1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5 *
6 * This file contains the interrupt descriptor management code. Detailed
7 * information is available in Documentation/core-api/genericirq.rst
8 *
9 */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 #include <linux/sysfs.h>
19
20 #include "internals.h"
21
22 /*
23 * lockdep: we want to handle all irq_desc locks as a single lock-class:
24 */
25 static struct lock_class_key irq_desc_lock_class;
26
27 #if defined(CONFIG_SMP)
irq_affinity_setup(char * str)28 static int __init irq_affinity_setup(char *str)
29 {
30 alloc_bootmem_cpumask_var(&irq_default_affinity);
31 cpulist_parse(str, irq_default_affinity);
32 /*
33 * Set at least the boot cpu. We don't want to end up with
34 * bugreports caused by random commandline masks
35 */
36 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40
init_irq_default_affinity(void)41 static void __init init_irq_default_affinity(void)
42 {
43 if (!cpumask_available(irq_default_affinity))
44 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 if (cpumask_empty(irq_default_affinity))
46 cpumask_setall(irq_default_affinity);
47 }
48 #else
init_irq_default_affinity(void)49 static void __init init_irq_default_affinity(void)
50 {
51 }
52 #endif
53
54 #ifdef CONFIG_SMP
alloc_masks(struct irq_desc * desc,int node)55 static int alloc_masks(struct irq_desc *desc, int node)
56 {
57 if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
58 GFP_KERNEL, node))
59 return -ENOMEM;
60
61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
62 if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
63 GFP_KERNEL, node)) {
64 free_cpumask_var(desc->irq_common_data.affinity);
65 return -ENOMEM;
66 }
67 #endif
68
69 #ifdef CONFIG_GENERIC_PENDING_IRQ
70 if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
72 free_cpumask_var(desc->irq_common_data.effective_affinity);
73 #endif
74 free_cpumask_var(desc->irq_common_data.affinity);
75 return -ENOMEM;
76 }
77 #endif
78 return 0;
79 }
80
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)81 static void desc_smp_init(struct irq_desc *desc, int node,
82 const struct cpumask *affinity)
83 {
84 if (!affinity)
85 affinity = irq_default_affinity;
86 cpumask_copy(desc->irq_common_data.affinity, affinity);
87
88 #ifdef CONFIG_GENERIC_PENDING_IRQ
89 cpumask_clear(desc->pending_mask);
90 #endif
91 #ifdef CONFIG_NUMA
92 desc->irq_common_data.node = node;
93 #endif
94 }
95
96 #else
97 static inline int
alloc_masks(struct irq_desc * desc,int node)98 alloc_masks(struct irq_desc *desc, int node) { return 0; }
99 static inline void
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)100 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101 #endif
102
desc_set_defaults(unsigned int irq,struct irq_desc * desc,int node,const struct cpumask * affinity,struct module * owner)103 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104 const struct cpumask *affinity, struct module *owner)
105 {
106 int cpu;
107
108 desc->irq_common_data.handler_data = NULL;
109 desc->irq_common_data.msi_desc = NULL;
110
111 desc->irq_data.common = &desc->irq_common_data;
112 desc->irq_data.irq = irq;
113 desc->irq_data.chip = &no_irq_chip;
114 desc->irq_data.chip_data = NULL;
115 irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116 irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117 irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118 desc->handle_irq = handle_bad_irq;
119 desc->depth = 1;
120 desc->irq_count = 0;
121 desc->irqs_unhandled = 0;
122 desc->tot_count = 0;
123 desc->name = NULL;
124 desc->owner = owner;
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
127 desc_smp_init(desc, node, affinity);
128 }
129
130 int nr_irqs = NR_IRQS;
131 EXPORT_SYMBOL_GPL(nr_irqs);
132
133 static DEFINE_MUTEX(sparse_irq_lock);
134 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
135
136 #ifdef CONFIG_SPARSE_IRQ
137
138 static void irq_kobj_release(struct kobject *kobj);
139
140 #ifdef CONFIG_SYSFS
141 static struct kobject *irq_kobj_base;
142
143 #define IRQ_ATTR_RO(_name) \
144 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
145
per_cpu_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)146 static ssize_t per_cpu_count_show(struct kobject *kobj,
147 struct kobj_attribute *attr, char *buf)
148 {
149 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
150 ssize_t ret = 0;
151 char *p = "";
152 int cpu;
153
154 for_each_possible_cpu(cpu) {
155 unsigned int c = irq_desc_kstat_cpu(desc, cpu);
156
157 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
158 p = ",";
159 }
160
161 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
162 return ret;
163 }
164 IRQ_ATTR_RO(per_cpu_count);
165
chip_name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)166 static ssize_t chip_name_show(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168 {
169 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
170 ssize_t ret = 0;
171
172 raw_spin_lock_irq(&desc->lock);
173 if (desc->irq_data.chip && desc->irq_data.chip->name) {
174 ret = scnprintf(buf, PAGE_SIZE, "%s\n",
175 desc->irq_data.chip->name);
176 }
177 raw_spin_unlock_irq(&desc->lock);
178
179 return ret;
180 }
181 IRQ_ATTR_RO(chip_name);
182
hwirq_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)183 static ssize_t hwirq_show(struct kobject *kobj,
184 struct kobj_attribute *attr, char *buf)
185 {
186 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
187 ssize_t ret = 0;
188
189 raw_spin_lock_irq(&desc->lock);
190 if (desc->irq_data.domain)
191 ret = sprintf(buf, "%lu\n", desc->irq_data.hwirq);
192 raw_spin_unlock_irq(&desc->lock);
193
194 return ret;
195 }
196 IRQ_ATTR_RO(hwirq);
197
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)198 static ssize_t type_show(struct kobject *kobj,
199 struct kobj_attribute *attr, char *buf)
200 {
201 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
202 ssize_t ret = 0;
203
204 raw_spin_lock_irq(&desc->lock);
205 ret = sprintf(buf, "%s\n",
206 irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
207 raw_spin_unlock_irq(&desc->lock);
208
209 return ret;
210
211 }
212 IRQ_ATTR_RO(type);
213
wakeup_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)214 static ssize_t wakeup_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf)
216 {
217 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
218 ssize_t ret = 0;
219
220 raw_spin_lock_irq(&desc->lock);
221 ret = sprintf(buf, "%s\n",
222 irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
223 raw_spin_unlock_irq(&desc->lock);
224
225 return ret;
226
227 }
228 IRQ_ATTR_RO(wakeup);
229
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)230 static ssize_t name_show(struct kobject *kobj,
231 struct kobj_attribute *attr, char *buf)
232 {
233 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
234 ssize_t ret = 0;
235
236 raw_spin_lock_irq(&desc->lock);
237 if (desc->name)
238 ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
239 raw_spin_unlock_irq(&desc->lock);
240
241 return ret;
242 }
243 IRQ_ATTR_RO(name);
244
actions_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)245 static ssize_t actions_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf)
247 {
248 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
249 struct irqaction *action;
250 ssize_t ret = 0;
251 char *p = "";
252
253 raw_spin_lock_irq(&desc->lock);
254 for (action = desc->action; action != NULL; action = action->next) {
255 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
256 p, action->name);
257 p = ",";
258 }
259 raw_spin_unlock_irq(&desc->lock);
260
261 if (ret)
262 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
263
264 return ret;
265 }
266 IRQ_ATTR_RO(actions);
267
268 static struct attribute *irq_attrs[] = {
269 &per_cpu_count_attr.attr,
270 &chip_name_attr.attr,
271 &hwirq_attr.attr,
272 &type_attr.attr,
273 &wakeup_attr.attr,
274 &name_attr.attr,
275 &actions_attr.attr,
276 NULL
277 };
278 ATTRIBUTE_GROUPS(irq);
279
280 static struct kobj_type irq_kobj_type = {
281 .release = irq_kobj_release,
282 .sysfs_ops = &kobj_sysfs_ops,
283 .default_groups = irq_groups,
284 };
285
irq_sysfs_add(int irq,struct irq_desc * desc)286 static void irq_sysfs_add(int irq, struct irq_desc *desc)
287 {
288 if (irq_kobj_base) {
289 /*
290 * Continue even in case of failure as this is nothing
291 * crucial and failures in the late irq_sysfs_init()
292 * cannot be rolled back.
293 */
294 if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
295 pr_warn("Failed to add kobject for irq %d\n", irq);
296 else
297 desc->istate |= IRQS_SYSFS;
298 }
299 }
300
irq_sysfs_del(struct irq_desc * desc)301 static void irq_sysfs_del(struct irq_desc *desc)
302 {
303 /*
304 * Only invoke kobject_del() when kobject_add() was successfully
305 * invoked for the descriptor. This covers both early boot, where
306 * sysfs is not initialized yet, and the case of a failed
307 * kobject_add() invocation.
308 */
309 if (desc->istate & IRQS_SYSFS)
310 kobject_del(&desc->kobj);
311 }
312
irq_sysfs_init(void)313 static int __init irq_sysfs_init(void)
314 {
315 struct irq_desc *desc;
316 int irq;
317
318 /* Prevent concurrent irq alloc/free */
319 irq_lock_sparse();
320
321 irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
322 if (!irq_kobj_base) {
323 irq_unlock_sparse();
324 return -ENOMEM;
325 }
326
327 /* Add the already allocated interrupts */
328 for_each_irq_desc(irq, desc)
329 irq_sysfs_add(irq, desc);
330 irq_unlock_sparse();
331
332 return 0;
333 }
334 postcore_initcall(irq_sysfs_init);
335
336 #else /* !CONFIG_SYSFS */
337
338 static struct kobj_type irq_kobj_type = {
339 .release = irq_kobj_release,
340 };
341
irq_sysfs_add(int irq,struct irq_desc * desc)342 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
irq_sysfs_del(struct irq_desc * desc)343 static void irq_sysfs_del(struct irq_desc *desc) {}
344
345 #endif /* CONFIG_SYSFS */
346
347 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
348
irq_insert_desc(unsigned int irq,struct irq_desc * desc)349 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
350 {
351 radix_tree_insert(&irq_desc_tree, irq, desc);
352 }
353
irq_to_desc(unsigned int irq)354 struct irq_desc *irq_to_desc(unsigned int irq)
355 {
356 return radix_tree_lookup(&irq_desc_tree, irq);
357 }
358 EXPORT_SYMBOL_GPL(irq_to_desc);
359
delete_irq_desc(unsigned int irq)360 static void delete_irq_desc(unsigned int irq)
361 {
362 radix_tree_delete(&irq_desc_tree, irq);
363 }
364
365 #ifdef CONFIG_SMP
free_masks(struct irq_desc * desc)366 static void free_masks(struct irq_desc *desc)
367 {
368 #ifdef CONFIG_GENERIC_PENDING_IRQ
369 free_cpumask_var(desc->pending_mask);
370 #endif
371 free_cpumask_var(desc->irq_common_data.affinity);
372 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
373 free_cpumask_var(desc->irq_common_data.effective_affinity);
374 #endif
375 }
376 #else
free_masks(struct irq_desc * desc)377 static inline void free_masks(struct irq_desc *desc) { }
378 #endif
379
irq_lock_sparse(void)380 void irq_lock_sparse(void)
381 {
382 mutex_lock(&sparse_irq_lock);
383 }
384
irq_unlock_sparse(void)385 void irq_unlock_sparse(void)
386 {
387 mutex_unlock(&sparse_irq_lock);
388 }
389
alloc_desc(int irq,int node,unsigned int flags,const struct cpumask * affinity,struct module * owner)390 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
391 const struct cpumask *affinity,
392 struct module *owner)
393 {
394 struct irq_desc *desc;
395
396 desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
397 if (!desc)
398 return NULL;
399 /* allocate based on nr_cpu_ids */
400 desc->kstat_irqs = alloc_percpu(unsigned int);
401 if (!desc->kstat_irqs)
402 goto err_desc;
403
404 if (alloc_masks(desc, node))
405 goto err_kstat;
406
407 raw_spin_lock_init(&desc->lock);
408 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
409 mutex_init(&desc->request_mutex);
410 init_rcu_head(&desc->rcu);
411 init_waitqueue_head(&desc->wait_for_threads);
412
413 desc_set_defaults(irq, desc, node, affinity, owner);
414 irqd_set(&desc->irq_data, flags);
415 kobject_init(&desc->kobj, &irq_kobj_type);
416
417 return desc;
418
419 err_kstat:
420 free_percpu(desc->kstat_irqs);
421 err_desc:
422 kfree(desc);
423 return NULL;
424 }
425
irq_kobj_release(struct kobject * kobj)426 static void irq_kobj_release(struct kobject *kobj)
427 {
428 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
429
430 free_masks(desc);
431 free_percpu(desc->kstat_irqs);
432 kfree(desc);
433 }
434
delayed_free_desc(struct rcu_head * rhp)435 static void delayed_free_desc(struct rcu_head *rhp)
436 {
437 struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
438
439 kobject_put(&desc->kobj);
440 }
441
free_desc(unsigned int irq)442 static void free_desc(unsigned int irq)
443 {
444 struct irq_desc *desc = irq_to_desc(irq);
445
446 irq_remove_debugfs_entry(desc);
447 unregister_irq_proc(irq, desc);
448
449 /*
450 * sparse_irq_lock protects also show_interrupts() and
451 * kstat_irq_usr(). Once we deleted the descriptor from the
452 * sparse tree we can free it. Access in proc will fail to
453 * lookup the descriptor.
454 *
455 * The sysfs entry must be serialized against a concurrent
456 * irq_sysfs_init() as well.
457 */
458 irq_sysfs_del(desc);
459 delete_irq_desc(irq);
460
461 /*
462 * We free the descriptor, masks and stat fields via RCU. That
463 * allows demultiplex interrupts to do rcu based management of
464 * the child interrupts.
465 * This also allows us to use rcu in kstat_irqs_usr().
466 */
467 call_rcu(&desc->rcu, delayed_free_desc);
468 }
469
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct irq_affinity_desc * affinity,struct module * owner)470 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
471 const struct irq_affinity_desc *affinity,
472 struct module *owner)
473 {
474 struct irq_desc *desc;
475 int i;
476
477 /* Validate affinity mask(s) */
478 if (affinity) {
479 for (i = 0; i < cnt; i++) {
480 if (cpumask_empty(&affinity[i].mask))
481 return -EINVAL;
482 }
483 }
484
485 for (i = 0; i < cnt; i++) {
486 const struct cpumask *mask = NULL;
487 unsigned int flags = 0;
488
489 if (affinity) {
490 if (affinity->is_managed) {
491 flags = IRQD_AFFINITY_MANAGED |
492 IRQD_MANAGED_SHUTDOWN;
493 }
494 mask = &affinity->mask;
495 node = cpu_to_node(cpumask_first(mask));
496 affinity++;
497 }
498
499 desc = alloc_desc(start + i, node, flags, mask, owner);
500 if (!desc)
501 goto err;
502 irq_insert_desc(start + i, desc);
503 irq_sysfs_add(start + i, desc);
504 irq_add_debugfs_entry(start + i, desc);
505 }
506 bitmap_set(allocated_irqs, start, cnt);
507 return start;
508
509 err:
510 for (i--; i >= 0; i--)
511 free_desc(start + i);
512 return -ENOMEM;
513 }
514
irq_expand_nr_irqs(unsigned int nr)515 static int irq_expand_nr_irqs(unsigned int nr)
516 {
517 if (nr > IRQ_BITMAP_BITS)
518 return -ENOMEM;
519 nr_irqs = nr;
520 return 0;
521 }
522
early_irq_init(void)523 int __init early_irq_init(void)
524 {
525 int i, initcnt, node = first_online_node;
526 struct irq_desc *desc;
527
528 init_irq_default_affinity();
529
530 /* Let arch update nr_irqs and return the nr of preallocated irqs */
531 initcnt = arch_probe_nr_irqs();
532 printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
533 NR_IRQS, nr_irqs, initcnt);
534
535 if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
536 nr_irqs = IRQ_BITMAP_BITS;
537
538 if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
539 initcnt = IRQ_BITMAP_BITS;
540
541 if (initcnt > nr_irqs)
542 nr_irqs = initcnt;
543
544 for (i = 0; i < initcnt; i++) {
545 desc = alloc_desc(i, node, 0, NULL, NULL);
546 set_bit(i, allocated_irqs);
547 irq_insert_desc(i, desc);
548 }
549 return arch_early_irq_init();
550 }
551
552 #else /* !CONFIG_SPARSE_IRQ */
553
554 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
555 [0 ... NR_IRQS-1] = {
556 .handle_irq = handle_bad_irq,
557 .depth = 1,
558 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
559 }
560 };
561
early_irq_init(void)562 int __init early_irq_init(void)
563 {
564 int count, i, node = first_online_node;
565 struct irq_desc *desc;
566
567 init_irq_default_affinity();
568
569 printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
570
571 desc = irq_desc;
572 count = ARRAY_SIZE(irq_desc);
573
574 for (i = 0; i < count; i++) {
575 desc[i].kstat_irqs = alloc_percpu(unsigned int);
576 alloc_masks(&desc[i], node);
577 raw_spin_lock_init(&desc[i].lock);
578 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
579 mutex_init(&desc[i].request_mutex);
580 init_waitqueue_head(&desc[i].wait_for_threads);
581 desc_set_defaults(i, &desc[i], node, NULL, NULL);
582 }
583 return arch_early_irq_init();
584 }
585
irq_to_desc(unsigned int irq)586 struct irq_desc *irq_to_desc(unsigned int irq)
587 {
588 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
589 }
590 EXPORT_SYMBOL(irq_to_desc);
591
free_desc(unsigned int irq)592 static void free_desc(unsigned int irq)
593 {
594 struct irq_desc *desc = irq_to_desc(irq);
595 unsigned long flags;
596
597 raw_spin_lock_irqsave(&desc->lock, flags);
598 desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
599 raw_spin_unlock_irqrestore(&desc->lock, flags);
600 }
601
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct irq_affinity_desc * affinity,struct module * owner)602 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
603 const struct irq_affinity_desc *affinity,
604 struct module *owner)
605 {
606 u32 i;
607
608 for (i = 0; i < cnt; i++) {
609 struct irq_desc *desc = irq_to_desc(start + i);
610
611 desc->owner = owner;
612 }
613 bitmap_set(allocated_irqs, start, cnt);
614 return start;
615 }
616
irq_expand_nr_irqs(unsigned int nr)617 static int irq_expand_nr_irqs(unsigned int nr)
618 {
619 return -ENOMEM;
620 }
621
irq_mark_irq(unsigned int irq)622 void irq_mark_irq(unsigned int irq)
623 {
624 mutex_lock(&sparse_irq_lock);
625 bitmap_set(allocated_irqs, irq, 1);
626 mutex_unlock(&sparse_irq_lock);
627 }
628
629 #ifdef CONFIG_GENERIC_IRQ_LEGACY
irq_init_desc(unsigned int irq)630 void irq_init_desc(unsigned int irq)
631 {
632 free_desc(irq);
633 }
634 #endif
635
636 #endif /* !CONFIG_SPARSE_IRQ */
637
handle_irq_desc(struct irq_desc * desc)638 int handle_irq_desc(struct irq_desc *desc)
639 {
640 struct irq_data *data;
641
642 if (!desc)
643 return -EINVAL;
644
645 data = irq_desc_get_irq_data(desc);
646 if (WARN_ON_ONCE(!in_irq() && handle_enforce_irqctx(data)))
647 return -EPERM;
648
649 generic_handle_irq_desc(desc);
650 return 0;
651 }
652 EXPORT_SYMBOL_GPL(handle_irq_desc);
653
654 /**
655 * generic_handle_irq - Invoke the handler for a particular irq
656 * @irq: The irq number to handle
657 *
658 */
generic_handle_irq(unsigned int irq)659 int generic_handle_irq(unsigned int irq)
660 {
661 return handle_irq_desc(irq_to_desc(irq));
662 }
663 EXPORT_SYMBOL_GPL(generic_handle_irq);
664
665 #ifdef CONFIG_IRQ_DOMAIN
666 /**
667 * generic_handle_domain_irq - Invoke the handler for a HW irq belonging
668 * to a domain, usually for a non-root interrupt
669 * controller
670 * @domain: The domain where to perform the lookup
671 * @hwirq: The HW irq number to convert to a logical one
672 *
673 * Returns: 0 on success, or -EINVAL if conversion has failed
674 *
675 */
generic_handle_domain_irq(struct irq_domain * domain,unsigned int hwirq)676 int generic_handle_domain_irq(struct irq_domain *domain, unsigned int hwirq)
677 {
678 return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
679 }
680 EXPORT_SYMBOL_GPL(generic_handle_domain_irq);
681
682 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
683 /**
684 * handle_domain_irq - Invoke the handler for a HW irq belonging to a domain,
685 * usually for a root interrupt controller
686 * @domain: The domain where to perform the lookup
687 * @hwirq: The HW irq number to convert to a logical one
688 * @regs: Register file coming from the low-level handling code
689 *
690 * Returns: 0 on success, or -EINVAL if conversion has failed
691 */
handle_domain_irq(struct irq_domain * domain,unsigned int hwirq,struct pt_regs * regs)692 int handle_domain_irq(struct irq_domain *domain,
693 unsigned int hwirq, struct pt_regs *regs)
694 {
695 struct pt_regs *old_regs = set_irq_regs(regs);
696 struct irq_desc *desc;
697 int ret = 0;
698
699
700 __irq_enter_raw();
701 /* The irqdomain code provides boundary checks */
702 desc = irq_resolve_mapping(domain, hwirq);
703 __irq_exit_raw();
704 if (likely(desc)) {
705 if (IS_ENABLED(CONFIG_ARCH_WANTS_IRQ_RAW) &&
706 unlikely(irq_settings_is_raw(desc))) {
707 handle_irq_desc(desc);
708 } else {
709 irq_enter();
710 handle_irq_desc(desc);
711 irq_exit();
712 }
713 }
714 else
715 ret = -EINVAL;
716
717 set_irq_regs(old_regs);
718 return ret;
719 }
720
721 /**
722 * handle_domain_nmi - Invoke the handler for a HW irq belonging to a domain
723 * @domain: The domain where to perform the lookup
724 * @hwirq: The HW irq number to convert to a logical one
725 * @regs: Register file coming from the low-level handling code
726 *
727 * This function must be called from an NMI context.
728 *
729 * Returns: 0 on success, or -EINVAL if conversion has failed
730 */
handle_domain_nmi(struct irq_domain * domain,unsigned int hwirq,struct pt_regs * regs)731 int handle_domain_nmi(struct irq_domain *domain, unsigned int hwirq,
732 struct pt_regs *regs)
733 {
734 struct pt_regs *old_regs = set_irq_regs(regs);
735 struct irq_desc *desc;
736 int ret = 0;
737
738 /*
739 * NMI context needs to be setup earlier in order to deal with tracing.
740 */
741 WARN_ON(!in_nmi());
742
743 desc = irq_resolve_mapping(domain, hwirq);
744
745 /*
746 * ack_bad_irq is not NMI-safe, just report
747 * an invalid interrupt.
748 */
749 if (likely(desc))
750 handle_irq_desc(desc);
751 else
752 ret = -EINVAL;
753
754 set_irq_regs(old_regs);
755 return ret;
756 }
757 #endif
758 #endif
759
760 /* Dynamic interrupt handling */
761
762 /**
763 * irq_free_descs - free irq descriptors
764 * @from: Start of descriptor range
765 * @cnt: Number of consecutive irqs to free
766 */
irq_free_descs(unsigned int from,unsigned int cnt)767 void irq_free_descs(unsigned int from, unsigned int cnt)
768 {
769 int i;
770
771 if (from >= nr_irqs || (from + cnt) > nr_irqs)
772 return;
773
774 mutex_lock(&sparse_irq_lock);
775 for (i = 0; i < cnt; i++)
776 free_desc(from + i);
777
778 bitmap_clear(allocated_irqs, from, cnt);
779 mutex_unlock(&sparse_irq_lock);
780 }
781 EXPORT_SYMBOL_GPL(irq_free_descs);
782
783 /**
784 * __irq_alloc_descs - allocate and initialize a range of irq descriptors
785 * @irq: Allocate for specific irq number if irq >= 0
786 * @from: Start the search from this irq number
787 * @cnt: Number of consecutive irqs to allocate.
788 * @node: Preferred node on which the irq descriptor should be allocated
789 * @owner: Owning module (can be NULL)
790 * @affinity: Optional pointer to an affinity mask array of size @cnt which
791 * hints where the irq descriptors should be allocated and which
792 * default affinities to use
793 *
794 * Returns the first irq number or error code
795 */
796 int __ref
__irq_alloc_descs(int irq,unsigned int from,unsigned int cnt,int node,struct module * owner,const struct irq_affinity_desc * affinity)797 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
798 struct module *owner, const struct irq_affinity_desc *affinity)
799 {
800 int start, ret;
801
802 if (!cnt)
803 return -EINVAL;
804
805 if (irq >= 0) {
806 if (from > irq)
807 return -EINVAL;
808 from = irq;
809 } else {
810 /*
811 * For interrupts which are freely allocated the
812 * architecture can force a lower bound to the @from
813 * argument. x86 uses this to exclude the GSI space.
814 */
815 from = arch_dynirq_lower_bound(from);
816 }
817
818 mutex_lock(&sparse_irq_lock);
819
820 start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
821 from, cnt, 0);
822 ret = -EEXIST;
823 if (irq >=0 && start != irq)
824 goto unlock;
825
826 if (start + cnt > nr_irqs) {
827 ret = irq_expand_nr_irqs(start + cnt);
828 if (ret)
829 goto unlock;
830 }
831 ret = alloc_descs(start, cnt, node, affinity, owner);
832 unlock:
833 mutex_unlock(&sparse_irq_lock);
834 return ret;
835 }
836 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
837
838 /**
839 * irq_get_next_irq - get next allocated irq number
840 * @offset: where to start the search
841 *
842 * Returns next irq number after offset or nr_irqs if none is found.
843 */
irq_get_next_irq(unsigned int offset)844 unsigned int irq_get_next_irq(unsigned int offset)
845 {
846 return find_next_bit(allocated_irqs, nr_irqs, offset);
847 }
848
849 struct irq_desc *
__irq_get_desc_lock(unsigned int irq,unsigned long * flags,bool bus,unsigned int check)850 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
851 unsigned int check)
852 {
853 struct irq_desc *desc = irq_to_desc(irq);
854
855 if (desc) {
856 if (check & _IRQ_DESC_CHECK) {
857 if ((check & _IRQ_DESC_PERCPU) &&
858 !irq_settings_is_per_cpu_devid(desc))
859 return NULL;
860
861 if (!(check & _IRQ_DESC_PERCPU) &&
862 irq_settings_is_per_cpu_devid(desc))
863 return NULL;
864 }
865
866 if (bus)
867 chip_bus_lock(desc);
868 raw_spin_lock_irqsave(&desc->lock, *flags);
869 }
870 return desc;
871 }
872
__irq_put_desc_unlock(struct irq_desc * desc,unsigned long flags,bool bus)873 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
874 __releases(&desc->lock)
875 {
876 raw_spin_unlock_irqrestore(&desc->lock, flags);
877 if (bus)
878 chip_bus_sync_unlock(desc);
879 }
880
irq_set_percpu_devid_partition(unsigned int irq,const struct cpumask * affinity)881 int irq_set_percpu_devid_partition(unsigned int irq,
882 const struct cpumask *affinity)
883 {
884 struct irq_desc *desc = irq_to_desc(irq);
885
886 if (!desc)
887 return -EINVAL;
888
889 if (desc->percpu_enabled)
890 return -EINVAL;
891
892 desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
893
894 if (!desc->percpu_enabled)
895 return -ENOMEM;
896
897 if (affinity)
898 desc->percpu_affinity = affinity;
899 else
900 desc->percpu_affinity = cpu_possible_mask;
901
902 irq_set_percpu_devid_flags(irq);
903 return 0;
904 }
905
irq_set_percpu_devid(unsigned int irq)906 int irq_set_percpu_devid(unsigned int irq)
907 {
908 return irq_set_percpu_devid_partition(irq, NULL);
909 }
910
irq_get_percpu_devid_partition(unsigned int irq,struct cpumask * affinity)911 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
912 {
913 struct irq_desc *desc = irq_to_desc(irq);
914
915 if (!desc || !desc->percpu_enabled)
916 return -EINVAL;
917
918 if (affinity)
919 cpumask_copy(affinity, desc->percpu_affinity);
920
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
924
kstat_incr_irq_this_cpu(unsigned int irq)925 void kstat_incr_irq_this_cpu(unsigned int irq)
926 {
927 kstat_incr_irqs_this_cpu(irq_to_desc(irq));
928 }
929
930 /**
931 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
932 * @irq: The interrupt number
933 * @cpu: The cpu number
934 *
935 * Returns the sum of interrupt counts on @cpu since boot for
936 * @irq. The caller must ensure that the interrupt is not removed
937 * concurrently.
938 */
kstat_irqs_cpu(unsigned int irq,int cpu)939 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
940 {
941 struct irq_desc *desc = irq_to_desc(irq);
942
943 return desc && desc->kstat_irqs ?
944 *per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
945 }
946 EXPORT_SYMBOL_GPL(kstat_irqs_cpu);
947
irq_is_nmi(struct irq_desc * desc)948 static bool irq_is_nmi(struct irq_desc *desc)
949 {
950 return desc->istate & IRQS_NMI;
951 }
952
kstat_irqs(unsigned int irq)953 static unsigned int kstat_irqs(unsigned int irq)
954 {
955 struct irq_desc *desc = irq_to_desc(irq);
956 unsigned int sum = 0;
957 int cpu;
958
959 if (!desc || !desc->kstat_irqs)
960 return 0;
961 if (!irq_settings_is_per_cpu_devid(desc) &&
962 !irq_settings_is_per_cpu(desc) &&
963 !irq_is_nmi(desc))
964 return data_race(desc->tot_count);
965
966 for_each_possible_cpu(cpu)
967 sum += data_race(*per_cpu_ptr(desc->kstat_irqs, cpu));
968 return sum;
969 }
970
971 /**
972 * kstat_irqs_usr - Get the statistics for an interrupt from thread context
973 * @irq: The interrupt number
974 *
975 * Returns the sum of interrupt counts on all cpus since boot for @irq.
976 *
977 * It uses rcu to protect the access since a concurrent removal of an
978 * interrupt descriptor is observing an rcu grace period before
979 * delayed_free_desc()/irq_kobj_release().
980 */
kstat_irqs_usr(unsigned int irq)981 unsigned int kstat_irqs_usr(unsigned int irq)
982 {
983 unsigned int sum;
984
985 rcu_read_lock();
986 sum = kstat_irqs(irq);
987 rcu_read_unlock();
988 return sum;
989 }
990
991 #ifdef CONFIG_LOCKDEP
__irq_set_lockdep_class(unsigned int irq,struct lock_class_key * lock_class,struct lock_class_key * request_class)992 void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class,
993 struct lock_class_key *request_class)
994 {
995 struct irq_desc *desc = irq_to_desc(irq);
996
997 if (desc) {
998 lockdep_set_class(&desc->lock, lock_class);
999 lockdep_set_class(&desc->request_mutex, request_class);
1000 }
1001 }
1002 EXPORT_SYMBOL_GPL(__irq_set_lockdep_class);
1003 #endif
1004 EXPORT_SYMBOL_GPL(kstat_irqs_usr);
1005