS hardware does not deal well with the situation
2058 		 * when events happen near to each other and multiple bits
2059 		 * are set. But it should happen rarely.
2060 		 *
2061 		 * If these events include one PEBS and multiple non-PEBS
2062 		 * events, it doesn't impact PEBS record. The record will
2063 		 * be handled normally. (slow path)
2064 		 *
2065 		 * If these events include two or more PEBS events, the
2066 		 * records for the events can be collapsed into a single
2067 		 * one, and it's not possible to reconstruct all events
2068 		 * that caused the PEBS record. It's called collision.
2069 		 * If collision happened, the record will be dropped.
2070 		 */
2071 		if (pebs_status != (1ULL << bit)) {
2072 			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2073 				error[i]++;
2074 			continue;
2075 		}
2076 
2077 		counts[bit]++;
2078 	}
2079 
2080 	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2081 		if ((counts[bit] == 0) && (error[bit] == 0))
2082 			continue;
2083 
2084 		event = cpuc->events[bit];
2085 		if (WARN_ON_ONCE(!event))
2086 			continue;
2087 
2088 		if (WARN_ON_ONCE(!event->attr.precise_ip))
2089 			continue;
2090 
2091 		/* log dropped samples number */
2092 		if (error[bit]) {
2093 			perf_log_lost_samples(event, error[bit]);
2094 
2095 			if (iregs && perf_event_account_interrupt(event))
2096 				x86_pmu_stop(event, 0);
2097 		}
2098 
2099 		if (counts[bit]) {
2100 			__intel_pmu_pebs_event(event, iregs, data, base,
2101 					       top, bit, counts[bit],
2102 					       setup_pebs_fixed_sample_data);
2103 		}
2104 	}
2105 }
2106 
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2107 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2108 {
2109 	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2110 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2111 	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2112 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2113 	struct debug_store *ds = cpuc->ds;
2114 	struct perf_event *event;
2115 	void *base, *at, *top;
2116 	int bit, size;
2117 	u64 mask;
2118 
2119 	if (!x86_pmu.pebs_active)
2120 		return;
2121 
2122 	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2123 	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2124 
2125 	ds->pebs_index = ds->pebs_buffer_base;
2126 
2127 	mask = ((1ULL << max_pebs_events) - 1) |
2128 	       (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2129 	size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2130 
2131 	if (unlikely(base >= top)) {
2132 		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2133 		return;
2134 	}
2135 
2136 	for (at = base; at < top; at += cpuc->pebs_record_size) {
2137 		u64 pebs_status;
2138 
2139 		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2140 		pebs_status &= mask;
2141 
2142 		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2143 			counts[bit]++;
2144 	}
2145 
2146 	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2147 		if (counts[bit] == 0)
2148 			continue;
2149 
2150 		event = cpuc->events[bit];
2151 		if (WARN_ON_ONCE(!event))
2152 			continue;
2153 
2154 		if (WARN_ON_ONCE(!event->attr.precise_ip))
2155 			continue;
2156 
2157 		__intel_pmu_pebs_event(event, iregs, data, base,
2158 				       top, bit, counts[bit],
2159 				       setup_pebs_adaptive_sample_data);
2160 	}
2161 }
2162 
2163 /*
2164  * BTS, PEBS probe and setup
2165  */
2166 
intel_ds_init(void)2167 void __init intel_ds_init(void)
2168 {
2169 	/*
2170 	 * No support for 32bit formats
2171 	 */
2172 	if (!boot_cpu_has(X86_FEATURE_DTES64))
2173 		return;
2174 
2175 	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2176 	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2177 	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2178 	if (x86_pmu.version <= 4)
2179 		x86_pmu.pebs_no_isolation = 1;
2180 
2181 	if (x86_pmu.pebs) {
2182 		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2183 		char *pebs_qual = "";
2184 		int format = x86_pmu.intel_cap.pebs_format;
2185 
2186 		if (format < 4)
2187 			x86_pmu.intel_cap.pebs_baseline = 0;
2188 
2189 		switch (format) {
2190 		case 0:
2191 			pr_cont("PEBS fmt0%c, ", pebs_type);
2192 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2193 			/*
2194 			 * Using >PAGE_SIZE buffers makes the WRMSR to
2195 			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2196 			 * mysteriously hang on Core2.
2197 			 *
2198 			 * As a workaround, we don't do this.
2199 			 */
2200 			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2201 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2202 			break;
2203 
2204 		case 1:
2205 			pr_cont("PEBS fmt1%c, ", pebs_type);
2206 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2207 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2208 			break;
2209 
2210 		case 2:
2211 			pr_cont("PEBS fmt2%c, ", pebs_type);
2212 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2213 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2214 			break;
2215 
2216 		case 3:
2217 			pr_cont("PEBS fmt3%c, ", pebs_type);
2218 			x86_pmu.pebs_record_size =
2219 						sizeof(struct pebs_record_skl);
2220 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2221 			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2222 			break;
2223 
2224 		case 4:
2225 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2226 			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2227 			if (x86_pmu.intel_cap.pebs_baseline) {
2228 				x86_pmu.large_pebs_flags |=
2229 					PERF_SAMPLE_BRANCH_STACK |
2230 					PERF_SAMPLE_TIME;
2231 				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2232 				pebs_qual = "-baseline";
2233 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2234 			} else {
2235 				/* Only basic record supported */
2236 				x86_pmu.large_pebs_flags &=
2237 					~(PERF_SAMPLE_ADDR |
2238 					  PERF_SAMPLE_TIME |
2239 					  PERF_SAMPLE_DATA_SRC |
2240 					  PERF_SAMPLE_TRANSACTION |
2241 					  PERF_SAMPLE_REGS_USER |
2242 					  PERF_SAMPLE_REGS_INTR);
2243 			}
2244 			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2245 
2246 			if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2247 				pr_cont("PEBS-via-PT, ");
2248 				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2249 			}
2250 
2251 			break;
2252 
2253 		default:
2254 			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2255 			x86_pmu.pebs = 0;
2256 		}
2257 	}
2258 }
2259 
perf_restore_debug_store(void)2260 void perf_restore_debug_store(void)
2261 {
2262 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2263 
2264 	if (!x86_pmu.bts && !x86_pmu.pebs)
2265 		return;
2266 
2267 	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2268 }
2269