• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2019 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/misc/habanalabs.h>
15 
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/bitfield.h>
25 #include <linux/genalloc.h>
26 #include <linux/sched/signal.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/coresight.h>
29 
30 #define HL_NAME				"habanalabs"
31 
32 /* Use upper bits of mmap offset to store habana driver specific information.
33  * bits[63:61] - Encode mmap type
34  * bits[45:0]  - mmap offset value
35  *
36  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
37  *  defines are w.r.t to PAGE_SIZE
38  */
39 #define HL_MMAP_TYPE_SHIFT		(61 - PAGE_SHIFT)
40 #define HL_MMAP_TYPE_MASK		(0x7ull << HL_MMAP_TYPE_SHIFT)
41 #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
42 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
43 
44 #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
45 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
46 
47 #define HL_PENDING_RESET_PER_SEC	10
48 #define HL_PENDING_RESET_MAX_TRIALS	60 /* 10 minutes */
49 #define HL_PENDING_RESET_LONG_SEC	60
50 
51 #define HL_HARD_RESET_MAX_TIMEOUT	120
52 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
53 
54 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
55 
56 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
57 
58 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
59 
60 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
61 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
62 
63 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
64 
65 #define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
66 
67 #define HL_COMMON_USER_INTERRUPT_ID	0xFFF
68 
69 #define HL_STATE_DUMP_HIST_LEN		5
70 
71 #define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
72 #define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
73 
74 /* Memory */
75 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
76 
77 /* MMU */
78 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
79 
80 /**
81  * enum hl_mmu_page_table_locaion - mmu page table location
82  * @MMU_DR_PGT: page-table is located on device DRAM.
83  * @MMU_HR_PGT: page-table is located on host memory.
84  * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
85  */
86 enum hl_mmu_page_table_location {
87 	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
88 	MMU_HR_PGT,		/* host resident MMU PGT */
89 	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
90 };
91 
92 /*
93  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
94  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
95  */
96 #define HL_RSVD_SOBS			2
97 #define HL_RSVD_MONS			1
98 
99 /*
100  * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
101  */
102 #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
103 
104 #define HL_MAX_SOB_VAL			(1 << 15)
105 
106 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
107 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
108 
109 #define HL_PCI_NUM_BARS			6
110 
111 #define HL_MAX_DCORES			4
112 
113 /*
114  * Reset Flags
115  *
116  * - HL_RESET_HARD
117  *       If set do hard reset to all engines. If not set reset just
118  *       compute/DMA engines.
119  *
120  * - HL_RESET_FROM_RESET_THREAD
121  *       Set if the caller is the hard-reset thread
122  *
123  * - HL_RESET_HEARTBEAT
124  *       Set if reset is due to heartbeat
125  *
126  * - HL_RESET_TDR
127  *       Set if reset is due to TDR
128  *
129  * - HL_RESET_DEVICE_RELEASE
130  *       Set if reset is due to device release
131  *
132  * - HL_RESET_FW
133  *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
134  *       only when running with secured f/w
135  */
136 #define HL_RESET_HARD			(1 << 0)
137 #define HL_RESET_FROM_RESET_THREAD	(1 << 1)
138 #define HL_RESET_HEARTBEAT		(1 << 2)
139 #define HL_RESET_TDR			(1 << 3)
140 #define HL_RESET_DEVICE_RELEASE		(1 << 4)
141 #define HL_RESET_FW			(1 << 5)
142 
143 #define HL_MAX_SOBS_PER_MONITOR	8
144 
145 /**
146  * struct hl_gen_wait_properties - properties for generating a wait CB
147  * @data: command buffer
148  * @q_idx: queue id is used to extract fence register address
149  * @size: offset in command buffer
150  * @sob_base: SOB base to use in this wait CB
151  * @sob_val: SOB value to wait for
152  * @mon_id: monitor to use in this wait CB
153  * @sob_mask: each bit represents a SOB offset from sob_base to be used
154  */
155 struct hl_gen_wait_properties {
156 	void	*data;
157 	u32	q_idx;
158 	u32	size;
159 	u16	sob_base;
160 	u16	sob_val;
161 	u16	mon_id;
162 	u8	sob_mask;
163 };
164 
165 /**
166  * struct pgt_info - MMU hop page info.
167  * @node: hash linked-list node for the pgts shadow hash of pgts.
168  * @phys_addr: physical address of the pgt.
169  * @shadow_addr: shadow hop in the host.
170  * @ctx: pointer to the owner ctx.
171  * @num_of_ptes: indicates how many ptes are used in the pgt.
172  *
173  * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
174  * is needed during mapping, a new page is allocated and this structure holds
175  * its essential information. During unmapping, if no valid PTEs remained in the
176  * page, it is freed with its pgt_info structure.
177  */
178 struct pgt_info {
179 	struct hlist_node	node;
180 	u64			phys_addr;
181 	u64			shadow_addr;
182 	struct hl_ctx		*ctx;
183 	int			num_of_ptes;
184 };
185 
186 struct hl_device;
187 struct hl_fpriv;
188 
189 /**
190  * enum hl_pci_match_mode - pci match mode per region
191  * @PCI_ADDRESS_MATCH_MODE: address match mode
192  * @PCI_BAR_MATCH_MODE: bar match mode
193  */
194 enum hl_pci_match_mode {
195 	PCI_ADDRESS_MATCH_MODE,
196 	PCI_BAR_MATCH_MODE
197 };
198 
199 /**
200  * enum hl_fw_component - F/W components to read version through registers.
201  * @FW_COMP_BOOT_FIT: boot fit.
202  * @FW_COMP_PREBOOT: preboot.
203  * @FW_COMP_LINUX: linux.
204  */
205 enum hl_fw_component {
206 	FW_COMP_BOOT_FIT,
207 	FW_COMP_PREBOOT,
208 	FW_COMP_LINUX,
209 };
210 
211 /**
212  * enum hl_fw_types - F/W types present in the system
213  * @FW_TYPE_LINUX: Linux image for device CPU
214  * @FW_TYPE_BOOT_CPU: Boot image for device CPU
215  * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
216  *                       (preboot, ppboot etc...)
217  * @FW_TYPE_ALL_TYPES: Mask for all types
218  */
219 enum hl_fw_types {
220 	FW_TYPE_LINUX = 0x1,
221 	FW_TYPE_BOOT_CPU = 0x2,
222 	FW_TYPE_PREBOOT_CPU = 0x4,
223 	FW_TYPE_ALL_TYPES =
224 		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
225 };
226 
227 /**
228  * enum hl_queue_type - Supported QUEUE types.
229  * @QUEUE_TYPE_NA: queue is not available.
230  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
231  *                  host.
232  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
233  *			memories and/or operates the compute engines.
234  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
235  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
236  *                 notifications are sent by H/W.
237  */
238 enum hl_queue_type {
239 	QUEUE_TYPE_NA,
240 	QUEUE_TYPE_EXT,
241 	QUEUE_TYPE_INT,
242 	QUEUE_TYPE_CPU,
243 	QUEUE_TYPE_HW
244 };
245 
246 enum hl_cs_type {
247 	CS_TYPE_DEFAULT,
248 	CS_TYPE_SIGNAL,
249 	CS_TYPE_WAIT,
250 	CS_TYPE_COLLECTIVE_WAIT,
251 	CS_RESERVE_SIGNALS,
252 	CS_UNRESERVE_SIGNALS
253 };
254 
255 /*
256  * struct hl_inbound_pci_region - inbound region descriptor
257  * @mode: pci match mode for this region
258  * @addr: region target address
259  * @size: region size in bytes
260  * @offset_in_bar: offset within bar (address match mode)
261  * @bar: bar id
262  */
263 struct hl_inbound_pci_region {
264 	enum hl_pci_match_mode	mode;
265 	u64			addr;
266 	u64			size;
267 	u64			offset_in_bar;
268 	u8			bar;
269 };
270 
271 /*
272  * struct hl_outbound_pci_region - outbound region descriptor
273  * @addr: region target address
274  * @size: region size in bytes
275  */
276 struct hl_outbound_pci_region {
277 	u64	addr;
278 	u64	size;
279 };
280 
281 /*
282  * enum queue_cb_alloc_flags - Indicates queue support for CBs that
283  * allocated by Kernel or by User
284  * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
285  * @CB_ALLOC_USER: support only CBs that allocated by User
286  */
287 enum queue_cb_alloc_flags {
288 	CB_ALLOC_KERNEL = 0x1,
289 	CB_ALLOC_USER   = 0x2
290 };
291 
292 /*
293  * struct hl_hw_sob - H/W SOB info.
294  * @hdev: habanalabs device structure.
295  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
296  * @sob_id: id of this SOB.
297  * @sob_addr: the sob offset from the base address.
298  * @q_idx: the H/W queue that uses this SOB.
299  * @need_reset: reset indication set when switching to the other sob.
300  */
301 struct hl_hw_sob {
302 	struct hl_device	*hdev;
303 	struct kref		kref;
304 	u32			sob_id;
305 	u32			sob_addr;
306 	u32			q_idx;
307 	bool			need_reset;
308 };
309 
310 enum hl_collective_mode {
311 	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
312 	HL_COLLECTIVE_MASTER = 0x1,
313 	HL_COLLECTIVE_SLAVE = 0x2
314 };
315 
316 /**
317  * struct hw_queue_properties - queue information.
318  * @type: queue type.
319  * @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
320  *                        that allocated by the Kernel driver and therefore,
321  *                        a CB handle can be provided for jobs on this queue.
322  *                        Otherwise, a CB address must be provided.
323  * @collective_mode: collective mode of current queue
324  * @driver_only: true if only the driver is allowed to send a job to this queue,
325  *               false otherwise.
326  * @supports_sync_stream: True if queue supports sync stream
327  */
328 struct hw_queue_properties {
329 	enum hl_queue_type	type;
330 	enum queue_cb_alloc_flags cb_alloc_flags;
331 	enum hl_collective_mode	collective_mode;
332 	u8			driver_only;
333 	u8			supports_sync_stream;
334 };
335 
336 /**
337  * enum vm_type - virtual memory mapping request information.
338  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
339  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
340  */
341 enum vm_type {
342 	VM_TYPE_USERPTR = 0x1,
343 	VM_TYPE_PHYS_PACK = 0x2
344 };
345 
346 /**
347  * enum hl_device_hw_state - H/W device state. use this to understand whether
348  *                           to do reset before hw_init or not
349  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
350  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
351  *                            hw_init
352  */
353 enum hl_device_hw_state {
354 	HL_DEVICE_HW_STATE_CLEAN = 0,
355 	HL_DEVICE_HW_STATE_DIRTY
356 };
357 
358 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
359 
360 /**
361  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
362  * @start_addr: virtual start address of the memory region.
363  * @end_addr: virtual end address of the memory region.
364  * @hop0_shift: shift of hop 0 mask.
365  * @hop1_shift: shift of hop 1 mask.
366  * @hop2_shift: shift of hop 2 mask.
367  * @hop3_shift: shift of hop 3 mask.
368  * @hop4_shift: shift of hop 4 mask.
369  * @hop5_shift: shift of hop 5 mask.
370  * @hop0_mask: mask to get the PTE address in hop 0.
371  * @hop1_mask: mask to get the PTE address in hop 1.
372  * @hop2_mask: mask to get the PTE address in hop 2.
373  * @hop3_mask: mask to get the PTE address in hop 3.
374  * @hop4_mask: mask to get the PTE address in hop 4.
375  * @hop5_mask: mask to get the PTE address in hop 5.
376  * @page_size: default page size used to allocate memory.
377  * @num_hops: The amount of hops supported by the translation table.
378  * @host_resident: Should the MMU page table reside in host memory or in the
379  *                 device DRAM.
380  */
381 struct hl_mmu_properties {
382 	u64	start_addr;
383 	u64	end_addr;
384 	u64	hop0_shift;
385 	u64	hop1_shift;
386 	u64	hop2_shift;
387 	u64	hop3_shift;
388 	u64	hop4_shift;
389 	u64	hop5_shift;
390 	u64	hop0_mask;
391 	u64	hop1_mask;
392 	u64	hop2_mask;
393 	u64	hop3_mask;
394 	u64	hop4_mask;
395 	u64	hop5_mask;
396 	u32	page_size;
397 	u32	num_hops;
398 	u8	host_resident;
399 };
400 
401 /**
402  * struct hl_hints_range - hint addresses reserved va range.
403  * @start_addr: start address of the va range.
404  * @end_addr: end address of the va range.
405  */
406 struct hl_hints_range {
407 	u64 start_addr;
408 	u64 end_addr;
409 };
410 
411 /**
412  * struct asic_fixed_properties - ASIC specific immutable properties.
413  * @hw_queues_props: H/W queues properties.
414  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
415  *		available sensors.
416  * @uboot_ver: F/W U-boot version.
417  * @preboot_ver: F/W Preboot version.
418  * @dmmu: DRAM MMU address translation properties.
419  * @pmmu: PCI (host) MMU address translation properties.
420  * @pmmu_huge: PCI (host) MMU address translation properties for memory
421  *              allocated with huge pages.
422  * @hints_dram_reserved_va_range: dram hint addresses reserved range.
423  * @hints_host_reserved_va_range: host hint addresses reserved range.
424  * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
425  *                                      range.
426  * @sram_base_address: SRAM physical start address.
427  * @sram_end_address: SRAM physical end address.
428  * @sram_user_base_address - SRAM physical start address for user access.
429  * @dram_base_address: DRAM physical start address.
430  * @dram_end_address: DRAM physical end address.
431  * @dram_user_base_address: DRAM physical start address for user access.
432  * @dram_size: DRAM total size.
433  * @dram_pci_bar_size: size of PCI bar towards DRAM.
434  * @max_power_default: max power of the device after reset
435  * @dc_power_default: power consumed by the device in mode idle.
436  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
437  *                                      fault.
438  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
439  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
440  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
441  * @mmu_dram_default_page_addr: DRAM default page physical address.
442  * @cb_va_start_addr: virtual start address of command buffers which are mapped
443  *                    to the device's MMU.
444  * @cb_va_end_addr: virtual end address of command buffers which are mapped to
445  *                  the device's MMU.
446  * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
447  *                  for hints validity check.
448  * device_dma_offset_for_host_access: the offset to add to host DMA addresses
449  *                                    to enable the device to access them.
450  * @mmu_pgt_size: MMU page tables total size.
451  * @mmu_pte_size: PTE size in MMU page tables.
452  * @mmu_hop_table_size: MMU hop table size.
453  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
454  * @dram_page_size: page size for MMU DRAM allocation.
455  * @cfg_size: configuration space size on SRAM.
456  * @sram_size: total size of SRAM.
457  * @max_asid: maximum number of open contexts (ASIDs).
458  * @num_of_events: number of possible internal H/W IRQs.
459  * @psoc_pci_pll_nr: PCI PLL NR value.
460  * @psoc_pci_pll_nf: PCI PLL NF value.
461  * @psoc_pci_pll_od: PCI PLL OD value.
462  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
463  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
464  * @high_pll: high PLL frequency used by the device.
465  * @cb_pool_cb_cnt: number of CBs in the CB pool.
466  * @cb_pool_cb_size: size of each CB in the CB pool.
467  * @max_pending_cs: maximum of concurrent pending command submissions
468  * @max_queues: maximum amount of queues in the system
469  * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
470  *                                capabilities reported by FW, bit description
471  *                                can be found in CPU_BOOT_DEV_STS0
472  * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
473  *                                capabilities reported by FW, bit description
474  *                                can be found in CPU_BOOT_DEV_STS1
475  * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
476  *                                status reported by FW, bit description can be
477  *                                found in CPU_BOOT_DEV_STS0
478  * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
479  *                                status reported by FW, bit description can be
480  *                                found in CPU_BOOT_DEV_STS1
481  * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
482  *                            status reported by FW, bit description can be
483  *                            found in CPU_BOOT_DEV_STS0
484  * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
485  *                            status reported by FW, bit description can be
486  *                            found in CPU_BOOT_DEV_STS1
487  * @collective_first_sob: first sync object available for collective use
488  * @collective_first_mon: first monitor available for collective use
489  * @sync_stream_first_sob: first sync object available for sync stream use
490  * @sync_stream_first_mon: first monitor available for sync stream use
491  * @first_available_user_sob: first sob available for the user
492  * @first_available_user_mon: first monitor available for the user
493  * @first_available_user_msix_interrupt: first available msix interrupt
494  *                                       reserved for the user
495  * @first_available_cq: first available CQ for the user.
496  * @user_interrupt_count: number of user interrupts.
497  * @server_type: Server type that the ASIC is currently installed in.
498  *               The value is according to enum hl_server_type in uapi file.
499  * @tpc_enabled_mask: which TPCs are enabled.
500  * @completion_queues_count: number of completion queues.
501  * @fw_security_enabled: true if security measures are enabled in firmware,
502  *                       false otherwise
503  * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
504  *                              BOOT_DEV_STS0
505  * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
506  *                              BOOT_DEV_STS1
507  * @dram_supports_virtual_memory: is there an MMU towards the DRAM
508  * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
509  * @num_functional_hbms: number of functional HBMs in each DCORE.
510  * @hints_range_reservation: device support hint addresses range reservation.
511  * @iatu_done_by_fw: true if iATU configuration is being done by FW.
512  * @dynamic_fw_load: is dynamic FW load is supported.
513  * @gic_interrupts_enable: true if FW is not blocking GIC controller,
514  *                         false otherwise.
515  */
516 struct asic_fixed_properties {
517 	struct hw_queue_properties	*hw_queues_props;
518 	struct cpucp_info		cpucp_info;
519 	char				uboot_ver[VERSION_MAX_LEN];
520 	char				preboot_ver[VERSION_MAX_LEN];
521 	struct hl_mmu_properties	dmmu;
522 	struct hl_mmu_properties	pmmu;
523 	struct hl_mmu_properties	pmmu_huge;
524 	struct hl_hints_range		hints_dram_reserved_va_range;
525 	struct hl_hints_range		hints_host_reserved_va_range;
526 	struct hl_hints_range		hints_host_hpage_reserved_va_range;
527 	u64				sram_base_address;
528 	u64				sram_end_address;
529 	u64				sram_user_base_address;
530 	u64				dram_base_address;
531 	u64				dram_end_address;
532 	u64				dram_user_base_address;
533 	u64				dram_size;
534 	u64				dram_pci_bar_size;
535 	u64				max_power_default;
536 	u64				dc_power_default;
537 	u64				dram_size_for_default_page_mapping;
538 	u64				pcie_dbi_base_address;
539 	u64				pcie_aux_dbi_reg_addr;
540 	u64				mmu_pgt_addr;
541 	u64				mmu_dram_default_page_addr;
542 	u64				cb_va_start_addr;
543 	u64				cb_va_end_addr;
544 	u64				dram_hints_align_mask;
545 	u64				device_dma_offset_for_host_access;
546 	u32				mmu_pgt_size;
547 	u32				mmu_pte_size;
548 	u32				mmu_hop_table_size;
549 	u32				mmu_hop0_tables_total_size;
550 	u32				dram_page_size;
551 	u32				cfg_size;
552 	u32				sram_size;
553 	u32				max_asid;
554 	u32				num_of_events;
555 	u32				psoc_pci_pll_nr;
556 	u32				psoc_pci_pll_nf;
557 	u32				psoc_pci_pll_od;
558 	u32				psoc_pci_pll_div_factor;
559 	u32				psoc_timestamp_frequency;
560 	u32				high_pll;
561 	u32				cb_pool_cb_cnt;
562 	u32				cb_pool_cb_size;
563 	u32				max_pending_cs;
564 	u32				max_queues;
565 	u32				fw_preboot_cpu_boot_dev_sts0;
566 	u32				fw_preboot_cpu_boot_dev_sts1;
567 	u32				fw_bootfit_cpu_boot_dev_sts0;
568 	u32				fw_bootfit_cpu_boot_dev_sts1;
569 	u32				fw_app_cpu_boot_dev_sts0;
570 	u32				fw_app_cpu_boot_dev_sts1;
571 	u16				collective_first_sob;
572 	u16				collective_first_mon;
573 	u16				sync_stream_first_sob;
574 	u16				sync_stream_first_mon;
575 	u16				first_available_user_sob[HL_MAX_DCORES];
576 	u16				first_available_user_mon[HL_MAX_DCORES];
577 	u16				first_available_user_msix_interrupt;
578 	u16				first_available_cq[HL_MAX_DCORES];
579 	u16				user_interrupt_count;
580 	u16				server_type;
581 	u8				tpc_enabled_mask;
582 	u8				completion_queues_count;
583 	u8				fw_security_enabled;
584 	u8				fw_cpu_boot_dev_sts0_valid;
585 	u8				fw_cpu_boot_dev_sts1_valid;
586 	u8				dram_supports_virtual_memory;
587 	u8				hard_reset_done_by_fw;
588 	u8				num_functional_hbms;
589 	u8				hints_range_reservation;
590 	u8				iatu_done_by_fw;
591 	u8				dynamic_fw_load;
592 	u8				gic_interrupts_enable;
593 };
594 
595 /**
596  * struct hl_fence - software synchronization primitive
597  * @completion: fence is implemented using completion
598  * @refcount: refcount for this fence
599  * @cs_sequence: sequence of the corresponding command submission
600  * @stream_master_qid_map: streams masters QID bitmap to represent all streams
601  *                         masters QIDs that multi cs is waiting on
602  * @error: mark this fence with error
603  * @timestamp: timestamp upon completion
604  */
605 struct hl_fence {
606 	struct completion	completion;
607 	struct kref		refcount;
608 	u64			cs_sequence;
609 	u32			stream_master_qid_map;
610 	int			error;
611 	ktime_t			timestamp;
612 };
613 
614 /**
615  * struct hl_cs_compl - command submission completion object.
616  * @base_fence: hl fence object.
617  * @lock: spinlock to protect fence.
618  * @hdev: habanalabs device structure.
619  * @hw_sob: the H/W SOB used in this signal/wait CS.
620  * @encaps_sig_hdl: encaps signals hanlder.
621  * @cs_seq: command submission sequence number.
622  * @type: type of the CS - signal/wait.
623  * @sob_val: the SOB value that is used in this signal/wait CS.
624  * @sob_group: the SOB group that is used in this collective wait CS.
625  * @encaps_signals: indication whether it's a completion object of cs with
626  * encaps signals or not.
627  */
628 struct hl_cs_compl {
629 	struct hl_fence		base_fence;
630 	spinlock_t		lock;
631 	struct hl_device	*hdev;
632 	struct hl_hw_sob	*hw_sob;
633 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
634 	u64			cs_seq;
635 	enum hl_cs_type		type;
636 	u16			sob_val;
637 	u16			sob_group;
638 	bool			encaps_signals;
639 };
640 
641 /*
642  * Command Buffers
643  */
644 
645 /**
646  * struct hl_cb_mgr - describes a Command Buffer Manager.
647  * @cb_lock: protects cb_handles.
648  * @cb_handles: an idr to hold all command buffer handles.
649  */
650 struct hl_cb_mgr {
651 	spinlock_t		cb_lock;
652 	struct idr		cb_handles; /* protected by cb_lock */
653 };
654 
655 /**
656  * struct hl_cb - describes a Command Buffer.
657  * @refcount: reference counter for usage of the CB.
658  * @hdev: pointer to device this CB belongs to.
659  * @ctx: pointer to the CB owner's context.
660  * @lock: spinlock to protect mmap flows.
661  * @debugfs_list: node in debugfs list of command buffers.
662  * @pool_list: node in pool list of command buffers.
663  * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
664  *                 the device's MMU.
665  * @id: the CB's ID.
666  * @kernel_address: Holds the CB's kernel virtual address.
667  * @bus_address: Holds the CB's DMA address.
668  * @mmap_size: Holds the CB's size that was mmaped.
669  * @size: holds the CB's size.
670  * @cs_cnt: holds number of CS that this CB participates in.
671  * @mmap: true if the CB is currently mmaped to user.
672  * @is_pool: true if CB was acquired from the pool, false otherwise.
673  * @is_internal: internaly allocated
674  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
675  */
676 struct hl_cb {
677 	struct kref		refcount;
678 	struct hl_device	*hdev;
679 	struct hl_ctx		*ctx;
680 	spinlock_t		lock;
681 	struct list_head	debugfs_list;
682 	struct list_head	pool_list;
683 	struct list_head	va_block_list;
684 	u64			id;
685 	void			*kernel_address;
686 	dma_addr_t		bus_address;
687 	u32			mmap_size;
688 	u32			size;
689 	atomic_t		cs_cnt;
690 	u8			mmap;
691 	u8			is_pool;
692 	u8			is_internal;
693 	u8			is_mmu_mapped;
694 };
695 
696 
697 /*
698  * QUEUES
699  */
700 
701 struct hl_cs;
702 struct hl_cs_job;
703 
704 /* Queue length of external and HW queues */
705 #define HL_QUEUE_LENGTH			4096
706 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
707 
708 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
709 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
710 #endif
711 
712 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
713 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
714 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
715 
716 /* Must be power of 2 */
717 #define HL_EQ_LENGTH			64
718 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
719 
720 /* Host <-> CPU-CP shared memory size */
721 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
722 
723 /**
724  * struct hl_sync_stream_properties -
725  *     describes a H/W queue sync stream properties
726  * @hw_sob: array of the used H/W SOBs by this H/W queue.
727  * @next_sob_val: the next value to use for the currently used SOB.
728  * @base_sob_id: the base SOB id of the SOBs used by this queue.
729  * @base_mon_id: the base MON id of the MONs used by this queue.
730  * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
731  *                          in order to sync with all slave queues.
732  * @collective_slave_mon_id: the MON id used by this slave queue in order to
733  *                           sync with its master queue.
734  * @collective_sob_id: current SOB id used by this collective slave queue
735  *                     to signal its collective master queue upon completion.
736  * @curr_sob_offset: the id offset to the currently used SOB from the
737  *                   HL_RSVD_SOBS that are being used by this queue.
738  */
739 struct hl_sync_stream_properties {
740 	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
741 	u16		next_sob_val;
742 	u16		base_sob_id;
743 	u16		base_mon_id;
744 	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
745 	u16		collective_slave_mon_id;
746 	u16		collective_sob_id;
747 	u8		curr_sob_offset;
748 };
749 
750 /**
751  * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
752  * handlers manager
753  * @lock: protects handles.
754  * @handles: an idr to hold all encapsulated signals handles.
755  */
756 struct hl_encaps_signals_mgr {
757 	spinlock_t		lock;
758 	struct idr		handles;
759 };
760 
761 /**
762  * struct hl_hw_queue - describes a H/W transport queue.
763  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
764  * @sync_stream_prop: sync stream queue properties
765  * @queue_type: type of queue.
766  * @collective_mode: collective mode of current queue
767  * @kernel_address: holds the queue's kernel virtual address.
768  * @bus_address: holds the queue's DMA address.
769  * @pi: holds the queue's pi value.
770  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
771  * @hw_queue_id: the id of the H/W queue.
772  * @cq_id: the id for the corresponding CQ for this H/W queue.
773  * @msi_vec: the IRQ number of the H/W queue.
774  * @int_queue_len: length of internal queue (number of entries).
775  * @valid: is the queue valid (we have array of 32 queues, not all of them
776  *         exist).
777  * @supports_sync_stream: True if queue supports sync stream
778  */
779 struct hl_hw_queue {
780 	struct hl_cs_job			**shadow_queue;
781 	struct hl_sync_stream_properties	sync_stream_prop;
782 	enum hl_queue_type			queue_type;
783 	enum hl_collective_mode			collective_mode;
784 	void					*kernel_address;
785 	dma_addr_t				bus_address;
786 	u32					pi;
787 	atomic_t				ci;
788 	u32					hw_queue_id;
789 	u32					cq_id;
790 	u32					msi_vec;
791 	u16					int_queue_len;
792 	u8					valid;
793 	u8					supports_sync_stream;
794 };
795 
796 /**
797  * struct hl_cq - describes a completion queue
798  * @hdev: pointer to the device structure
799  * @kernel_address: holds the queue's kernel virtual address
800  * @bus_address: holds the queue's DMA address
801  * @cq_idx: completion queue index in array
802  * @hw_queue_id: the id of the matching H/W queue
803  * @ci: ci inside the queue
804  * @pi: pi inside the queue
805  * @free_slots_cnt: counter of free slots in queue
806  */
807 struct hl_cq {
808 	struct hl_device	*hdev;
809 	void			*kernel_address;
810 	dma_addr_t		bus_address;
811 	u32			cq_idx;
812 	u32			hw_queue_id;
813 	u32			ci;
814 	u32			pi;
815 	atomic_t		free_slots_cnt;
816 };
817 
818 /**
819  * struct hl_user_interrupt - holds user interrupt information
820  * @hdev: pointer to the device structure
821  * @wait_list_head: head to the list of user threads pending on this interrupt
822  * @wait_list_lock: protects wait_list_head
823  * @interrupt_id: msix interrupt id
824  */
825 struct hl_user_interrupt {
826 	struct hl_device	*hdev;
827 	struct list_head	wait_list_head;
828 	spinlock_t		wait_list_lock;
829 	u32			interrupt_id;
830 };
831 
832 /**
833  * struct hl_user_pending_interrupt - holds a context to a user thread
834  *                                    pending on an interrupt
835  * @wait_list_node: node in the list of user threads pending on an interrupt
836  * @fence: hl fence object for interrupt completion
837  */
838 struct hl_user_pending_interrupt {
839 	struct list_head	wait_list_node;
840 	struct hl_fence		fence;
841 };
842 
843 /**
844  * struct hl_eq - describes the event queue (single one per device)
845  * @hdev: pointer to the device structure
846  * @kernel_address: holds the queue's kernel virtual address
847  * @bus_address: holds the queue's DMA address
848  * @ci: ci inside the queue
849  * @prev_eqe_index: the index of the previous event queue entry. The index of
850  *                  the current entry's index must be +1 of the previous one.
851  * @check_eqe_index: do we need to check the index of the current entry vs. the
852  *                   previous one. This is for backward compatibility with older
853  *                   firmwares
854  */
855 struct hl_eq {
856 	struct hl_device	*hdev;
857 	void			*kernel_address;
858 	dma_addr_t		bus_address;
859 	u32			ci;
860 	u32			prev_eqe_index;
861 	bool			check_eqe_index;
862 };
863 
864 
865 /*
866  * ASICs
867  */
868 
869 /**
870  * enum hl_asic_type - supported ASIC types.
871  * @ASIC_INVALID: Invalid ASIC type.
872  * @ASIC_GOYA: Goya device.
873  * @ASIC_GAUDI: Gaudi device.
874  * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
875  */
876 enum hl_asic_type {
877 	ASIC_INVALID,
878 	ASIC_GOYA,
879 	ASIC_GAUDI,
880 	ASIC_GAUDI_SEC
881 };
882 
883 struct hl_cs_parser;
884 
885 /**
886  * enum hl_pm_mng_profile - power management profile.
887  * @PM_AUTO: internal clock is set by the Linux driver.
888  * @PM_MANUAL: internal clock is set by the user.
889  * @PM_LAST: last power management type.
890  */
891 enum hl_pm_mng_profile {
892 	PM_AUTO = 1,
893 	PM_MANUAL,
894 	PM_LAST
895 };
896 
897 /**
898  * enum hl_pll_frequency - PLL frequency.
899  * @PLL_HIGH: high frequency.
900  * @PLL_LOW: low frequency.
901  * @PLL_LAST: last frequency values that were configured by the user.
902  */
903 enum hl_pll_frequency {
904 	PLL_HIGH = 1,
905 	PLL_LOW,
906 	PLL_LAST
907 };
908 
909 #define PLL_REF_CLK 50
910 
911 enum div_select_defs {
912 	DIV_SEL_REF_CLK = 0,
913 	DIV_SEL_PLL_CLK = 1,
914 	DIV_SEL_DIVIDED_REF = 2,
915 	DIV_SEL_DIVIDED_PLL = 3,
916 };
917 
918 enum pci_region {
919 	PCI_REGION_CFG,
920 	PCI_REGION_SRAM,
921 	PCI_REGION_DRAM,
922 	PCI_REGION_SP_SRAM,
923 	PCI_REGION_NUMBER,
924 };
925 
926 /**
927  * struct pci_mem_region - describe memory region in a PCI bar
928  * @region_base: region base address
929  * @region_size: region size
930  * @bar_size: size of the BAR
931  * @offset_in_bar: region offset into the bar
932  * @bar_id: bar ID of the region
933  * @used: if used 1, otherwise 0
934  */
935 struct pci_mem_region {
936 	u64 region_base;
937 	u64 region_size;
938 	u64 bar_size;
939 	u64 offset_in_bar;
940 	u8 bar_id;
941 	u8 used;
942 };
943 
944 /**
945  * struct static_fw_load_mgr - static FW load manager
946  * @preboot_version_max_off: max offset to preboot version
947  * @boot_fit_version_max_off: max offset to boot fit version
948  * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
949  * @cpu_cmd_status_to_host_reg: register address for CPU command status response
950  * @cpu_boot_status_reg: boot status register
951  * @cpu_boot_dev_status0_reg: boot device status register 0
952  * @cpu_boot_dev_status1_reg: boot device status register 1
953  * @boot_err0_reg: boot error register 0
954  * @boot_err1_reg: boot error register 1
955  * @preboot_version_offset_reg: SRAM offset to preboot version register
956  * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
957  * @sram_offset_mask: mask for getting offset into the SRAM
958  * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
959  */
960 struct static_fw_load_mgr {
961 	u64 preboot_version_max_off;
962 	u64 boot_fit_version_max_off;
963 	u32 kmd_msg_to_cpu_reg;
964 	u32 cpu_cmd_status_to_host_reg;
965 	u32 cpu_boot_status_reg;
966 	u32 cpu_boot_dev_status0_reg;
967 	u32 cpu_boot_dev_status1_reg;
968 	u32 boot_err0_reg;
969 	u32 boot_err1_reg;
970 	u32 preboot_version_offset_reg;
971 	u32 boot_fit_version_offset_reg;
972 	u32 sram_offset_mask;
973 	u32 cpu_reset_wait_msec;
974 };
975 
976 /**
977  * struct fw_response - FW response to LKD command
978  * @ram_offset: descriptor offset into the RAM
979  * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
980  * @status: command status
981  */
982 struct fw_response {
983 	u32 ram_offset;
984 	u8 ram_type;
985 	u8 status;
986 };
987 
988 /**
989  * struct dynamic_fw_load_mgr - dynamic FW load manager
990  * @response: FW to LKD response
991  * @comm_desc: the communication descriptor with FW
992  * @image_region: region to copy the FW image to
993  * @fw_image_size: size of FW image to load
994  * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
995  * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
996  */
997 struct dynamic_fw_load_mgr {
998 	struct fw_response response;
999 	struct lkd_fw_comms_desc comm_desc;
1000 	struct pci_mem_region *image_region;
1001 	size_t fw_image_size;
1002 	u32 wait_for_bl_timeout;
1003 	bool fw_desc_valid;
1004 };
1005 
1006 /**
1007  * struct fw_image_props - properties of FW image
1008  * @image_name: name of the image
1009  * @src_off: offset in src FW to copy from
1010  * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1011  */
1012 struct fw_image_props {
1013 	char *image_name;
1014 	u32 src_off;
1015 	u32 copy_size;
1016 };
1017 
1018 /**
1019  * struct fw_load_mgr - manager FW loading process
1020  * @dynamic_loader: specific structure for dynamic load
1021  * @static_loader: specific structure for static load
1022  * @boot_fit_img: boot fit image properties
1023  * @linux_img: linux image properties
1024  * @cpu_timeout: CPU response timeout in usec
1025  * @boot_fit_timeout: Boot fit load timeout in usec
1026  * @skip_bmc: should BMC be skipped
1027  * @sram_bar_id: SRAM bar ID
1028  * @dram_bar_id: DRAM bar ID
1029  * @linux_loaded: true if linux was loaded so far
1030  */
1031 struct fw_load_mgr {
1032 	union {
1033 		struct dynamic_fw_load_mgr dynamic_loader;
1034 		struct static_fw_load_mgr static_loader;
1035 	};
1036 	struct fw_image_props boot_fit_img;
1037 	struct fw_image_props linux_img;
1038 	u32 cpu_timeout;
1039 	u32 boot_fit_timeout;
1040 	u8 skip_bmc;
1041 	u8 sram_bar_id;
1042 	u8 dram_bar_id;
1043 	u8 linux_loaded;
1044 };
1045 
1046 /**
1047  * struct hl_asic_funcs - ASIC specific functions that are can be called from
1048  *                        common code.
1049  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1050  * @early_fini: tears down what was done in early_init.
1051  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1052  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1053  * @sw_init: sets up driver state, does not configure H/W.
1054  * @sw_fini: tears down driver state, does not configure H/W.
1055  * @hw_init: sets up the H/W state.
1056  * @hw_fini: tears down the H/W state.
1057  * @halt_engines: halt engines, needed for reset sequence. This also disables
1058  *                interrupts from the device. Should be called before
1059  *                hw_fini and before CS rollback.
1060  * @suspend: handles IP specific H/W or SW changes for suspend.
1061  * @resume: handles IP specific H/W or SW changes for resume.
1062  * @mmap: maps a memory.
1063  * @ring_doorbell: increment PI on a given QMAN.
1064  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1065  *             function because the PQs are located in different memory areas
1066  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1067  *             writing the PQE must match the destination memory area
1068  *             properties.
1069  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1070  *                           dma_alloc_coherent(). This is ASIC function because
1071  *                           its implementation is not trivial when the driver
1072  *                           is loaded in simulation mode (not upstreamed).
1073  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1074  *                           dma_free_coherent(). This is ASIC function because
1075  *                           its implementation is not trivial when the driver
1076  *                           is loaded in simulation mode (not upstreamed).
1077  * @scrub_device_mem: Scrub device memory given an address and size
1078  * @get_int_queue_base: get the internal queue base address.
1079  * @test_queues: run simple test on all queues for sanity check.
1080  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1081  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1082  * @asic_dma_pool_free: free small DMA allocation from pool.
1083  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1084  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1085  * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
1086  * @cs_parser: parse Command Submission.
1087  * @asic_dma_map_sg: DMA map scatter-gather list.
1088  * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
1089  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1090  * @update_eq_ci: update event queue CI.
1091  * @context_switch: called upon ASID context switch.
1092  * @restore_phase_topology: clear all SOBs amd MONs.
1093  * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM/Host memory.
1094  * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM/Host memory.
1095  * @debugfs_read64: debug interface for reading u64 from DRAM/SRAM/Host memory.
1096  * @debugfs_write64: debug interface for writing u64 to DRAM/SRAM/Host memory.
1097  * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1098  *                    internal memory via DMA engine.
1099  * @add_device_attr: add ASIC specific device attributes.
1100  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1101  * @set_pll_profile: change PLL profile (manual/automatic).
1102  * @get_events_stat: retrieve event queue entries histogram.
1103  * @read_pte: read MMU page table entry from DRAM.
1104  * @write_pte: write MMU page table entry to DRAM.
1105  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1106  *                        (L1 only) or hard (L0 & L1) flush.
1107  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
1108  *                              ASID-VA-size mask.
1109  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1110  * @set_clock_gating: enable/disable clock gating per engine according to
1111  *                    clock gating mask in hdev
1112  * @disable_clock_gating: disable clock gating completely
1113  * @debug_coresight: perform certain actions on Coresight for debugging.
1114  * @is_device_idle: return true if device is idle, false otherwise.
1115  * @soft_reset_late_init: perform certain actions needed after soft reset.
1116  * @hw_queues_lock: acquire H/W queues lock.
1117  * @hw_queues_unlock: release H/W queues lock.
1118  * @get_pci_id: retrieve PCI ID.
1119  * @get_eeprom_data: retrieve EEPROM data from F/W.
1120  * @send_cpu_message: send message to F/W. If the message is timedout, the
1121  *                    driver will eventually reset the device. The timeout can
1122  *                    be determined by the calling function or it can be 0 and
1123  *                    then the timeout is the default timeout for the specific
1124  *                    ASIC
1125  * @get_hw_state: retrieve the H/W state
1126  * @pci_bars_map: Map PCI BARs.
1127  * @init_iatu: Initialize the iATU unit inside the PCI controller.
1128  * @rreg: Read a register. Needed for simulator support.
1129  * @wreg: Write a register. Needed for simulator support.
1130  * @halt_coresight: stop the ETF and ETR traces.
1131  * @ctx_init: context dependent initialization.
1132  * @ctx_fini: context dependent cleanup.
1133  * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
1134  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1135  * @load_firmware_to_device: load the firmware to the device's memory
1136  * @load_boot_fit_to_device: load boot fit to device's memory
1137  * @get_signal_cb_size: Get signal CB size.
1138  * @get_wait_cb_size: Get wait CB size.
1139  * @gen_signal_cb: Generate a signal CB.
1140  * @gen_wait_cb: Generate a wait CB.
1141  * @reset_sob: Reset a SOB.
1142  * @reset_sob_group: Reset SOB group
1143  * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
1144  *                        firmware configuration
1145  * @get_device_time: Get the device time.
1146  * @collective_wait_init_cs: Generate collective master/slave packets
1147  *                           and place them in the relevant cs jobs
1148  * @collective_wait_create_jobs: allocate collective wait cs jobs
1149  * @scramble_addr: Routine to scramble the address prior of mapping it
1150  *                 in the MMU.
1151  * @descramble_addr: Routine to de-scramble the address prior of
1152  *                   showing it to users.
1153  * @ack_protection_bits_errors: ack and dump all security violations
1154  * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1155  *                   also returns the size of the block if caller supplies
1156  *                   a valid pointer for it
1157  * @hw_block_mmap: mmap a HW block with a given id.
1158  * @enable_events_from_fw: send interrupt to firmware to notify them the
1159  *                         driver is ready to receive asynchronous events. This
1160  *                         function should be called during the first init and
1161  *                         after every hard-reset of the device
1162  * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1163  * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1164  *                         generic f/w compatible PLL Indexes
1165  * @init_firmware_loader: initialize data for FW loader.
1166  * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1167  * @state_dump_init: initialize constants required for state dump
1168  * @get_sob_addr: get SOB base address offset.
1169  * @set_pci_memory_regions: setting properties of PCI memory regions
1170  * @get_stream_master_qid_arr: get pointer to stream masters QID array
1171  */
1172 struct hl_asic_funcs {
1173 	int (*early_init)(struct hl_device *hdev);
1174 	int (*early_fini)(struct hl_device *hdev);
1175 	int (*late_init)(struct hl_device *hdev);
1176 	void (*late_fini)(struct hl_device *hdev);
1177 	int (*sw_init)(struct hl_device *hdev);
1178 	int (*sw_fini)(struct hl_device *hdev);
1179 	int (*hw_init)(struct hl_device *hdev);
1180 	void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1181 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1182 	int (*suspend)(struct hl_device *hdev);
1183 	int (*resume)(struct hl_device *hdev);
1184 	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1185 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1186 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1187 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1188 			struct hl_bd *bd);
1189 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1190 					dma_addr_t *dma_handle, gfp_t flag);
1191 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1192 					void *cpu_addr, dma_addr_t dma_handle);
1193 	int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
1194 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1195 				dma_addr_t *dma_handle, u16 *queue_len);
1196 	int (*test_queues)(struct hl_device *hdev);
1197 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1198 				gfp_t mem_flags, dma_addr_t *dma_handle);
1199 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1200 				dma_addr_t dma_addr);
1201 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1202 				size_t size, dma_addr_t *dma_handle);
1203 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1204 				size_t size, void *vaddr);
1205 	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
1206 				struct scatterlist *sgl, int nents,
1207 				enum dma_data_direction dir);
1208 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1209 	int (*asic_dma_map_sg)(struct hl_device *hdev,
1210 				struct scatterlist *sgl, int nents,
1211 				enum dma_data_direction dir);
1212 	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
1213 					struct sg_table *sgt);
1214 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1215 					void *kernel_address, u32 len,
1216 					u64 cq_addr, u32 cq_val, u32 msix_num,
1217 					bool eb);
1218 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1219 	int (*context_switch)(struct hl_device *hdev, u32 asid);
1220 	void (*restore_phase_topology)(struct hl_device *hdev);
1221 	int (*debugfs_read32)(struct hl_device *hdev, u64 addr,
1222 				bool user_address, u32 *val);
1223 	int (*debugfs_write32)(struct hl_device *hdev, u64 addr,
1224 				bool user_address, u32 val);
1225 	int (*debugfs_read64)(struct hl_device *hdev, u64 addr,
1226 				bool user_address, u64 *val);
1227 	int (*debugfs_write64)(struct hl_device *hdev, u64 addr,
1228 				bool user_address, u64 val);
1229 	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1230 				void *blob_addr);
1231 	void (*add_device_attr)(struct hl_device *hdev,
1232 				struct attribute_group *dev_attr_grp);
1233 	void (*handle_eqe)(struct hl_device *hdev,
1234 				struct hl_eq_entry *eq_entry);
1235 	void (*set_pll_profile)(struct hl_device *hdev,
1236 			enum hl_pll_frequency freq);
1237 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1238 				u32 *size);
1239 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1240 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1241 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1242 					u32 flags);
1243 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1244 				u32 flags, u32 asid, u64 va, u64 size);
1245 	int (*send_heartbeat)(struct hl_device *hdev);
1246 	void (*set_clock_gating)(struct hl_device *hdev);
1247 	void (*disable_clock_gating)(struct hl_device *hdev);
1248 	int (*debug_coresight)(struct hl_device *hdev, void *data);
1249 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
1250 					u8 mask_len, struct seq_file *s);
1251 	int (*soft_reset_late_init)(struct hl_device *hdev);
1252 	void (*hw_queues_lock)(struct hl_device *hdev);
1253 	void (*hw_queues_unlock)(struct hl_device *hdev);
1254 	u32 (*get_pci_id)(struct hl_device *hdev);
1255 	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
1256 				size_t max_size);
1257 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1258 				u16 len, u32 timeout, u64 *result);
1259 	int (*pci_bars_map)(struct hl_device *hdev);
1260 	int (*init_iatu)(struct hl_device *hdev);
1261 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1262 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1263 	void (*halt_coresight)(struct hl_device *hdev);
1264 	int (*ctx_init)(struct hl_ctx *ctx);
1265 	void (*ctx_fini)(struct hl_ctx *ctx);
1266 	int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
1267 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1268 	int (*load_firmware_to_device)(struct hl_device *hdev);
1269 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1270 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1271 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1272 	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1273 			u32 size, bool eb);
1274 	u32 (*gen_wait_cb)(struct hl_device *hdev,
1275 			struct hl_gen_wait_properties *prop);
1276 	void (*reset_sob)(struct hl_device *hdev, void *data);
1277 	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1278 	void (*set_dma_mask_from_fw)(struct hl_device *hdev);
1279 	u64 (*get_device_time)(struct hl_device *hdev);
1280 	int (*collective_wait_init_cs)(struct hl_cs *cs);
1281 	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1282 			struct hl_ctx *ctx, struct hl_cs *cs,
1283 			u32 wait_queue_id, u32 collective_engine_id,
1284 			u32 encaps_signal_offset);
1285 	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1286 	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1287 	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1288 	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1289 				u32 *block_size, u32 *block_id);
1290 	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1291 			u32 block_id, u32 block_size);
1292 	void (*enable_events_from_fw)(struct hl_device *hdev);
1293 	void (*get_msi_info)(__le32 *table);
1294 	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1295 	void (*init_firmware_loader)(struct hl_device *hdev);
1296 	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1297 	void (*state_dump_init)(struct hl_device *hdev);
1298 	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1299 	void (*set_pci_memory_regions)(struct hl_device *hdev);
1300 	u32* (*get_stream_master_qid_arr)(void);
1301 };
1302 
1303 
1304 /*
1305  * CONTEXTS
1306  */
1307 
1308 #define HL_KERNEL_ASID_ID	0
1309 
1310 /**
1311  * enum hl_va_range_type - virtual address range type.
1312  * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1313  * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1314  * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1315  */
1316 enum hl_va_range_type {
1317 	HL_VA_RANGE_TYPE_HOST,
1318 	HL_VA_RANGE_TYPE_HOST_HUGE,
1319 	HL_VA_RANGE_TYPE_DRAM,
1320 	HL_VA_RANGE_TYPE_MAX
1321 };
1322 
1323 /**
1324  * struct hl_va_range - virtual addresses range.
1325  * @lock: protects the virtual addresses list.
1326  * @list: list of virtual addresses blocks available for mappings.
1327  * @start_addr: range start address.
1328  * @end_addr: range end address.
1329  * @page_size: page size of this va range.
1330  */
1331 struct hl_va_range {
1332 	struct mutex		lock;
1333 	struct list_head	list;
1334 	u64			start_addr;
1335 	u64			end_addr;
1336 	u32			page_size;
1337 };
1338 
1339 /**
1340  * struct hl_cs_counters_atomic - command submission counters
1341  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1342  * @parsing_drop_cnt: dropped due to error in packet parsing
1343  * @queue_full_drop_cnt: dropped due to queue full
1344  * @device_in_reset_drop_cnt: dropped due to device in reset
1345  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1346  * @validation_drop_cnt: dropped due to error in validation
1347  */
1348 struct hl_cs_counters_atomic {
1349 	atomic64_t out_of_mem_drop_cnt;
1350 	atomic64_t parsing_drop_cnt;
1351 	atomic64_t queue_full_drop_cnt;
1352 	atomic64_t device_in_reset_drop_cnt;
1353 	atomic64_t max_cs_in_flight_drop_cnt;
1354 	atomic64_t validation_drop_cnt;
1355 };
1356 
1357 /**
1358  * struct hl_ctx - user/kernel context.
1359  * @mem_hash: holds mapping from virtual address to virtual memory area
1360  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1361  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1362  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1363  * @hdev: pointer to the device structure.
1364  * @refcount: reference counter for the context. Context is released only when
1365  *		this hits 0l. It is incremented on CS and CS_WAIT.
1366  * @cs_pending: array of hl fence objects representing pending CS.
1367  * @va_range: holds available virtual addresses for host and dram mappings.
1368  * @mem_hash_lock: protects the mem_hash.
1369  * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
1370  *            MMU hash or walking the PGT requires talking this lock.
1371  * @hw_block_list_lock: protects the HW block memory list.
1372  * @debugfs_list: node in debugfs list of contexts.
1373  * @hw_block_mem_list: list of HW block virtual mapped addresses.
1374  * @cs_counters: context command submission counters.
1375  * @cb_va_pool: device VA pool for command buffers which are mapped to the
1376  *              device's MMU.
1377  * @sig_mgr: encaps signals handle manager.
1378  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1379  *			to user so user could inquire about CS. It is used as
1380  *			index to cs_pending array.
1381  * @dram_default_hops: array that holds all hops addresses needed for default
1382  *                     DRAM mapping.
1383  * @cs_lock: spinlock to protect cs_sequence.
1384  * @dram_phys_mem: amount of used physical DRAM memory by this context.
1385  * @thread_ctx_switch_token: token to prevent multiple threads of the same
1386  *				context	from running the context switch phase.
1387  *				Only a single thread should run it.
1388  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1389  *				the context switch phase from moving to their
1390  *				execution phase before the context switch phase
1391  *				has finished.
1392  * @asid: context's unique address space ID in the device's MMU.
1393  * @handle: context's opaque handle for user
1394  */
1395 struct hl_ctx {
1396 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1397 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1398 	struct hl_fpriv			*hpriv;
1399 	struct hl_device		*hdev;
1400 	struct kref			refcount;
1401 	struct hl_fence			**cs_pending;
1402 	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1403 	struct mutex			mem_hash_lock;
1404 	struct mutex			mmu_lock;
1405 	struct mutex			hw_block_list_lock;
1406 	struct list_head		debugfs_list;
1407 	struct list_head		hw_block_mem_list;
1408 	struct hl_cs_counters_atomic	cs_counters;
1409 	struct gen_pool			*cb_va_pool;
1410 	struct hl_encaps_signals_mgr	sig_mgr;
1411 	u64				cs_sequence;
1412 	u64				*dram_default_hops;
1413 	spinlock_t			cs_lock;
1414 	atomic64_t			dram_phys_mem;
1415 	atomic_t			thread_ctx_switch_token;
1416 	u32				thread_ctx_switch_wait_token;
1417 	u32				asid;
1418 	u32				handle;
1419 };
1420 
1421 /**
1422  * struct hl_ctx_mgr - for handling multiple contexts.
1423  * @ctx_lock: protects ctx_handles.
1424  * @ctx_handles: idr to hold all ctx handles.
1425  */
1426 struct hl_ctx_mgr {
1427 	struct mutex		ctx_lock;
1428 	struct idr		ctx_handles;
1429 };
1430 
1431 
1432 
1433 /*
1434  * COMMAND SUBMISSIONS
1435  */
1436 
1437 /**
1438  * struct hl_userptr - memory mapping chunk information
1439  * @vm_type: type of the VM.
1440  * @job_node: linked-list node for hanging the object on the Job's list.
1441  * @pages: pointer to struct page array
1442  * @npages: size of @pages array
1443  * @sgt: pointer to the scatter-gather table that holds the pages.
1444  * @dir: for DMA unmapping, the direction must be supplied, so save it.
1445  * @debugfs_list: node in debugfs list of command submissions.
1446  * @pid: the pid of the user process owning the memory
1447  * @addr: user-space virtual address of the start of the memory area.
1448  * @size: size of the memory area to pin & map.
1449  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1450  */
1451 struct hl_userptr {
1452 	enum vm_type		vm_type; /* must be first */
1453 	struct list_head	job_node;
1454 	struct page		**pages;
1455 	unsigned int		npages;
1456 	struct sg_table		*sgt;
1457 	enum dma_data_direction dir;
1458 	struct list_head	debugfs_list;
1459 	pid_t			pid;
1460 	u64			addr;
1461 	u64			size;
1462 	u8			dma_mapped;
1463 };
1464 
1465 /**
1466  * struct hl_cs - command submission.
1467  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1468  * @ctx: the context this CS belongs to.
1469  * @job_list: list of the CS's jobs in the various queues.
1470  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1471  * @refcount: reference counter for usage of the CS.
1472  * @fence: pointer to the fence object of this CS.
1473  * @signal_fence: pointer to the fence object of the signal CS (used by wait
1474  *                CS only).
1475  * @finish_work: workqueue object to run when CS is completed by H/W.
1476  * @work_tdr: delayed work node for TDR.
1477  * @mirror_node : node in device mirror list of command submissions.
1478  * @staged_cs_node: node in the staged cs list.
1479  * @debugfs_list: node in debugfs list of command submissions.
1480  * @encaps_sig_hdl: holds the encaps signals handle.
1481  * @sequence: the sequence number of this CS.
1482  * @staged_sequence: the sequence of the staged submission this CS is part of,
1483  *                   relevant only if staged_cs is set.
1484  * @timeout_jiffies: cs timeout in jiffies.
1485  * @submission_time_jiffies: submission time of the cs
1486  * @type: CS_TYPE_*.
1487  * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1488  * @submitted: true if CS was submitted to H/W.
1489  * @completed: true if CS was completed by device.
1490  * @timedout : true if CS was timedout.
1491  * @tdr_active: true if TDR was activated for this CS (to prevent
1492  *		double TDR activation).
1493  * @aborted: true if CS was aborted due to some device error.
1494  * @timestamp: true if a timestmap must be captured upon completion.
1495  * @staged_last: true if this is the last staged CS and needs completion.
1496  * @staged_first: true if this is the first staged CS and we need to receive
1497  *                timeout for this CS.
1498  * @staged_cs: true if this CS is part of a staged submission.
1499  * @skip_reset_on_timeout: true if we shall not reset the device in case
1500  *                         timeout occurs (debug scenario).
1501  * @encaps_signals: true if this CS has encaps reserved signals.
1502  */
1503 struct hl_cs {
1504 	u16			*jobs_in_queue_cnt;
1505 	struct hl_ctx		*ctx;
1506 	struct list_head	job_list;
1507 	spinlock_t		job_lock;
1508 	struct kref		refcount;
1509 	struct hl_fence		*fence;
1510 	struct hl_fence		*signal_fence;
1511 	struct work_struct	finish_work;
1512 	struct delayed_work	work_tdr;
1513 	struct list_head	mirror_node;
1514 	struct list_head	staged_cs_node;
1515 	struct list_head	debugfs_list;
1516 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1517 	u64			sequence;
1518 	u64			staged_sequence;
1519 	u64			timeout_jiffies;
1520 	u64			submission_time_jiffies;
1521 	enum hl_cs_type		type;
1522 	u32			encaps_sig_hdl_id;
1523 	u8			submitted;
1524 	u8			completed;
1525 	u8			timedout;
1526 	u8			tdr_active;
1527 	u8			aborted;
1528 	u8			timestamp;
1529 	u8			staged_last;
1530 	u8			staged_first;
1531 	u8			staged_cs;
1532 	u8			skip_reset_on_timeout;
1533 	u8			encaps_signals;
1534 };
1535 
1536 /**
1537  * struct hl_cs_job - command submission job.
1538  * @cs_node: the node to hang on the CS jobs list.
1539  * @cs: the CS this job belongs to.
1540  * @user_cb: the CB we got from the user.
1541  * @patched_cb: in case of patching, this is internal CB which is submitted on
1542  *		the queue instead of the CB we got from the IOCTL.
1543  * @finish_work: workqueue object to run when job is completed.
1544  * @userptr_list: linked-list of userptr mappings that belong to this job and
1545  *			wait for completion.
1546  * @debugfs_list: node in debugfs list of command submission jobs.
1547  * @refcount: reference counter for usage of the CS job.
1548  * @queue_type: the type of the H/W queue this job is submitted to.
1549  * @id: the id of this job inside a CS.
1550  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1551  * @user_cb_size: the actual size of the CB we got from the user.
1552  * @job_cb_size: the actual size of the CB that we put on the queue.
1553  * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1554  *                          to wait on part of the reserved signals.
1555  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1556  *                          handle to a kernel-allocated CB object, false
1557  *                          otherwise (SRAM/DRAM/host address).
1558  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1559  *                    info is needed later, when adding the 2xMSG_PROT at the
1560  *                    end of the JOB, to know which barriers to put in the
1561  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1562  *                    have streams so the engine can't be busy by another
1563  *                    stream.
1564  */
1565 struct hl_cs_job {
1566 	struct list_head	cs_node;
1567 	struct hl_cs		*cs;
1568 	struct hl_cb		*user_cb;
1569 	struct hl_cb		*patched_cb;
1570 	struct work_struct	finish_work;
1571 	struct list_head	userptr_list;
1572 	struct list_head	debugfs_list;
1573 	struct kref		refcount;
1574 	enum hl_queue_type	queue_type;
1575 	u32			id;
1576 	u32			hw_queue_id;
1577 	u32			user_cb_size;
1578 	u32			job_cb_size;
1579 	u32			encaps_sig_wait_offset;
1580 	u8			is_kernel_allocated_cb;
1581 	u8			contains_dma_pkt;
1582 };
1583 
1584 /**
1585  * struct hl_cs_parser - command submission parser properties.
1586  * @user_cb: the CB we got from the user.
1587  * @patched_cb: in case of patching, this is internal CB which is submitted on
1588  *		the queue instead of the CB we got from the IOCTL.
1589  * @job_userptr_list: linked-list of userptr mappings that belong to the related
1590  *			job and wait for completion.
1591  * @cs_sequence: the sequence number of the related CS.
1592  * @queue_type: the type of the H/W queue this job is submitted to.
1593  * @ctx_id: the ID of the context the related CS belongs to.
1594  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1595  * @user_cb_size: the actual size of the CB we got from the user.
1596  * @patched_cb_size: the size of the CB after parsing.
1597  * @job_id: the id of the related job inside the related CS.
1598  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1599  *                          handle to a kernel-allocated CB object, false
1600  *                          otherwise (SRAM/DRAM/host address).
1601  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1602  *                    info is needed later, when adding the 2xMSG_PROT at the
1603  *                    end of the JOB, to know which barriers to put in the
1604  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1605  *                    have streams so the engine can't be busy by another
1606  *                    stream.
1607  * @completion: true if we need completion for this CS.
1608  */
1609 struct hl_cs_parser {
1610 	struct hl_cb		*user_cb;
1611 	struct hl_cb		*patched_cb;
1612 	struct list_head	*job_userptr_list;
1613 	u64			cs_sequence;
1614 	enum hl_queue_type	queue_type;
1615 	u32			ctx_id;
1616 	u32			hw_queue_id;
1617 	u32			user_cb_size;
1618 	u32			patched_cb_size;
1619 	u8			job_id;
1620 	u8			is_kernel_allocated_cb;
1621 	u8			contains_dma_pkt;
1622 	u8			completion;
1623 };
1624 
1625 /*
1626  * MEMORY STRUCTURE
1627  */
1628 
1629 /**
1630  * struct hl_vm_hash_node - hash element from virtual address to virtual
1631  *				memory area descriptor (hl_vm_phys_pg_list or
1632  *				hl_userptr).
1633  * @node: node to hang on the hash table in context object.
1634  * @vaddr: key virtual address.
1635  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1636  */
1637 struct hl_vm_hash_node {
1638 	struct hlist_node	node;
1639 	u64			vaddr;
1640 	void			*ptr;
1641 };
1642 
1643 /**
1644  * struct hl_vm_hw_block_list_node - list element from user virtual address to
1645  *				HW block id.
1646  * @node: node to hang on the list in context object.
1647  * @ctx: the context this node belongs to.
1648  * @vaddr: virtual address of the HW block.
1649  * @size: size of the block.
1650  * @id: HW block id (handle).
1651  */
1652 struct hl_vm_hw_block_list_node {
1653 	struct list_head	node;
1654 	struct hl_ctx		*ctx;
1655 	unsigned long		vaddr;
1656 	u32			size;
1657 	u32			id;
1658 };
1659 
1660 /**
1661  * struct hl_vm_phys_pg_pack - physical page pack.
1662  * @vm_type: describes the type of the virtual area descriptor.
1663  * @pages: the physical page array.
1664  * @npages: num physical pages in the pack.
1665  * @total_size: total size of all the pages in this list.
1666  * @mapping_cnt: number of shared mappings.
1667  * @asid: the context related to this list.
1668  * @page_size: size of each page in the pack.
1669  * @flags: HL_MEM_* flags related to this list.
1670  * @handle: the provided handle related to this list.
1671  * @offset: offset from the first page.
1672  * @contiguous: is contiguous physical memory.
1673  * @created_from_userptr: is product of host virtual address.
1674  */
1675 struct hl_vm_phys_pg_pack {
1676 	enum vm_type		vm_type; /* must be first */
1677 	u64			*pages;
1678 	u64			npages;
1679 	u64			total_size;
1680 	atomic_t		mapping_cnt;
1681 	u32			asid;
1682 	u32			page_size;
1683 	u32			flags;
1684 	u32			handle;
1685 	u32			offset;
1686 	u8			contiguous;
1687 	u8			created_from_userptr;
1688 };
1689 
1690 /**
1691  * struct hl_vm_va_block - virtual range block information.
1692  * @node: node to hang on the virtual range list in context object.
1693  * @start: virtual range start address.
1694  * @end: virtual range end address.
1695  * @size: virtual range size.
1696  */
1697 struct hl_vm_va_block {
1698 	struct list_head	node;
1699 	u64			start;
1700 	u64			end;
1701 	u64			size;
1702 };
1703 
1704 /**
1705  * struct hl_vm - virtual memory manager for MMU.
1706  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1707  * @dram_pg_pool_refcount: reference counter for the pool usage.
1708  * @idr_lock: protects the phys_pg_list_handles.
1709  * @phys_pg_pack_handles: idr to hold all device allocations handles.
1710  * @init_done: whether initialization was done. We need this because VM
1711  *		initialization might be skipped during device initialization.
1712  */
1713 struct hl_vm {
1714 	struct gen_pool		*dram_pg_pool;
1715 	struct kref		dram_pg_pool_refcount;
1716 	spinlock_t		idr_lock;
1717 	struct idr		phys_pg_pack_handles;
1718 	u8			init_done;
1719 };
1720 
1721 
1722 /*
1723  * DEBUG, PROFILING STRUCTURE
1724  */
1725 
1726 /**
1727  * struct hl_debug_params - Coresight debug parameters.
1728  * @input: pointer to component specific input parameters.
1729  * @output: pointer to component specific output parameters.
1730  * @output_size: size of output buffer.
1731  * @reg_idx: relevant register ID.
1732  * @op: component operation to execute.
1733  * @enable: true if to enable component debugging, false otherwise.
1734  */
1735 struct hl_debug_params {
1736 	void *input;
1737 	void *output;
1738 	u32 output_size;
1739 	u32 reg_idx;
1740 	u32 op;
1741 	bool enable;
1742 };
1743 
1744 /*
1745  * FILE PRIVATE STRUCTURE
1746  */
1747 
1748 /**
1749  * struct hl_fpriv - process information stored in FD private data.
1750  * @hdev: habanalabs device structure.
1751  * @filp: pointer to the given file structure.
1752  * @taskpid: current process ID.
1753  * @ctx: current executing context. TODO: remove for multiple ctx per process
1754  * @ctx_mgr: context manager to handle multiple context for this FD.
1755  * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
1756  * @debugfs_list: list of relevant ASIC debugfs.
1757  * @dev_node: node in the device list of file private data
1758  * @refcount: number of related contexts.
1759  * @restore_phase_mutex: lock for context switch and restore phase.
1760  * @is_control: true for control device, false otherwise
1761  */
1762 struct hl_fpriv {
1763 	struct hl_device	*hdev;
1764 	struct file		*filp;
1765 	struct pid		*taskpid;
1766 	struct hl_ctx		*ctx;
1767 	struct hl_ctx_mgr	ctx_mgr;
1768 	struct hl_cb_mgr	cb_mgr;
1769 	struct list_head	debugfs_list;
1770 	struct list_head	dev_node;
1771 	struct kref		refcount;
1772 	struct mutex		restore_phase_mutex;
1773 	u8			is_control;
1774 };
1775 
1776 
1777 /*
1778  * DebugFS
1779  */
1780 
1781 /**
1782  * struct hl_info_list - debugfs file ops.
1783  * @name: file name.
1784  * @show: function to output information.
1785  * @write: function to write to the file.
1786  */
1787 struct hl_info_list {
1788 	const char	*name;
1789 	int		(*show)(struct seq_file *s, void *data);
1790 	ssize_t		(*write)(struct file *file, const char __user *buf,
1791 				size_t count, loff_t *f_pos);
1792 };
1793 
1794 /**
1795  * struct hl_debugfs_entry - debugfs dentry wrapper.
1796  * @info_ent: dentry realted ops.
1797  * @dev_entry: ASIC specific debugfs manager.
1798  */
1799 struct hl_debugfs_entry {
1800 	const struct hl_info_list	*info_ent;
1801 	struct hl_dbg_device_entry	*dev_entry;
1802 };
1803 
1804 /**
1805  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
1806  * @root: root dentry.
1807  * @hdev: habanalabs device structure.
1808  * @entry_arr: array of available hl_debugfs_entry.
1809  * @file_list: list of available debugfs files.
1810  * @file_mutex: protects file_list.
1811  * @cb_list: list of available CBs.
1812  * @cb_spinlock: protects cb_list.
1813  * @cs_list: list of available CSs.
1814  * @cs_spinlock: protects cs_list.
1815  * @cs_job_list: list of available CB jobs.
1816  * @cs_job_spinlock: protects cs_job_list.
1817  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
1818  * @userptr_spinlock: protects userptr_list.
1819  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
1820  * @ctx_mem_hash_spinlock: protects cb_list.
1821  * @blob_desc: descriptor of blob
1822  * @state_dump: data of the system states in case of a bad cs.
1823  * @state_dump_sem: protects state_dump.
1824  * @addr: next address to read/write from/to in read/write32.
1825  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
1826  * @userptr_lookup: the target user ptr to look up for on demand.
1827  * @mmu_asid: ASID to use while translating in mmu_show.
1828  * @state_dump_head: index of the latest state dump
1829  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
1830  * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
1831  * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
1832  */
1833 struct hl_dbg_device_entry {
1834 	struct dentry			*root;
1835 	struct hl_device		*hdev;
1836 	struct hl_debugfs_entry		*entry_arr;
1837 	struct list_head		file_list;
1838 	struct mutex			file_mutex;
1839 	struct list_head		cb_list;
1840 	spinlock_t			cb_spinlock;
1841 	struct list_head		cs_list;
1842 	spinlock_t			cs_spinlock;
1843 	struct list_head		cs_job_list;
1844 	spinlock_t			cs_job_spinlock;
1845 	struct list_head		userptr_list;
1846 	spinlock_t			userptr_spinlock;
1847 	struct list_head		ctx_mem_hash_list;
1848 	spinlock_t			ctx_mem_hash_spinlock;
1849 	struct debugfs_blob_wrapper	blob_desc;
1850 	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
1851 	struct rw_semaphore		state_dump_sem;
1852 	u64				addr;
1853 	u64				mmu_addr;
1854 	u64				userptr_lookup;
1855 	u32				mmu_asid;
1856 	u32				state_dump_head;
1857 	u8				i2c_bus;
1858 	u8				i2c_addr;
1859 	u8				i2c_reg;
1860 };
1861 
1862 /**
1863  * struct hl_hw_obj_name_entry - single hw object name, member of
1864  * hl_state_dump_specs
1865  * @node: link to the containing hash table
1866  * @name: hw object name
1867  * @id: object identifier
1868  */
1869 struct hl_hw_obj_name_entry {
1870 	struct hlist_node	node;
1871 	const char		*name;
1872 	u32			id;
1873 };
1874 
1875 enum hl_state_dump_specs_props {
1876 	SP_SYNC_OBJ_BASE_ADDR,
1877 	SP_NEXT_SYNC_OBJ_ADDR,
1878 	SP_SYNC_OBJ_AMOUNT,
1879 	SP_MON_OBJ_WR_ADDR_LOW,
1880 	SP_MON_OBJ_WR_ADDR_HIGH,
1881 	SP_MON_OBJ_WR_DATA,
1882 	SP_MON_OBJ_ARM_DATA,
1883 	SP_MON_OBJ_STATUS,
1884 	SP_MONITORS_AMOUNT,
1885 	SP_TPC0_CMDQ,
1886 	SP_TPC0_CFG_SO,
1887 	SP_NEXT_TPC,
1888 	SP_MME_CMDQ,
1889 	SP_MME_CFG_SO,
1890 	SP_NEXT_MME,
1891 	SP_DMA_CMDQ,
1892 	SP_DMA_CFG_SO,
1893 	SP_DMA_QUEUES_OFFSET,
1894 	SP_NUM_OF_MME_ENGINES,
1895 	SP_SUB_MME_ENG_NUM,
1896 	SP_NUM_OF_DMA_ENGINES,
1897 	SP_NUM_OF_TPC_ENGINES,
1898 	SP_ENGINE_NUM_OF_QUEUES,
1899 	SP_ENGINE_NUM_OF_STREAMS,
1900 	SP_ENGINE_NUM_OF_FENCES,
1901 	SP_FENCE0_CNT_OFFSET,
1902 	SP_FENCE0_RDATA_OFFSET,
1903 	SP_CP_STS_OFFSET,
1904 	SP_NUM_CORES,
1905 
1906 	SP_MAX
1907 };
1908 
1909 enum hl_sync_engine_type {
1910 	ENGINE_TPC,
1911 	ENGINE_DMA,
1912 	ENGINE_MME,
1913 };
1914 
1915 /**
1916  * struct hl_mon_state_dump - represents a state dump of a single monitor
1917  * @id: monitor id
1918  * @wr_addr_low: address monitor will write to, low bits
1919  * @wr_addr_high: address monitor will write to, high bits
1920  * @wr_data: data monitor will write
1921  * @arm_data: register value containing monitor configuration
1922  * @status: monitor status
1923  */
1924 struct hl_mon_state_dump {
1925 	u32		id;
1926 	u32		wr_addr_low;
1927 	u32		wr_addr_high;
1928 	u32		wr_data;
1929 	u32		arm_data;
1930 	u32		status;
1931 };
1932 
1933 /**
1934  * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
1935  * @engine_type: type of the engine
1936  * @engine_id: id of the engine
1937  * @sync_id: id of the sync object
1938  */
1939 struct hl_sync_to_engine_map_entry {
1940 	struct hlist_node		node;
1941 	enum hl_sync_engine_type	engine_type;
1942 	u32				engine_id;
1943 	u32				sync_id;
1944 };
1945 
1946 /**
1947  * struct hl_sync_to_engine_map - maps sync object id to associated engine id
1948  * @tb: hash table containing the mapping, each element is of type
1949  *      struct hl_sync_to_engine_map_entry
1950  */
1951 struct hl_sync_to_engine_map {
1952 	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
1953 };
1954 
1955 /**
1956  * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
1957  * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
1958  * @print_single_monitor: format monitor data as string
1959  * @monitor_valid: return true if given monitor dump is valid
1960  * @print_fences_single_engine: format fences data as string
1961  */
1962 struct hl_state_dump_specs_funcs {
1963 	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
1964 				struct hl_sync_to_engine_map *map);
1965 	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
1966 				    struct hl_device *hdev,
1967 				    struct hl_mon_state_dump *mon);
1968 	int (*monitor_valid)(struct hl_mon_state_dump *mon);
1969 	int (*print_fences_single_engine)(struct hl_device *hdev,
1970 					u64 base_offset,
1971 					u64 status_base_offset,
1972 					enum hl_sync_engine_type engine_type,
1973 					u32 engine_id, char **buf,
1974 					size_t *size, size_t *offset);
1975 };
1976 
1977 /**
1978  * struct hl_state_dump_specs - defines ASIC known hw objects names
1979  * @so_id_to_str_tb: sync objects names index table
1980  * @monitor_id_to_str_tb: monitors names index table
1981  * @funcs: virtual functions used for state dump
1982  * @sync_namager_names: readable names for sync manager if available (ex: N_E)
1983  * @props: pointer to a per asic const props array required for state dump
1984  */
1985 struct hl_state_dump_specs {
1986 	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
1987 	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
1988 	struct hl_state_dump_specs_funcs	funcs;
1989 	const char * const			*sync_namager_names;
1990 	s64					*props;
1991 };
1992 
1993 
1994 /*
1995  * DEVICES
1996  */
1997 
1998 #define HL_STR_MAX	32
1999 
2000 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2001 
2002 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2003  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2004  */
2005 #define HL_MAX_MINORS	256
2006 
2007 /*
2008  * Registers read & write functions.
2009  */
2010 
2011 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2012 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2013 
2014 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2015 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2016 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2017 			hdev->asic_funcs->rreg(hdev, (reg)))
2018 
2019 #define WREG32_P(reg, val, mask)				\
2020 	do {							\
2021 		u32 tmp_ = RREG32(reg);				\
2022 		tmp_ &= (mask);					\
2023 		tmp_ |= ((val) & ~(mask));			\
2024 		WREG32(reg, tmp_);				\
2025 	} while (0)
2026 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2027 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2028 
2029 #define RMWREG32(reg, val, mask)				\
2030 	do {							\
2031 		u32 tmp_ = RREG32(reg);				\
2032 		tmp_ &= ~(mask);				\
2033 		tmp_ |= ((val) << __ffs(mask));			\
2034 		WREG32(reg, tmp_);				\
2035 	} while (0)
2036 
2037 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2038 
2039 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2040 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2041 #define WREG32_FIELD(reg, offset, field, val)	\
2042 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2043 				~REG_FIELD_MASK(reg, field)) | \
2044 				(val) << REG_FIELD_SHIFT(reg, field))
2045 
2046 /* Timeout should be longer when working with simulator but cap the
2047  * increased timeout to some maximum
2048  */
2049 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2050 ({ \
2051 	ktime_t __timeout; \
2052 	if (hdev->pdev) \
2053 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2054 	else \
2055 		__timeout = ktime_add_us(ktime_get(),\
2056 				min((u64)(timeout_us * 10), \
2057 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2058 	might_sleep_if(sleep_us); \
2059 	for (;;) { \
2060 		(val) = RREG32(addr); \
2061 		if (cond) \
2062 			break; \
2063 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2064 			(val) = RREG32(addr); \
2065 			break; \
2066 		} \
2067 		if (sleep_us) \
2068 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2069 	} \
2070 	(cond) ? 0 : -ETIMEDOUT; \
2071 })
2072 
2073 /*
2074  * address in this macro points always to a memory location in the
2075  * host's (server's) memory. That location is updated asynchronously
2076  * either by the direct access of the device or by another core.
2077  *
2078  * To work both in LE and BE architectures, we need to distinguish between the
2079  * two states (device or another core updates the memory location). Therefore,
2080  * if mem_written_by_device is true, the host memory being polled will be
2081  * updated directly by the device. If false, the host memory being polled will
2082  * be updated by host CPU. Required so host knows whether or not the memory
2083  * might need to be byte-swapped before returning value to caller.
2084  */
2085 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2086 				mem_written_by_device) \
2087 ({ \
2088 	ktime_t __timeout; \
2089 	if (hdev->pdev) \
2090 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2091 	else \
2092 		__timeout = ktime_add_us(ktime_get(),\
2093 				min((u64)(timeout_us * 10), \
2094 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2095 	might_sleep_if(sleep_us); \
2096 	for (;;) { \
2097 		/* Verify we read updates done by other cores or by device */ \
2098 		mb(); \
2099 		(val) = *((u32 *)(addr)); \
2100 		if (mem_written_by_device) \
2101 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2102 		if (cond) \
2103 			break; \
2104 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2105 			(val) = *((u32 *)(addr)); \
2106 			if (mem_written_by_device) \
2107 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2108 			break; \
2109 		} \
2110 		if (sleep_us) \
2111 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2112 	} \
2113 	(cond) ? 0 : -ETIMEDOUT; \
2114 })
2115 
2116 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
2117 					timeout_us) \
2118 ({ \
2119 	ktime_t __timeout; \
2120 	if (hdev->pdev) \
2121 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2122 	else \
2123 		__timeout = ktime_add_us(ktime_get(),\
2124 				min((u64)(timeout_us * 10), \
2125 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2126 	might_sleep_if(sleep_us); \
2127 	for (;;) { \
2128 		(val) = readl(addr); \
2129 		if (cond) \
2130 			break; \
2131 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2132 			(val) = readl(addr); \
2133 			break; \
2134 		} \
2135 		if (sleep_us) \
2136 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2137 	} \
2138 	(cond) ? 0 : -ETIMEDOUT; \
2139 })
2140 
2141 struct hwmon_chip_info;
2142 
2143 /**
2144  * struct hl_device_reset_work - reset workqueue task wrapper.
2145  * @wq: work queue for device reset procedure.
2146  * @reset_work: reset work to be done.
2147  * @hdev: habanalabs device structure.
2148  * @fw_reset: whether f/w will do the reset without us sending them a message to do it.
2149  */
2150 struct hl_device_reset_work {
2151 	struct workqueue_struct		*wq;
2152 	struct delayed_work		reset_work;
2153 	struct hl_device		*hdev;
2154 	bool				fw_reset;
2155 };
2156 
2157 /**
2158  * struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
2159  * information.
2160  * @virt_addr: the virtual address of the hop.
2161  * @phys-addr: the physical address of the hop (used by the device-mmu).
2162  * @shadow_addr: The shadow of the hop used by the driver for walking the hops.
2163  */
2164 struct hr_mmu_hop_addrs {
2165 	u64 virt_addr;
2166 	u64 phys_addr;
2167 	u64 shadow_addr;
2168 };
2169 
2170 /**
2171  * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2172  * page-table internal information.
2173  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2174  * @mmu_shadow_hop0: shadow array of hop0 tables.
2175  */
2176 struct hl_mmu_hr_priv {
2177 	struct gen_pool *mmu_pgt_pool;
2178 	struct hr_mmu_hop_addrs *mmu_shadow_hop0;
2179 };
2180 
2181 /**
2182  * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2183  * page-table internal information.
2184  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2185  * @mmu_shadow_hop0: shadow array of hop0 tables.
2186  */
2187 struct hl_mmu_dr_priv {
2188 	struct gen_pool *mmu_pgt_pool;
2189 	void *mmu_shadow_hop0;
2190 };
2191 
2192 /**
2193  * struct hl_mmu_priv - used for holding per-device mmu internal information.
2194  * @dr: information on the device-resident MMU, when exists.
2195  * @hr: information on the host-resident MMU, when exists.
2196  */
2197 struct hl_mmu_priv {
2198 	struct hl_mmu_dr_priv dr;
2199 	struct hl_mmu_hr_priv hr;
2200 };
2201 
2202 /**
2203  * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2204  *                that was created in order to translate a virtual address to a
2205  *                physical one.
2206  * @hop_addr: The address of the hop.
2207  * @hop_pte_addr: The address of the hop entry.
2208  * @hop_pte_val: The value in the hop entry.
2209  */
2210 struct hl_mmu_per_hop_info {
2211 	u64 hop_addr;
2212 	u64 hop_pte_addr;
2213 	u64 hop_pte_val;
2214 };
2215 
2216 /**
2217  * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2218  * hop-entries that were created in order to translate a virtual address to a
2219  * physical one.
2220  * @scrambled_vaddr: The value of the virtual address after scrambling. This
2221  *                   address replaces the original virtual-address when mapped
2222  *                   in the MMU tables.
2223  * @unscrambled_paddr: The un-scrambled physical address.
2224  * @hop_info: Array holding the per-hop information used for the translation.
2225  * @used_hops: The number of hops used for the translation.
2226  * @range_type: virtual address range type.
2227  */
2228 struct hl_mmu_hop_info {
2229 	u64 scrambled_vaddr;
2230 	u64 unscrambled_paddr;
2231 	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
2232 	u32 used_hops;
2233 	enum hl_va_range_type range_type;
2234 };
2235 
2236 /**
2237  * struct hl_mmu_funcs - Device related MMU functions.
2238  * @init: initialize the MMU module.
2239  * @fini: release the MMU module.
2240  * @ctx_init: Initialize a context for using the MMU module.
2241  * @ctx_fini: disable a ctx from using the mmu module.
2242  * @map: maps a virtual address to physical address for a context.
2243  * @unmap: unmap a virtual address of a context.
2244  * @flush: flush all writes from all cores to reach device MMU.
2245  * @swap_out: marks all mapping of the given context as swapped out.
2246  * @swap_in: marks all mapping of the given context as swapped in.
2247  * @get_tlb_info: returns the list of hops and hop-entries used that were
2248  *                created in order to translate the giver virtual address to a
2249  *                physical one.
2250  */
2251 struct hl_mmu_funcs {
2252 	int (*init)(struct hl_device *hdev);
2253 	void (*fini)(struct hl_device *hdev);
2254 	int (*ctx_init)(struct hl_ctx *ctx);
2255 	void (*ctx_fini)(struct hl_ctx *ctx);
2256 	int (*map)(struct hl_ctx *ctx,
2257 			u64 virt_addr, u64 phys_addr, u32 page_size,
2258 			bool is_dram_addr);
2259 	int (*unmap)(struct hl_ctx *ctx,
2260 			u64 virt_addr, bool is_dram_addr);
2261 	void (*flush)(struct hl_ctx *ctx);
2262 	void (*swap_out)(struct hl_ctx *ctx);
2263 	void (*swap_in)(struct hl_ctx *ctx);
2264 	int (*get_tlb_info)(struct hl_ctx *ctx,
2265 			u64 virt_addr, struct hl_mmu_hop_info *hops);
2266 };
2267 
2268 /**
2269  * number of user contexts allowed to call wait_for_multi_cs ioctl in
2270  * parallel
2271  */
2272 #define MULTI_CS_MAX_USER_CTX	2
2273 
2274 /**
2275  * struct multi_cs_completion - multi CS wait completion.
2276  * @completion: completion of any of the CS in the list
2277  * @lock: spinlock for the completion structure
2278  * @timestamp: timestamp for the multi-CS completion
2279  * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2280  *                        is waiting
2281  * @used: 1 if in use, otherwise 0
2282  */
2283 struct multi_cs_completion {
2284 	struct completion	completion;
2285 	spinlock_t		lock;
2286 	s64			timestamp;
2287 	u32			stream_master_qid_map;
2288 	u8			used;
2289 };
2290 
2291 /**
2292  * struct multi_cs_data - internal data for multi CS call
2293  * @ctx: pointer to the context structure
2294  * @fence_arr: array of fences of all CSs
2295  * @seq_arr: array of CS sequence numbers
2296  * @timeout_us: timeout in usec for waiting for CS to complete
2297  * @timestamp: timestamp of first completed CS
2298  * @wait_status: wait for CS status
2299  * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2300  * @stream_master_qid_map: bitmap of all stream master QIDs on which the
2301  *                         multi-CS is waiting
2302  * @arr_len: fence_arr and seq_arr array length
2303  * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2304  * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2305  */
2306 struct multi_cs_data {
2307 	struct hl_ctx	*ctx;
2308 	struct hl_fence	**fence_arr;
2309 	u64		*seq_arr;
2310 	s64		timeout_us;
2311 	s64		timestamp;
2312 	long		wait_status;
2313 	u32		completion_bitmap;
2314 	u32		stream_master_qid_map;
2315 	u8		arr_len;
2316 	u8		gone_cs;
2317 	u8		update_ts;
2318 };
2319 
2320 /**
2321  * struct hl_device - habanalabs device structure.
2322  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
2323  * @pcie_bar_phys: array of available PCIe bars physical addresses.
2324  *		   (required only for PCI address match mode)
2325  * @pcie_bar: array of available PCIe bars virtual addresses.
2326  * @rmmio: configuration area address on SRAM.
2327  * @cdev: related char device.
2328  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
2329  * @dev: related kernel basic device structure.
2330  * @dev_ctrl: related kernel device structure for the control device
2331  * @work_freq: delayed work to lower device frequency if possible.
2332  * @work_heartbeat: delayed work for CPU-CP is-alive check.
2333  * @device_reset_work: delayed work which performs hard reset
2334  * @asic_name: ASIC specific name.
2335  * @asic_type: ASIC specific type.
2336  * @completion_queue: array of hl_cq.
2337  * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
2338  *                  interrupt, driver will monitor the list of fences
2339  *                  registered to this interrupt.
2340  * @common_user_interrupt: common user interrupt for all user interrupts.
2341  *                         upon any user interrupt, driver will monitor the
2342  *                         list of fences registered to this common structure.
2343  * @cq_wq: work queues of completion queues for executing work in process
2344  *         context.
2345  * @eq_wq: work queue of event queue for executing work in process context.
2346  * @sob_reset_wq: work queue for sob reset executions.
2347  * @kernel_ctx: Kernel driver context structure.
2348  * @kernel_queues: array of hl_hw_queue.
2349  * @cs_mirror_list: CS mirror list for TDR.
2350  * @cs_mirror_lock: protects cs_mirror_list.
2351  * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CBs.
2352  * @event_queue: event queue for IRQ from CPU-CP.
2353  * @dma_pool: DMA pool for small allocations.
2354  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
2355  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
2356  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
2357  * @asid_bitmap: holds used/available ASIDs.
2358  * @asid_mutex: protects asid_bitmap.
2359  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
2360  * @debug_lock: protects critical section of setting debug mode for device
2361  * @asic_prop: ASIC specific immutable properties.
2362  * @asic_funcs: ASIC specific functions.
2363  * @asic_specific: ASIC specific information to use only from ASIC files.
2364  * @vm: virtual memory manager for MMU.
2365  * @hwmon_dev: H/W monitor device.
2366  * @pm_mng_profile: current power management profile.
2367  * @hl_chip_info: ASIC's sensors information.
2368  * @device_status_description: device status description.
2369  * @hl_debugfs: device's debugfs manager.
2370  * @cb_pool: list of preallocated CBs.
2371  * @cb_pool_lock: protects the CB pool.
2372  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
2373  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
2374  * @internal_cb_pool: internal command buffer memory pool.
2375  * @internal_cb_va_base: internal cb pool mmu virtual address base
2376  * @fpriv_list: list of file private data structures. Each structure is created
2377  *              when a user opens the device
2378  * @fpriv_list_lock: protects the fpriv_list
2379  * @compute_ctx: current compute context executing.
2380  * @aggregated_cs_counters: aggregated cs counters among all contexts
2381  * @mmu_priv: device-specific MMU data.
2382  * @mmu_func: device-related MMU functions.
2383  * @fw_loader: FW loader manager.
2384  * @pci_mem_region: array of memory regions in the PCI
2385  * @state_dump_specs: constants and dictionaries needed to dump system state.
2386  * @multi_cs_completion: array of multi-CS completion.
2387  * @dram_used_mem: current DRAM memory consumption.
2388  * @timeout_jiffies: device CS timeout value.
2389  * @max_power: the max power of the device, as configured by the sysadmin. This
2390  *             value is saved so in case of hard-reset, the driver will restore
2391  *             this value and update the F/W after the re-initialization
2392  * @clock_gating_mask: is clock gating enabled. bitmask that represents the
2393  *                     different engines. See debugfs-driver-habanalabs for
2394  *                     details.
2395  * @boot_error_status_mask: contains a mask of the device boot error status.
2396  *                          Each bit represents a different error, according to
2397  *                          the defines in hl_boot_if.h. If the bit is cleared,
2398  *                          the error will be ignored by the driver during
2399  *                          device initialization. Mainly used to debug and
2400  *                          workaround firmware bugs
2401  * @last_successful_open_jif: timestamp (jiffies) of the last successful
2402  *                            device open.
2403  * @last_open_session_duration_jif: duration (jiffies) of the last device open
2404  *                                  session.
2405  * @open_counter: number of successful device open operations.
2406  * @in_reset: is device in reset flow.
2407  * @curr_pll_profile: current PLL profile.
2408  * @card_type: Various ASICs have several card types. This indicates the card
2409  *             type of the current device.
2410  * @major: habanalabs kernel driver major.
2411  * @high_pll: high PLL profile frequency.
2412  * @soft_reset_cnt: number of soft reset since the driver was loaded.
2413  * @hard_reset_cnt: number of hard reset since the driver was loaded.
2414  * @clk_throttling_reason: bitmask represents the current clk throttling reasons
2415  * @id: device minor.
2416  * @id_control: minor of the control device
2417  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
2418  *                    addresses.
2419  * @disabled: is device disabled.
2420  * @late_init_done: is late init stage was done during initialization.
2421  * @hwmon_initialized: is H/W monitor sensors was initialized.
2422  * @hard_reset_pending: is there a hard reset work pending.
2423  * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
2424  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
2425  *                   otherwise.
2426  * @dram_default_page_mapping: is DRAM default page mapping enabled.
2427  * @memory_scrub: true to perform device memory scrub in various locations,
2428  *                such as context-switch, context close, page free, etc.
2429  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
2430  *                   huge pages.
2431  * @init_done: is the initialization of the device done.
2432  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
2433  * @dma_mask: the dma mask that was set for this device
2434  * @in_debug: is device under debug. This, together with fpriv_list, enforces
2435  *            that only a single user is configuring the debug infrastructure.
2436  * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
2437  *                           only to POWER9 machines.
2438  * @cdev_sysfs_created: were char devices and sysfs nodes created.
2439  * @stop_on_err: true if engines should stop on error.
2440  * @supports_sync_stream: is sync stream supported.
2441  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
2442  * @collective_mon_idx: helper index for collective initialization
2443  * @supports_coresight: is CoreSight supported.
2444  * @supports_soft_reset: is soft reset supported.
2445  * @allow_external_soft_reset: true if soft reset initiated by user or TDR is
2446  *                             allowed.
2447  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
2448  * @needs_reset: true if reset_on_lockup is false and device should be reset
2449  *               due to lockup.
2450  * @process_kill_trial_cnt: number of trials reset thread tried killing
2451  *                          user processes
2452  * @device_fini_pending: true if device_fini was called and might be
2453  *                       waiting for the reset thread to finish
2454  * @supports_staged_submission: true if staged submissions are supported
2455  * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
2456  *                    triggered, and cleared after it is shared with preboot.
2457  * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
2458  *                         complete instead.
2459  * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
2460  *                        halted. We can't halt it again because the COMMS
2461  *                        protocol will throw an error. Relevant only for
2462  *                        cases where Linux was not loaded to device CPU
2463  * @supports_wait_for_multi_cs: true if wait for multi CS is supported
2464  */
2465 struct hl_device {
2466 	struct pci_dev			*pdev;
2467 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
2468 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
2469 	void __iomem			*rmmio;
2470 	struct cdev			cdev;
2471 	struct cdev			cdev_ctrl;
2472 	struct device			*dev;
2473 	struct device			*dev_ctrl;
2474 	struct delayed_work		work_freq;
2475 	struct delayed_work		work_heartbeat;
2476 	struct hl_device_reset_work	device_reset_work;
2477 	char				asic_name[HL_STR_MAX];
2478 	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
2479 	enum hl_asic_type		asic_type;
2480 	struct hl_cq			*completion_queue;
2481 	struct hl_user_interrupt	*user_interrupt;
2482 	struct hl_user_interrupt	common_user_interrupt;
2483 	struct workqueue_struct		**cq_wq;
2484 	struct workqueue_struct		*eq_wq;
2485 	struct workqueue_struct		*sob_reset_wq;
2486 	struct hl_ctx			*kernel_ctx;
2487 	struct hl_hw_queue		*kernel_queues;
2488 	struct list_head		cs_mirror_list;
2489 	spinlock_t			cs_mirror_lock;
2490 	struct hl_cb_mgr		kernel_cb_mgr;
2491 	struct hl_eq			event_queue;
2492 	struct dma_pool			*dma_pool;
2493 	void				*cpu_accessible_dma_mem;
2494 	dma_addr_t			cpu_accessible_dma_address;
2495 	struct gen_pool			*cpu_accessible_dma_pool;
2496 	unsigned long			*asid_bitmap;
2497 	struct mutex			asid_mutex;
2498 	struct mutex			send_cpu_message_lock;
2499 	struct mutex			debug_lock;
2500 	struct asic_fixed_properties	asic_prop;
2501 	const struct hl_asic_funcs	*asic_funcs;
2502 	void				*asic_specific;
2503 	struct hl_vm			vm;
2504 	struct device			*hwmon_dev;
2505 	enum hl_pm_mng_profile		pm_mng_profile;
2506 	struct hwmon_chip_info		*hl_chip_info;
2507 
2508 	struct hl_dbg_device_entry	hl_debugfs;
2509 
2510 	struct list_head		cb_pool;
2511 	spinlock_t			cb_pool_lock;
2512 
2513 	void				*internal_cb_pool_virt_addr;
2514 	dma_addr_t			internal_cb_pool_dma_addr;
2515 	struct gen_pool			*internal_cb_pool;
2516 	u64				internal_cb_va_base;
2517 
2518 	struct list_head		fpriv_list;
2519 	struct mutex			fpriv_list_lock;
2520 
2521 	struct hl_ctx			*compute_ctx;
2522 
2523 	struct hl_cs_counters_atomic	aggregated_cs_counters;
2524 
2525 	struct hl_mmu_priv		mmu_priv;
2526 	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
2527 
2528 	struct fw_load_mgr		fw_loader;
2529 
2530 	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
2531 
2532 	struct hl_state_dump_specs	state_dump_specs;
2533 
2534 	struct multi_cs_completion	multi_cs_completion[
2535 							MULTI_CS_MAX_USER_CTX];
2536 	u32				*stream_master_qid_arr;
2537 	atomic64_t			dram_used_mem;
2538 	u64				timeout_jiffies;
2539 	u64				max_power;
2540 	u64				clock_gating_mask;
2541 	u64				boot_error_status_mask;
2542 	u64				last_successful_open_jif;
2543 	u64				last_open_session_duration_jif;
2544 	u64				open_counter;
2545 	atomic_t			in_reset;
2546 	enum hl_pll_frequency		curr_pll_profile;
2547 	enum cpucp_card_types		card_type;
2548 	u32				major;
2549 	u32				high_pll;
2550 	u32				soft_reset_cnt;
2551 	u32				hard_reset_cnt;
2552 	u32				clk_throttling_reason;
2553 	u16				id;
2554 	u16				id_control;
2555 	u16				cpu_pci_msb_addr;
2556 	u8				disabled;
2557 	u8				late_init_done;
2558 	u8				hwmon_initialized;
2559 	u8				hard_reset_pending;
2560 	u8				heartbeat;
2561 	u8				reset_on_lockup;
2562 	u8				dram_default_page_mapping;
2563 	u8				memory_scrub;
2564 	u8				pmmu_huge_range;
2565 	u8				init_done;
2566 	u8				device_cpu_disabled;
2567 	u8				dma_mask;
2568 	u8				in_debug;
2569 	u8				power9_64bit_dma_enable;
2570 	u8				cdev_sysfs_created;
2571 	u8				stop_on_err;
2572 	u8				supports_sync_stream;
2573 	u8				sync_stream_queue_idx;
2574 	u8				collective_mon_idx;
2575 	u8				supports_coresight;
2576 	u8				supports_soft_reset;
2577 	u8				allow_external_soft_reset;
2578 	u8				supports_cb_mapping;
2579 	u8				needs_reset;
2580 	u8				process_kill_trial_cnt;
2581 	u8				device_fini_pending;
2582 	u8				supports_staged_submission;
2583 	u8				curr_reset_cause;
2584 	u8				skip_reset_on_timeout;
2585 	u8				device_cpu_is_halted;
2586 	u8				supports_wait_for_multi_cs;
2587 	u8				stream_master_qid_arr_size;
2588 
2589 	/* Parameters for bring-up */
2590 	u64				nic_ports_mask;
2591 	u64				fw_components;
2592 	u8				mmu_enable;
2593 	u8				mmu_huge_page_opt;
2594 	u8				reset_pcilink;
2595 	u8				cpu_queues_enable;
2596 	u8				pldm;
2597 	u8				axi_drain;
2598 	u8				sram_scrambler_enable;
2599 	u8				dram_scrambler_enable;
2600 	u8				hard_reset_on_fw_events;
2601 	u8				bmc_enable;
2602 	u8				rl_enable;
2603 	u8				reset_on_preboot_fail;
2604 	u8				reset_upon_device_release;
2605 	u8				reset_if_device_not_idle;
2606 };
2607 
2608 
2609 /**
2610  * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
2611  * @refcount: refcount used to protect removing this id when several
2612  *            wait cs are used to wait of the reserved encaps signals.
2613  * @hdev: pointer to habanalabs device structure.
2614  * @hw_sob: pointer to  H/W SOB used in the reservation.
2615  * @cs_seq: staged cs sequence which contains encapsulated signals
2616  * @id: idr handler id to be used to fetch the handler info
2617  * @q_idx: stream queue index
2618  * @pre_sob_val: current SOB value before reservation
2619  * @count: signals number
2620  */
2621 struct hl_cs_encaps_sig_handle {
2622 	struct kref refcount;
2623 	struct hl_device *hdev;
2624 	struct hl_hw_sob *hw_sob;
2625 	u64  cs_seq;
2626 	u32  id;
2627 	u32  q_idx;
2628 	u32  pre_sob_val;
2629 	u32  count;
2630 };
2631 
2632 /*
2633  * IOCTLs
2634  */
2635 
2636 /**
2637  * typedef hl_ioctl_t - typedef for ioctl function in the driver
2638  * @hpriv: pointer to the FD's private data, which contains state of
2639  *		user process
2640  * @data: pointer to the input/output arguments structure of the IOCTL
2641  *
2642  * Return: 0 for success, negative value for error
2643  */
2644 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
2645 
2646 /**
2647  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
2648  * @cmd: the IOCTL code as created by the kernel macros.
2649  * @func: pointer to the driver's function that should be called for this IOCTL.
2650  */
2651 struct hl_ioctl_desc {
2652 	unsigned int cmd;
2653 	hl_ioctl_t *func;
2654 };
2655 
2656 
2657 /*
2658  * Kernel module functions that can be accessed by entire module
2659  */
2660 
2661 /**
2662  * hl_get_sg_info() - get number of pages and the DMA address from SG list.
2663  * @sg: the SG list.
2664  * @dma_addr: pointer to DMA address to return.
2665  *
2666  * Calculate the number of consecutive pages described by the SG list. Take the
2667  * offset of the address in the first page, add to it the length and round it up
2668  * to the number of needed pages.
2669  */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)2670 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
2671 {
2672 	*dma_addr = sg_dma_address(sg);
2673 
2674 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
2675 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
2676 }
2677 
2678 /**
2679  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
2680  * @address: The start address of the area we want to validate.
2681  * @size: The size in bytes of the area we want to validate.
2682  * @range_start_address: The start address of the valid range.
2683  * @range_end_address: The end address of the valid range.
2684  *
2685  * Return: true if the area is inside the valid range, false otherwise.
2686  */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)2687 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
2688 				u64 range_start_address, u64 range_end_address)
2689 {
2690 	u64 end_address = address + size;
2691 
2692 	if ((address >= range_start_address) &&
2693 			(end_address <= range_end_address) &&
2694 			(end_address > address))
2695 		return true;
2696 
2697 	return false;
2698 }
2699 
2700 /**
2701  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
2702  * @address: The start address of the area we want to validate.
2703  * @size: The size in bytes of the area we want to validate.
2704  * @range_start_address: The start address of the valid range.
2705  * @range_end_address: The end address of the valid range.
2706  *
2707  * Return: true if the area overlaps part or all of the valid range,
2708  *		false otherwise.
2709  */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)2710 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
2711 				u64 range_start_address, u64 range_end_address)
2712 {
2713 	u64 end_address = address + size;
2714 
2715 	if ((address >= range_start_address) &&
2716 			(address < range_end_address))
2717 		return true;
2718 
2719 	if ((end_address >= range_start_address) &&
2720 			(end_address < range_end_address))
2721 		return true;
2722 
2723 	if ((address < range_start_address) &&
2724 			(end_address >= range_end_address))
2725 		return true;
2726 
2727 	return false;
2728 }
2729 
2730 int hl_device_open(struct inode *inode, struct file *filp);
2731 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
2732 bool hl_device_operational(struct hl_device *hdev,
2733 		enum hl_device_status *status);
2734 enum hl_device_status hl_device_status(struct hl_device *hdev);
2735 int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
2736 int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
2737 		enum hl_asic_type asic_type, int minor);
2738 void destroy_hdev(struct hl_device *hdev);
2739 int hl_hw_queues_create(struct hl_device *hdev);
2740 void hl_hw_queues_destroy(struct hl_device *hdev);
2741 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
2742 		u32 cb_size, u64 cb_ptr);
2743 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
2744 		u32 ctl, u32 len, u64 ptr);
2745 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
2746 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
2747 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
2748 void hl_hw_queue_update_ci(struct hl_cs *cs);
2749 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
2750 
2751 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
2752 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
2753 
2754 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
2755 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
2756 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
2757 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
2758 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
2759 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
2760 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
2761 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
2762 irqreturn_t hl_irq_handler_user_cq(int irq, void *arg);
2763 irqreturn_t hl_irq_handler_default(int irq, void *arg);
2764 u32 hl_cq_inc_ptr(u32 ptr);
2765 
2766 int hl_asid_init(struct hl_device *hdev);
2767 void hl_asid_fini(struct hl_device *hdev);
2768 unsigned long hl_asid_alloc(struct hl_device *hdev);
2769 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
2770 
2771 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
2772 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
2773 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
2774 void hl_ctx_do_release(struct kref *ref);
2775 void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
2776 int hl_ctx_put(struct hl_ctx *ctx);
2777 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
2778 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
2779 				struct hl_fence **fence, u32 arr_len);
2780 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
2781 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
2782 
2783 int hl_device_init(struct hl_device *hdev, struct class *hclass);
2784 void hl_device_fini(struct hl_device *hdev);
2785 int hl_device_suspend(struct hl_device *hdev);
2786 int hl_device_resume(struct hl_device *hdev);
2787 int hl_device_reset(struct hl_device *hdev, u32 flags);
2788 void hl_hpriv_get(struct hl_fpriv *hpriv);
2789 int hl_hpriv_put(struct hl_fpriv *hpriv);
2790 int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
2791 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
2792 
2793 int hl_build_hwmon_channel_info(struct hl_device *hdev,
2794 		struct cpucp_sensor *sensors_arr);
2795 
2796 int hl_sysfs_init(struct hl_device *hdev);
2797 void hl_sysfs_fini(struct hl_device *hdev);
2798 
2799 int hl_hwmon_init(struct hl_device *hdev);
2800 void hl_hwmon_fini(struct hl_device *hdev);
2801 
2802 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
2803 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
2804 			bool map_cb, u64 *handle);
2805 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
2806 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2807 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2808 struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
2809 			u32 handle);
2810 void hl_cb_put(struct hl_cb *cb);
2811 void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
2812 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
2813 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
2814 					bool internal_cb);
2815 int hl_cb_pool_init(struct hl_device *hdev);
2816 int hl_cb_pool_fini(struct hl_device *hdev);
2817 int hl_cb_va_pool_init(struct hl_ctx *ctx);
2818 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
2819 
2820 void hl_cs_rollback_all(struct hl_device *hdev);
2821 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
2822 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
2823 void hl_sob_reset_error(struct kref *ref);
2824 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
2825 void hl_fence_put(struct hl_fence *fence);
2826 void hl_fences_put(struct hl_fence **fence, int len);
2827 void hl_fence_get(struct hl_fence *fence);
2828 void cs_get(struct hl_cs *cs);
2829 bool cs_needs_completion(struct hl_cs *cs);
2830 bool cs_needs_timeout(struct hl_cs *cs);
2831 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
2832 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
2833 void hl_multi_cs_completion_init(struct hl_device *hdev);
2834 
2835 void goya_set_asic_funcs(struct hl_device *hdev);
2836 void gaudi_set_asic_funcs(struct hl_device *hdev);
2837 
2838 int hl_vm_ctx_init(struct hl_ctx *ctx);
2839 void hl_vm_ctx_fini(struct hl_ctx *ctx);
2840 
2841 int hl_vm_init(struct hl_device *hdev);
2842 void hl_vm_fini(struct hl_device *hdev);
2843 
2844 void hl_hw_block_mem_init(struct hl_ctx *ctx);
2845 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
2846 
2847 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2848 		enum hl_va_range_type type, u32 size, u32 alignment);
2849 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2850 		u64 start_addr, u64 size);
2851 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2852 			struct hl_userptr *userptr);
2853 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
2854 void hl_userptr_delete_list(struct hl_device *hdev,
2855 				struct list_head *userptr_list);
2856 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
2857 				struct list_head *userptr_list,
2858 				struct hl_userptr **userptr);
2859 
2860 int hl_mmu_init(struct hl_device *hdev);
2861 void hl_mmu_fini(struct hl_device *hdev);
2862 int hl_mmu_ctx_init(struct hl_ctx *ctx);
2863 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
2864 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
2865 		u32 page_size, bool flush_pte);
2866 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
2867 		bool flush_pte);
2868 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
2869 					u64 phys_addr, u32 size);
2870 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
2871 void hl_mmu_swap_out(struct hl_ctx *ctx);
2872 void hl_mmu_swap_in(struct hl_ctx *ctx);
2873 int hl_mmu_if_set_funcs(struct hl_device *hdev);
2874 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
2875 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
2876 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
2877 			struct hl_mmu_hop_info *hops);
2878 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
2879 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
2880 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
2881 
2882 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
2883 				void __iomem *dst, u32 src_offset, u32 size);
2884 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
2885 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
2886 				u16 len, u32 timeout, u64 *result);
2887 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
2888 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
2889 		size_t irq_arr_size);
2890 int hl_fw_test_cpu_queue(struct hl_device *hdev);
2891 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
2892 						dma_addr_t *dma_handle);
2893 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
2894 					void *vaddr);
2895 int hl_fw_send_heartbeat(struct hl_device *hdev);
2896 int hl_fw_cpucp_info_get(struct hl_device *hdev,
2897 				u32 sts_boot_dev_sts0_reg,
2898 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2899 				u32 boot_err1_reg);
2900 int hl_fw_cpucp_handshake(struct hl_device *hdev,
2901 				u32 sts_boot_dev_sts0_reg,
2902 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2903 				u32 boot_err1_reg);
2904 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
2905 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
2906 		struct hl_info_pci_counters *counters);
2907 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
2908 			u64 *total_energy);
2909 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
2910 						enum pll_index *pll_index);
2911 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
2912 		u16 *pll_freq_arr);
2913 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
2914 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
2915 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
2916 int hl_fw_init_cpu(struct hl_device *hdev);
2917 int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
2918 				u32 sts_boot_dev_sts0_reg,
2919 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2920 				u32 boot_err1_reg, u32 timeout);
2921 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
2922 				struct fw_load_mgr *fw_loader,
2923 				enum comms_cmd cmd, unsigned int size,
2924 				bool wait_ok, u32 timeout);
2925 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
2926 			bool is_wc[3]);
2927 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
2928 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
2929 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
2930 		struct hl_inbound_pci_region *pci_region);
2931 int hl_pci_set_outbound_region(struct hl_device *hdev,
2932 		struct hl_outbound_pci_region *pci_region);
2933 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
2934 int hl_pci_init(struct hl_device *hdev);
2935 void hl_pci_fini(struct hl_device *hdev);
2936 
2937 long hl_get_frequency(struct hl_device *hdev, u32 pll_index,
2938 								bool curr);
2939 void hl_set_frequency(struct hl_device *hdev, u32 pll_index,
2940 								u64 freq);
2941 int hl_get_temperature(struct hl_device *hdev,
2942 		       int sensor_index, u32 attr, long *value);
2943 int hl_set_temperature(struct hl_device *hdev,
2944 		       int sensor_index, u32 attr, long value);
2945 int hl_get_voltage(struct hl_device *hdev,
2946 		   int sensor_index, u32 attr, long *value);
2947 int hl_get_current(struct hl_device *hdev,
2948 		   int sensor_index, u32 attr, long *value);
2949 int hl_get_fan_speed(struct hl_device *hdev,
2950 		     int sensor_index, u32 attr, long *value);
2951 int hl_get_pwm_info(struct hl_device *hdev,
2952 		    int sensor_index, u32 attr, long *value);
2953 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
2954 			long value);
2955 u64 hl_get_max_power(struct hl_device *hdev);
2956 void hl_set_max_power(struct hl_device *hdev);
2957 int hl_set_voltage(struct hl_device *hdev,
2958 			int sensor_index, u32 attr, long value);
2959 int hl_set_current(struct hl_device *hdev,
2960 			int sensor_index, u32 attr, long value);
2961 void hw_sob_get(struct hl_hw_sob *hw_sob);
2962 void hw_sob_put(struct hl_hw_sob *hw_sob);
2963 void hl_encaps_handle_do_release(struct kref *ref);
2964 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
2965 			struct hl_cs *cs, struct hl_cs_job *job,
2966 			struct hl_cs_compl *cs_cmpl);
2967 void hl_release_pending_user_interrupts(struct hl_device *hdev);
2968 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
2969 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
2970 
2971 int hl_state_dump(struct hl_device *hdev);
2972 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
2973 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
2974 					struct hl_mon_state_dump *mon);
2975 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
2976 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
2977 					const char *format, ...);
2978 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
2979 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
2980 
2981 #ifdef CONFIG_DEBUG_FS
2982 
2983 void hl_debugfs_init(void);
2984 void hl_debugfs_fini(void);
2985 void hl_debugfs_add_device(struct hl_device *hdev);
2986 void hl_debugfs_remove_device(struct hl_device *hdev);
2987 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
2988 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
2989 void hl_debugfs_add_cb(struct hl_cb *cb);
2990 void hl_debugfs_remove_cb(struct hl_cb *cb);
2991 void hl_debugfs_add_cs(struct hl_cs *cs);
2992 void hl_debugfs_remove_cs(struct hl_cs *cs);
2993 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
2994 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
2995 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
2996 void hl_debugfs_remove_userptr(struct hl_device *hdev,
2997 				struct hl_userptr *userptr);
2998 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
2999 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3000 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3001 					unsigned long length);
3002 
3003 #else
3004 
hl_debugfs_init(void)3005 static inline void __init hl_debugfs_init(void)
3006 {
3007 }
3008 
hl_debugfs_fini(void)3009 static inline void hl_debugfs_fini(void)
3010 {
3011 }
3012 
hl_debugfs_add_device(struct hl_device * hdev)3013 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3014 {
3015 }
3016 
hl_debugfs_remove_device(struct hl_device * hdev)3017 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3018 {
3019 }
3020 
hl_debugfs_add_file(struct hl_fpriv * hpriv)3021 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3022 {
3023 }
3024 
hl_debugfs_remove_file(struct hl_fpriv * hpriv)3025 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3026 {
3027 }
3028 
hl_debugfs_add_cb(struct hl_cb * cb)3029 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3030 {
3031 }
3032 
hl_debugfs_remove_cb(struct hl_cb * cb)3033 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3034 {
3035 }
3036 
hl_debugfs_add_cs(struct hl_cs * cs)3037 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3038 {
3039 }
3040 
hl_debugfs_remove_cs(struct hl_cs * cs)3041 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3042 {
3043 }
3044 
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3045 static inline void hl_debugfs_add_job(struct hl_device *hdev,
3046 					struct hl_cs_job *job)
3047 {
3048 }
3049 
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3050 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3051 					struct hl_cs_job *job)
3052 {
3053 }
3054 
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3055 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3056 					struct hl_userptr *userptr)
3057 {
3058 }
3059 
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3060 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3061 					struct hl_userptr *userptr)
3062 {
3063 }
3064 
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3065 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3066 					struct hl_ctx *ctx)
3067 {
3068 }
3069 
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3070 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3071 					struct hl_ctx *ctx)
3072 {
3073 }
3074 
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3075 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3076 					char *data, unsigned long length)
3077 {
3078 }
3079 
3080 #endif
3081 
3082 /* IOCTLs */
3083 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3084 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3085 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3086 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3087 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3088 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3089 
3090 #endif /* HABANALABSP_H_ */
3091