1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 #include "blk-ioprio.h"
35
36 /*
37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
39 * policy [un]register operations including cgroup file additions /
40 * removals. Putting cgroup file registration outside blkcg_pol_mutex
41 * allows grabbing it from cgroup callbacks.
42 */
43 static DEFINE_MUTEX(blkcg_pol_register_mutex);
44 static DEFINE_MUTEX(blkcg_pol_mutex);
45
46 struct blkcg blkcg_root;
47 EXPORT_SYMBOL_GPL(blkcg_root);
48
49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
50 EXPORT_SYMBOL_GPL(blkcg_root_css);
51
52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
53
54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
55
56 bool blkcg_debug_stats = false;
57 static struct workqueue_struct *blkcg_punt_bio_wq;
58
59 #define BLKG_DESTROY_BATCH_SIZE 64
60
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)61 static bool blkcg_policy_enabled(struct request_queue *q,
62 const struct blkcg_policy *pol)
63 {
64 return pol && test_bit(pol->plid, q->blkcg_pols);
65 }
66
67 /**
68 * blkg_free - free a blkg
69 * @blkg: blkg to free
70 *
71 * Free @blkg which may be partially allocated.
72 */
blkg_free(struct blkcg_gq * blkg)73 static void blkg_free(struct blkcg_gq *blkg)
74 {
75 int i;
76
77 if (!blkg)
78 return;
79
80 for (i = 0; i < BLKCG_MAX_POLS; i++)
81 if (blkg->pd[i])
82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
83
84 free_percpu(blkg->iostat_cpu);
85 percpu_ref_exit(&blkg->refcnt);
86 kfree(blkg);
87 }
88
__blkg_release(struct rcu_head * rcu)89 static void __blkg_release(struct rcu_head *rcu)
90 {
91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
92
93 WARN_ON(!bio_list_empty(&blkg->async_bios));
94
95 /* release the blkcg and parent blkg refs this blkg has been holding */
96 css_put(&blkg->blkcg->css);
97 if (blkg->parent)
98 blkg_put(blkg->parent);
99 blkg_free(blkg);
100 }
101
102 /*
103 * A group is RCU protected, but having an rcu lock does not mean that one
104 * can access all the fields of blkg and assume these are valid. For
105 * example, don't try to follow throtl_data and request queue links.
106 *
107 * Having a reference to blkg under an rcu allows accesses to only values
108 * local to groups like group stats and group rate limits.
109 */
blkg_release(struct percpu_ref * ref)110 static void blkg_release(struct percpu_ref *ref)
111 {
112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
113
114 call_rcu(&blkg->rcu_head, __blkg_release);
115 }
116
blkg_async_bio_workfn(struct work_struct * work)117 static void blkg_async_bio_workfn(struct work_struct *work)
118 {
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 async_bio_work);
121 struct bio_list bios = BIO_EMPTY_LIST;
122 struct bio *bio;
123 struct blk_plug plug;
124 bool need_plug = false;
125
126 /* as long as there are pending bios, @blkg can't go away */
127 spin_lock_bh(&blkg->async_bio_lock);
128 bio_list_merge(&bios, &blkg->async_bios);
129 bio_list_init(&blkg->async_bios);
130 spin_unlock_bh(&blkg->async_bio_lock);
131
132 /* start plug only when bio_list contains at least 2 bios */
133 if (bios.head && bios.head->bi_next) {
134 need_plug = true;
135 blk_start_plug(&plug);
136 }
137 while ((bio = bio_list_pop(&bios)))
138 submit_bio(bio);
139 if (need_plug)
140 blk_finish_plug(&plug);
141 }
142
143 /**
144 * blkg_alloc - allocate a blkg
145 * @blkcg: block cgroup the new blkg is associated with
146 * @q: request_queue the new blkg is associated with
147 * @gfp_mask: allocation mask to use
148 *
149 * Allocate a new blkg assocating @blkcg and @q.
150 */
blkg_alloc(struct blkcg * blkcg,struct request_queue * q,gfp_t gfp_mask)151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
152 gfp_t gfp_mask)
153 {
154 struct blkcg_gq *blkg;
155 int i, cpu;
156
157 /* alloc and init base part */
158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
159 if (!blkg)
160 return NULL;
161
162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
163 goto err_free;
164
165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
166 if (!blkg->iostat_cpu)
167 goto err_free;
168
169 blkg->q = q;
170 INIT_LIST_HEAD(&blkg->q_node);
171 spin_lock_init(&blkg->async_bio_lock);
172 bio_list_init(&blkg->async_bios);
173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
174 blkg->blkcg = blkcg;
175
176 u64_stats_init(&blkg->iostat.sync);
177 for_each_possible_cpu(cpu)
178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
179
180 for (i = 0; i < BLKCG_MAX_POLS; i++) {
181 struct blkcg_policy *pol = blkcg_policy[i];
182 struct blkg_policy_data *pd;
183
184 if (!blkcg_policy_enabled(q, pol))
185 continue;
186
187 /* alloc per-policy data and attach it to blkg */
188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
189 if (!pd)
190 goto err_free;
191
192 blkg->pd[i] = pd;
193 pd->blkg = blkg;
194 pd->plid = i;
195 }
196
197 return blkg;
198
199 err_free:
200 blkg_free(blkg);
201 return NULL;
202 }
203
blkg_lookup_slowpath(struct blkcg * blkcg,struct request_queue * q,bool update_hint)204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
205 struct request_queue *q, bool update_hint)
206 {
207 struct blkcg_gq *blkg;
208
209 /*
210 * Hint didn't match. Look up from the radix tree. Note that the
211 * hint can only be updated under queue_lock as otherwise @blkg
212 * could have already been removed from blkg_tree. The caller is
213 * responsible for grabbing queue_lock if @update_hint.
214 */
215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
216 if (blkg && blkg->q == q) {
217 if (update_hint) {
218 lockdep_assert_held(&q->queue_lock);
219 rcu_assign_pointer(blkcg->blkg_hint, blkg);
220 }
221 return blkg;
222 }
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
227
228 /*
229 * If @new_blkg is %NULL, this function tries to allocate a new one as
230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
231 */
blkg_create(struct blkcg * blkcg,struct request_queue * q,struct blkcg_gq * new_blkg)232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
233 struct request_queue *q,
234 struct blkcg_gq *new_blkg)
235 {
236 struct blkcg_gq *blkg;
237 int i, ret;
238
239 WARN_ON_ONCE(!rcu_read_lock_held());
240 lockdep_assert_held(&q->queue_lock);
241
242 /* request_queue is dying, do not create/recreate a blkg */
243 if (blk_queue_dying(q)) {
244 ret = -ENODEV;
245 goto err_free_blkg;
246 }
247
248 /* blkg holds a reference to blkcg */
249 if (!css_tryget_online(&blkcg->css)) {
250 ret = -ENODEV;
251 goto err_free_blkg;
252 }
253
254 /* allocate */
255 if (!new_blkg) {
256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
257 if (unlikely(!new_blkg)) {
258 ret = -ENOMEM;
259 goto err_put_css;
260 }
261 }
262 blkg = new_blkg;
263
264 /* link parent */
265 if (blkcg_parent(blkcg)) {
266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
267 if (WARN_ON_ONCE(!blkg->parent)) {
268 ret = -ENODEV;
269 goto err_put_css;
270 }
271 blkg_get(blkg->parent);
272 }
273
274 /* invoke per-policy init */
275 for (i = 0; i < BLKCG_MAX_POLS; i++) {
276 struct blkcg_policy *pol = blkcg_policy[i];
277
278 if (blkg->pd[i] && pol->pd_init_fn)
279 pol->pd_init_fn(blkg->pd[i]);
280 }
281
282 /* insert */
283 spin_lock(&blkcg->lock);
284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
285 if (likely(!ret)) {
286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
287 list_add(&blkg->q_node, &q->blkg_list);
288
289 for (i = 0; i < BLKCG_MAX_POLS; i++) {
290 struct blkcg_policy *pol = blkcg_policy[i];
291
292 if (blkg->pd[i] && pol->pd_online_fn)
293 pol->pd_online_fn(blkg->pd[i]);
294 }
295 }
296 blkg->online = true;
297 spin_unlock(&blkcg->lock);
298
299 if (!ret)
300 return blkg;
301
302 /* @blkg failed fully initialized, use the usual release path */
303 blkg_put(blkg);
304 return ERR_PTR(ret);
305
306 err_put_css:
307 css_put(&blkcg->css);
308 err_free_blkg:
309 blkg_free(new_blkg);
310 return ERR_PTR(ret);
311 }
312
313 /**
314 * blkg_lookup_create - lookup blkg, try to create one if not there
315 * @blkcg: blkcg of interest
316 * @q: request_queue of interest
317 *
318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to
319 * create one. blkg creation is performed recursively from blkcg_root such
320 * that all non-root blkg's have access to the parent blkg. This function
321 * should be called under RCU read lock and takes @q->queue_lock.
322 *
323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
324 * down from root.
325 */
blkg_lookup_create(struct blkcg * blkcg,struct request_queue * q)326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
327 struct request_queue *q)
328 {
329 struct blkcg_gq *blkg;
330 unsigned long flags;
331
332 WARN_ON_ONCE(!rcu_read_lock_held());
333
334 blkg = blkg_lookup(blkcg, q);
335 if (blkg)
336 return blkg;
337
338 spin_lock_irqsave(&q->queue_lock, flags);
339 blkg = __blkg_lookup(blkcg, q, true);
340 if (blkg)
341 goto found;
342
343 /*
344 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 * non-root blkgs have access to their parents. Returns the closest
346 * blkg to the intended blkg should blkg_create() fail.
347 */
348 while (true) {
349 struct blkcg *pos = blkcg;
350 struct blkcg *parent = blkcg_parent(blkcg);
351 struct blkcg_gq *ret_blkg = q->root_blkg;
352
353 while (parent) {
354 blkg = __blkg_lookup(parent, q, false);
355 if (blkg) {
356 /* remember closest blkg */
357 ret_blkg = blkg;
358 break;
359 }
360 pos = parent;
361 parent = blkcg_parent(parent);
362 }
363
364 blkg = blkg_create(pos, q, NULL);
365 if (IS_ERR(blkg)) {
366 blkg = ret_blkg;
367 break;
368 }
369 if (pos == blkcg)
370 break;
371 }
372
373 found:
374 spin_unlock_irqrestore(&q->queue_lock, flags);
375 return blkg;
376 }
377
blkg_destroy(struct blkcg_gq * blkg)378 static void blkg_destroy(struct blkcg_gq *blkg)
379 {
380 struct blkcg *blkcg = blkg->blkcg;
381 int i;
382
383 lockdep_assert_held(&blkg->q->queue_lock);
384 lockdep_assert_held(&blkcg->lock);
385
386 /* Something wrong if we are trying to remove same group twice */
387 WARN_ON_ONCE(list_empty(&blkg->q_node));
388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
389
390 for (i = 0; i < BLKCG_MAX_POLS; i++) {
391 struct blkcg_policy *pol = blkcg_policy[i];
392
393 if (blkg->pd[i] && pol->pd_offline_fn)
394 pol->pd_offline_fn(blkg->pd[i]);
395 }
396
397 blkg->online = false;
398
399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
400 list_del_init(&blkg->q_node);
401 hlist_del_init_rcu(&blkg->blkcg_node);
402
403 /*
404 * Both setting lookup hint to and clearing it from @blkg are done
405 * under queue_lock. If it's not pointing to @blkg now, it never
406 * will. Hint assignment itself can race safely.
407 */
408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
409 rcu_assign_pointer(blkcg->blkg_hint, NULL);
410
411 /*
412 * Put the reference taken at the time of creation so that when all
413 * queues are gone, group can be destroyed.
414 */
415 percpu_ref_kill(&blkg->refcnt);
416 }
417
418 /**
419 * blkg_destroy_all - destroy all blkgs associated with a request_queue
420 * @q: request_queue of interest
421 *
422 * Destroy all blkgs associated with @q.
423 */
blkg_destroy_all(struct request_queue * q)424 static void blkg_destroy_all(struct request_queue *q)
425 {
426 struct blkcg_gq *blkg, *n;
427 int count = BLKG_DESTROY_BATCH_SIZE;
428 int i;
429
430 restart:
431 spin_lock_irq(&q->queue_lock);
432 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
433 struct blkcg *blkcg = blkg->blkcg;
434
435 spin_lock(&blkcg->lock);
436 blkg_destroy(blkg);
437 spin_unlock(&blkcg->lock);
438
439 /*
440 * in order to avoid holding the spin lock for too long, release
441 * it when a batch of blkgs are destroyed.
442 */
443 if (!(--count)) {
444 count = BLKG_DESTROY_BATCH_SIZE;
445 spin_unlock_irq(&q->queue_lock);
446 cond_resched();
447 goto restart;
448 }
449 }
450
451 /*
452 * Mark policy deactivated since policy offline has been done, and
453 * the free is scheduled, so future blkcg_deactivate_policy() can
454 * be bypassed
455 */
456 for (i = 0; i < BLKCG_MAX_POLS; i++) {
457 struct blkcg_policy *pol = blkcg_policy[i];
458
459 if (pol)
460 __clear_bit(pol->plid, q->blkcg_pols);
461 }
462
463 q->root_blkg = NULL;
464 spin_unlock_irq(&q->queue_lock);
465 }
466
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)467 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
468 struct cftype *cftype, u64 val)
469 {
470 struct blkcg *blkcg = css_to_blkcg(css);
471 struct blkcg_gq *blkg;
472 int i, cpu;
473
474 mutex_lock(&blkcg_pol_mutex);
475 spin_lock_irq(&blkcg->lock);
476
477 /*
478 * Note that stat reset is racy - it doesn't synchronize against
479 * stat updates. This is a debug feature which shouldn't exist
480 * anyway. If you get hit by a race, retry.
481 */
482 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
483 for_each_possible_cpu(cpu) {
484 struct blkg_iostat_set *bis =
485 per_cpu_ptr(blkg->iostat_cpu, cpu);
486 memset(bis, 0, sizeof(*bis));
487 }
488 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
489
490 for (i = 0; i < BLKCG_MAX_POLS; i++) {
491 struct blkcg_policy *pol = blkcg_policy[i];
492
493 if (blkg->pd[i] && pol->pd_reset_stats_fn)
494 pol->pd_reset_stats_fn(blkg->pd[i]);
495 }
496 }
497
498 spin_unlock_irq(&blkcg->lock);
499 mutex_unlock(&blkcg_pol_mutex);
500 return 0;
501 }
502
blkg_dev_name(struct blkcg_gq * blkg)503 const char *blkg_dev_name(struct blkcg_gq *blkg)
504 {
505 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
506 return NULL;
507 return bdi_dev_name(blkg->q->disk->bdi);
508 }
509
510 /**
511 * blkcg_print_blkgs - helper for printing per-blkg data
512 * @sf: seq_file to print to
513 * @blkcg: blkcg of interest
514 * @prfill: fill function to print out a blkg
515 * @pol: policy in question
516 * @data: data to be passed to @prfill
517 * @show_total: to print out sum of prfill return values or not
518 *
519 * This function invokes @prfill on each blkg of @blkcg if pd for the
520 * policy specified by @pol exists. @prfill is invoked with @sf, the
521 * policy data and @data and the matching queue lock held. If @show_total
522 * is %true, the sum of the return values from @prfill is printed with
523 * "Total" label at the end.
524 *
525 * This is to be used to construct print functions for
526 * cftype->read_seq_string method.
527 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)528 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
529 u64 (*prfill)(struct seq_file *,
530 struct blkg_policy_data *, int),
531 const struct blkcg_policy *pol, int data,
532 bool show_total)
533 {
534 struct blkcg_gq *blkg;
535 u64 total = 0;
536
537 rcu_read_lock();
538 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
539 spin_lock_irq(&blkg->q->queue_lock);
540 if (blkcg_policy_enabled(blkg->q, pol))
541 total += prfill(sf, blkg->pd[pol->plid], data);
542 spin_unlock_irq(&blkg->q->queue_lock);
543 }
544 rcu_read_unlock();
545
546 if (show_total)
547 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
548 }
549 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
550
551 /**
552 * __blkg_prfill_u64 - prfill helper for a single u64 value
553 * @sf: seq_file to print to
554 * @pd: policy private data of interest
555 * @v: value to print
556 *
557 * Print @v to @sf for the device assocaited with @pd.
558 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)559 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
560 {
561 const char *dname = blkg_dev_name(pd->blkg);
562
563 if (!dname)
564 return 0;
565
566 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
567 return v;
568 }
569 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
570
571 /* Performs queue bypass and policy enabled checks then looks up blkg. */
blkg_lookup_check(struct blkcg * blkcg,const struct blkcg_policy * pol,struct request_queue * q)572 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
573 const struct blkcg_policy *pol,
574 struct request_queue *q)
575 {
576 WARN_ON_ONCE(!rcu_read_lock_held());
577 lockdep_assert_held(&q->queue_lock);
578
579 if (!blkcg_policy_enabled(q, pol))
580 return ERR_PTR(-EOPNOTSUPP);
581 return __blkg_lookup(blkcg, q, true /* update_hint */);
582 }
583
584 /**
585 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
586 * @inputp: input string pointer
587 *
588 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
589 * from @input and get and return the matching bdev. *@inputp is
590 * updated to point past the device node prefix. Returns an ERR_PTR()
591 * value on error.
592 *
593 * Use this function iff blkg_conf_prep() can't be used for some reason.
594 */
blkcg_conf_open_bdev(char ** inputp)595 struct block_device *blkcg_conf_open_bdev(char **inputp)
596 {
597 char *input = *inputp;
598 unsigned int major, minor;
599 struct block_device *bdev;
600 int key_len;
601
602 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
603 return ERR_PTR(-EINVAL);
604
605 input += key_len;
606 if (!isspace(*input))
607 return ERR_PTR(-EINVAL);
608 input = skip_spaces(input);
609
610 bdev = blkdev_get_no_open(MKDEV(major, minor));
611 if (!bdev)
612 return ERR_PTR(-ENODEV);
613 if (bdev_is_partition(bdev)) {
614 blkdev_put_no_open(bdev);
615 return ERR_PTR(-ENODEV);
616 }
617
618 *inputp = input;
619 return bdev;
620 }
621
622 /**
623 * blkg_conf_prep - parse and prepare for per-blkg config update
624 * @blkcg: target block cgroup
625 * @pol: target policy
626 * @input: input string
627 * @ctx: blkg_conf_ctx to be filled
628 *
629 * Parse per-blkg config update from @input and initialize @ctx with the
630 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
631 * part of @input following MAJ:MIN. This function returns with RCU read
632 * lock and queue lock held and must be paired with blkg_conf_finish().
633 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,char * input,struct blkg_conf_ctx * ctx)634 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
635 char *input, struct blkg_conf_ctx *ctx)
636 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
637 {
638 struct block_device *bdev;
639 struct request_queue *q;
640 struct blkcg_gq *blkg;
641 int ret;
642
643 bdev = blkcg_conf_open_bdev(&input);
644 if (IS_ERR(bdev))
645 return PTR_ERR(bdev);
646
647 q = bdev->bd_disk->queue;
648
649 /*
650 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
651 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
652 */
653 ret = blk_queue_enter(q, 0);
654 if (ret)
655 goto fail;
656
657 rcu_read_lock();
658 spin_lock_irq(&q->queue_lock);
659
660 blkg = blkg_lookup_check(blkcg, pol, q);
661 if (IS_ERR(blkg)) {
662 ret = PTR_ERR(blkg);
663 goto fail_unlock;
664 }
665
666 if (blkg)
667 goto success;
668
669 /*
670 * Create blkgs walking down from blkcg_root to @blkcg, so that all
671 * non-root blkgs have access to their parents.
672 */
673 while (true) {
674 struct blkcg *pos = blkcg;
675 struct blkcg *parent;
676 struct blkcg_gq *new_blkg;
677
678 parent = blkcg_parent(blkcg);
679 while (parent && !__blkg_lookup(parent, q, false)) {
680 pos = parent;
681 parent = blkcg_parent(parent);
682 }
683
684 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
685 spin_unlock_irq(&q->queue_lock);
686 rcu_read_unlock();
687
688 new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
689 if (unlikely(!new_blkg)) {
690 ret = -ENOMEM;
691 goto fail_exit_queue;
692 }
693
694 if (radix_tree_preload(GFP_KERNEL)) {
695 blkg_free(new_blkg);
696 ret = -ENOMEM;
697 goto fail_exit_queue;
698 }
699
700 rcu_read_lock();
701 spin_lock_irq(&q->queue_lock);
702
703 blkg = blkg_lookup_check(pos, pol, q);
704 if (IS_ERR(blkg)) {
705 ret = PTR_ERR(blkg);
706 blkg_free(new_blkg);
707 goto fail_preloaded;
708 }
709
710 if (blkg) {
711 blkg_free(new_blkg);
712 } else {
713 blkg = blkg_create(pos, q, new_blkg);
714 if (IS_ERR(blkg)) {
715 ret = PTR_ERR(blkg);
716 goto fail_preloaded;
717 }
718 }
719
720 radix_tree_preload_end();
721
722 if (pos == blkcg)
723 goto success;
724 }
725 success:
726 blk_queue_exit(q);
727 ctx->bdev = bdev;
728 ctx->blkg = blkg;
729 ctx->body = input;
730 return 0;
731
732 fail_preloaded:
733 radix_tree_preload_end();
734 fail_unlock:
735 spin_unlock_irq(&q->queue_lock);
736 rcu_read_unlock();
737 fail_exit_queue:
738 blk_queue_exit(q);
739 fail:
740 blkdev_put_no_open(bdev);
741 /*
742 * If queue was bypassing, we should retry. Do so after a
743 * short msleep(). It isn't strictly necessary but queue
744 * can be bypassing for some time and it's always nice to
745 * avoid busy looping.
746 */
747 if (ret == -EBUSY) {
748 msleep(10);
749 ret = restart_syscall();
750 }
751 return ret;
752 }
753 EXPORT_SYMBOL_GPL(blkg_conf_prep);
754
755 /**
756 * blkg_conf_finish - finish up per-blkg config update
757 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
758 *
759 * Finish up after per-blkg config update. This function must be paired
760 * with blkg_conf_prep().
761 */
blkg_conf_finish(struct blkg_conf_ctx * ctx)762 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
763 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
764 {
765 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
766 rcu_read_unlock();
767 blkdev_put_no_open(ctx->bdev);
768 }
769 EXPORT_SYMBOL_GPL(blkg_conf_finish);
770
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)771 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
772 {
773 int i;
774
775 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
776 dst->bytes[i] = src->bytes[i];
777 dst->ios[i] = src->ios[i];
778 }
779 }
780
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)781 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
782 {
783 int i;
784
785 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
786 dst->bytes[i] += src->bytes[i];
787 dst->ios[i] += src->ios[i];
788 }
789 }
790
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)791 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
792 {
793 int i;
794
795 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
796 dst->bytes[i] -= src->bytes[i];
797 dst->ios[i] -= src->ios[i];
798 }
799 }
800
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)801 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
802 {
803 struct blkcg *blkcg = css_to_blkcg(css);
804 struct blkcg_gq *blkg;
805
806 /* Root-level stats are sourced from system-wide IO stats */
807 if (!cgroup_parent(css->cgroup))
808 return;
809
810 rcu_read_lock();
811
812 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
813 struct blkcg_gq *parent = blkg->parent;
814 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
815 struct blkg_iostat cur, delta;
816 unsigned long flags;
817 unsigned int seq;
818
819 /* fetch the current per-cpu values */
820 do {
821 seq = u64_stats_fetch_begin(&bisc->sync);
822 blkg_iostat_set(&cur, &bisc->cur);
823 } while (u64_stats_fetch_retry(&bisc->sync, seq));
824
825 /* propagate percpu delta to global */
826 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
827 blkg_iostat_set(&delta, &cur);
828 blkg_iostat_sub(&delta, &bisc->last);
829 blkg_iostat_add(&blkg->iostat.cur, &delta);
830 blkg_iostat_add(&bisc->last, &delta);
831 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
832
833 /* propagate global delta to parent (unless that's root) */
834 if (parent && parent->parent) {
835 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
836 blkg_iostat_set(&delta, &blkg->iostat.cur);
837 blkg_iostat_sub(&delta, &blkg->iostat.last);
838 blkg_iostat_add(&parent->iostat.cur, &delta);
839 blkg_iostat_add(&blkg->iostat.last, &delta);
840 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
841 }
842 }
843
844 rcu_read_unlock();
845 }
846
847 /*
848 * We source root cgroup stats from the system-wide stats to avoid
849 * tracking the same information twice and incurring overhead when no
850 * cgroups are defined. For that reason, cgroup_rstat_flush in
851 * blkcg_print_stat does not actually fill out the iostat in the root
852 * cgroup's blkcg_gq.
853 *
854 * However, we would like to re-use the printing code between the root and
855 * non-root cgroups to the extent possible. For that reason, we simulate
856 * flushing the root cgroup's stats by explicitly filling in the iostat
857 * with disk level statistics.
858 */
blkcg_fill_root_iostats(void)859 static void blkcg_fill_root_iostats(void)
860 {
861 struct class_dev_iter iter;
862 struct device *dev;
863
864 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
865 while ((dev = class_dev_iter_next(&iter))) {
866 struct block_device *bdev = dev_to_bdev(dev);
867 struct blkcg_gq *blkg =
868 blk_queue_root_blkg(bdev->bd_disk->queue);
869 struct blkg_iostat tmp;
870 int cpu;
871 unsigned long flags;
872
873 memset(&tmp, 0, sizeof(tmp));
874 for_each_possible_cpu(cpu) {
875 struct disk_stats *cpu_dkstats;
876
877 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
878 tmp.ios[BLKG_IOSTAT_READ] +=
879 cpu_dkstats->ios[STAT_READ];
880 tmp.ios[BLKG_IOSTAT_WRITE] +=
881 cpu_dkstats->ios[STAT_WRITE];
882 tmp.ios[BLKG_IOSTAT_DISCARD] +=
883 cpu_dkstats->ios[STAT_DISCARD];
884 // convert sectors to bytes
885 tmp.bytes[BLKG_IOSTAT_READ] +=
886 cpu_dkstats->sectors[STAT_READ] << 9;
887 tmp.bytes[BLKG_IOSTAT_WRITE] +=
888 cpu_dkstats->sectors[STAT_WRITE] << 9;
889 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
890 cpu_dkstats->sectors[STAT_DISCARD] << 9;
891 }
892
893 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
894 blkg_iostat_set(&blkg->iostat.cur, &tmp);
895 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
896 }
897 }
898
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)899 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
900 {
901 struct blkg_iostat_set *bis = &blkg->iostat;
902 u64 rbytes, wbytes, rios, wios, dbytes, dios;
903 bool has_stats = false;
904 const char *dname;
905 unsigned seq;
906 int i;
907
908 if (!blkg->online)
909 return;
910
911 dname = blkg_dev_name(blkg);
912 if (!dname)
913 return;
914
915 seq_printf(s, "%s ", dname);
916
917 do {
918 seq = u64_stats_fetch_begin(&bis->sync);
919
920 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
921 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
922 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
923 rios = bis->cur.ios[BLKG_IOSTAT_READ];
924 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
925 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
926 } while (u64_stats_fetch_retry(&bis->sync, seq));
927
928 if (rbytes || wbytes || rios || wios) {
929 has_stats = true;
930 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
931 rbytes, wbytes, rios, wios,
932 dbytes, dios);
933 }
934
935 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
936 has_stats = true;
937 seq_printf(s, " use_delay=%d delay_nsec=%llu",
938 atomic_read(&blkg->use_delay),
939 atomic64_read(&blkg->delay_nsec));
940 }
941
942 for (i = 0; i < BLKCG_MAX_POLS; i++) {
943 struct blkcg_policy *pol = blkcg_policy[i];
944
945 if (!blkg->pd[i] || !pol->pd_stat_fn)
946 continue;
947
948 if (pol->pd_stat_fn(blkg->pd[i], s))
949 has_stats = true;
950 }
951
952 if (has_stats)
953 seq_printf(s, "\n");
954 }
955
blkcg_print_stat(struct seq_file * sf,void * v)956 static int blkcg_print_stat(struct seq_file *sf, void *v)
957 {
958 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
959 struct blkcg_gq *blkg;
960
961 if (!seq_css(sf)->parent)
962 blkcg_fill_root_iostats();
963 else
964 cgroup_rstat_flush(blkcg->css.cgroup);
965
966 rcu_read_lock();
967 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
968 spin_lock_irq(&blkg->q->queue_lock);
969 blkcg_print_one_stat(blkg, sf);
970 spin_unlock_irq(&blkg->q->queue_lock);
971 }
972 rcu_read_unlock();
973 return 0;
974 }
975
976 static struct cftype blkcg_files[] = {
977 {
978 .name = "stat",
979 .seq_show = blkcg_print_stat,
980 },
981 { } /* terminate */
982 };
983
984 static struct cftype blkcg_legacy_files[] = {
985 {
986 .name = "reset_stats",
987 .write_u64 = blkcg_reset_stats,
988 },
989 { } /* terminate */
990 };
991
992 /*
993 * blkcg destruction is a three-stage process.
994 *
995 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
996 * which offlines writeback. Here we tie the next stage of blkg destruction
997 * to the completion of writeback associated with the blkcg. This lets us
998 * avoid punting potentially large amounts of outstanding writeback to root
999 * while maintaining any ongoing policies. The next stage is triggered when
1000 * the nr_cgwbs count goes to zero.
1001 *
1002 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1003 * and handles the destruction of blkgs. Here the css reference held by
1004 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1005 * This work may occur in cgwb_release_workfn() on the cgwb_release
1006 * workqueue. Any submitted ios that fail to get the blkg ref will be
1007 * punted to the root_blkg.
1008 *
1009 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1010 * This finally frees the blkcg.
1011 */
1012
1013 /**
1014 * blkcg_css_offline - cgroup css_offline callback
1015 * @css: css of interest
1016 *
1017 * This function is called when @css is about to go away. Here the cgwbs are
1018 * offlined first and only once writeback associated with the blkcg has
1019 * finished do we start step 2 (see above).
1020 */
blkcg_css_offline(struct cgroup_subsys_state * css)1021 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1022 {
1023 struct blkcg *blkcg = css_to_blkcg(css);
1024
1025 /* this prevents anyone from attaching or migrating to this blkcg */
1026 wb_blkcg_offline(blkcg);
1027
1028 /* put the base online pin allowing step 2 to be triggered */
1029 blkcg_unpin_online(blkcg);
1030 }
1031
1032 /**
1033 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1034 * @blkcg: blkcg of interest
1035 *
1036 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1037 * is nested inside q lock, this function performs reverse double lock dancing.
1038 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1039 * blkcg_css_free to eventually be called.
1040 *
1041 * This is the blkcg counterpart of ioc_release_fn().
1042 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1043 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1044 {
1045 might_sleep();
1046
1047 spin_lock_irq(&blkcg->lock);
1048
1049 while (!hlist_empty(&blkcg->blkg_list)) {
1050 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1051 struct blkcg_gq, blkcg_node);
1052 struct request_queue *q = blkg->q;
1053
1054 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1055 /*
1056 * Given that the system can accumulate a huge number
1057 * of blkgs in pathological cases, check to see if we
1058 * need to rescheduling to avoid softlockup.
1059 */
1060 spin_unlock_irq(&blkcg->lock);
1061 cond_resched();
1062 spin_lock_irq(&blkcg->lock);
1063 continue;
1064 }
1065
1066 blkg_destroy(blkg);
1067 spin_unlock(&q->queue_lock);
1068 }
1069
1070 spin_unlock_irq(&blkcg->lock);
1071 }
1072
blkcg_css_free(struct cgroup_subsys_state * css)1073 static void blkcg_css_free(struct cgroup_subsys_state *css)
1074 {
1075 struct blkcg *blkcg = css_to_blkcg(css);
1076 int i;
1077
1078 mutex_lock(&blkcg_pol_mutex);
1079
1080 list_del(&blkcg->all_blkcgs_node);
1081
1082 for (i = 0; i < BLKCG_MAX_POLS; i++)
1083 if (blkcg->cpd[i])
1084 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1085
1086 mutex_unlock(&blkcg_pol_mutex);
1087
1088 kfree(blkcg);
1089 }
1090
1091 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1092 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1093 {
1094 struct blkcg *blkcg;
1095 struct cgroup_subsys_state *ret;
1096 int i;
1097
1098 mutex_lock(&blkcg_pol_mutex);
1099
1100 if (!parent_css) {
1101 blkcg = &blkcg_root;
1102 } else {
1103 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1104 if (!blkcg) {
1105 ret = ERR_PTR(-ENOMEM);
1106 goto unlock;
1107 }
1108 }
1109
1110 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1111 struct blkcg_policy *pol = blkcg_policy[i];
1112 struct blkcg_policy_data *cpd;
1113
1114 /*
1115 * If the policy hasn't been attached yet, wait for it
1116 * to be attached before doing anything else. Otherwise,
1117 * check if the policy requires any specific per-cgroup
1118 * data: if it does, allocate and initialize it.
1119 */
1120 if (!pol || !pol->cpd_alloc_fn)
1121 continue;
1122
1123 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1124 if (!cpd) {
1125 ret = ERR_PTR(-ENOMEM);
1126 goto free_pd_blkcg;
1127 }
1128 blkcg->cpd[i] = cpd;
1129 cpd->blkcg = blkcg;
1130 cpd->plid = i;
1131 if (pol->cpd_init_fn)
1132 pol->cpd_init_fn(cpd);
1133 }
1134
1135 spin_lock_init(&blkcg->lock);
1136 refcount_set(&blkcg->online_pin, 1);
1137 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1138 INIT_HLIST_HEAD(&blkcg->blkg_list);
1139 #ifdef CONFIG_CGROUP_WRITEBACK
1140 INIT_LIST_HEAD(&blkcg->cgwb_list);
1141 #endif
1142 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1143
1144 mutex_unlock(&blkcg_pol_mutex);
1145 return &blkcg->css;
1146
1147 free_pd_blkcg:
1148 for (i--; i >= 0; i--)
1149 if (blkcg->cpd[i])
1150 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1151
1152 if (blkcg != &blkcg_root)
1153 kfree(blkcg);
1154 unlock:
1155 mutex_unlock(&blkcg_pol_mutex);
1156 return ret;
1157 }
1158
blkcg_css_online(struct cgroup_subsys_state * css)1159 static int blkcg_css_online(struct cgroup_subsys_state *css)
1160 {
1161 struct blkcg *blkcg = css_to_blkcg(css);
1162 struct blkcg *parent = blkcg_parent(blkcg);
1163
1164 /*
1165 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1166 * don't go offline while cgwbs are still active on them. Pin the
1167 * parent so that offline always happens towards the root.
1168 */
1169 if (parent)
1170 blkcg_pin_online(parent);
1171 return 0;
1172 }
1173
1174 /**
1175 * blkcg_init_queue - initialize blkcg part of request queue
1176 * @q: request_queue to initialize
1177 *
1178 * Called from blk_alloc_queue(). Responsible for initializing blkcg
1179 * part of new request_queue @q.
1180 *
1181 * RETURNS:
1182 * 0 on success, -errno on failure.
1183 */
blkcg_init_queue(struct request_queue * q)1184 int blkcg_init_queue(struct request_queue *q)
1185 {
1186 struct blkcg_gq *new_blkg, *blkg;
1187 bool preloaded;
1188 int ret;
1189
1190 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1191 if (!new_blkg)
1192 return -ENOMEM;
1193
1194 preloaded = !radix_tree_preload(GFP_KERNEL);
1195
1196 /* Make sure the root blkg exists. */
1197 rcu_read_lock();
1198 spin_lock_irq(&q->queue_lock);
1199 blkg = blkg_create(&blkcg_root, q, new_blkg);
1200 if (IS_ERR(blkg))
1201 goto err_unlock;
1202 q->root_blkg = blkg;
1203 spin_unlock_irq(&q->queue_lock);
1204 rcu_read_unlock();
1205
1206 if (preloaded)
1207 radix_tree_preload_end();
1208
1209 ret = blk_ioprio_init(q);
1210 if (ret)
1211 goto err_destroy_all;
1212
1213 ret = blk_throtl_init(q);
1214 if (ret)
1215 goto err_destroy_all;
1216
1217 ret = blk_iolatency_init(q);
1218 if (ret) {
1219 blk_throtl_exit(q);
1220 blk_ioprio_exit(q);
1221 goto err_destroy_all;
1222 }
1223
1224 return 0;
1225
1226 err_destroy_all:
1227 blkg_destroy_all(q);
1228 return ret;
1229 err_unlock:
1230 spin_unlock_irq(&q->queue_lock);
1231 rcu_read_unlock();
1232 if (preloaded)
1233 radix_tree_preload_end();
1234 return PTR_ERR(blkg);
1235 }
1236
1237 /**
1238 * blkcg_exit_queue - exit and release blkcg part of request_queue
1239 * @q: request_queue being released
1240 *
1241 * Called from blk_exit_queue(). Responsible for exiting blkcg part.
1242 */
blkcg_exit_queue(struct request_queue * q)1243 void blkcg_exit_queue(struct request_queue *q)
1244 {
1245 blkg_destroy_all(q);
1246 blk_throtl_exit(q);
1247 }
1248
blkcg_bind(struct cgroup_subsys_state * root_css)1249 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1250 {
1251 int i;
1252
1253 mutex_lock(&blkcg_pol_mutex);
1254
1255 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1256 struct blkcg_policy *pol = blkcg_policy[i];
1257 struct blkcg *blkcg;
1258
1259 if (!pol || !pol->cpd_bind_fn)
1260 continue;
1261
1262 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1263 if (blkcg->cpd[pol->plid])
1264 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1265 }
1266 mutex_unlock(&blkcg_pol_mutex);
1267 }
1268
blkcg_exit(struct task_struct * tsk)1269 static void blkcg_exit(struct task_struct *tsk)
1270 {
1271 if (tsk->throttle_queue)
1272 blk_put_queue(tsk->throttle_queue);
1273 tsk->throttle_queue = NULL;
1274 }
1275
1276 struct cgroup_subsys io_cgrp_subsys = {
1277 .css_alloc = blkcg_css_alloc,
1278 .css_online = blkcg_css_online,
1279 .css_offline = blkcg_css_offline,
1280 .css_free = blkcg_css_free,
1281 .css_rstat_flush = blkcg_rstat_flush,
1282 .bind = blkcg_bind,
1283 .dfl_cftypes = blkcg_files,
1284 .legacy_cftypes = blkcg_legacy_files,
1285 .legacy_name = "blkio",
1286 .exit = blkcg_exit,
1287 #ifdef CONFIG_MEMCG
1288 /*
1289 * This ensures that, if available, memcg is automatically enabled
1290 * together on the default hierarchy so that the owner cgroup can
1291 * be retrieved from writeback pages.
1292 */
1293 .depends_on = 1 << memory_cgrp_id,
1294 #endif
1295 };
1296 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1297
1298 /**
1299 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1300 * @q: request_queue of interest
1301 * @pol: blkcg policy to activate
1302 *
1303 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1304 * bypass mode to populate its blkgs with policy_data for @pol.
1305 *
1306 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1307 * from IO path. Update of each blkg is protected by both queue and blkcg
1308 * locks so that holding either lock and testing blkcg_policy_enabled() is
1309 * always enough for dereferencing policy data.
1310 *
1311 * The caller is responsible for synchronizing [de]activations and policy
1312 * [un]registerations. Returns 0 on success, -errno on failure.
1313 */
blkcg_activate_policy(struct request_queue * q,const struct blkcg_policy * pol)1314 int blkcg_activate_policy(struct request_queue *q,
1315 const struct blkcg_policy *pol)
1316 {
1317 struct blkg_policy_data *pd_prealloc = NULL;
1318 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1319 int ret;
1320
1321 if (blkcg_policy_enabled(q, pol))
1322 return 0;
1323
1324 if (queue_is_mq(q))
1325 blk_mq_freeze_queue(q);
1326 retry:
1327 spin_lock_irq(&q->queue_lock);
1328
1329 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1330 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1331 struct blkg_policy_data *pd;
1332
1333 if (blkg->pd[pol->plid])
1334 continue;
1335
1336 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1337 if (blkg == pinned_blkg) {
1338 pd = pd_prealloc;
1339 pd_prealloc = NULL;
1340 } else {
1341 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1342 blkg->blkcg);
1343 }
1344
1345 if (!pd) {
1346 /*
1347 * GFP_NOWAIT failed. Free the existing one and
1348 * prealloc for @blkg w/ GFP_KERNEL.
1349 */
1350 if (pinned_blkg)
1351 blkg_put(pinned_blkg);
1352 blkg_get(blkg);
1353 pinned_blkg = blkg;
1354
1355 spin_unlock_irq(&q->queue_lock);
1356
1357 if (pd_prealloc)
1358 pol->pd_free_fn(pd_prealloc);
1359 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1360 blkg->blkcg);
1361 if (pd_prealloc)
1362 goto retry;
1363 else
1364 goto enomem;
1365 }
1366
1367 blkg->pd[pol->plid] = pd;
1368 pd->blkg = blkg;
1369 pd->plid = pol->plid;
1370 }
1371
1372 /* all allocated, init in the same order */
1373 if (pol->pd_init_fn)
1374 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1375 pol->pd_init_fn(blkg->pd[pol->plid]);
1376
1377 if (pol->pd_online_fn)
1378 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1379 pol->pd_online_fn(blkg->pd[pol->plid]);
1380
1381 __set_bit(pol->plid, q->blkcg_pols);
1382 ret = 0;
1383
1384 spin_unlock_irq(&q->queue_lock);
1385 out:
1386 if (queue_is_mq(q))
1387 blk_mq_unfreeze_queue(q);
1388 if (pinned_blkg)
1389 blkg_put(pinned_blkg);
1390 if (pd_prealloc)
1391 pol->pd_free_fn(pd_prealloc);
1392 return ret;
1393
1394 enomem:
1395 /* alloc failed, nothing's initialized yet, free everything */
1396 spin_lock_irq(&q->queue_lock);
1397 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1398 struct blkcg *blkcg = blkg->blkcg;
1399
1400 spin_lock(&blkcg->lock);
1401 if (blkg->pd[pol->plid]) {
1402 pol->pd_free_fn(blkg->pd[pol->plid]);
1403 blkg->pd[pol->plid] = NULL;
1404 }
1405 spin_unlock(&blkcg->lock);
1406 }
1407 spin_unlock_irq(&q->queue_lock);
1408 ret = -ENOMEM;
1409 goto out;
1410 }
1411 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1412
1413 /**
1414 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1415 * @q: request_queue of interest
1416 * @pol: blkcg policy to deactivate
1417 *
1418 * Deactivate @pol on @q. Follows the same synchronization rules as
1419 * blkcg_activate_policy().
1420 */
blkcg_deactivate_policy(struct request_queue * q,const struct blkcg_policy * pol)1421 void blkcg_deactivate_policy(struct request_queue *q,
1422 const struct blkcg_policy *pol)
1423 {
1424 struct blkcg_gq *blkg;
1425
1426 if (!blkcg_policy_enabled(q, pol))
1427 return;
1428
1429 if (queue_is_mq(q))
1430 blk_mq_freeze_queue(q);
1431
1432 spin_lock_irq(&q->queue_lock);
1433
1434 __clear_bit(pol->plid, q->blkcg_pols);
1435
1436 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1437 struct blkcg *blkcg = blkg->blkcg;
1438
1439 spin_lock(&blkcg->lock);
1440 if (blkg->pd[pol->plid]) {
1441 if (pol->pd_offline_fn)
1442 pol->pd_offline_fn(blkg->pd[pol->plid]);
1443 pol->pd_free_fn(blkg->pd[pol->plid]);
1444 blkg->pd[pol->plid] = NULL;
1445 }
1446 spin_unlock(&blkcg->lock);
1447 }
1448
1449 spin_unlock_irq(&q->queue_lock);
1450
1451 if (queue_is_mq(q))
1452 blk_mq_unfreeze_queue(q);
1453 }
1454 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1455
1456 /**
1457 * blkcg_policy_register - register a blkcg policy
1458 * @pol: blkcg policy to register
1459 *
1460 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1461 * successful registration. Returns 0 on success and -errno on failure.
1462 */
blkcg_policy_register(struct blkcg_policy * pol)1463 int blkcg_policy_register(struct blkcg_policy *pol)
1464 {
1465 struct blkcg *blkcg;
1466 int i, ret;
1467
1468 mutex_lock(&blkcg_pol_register_mutex);
1469 mutex_lock(&blkcg_pol_mutex);
1470
1471 /* find an empty slot */
1472 ret = -ENOSPC;
1473 for (i = 0; i < BLKCG_MAX_POLS; i++)
1474 if (!blkcg_policy[i])
1475 break;
1476 if (i >= BLKCG_MAX_POLS) {
1477 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1478 goto err_unlock;
1479 }
1480
1481 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1482 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1483 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1484 goto err_unlock;
1485
1486 /* register @pol */
1487 pol->plid = i;
1488 blkcg_policy[pol->plid] = pol;
1489
1490 /* allocate and install cpd's */
1491 if (pol->cpd_alloc_fn) {
1492 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1493 struct blkcg_policy_data *cpd;
1494
1495 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1496 if (!cpd)
1497 goto err_free_cpds;
1498
1499 blkcg->cpd[pol->plid] = cpd;
1500 cpd->blkcg = blkcg;
1501 cpd->plid = pol->plid;
1502 if (pol->cpd_init_fn)
1503 pol->cpd_init_fn(cpd);
1504 }
1505 }
1506
1507 mutex_unlock(&blkcg_pol_mutex);
1508
1509 /* everything is in place, add intf files for the new policy */
1510 if (pol->dfl_cftypes)
1511 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1512 pol->dfl_cftypes));
1513 if (pol->legacy_cftypes)
1514 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1515 pol->legacy_cftypes));
1516 mutex_unlock(&blkcg_pol_register_mutex);
1517 return 0;
1518
1519 err_free_cpds:
1520 if (pol->cpd_free_fn) {
1521 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1522 if (blkcg->cpd[pol->plid]) {
1523 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1524 blkcg->cpd[pol->plid] = NULL;
1525 }
1526 }
1527 }
1528 blkcg_policy[pol->plid] = NULL;
1529 err_unlock:
1530 mutex_unlock(&blkcg_pol_mutex);
1531 mutex_unlock(&blkcg_pol_register_mutex);
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1535
1536 /**
1537 * blkcg_policy_unregister - unregister a blkcg policy
1538 * @pol: blkcg policy to unregister
1539 *
1540 * Undo blkcg_policy_register(@pol). Might sleep.
1541 */
blkcg_policy_unregister(struct blkcg_policy * pol)1542 void blkcg_policy_unregister(struct blkcg_policy *pol)
1543 {
1544 struct blkcg *blkcg;
1545
1546 mutex_lock(&blkcg_pol_register_mutex);
1547
1548 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1549 goto out_unlock;
1550
1551 /* kill the intf files first */
1552 if (pol->dfl_cftypes)
1553 cgroup_rm_cftypes(pol->dfl_cftypes);
1554 if (pol->legacy_cftypes)
1555 cgroup_rm_cftypes(pol->legacy_cftypes);
1556
1557 /* remove cpds and unregister */
1558 mutex_lock(&blkcg_pol_mutex);
1559
1560 if (pol->cpd_free_fn) {
1561 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1562 if (blkcg->cpd[pol->plid]) {
1563 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1564 blkcg->cpd[pol->plid] = NULL;
1565 }
1566 }
1567 }
1568 blkcg_policy[pol->plid] = NULL;
1569
1570 mutex_unlock(&blkcg_pol_mutex);
1571 out_unlock:
1572 mutex_unlock(&blkcg_pol_register_mutex);
1573 }
1574 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1575
__blkcg_punt_bio_submit(struct bio * bio)1576 bool __blkcg_punt_bio_submit(struct bio *bio)
1577 {
1578 struct blkcg_gq *blkg = bio->bi_blkg;
1579
1580 /* consume the flag first */
1581 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1582
1583 /* never bounce for the root cgroup */
1584 if (!blkg->parent)
1585 return false;
1586
1587 spin_lock_bh(&blkg->async_bio_lock);
1588 bio_list_add(&blkg->async_bios, bio);
1589 spin_unlock_bh(&blkg->async_bio_lock);
1590
1591 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1592 return true;
1593 }
1594
1595 /*
1596 * Scale the accumulated delay based on how long it has been since we updated
1597 * the delay. We only call this when we are adding delay, in case it's been a
1598 * while since we added delay, and when we are checking to see if we need to
1599 * delay a task, to account for any delays that may have occurred.
1600 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1601 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1602 {
1603 u64 old = atomic64_read(&blkg->delay_start);
1604
1605 /* negative use_delay means no scaling, see blkcg_set_delay() */
1606 if (atomic_read(&blkg->use_delay) < 0)
1607 return;
1608
1609 /*
1610 * We only want to scale down every second. The idea here is that we
1611 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1612 * time window. We only want to throttle tasks for recent delay that
1613 * has occurred, in 1 second time windows since that's the maximum
1614 * things can be throttled. We save the current delay window in
1615 * blkg->last_delay so we know what amount is still left to be charged
1616 * to the blkg from this point onward. blkg->last_use keeps track of
1617 * the use_delay counter. The idea is if we're unthrottling the blkg we
1618 * are ok with whatever is happening now, and we can take away more of
1619 * the accumulated delay as we've already throttled enough that
1620 * everybody is happy with their IO latencies.
1621 */
1622 if (time_before64(old + NSEC_PER_SEC, now) &&
1623 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1624 u64 cur = atomic64_read(&blkg->delay_nsec);
1625 u64 sub = min_t(u64, blkg->last_delay, now - old);
1626 int cur_use = atomic_read(&blkg->use_delay);
1627
1628 /*
1629 * We've been unthrottled, subtract a larger chunk of our
1630 * accumulated delay.
1631 */
1632 if (cur_use < blkg->last_use)
1633 sub = max_t(u64, sub, blkg->last_delay >> 1);
1634
1635 /*
1636 * This shouldn't happen, but handle it anyway. Our delay_nsec
1637 * should only ever be growing except here where we subtract out
1638 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1639 * rather not end up with negative numbers.
1640 */
1641 if (unlikely(cur < sub)) {
1642 atomic64_set(&blkg->delay_nsec, 0);
1643 blkg->last_delay = 0;
1644 } else {
1645 atomic64_sub(sub, &blkg->delay_nsec);
1646 blkg->last_delay = cur - sub;
1647 }
1648 blkg->last_use = cur_use;
1649 }
1650 }
1651
1652 /*
1653 * This is called when we want to actually walk up the hierarchy and check to
1654 * see if we need to throttle, and then actually throttle if there is some
1655 * accumulated delay. This should only be called upon return to user space so
1656 * we're not holding some lock that would induce a priority inversion.
1657 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1658 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1659 {
1660 unsigned long pflags;
1661 bool clamp;
1662 u64 now = ktime_to_ns(ktime_get());
1663 u64 exp;
1664 u64 delay_nsec = 0;
1665 int tok;
1666
1667 while (blkg->parent) {
1668 int use_delay = atomic_read(&blkg->use_delay);
1669
1670 if (use_delay) {
1671 u64 this_delay;
1672
1673 blkcg_scale_delay(blkg, now);
1674 this_delay = atomic64_read(&blkg->delay_nsec);
1675 if (this_delay > delay_nsec) {
1676 delay_nsec = this_delay;
1677 clamp = use_delay > 0;
1678 }
1679 }
1680 blkg = blkg->parent;
1681 }
1682
1683 if (!delay_nsec)
1684 return;
1685
1686 /*
1687 * Let's not sleep for all eternity if we've amassed a huge delay.
1688 * Swapping or metadata IO can accumulate 10's of seconds worth of
1689 * delay, and we want userspace to be able to do _something_ so cap the
1690 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1691 * tasks will be delayed for 0.25 second for every syscall. If
1692 * blkcg_set_delay() was used as indicated by negative use_delay, the
1693 * caller is responsible for regulating the range.
1694 */
1695 if (clamp)
1696 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1697
1698 if (use_memdelay)
1699 psi_memstall_enter(&pflags);
1700
1701 exp = ktime_add_ns(now, delay_nsec);
1702 tok = io_schedule_prepare();
1703 do {
1704 __set_current_state(TASK_KILLABLE);
1705 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1706 break;
1707 } while (!fatal_signal_pending(current));
1708 io_schedule_finish(tok);
1709
1710 if (use_memdelay)
1711 psi_memstall_leave(&pflags);
1712 }
1713
1714 /**
1715 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1716 *
1717 * This is only called if we've been marked with set_notify_resume(). Obviously
1718 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1719 * check to see if current->throttle_queue is set and if not this doesn't do
1720 * anything. This should only ever be called by the resume code, it's not meant
1721 * to be called by people willy-nilly as it will actually do the work to
1722 * throttle the task if it is setup for throttling.
1723 */
blkcg_maybe_throttle_current(void)1724 void blkcg_maybe_throttle_current(void)
1725 {
1726 struct request_queue *q = current->throttle_queue;
1727 struct cgroup_subsys_state *css;
1728 struct blkcg *blkcg;
1729 struct blkcg_gq *blkg;
1730 bool use_memdelay = current->use_memdelay;
1731
1732 if (!q)
1733 return;
1734
1735 current->throttle_queue = NULL;
1736 current->use_memdelay = false;
1737
1738 rcu_read_lock();
1739 css = kthread_blkcg();
1740 if (css)
1741 blkcg = css_to_blkcg(css);
1742 else
1743 blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1744
1745 if (!blkcg)
1746 goto out;
1747 blkg = blkg_lookup(blkcg, q);
1748 if (!blkg)
1749 goto out;
1750 if (!blkg_tryget(blkg))
1751 goto out;
1752 rcu_read_unlock();
1753
1754 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1755 blkg_put(blkg);
1756 blk_put_queue(q);
1757 return;
1758 out:
1759 rcu_read_unlock();
1760 blk_put_queue(q);
1761 }
1762
1763 /**
1764 * blkcg_schedule_throttle - this task needs to check for throttling
1765 * @q: the request queue IO was submitted on
1766 * @use_memdelay: do we charge this to memory delay for PSI
1767 *
1768 * This is called by the IO controller when we know there's delay accumulated
1769 * for the blkg for this task. We do not pass the blkg because there are places
1770 * we call this that may not have that information, the swapping code for
1771 * instance will only have a request_queue at that point. This set's the
1772 * notify_resume for the task to check and see if it requires throttling before
1773 * returning to user space.
1774 *
1775 * We will only schedule once per syscall. You can call this over and over
1776 * again and it will only do the check once upon return to user space, and only
1777 * throttle once. If the task needs to be throttled again it'll need to be
1778 * re-set at the next time we see the task.
1779 */
blkcg_schedule_throttle(struct request_queue * q,bool use_memdelay)1780 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1781 {
1782 if (unlikely(current->flags & PF_KTHREAD))
1783 return;
1784
1785 if (current->throttle_queue != q) {
1786 if (!blk_get_queue(q))
1787 return;
1788
1789 if (current->throttle_queue)
1790 blk_put_queue(current->throttle_queue);
1791 current->throttle_queue = q;
1792 }
1793
1794 if (use_memdelay)
1795 current->use_memdelay = use_memdelay;
1796 set_notify_resume(current);
1797 }
1798
1799 /**
1800 * blkcg_add_delay - add delay to this blkg
1801 * @blkg: blkg of interest
1802 * @now: the current time in nanoseconds
1803 * @delta: how many nanoseconds of delay to add
1804 *
1805 * Charge @delta to the blkg's current delay accumulation. This is used to
1806 * throttle tasks if an IO controller thinks we need more throttling.
1807 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)1808 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1809 {
1810 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1811 return;
1812 blkcg_scale_delay(blkg, now);
1813 atomic64_add(delta, &blkg->delay_nsec);
1814 }
1815
1816 /**
1817 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1818 * @bio: target bio
1819 * @css: target css
1820 *
1821 * As the failure mode here is to walk up the blkg tree, this ensure that the
1822 * blkg->parent pointers are always valid. This returns the blkg that it ended
1823 * up taking a reference on or %NULL if no reference was taken.
1824 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)1825 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1826 struct cgroup_subsys_state *css)
1827 {
1828 struct blkcg_gq *blkg, *ret_blkg = NULL;
1829
1830 rcu_read_lock();
1831 blkg = blkg_lookup_create(css_to_blkcg(css),
1832 bio->bi_bdev->bd_disk->queue);
1833 while (blkg) {
1834 if (blkg_tryget(blkg)) {
1835 ret_blkg = blkg;
1836 break;
1837 }
1838 blkg = blkg->parent;
1839 }
1840 rcu_read_unlock();
1841
1842 return ret_blkg;
1843 }
1844
1845 /**
1846 * bio_associate_blkg_from_css - associate a bio with a specified css
1847 * @bio: target bio
1848 * @css: target css
1849 *
1850 * Associate @bio with the blkg found by combining the css's blkg and the
1851 * request_queue of the @bio. An association failure is handled by walking up
1852 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1853 * and q->root_blkg. This situation only happens when a cgroup is dying and
1854 * then the remaining bios will spill to the closest alive blkg.
1855 *
1856 * A reference will be taken on the blkg and will be released when @bio is
1857 * freed.
1858 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)1859 void bio_associate_blkg_from_css(struct bio *bio,
1860 struct cgroup_subsys_state *css)
1861 {
1862 if (bio->bi_blkg)
1863 blkg_put(bio->bi_blkg);
1864
1865 if (css && css->parent) {
1866 bio->bi_blkg = blkg_tryget_closest(bio, css);
1867 } else {
1868 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1869 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1870 }
1871 }
1872 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1873
1874 /**
1875 * bio_associate_blkg - associate a bio with a blkg
1876 * @bio: target bio
1877 *
1878 * Associate @bio with the blkg found from the bio's css and request_queue.
1879 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1880 * already associated, the css is reused and association redone as the
1881 * request_queue may have changed.
1882 */
bio_associate_blkg(struct bio * bio)1883 void bio_associate_blkg(struct bio *bio)
1884 {
1885 struct cgroup_subsys_state *css;
1886
1887 rcu_read_lock();
1888
1889 if (bio->bi_blkg)
1890 css = &bio_blkcg(bio)->css;
1891 else
1892 css = blkcg_css();
1893
1894 bio_associate_blkg_from_css(bio, css);
1895
1896 rcu_read_unlock();
1897 }
1898 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1899
1900 /**
1901 * bio_clone_blkg_association - clone blkg association from src to dst bio
1902 * @dst: destination bio
1903 * @src: source bio
1904 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)1905 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1906 {
1907 if (src->bi_blkg)
1908 bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css);
1909 }
1910 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1911
blk_cgroup_io_type(struct bio * bio)1912 static int blk_cgroup_io_type(struct bio *bio)
1913 {
1914 if (op_is_discard(bio->bi_opf))
1915 return BLKG_IOSTAT_DISCARD;
1916 if (op_is_write(bio->bi_opf))
1917 return BLKG_IOSTAT_WRITE;
1918 return BLKG_IOSTAT_READ;
1919 }
1920
blk_cgroup_bio_start(struct bio * bio)1921 void blk_cgroup_bio_start(struct bio *bio)
1922 {
1923 int rwd = blk_cgroup_io_type(bio), cpu;
1924 struct blkg_iostat_set *bis;
1925 unsigned long flags;
1926
1927 cpu = get_cpu();
1928 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1929 flags = u64_stats_update_begin_irqsave(&bis->sync);
1930
1931 /*
1932 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1933 * bio and we would have already accounted for the size of the bio.
1934 */
1935 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1936 bio_set_flag(bio, BIO_CGROUP_ACCT);
1937 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1938 }
1939 bis->cur.ios[rwd]++;
1940
1941 u64_stats_update_end_irqrestore(&bis->sync, flags);
1942 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1943 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1944 put_cpu();
1945 }
1946
blkcg_init(void)1947 static int __init blkcg_init(void)
1948 {
1949 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1950 WQ_MEM_RECLAIM | WQ_FREEZABLE |
1951 WQ_UNBOUND | WQ_SYSFS, 0);
1952 if (!blkcg_punt_bio_wq)
1953 return -ENOMEM;
1954 return 0;
1955 }
1956 subsys_initcall(blkcg_init);
1957
1958 module_param(blkcg_debug_stats, bool, 0644);
1959 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1960