• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2018 Intel Corporation
4  */
5 
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 
9 #include "display/intel_display_types.h"
10 #include "display/intel_overlay.h"
11 
12 #include "gem/i915_gem_context.h"
13 
14 #include "i915_drv.h"
15 #include "i915_gpu_error.h"
16 #include "i915_irq.h"
17 #include "intel_breadcrumbs.h"
18 #include "intel_engine_pm.h"
19 #include "intel_gt.h"
20 #include "intel_gt_pm.h"
21 #include "intel_gt_requests.h"
22 #include "intel_reset.h"
23 
24 #include "uc/intel_guc.h"
25 
26 #define RESET_MAX_RETRIES 3
27 
28 /* XXX How to handle concurrent GGTT updates using tiling registers? */
29 #define RESET_UNDER_STOP_MACHINE 0
30 
rmw_set_fw(struct intel_uncore * uncore,i915_reg_t reg,u32 set)31 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
32 {
33 	intel_uncore_rmw_fw(uncore, reg, 0, set);
34 }
35 
rmw_clear_fw(struct intel_uncore * uncore,i915_reg_t reg,u32 clr)36 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
37 {
38 	intel_uncore_rmw_fw(uncore, reg, clr, 0);
39 }
40 
client_mark_guilty(struct i915_gem_context * ctx,bool banned)41 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
42 {
43 	struct drm_i915_file_private *file_priv = ctx->file_priv;
44 	unsigned long prev_hang;
45 	unsigned int score;
46 
47 	if (IS_ERR_OR_NULL(file_priv))
48 		return;
49 
50 	score = 0;
51 	if (banned)
52 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
53 
54 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
55 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
56 		score += I915_CLIENT_SCORE_HANG_FAST;
57 
58 	if (score) {
59 		atomic_add(score, &file_priv->ban_score);
60 
61 		drm_dbg(&ctx->i915->drm,
62 			"client %s: gained %u ban score, now %u\n",
63 			ctx->name, score,
64 			atomic_read(&file_priv->ban_score));
65 	}
66 }
67 
mark_guilty(struct i915_request * rq)68 static bool mark_guilty(struct i915_request *rq)
69 {
70 	struct i915_gem_context *ctx;
71 	unsigned long prev_hang;
72 	bool banned;
73 	int i;
74 
75 	if (intel_context_is_closed(rq->context))
76 		return true;
77 
78 	rcu_read_lock();
79 	ctx = rcu_dereference(rq->context->gem_context);
80 	if (ctx && !kref_get_unless_zero(&ctx->ref))
81 		ctx = NULL;
82 	rcu_read_unlock();
83 	if (!ctx)
84 		return intel_context_is_banned(rq->context);
85 
86 	atomic_inc(&ctx->guilty_count);
87 
88 	/* Cool contexts are too cool to be banned! (Used for reset testing.) */
89 	if (!i915_gem_context_is_bannable(ctx)) {
90 		banned = false;
91 		goto out;
92 	}
93 
94 	drm_notice(&ctx->i915->drm,
95 		   "%s context reset due to GPU hang\n",
96 		   ctx->name);
97 
98 	/* Record the timestamp for the last N hangs */
99 	prev_hang = ctx->hang_timestamp[0];
100 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
101 		ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
102 	ctx->hang_timestamp[i] = jiffies;
103 
104 	/* If we have hung N+1 times in rapid succession, we ban the context! */
105 	banned = !i915_gem_context_is_recoverable(ctx);
106 	if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
107 		banned = true;
108 	if (banned)
109 		drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
110 			ctx->name, atomic_read(&ctx->guilty_count));
111 
112 	client_mark_guilty(ctx, banned);
113 
114 out:
115 	i915_gem_context_put(ctx);
116 	return banned;
117 }
118 
mark_innocent(struct i915_request * rq)119 static void mark_innocent(struct i915_request *rq)
120 {
121 	struct i915_gem_context *ctx;
122 
123 	rcu_read_lock();
124 	ctx = rcu_dereference(rq->context->gem_context);
125 	if (ctx)
126 		atomic_inc(&ctx->active_count);
127 	rcu_read_unlock();
128 }
129 
__i915_request_reset(struct i915_request * rq,bool guilty)130 void __i915_request_reset(struct i915_request *rq, bool guilty)
131 {
132 	bool banned = false;
133 
134 	RQ_TRACE(rq, "guilty? %s\n", yesno(guilty));
135 	GEM_BUG_ON(__i915_request_is_complete(rq));
136 
137 	rcu_read_lock(); /* protect the GEM context */
138 	if (guilty) {
139 		i915_request_set_error_once(rq, -EIO);
140 		__i915_request_skip(rq);
141 		banned = mark_guilty(rq);
142 	} else {
143 		i915_request_set_error_once(rq, -EAGAIN);
144 		mark_innocent(rq);
145 	}
146 	rcu_read_unlock();
147 
148 	if (banned)
149 		intel_context_ban(rq->context, rq);
150 }
151 
i915_in_reset(struct pci_dev * pdev)152 static bool i915_in_reset(struct pci_dev *pdev)
153 {
154 	u8 gdrst;
155 
156 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
157 	return gdrst & GRDOM_RESET_STATUS;
158 }
159 
i915_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)160 static int i915_do_reset(struct intel_gt *gt,
161 			 intel_engine_mask_t engine_mask,
162 			 unsigned int retry)
163 {
164 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
165 	int err;
166 
167 	/* Assert reset for at least 20 usec, and wait for acknowledgement. */
168 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
169 	udelay(50);
170 	err = wait_for_atomic(i915_in_reset(pdev), 50);
171 
172 	/* Clear the reset request. */
173 	pci_write_config_byte(pdev, I915_GDRST, 0);
174 	udelay(50);
175 	if (!err)
176 		err = wait_for_atomic(!i915_in_reset(pdev), 50);
177 
178 	return err;
179 }
180 
g4x_reset_complete(struct pci_dev * pdev)181 static bool g4x_reset_complete(struct pci_dev *pdev)
182 {
183 	u8 gdrst;
184 
185 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
186 	return (gdrst & GRDOM_RESET_ENABLE) == 0;
187 }
188 
g33_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)189 static int g33_do_reset(struct intel_gt *gt,
190 			intel_engine_mask_t engine_mask,
191 			unsigned int retry)
192 {
193 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
194 
195 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
196 	return wait_for_atomic(g4x_reset_complete(pdev), 50);
197 }
198 
g4x_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)199 static int g4x_do_reset(struct intel_gt *gt,
200 			intel_engine_mask_t engine_mask,
201 			unsigned int retry)
202 {
203 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
204 	struct intel_uncore *uncore = gt->uncore;
205 	int ret;
206 
207 	/* WaVcpClkGateDisableForMediaReset:ctg,elk */
208 	rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
209 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
210 
211 	pci_write_config_byte(pdev, I915_GDRST,
212 			      GRDOM_MEDIA | GRDOM_RESET_ENABLE);
213 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
214 	if (ret) {
215 		GT_TRACE(gt, "Wait for media reset failed\n");
216 		goto out;
217 	}
218 
219 	pci_write_config_byte(pdev, I915_GDRST,
220 			      GRDOM_RENDER | GRDOM_RESET_ENABLE);
221 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
222 	if (ret) {
223 		GT_TRACE(gt, "Wait for render reset failed\n");
224 		goto out;
225 	}
226 
227 out:
228 	pci_write_config_byte(pdev, I915_GDRST, 0);
229 
230 	rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
231 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
232 
233 	return ret;
234 }
235 
ilk_do_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)236 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
237 			unsigned int retry)
238 {
239 	struct intel_uncore *uncore = gt->uncore;
240 	int ret;
241 
242 	intel_uncore_write_fw(uncore, ILK_GDSR,
243 			      ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
244 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
245 					   ILK_GRDOM_RESET_ENABLE, 0,
246 					   5000, 0,
247 					   NULL);
248 	if (ret) {
249 		GT_TRACE(gt, "Wait for render reset failed\n");
250 		goto out;
251 	}
252 
253 	intel_uncore_write_fw(uncore, ILK_GDSR,
254 			      ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
255 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
256 					   ILK_GRDOM_RESET_ENABLE, 0,
257 					   5000, 0,
258 					   NULL);
259 	if (ret) {
260 		GT_TRACE(gt, "Wait for media reset failed\n");
261 		goto out;
262 	}
263 
264 out:
265 	intel_uncore_write_fw(uncore, ILK_GDSR, 0);
266 	intel_uncore_posting_read_fw(uncore, ILK_GDSR);
267 	return ret;
268 }
269 
270 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
gen6_hw_domain_reset(struct intel_gt * gt,u32 hw_domain_mask)271 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
272 {
273 	struct intel_uncore *uncore = gt->uncore;
274 	int loops = 2;
275 	int err;
276 
277 	/*
278 	 * GEN6_GDRST is not in the gt power well, no need to check
279 	 * for fifo space for the write or forcewake the chip for
280 	 * the read
281 	 */
282 	do {
283 		intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
284 
285 		/*
286 		 * Wait for the device to ack the reset requests.
287 		 *
288 		 * On some platforms, e.g. Jasperlake, we see that the
289 		 * engine register state is not cleared until shortly after
290 		 * GDRST reports completion, causing a failure as we try
291 		 * to immediately resume while the internal state is still
292 		 * in flux. If we immediately repeat the reset, the second
293 		 * reset appears to serialise with the first, and since
294 		 * it is a no-op, the registers should retain their reset
295 		 * value. However, there is still a concern that upon
296 		 * leaving the second reset, the internal engine state
297 		 * is still in flux and not ready for resuming.
298 		 */
299 		err = __intel_wait_for_register_fw(uncore, GEN6_GDRST,
300 						   hw_domain_mask, 0,
301 						   2000, 0,
302 						   NULL);
303 	} while (err == 0 && --loops);
304 	if (err)
305 		GT_TRACE(gt,
306 			 "Wait for 0x%08x engines reset failed\n",
307 			 hw_domain_mask);
308 
309 	/*
310 	 * As we have observed that the engine state is still volatile
311 	 * after GDRST is acked, impose a small delay to let everything settle.
312 	 */
313 	udelay(50);
314 
315 	return err;
316 }
317 
__gen6_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)318 static int __gen6_reset_engines(struct intel_gt *gt,
319 				intel_engine_mask_t engine_mask,
320 				unsigned int retry)
321 {
322 	static const u32 hw_engine_mask[] = {
323 		[RCS0]  = GEN6_GRDOM_RENDER,
324 		[BCS0]  = GEN6_GRDOM_BLT,
325 		[VCS0]  = GEN6_GRDOM_MEDIA,
326 		[VCS1]  = GEN8_GRDOM_MEDIA2,
327 		[VECS0] = GEN6_GRDOM_VECS,
328 	};
329 	struct intel_engine_cs *engine;
330 	u32 hw_mask;
331 
332 	if (engine_mask == ALL_ENGINES) {
333 		hw_mask = GEN6_GRDOM_FULL;
334 	} else {
335 		intel_engine_mask_t tmp;
336 
337 		hw_mask = 0;
338 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
339 			GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask));
340 			hw_mask |= hw_engine_mask[engine->id];
341 		}
342 	}
343 
344 	return gen6_hw_domain_reset(gt, hw_mask);
345 }
346 
gen6_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)347 static int gen6_reset_engines(struct intel_gt *gt,
348 			      intel_engine_mask_t engine_mask,
349 			      unsigned int retry)
350 {
351 	unsigned long flags;
352 	int ret;
353 
354 	spin_lock_irqsave(&gt->uncore->lock, flags);
355 	ret = __gen6_reset_engines(gt, engine_mask, retry);
356 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
357 
358 	return ret;
359 }
360 
find_sfc_paired_vecs_engine(struct intel_engine_cs * engine)361 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
362 {
363 	int vecs_id;
364 
365 	GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
366 
367 	vecs_id = _VECS((engine->instance) / 2);
368 
369 	return engine->gt->engine[vecs_id];
370 }
371 
372 struct sfc_lock_data {
373 	i915_reg_t lock_reg;
374 	i915_reg_t ack_reg;
375 	i915_reg_t usage_reg;
376 	u32 lock_bit;
377 	u32 ack_bit;
378 	u32 usage_bit;
379 	u32 reset_bit;
380 };
381 
get_sfc_forced_lock_data(struct intel_engine_cs * engine,struct sfc_lock_data * sfc_lock)382 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
383 				     struct sfc_lock_data *sfc_lock)
384 {
385 	switch (engine->class) {
386 	default:
387 		MISSING_CASE(engine->class);
388 		fallthrough;
389 	case VIDEO_DECODE_CLASS:
390 		sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine);
391 		sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
392 
393 		sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine);
394 		sfc_lock->ack_bit  = GEN11_VCS_SFC_LOCK_ACK_BIT;
395 
396 		sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine);
397 		sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
398 		sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
399 
400 		break;
401 	case VIDEO_ENHANCEMENT_CLASS:
402 		sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine);
403 		sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
404 
405 		sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine);
406 		sfc_lock->ack_bit  = GEN11_VECS_SFC_LOCK_ACK_BIT;
407 
408 		sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine);
409 		sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
410 		sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
411 
412 		break;
413 	}
414 }
415 
gen11_lock_sfc(struct intel_engine_cs * engine,u32 * reset_mask,u32 * unlock_mask)416 static int gen11_lock_sfc(struct intel_engine_cs *engine,
417 			  u32 *reset_mask,
418 			  u32 *unlock_mask)
419 {
420 	struct intel_uncore *uncore = engine->uncore;
421 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
422 	struct sfc_lock_data sfc_lock;
423 	bool lock_obtained, lock_to_other = false;
424 	int ret;
425 
426 	switch (engine->class) {
427 	case VIDEO_DECODE_CLASS:
428 		if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
429 			return 0;
430 
431 		fallthrough;
432 	case VIDEO_ENHANCEMENT_CLASS:
433 		get_sfc_forced_lock_data(engine, &sfc_lock);
434 
435 		break;
436 	default:
437 		return 0;
438 	}
439 
440 	if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
441 		struct intel_engine_cs *paired_vecs;
442 
443 		if (engine->class != VIDEO_DECODE_CLASS ||
444 		    GRAPHICS_VER(engine->i915) != 12)
445 			return 0;
446 
447 		/*
448 		 * Wa_14010733141
449 		 *
450 		 * If the VCS-MFX isn't using the SFC, we also need to check
451 		 * whether VCS-HCP is using it.  If so, we need to issue a *VE*
452 		 * forced lock on the VE engine that shares the same SFC.
453 		 */
454 		if (!(intel_uncore_read_fw(uncore,
455 					   GEN12_HCP_SFC_LOCK_STATUS(engine)) &
456 		      GEN12_HCP_SFC_USAGE_BIT))
457 			return 0;
458 
459 		paired_vecs = find_sfc_paired_vecs_engine(engine);
460 		get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
461 		lock_to_other = true;
462 		*unlock_mask |= paired_vecs->mask;
463 	} else {
464 		*unlock_mask |= engine->mask;
465 	}
466 
467 	/*
468 	 * If the engine is using an SFC, tell the engine that a software reset
469 	 * is going to happen. The engine will then try to force lock the SFC.
470 	 * If SFC ends up being locked to the engine we want to reset, we have
471 	 * to reset it as well (we will unlock it once the reset sequence is
472 	 * completed).
473 	 */
474 	rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
475 
476 	ret = __intel_wait_for_register_fw(uncore,
477 					   sfc_lock.ack_reg,
478 					   sfc_lock.ack_bit,
479 					   sfc_lock.ack_bit,
480 					   1000, 0, NULL);
481 
482 	/*
483 	 * Was the SFC released while we were trying to lock it?
484 	 *
485 	 * We should reset both the engine and the SFC if:
486 	 *  - We were locking the SFC to this engine and the lock succeeded
487 	 *       OR
488 	 *  - We were locking the SFC to a different engine (Wa_14010733141)
489 	 *    but the SFC was released before the lock was obtained.
490 	 *
491 	 * Otherwise we need only reset the engine by itself and we can
492 	 * leave the SFC alone.
493 	 */
494 	lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
495 			sfc_lock.usage_bit) != 0;
496 	if (lock_obtained == lock_to_other)
497 		return 0;
498 
499 	if (ret) {
500 		ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
501 		return ret;
502 	}
503 
504 	*reset_mask |= sfc_lock.reset_bit;
505 	return 0;
506 }
507 
gen11_unlock_sfc(struct intel_engine_cs * engine)508 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
509 {
510 	struct intel_uncore *uncore = engine->uncore;
511 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
512 	struct sfc_lock_data sfc_lock = {};
513 
514 	if (engine->class != VIDEO_DECODE_CLASS &&
515 	    engine->class != VIDEO_ENHANCEMENT_CLASS)
516 		return;
517 
518 	if (engine->class == VIDEO_DECODE_CLASS &&
519 	    (BIT(engine->instance) & vdbox_sfc_access) == 0)
520 		return;
521 
522 	get_sfc_forced_lock_data(engine, &sfc_lock);
523 
524 	rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
525 }
526 
__gen11_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)527 static int __gen11_reset_engines(struct intel_gt *gt,
528 				 intel_engine_mask_t engine_mask,
529 				 unsigned int retry)
530 {
531 	static const u32 hw_engine_mask[] = {
532 		[RCS0]  = GEN11_GRDOM_RENDER,
533 		[BCS0]  = GEN11_GRDOM_BLT,
534 		[VCS0]  = GEN11_GRDOM_MEDIA,
535 		[VCS1]  = GEN11_GRDOM_MEDIA2,
536 		[VCS2]  = GEN11_GRDOM_MEDIA3,
537 		[VCS3]  = GEN11_GRDOM_MEDIA4,
538 		[VCS4]  = GEN11_GRDOM_MEDIA5,
539 		[VCS5]  = GEN11_GRDOM_MEDIA6,
540 		[VCS6]  = GEN11_GRDOM_MEDIA7,
541 		[VCS7]  = GEN11_GRDOM_MEDIA8,
542 		[VECS0] = GEN11_GRDOM_VECS,
543 		[VECS1] = GEN11_GRDOM_VECS2,
544 		[VECS2] = GEN11_GRDOM_VECS3,
545 		[VECS3] = GEN11_GRDOM_VECS4,
546 	};
547 	struct intel_engine_cs *engine;
548 	intel_engine_mask_t tmp;
549 	u32 reset_mask, unlock_mask = 0;
550 	int ret;
551 
552 	if (engine_mask == ALL_ENGINES) {
553 		reset_mask = GEN11_GRDOM_FULL;
554 	} else {
555 		reset_mask = 0;
556 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
557 			GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask));
558 			reset_mask |= hw_engine_mask[engine->id];
559 			ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
560 			if (ret)
561 				goto sfc_unlock;
562 		}
563 	}
564 
565 	ret = gen6_hw_domain_reset(gt, reset_mask);
566 
567 sfc_unlock:
568 	/*
569 	 * We unlock the SFC based on the lock status and not the result of
570 	 * gen11_lock_sfc to make sure that we clean properly if something
571 	 * wrong happened during the lock (e.g. lock acquired after timeout
572 	 * expiration).
573 	 *
574 	 * Due to Wa_14010733141, we may have locked an SFC to an engine that
575 	 * wasn't being reset.  So instead of calling gen11_unlock_sfc()
576 	 * on engine_mask, we instead call it on the mask of engines that our
577 	 * gen11_lock_sfc() calls told us actually had locks attempted.
578 	 */
579 	for_each_engine_masked(engine, gt, unlock_mask, tmp)
580 		gen11_unlock_sfc(engine);
581 
582 	return ret;
583 }
584 
gen8_engine_reset_prepare(struct intel_engine_cs * engine)585 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
586 {
587 	struct intel_uncore *uncore = engine->uncore;
588 	const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
589 	u32 request, mask, ack;
590 	int ret;
591 
592 	if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
593 		return -ETIMEDOUT;
594 
595 	ack = intel_uncore_read_fw(uncore, reg);
596 	if (ack & RESET_CTL_CAT_ERROR) {
597 		/*
598 		 * For catastrophic errors, ready-for-reset sequence
599 		 * needs to be bypassed: HAS#396813
600 		 */
601 		request = RESET_CTL_CAT_ERROR;
602 		mask = RESET_CTL_CAT_ERROR;
603 
604 		/* Catastrophic errors need to be cleared by HW */
605 		ack = 0;
606 	} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
607 		request = RESET_CTL_REQUEST_RESET;
608 		mask = RESET_CTL_READY_TO_RESET;
609 		ack = RESET_CTL_READY_TO_RESET;
610 	} else {
611 		return 0;
612 	}
613 
614 	intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
615 	ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
616 					   700, 0, NULL);
617 	if (ret)
618 		drm_err(&engine->i915->drm,
619 			"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
620 			engine->name, request,
621 			intel_uncore_read_fw(uncore, reg));
622 
623 	return ret;
624 }
625 
gen8_engine_reset_cancel(struct intel_engine_cs * engine)626 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
627 {
628 	intel_uncore_write_fw(engine->uncore,
629 			      RING_RESET_CTL(engine->mmio_base),
630 			      _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
631 }
632 
gen8_reset_engines(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned int retry)633 static int gen8_reset_engines(struct intel_gt *gt,
634 			      intel_engine_mask_t engine_mask,
635 			      unsigned int retry)
636 {
637 	struct intel_engine_cs *engine;
638 	const bool reset_non_ready = retry >= 1;
639 	intel_engine_mask_t tmp;
640 	unsigned long flags;
641 	int ret;
642 
643 	spin_lock_irqsave(&gt->uncore->lock, flags);
644 
645 	for_each_engine_masked(engine, gt, engine_mask, tmp) {
646 		ret = gen8_engine_reset_prepare(engine);
647 		if (ret && !reset_non_ready)
648 			goto skip_reset;
649 
650 		/*
651 		 * If this is not the first failed attempt to prepare,
652 		 * we decide to proceed anyway.
653 		 *
654 		 * By doing so we risk context corruption and with
655 		 * some gens (kbl), possible system hang if reset
656 		 * happens during active bb execution.
657 		 *
658 		 * We rather take context corruption instead of
659 		 * failed reset with a wedged driver/gpu. And
660 		 * active bb execution case should be covered by
661 		 * stop_engines() we have before the reset.
662 		 */
663 	}
664 
665 	/*
666 	 * Wa_22011100796:dg2, whenever Full soft reset is required,
667 	 * reset all individual engines firstly, and then do a full soft reset.
668 	 *
669 	 * This is best effort, so ignore any error from the initial reset.
670 	 */
671 	if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
672 		__gen11_reset_engines(gt, gt->info.engine_mask, 0);
673 
674 	if (GRAPHICS_VER(gt->i915) >= 11)
675 		ret = __gen11_reset_engines(gt, engine_mask, retry);
676 	else
677 		ret = __gen6_reset_engines(gt, engine_mask, retry);
678 
679 skip_reset:
680 	for_each_engine_masked(engine, gt, engine_mask, tmp)
681 		gen8_engine_reset_cancel(engine);
682 
683 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
684 
685 	return ret;
686 }
687 
mock_reset(struct intel_gt * gt,intel_engine_mask_t mask,unsigned int retry)688 static int mock_reset(struct intel_gt *gt,
689 		      intel_engine_mask_t mask,
690 		      unsigned int retry)
691 {
692 	return 0;
693 }
694 
695 typedef int (*reset_func)(struct intel_gt *,
696 			  intel_engine_mask_t engine_mask,
697 			  unsigned int retry);
698 
intel_get_gpu_reset(const struct intel_gt * gt)699 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
700 {
701 	struct drm_i915_private *i915 = gt->i915;
702 
703 	if (is_mock_gt(gt))
704 		return mock_reset;
705 	else if (GRAPHICS_VER(i915) >= 8)
706 		return gen8_reset_engines;
707 	else if (GRAPHICS_VER(i915) >= 6)
708 		return gen6_reset_engines;
709 	else if (GRAPHICS_VER(i915) >= 5)
710 		return ilk_do_reset;
711 	else if (IS_G4X(i915))
712 		return g4x_do_reset;
713 	else if (IS_G33(i915) || IS_PINEVIEW(i915))
714 		return g33_do_reset;
715 	else if (GRAPHICS_VER(i915) >= 3)
716 		return i915_do_reset;
717 	else
718 		return NULL;
719 }
720 
__intel_gt_reset(struct intel_gt * gt,intel_engine_mask_t engine_mask)721 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
722 {
723 	const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
724 	reset_func reset;
725 	int ret = -ETIMEDOUT;
726 	int retry;
727 
728 	reset = intel_get_gpu_reset(gt);
729 	if (!reset)
730 		return -ENODEV;
731 
732 	/*
733 	 * If the power well sleeps during the reset, the reset
734 	 * request may be dropped and never completes (causing -EIO).
735 	 */
736 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
737 	for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
738 		GT_TRACE(gt, "engine_mask=%x\n", engine_mask);
739 		preempt_disable();
740 		ret = reset(gt, engine_mask, retry);
741 		preempt_enable();
742 	}
743 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
744 
745 	return ret;
746 }
747 
intel_has_gpu_reset(const struct intel_gt * gt)748 bool intel_has_gpu_reset(const struct intel_gt *gt)
749 {
750 	if (!gt->i915->params.reset)
751 		return NULL;
752 
753 	return intel_get_gpu_reset(gt);
754 }
755 
intel_has_reset_engine(const struct intel_gt * gt)756 bool intel_has_reset_engine(const struct intel_gt *gt)
757 {
758 	if (gt->i915->params.reset < 2)
759 		return false;
760 
761 	return INTEL_INFO(gt->i915)->has_reset_engine;
762 }
763 
intel_reset_guc(struct intel_gt * gt)764 int intel_reset_guc(struct intel_gt *gt)
765 {
766 	u32 guc_domain =
767 		GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
768 	int ret;
769 
770 	GEM_BUG_ON(!HAS_GT_UC(gt->i915));
771 
772 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
773 	ret = gen6_hw_domain_reset(gt, guc_domain);
774 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
775 
776 	return ret;
777 }
778 
779 /*
780  * Ensure irq handler finishes, and not run again.
781  * Also return the active request so that we only search for it once.
782  */
reset_prepare_engine(struct intel_engine_cs * engine)783 static void reset_prepare_engine(struct intel_engine_cs *engine)
784 {
785 	/*
786 	 * During the reset sequence, we must prevent the engine from
787 	 * entering RC6. As the context state is undefined until we restart
788 	 * the engine, if it does enter RC6 during the reset, the state
789 	 * written to the powercontext is undefined and so we may lose
790 	 * GPU state upon resume, i.e. fail to restart after a reset.
791 	 */
792 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
793 	if (engine->reset.prepare)
794 		engine->reset.prepare(engine);
795 }
796 
revoke_mmaps(struct intel_gt * gt)797 static void revoke_mmaps(struct intel_gt *gt)
798 {
799 	int i;
800 
801 	for (i = 0; i < gt->ggtt->num_fences; i++) {
802 		struct drm_vma_offset_node *node;
803 		struct i915_vma *vma;
804 		u64 vma_offset;
805 
806 		vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
807 		if (!vma)
808 			continue;
809 
810 		if (!i915_vma_has_userfault(vma))
811 			continue;
812 
813 		GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]);
814 
815 		if (!vma->mmo)
816 			continue;
817 
818 		node = &vma->mmo->vma_node;
819 		vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
820 
821 		unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
822 				    drm_vma_node_offset_addr(node) + vma_offset,
823 				    vma->size,
824 				    1);
825 	}
826 }
827 
reset_prepare(struct intel_gt * gt)828 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
829 {
830 	struct intel_engine_cs *engine;
831 	intel_engine_mask_t awake = 0;
832 	enum intel_engine_id id;
833 
834 	for_each_engine(engine, gt, id) {
835 		if (intel_engine_pm_get_if_awake(engine))
836 			awake |= engine->mask;
837 		reset_prepare_engine(engine);
838 	}
839 
840 	intel_uc_reset_prepare(&gt->uc);
841 
842 	return awake;
843 }
844 
gt_revoke(struct intel_gt * gt)845 static void gt_revoke(struct intel_gt *gt)
846 {
847 	revoke_mmaps(gt);
848 }
849 
gt_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask)850 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
851 {
852 	struct intel_engine_cs *engine;
853 	enum intel_engine_id id;
854 	int err;
855 
856 	/*
857 	 * Everything depends on having the GTT running, so we need to start
858 	 * there.
859 	 */
860 	err = i915_ggtt_enable_hw(gt->i915);
861 	if (err)
862 		return err;
863 
864 	local_bh_disable();
865 	for_each_engine(engine, gt, id)
866 		__intel_engine_reset(engine, stalled_mask & engine->mask);
867 	local_bh_enable();
868 
869 	intel_uc_reset(&gt->uc, true);
870 
871 	intel_ggtt_restore_fences(gt->ggtt);
872 
873 	return err;
874 }
875 
reset_finish_engine(struct intel_engine_cs * engine)876 static void reset_finish_engine(struct intel_engine_cs *engine)
877 {
878 	if (engine->reset.finish)
879 		engine->reset.finish(engine);
880 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
881 
882 	intel_engine_signal_breadcrumbs(engine);
883 }
884 
reset_finish(struct intel_gt * gt,intel_engine_mask_t awake)885 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
886 {
887 	struct intel_engine_cs *engine;
888 	enum intel_engine_id id;
889 
890 	for_each_engine(engine, gt, id) {
891 		reset_finish_engine(engine);
892 		if (awake & engine->mask)
893 			intel_engine_pm_put(engine);
894 	}
895 
896 	intel_uc_reset_finish(&gt->uc);
897 }
898 
nop_submit_request(struct i915_request * request)899 static void nop_submit_request(struct i915_request *request)
900 {
901 	RQ_TRACE(request, "-EIO\n");
902 
903 	request = i915_request_mark_eio(request);
904 	if (request) {
905 		i915_request_submit(request);
906 		intel_engine_signal_breadcrumbs(request->engine);
907 
908 		i915_request_put(request);
909 	}
910 }
911 
__intel_gt_set_wedged(struct intel_gt * gt)912 static void __intel_gt_set_wedged(struct intel_gt *gt)
913 {
914 	struct intel_engine_cs *engine;
915 	intel_engine_mask_t awake;
916 	enum intel_engine_id id;
917 
918 	if (test_bit(I915_WEDGED, &gt->reset.flags))
919 		return;
920 
921 	GT_TRACE(gt, "start\n");
922 
923 	/*
924 	 * First, stop submission to hw, but do not yet complete requests by
925 	 * rolling the global seqno forward (since this would complete requests
926 	 * for which we haven't set the fence error to EIO yet).
927 	 */
928 	awake = reset_prepare(gt);
929 
930 	/* Even if the GPU reset fails, it should still stop the engines */
931 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
932 		__intel_gt_reset(gt, ALL_ENGINES);
933 
934 	for_each_engine(engine, gt, id)
935 		engine->submit_request = nop_submit_request;
936 
937 	/*
938 	 * Make sure no request can slip through without getting completed by
939 	 * either this call here to intel_engine_write_global_seqno, or the one
940 	 * in nop_submit_request.
941 	 */
942 	synchronize_rcu_expedited();
943 	set_bit(I915_WEDGED, &gt->reset.flags);
944 
945 	/* Mark all executing requests as skipped */
946 	local_bh_disable();
947 	for_each_engine(engine, gt, id)
948 		if (engine->reset.cancel)
949 			engine->reset.cancel(engine);
950 	intel_uc_cancel_requests(&gt->uc);
951 	local_bh_enable();
952 
953 	reset_finish(gt, awake);
954 
955 	GT_TRACE(gt, "end\n");
956 }
957 
intel_gt_set_wedged(struct intel_gt * gt)958 void intel_gt_set_wedged(struct intel_gt *gt)
959 {
960 	intel_wakeref_t wakeref;
961 
962 	if (test_bit(I915_WEDGED, &gt->reset.flags))
963 		return;
964 
965 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
966 	mutex_lock(&gt->reset.mutex);
967 
968 	if (GEM_SHOW_DEBUG()) {
969 		struct drm_printer p = drm_debug_printer(__func__);
970 		struct intel_engine_cs *engine;
971 		enum intel_engine_id id;
972 
973 		drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
974 		for_each_engine(engine, gt, id) {
975 			if (intel_engine_is_idle(engine))
976 				continue;
977 
978 			intel_engine_dump(engine, &p, "%s\n", engine->name);
979 		}
980 	}
981 
982 	__intel_gt_set_wedged(gt);
983 
984 	mutex_unlock(&gt->reset.mutex);
985 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
986 }
987 
__intel_gt_unset_wedged(struct intel_gt * gt)988 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
989 {
990 	struct intel_gt_timelines *timelines = &gt->timelines;
991 	struct intel_timeline *tl;
992 	bool ok;
993 
994 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
995 		return true;
996 
997 	/* Never fully initialised, recovery impossible */
998 	if (intel_gt_has_unrecoverable_error(gt))
999 		return false;
1000 
1001 	GT_TRACE(gt, "start\n");
1002 
1003 	/*
1004 	 * Before unwedging, make sure that all pending operations
1005 	 * are flushed and errored out - we may have requests waiting upon
1006 	 * third party fences. We marked all inflight requests as EIO, and
1007 	 * every execbuf since returned EIO, for consistency we want all
1008 	 * the currently pending requests to also be marked as EIO, which
1009 	 * is done inside our nop_submit_request - and so we must wait.
1010 	 *
1011 	 * No more can be submitted until we reset the wedged bit.
1012 	 */
1013 	spin_lock(&timelines->lock);
1014 	list_for_each_entry(tl, &timelines->active_list, link) {
1015 		struct dma_fence *fence;
1016 
1017 		fence = i915_active_fence_get(&tl->last_request);
1018 		if (!fence)
1019 			continue;
1020 
1021 		spin_unlock(&timelines->lock);
1022 
1023 		/*
1024 		 * All internal dependencies (i915_requests) will have
1025 		 * been flushed by the set-wedge, but we may be stuck waiting
1026 		 * for external fences. These should all be capped to 10s
1027 		 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
1028 		 * in the worst case.
1029 		 */
1030 		dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
1031 		dma_fence_put(fence);
1032 
1033 		/* Restart iteration after droping lock */
1034 		spin_lock(&timelines->lock);
1035 		tl = list_entry(&timelines->active_list, typeof(*tl), link);
1036 	}
1037 	spin_unlock(&timelines->lock);
1038 
1039 	/* We must reset pending GPU events before restoring our submission */
1040 	ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
1041 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1042 		ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
1043 	if (!ok) {
1044 		/*
1045 		 * Warn CI about the unrecoverable wedged condition.
1046 		 * Time for a reboot.
1047 		 */
1048 		add_taint_for_CI(gt->i915, TAINT_WARN);
1049 		return false;
1050 	}
1051 
1052 	/*
1053 	 * Undo nop_submit_request. We prevent all new i915 requests from
1054 	 * being queued (by disallowing execbuf whilst wedged) so having
1055 	 * waited for all active requests above, we know the system is idle
1056 	 * and do not have to worry about a thread being inside
1057 	 * engine->submit_request() as we swap over. So unlike installing
1058 	 * the nop_submit_request on reset, we can do this from normal
1059 	 * context and do not require stop_machine().
1060 	 */
1061 	intel_engines_reset_default_submission(gt);
1062 
1063 	GT_TRACE(gt, "end\n");
1064 
1065 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
1066 	clear_bit(I915_WEDGED, &gt->reset.flags);
1067 
1068 	return true;
1069 }
1070 
intel_gt_unset_wedged(struct intel_gt * gt)1071 bool intel_gt_unset_wedged(struct intel_gt *gt)
1072 {
1073 	bool result;
1074 
1075 	mutex_lock(&gt->reset.mutex);
1076 	result = __intel_gt_unset_wedged(gt);
1077 	mutex_unlock(&gt->reset.mutex);
1078 
1079 	return result;
1080 }
1081 
do_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask)1082 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1083 {
1084 	int err, i;
1085 
1086 	err = __intel_gt_reset(gt, ALL_ENGINES);
1087 	for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1088 		msleep(10 * (i + 1));
1089 		err = __intel_gt_reset(gt, ALL_ENGINES);
1090 	}
1091 	if (err)
1092 		return err;
1093 
1094 	return gt_reset(gt, stalled_mask);
1095 }
1096 
resume(struct intel_gt * gt)1097 static int resume(struct intel_gt *gt)
1098 {
1099 	struct intel_engine_cs *engine;
1100 	enum intel_engine_id id;
1101 	int ret;
1102 
1103 	for_each_engine(engine, gt, id) {
1104 		ret = intel_engine_resume(engine);
1105 		if (ret)
1106 			return ret;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * intel_gt_reset - reset chip after a hang
1114  * @gt: #intel_gt to reset
1115  * @stalled_mask: mask of the stalled engines with the guilty requests
1116  * @reason: user error message for why we are resetting
1117  *
1118  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1119  * on failure.
1120  *
1121  * Procedure is fairly simple:
1122  *   - reset the chip using the reset reg
1123  *   - re-init context state
1124  *   - re-init hardware status page
1125  *   - re-init ring buffer
1126  *   - re-init interrupt state
1127  *   - re-init display
1128  */
intel_gt_reset(struct intel_gt * gt,intel_engine_mask_t stalled_mask,const char * reason)1129 void intel_gt_reset(struct intel_gt *gt,
1130 		    intel_engine_mask_t stalled_mask,
1131 		    const char *reason)
1132 {
1133 	intel_engine_mask_t awake;
1134 	int ret;
1135 
1136 	GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1137 
1138 	might_sleep();
1139 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1140 
1141 	/*
1142 	 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1143 	 * critical section like gpu reset.
1144 	 */
1145 	gt_revoke(gt);
1146 
1147 	mutex_lock(&gt->reset.mutex);
1148 
1149 	/* Clear any previous failed attempts at recovery. Time to try again. */
1150 	if (!__intel_gt_unset_wedged(gt))
1151 		goto unlock;
1152 
1153 	if (reason)
1154 		drm_notice(&gt->i915->drm,
1155 			   "Resetting chip for %s\n", reason);
1156 	atomic_inc(&gt->i915->gpu_error.reset_count);
1157 
1158 	awake = reset_prepare(gt);
1159 
1160 	if (!intel_has_gpu_reset(gt)) {
1161 		if (gt->i915->params.reset)
1162 			drm_err(&gt->i915->drm, "GPU reset not supported\n");
1163 		else
1164 			drm_dbg(&gt->i915->drm, "GPU reset disabled\n");
1165 		goto error;
1166 	}
1167 
1168 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1169 		intel_runtime_pm_disable_interrupts(gt->i915);
1170 
1171 	if (do_reset(gt, stalled_mask)) {
1172 		drm_err(&gt->i915->drm, "Failed to reset chip\n");
1173 		goto taint;
1174 	}
1175 
1176 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1177 		intel_runtime_pm_enable_interrupts(gt->i915);
1178 
1179 	intel_overlay_reset(gt->i915);
1180 
1181 	/*
1182 	 * Next we need to restore the context, but we don't use those
1183 	 * yet either...
1184 	 *
1185 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1186 	 * was running at the time of the reset (i.e. we weren't VT
1187 	 * switched away).
1188 	 */
1189 	ret = intel_gt_init_hw(gt);
1190 	if (ret) {
1191 		drm_err(&gt->i915->drm,
1192 			"Failed to initialise HW following reset (%d)\n",
1193 			ret);
1194 		goto taint;
1195 	}
1196 
1197 	ret = resume(gt);
1198 	if (ret)
1199 		goto taint;
1200 
1201 finish:
1202 	reset_finish(gt, awake);
1203 unlock:
1204 	mutex_unlock(&gt->reset.mutex);
1205 	return;
1206 
1207 taint:
1208 	/*
1209 	 * History tells us that if we cannot reset the GPU now, we
1210 	 * never will. This then impacts everything that is run
1211 	 * subsequently. On failing the reset, we mark the driver
1212 	 * as wedged, preventing further execution on the GPU.
1213 	 * We also want to go one step further and add a taint to the
1214 	 * kernel so that any subsequent faults can be traced back to
1215 	 * this failure. This is important for CI, where if the
1216 	 * GPU/driver fails we would like to reboot and restart testing
1217 	 * rather than continue on into oblivion. For everyone else,
1218 	 * the system should still plod along, but they have been warned!
1219 	 */
1220 	add_taint_for_CI(gt->i915, TAINT_WARN);
1221 error:
1222 	__intel_gt_set_wedged(gt);
1223 	goto finish;
1224 }
1225 
intel_gt_reset_engine(struct intel_engine_cs * engine)1226 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1227 {
1228 	return __intel_gt_reset(engine->gt, engine->mask);
1229 }
1230 
__intel_engine_reset_bh(struct intel_engine_cs * engine,const char * msg)1231 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1232 {
1233 	struct intel_gt *gt = engine->gt;
1234 	int ret;
1235 
1236 	ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1237 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags));
1238 
1239 	if (intel_engine_uses_guc(engine))
1240 		return -ENODEV;
1241 
1242 	if (!intel_engine_pm_get_if_awake(engine))
1243 		return 0;
1244 
1245 	reset_prepare_engine(engine);
1246 
1247 	if (msg)
1248 		drm_notice(&engine->i915->drm,
1249 			   "Resetting %s for %s\n", engine->name, msg);
1250 	atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1251 
1252 	ret = intel_gt_reset_engine(engine);
1253 	if (ret) {
1254 		/* If we fail here, we expect to fallback to a global reset */
1255 		ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1256 		goto out;
1257 	}
1258 
1259 	/*
1260 	 * The request that caused the hang is stuck on elsp, we know the
1261 	 * active request and can drop it, adjust head to skip the offending
1262 	 * request to resume executing remaining requests in the queue.
1263 	 */
1264 	__intel_engine_reset(engine, true);
1265 
1266 	/*
1267 	 * The engine and its registers (and workarounds in case of render)
1268 	 * have been reset to their default values. Follow the init_ring
1269 	 * process to program RING_MODE, HWSP and re-enable submission.
1270 	 */
1271 	ret = intel_engine_resume(engine);
1272 
1273 out:
1274 	intel_engine_cancel_stop_cs(engine);
1275 	reset_finish_engine(engine);
1276 	intel_engine_pm_put_async(engine);
1277 	return ret;
1278 }
1279 
1280 /**
1281  * intel_engine_reset - reset GPU engine to recover from a hang
1282  * @engine: engine to reset
1283  * @msg: reason for GPU reset; or NULL for no drm_notice()
1284  *
1285  * Reset a specific GPU engine. Useful if a hang is detected.
1286  * Returns zero on successful reset or otherwise an error code.
1287  *
1288  * Procedure is:
1289  *  - identifies the request that caused the hang and it is dropped
1290  *  - reset engine (which will force the engine to idle)
1291  *  - re-init/configure engine
1292  */
intel_engine_reset(struct intel_engine_cs * engine,const char * msg)1293 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1294 {
1295 	int err;
1296 
1297 	local_bh_disable();
1298 	err = __intel_engine_reset_bh(engine, msg);
1299 	local_bh_enable();
1300 
1301 	return err;
1302 }
1303 
intel_gt_reset_global(struct intel_gt * gt,u32 engine_mask,const char * reason)1304 static void intel_gt_reset_global(struct intel_gt *gt,
1305 				  u32 engine_mask,
1306 				  const char *reason)
1307 {
1308 	struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj;
1309 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1310 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1311 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1312 	struct intel_wedge_me w;
1313 
1314 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1315 
1316 	GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1317 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1318 
1319 	/* Use a watchdog to ensure that our reset completes */
1320 	intel_wedge_on_timeout(&w, gt, 5 * HZ) {
1321 		intel_display_prepare_reset(gt->i915);
1322 
1323 		/* Flush everyone using a resource about to be clobbered */
1324 		synchronize_srcu_expedited(&gt->reset.backoff_srcu);
1325 
1326 		intel_gt_reset(gt, engine_mask, reason);
1327 
1328 		intel_display_finish_reset(gt->i915);
1329 	}
1330 
1331 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1332 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1333 }
1334 
1335 /**
1336  * intel_gt_handle_error - handle a gpu error
1337  * @gt: the intel_gt
1338  * @engine_mask: mask representing engines that are hung
1339  * @flags: control flags
1340  * @fmt: Error message format string
1341  *
1342  * Do some basic checking of register state at error time and
1343  * dump it to the syslog.  Also call i915_capture_error_state() to make
1344  * sure we get a record and make it available in debugfs.  Fire a uevent
1345  * so userspace knows something bad happened (should trigger collection
1346  * of a ring dump etc.).
1347  */
intel_gt_handle_error(struct intel_gt * gt,intel_engine_mask_t engine_mask,unsigned long flags,const char * fmt,...)1348 void intel_gt_handle_error(struct intel_gt *gt,
1349 			   intel_engine_mask_t engine_mask,
1350 			   unsigned long flags,
1351 			   const char *fmt, ...)
1352 {
1353 	struct intel_engine_cs *engine;
1354 	intel_wakeref_t wakeref;
1355 	intel_engine_mask_t tmp;
1356 	char error_msg[80];
1357 	char *msg = NULL;
1358 
1359 	if (fmt) {
1360 		va_list args;
1361 
1362 		va_start(args, fmt);
1363 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1364 		va_end(args);
1365 
1366 		msg = error_msg;
1367 	}
1368 
1369 	/*
1370 	 * In most cases it's guaranteed that we get here with an RPM
1371 	 * reference held, for example because there is a pending GPU
1372 	 * request that won't finish until the reset is done. This
1373 	 * isn't the case at least when we get here by doing a
1374 	 * simulated reset via debugfs, so get an RPM reference.
1375 	 */
1376 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1377 
1378 	engine_mask &= gt->info.engine_mask;
1379 
1380 	if (flags & I915_ERROR_CAPTURE) {
1381 		i915_capture_error_state(gt, engine_mask);
1382 		intel_gt_clear_error_registers(gt, engine_mask);
1383 	}
1384 
1385 	/*
1386 	 * Try engine reset when available. We fall back to full reset if
1387 	 * single reset fails.
1388 	 */
1389 	if (!intel_uc_uses_guc_submission(&gt->uc) &&
1390 	    intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1391 		local_bh_disable();
1392 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
1393 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1394 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1395 					     &gt->reset.flags))
1396 				continue;
1397 
1398 			if (__intel_engine_reset_bh(engine, msg) == 0)
1399 				engine_mask &= ~engine->mask;
1400 
1401 			clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1402 					      &gt->reset.flags);
1403 		}
1404 		local_bh_enable();
1405 	}
1406 
1407 	if (!engine_mask)
1408 		goto out;
1409 
1410 	/* Full reset needs the mutex, stop any other user trying to do so. */
1411 	if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1412 		wait_event(gt->reset.queue,
1413 			   !test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1414 		goto out; /* piggy-back on the other reset */
1415 	}
1416 
1417 	/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1418 	synchronize_rcu_expedited();
1419 
1420 	/* Prevent any other reset-engine attempt. */
1421 	for_each_engine(engine, gt, tmp) {
1422 		while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1423 					&gt->reset.flags))
1424 			wait_on_bit(&gt->reset.flags,
1425 				    I915_RESET_ENGINE + engine->id,
1426 				    TASK_UNINTERRUPTIBLE);
1427 	}
1428 
1429 	intel_gt_reset_global(gt, engine_mask, msg);
1430 
1431 	for_each_engine(engine, gt, tmp)
1432 		clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1433 				 &gt->reset.flags);
1434 	clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags);
1435 	smp_mb__after_atomic();
1436 	wake_up_all(&gt->reset.queue);
1437 
1438 out:
1439 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1440 }
1441 
intel_gt_reset_trylock(struct intel_gt * gt,int * srcu)1442 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1443 {
1444 	might_lock(&gt->reset.backoff_srcu);
1445 	might_sleep();
1446 
1447 	rcu_read_lock();
1448 	while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1449 		rcu_read_unlock();
1450 
1451 		if (wait_event_interruptible(gt->reset.queue,
1452 					     !test_bit(I915_RESET_BACKOFF,
1453 						       &gt->reset.flags)))
1454 			return -EINTR;
1455 
1456 		rcu_read_lock();
1457 	}
1458 	*srcu = srcu_read_lock(&gt->reset.backoff_srcu);
1459 	rcu_read_unlock();
1460 
1461 	return 0;
1462 }
1463 
intel_gt_reset_unlock(struct intel_gt * gt,int tag)1464 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1465 __releases(&gt->reset.backoff_srcu)
1466 {
1467 	srcu_read_unlock(&gt->reset.backoff_srcu, tag);
1468 }
1469 
intel_gt_terminally_wedged(struct intel_gt * gt)1470 int intel_gt_terminally_wedged(struct intel_gt *gt)
1471 {
1472 	might_sleep();
1473 
1474 	if (!intel_gt_is_wedged(gt))
1475 		return 0;
1476 
1477 	if (intel_gt_has_unrecoverable_error(gt))
1478 		return -EIO;
1479 
1480 	/* Reset still in progress? Maybe we will recover? */
1481 	if (wait_event_interruptible(gt->reset.queue,
1482 				     !test_bit(I915_RESET_BACKOFF,
1483 					       &gt->reset.flags)))
1484 		return -EINTR;
1485 
1486 	return intel_gt_is_wedged(gt) ? -EIO : 0;
1487 }
1488 
intel_gt_set_wedged_on_init(struct intel_gt * gt)1489 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1490 {
1491 	BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1492 		     I915_WEDGED_ON_INIT);
1493 	intel_gt_set_wedged(gt);
1494 	set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags);
1495 
1496 	/* Wedged on init is non-recoverable */
1497 	add_taint_for_CI(gt->i915, TAINT_WARN);
1498 }
1499 
intel_gt_set_wedged_on_fini(struct intel_gt * gt)1500 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1501 {
1502 	intel_gt_set_wedged(gt);
1503 	set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags);
1504 	intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1505 }
1506 
intel_gt_init_reset(struct intel_gt * gt)1507 void intel_gt_init_reset(struct intel_gt *gt)
1508 {
1509 	init_waitqueue_head(&gt->reset.queue);
1510 	mutex_init(&gt->reset.mutex);
1511 	init_srcu_struct(&gt->reset.backoff_srcu);
1512 
1513 	/*
1514 	 * While undesirable to wait inside the shrinker, complain anyway.
1515 	 *
1516 	 * If we have to wait during shrinking, we guarantee forward progress
1517 	 * by forcing the reset. Therefore during the reset we must not
1518 	 * re-enter the shrinker. By declaring that we take the reset mutex
1519 	 * within the shrinker, we forbid ourselves from performing any
1520 	 * fs-reclaim or taking related locks during reset.
1521 	 */
1522 	i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex);
1523 
1524 	/* no GPU until we are ready! */
1525 	__set_bit(I915_WEDGED, &gt->reset.flags);
1526 }
1527 
intel_gt_fini_reset(struct intel_gt * gt)1528 void intel_gt_fini_reset(struct intel_gt *gt)
1529 {
1530 	cleanup_srcu_struct(&gt->reset.backoff_srcu);
1531 }
1532 
intel_wedge_me(struct work_struct * work)1533 static void intel_wedge_me(struct work_struct *work)
1534 {
1535 	struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1536 
1537 	drm_err(&w->gt->i915->drm,
1538 		"%s timed out, cancelling all in-flight rendering.\n",
1539 		w->name);
1540 	intel_gt_set_wedged(w->gt);
1541 }
1542 
__intel_init_wedge(struct intel_wedge_me * w,struct intel_gt * gt,long timeout,const char * name)1543 void __intel_init_wedge(struct intel_wedge_me *w,
1544 			struct intel_gt *gt,
1545 			long timeout,
1546 			const char *name)
1547 {
1548 	w->gt = gt;
1549 	w->name = name;
1550 
1551 	INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1552 	schedule_delayed_work(&w->work, timeout);
1553 }
1554 
__intel_fini_wedge(struct intel_wedge_me * w)1555 void __intel_fini_wedge(struct intel_wedge_me *w)
1556 {
1557 	cancel_delayed_work_sync(&w->work);
1558 	destroy_delayed_work_on_stack(&w->work);
1559 	w->gt = NULL;
1560 }
1561 
1562 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1563 #include "selftest_reset.c"
1564 #include "selftest_hangcheck.c"
1565 #endif
1566