1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41 unsigned int **virt_buf;
42
43 unsigned int irq_reg_stride;
44 unsigned int type_reg_stride;
45
46 bool clear_status:1;
47 };
48
sub_irq_reg(struct regmap_irq_chip_data * data,unsigned int base_reg,int i)49 static int sub_irq_reg(struct regmap_irq_chip_data *data,
50 unsigned int base_reg, int i)
51 {
52 const struct regmap_irq_chip *chip = data->chip;
53 struct regmap *map = data->map;
54 struct regmap_irq_sub_irq_map *subreg;
55 unsigned int offset;
56 int reg = 0;
57
58 if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
59 /* Assume linear mapping */
60 reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
61 } else {
62 subreg = &chip->sub_reg_offsets[i];
63 offset = subreg->offset[0];
64 reg = base_reg + offset;
65 }
66
67 return reg;
68 }
69
70 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)71 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
72 int irq)
73 {
74 return &data->chip->irqs[irq];
75 }
76
regmap_irq_lock(struct irq_data * data)77 static void regmap_irq_lock(struct irq_data *data)
78 {
79 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
80
81 mutex_lock(&d->lock);
82 }
83
regmap_irq_update_bits(struct regmap_irq_chip_data * d,unsigned int reg,unsigned int mask,unsigned int val)84 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
85 unsigned int reg, unsigned int mask,
86 unsigned int val)
87 {
88 if (d->chip->mask_writeonly)
89 return regmap_write_bits(d->map, reg, mask, val);
90 else
91 return regmap_update_bits(d->map, reg, mask, val);
92 }
93
regmap_irq_sync_unlock(struct irq_data * data)94 static void regmap_irq_sync_unlock(struct irq_data *data)
95 {
96 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
97 struct regmap *map = d->map;
98 int i, j, ret;
99 u32 reg;
100 u32 unmask_offset;
101 u32 val;
102
103 if (d->chip->runtime_pm) {
104 ret = pm_runtime_get_sync(map->dev);
105 if (ret < 0)
106 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
107 ret);
108 }
109
110 if (d->clear_status) {
111 for (i = 0; i < d->chip->num_regs; i++) {
112 reg = sub_irq_reg(d, d->chip->status_base, i);
113
114 ret = regmap_read(map, reg, &val);
115 if (ret)
116 dev_err(d->map->dev,
117 "Failed to clear the interrupt status bits\n");
118 }
119
120 d->clear_status = false;
121 }
122
123 /*
124 * If there's been a change in the mask write it back to the
125 * hardware. We rely on the use of the regmap core cache to
126 * suppress pointless writes.
127 */
128 for (i = 0; i < d->chip->num_regs; i++) {
129 if (!d->chip->mask_base)
130 continue;
131
132 reg = sub_irq_reg(d, d->chip->mask_base, i);
133 if (d->chip->mask_invert) {
134 ret = regmap_irq_update_bits(d, reg,
135 d->mask_buf_def[i], ~d->mask_buf[i]);
136 } else if (d->chip->unmask_base) {
137 /* set mask with mask_base register */
138 ret = regmap_irq_update_bits(d, reg,
139 d->mask_buf_def[i], ~d->mask_buf[i]);
140 if (ret < 0)
141 dev_err(d->map->dev,
142 "Failed to sync unmasks in %x\n",
143 reg);
144 unmask_offset = d->chip->unmask_base -
145 d->chip->mask_base;
146 /* clear mask with unmask_base register */
147 ret = regmap_irq_update_bits(d,
148 reg + unmask_offset,
149 d->mask_buf_def[i],
150 d->mask_buf[i]);
151 } else {
152 ret = regmap_irq_update_bits(d, reg,
153 d->mask_buf_def[i], d->mask_buf[i]);
154 }
155 if (ret != 0)
156 dev_err(d->map->dev, "Failed to sync masks in %x\n",
157 reg);
158
159 reg = sub_irq_reg(d, d->chip->wake_base, i);
160 if (d->wake_buf) {
161 if (d->chip->wake_invert)
162 ret = regmap_irq_update_bits(d, reg,
163 d->mask_buf_def[i],
164 ~d->wake_buf[i]);
165 else
166 ret = regmap_irq_update_bits(d, reg,
167 d->mask_buf_def[i],
168 d->wake_buf[i]);
169 if (ret != 0)
170 dev_err(d->map->dev,
171 "Failed to sync wakes in %x: %d\n",
172 reg, ret);
173 }
174
175 if (!d->chip->init_ack_masked)
176 continue;
177 /*
178 * Ack all the masked interrupts unconditionally,
179 * OR if there is masked interrupt which hasn't been Acked,
180 * it'll be ignored in irq handler, then may introduce irq storm
181 */
182 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
183 reg = sub_irq_reg(d, d->chip->ack_base, i);
184
185 /* some chips ack by write 0 */
186 if (d->chip->ack_invert)
187 ret = regmap_write(map, reg, ~d->mask_buf[i]);
188 else
189 ret = regmap_write(map, reg, d->mask_buf[i]);
190 if (d->chip->clear_ack) {
191 if (d->chip->ack_invert && !ret)
192 ret = regmap_write(map, reg, UINT_MAX);
193 else if (!ret)
194 ret = regmap_write(map, reg, 0);
195 }
196 if (ret != 0)
197 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
198 reg, ret);
199 }
200 }
201
202 /* Don't update the type bits if we're using mask bits for irq type. */
203 if (!d->chip->type_in_mask) {
204 for (i = 0; i < d->chip->num_type_reg; i++) {
205 if (!d->type_buf_def[i])
206 continue;
207 reg = sub_irq_reg(d, d->chip->type_base, i);
208 if (d->chip->type_invert)
209 ret = regmap_irq_update_bits(d, reg,
210 d->type_buf_def[i], ~d->type_buf[i]);
211 else
212 ret = regmap_irq_update_bits(d, reg,
213 d->type_buf_def[i], d->type_buf[i]);
214 if (ret != 0)
215 dev_err(d->map->dev, "Failed to sync type in %x\n",
216 reg);
217 }
218 }
219
220 if (d->chip->num_virt_regs) {
221 for (i = 0; i < d->chip->num_virt_regs; i++) {
222 for (j = 0; j < d->chip->num_regs; j++) {
223 reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
224 j);
225 ret = regmap_write(map, reg, d->virt_buf[i][j]);
226 if (ret != 0)
227 dev_err(d->map->dev,
228 "Failed to write virt 0x%x: %d\n",
229 reg, ret);
230 }
231 }
232 }
233
234 if (d->chip->runtime_pm)
235 pm_runtime_put(map->dev);
236
237 /* If we've changed our wakeup count propagate it to the parent */
238 if (d->wake_count < 0)
239 for (i = d->wake_count; i < 0; i++)
240 irq_set_irq_wake(d->irq, 0);
241 else if (d->wake_count > 0)
242 for (i = 0; i < d->wake_count; i++)
243 irq_set_irq_wake(d->irq, 1);
244
245 d->wake_count = 0;
246
247 mutex_unlock(&d->lock);
248 }
249
regmap_irq_enable(struct irq_data * data)250 static void regmap_irq_enable(struct irq_data *data)
251 {
252 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
253 struct regmap *map = d->map;
254 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
255 unsigned int reg = irq_data->reg_offset / map->reg_stride;
256 unsigned int mask, type;
257
258 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
259
260 /*
261 * The type_in_mask flag means that the underlying hardware uses
262 * separate mask bits for rising and falling edge interrupts, but
263 * we want to make them into a single virtual interrupt with
264 * configurable edge.
265 *
266 * If the interrupt we're enabling defines the falling or rising
267 * masks then instead of using the regular mask bits for this
268 * interrupt, use the value previously written to the type buffer
269 * at the corresponding offset in regmap_irq_set_type().
270 */
271 if (d->chip->type_in_mask && type)
272 mask = d->type_buf[reg] & irq_data->mask;
273 else
274 mask = irq_data->mask;
275
276 if (d->chip->clear_on_unmask)
277 d->clear_status = true;
278
279 d->mask_buf[reg] &= ~mask;
280 }
281
regmap_irq_disable(struct irq_data * data)282 static void regmap_irq_disable(struct irq_data *data)
283 {
284 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
285 struct regmap *map = d->map;
286 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
287
288 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
289 }
290
regmap_irq_set_type(struct irq_data * data,unsigned int type)291 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
292 {
293 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
294 struct regmap *map = d->map;
295 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
296 int reg;
297 const struct regmap_irq_type *t = &irq_data->type;
298
299 if ((t->types_supported & type) != type)
300 return 0;
301
302 reg = t->type_reg_offset / map->reg_stride;
303
304 if (t->type_reg_mask)
305 d->type_buf[reg] &= ~t->type_reg_mask;
306 else
307 d->type_buf[reg] &= ~(t->type_falling_val |
308 t->type_rising_val |
309 t->type_level_low_val |
310 t->type_level_high_val);
311 switch (type) {
312 case IRQ_TYPE_EDGE_FALLING:
313 d->type_buf[reg] |= t->type_falling_val;
314 break;
315
316 case IRQ_TYPE_EDGE_RISING:
317 d->type_buf[reg] |= t->type_rising_val;
318 break;
319
320 case IRQ_TYPE_EDGE_BOTH:
321 d->type_buf[reg] |= (t->type_falling_val |
322 t->type_rising_val);
323 break;
324
325 case IRQ_TYPE_LEVEL_HIGH:
326 d->type_buf[reg] |= t->type_level_high_val;
327 break;
328
329 case IRQ_TYPE_LEVEL_LOW:
330 d->type_buf[reg] |= t->type_level_low_val;
331 break;
332 default:
333 return -EINVAL;
334 }
335
336 if (d->chip->set_type_virt)
337 return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
338 reg);
339
340 return 0;
341 }
342
regmap_irq_set_wake(struct irq_data * data,unsigned int on)343 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
344 {
345 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
346 struct regmap *map = d->map;
347 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
348
349 if (on) {
350 if (d->wake_buf)
351 d->wake_buf[irq_data->reg_offset / map->reg_stride]
352 &= ~irq_data->mask;
353 d->wake_count++;
354 } else {
355 if (d->wake_buf)
356 d->wake_buf[irq_data->reg_offset / map->reg_stride]
357 |= irq_data->mask;
358 d->wake_count--;
359 }
360
361 return 0;
362 }
363
364 static const struct irq_chip regmap_irq_chip = {
365 .irq_bus_lock = regmap_irq_lock,
366 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
367 .irq_disable = regmap_irq_disable,
368 .irq_enable = regmap_irq_enable,
369 .irq_set_type = regmap_irq_set_type,
370 .irq_set_wake = regmap_irq_set_wake,
371 };
372
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)373 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
374 unsigned int b)
375 {
376 const struct regmap_irq_chip *chip = data->chip;
377 struct regmap *map = data->map;
378 struct regmap_irq_sub_irq_map *subreg;
379 int i, ret = 0;
380
381 if (!chip->sub_reg_offsets) {
382 /* Assume linear mapping */
383 ret = regmap_read(map, chip->status_base +
384 (b * map->reg_stride * data->irq_reg_stride),
385 &data->status_buf[b]);
386 } else {
387 subreg = &chip->sub_reg_offsets[b];
388 for (i = 0; i < subreg->num_regs; i++) {
389 unsigned int offset = subreg->offset[i];
390 unsigned int index = offset / map->reg_stride;
391
392 if (chip->not_fixed_stride)
393 ret = regmap_read(map,
394 chip->status_base + offset,
395 &data->status_buf[b]);
396 else
397 ret = regmap_read(map,
398 chip->status_base + offset,
399 &data->status_buf[index]);
400
401 if (ret)
402 break;
403 }
404 }
405 return ret;
406 }
407
regmap_irq_thread(int irq,void * d)408 static irqreturn_t regmap_irq_thread(int irq, void *d)
409 {
410 struct regmap_irq_chip_data *data = d;
411 const struct regmap_irq_chip *chip = data->chip;
412 struct regmap *map = data->map;
413 int ret, i;
414 bool handled = false;
415 u32 reg;
416
417 if (chip->handle_pre_irq)
418 chip->handle_pre_irq(chip->irq_drv_data);
419
420 if (chip->runtime_pm) {
421 ret = pm_runtime_get_sync(map->dev);
422 if (ret < 0) {
423 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
424 ret);
425 goto exit;
426 }
427 }
428
429 /*
430 * Read only registers with active IRQs if the chip has 'main status
431 * register'. Else read in the statuses, using a single bulk read if
432 * possible in order to reduce the I/O overheads.
433 */
434
435 if (chip->num_main_regs) {
436 unsigned int max_main_bits;
437 unsigned long size;
438
439 size = chip->num_regs * sizeof(unsigned int);
440
441 max_main_bits = (chip->num_main_status_bits) ?
442 chip->num_main_status_bits : chip->num_regs;
443 /* Clear the status buf as we don't read all status regs */
444 memset(data->status_buf, 0, size);
445
446 /* We could support bulk read for main status registers
447 * but I don't expect to see devices with really many main
448 * status registers so let's only support single reads for the
449 * sake of simplicity. and add bulk reads only if needed
450 */
451 for (i = 0; i < chip->num_main_regs; i++) {
452 ret = regmap_read(map, chip->main_status +
453 (i * map->reg_stride
454 * data->irq_reg_stride),
455 &data->main_status_buf[i]);
456 if (ret) {
457 dev_err(map->dev,
458 "Failed to read IRQ status %d\n",
459 ret);
460 goto exit;
461 }
462 }
463
464 /* Read sub registers with active IRQs */
465 for (i = 0; i < chip->num_main_regs; i++) {
466 unsigned int b;
467 const unsigned long mreg = data->main_status_buf[i];
468
469 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
470 if (i * map->format.val_bytes * 8 + b >
471 max_main_bits)
472 break;
473 ret = read_sub_irq_data(data, b);
474
475 if (ret != 0) {
476 dev_err(map->dev,
477 "Failed to read IRQ status %d\n",
478 ret);
479 goto exit;
480 }
481 }
482
483 }
484 } else if (!map->use_single_read && map->reg_stride == 1 &&
485 data->irq_reg_stride == 1) {
486
487 u8 *buf8 = data->status_reg_buf;
488 u16 *buf16 = data->status_reg_buf;
489 u32 *buf32 = data->status_reg_buf;
490
491 BUG_ON(!data->status_reg_buf);
492
493 ret = regmap_bulk_read(map, chip->status_base,
494 data->status_reg_buf,
495 chip->num_regs);
496 if (ret != 0) {
497 dev_err(map->dev, "Failed to read IRQ status: %d\n",
498 ret);
499 goto exit;
500 }
501
502 for (i = 0; i < data->chip->num_regs; i++) {
503 switch (map->format.val_bytes) {
504 case 1:
505 data->status_buf[i] = buf8[i];
506 break;
507 case 2:
508 data->status_buf[i] = buf16[i];
509 break;
510 case 4:
511 data->status_buf[i] = buf32[i];
512 break;
513 default:
514 BUG();
515 goto exit;
516 }
517 }
518
519 } else {
520 for (i = 0; i < data->chip->num_regs; i++) {
521 unsigned int reg = sub_irq_reg(data,
522 data->chip->status_base, i);
523 ret = regmap_read(map, reg, &data->status_buf[i]);
524
525 if (ret != 0) {
526 dev_err(map->dev,
527 "Failed to read IRQ status: %d\n",
528 ret);
529 goto exit;
530 }
531 }
532 }
533
534 if (chip->status_invert)
535 for (i = 0; i < data->chip->num_regs; i++)
536 data->status_buf[i] = ~data->status_buf[i];
537
538 /*
539 * Ignore masked IRQs and ack if we need to; we ack early so
540 * there is no race between handling and acknowleding the
541 * interrupt. We assume that typically few of the interrupts
542 * will fire simultaneously so don't worry about overhead from
543 * doing a write per register.
544 */
545 for (i = 0; i < data->chip->num_regs; i++) {
546 data->status_buf[i] &= ~data->mask_buf[i];
547
548 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
549 reg = sub_irq_reg(data, data->chip->ack_base, i);
550
551 if (chip->ack_invert)
552 ret = regmap_write(map, reg,
553 ~data->status_buf[i]);
554 else
555 ret = regmap_write(map, reg,
556 data->status_buf[i]);
557 if (chip->clear_ack) {
558 if (chip->ack_invert && !ret)
559 ret = regmap_write(map, reg, UINT_MAX);
560 else if (!ret)
561 ret = regmap_write(map, reg, 0);
562 }
563 if (ret != 0)
564 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
565 reg, ret);
566 }
567 }
568
569 for (i = 0; i < chip->num_irqs; i++) {
570 if (data->status_buf[chip->irqs[i].reg_offset /
571 map->reg_stride] & chip->irqs[i].mask) {
572 handle_nested_irq(irq_find_mapping(data->domain, i));
573 handled = true;
574 }
575 }
576
577 exit:
578 if (chip->runtime_pm)
579 pm_runtime_put(map->dev);
580
581 if (chip->handle_post_irq)
582 chip->handle_post_irq(chip->irq_drv_data);
583
584 if (handled)
585 return IRQ_HANDLED;
586 else
587 return IRQ_NONE;
588 }
589
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)590 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
591 irq_hw_number_t hw)
592 {
593 struct regmap_irq_chip_data *data = h->host_data;
594
595 irq_set_chip_data(virq, data);
596 irq_set_chip(virq, &data->irq_chip);
597 irq_set_nested_thread(virq, 1);
598 irq_set_parent(virq, data->irq);
599 irq_set_noprobe(virq);
600
601 return 0;
602 }
603
604 static const struct irq_domain_ops regmap_domain_ops = {
605 .map = regmap_irq_map,
606 .xlate = irq_domain_xlate_onetwocell,
607 };
608
609 /**
610 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
611 *
612 * @fwnode: The firmware node where the IRQ domain should be added to.
613 * @map: The regmap for the device.
614 * @irq: The IRQ the device uses to signal interrupts.
615 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
616 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
617 * @chip: Configuration for the interrupt controller.
618 * @data: Runtime data structure for the controller, allocated on success.
619 *
620 * Returns 0 on success or an errno on failure.
621 *
622 * In order for this to be efficient the chip really should use a
623 * register cache. The chip driver is responsible for restoring the
624 * register values used by the IRQ controller over suspend and resume.
625 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)626 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
627 struct regmap *map, int irq,
628 int irq_flags, int irq_base,
629 const struct regmap_irq_chip *chip,
630 struct regmap_irq_chip_data **data)
631 {
632 struct regmap_irq_chip_data *d;
633 int i;
634 int ret = -ENOMEM;
635 int num_type_reg;
636 u32 reg;
637 u32 unmask_offset;
638
639 if (chip->num_regs <= 0)
640 return -EINVAL;
641
642 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643 return -EINVAL;
644
645 for (i = 0; i < chip->num_irqs; i++) {
646 if (chip->irqs[i].reg_offset % map->reg_stride)
647 return -EINVAL;
648 if (chip->irqs[i].reg_offset / map->reg_stride >=
649 chip->num_regs)
650 return -EINVAL;
651 }
652
653 if (chip->not_fixed_stride) {
654 for (i = 0; i < chip->num_regs; i++)
655 if (chip->sub_reg_offsets[i].num_regs != 1)
656 return -EINVAL;
657 }
658
659 if (irq_base) {
660 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
661 if (irq_base < 0) {
662 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
663 irq_base);
664 return irq_base;
665 }
666 }
667
668 d = kzalloc(sizeof(*d), GFP_KERNEL);
669 if (!d)
670 return -ENOMEM;
671
672 if (chip->num_main_regs) {
673 d->main_status_buf = kcalloc(chip->num_main_regs,
674 sizeof(unsigned int),
675 GFP_KERNEL);
676
677 if (!d->main_status_buf)
678 goto err_alloc;
679 }
680
681 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
682 GFP_KERNEL);
683 if (!d->status_buf)
684 goto err_alloc;
685
686 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
687 GFP_KERNEL);
688 if (!d->mask_buf)
689 goto err_alloc;
690
691 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
692 GFP_KERNEL);
693 if (!d->mask_buf_def)
694 goto err_alloc;
695
696 if (chip->wake_base) {
697 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
698 GFP_KERNEL);
699 if (!d->wake_buf)
700 goto err_alloc;
701 }
702
703 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
704 if (num_type_reg) {
705 d->type_buf_def = kcalloc(num_type_reg,
706 sizeof(unsigned int), GFP_KERNEL);
707 if (!d->type_buf_def)
708 goto err_alloc;
709
710 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
711 GFP_KERNEL);
712 if (!d->type_buf)
713 goto err_alloc;
714 }
715
716 if (chip->num_virt_regs) {
717 /*
718 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
719 */
720 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
721 GFP_KERNEL);
722 if (!d->virt_buf)
723 goto err_alloc;
724
725 for (i = 0; i < chip->num_virt_regs; i++) {
726 d->virt_buf[i] = kcalloc(chip->num_regs,
727 sizeof(unsigned int),
728 GFP_KERNEL);
729 if (!d->virt_buf[i])
730 goto err_alloc;
731 }
732 }
733
734 d->irq_chip = regmap_irq_chip;
735 d->irq_chip.name = chip->name;
736 d->irq = irq;
737 d->map = map;
738 d->chip = chip;
739 d->irq_base = irq_base;
740
741 if (chip->irq_reg_stride)
742 d->irq_reg_stride = chip->irq_reg_stride;
743 else
744 d->irq_reg_stride = 1;
745
746 if (chip->type_reg_stride)
747 d->type_reg_stride = chip->type_reg_stride;
748 else
749 d->type_reg_stride = 1;
750
751 if (!map->use_single_read && map->reg_stride == 1 &&
752 d->irq_reg_stride == 1) {
753 d->status_reg_buf = kmalloc_array(chip->num_regs,
754 map->format.val_bytes,
755 GFP_KERNEL);
756 if (!d->status_reg_buf)
757 goto err_alloc;
758 }
759
760 mutex_init(&d->lock);
761
762 for (i = 0; i < chip->num_irqs; i++)
763 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
764 |= chip->irqs[i].mask;
765
766 /* Mask all the interrupts by default */
767 for (i = 0; i < chip->num_regs; i++) {
768 d->mask_buf[i] = d->mask_buf_def[i];
769 if (!chip->mask_base)
770 continue;
771
772 reg = sub_irq_reg(d, d->chip->mask_base, i);
773
774 if (chip->mask_invert)
775 ret = regmap_irq_update_bits(d, reg,
776 d->mask_buf[i], ~d->mask_buf[i]);
777 else if (d->chip->unmask_base) {
778 unmask_offset = d->chip->unmask_base -
779 d->chip->mask_base;
780 ret = regmap_irq_update_bits(d,
781 reg + unmask_offset,
782 d->mask_buf[i],
783 d->mask_buf[i]);
784 } else
785 ret = regmap_irq_update_bits(d, reg,
786 d->mask_buf[i], d->mask_buf[i]);
787 if (ret != 0) {
788 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
789 reg, ret);
790 goto err_alloc;
791 }
792
793 if (!chip->init_ack_masked)
794 continue;
795
796 /* Ack masked but set interrupts */
797 reg = sub_irq_reg(d, d->chip->status_base, i);
798 ret = regmap_read(map, reg, &d->status_buf[i]);
799 if (ret != 0) {
800 dev_err(map->dev, "Failed to read IRQ status: %d\n",
801 ret);
802 goto err_alloc;
803 }
804
805 if (chip->status_invert)
806 d->status_buf[i] = ~d->status_buf[i];
807
808 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
809 reg = sub_irq_reg(d, d->chip->ack_base, i);
810 if (chip->ack_invert)
811 ret = regmap_write(map, reg,
812 ~(d->status_buf[i] & d->mask_buf[i]));
813 else
814 ret = regmap_write(map, reg,
815 d->status_buf[i] & d->mask_buf[i]);
816 if (chip->clear_ack) {
817 if (chip->ack_invert && !ret)
818 ret = regmap_write(map, reg, UINT_MAX);
819 else if (!ret)
820 ret = regmap_write(map, reg, 0);
821 }
822 if (ret != 0) {
823 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
824 reg, ret);
825 goto err_alloc;
826 }
827 }
828 }
829
830 /* Wake is disabled by default */
831 if (d->wake_buf) {
832 for (i = 0; i < chip->num_regs; i++) {
833 d->wake_buf[i] = d->mask_buf_def[i];
834 reg = sub_irq_reg(d, d->chip->wake_base, i);
835
836 if (chip->wake_invert)
837 ret = regmap_irq_update_bits(d, reg,
838 d->mask_buf_def[i],
839 0);
840 else
841 ret = regmap_irq_update_bits(d, reg,
842 d->mask_buf_def[i],
843 d->wake_buf[i]);
844 if (ret != 0) {
845 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
846 reg, ret);
847 goto err_alloc;
848 }
849 }
850 }
851
852 if (chip->num_type_reg && !chip->type_in_mask) {
853 for (i = 0; i < chip->num_type_reg; ++i) {
854 reg = sub_irq_reg(d, d->chip->type_base, i);
855
856 ret = regmap_read(map, reg, &d->type_buf_def[i]);
857
858 if (d->chip->type_invert)
859 d->type_buf_def[i] = ~d->type_buf_def[i];
860
861 if (ret) {
862 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
863 reg, ret);
864 goto err_alloc;
865 }
866 }
867 }
868
869 if (irq_base)
870 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
871 irq_base, 0,
872 ®map_domain_ops, d);
873 else
874 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
875 ®map_domain_ops, d);
876 if (!d->domain) {
877 dev_err(map->dev, "Failed to create IRQ domain\n");
878 ret = -ENOMEM;
879 goto err_alloc;
880 }
881
882 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
883 irq_flags | IRQF_ONESHOT,
884 chip->name, d);
885 if (ret != 0) {
886 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
887 irq, chip->name, ret);
888 goto err_domain;
889 }
890
891 *data = d;
892
893 return 0;
894
895 err_domain:
896 /* Should really dispose of the domain but... */
897 err_alloc:
898 kfree(d->type_buf);
899 kfree(d->type_buf_def);
900 kfree(d->wake_buf);
901 kfree(d->mask_buf_def);
902 kfree(d->mask_buf);
903 kfree(d->status_buf);
904 kfree(d->status_reg_buf);
905 if (d->virt_buf) {
906 for (i = 0; i < chip->num_virt_regs; i++)
907 kfree(d->virt_buf[i]);
908 kfree(d->virt_buf);
909 }
910 kfree(d);
911 return ret;
912 }
913 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
914
915 /**
916 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
917 *
918 * @map: The regmap for the device.
919 * @irq: The IRQ the device uses to signal interrupts.
920 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
921 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
922 * @chip: Configuration for the interrupt controller.
923 * @data: Runtime data structure for the controller, allocated on success.
924 *
925 * Returns 0 on success or an errno on failure.
926 *
927 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
928 * node of the regmap is used.
929 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)930 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
931 int irq_base, const struct regmap_irq_chip *chip,
932 struct regmap_irq_chip_data **data)
933 {
934 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
935 irq_flags, irq_base, chip, data);
936 }
937 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
938
939 /**
940 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
941 *
942 * @irq: Primary IRQ for the device
943 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
944 *
945 * This function also disposes of all mapped IRQs on the chip.
946 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)947 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
948 {
949 unsigned int virq;
950 int hwirq;
951
952 if (!d)
953 return;
954
955 free_irq(irq, d);
956
957 /* Dispose all virtual irq from irq domain before removing it */
958 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
959 /* Ignore hwirq if holes in the IRQ list */
960 if (!d->chip->irqs[hwirq].mask)
961 continue;
962
963 /*
964 * Find the virtual irq of hwirq on chip and if it is
965 * there then dispose it
966 */
967 virq = irq_find_mapping(d->domain, hwirq);
968 if (virq)
969 irq_dispose_mapping(virq);
970 }
971
972 irq_domain_remove(d->domain);
973 kfree(d->type_buf);
974 kfree(d->type_buf_def);
975 kfree(d->wake_buf);
976 kfree(d->mask_buf_def);
977 kfree(d->mask_buf);
978 kfree(d->status_reg_buf);
979 kfree(d->status_buf);
980 kfree(d);
981 }
982 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
983
devm_regmap_irq_chip_release(struct device * dev,void * res)984 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
985 {
986 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
987
988 regmap_del_irq_chip(d->irq, d);
989 }
990
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)991 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
992
993 {
994 struct regmap_irq_chip_data **r = res;
995
996 if (!r || !*r) {
997 WARN_ON(!r || !*r);
998 return 0;
999 }
1000 return *r == data;
1001 }
1002
1003 /**
1004 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1005 *
1006 * @dev: The device pointer on which irq_chip belongs to.
1007 * @fwnode: The firmware node where the IRQ domain should be added to.
1008 * @map: The regmap for the device.
1009 * @irq: The IRQ the device uses to signal interrupts
1010 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1011 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1012 * @chip: Configuration for the interrupt controller.
1013 * @data: Runtime data structure for the controller, allocated on success
1014 *
1015 * Returns 0 on success or an errno on failure.
1016 *
1017 * The ®map_irq_chip_data will be automatically released when the device is
1018 * unbound.
1019 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1020 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1021 struct fwnode_handle *fwnode,
1022 struct regmap *map, int irq,
1023 int irq_flags, int irq_base,
1024 const struct regmap_irq_chip *chip,
1025 struct regmap_irq_chip_data **data)
1026 {
1027 struct regmap_irq_chip_data **ptr, *d;
1028 int ret;
1029
1030 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1031 GFP_KERNEL);
1032 if (!ptr)
1033 return -ENOMEM;
1034
1035 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1036 chip, &d);
1037 if (ret < 0) {
1038 devres_free(ptr);
1039 return ret;
1040 }
1041
1042 *ptr = d;
1043 devres_add(dev, ptr);
1044 *data = d;
1045 return 0;
1046 }
1047 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1048
1049 /**
1050 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
1051 *
1052 * @dev: The device pointer on which irq_chip belongs to.
1053 * @map: The regmap for the device.
1054 * @irq: The IRQ the device uses to signal interrupts
1055 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1056 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1057 * @chip: Configuration for the interrupt controller.
1058 * @data: Runtime data structure for the controller, allocated on success
1059 *
1060 * Returns 0 on success or an errno on failure.
1061 *
1062 * The ®map_irq_chip_data will be automatically released when the device is
1063 * unbound.
1064 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1065 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1066 int irq_flags, int irq_base,
1067 const struct regmap_irq_chip *chip,
1068 struct regmap_irq_chip_data **data)
1069 {
1070 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1071 irq, irq_flags, irq_base, chip,
1072 data);
1073 }
1074 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1075
1076 /**
1077 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1078 *
1079 * @dev: Device for which which resource was allocated.
1080 * @irq: Primary IRQ for the device.
1081 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1082 *
1083 * A resource managed version of regmap_del_irq_chip().
1084 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1085 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1086 struct regmap_irq_chip_data *data)
1087 {
1088 int rc;
1089
1090 WARN_ON(irq != data->irq);
1091 rc = devres_release(dev, devm_regmap_irq_chip_release,
1092 devm_regmap_irq_chip_match, data);
1093
1094 if (rc != 0)
1095 WARN_ON(rc);
1096 }
1097 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1098
1099 /**
1100 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1101 *
1102 * @data: regmap irq controller to operate on.
1103 *
1104 * Useful for drivers to request their own IRQs.
1105 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1106 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1107 {
1108 WARN_ON(!data->irq_base);
1109 return data->irq_base;
1110 }
1111 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1112
1113 /**
1114 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1115 *
1116 * @data: regmap irq controller to operate on.
1117 * @irq: index of the interrupt requested in the chip IRQs.
1118 *
1119 * Useful for drivers to request their own IRQs.
1120 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1121 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1122 {
1123 /* Handle holes in the IRQ list */
1124 if (!data->chip->irqs[irq].mask)
1125 return -EINVAL;
1126
1127 return irq_create_mapping(data->domain, irq);
1128 }
1129 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1130
1131 /**
1132 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1133 *
1134 * @data: regmap_irq controller to operate on.
1135 *
1136 * Useful for drivers to request their own IRQs and for integration
1137 * with subsystems. For ease of integration NULL is accepted as a
1138 * domain, allowing devices to just call this even if no domain is
1139 * allocated.
1140 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1141 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1142 {
1143 if (data)
1144 return data->domain;
1145 else
1146 return NULL;
1147 }
1148 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1149