1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16
17 /******************************************************************************
18 *
19 * RX path functions
20 *
21 ******************************************************************************/
22
23 /*
24 * Rx theory of operation
25 *
26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27 * each of which point to Receive Buffers to be filled by the NIC. These get
28 * used not only for Rx frames, but for any command response or notification
29 * from the NIC. The driver and NIC manage the Rx buffers by means
30 * of indexes into the circular buffer.
31 *
32 * Rx Queue Indexes
33 * The host/firmware share two index registers for managing the Rx buffers.
34 *
35 * The READ index maps to the first position that the firmware may be writing
36 * to -- the driver can read up to (but not including) this position and get
37 * good data.
38 * The READ index is managed by the firmware once the card is enabled.
39 *
40 * The WRITE index maps to the last position the driver has read from -- the
41 * position preceding WRITE is the last slot the firmware can place a packet.
42 *
43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44 * WRITE = READ.
45 *
46 * During initialization, the host sets up the READ queue position to the first
47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
48 *
49 * When the firmware places a packet in a buffer, it will advance the READ index
50 * and fire the RX interrupt. The driver can then query the READ index and
51 * process as many packets as possible, moving the WRITE index forward as it
52 * resets the Rx queue buffers with new memory.
53 *
54 * The management in the driver is as follows:
55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56 * When the interrupt handler is called, the request is processed.
57 * The page is either stolen - transferred to the upper layer
58 * or reused - added immediately to the iwl->rxq->rx_free list.
59 * + When the page is stolen - the driver updates the matching queue's used
60 * count, detaches the RBD and transfers it to the queue used list.
61 * When there are two used RBDs - they are transferred to the allocator empty
62 * list. Work is then scheduled for the allocator to start allocating
63 * eight buffers.
64 * When there are another 6 used RBDs - they are transferred to the allocator
65 * empty list and the driver tries to claim the pre-allocated buffers and
66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67 * until ready.
68 * When there are 8+ buffers in the free list - either from allocation or from
69 * 8 reused unstolen pages - restock is called to update the FW and indexes.
70 * + In order to make sure the allocator always has RBDs to use for allocation
71 * the allocator has initial pool in the size of num_queues*(8-2) - the
72 * maximum missing RBDs per allocation request (request posted with 2
73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74 * The queues supplies the recycle of the rest of the RBDs.
75 * + A received packet is processed and handed to the kernel network stack,
76 * detached from the iwl->rxq. The driver 'processed' index is updated.
77 * + If there are no allocated buffers in iwl->rxq->rx_free,
78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79 * If there were enough free buffers and RX_STALLED is set it is cleared.
80 *
81 *
82 * Driver sequence:
83 *
84 * iwl_rxq_alloc() Allocates rx_free
85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
86 * iwl_pcie_rxq_restock.
87 * Used only during initialization.
88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
89 * queue, updates firmware pointers, and updates
90 * the WRITE index.
91 * iwl_pcie_rx_allocator() Background work for allocating pages.
92 *
93 * -- enable interrupts --
94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
95 * READ INDEX, detaching the SKB from the pool.
96 * Moves the packet buffer from queue to rx_used.
97 * Posts and claims requests to the allocator.
98 * Calls iwl_pcie_rxq_restock to refill any empty
99 * slots.
100 *
101 * RBD life-cycle:
102 *
103 * Init:
104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105 *
106 * Regular Receive interrupt:
107 * Page Stolen:
108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110 * Page not Stolen:
111 * rxq.queue -> rxq.rx_free -> rxq.queue
112 * ...
113 *
114 */
115
116 /*
117 * iwl_rxq_space - Return number of free slots available in queue.
118 */
iwl_rxq_space(const struct iwl_rxq * rxq)119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 /* Make sure rx queue size is a power of 2 */
122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123
124 /*
125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 * between empty and completely full queues.
127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 * defined for negative dividends.
129 */
130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132
133 /*
134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135 */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140
141 /*
142 * iwl_pcie_rx_stop - stops the Rx DMA
143 */
iwl_pcie_rx_stop(struct iwl_trans * trans)144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 /* TODO: remove this once fw does it */
148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 } else if (trans->trans_cfg->mq_rx_supported) {
152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 } else {
156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 1000);
160 }
161 }
162
163 /*
164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165 */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans,struct iwl_rxq * rxq)166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 struct iwl_rxq *rxq)
168 {
169 u32 reg;
170
171 lockdep_assert_held(&rxq->lock);
172
173 /*
174 * explicitly wake up the NIC if:
175 * 1. shadow registers aren't enabled
176 * 2. there is a chance that the NIC is asleep
177 */
178 if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181
182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 reg);
185 iwl_set_bit(trans, CSR_GP_CNTRL,
186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 rxq->need_update = true;
188 return;
189 }
190 }
191
192 rxq->write_actual = round_down(rxq->write, 8);
193 if (trans->trans_cfg->mq_rx_supported)
194 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
195 rxq->write_actual);
196 else
197 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
198 }
199
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)200 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
201 {
202 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
203 int i;
204
205 for (i = 0; i < trans->num_rx_queues; i++) {
206 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
207
208 if (!rxq->need_update)
209 continue;
210 spin_lock_bh(&rxq->lock);
211 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
212 rxq->need_update = false;
213 spin_unlock_bh(&rxq->lock);
214 }
215 }
216
iwl_pcie_restock_bd(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb)217 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
218 struct iwl_rxq *rxq,
219 struct iwl_rx_mem_buffer *rxb)
220 {
221 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
222 struct iwl_rx_transfer_desc *bd = rxq->bd;
223
224 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
225
226 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
227 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
228 } else {
229 __le64 *bd = rxq->bd;
230
231 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
232 }
233
234 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
235 (u32)rxb->vid, rxq->id, rxq->write);
236 }
237
238 /*
239 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
240 */
iwl_pcie_rxmq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)241 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
242 struct iwl_rxq *rxq)
243 {
244 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
245 struct iwl_rx_mem_buffer *rxb;
246
247 /*
248 * If the device isn't enabled - no need to try to add buffers...
249 * This can happen when we stop the device and still have an interrupt
250 * pending. We stop the APM before we sync the interrupts because we
251 * have to (see comment there). On the other hand, since the APM is
252 * stopped, we cannot access the HW (in particular not prph).
253 * So don't try to restock if the APM has been already stopped.
254 */
255 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
256 return;
257
258 spin_lock_bh(&rxq->lock);
259 while (rxq->free_count) {
260 /* Get next free Rx buffer, remove from free list */
261 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
262 list);
263 list_del(&rxb->list);
264 rxb->invalid = false;
265 /* some low bits are expected to be unset (depending on hw) */
266 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
267 /* Point to Rx buffer via next RBD in circular buffer */
268 iwl_pcie_restock_bd(trans, rxq, rxb);
269 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
270 rxq->free_count--;
271 }
272 spin_unlock_bh(&rxq->lock);
273
274 /*
275 * If we've added more space for the firmware to place data, tell it.
276 * Increment device's write pointer in multiples of 8.
277 */
278 if (rxq->write_actual != (rxq->write & ~0x7)) {
279 spin_lock_bh(&rxq->lock);
280 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
281 spin_unlock_bh(&rxq->lock);
282 }
283 }
284
285 /*
286 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
287 */
iwl_pcie_rxsq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)288 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
289 struct iwl_rxq *rxq)
290 {
291 struct iwl_rx_mem_buffer *rxb;
292
293 /*
294 * If the device isn't enabled - not need to try to add buffers...
295 * This can happen when we stop the device and still have an interrupt
296 * pending. We stop the APM before we sync the interrupts because we
297 * have to (see comment there). On the other hand, since the APM is
298 * stopped, we cannot access the HW (in particular not prph).
299 * So don't try to restock if the APM has been already stopped.
300 */
301 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
302 return;
303
304 spin_lock_bh(&rxq->lock);
305 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
306 __le32 *bd = (__le32 *)rxq->bd;
307 /* The overwritten rxb must be a used one */
308 rxb = rxq->queue[rxq->write];
309 BUG_ON(rxb && rxb->page);
310
311 /* Get next free Rx buffer, remove from free list */
312 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
313 list);
314 list_del(&rxb->list);
315 rxb->invalid = false;
316
317 /* Point to Rx buffer via next RBD in circular buffer */
318 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
319 rxq->queue[rxq->write] = rxb;
320 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
321 rxq->free_count--;
322 }
323 spin_unlock_bh(&rxq->lock);
324
325 /* If we've added more space for the firmware to place data, tell it.
326 * Increment device's write pointer in multiples of 8. */
327 if (rxq->write_actual != (rxq->write & ~0x7)) {
328 spin_lock_bh(&rxq->lock);
329 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
330 spin_unlock_bh(&rxq->lock);
331 }
332 }
333
334 /*
335 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
336 *
337 * If there are slots in the RX queue that need to be restocked,
338 * and we have free pre-allocated buffers, fill the ranks as much
339 * as we can, pulling from rx_free.
340 *
341 * This moves the 'write' index forward to catch up with 'processed', and
342 * also updates the memory address in the firmware to reference the new
343 * target buffer.
344 */
345 static
iwl_pcie_rxq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)346 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
347 {
348 if (trans->trans_cfg->mq_rx_supported)
349 iwl_pcie_rxmq_restock(trans, rxq);
350 else
351 iwl_pcie_rxsq_restock(trans, rxq);
352 }
353
354 /*
355 * iwl_pcie_rx_alloc_page - allocates and returns a page.
356 *
357 */
iwl_pcie_rx_alloc_page(struct iwl_trans * trans,u32 * offset,gfp_t priority)358 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
359 u32 *offset, gfp_t priority)
360 {
361 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
362 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
363 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
364 struct page *page;
365 gfp_t gfp_mask = priority;
366
367 if (trans_pcie->rx_page_order > 0)
368 gfp_mask |= __GFP_COMP;
369
370 if (trans_pcie->alloc_page) {
371 spin_lock_bh(&trans_pcie->alloc_page_lock);
372 /* recheck */
373 if (trans_pcie->alloc_page) {
374 *offset = trans_pcie->alloc_page_used;
375 page = trans_pcie->alloc_page;
376 trans_pcie->alloc_page_used += rbsize;
377 if (trans_pcie->alloc_page_used >= allocsize)
378 trans_pcie->alloc_page = NULL;
379 else
380 get_page(page);
381 spin_unlock_bh(&trans_pcie->alloc_page_lock);
382 return page;
383 }
384 spin_unlock_bh(&trans_pcie->alloc_page_lock);
385 }
386
387 /* Alloc a new receive buffer */
388 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
389 if (!page) {
390 if (net_ratelimit())
391 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
392 trans_pcie->rx_page_order);
393 /*
394 * Issue an error if we don't have enough pre-allocated
395 * buffers.
396 */
397 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
398 IWL_CRIT(trans,
399 "Failed to alloc_pages\n");
400 return NULL;
401 }
402
403 if (2 * rbsize <= allocsize) {
404 spin_lock_bh(&trans_pcie->alloc_page_lock);
405 if (!trans_pcie->alloc_page) {
406 get_page(page);
407 trans_pcie->alloc_page = page;
408 trans_pcie->alloc_page_used = rbsize;
409 }
410 spin_unlock_bh(&trans_pcie->alloc_page_lock);
411 }
412
413 *offset = 0;
414 return page;
415 }
416
417 /*
418 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
419 *
420 * A used RBD is an Rx buffer that has been given to the stack. To use it again
421 * a page must be allocated and the RBD must point to the page. This function
422 * doesn't change the HW pointer but handles the list of pages that is used by
423 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
424 * allocated buffers.
425 */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority,struct iwl_rxq * rxq)426 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
427 struct iwl_rxq *rxq)
428 {
429 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
430 struct iwl_rx_mem_buffer *rxb;
431 struct page *page;
432
433 while (1) {
434 unsigned int offset;
435
436 spin_lock_bh(&rxq->lock);
437 if (list_empty(&rxq->rx_used)) {
438 spin_unlock_bh(&rxq->lock);
439 return;
440 }
441 spin_unlock_bh(&rxq->lock);
442
443 page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
444 if (!page)
445 return;
446
447 spin_lock_bh(&rxq->lock);
448
449 if (list_empty(&rxq->rx_used)) {
450 spin_unlock_bh(&rxq->lock);
451 __free_pages(page, trans_pcie->rx_page_order);
452 return;
453 }
454 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
455 list);
456 list_del(&rxb->list);
457 spin_unlock_bh(&rxq->lock);
458
459 BUG_ON(rxb->page);
460 rxb->page = page;
461 rxb->offset = offset;
462 /* Get physical address of the RB */
463 rxb->page_dma =
464 dma_map_page(trans->dev, page, rxb->offset,
465 trans_pcie->rx_buf_bytes,
466 DMA_FROM_DEVICE);
467 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
468 rxb->page = NULL;
469 spin_lock_bh(&rxq->lock);
470 list_add(&rxb->list, &rxq->rx_used);
471 spin_unlock_bh(&rxq->lock);
472 __free_pages(page, trans_pcie->rx_page_order);
473 return;
474 }
475
476 spin_lock_bh(&rxq->lock);
477
478 list_add_tail(&rxb->list, &rxq->rx_free);
479 rxq->free_count++;
480
481 spin_unlock_bh(&rxq->lock);
482 }
483 }
484
iwl_pcie_free_rbs_pool(struct iwl_trans * trans)485 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
486 {
487 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
488 int i;
489
490 if (!trans_pcie->rx_pool)
491 return;
492
493 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
494 if (!trans_pcie->rx_pool[i].page)
495 continue;
496 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
497 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
498 __free_pages(trans_pcie->rx_pool[i].page,
499 trans_pcie->rx_page_order);
500 trans_pcie->rx_pool[i].page = NULL;
501 }
502 }
503
504 /*
505 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
506 *
507 * Allocates for each received request 8 pages
508 * Called as a scheduled work item.
509 */
iwl_pcie_rx_allocator(struct iwl_trans * trans)510 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
511 {
512 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
513 struct iwl_rb_allocator *rba = &trans_pcie->rba;
514 struct list_head local_empty;
515 int pending = atomic_read(&rba->req_pending);
516
517 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
518
519 /* If we were scheduled - there is at least one request */
520 spin_lock_bh(&rba->lock);
521 /* swap out the rba->rbd_empty to a local list */
522 list_replace_init(&rba->rbd_empty, &local_empty);
523 spin_unlock_bh(&rba->lock);
524
525 while (pending) {
526 int i;
527 LIST_HEAD(local_allocated);
528 gfp_t gfp_mask = GFP_KERNEL;
529
530 /* Do not post a warning if there are only a few requests */
531 if (pending < RX_PENDING_WATERMARK)
532 gfp_mask |= __GFP_NOWARN;
533
534 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
535 struct iwl_rx_mem_buffer *rxb;
536 struct page *page;
537
538 /* List should never be empty - each reused RBD is
539 * returned to the list, and initial pool covers any
540 * possible gap between the time the page is allocated
541 * to the time the RBD is added.
542 */
543 BUG_ON(list_empty(&local_empty));
544 /* Get the first rxb from the rbd list */
545 rxb = list_first_entry(&local_empty,
546 struct iwl_rx_mem_buffer, list);
547 BUG_ON(rxb->page);
548
549 /* Alloc a new receive buffer */
550 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
551 gfp_mask);
552 if (!page)
553 continue;
554 rxb->page = page;
555
556 /* Get physical address of the RB */
557 rxb->page_dma = dma_map_page(trans->dev, page,
558 rxb->offset,
559 trans_pcie->rx_buf_bytes,
560 DMA_FROM_DEVICE);
561 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
562 rxb->page = NULL;
563 __free_pages(page, trans_pcie->rx_page_order);
564 continue;
565 }
566
567 /* move the allocated entry to the out list */
568 list_move(&rxb->list, &local_allocated);
569 i++;
570 }
571
572 atomic_dec(&rba->req_pending);
573 pending--;
574
575 if (!pending) {
576 pending = atomic_read(&rba->req_pending);
577 if (pending)
578 IWL_DEBUG_TPT(trans,
579 "Got more pending allocation requests = %d\n",
580 pending);
581 }
582
583 spin_lock_bh(&rba->lock);
584 /* add the allocated rbds to the allocator allocated list */
585 list_splice_tail(&local_allocated, &rba->rbd_allocated);
586 /* get more empty RBDs for current pending requests */
587 list_splice_tail_init(&rba->rbd_empty, &local_empty);
588 spin_unlock_bh(&rba->lock);
589
590 atomic_inc(&rba->req_ready);
591
592 }
593
594 spin_lock_bh(&rba->lock);
595 /* return unused rbds to the allocator empty list */
596 list_splice_tail(&local_empty, &rba->rbd_empty);
597 spin_unlock_bh(&rba->lock);
598
599 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
600 }
601
602 /*
603 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
604 .*
605 .* Called by queue when the queue posted allocation request and
606 * has freed 8 RBDs in order to restock itself.
607 * This function directly moves the allocated RBs to the queue's ownership
608 * and updates the relevant counters.
609 */
iwl_pcie_rx_allocator_get(struct iwl_trans * trans,struct iwl_rxq * rxq)610 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
611 struct iwl_rxq *rxq)
612 {
613 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
614 struct iwl_rb_allocator *rba = &trans_pcie->rba;
615 int i;
616
617 lockdep_assert_held(&rxq->lock);
618
619 /*
620 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
621 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
622 * function will return early, as there are no ready requests.
623 * atomic_dec_if_positive will perofrm the *actual* decrement only if
624 * req_ready > 0, i.e. - there are ready requests and the function
625 * hands one request to the caller.
626 */
627 if (atomic_dec_if_positive(&rba->req_ready) < 0)
628 return;
629
630 spin_lock(&rba->lock);
631 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
632 /* Get next free Rx buffer, remove it from free list */
633 struct iwl_rx_mem_buffer *rxb =
634 list_first_entry(&rba->rbd_allocated,
635 struct iwl_rx_mem_buffer, list);
636
637 list_move(&rxb->list, &rxq->rx_free);
638 }
639 spin_unlock(&rba->lock);
640
641 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
642 rxq->free_count += RX_CLAIM_REQ_ALLOC;
643 }
644
iwl_pcie_rx_allocator_work(struct work_struct * data)645 void iwl_pcie_rx_allocator_work(struct work_struct *data)
646 {
647 struct iwl_rb_allocator *rba_p =
648 container_of(data, struct iwl_rb_allocator, rx_alloc);
649 struct iwl_trans_pcie *trans_pcie =
650 container_of(rba_p, struct iwl_trans_pcie, rba);
651
652 iwl_pcie_rx_allocator(trans_pcie->trans);
653 }
654
iwl_pcie_free_bd_size(struct iwl_trans * trans)655 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
656 {
657 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
658 return sizeof(struct iwl_rx_transfer_desc);
659
660 return trans->trans_cfg->mq_rx_supported ?
661 sizeof(__le64) : sizeof(__le32);
662 }
663
iwl_pcie_used_bd_size(struct iwl_trans * trans)664 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
665 {
666 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
667 return sizeof(struct iwl_rx_completion_desc_bz);
668
669 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
670 return sizeof(struct iwl_rx_completion_desc);
671
672 return sizeof(__le32);
673 }
674
iwl_pcie_free_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)675 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
676 struct iwl_rxq *rxq)
677 {
678 int free_size = iwl_pcie_free_bd_size(trans);
679
680 if (rxq->bd)
681 dma_free_coherent(trans->dev,
682 free_size * rxq->queue_size,
683 rxq->bd, rxq->bd_dma);
684 rxq->bd_dma = 0;
685 rxq->bd = NULL;
686
687 rxq->rb_stts_dma = 0;
688 rxq->rb_stts = NULL;
689
690 if (rxq->used_bd)
691 dma_free_coherent(trans->dev,
692 iwl_pcie_used_bd_size(trans) *
693 rxq->queue_size,
694 rxq->used_bd, rxq->used_bd_dma);
695 rxq->used_bd_dma = 0;
696 rxq->used_bd = NULL;
697 }
698
iwl_pcie_alloc_rxq_dma(struct iwl_trans * trans,struct iwl_rxq * rxq)699 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
700 struct iwl_rxq *rxq)
701 {
702 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
703 struct device *dev = trans->dev;
704 int i;
705 int free_size;
706 bool use_rx_td = (trans->trans_cfg->device_family >=
707 IWL_DEVICE_FAMILY_AX210);
708 size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
709 sizeof(struct iwl_rb_status);
710
711 spin_lock_init(&rxq->lock);
712 if (trans->trans_cfg->mq_rx_supported)
713 rxq->queue_size = trans->cfg->num_rbds;
714 else
715 rxq->queue_size = RX_QUEUE_SIZE;
716
717 free_size = iwl_pcie_free_bd_size(trans);
718
719 /*
720 * Allocate the circular buffer of Read Buffer Descriptors
721 * (RBDs)
722 */
723 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
724 &rxq->bd_dma, GFP_KERNEL);
725 if (!rxq->bd)
726 goto err;
727
728 if (trans->trans_cfg->mq_rx_supported) {
729 rxq->used_bd = dma_alloc_coherent(dev,
730 iwl_pcie_used_bd_size(trans) *
731 rxq->queue_size,
732 &rxq->used_bd_dma,
733 GFP_KERNEL);
734 if (!rxq->used_bd)
735 goto err;
736 }
737
738 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
739 rxq->rb_stts_dma =
740 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
741
742 return 0;
743
744 err:
745 for (i = 0; i < trans->num_rx_queues; i++) {
746 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
747
748 iwl_pcie_free_rxq_dma(trans, rxq);
749 }
750
751 return -ENOMEM;
752 }
753
iwl_pcie_rx_alloc(struct iwl_trans * trans)754 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
755 {
756 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
757 struct iwl_rb_allocator *rba = &trans_pcie->rba;
758 int i, ret;
759 size_t rb_stts_size = trans->trans_cfg->device_family >=
760 IWL_DEVICE_FAMILY_AX210 ?
761 sizeof(__le16) : sizeof(struct iwl_rb_status);
762
763 if (WARN_ON(trans_pcie->rxq))
764 return -EINVAL;
765
766 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
767 GFP_KERNEL);
768 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
769 sizeof(trans_pcie->rx_pool[0]),
770 GFP_KERNEL);
771 trans_pcie->global_table =
772 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
773 sizeof(trans_pcie->global_table[0]),
774 GFP_KERNEL);
775 if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
776 !trans_pcie->global_table) {
777 ret = -ENOMEM;
778 goto err;
779 }
780
781 spin_lock_init(&rba->lock);
782
783 /*
784 * Allocate the driver's pointer to receive buffer status.
785 * Allocate for all queues continuously (HW requirement).
786 */
787 trans_pcie->base_rb_stts =
788 dma_alloc_coherent(trans->dev,
789 rb_stts_size * trans->num_rx_queues,
790 &trans_pcie->base_rb_stts_dma,
791 GFP_KERNEL);
792 if (!trans_pcie->base_rb_stts) {
793 ret = -ENOMEM;
794 goto err;
795 }
796
797 for (i = 0; i < trans->num_rx_queues; i++) {
798 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
799
800 rxq->id = i;
801 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
802 if (ret)
803 goto err;
804 }
805 return 0;
806
807 err:
808 if (trans_pcie->base_rb_stts) {
809 dma_free_coherent(trans->dev,
810 rb_stts_size * trans->num_rx_queues,
811 trans_pcie->base_rb_stts,
812 trans_pcie->base_rb_stts_dma);
813 trans_pcie->base_rb_stts = NULL;
814 trans_pcie->base_rb_stts_dma = 0;
815 }
816 kfree(trans_pcie->rx_pool);
817 trans_pcie->rx_pool = NULL;
818 kfree(trans_pcie->global_table);
819 trans_pcie->global_table = NULL;
820 kfree(trans_pcie->rxq);
821 trans_pcie->rxq = NULL;
822
823 return ret;
824 }
825
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)826 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
827 {
828 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
829 u32 rb_size;
830 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
831
832 switch (trans_pcie->rx_buf_size) {
833 case IWL_AMSDU_4K:
834 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
835 break;
836 case IWL_AMSDU_8K:
837 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
838 break;
839 case IWL_AMSDU_12K:
840 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
841 break;
842 default:
843 WARN_ON(1);
844 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
845 }
846
847 if (!iwl_trans_grab_nic_access(trans))
848 return;
849
850 /* Stop Rx DMA */
851 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
852 /* reset and flush pointers */
853 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
854 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
855 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
856
857 /* Reset driver's Rx queue write index */
858 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
859
860 /* Tell device where to find RBD circular buffer in DRAM */
861 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
862 (u32)(rxq->bd_dma >> 8));
863
864 /* Tell device where in DRAM to update its Rx status */
865 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
866 rxq->rb_stts_dma >> 4);
867
868 /* Enable Rx DMA
869 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
870 * the credit mechanism in 5000 HW RX FIFO
871 * Direct rx interrupts to hosts
872 * Rx buffer size 4 or 8k or 12k
873 * RB timeout 0x10
874 * 256 RBDs
875 */
876 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
877 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
878 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
879 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
880 rb_size |
881 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
882 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
883
884 iwl_trans_release_nic_access(trans);
885
886 /* Set interrupt coalescing timer to default (2048 usecs) */
887 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
888
889 /* W/A for interrupt coalescing bug in 7260 and 3160 */
890 if (trans->cfg->host_interrupt_operation_mode)
891 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
892 }
893
iwl_pcie_rx_mq_hw_init(struct iwl_trans * trans)894 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
895 {
896 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
897 u32 rb_size, enabled = 0;
898 int i;
899
900 switch (trans_pcie->rx_buf_size) {
901 case IWL_AMSDU_2K:
902 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
903 break;
904 case IWL_AMSDU_4K:
905 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
906 break;
907 case IWL_AMSDU_8K:
908 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
909 break;
910 case IWL_AMSDU_12K:
911 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
912 break;
913 default:
914 WARN_ON(1);
915 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
916 }
917
918 if (!iwl_trans_grab_nic_access(trans))
919 return;
920
921 /* Stop Rx DMA */
922 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
923 /* disable free amd used rx queue operation */
924 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
925
926 for (i = 0; i < trans->num_rx_queues; i++) {
927 /* Tell device where to find RBD free table in DRAM */
928 iwl_write_prph64_no_grab(trans,
929 RFH_Q_FRBDCB_BA_LSB(i),
930 trans_pcie->rxq[i].bd_dma);
931 /* Tell device where to find RBD used table in DRAM */
932 iwl_write_prph64_no_grab(trans,
933 RFH_Q_URBDCB_BA_LSB(i),
934 trans_pcie->rxq[i].used_bd_dma);
935 /* Tell device where in DRAM to update its Rx status */
936 iwl_write_prph64_no_grab(trans,
937 RFH_Q_URBD_STTS_WPTR_LSB(i),
938 trans_pcie->rxq[i].rb_stts_dma);
939 /* Reset device indice tables */
940 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
941 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
942 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
943
944 enabled |= BIT(i) | BIT(i + 16);
945 }
946
947 /*
948 * Enable Rx DMA
949 * Rx buffer size 4 or 8k or 12k
950 * Min RB size 4 or 8
951 * Drop frames that exceed RB size
952 * 512 RBDs
953 */
954 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
955 RFH_DMA_EN_ENABLE_VAL | rb_size |
956 RFH_RXF_DMA_MIN_RB_4_8 |
957 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
958 RFH_RXF_DMA_RBDCB_SIZE_512);
959
960 /*
961 * Activate DMA snooping.
962 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
963 * Default queue is 0
964 */
965 iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
966 RFH_GEN_CFG_RFH_DMA_SNOOP |
967 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
968 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
969 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
970 trans->trans_cfg->integrated ?
971 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
972 RFH_GEN_CFG_RB_CHUNK_SIZE_128));
973 /* Enable the relevant rx queues */
974 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
975
976 iwl_trans_release_nic_access(trans);
977
978 /* Set interrupt coalescing timer to default (2048 usecs) */
979 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
980 }
981
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)982 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
983 {
984 lockdep_assert_held(&rxq->lock);
985
986 INIT_LIST_HEAD(&rxq->rx_free);
987 INIT_LIST_HEAD(&rxq->rx_used);
988 rxq->free_count = 0;
989 rxq->used_count = 0;
990 }
991
992 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
993
iwl_pcie_napi_poll(struct napi_struct * napi,int budget)994 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
995 {
996 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
997 struct iwl_trans_pcie *trans_pcie;
998 struct iwl_trans *trans;
999 int ret;
1000
1001 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1002 trans = trans_pcie->trans;
1003
1004 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1005
1006 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1007 rxq->id, ret, budget);
1008
1009 if (ret < budget) {
1010 spin_lock(&trans_pcie->irq_lock);
1011 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1012 _iwl_enable_interrupts(trans);
1013 spin_unlock(&trans_pcie->irq_lock);
1014
1015 napi_complete_done(&rxq->napi, ret);
1016 }
1017
1018 return ret;
1019 }
1020
iwl_pcie_napi_poll_msix(struct napi_struct * napi,int budget)1021 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1022 {
1023 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1024 struct iwl_trans_pcie *trans_pcie;
1025 struct iwl_trans *trans;
1026 int ret;
1027
1028 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev);
1029 trans = trans_pcie->trans;
1030
1031 ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1032 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1033 budget);
1034
1035 if (ret < budget) {
1036 int irq_line = rxq->id;
1037
1038 /* FIRST_RSS is shared with line 0 */
1039 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1040 rxq->id == 1)
1041 irq_line = 0;
1042
1043 spin_lock(&trans_pcie->irq_lock);
1044 iwl_pcie_clear_irq(trans, irq_line);
1045 spin_unlock(&trans_pcie->irq_lock);
1046
1047 napi_complete_done(&rxq->napi, ret);
1048 }
1049
1050 return ret;
1051 }
1052
iwl_pcie_rx_napi_sync(struct iwl_trans * trans)1053 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1054 {
1055 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1056 int i;
1057
1058 if (unlikely(!trans_pcie->rxq))
1059 return;
1060
1061 for (i = 0; i < trans->num_rx_queues; i++) {
1062 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1063
1064 if (rxq && rxq->napi.poll)
1065 napi_synchronize(&rxq->napi);
1066 }
1067 }
1068
_iwl_pcie_rx_init(struct iwl_trans * trans)1069 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1070 {
1071 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1072 struct iwl_rxq *def_rxq;
1073 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1074 int i, err, queue_size, allocator_pool_size, num_alloc;
1075
1076 if (!trans_pcie->rxq) {
1077 err = iwl_pcie_rx_alloc(trans);
1078 if (err)
1079 return err;
1080 }
1081 def_rxq = trans_pcie->rxq;
1082
1083 cancel_work_sync(&rba->rx_alloc);
1084
1085 spin_lock_bh(&rba->lock);
1086 atomic_set(&rba->req_pending, 0);
1087 atomic_set(&rba->req_ready, 0);
1088 INIT_LIST_HEAD(&rba->rbd_allocated);
1089 INIT_LIST_HEAD(&rba->rbd_empty);
1090 spin_unlock_bh(&rba->lock);
1091
1092 /* free all first - we overwrite everything here */
1093 iwl_pcie_free_rbs_pool(trans);
1094
1095 for (i = 0; i < RX_QUEUE_SIZE; i++)
1096 def_rxq->queue[i] = NULL;
1097
1098 for (i = 0; i < trans->num_rx_queues; i++) {
1099 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1100
1101 spin_lock_bh(&rxq->lock);
1102 /*
1103 * Set read write pointer to reflect that we have processed
1104 * and used all buffers, but have not restocked the Rx queue
1105 * with fresh buffers
1106 */
1107 rxq->read = 0;
1108 rxq->write = 0;
1109 rxq->write_actual = 0;
1110 memset(rxq->rb_stts, 0,
1111 (trans->trans_cfg->device_family >=
1112 IWL_DEVICE_FAMILY_AX210) ?
1113 sizeof(__le16) : sizeof(struct iwl_rb_status));
1114
1115 iwl_pcie_rx_init_rxb_lists(rxq);
1116
1117 spin_unlock_bh(&rxq->lock);
1118
1119 if (!rxq->napi.poll) {
1120 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1121
1122 if (trans_pcie->msix_enabled)
1123 poll = iwl_pcie_napi_poll_msix;
1124
1125 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1126 poll, NAPI_POLL_WEIGHT);
1127 napi_enable(&rxq->napi);
1128 }
1129
1130 }
1131
1132 /* move the pool to the default queue and allocator ownerships */
1133 queue_size = trans->trans_cfg->mq_rx_supported ?
1134 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1135 allocator_pool_size = trans->num_rx_queues *
1136 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1137 num_alloc = queue_size + allocator_pool_size;
1138
1139 for (i = 0; i < num_alloc; i++) {
1140 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1141
1142 if (i < allocator_pool_size)
1143 list_add(&rxb->list, &rba->rbd_empty);
1144 else
1145 list_add(&rxb->list, &def_rxq->rx_used);
1146 trans_pcie->global_table[i] = rxb;
1147 rxb->vid = (u16)(i + 1);
1148 rxb->invalid = true;
1149 }
1150
1151 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1152
1153 return 0;
1154 }
1155
iwl_pcie_rx_init(struct iwl_trans * trans)1156 int iwl_pcie_rx_init(struct iwl_trans *trans)
1157 {
1158 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1159 int ret = _iwl_pcie_rx_init(trans);
1160
1161 if (ret)
1162 return ret;
1163
1164 if (trans->trans_cfg->mq_rx_supported)
1165 iwl_pcie_rx_mq_hw_init(trans);
1166 else
1167 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1168
1169 iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1170
1171 spin_lock_bh(&trans_pcie->rxq->lock);
1172 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1173 spin_unlock_bh(&trans_pcie->rxq->lock);
1174
1175 return 0;
1176 }
1177
iwl_pcie_gen2_rx_init(struct iwl_trans * trans)1178 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1179 {
1180 /* Set interrupt coalescing timer to default (2048 usecs) */
1181 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1182
1183 /*
1184 * We don't configure the RFH.
1185 * Restock will be done at alive, after firmware configured the RFH.
1186 */
1187 return _iwl_pcie_rx_init(trans);
1188 }
1189
iwl_pcie_rx_free(struct iwl_trans * trans)1190 void iwl_pcie_rx_free(struct iwl_trans *trans)
1191 {
1192 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1193 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1194 int i;
1195 size_t rb_stts_size = trans->trans_cfg->device_family >=
1196 IWL_DEVICE_FAMILY_AX210 ?
1197 sizeof(__le16) : sizeof(struct iwl_rb_status);
1198
1199 /*
1200 * if rxq is NULL, it means that nothing has been allocated,
1201 * exit now
1202 */
1203 if (!trans_pcie->rxq) {
1204 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1205 return;
1206 }
1207
1208 cancel_work_sync(&rba->rx_alloc);
1209
1210 iwl_pcie_free_rbs_pool(trans);
1211
1212 if (trans_pcie->base_rb_stts) {
1213 dma_free_coherent(trans->dev,
1214 rb_stts_size * trans->num_rx_queues,
1215 trans_pcie->base_rb_stts,
1216 trans_pcie->base_rb_stts_dma);
1217 trans_pcie->base_rb_stts = NULL;
1218 trans_pcie->base_rb_stts_dma = 0;
1219 }
1220
1221 for (i = 0; i < trans->num_rx_queues; i++) {
1222 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1223
1224 iwl_pcie_free_rxq_dma(trans, rxq);
1225
1226 if (rxq->napi.poll) {
1227 napi_disable(&rxq->napi);
1228 netif_napi_del(&rxq->napi);
1229 }
1230 }
1231 kfree(trans_pcie->rx_pool);
1232 kfree(trans_pcie->global_table);
1233 kfree(trans_pcie->rxq);
1234
1235 if (trans_pcie->alloc_page)
1236 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1237 }
1238
iwl_pcie_rx_move_to_allocator(struct iwl_rxq * rxq,struct iwl_rb_allocator * rba)1239 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1240 struct iwl_rb_allocator *rba)
1241 {
1242 spin_lock(&rba->lock);
1243 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1244 spin_unlock(&rba->lock);
1245 }
1246
1247 /*
1248 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1249 *
1250 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1251 * When there are 2 empty RBDs - a request for allocation is posted
1252 */
iwl_pcie_rx_reuse_rbd(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb,struct iwl_rxq * rxq,bool emergency)1253 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1254 struct iwl_rx_mem_buffer *rxb,
1255 struct iwl_rxq *rxq, bool emergency)
1256 {
1257 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1258 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1259
1260 /* Move the RBD to the used list, will be moved to allocator in batches
1261 * before claiming or posting a request*/
1262 list_add_tail(&rxb->list, &rxq->rx_used);
1263
1264 if (unlikely(emergency))
1265 return;
1266
1267 /* Count the allocator owned RBDs */
1268 rxq->used_count++;
1269
1270 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1271 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1272 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1273 * after but we still need to post another request.
1274 */
1275 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1276 /* Move the 2 RBDs to the allocator ownership.
1277 Allocator has another 6 from pool for the request completion*/
1278 iwl_pcie_rx_move_to_allocator(rxq, rba);
1279
1280 atomic_inc(&rba->req_pending);
1281 queue_work(rba->alloc_wq, &rba->rx_alloc);
1282 }
1283 }
1284
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb,bool emergency,int i)1285 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1286 struct iwl_rxq *rxq,
1287 struct iwl_rx_mem_buffer *rxb,
1288 bool emergency,
1289 int i)
1290 {
1291 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1292 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
1293 bool page_stolen = false;
1294 int max_len = trans_pcie->rx_buf_bytes;
1295 u32 offset = 0;
1296
1297 if (WARN_ON(!rxb))
1298 return;
1299
1300 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1301
1302 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1303 struct iwl_rx_packet *pkt;
1304 bool reclaim;
1305 int len;
1306 struct iwl_rx_cmd_buffer rxcb = {
1307 ._offset = rxb->offset + offset,
1308 ._rx_page_order = trans_pcie->rx_page_order,
1309 ._page = rxb->page,
1310 ._page_stolen = false,
1311 .truesize = max_len,
1312 };
1313
1314 pkt = rxb_addr(&rxcb);
1315
1316 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1317 IWL_DEBUG_RX(trans,
1318 "Q %d: RB end marker at offset %d\n",
1319 rxq->id, offset);
1320 break;
1321 }
1322
1323 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1324 FH_RSCSR_RXQ_POS != rxq->id,
1325 "frame on invalid queue - is on %d and indicates %d\n",
1326 rxq->id,
1327 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1328 FH_RSCSR_RXQ_POS);
1329
1330 IWL_DEBUG_RX(trans,
1331 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1332 rxq->id, offset,
1333 iwl_get_cmd_string(trans,
1334 iwl_cmd_id(pkt->hdr.cmd,
1335 pkt->hdr.group_id,
1336 0)),
1337 pkt->hdr.group_id, pkt->hdr.cmd,
1338 le16_to_cpu(pkt->hdr.sequence));
1339
1340 len = iwl_rx_packet_len(pkt);
1341 len += sizeof(u32); /* account for status word */
1342
1343 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1344
1345 /* check that what the device tells us made sense */
1346 if (offset > max_len)
1347 break;
1348
1349 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1350 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1351
1352 /* Reclaim a command buffer only if this packet is a response
1353 * to a (driver-originated) command.
1354 * If the packet (e.g. Rx frame) originated from uCode,
1355 * there is no command buffer to reclaim.
1356 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1357 * but apparently a few don't get set; catch them here. */
1358 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1359 if (reclaim && !pkt->hdr.group_id) {
1360 int i;
1361
1362 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1363 if (trans_pcie->no_reclaim_cmds[i] ==
1364 pkt->hdr.cmd) {
1365 reclaim = false;
1366 break;
1367 }
1368 }
1369 }
1370
1371 if (rxq->id == trans_pcie->def_rx_queue)
1372 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1373 &rxcb);
1374 else
1375 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1376 &rxcb, rxq->id);
1377
1378 /*
1379 * After here, we should always check rxcb._page_stolen,
1380 * if it is true then one of the handlers took the page.
1381 */
1382
1383 if (reclaim && txq) {
1384 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1385 int index = SEQ_TO_INDEX(sequence);
1386 int cmd_index = iwl_txq_get_cmd_index(txq, index);
1387
1388 kfree_sensitive(txq->entries[cmd_index].free_buf);
1389 txq->entries[cmd_index].free_buf = NULL;
1390
1391 /* Invoke any callbacks, transfer the buffer to caller,
1392 * and fire off the (possibly) blocking
1393 * iwl_trans_send_cmd()
1394 * as we reclaim the driver command queue */
1395 if (!rxcb._page_stolen)
1396 iwl_pcie_hcmd_complete(trans, &rxcb);
1397 else
1398 IWL_WARN(trans, "Claim null rxb?\n");
1399 }
1400
1401 page_stolen |= rxcb._page_stolen;
1402 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1403 break;
1404 }
1405
1406 /* page was stolen from us -- free our reference */
1407 if (page_stolen) {
1408 __free_pages(rxb->page, trans_pcie->rx_page_order);
1409 rxb->page = NULL;
1410 }
1411
1412 /* Reuse the page if possible. For notification packets and
1413 * SKBs that fail to Rx correctly, add them back into the
1414 * rx_free list for reuse later. */
1415 if (rxb->page != NULL) {
1416 rxb->page_dma =
1417 dma_map_page(trans->dev, rxb->page, rxb->offset,
1418 trans_pcie->rx_buf_bytes,
1419 DMA_FROM_DEVICE);
1420 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1421 /*
1422 * free the page(s) as well to not break
1423 * the invariant that the items on the used
1424 * list have no page(s)
1425 */
1426 __free_pages(rxb->page, trans_pcie->rx_page_order);
1427 rxb->page = NULL;
1428 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1429 } else {
1430 list_add_tail(&rxb->list, &rxq->rx_free);
1431 rxq->free_count++;
1432 }
1433 } else
1434 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1435 }
1436
iwl_pcie_get_rxb(struct iwl_trans * trans,struct iwl_rxq * rxq,int i,bool * join)1437 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1438 struct iwl_rxq *rxq, int i,
1439 bool *join)
1440 {
1441 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1442 struct iwl_rx_mem_buffer *rxb;
1443 u16 vid;
1444
1445 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1446 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1447
1448 if (!trans->trans_cfg->mq_rx_supported) {
1449 rxb = rxq->queue[i];
1450 rxq->queue[i] = NULL;
1451 return rxb;
1452 }
1453
1454 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1455 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1456
1457 vid = le16_to_cpu(cd[i].rbid);
1458 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1459 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1460 struct iwl_rx_completion_desc *cd = rxq->used_bd;
1461
1462 vid = le16_to_cpu(cd[i].rbid);
1463 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1464 } else {
1465 __le32 *cd = rxq->used_bd;
1466
1467 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1468 }
1469
1470 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1471 goto out_err;
1472
1473 rxb = trans_pcie->global_table[vid - 1];
1474 if (rxb->invalid)
1475 goto out_err;
1476
1477 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1478
1479 rxb->invalid = true;
1480
1481 return rxb;
1482
1483 out_err:
1484 WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1485 iwl_force_nmi(trans);
1486 return NULL;
1487 }
1488
1489 /*
1490 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1491 */
iwl_pcie_rx_handle(struct iwl_trans * trans,int queue,int budget)1492 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1493 {
1494 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1495 struct iwl_rxq *rxq;
1496 u32 r, i, count = 0, handled = 0;
1497 bool emergency = false;
1498
1499 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1500 return budget;
1501
1502 rxq = &trans_pcie->rxq[queue];
1503
1504 restart:
1505 spin_lock(&rxq->lock);
1506 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1507 * buffer that the driver may process (last buffer filled by ucode). */
1508 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1509 i = rxq->read;
1510
1511 /* W/A 9000 device step A0 wrap-around bug */
1512 r &= (rxq->queue_size - 1);
1513
1514 /* Rx interrupt, but nothing sent from uCode */
1515 if (i == r)
1516 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1517
1518 while (i != r && ++handled < budget) {
1519 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1520 struct iwl_rx_mem_buffer *rxb;
1521 /* number of RBDs still waiting for page allocation */
1522 u32 rb_pending_alloc =
1523 atomic_read(&trans_pcie->rba.req_pending) *
1524 RX_CLAIM_REQ_ALLOC;
1525 bool join = false;
1526
1527 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1528 !emergency)) {
1529 iwl_pcie_rx_move_to_allocator(rxq, rba);
1530 emergency = true;
1531 IWL_DEBUG_TPT(trans,
1532 "RX path is in emergency. Pending allocations %d\n",
1533 rb_pending_alloc);
1534 }
1535
1536 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1537
1538 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1539 if (!rxb)
1540 goto out;
1541
1542 if (unlikely(join || rxq->next_rb_is_fragment)) {
1543 rxq->next_rb_is_fragment = join;
1544 /*
1545 * We can only get a multi-RB in the following cases:
1546 * - firmware issue, sending a too big notification
1547 * - sniffer mode with a large A-MSDU
1548 * - large MTU frames (>2k)
1549 * since the multi-RB functionality is limited to newer
1550 * hardware that cannot put multiple entries into a
1551 * single RB.
1552 *
1553 * Right now, the higher layers aren't set up to deal
1554 * with that, so discard all of these.
1555 */
1556 list_add_tail(&rxb->list, &rxq->rx_free);
1557 rxq->free_count++;
1558 } else {
1559 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1560 }
1561
1562 i = (i + 1) & (rxq->queue_size - 1);
1563
1564 /*
1565 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1566 * try to claim the pre-allocated buffers from the allocator.
1567 * If not ready - will try to reclaim next time.
1568 * There is no need to reschedule work - allocator exits only
1569 * on success
1570 */
1571 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1572 iwl_pcie_rx_allocator_get(trans, rxq);
1573
1574 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1575 /* Add the remaining empty RBDs for allocator use */
1576 iwl_pcie_rx_move_to_allocator(rxq, rba);
1577 } else if (emergency) {
1578 count++;
1579 if (count == 8) {
1580 count = 0;
1581 if (rb_pending_alloc < rxq->queue_size / 3) {
1582 IWL_DEBUG_TPT(trans,
1583 "RX path exited emergency. Pending allocations %d\n",
1584 rb_pending_alloc);
1585 emergency = false;
1586 }
1587
1588 rxq->read = i;
1589 spin_unlock(&rxq->lock);
1590 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1591 iwl_pcie_rxq_restock(trans, rxq);
1592 goto restart;
1593 }
1594 }
1595 }
1596 out:
1597 /* Backtrack one entry */
1598 rxq->read = i;
1599 spin_unlock(&rxq->lock);
1600
1601 /*
1602 * handle a case where in emergency there are some unallocated RBDs.
1603 * those RBDs are in the used list, but are not tracked by the queue's
1604 * used_count which counts allocator owned RBDs.
1605 * unallocated emergency RBDs must be allocated on exit, otherwise
1606 * when called again the function may not be in emergency mode and
1607 * they will be handed to the allocator with no tracking in the RBD
1608 * allocator counters, which will lead to them never being claimed back
1609 * by the queue.
1610 * by allocating them here, they are now in the queue free list, and
1611 * will be restocked by the next call of iwl_pcie_rxq_restock.
1612 */
1613 if (unlikely(emergency && count))
1614 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1615
1616 iwl_pcie_rxq_restock(trans, rxq);
1617
1618 return handled;
1619 }
1620
iwl_pcie_get_trans_pcie(struct msix_entry * entry)1621 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1622 {
1623 u8 queue = entry->entry;
1624 struct msix_entry *entries = entry - queue;
1625
1626 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1627 }
1628
1629 /*
1630 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1631 * This interrupt handler should be used with RSS queue only.
1632 */
iwl_pcie_irq_rx_msix_handler(int irq,void * dev_id)1633 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1634 {
1635 struct msix_entry *entry = dev_id;
1636 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1637 struct iwl_trans *trans = trans_pcie->trans;
1638 struct iwl_rxq *rxq;
1639
1640 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1641
1642 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1643 return IRQ_NONE;
1644
1645 if (!trans_pcie->rxq) {
1646 if (net_ratelimit())
1647 IWL_ERR(trans,
1648 "[%d] Got MSI-X interrupt before we have Rx queues\n",
1649 entry->entry);
1650 return IRQ_NONE;
1651 }
1652
1653 rxq = &trans_pcie->rxq[entry->entry];
1654 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1655 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1656
1657 local_bh_disable();
1658 if (napi_schedule_prep(&rxq->napi))
1659 __napi_schedule(&rxq->napi);
1660 else
1661 iwl_pcie_clear_irq(trans, entry->entry);
1662 local_bh_enable();
1663
1664 lock_map_release(&trans->sync_cmd_lockdep_map);
1665
1666 return IRQ_HANDLED;
1667 }
1668
1669 /*
1670 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1671 */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)1672 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1673 {
1674 int i;
1675
1676 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1677 if (trans->cfg->internal_wimax_coex &&
1678 !trans->cfg->apmg_not_supported &&
1679 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1680 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1681 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1682 APMG_PS_CTRL_VAL_RESET_REQ))) {
1683 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1684 iwl_op_mode_wimax_active(trans->op_mode);
1685 wake_up(&trans->wait_command_queue);
1686 return;
1687 }
1688
1689 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1690 if (!trans->txqs.txq[i])
1691 continue;
1692 del_timer(&trans->txqs.txq[i]->stuck_timer);
1693 }
1694
1695 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1696 * before we wake up the command caller, to ensure a proper cleanup. */
1697 iwl_trans_fw_error(trans, false);
1698
1699 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1700 wake_up(&trans->wait_command_queue);
1701 }
1702
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)1703 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1704 {
1705 u32 inta;
1706
1707 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1708
1709 trace_iwlwifi_dev_irq(trans->dev);
1710
1711 /* Discover which interrupts are active/pending */
1712 inta = iwl_read32(trans, CSR_INT);
1713
1714 /* the thread will service interrupts and re-enable them */
1715 return inta;
1716 }
1717
1718 /* a device (PCI-E) page is 4096 bytes long */
1719 #define ICT_SHIFT 12
1720 #define ICT_SIZE (1 << ICT_SHIFT)
1721 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1722
1723 /* interrupt handler using ict table, with this interrupt driver will
1724 * stop using INTA register to get device's interrupt, reading this register
1725 * is expensive, device will write interrupts in ICT dram table, increment
1726 * index then will fire interrupt to driver, driver will OR all ICT table
1727 * entries from current index up to table entry with 0 value. the result is
1728 * the interrupt we need to service, driver will set the entries back to 0 and
1729 * set index.
1730 */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)1731 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1732 {
1733 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1734 u32 inta;
1735 u32 val = 0;
1736 u32 read;
1737
1738 trace_iwlwifi_dev_irq(trans->dev);
1739
1740 /* Ignore interrupt if there's nothing in NIC to service.
1741 * This may be due to IRQ shared with another device,
1742 * or due to sporadic interrupts thrown from our NIC. */
1743 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1744 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1745 if (!read)
1746 return 0;
1747
1748 /*
1749 * Collect all entries up to the first 0, starting from ict_index;
1750 * note we already read at ict_index.
1751 */
1752 do {
1753 val |= read;
1754 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1755 trans_pcie->ict_index, read);
1756 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1757 trans_pcie->ict_index =
1758 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1759
1760 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1761 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1762 read);
1763 } while (read);
1764
1765 /* We should not get this value, just ignore it. */
1766 if (val == 0xffffffff)
1767 val = 0;
1768
1769 /*
1770 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1771 * (bit 15 before shifting it to 31) to clear when using interrupt
1772 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1773 * so we use them to decide on the real state of the Rx bit.
1774 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1775 */
1776 if (val & 0xC0000)
1777 val |= 0x8000;
1778
1779 inta = (0xff & val) | ((0xff00 & val) << 16);
1780 return inta;
1781 }
1782
iwl_pcie_handle_rfkill_irq(struct iwl_trans * trans,bool from_irq)1783 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
1784 {
1785 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1786 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1787 bool hw_rfkill, prev, report;
1788
1789 mutex_lock(&trans_pcie->mutex);
1790 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1791 hw_rfkill = iwl_is_rfkill_set(trans);
1792 if (hw_rfkill) {
1793 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1794 set_bit(STATUS_RFKILL_HW, &trans->status);
1795 }
1796 if (trans_pcie->opmode_down)
1797 report = hw_rfkill;
1798 else
1799 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1800
1801 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1802 hw_rfkill ? "disable radio" : "enable radio");
1803
1804 isr_stats->rfkill++;
1805
1806 if (prev != report)
1807 iwl_trans_pcie_rf_kill(trans, report, from_irq);
1808 mutex_unlock(&trans_pcie->mutex);
1809
1810 if (hw_rfkill) {
1811 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1812 &trans->status))
1813 IWL_DEBUG_RF_KILL(trans,
1814 "Rfkill while SYNC HCMD in flight\n");
1815 wake_up(&trans->wait_command_queue);
1816 } else {
1817 clear_bit(STATUS_RFKILL_HW, &trans->status);
1818 if (trans_pcie->opmode_down)
1819 clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1820 }
1821 }
1822
iwl_pcie_irq_handler(int irq,void * dev_id)1823 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1824 {
1825 struct iwl_trans *trans = dev_id;
1826 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1827 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1828 u32 inta = 0;
1829 u32 handled = 0;
1830 bool polling = false;
1831
1832 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1833
1834 spin_lock_bh(&trans_pcie->irq_lock);
1835
1836 /* dram interrupt table not set yet,
1837 * use legacy interrupt.
1838 */
1839 if (likely(trans_pcie->use_ict))
1840 inta = iwl_pcie_int_cause_ict(trans);
1841 else
1842 inta = iwl_pcie_int_cause_non_ict(trans);
1843
1844 if (iwl_have_debug_level(IWL_DL_ISR)) {
1845 IWL_DEBUG_ISR(trans,
1846 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1847 inta, trans_pcie->inta_mask,
1848 iwl_read32(trans, CSR_INT_MASK),
1849 iwl_read32(trans, CSR_FH_INT_STATUS));
1850 if (inta & (~trans_pcie->inta_mask))
1851 IWL_DEBUG_ISR(trans,
1852 "We got a masked interrupt (0x%08x)\n",
1853 inta & (~trans_pcie->inta_mask));
1854 }
1855
1856 inta &= trans_pcie->inta_mask;
1857
1858 /*
1859 * Ignore interrupt if there's nothing in NIC to service.
1860 * This may be due to IRQ shared with another device,
1861 * or due to sporadic interrupts thrown from our NIC.
1862 */
1863 if (unlikely(!inta)) {
1864 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1865 /*
1866 * Re-enable interrupts here since we don't
1867 * have anything to service
1868 */
1869 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1870 _iwl_enable_interrupts(trans);
1871 spin_unlock_bh(&trans_pcie->irq_lock);
1872 lock_map_release(&trans->sync_cmd_lockdep_map);
1873 return IRQ_NONE;
1874 }
1875
1876 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1877 /*
1878 * Hardware disappeared. It might have
1879 * already raised an interrupt.
1880 */
1881 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1882 spin_unlock_bh(&trans_pcie->irq_lock);
1883 goto out;
1884 }
1885
1886 /* Ack/clear/reset pending uCode interrupts.
1887 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1888 */
1889 /* There is a hardware bug in the interrupt mask function that some
1890 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1891 * they are disabled in the CSR_INT_MASK register. Furthermore the
1892 * ICT interrupt handling mechanism has another bug that might cause
1893 * these unmasked interrupts fail to be detected. We workaround the
1894 * hardware bugs here by ACKing all the possible interrupts so that
1895 * interrupt coalescing can still be achieved.
1896 */
1897 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1898
1899 if (iwl_have_debug_level(IWL_DL_ISR))
1900 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1901 inta, iwl_read32(trans, CSR_INT_MASK));
1902
1903 spin_unlock_bh(&trans_pcie->irq_lock);
1904
1905 /* Now service all interrupt bits discovered above. */
1906 if (inta & CSR_INT_BIT_HW_ERR) {
1907 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1908
1909 /* Tell the device to stop sending interrupts */
1910 iwl_disable_interrupts(trans);
1911
1912 isr_stats->hw++;
1913 iwl_pcie_irq_handle_error(trans);
1914
1915 handled |= CSR_INT_BIT_HW_ERR;
1916
1917 goto out;
1918 }
1919
1920 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1921 if (inta & CSR_INT_BIT_SCD) {
1922 IWL_DEBUG_ISR(trans,
1923 "Scheduler finished to transmit the frame/frames.\n");
1924 isr_stats->sch++;
1925 }
1926
1927 /* Alive notification via Rx interrupt will do the real work */
1928 if (inta & CSR_INT_BIT_ALIVE) {
1929 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1930 isr_stats->alive++;
1931 if (trans->trans_cfg->gen2) {
1932 /*
1933 * We can restock, since firmware configured
1934 * the RFH
1935 */
1936 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1937 }
1938
1939 handled |= CSR_INT_BIT_ALIVE;
1940 }
1941
1942 /* Safely ignore these bits for debug checks below */
1943 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1944
1945 /* HW RF KILL switch toggled */
1946 if (inta & CSR_INT_BIT_RF_KILL) {
1947 iwl_pcie_handle_rfkill_irq(trans, true);
1948 handled |= CSR_INT_BIT_RF_KILL;
1949 }
1950
1951 /* Chip got too hot and stopped itself */
1952 if (inta & CSR_INT_BIT_CT_KILL) {
1953 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1954 isr_stats->ctkill++;
1955 handled |= CSR_INT_BIT_CT_KILL;
1956 }
1957
1958 /* Error detected by uCode */
1959 if (inta & CSR_INT_BIT_SW_ERR) {
1960 IWL_ERR(trans, "Microcode SW error detected. "
1961 " Restarting 0x%X.\n", inta);
1962 isr_stats->sw++;
1963 iwl_pcie_irq_handle_error(trans);
1964 handled |= CSR_INT_BIT_SW_ERR;
1965 }
1966
1967 /* uCode wakes up after power-down sleep */
1968 if (inta & CSR_INT_BIT_WAKEUP) {
1969 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1970 iwl_pcie_rxq_check_wrptr(trans);
1971 iwl_pcie_txq_check_wrptrs(trans);
1972
1973 isr_stats->wakeup++;
1974
1975 handled |= CSR_INT_BIT_WAKEUP;
1976 }
1977
1978 /* All uCode command responses, including Tx command responses,
1979 * Rx "responses" (frame-received notification), and other
1980 * notifications from uCode come through here*/
1981 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1982 CSR_INT_BIT_RX_PERIODIC)) {
1983 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1984 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1985 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1986 iwl_write32(trans, CSR_FH_INT_STATUS,
1987 CSR_FH_INT_RX_MASK);
1988 }
1989 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1990 handled |= CSR_INT_BIT_RX_PERIODIC;
1991 iwl_write32(trans,
1992 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1993 }
1994 /* Sending RX interrupt require many steps to be done in the
1995 * the device:
1996 * 1- write interrupt to current index in ICT table.
1997 * 2- dma RX frame.
1998 * 3- update RX shared data to indicate last write index.
1999 * 4- send interrupt.
2000 * This could lead to RX race, driver could receive RX interrupt
2001 * but the shared data changes does not reflect this;
2002 * periodic interrupt will detect any dangling Rx activity.
2003 */
2004
2005 /* Disable periodic interrupt; we use it as just a one-shot. */
2006 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2007 CSR_INT_PERIODIC_DIS);
2008
2009 /*
2010 * Enable periodic interrupt in 8 msec only if we received
2011 * real RX interrupt (instead of just periodic int), to catch
2012 * any dangling Rx interrupt. If it was just the periodic
2013 * interrupt, there was no dangling Rx activity, and no need
2014 * to extend the periodic interrupt; one-shot is enough.
2015 */
2016 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2017 iwl_write8(trans, CSR_INT_PERIODIC_REG,
2018 CSR_INT_PERIODIC_ENA);
2019
2020 isr_stats->rx++;
2021
2022 local_bh_disable();
2023 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2024 polling = true;
2025 __napi_schedule(&trans_pcie->rxq[0].napi);
2026 }
2027 local_bh_enable();
2028 }
2029
2030 /* This "Tx" DMA channel is used only for loading uCode */
2031 if (inta & CSR_INT_BIT_FH_TX) {
2032 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2033 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2034 isr_stats->tx++;
2035 handled |= CSR_INT_BIT_FH_TX;
2036 /* Wake up uCode load routine, now that load is complete */
2037 trans_pcie->ucode_write_complete = true;
2038 wake_up(&trans_pcie->ucode_write_waitq);
2039 }
2040
2041 if (inta & ~handled) {
2042 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2043 isr_stats->unhandled++;
2044 }
2045
2046 if (inta & ~(trans_pcie->inta_mask)) {
2047 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2048 inta & ~trans_pcie->inta_mask);
2049 }
2050
2051 if (!polling) {
2052 spin_lock_bh(&trans_pcie->irq_lock);
2053 /* only Re-enable all interrupt if disabled by irq */
2054 if (test_bit(STATUS_INT_ENABLED, &trans->status))
2055 _iwl_enable_interrupts(trans);
2056 /* we are loading the firmware, enable FH_TX interrupt only */
2057 else if (handled & CSR_INT_BIT_FH_TX)
2058 iwl_enable_fw_load_int(trans);
2059 /* Re-enable RF_KILL if it occurred */
2060 else if (handled & CSR_INT_BIT_RF_KILL)
2061 iwl_enable_rfkill_int(trans);
2062 /* Re-enable the ALIVE / Rx interrupt if it occurred */
2063 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2064 iwl_enable_fw_load_int_ctx_info(trans);
2065 spin_unlock_bh(&trans_pcie->irq_lock);
2066 }
2067
2068 out:
2069 lock_map_release(&trans->sync_cmd_lockdep_map);
2070 return IRQ_HANDLED;
2071 }
2072
2073 /******************************************************************************
2074 *
2075 * ICT functions
2076 *
2077 ******************************************************************************/
2078
2079 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)2080 void iwl_pcie_free_ict(struct iwl_trans *trans)
2081 {
2082 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2083
2084 if (trans_pcie->ict_tbl) {
2085 dma_free_coherent(trans->dev, ICT_SIZE,
2086 trans_pcie->ict_tbl,
2087 trans_pcie->ict_tbl_dma);
2088 trans_pcie->ict_tbl = NULL;
2089 trans_pcie->ict_tbl_dma = 0;
2090 }
2091 }
2092
2093 /*
2094 * allocate dram shared table, it is an aligned memory
2095 * block of ICT_SIZE.
2096 * also reset all data related to ICT table interrupt.
2097 */
iwl_pcie_alloc_ict(struct iwl_trans * trans)2098 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2099 {
2100 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2101
2102 trans_pcie->ict_tbl =
2103 dma_alloc_coherent(trans->dev, ICT_SIZE,
2104 &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2105 if (!trans_pcie->ict_tbl)
2106 return -ENOMEM;
2107
2108 /* just an API sanity check ... it is guaranteed to be aligned */
2109 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2110 iwl_pcie_free_ict(trans);
2111 return -EINVAL;
2112 }
2113
2114 return 0;
2115 }
2116
2117 /* Device is going up inform it about using ICT interrupt table,
2118 * also we need to tell the driver to start using ICT interrupt.
2119 */
iwl_pcie_reset_ict(struct iwl_trans * trans)2120 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2121 {
2122 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2123 u32 val;
2124
2125 if (!trans_pcie->ict_tbl)
2126 return;
2127
2128 spin_lock_bh(&trans_pcie->irq_lock);
2129 _iwl_disable_interrupts(trans);
2130
2131 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2132
2133 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2134
2135 val |= CSR_DRAM_INT_TBL_ENABLE |
2136 CSR_DRAM_INIT_TBL_WRAP_CHECK |
2137 CSR_DRAM_INIT_TBL_WRITE_POINTER;
2138
2139 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2140
2141 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2142 trans_pcie->use_ict = true;
2143 trans_pcie->ict_index = 0;
2144 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2145 _iwl_enable_interrupts(trans);
2146 spin_unlock_bh(&trans_pcie->irq_lock);
2147 }
2148
2149 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)2150 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2151 {
2152 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2153
2154 spin_lock_bh(&trans_pcie->irq_lock);
2155 trans_pcie->use_ict = false;
2156 spin_unlock_bh(&trans_pcie->irq_lock);
2157 }
2158
iwl_pcie_isr(int irq,void * data)2159 irqreturn_t iwl_pcie_isr(int irq, void *data)
2160 {
2161 struct iwl_trans *trans = data;
2162
2163 if (!trans)
2164 return IRQ_NONE;
2165
2166 /* Disable (but don't clear!) interrupts here to avoid
2167 * back-to-back ISRs and sporadic interrupts from our NIC.
2168 * If we have something to service, the tasklet will re-enable ints.
2169 * If we *don't* have something, we'll re-enable before leaving here.
2170 */
2171 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2172
2173 return IRQ_WAKE_THREAD;
2174 }
2175
iwl_pcie_msix_isr(int irq,void * data)2176 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2177 {
2178 return IRQ_WAKE_THREAD;
2179 }
2180
iwl_pcie_irq_msix_handler(int irq,void * dev_id)2181 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2182 {
2183 struct msix_entry *entry = dev_id;
2184 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2185 struct iwl_trans *trans = trans_pcie->trans;
2186 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2187 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2188 u32 inta_fh, inta_hw;
2189 bool polling = false;
2190
2191 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2192 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2193
2194 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2195 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2196
2197 lock_map_acquire(&trans->sync_cmd_lockdep_map);
2198
2199 spin_lock_bh(&trans_pcie->irq_lock);
2200 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2201 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2202 /*
2203 * Clear causes registers to avoid being handling the same cause.
2204 */
2205 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2206 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2207 spin_unlock_bh(&trans_pcie->irq_lock);
2208
2209 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2210
2211 if (unlikely(!(inta_fh | inta_hw))) {
2212 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2213 lock_map_release(&trans->sync_cmd_lockdep_map);
2214 return IRQ_NONE;
2215 }
2216
2217 if (iwl_have_debug_level(IWL_DL_ISR)) {
2218 IWL_DEBUG_ISR(trans,
2219 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2220 entry->entry, inta_fh, trans_pcie->fh_mask,
2221 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2222 if (inta_fh & ~trans_pcie->fh_mask)
2223 IWL_DEBUG_ISR(trans,
2224 "We got a masked interrupt (0x%08x)\n",
2225 inta_fh & ~trans_pcie->fh_mask);
2226 }
2227
2228 inta_fh &= trans_pcie->fh_mask;
2229
2230 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2231 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2232 local_bh_disable();
2233 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2234 polling = true;
2235 __napi_schedule(&trans_pcie->rxq[0].napi);
2236 }
2237 local_bh_enable();
2238 }
2239
2240 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2241 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2242 local_bh_disable();
2243 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2244 polling = true;
2245 __napi_schedule(&trans_pcie->rxq[1].napi);
2246 }
2247 local_bh_enable();
2248 }
2249
2250 /* This "Tx" DMA channel is used only for loading uCode */
2251 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2252 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2253 isr_stats->tx++;
2254 /*
2255 * Wake up uCode load routine,
2256 * now that load is complete
2257 */
2258 trans_pcie->ucode_write_complete = true;
2259 wake_up(&trans_pcie->ucode_write_waitq);
2260 }
2261
2262 /* Error detected by uCode */
2263 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2264 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2265 IWL_ERR(trans,
2266 "Microcode SW error detected. Restarting 0x%X.\n",
2267 inta_fh);
2268 isr_stats->sw++;
2269 /* during FW reset flow report errors from there */
2270 if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2271 trans_pcie->fw_reset_state = FW_RESET_ERROR;
2272 wake_up(&trans_pcie->fw_reset_waitq);
2273 } else {
2274 iwl_pcie_irq_handle_error(trans);
2275 }
2276 }
2277
2278 /* After checking FH register check HW register */
2279 if (iwl_have_debug_level(IWL_DL_ISR)) {
2280 IWL_DEBUG_ISR(trans,
2281 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2282 entry->entry, inta_hw, trans_pcie->hw_mask,
2283 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2284 if (inta_hw & ~trans_pcie->hw_mask)
2285 IWL_DEBUG_ISR(trans,
2286 "We got a masked interrupt 0x%08x\n",
2287 inta_hw & ~trans_pcie->hw_mask);
2288 }
2289
2290 inta_hw &= trans_pcie->hw_mask;
2291
2292 /* Alive notification via Rx interrupt will do the real work */
2293 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2294 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2295 isr_stats->alive++;
2296 if (trans->trans_cfg->gen2) {
2297 /* We can restock, since firmware configured the RFH */
2298 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2299 }
2300 }
2301
2302 /*
2303 * In some rare cases when the HW is in a bad state, we may
2304 * get this interrupt too early, when prph_info is still NULL.
2305 * So make sure that it's not NULL to prevent crashing.
2306 */
2307 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2308 u32 sleep_notif =
2309 le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2310 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2311 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2312 IWL_DEBUG_ISR(trans,
2313 "Sx interrupt: sleep notification = 0x%x\n",
2314 sleep_notif);
2315 trans_pcie->sx_complete = true;
2316 wake_up(&trans_pcie->sx_waitq);
2317 } else {
2318 /* uCode wakes up after power-down sleep */
2319 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2320 iwl_pcie_rxq_check_wrptr(trans);
2321 iwl_pcie_txq_check_wrptrs(trans);
2322
2323 isr_stats->wakeup++;
2324 }
2325 }
2326
2327 /* Chip got too hot and stopped itself */
2328 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2329 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2330 isr_stats->ctkill++;
2331 }
2332
2333 /* HW RF KILL switch toggled */
2334 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2335 iwl_pcie_handle_rfkill_irq(trans, true);
2336
2337 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2338 IWL_ERR(trans,
2339 "Hardware error detected. Restarting.\n");
2340
2341 isr_stats->hw++;
2342 trans->dbg.hw_error = true;
2343 iwl_pcie_irq_handle_error(trans);
2344 }
2345
2346 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2347 IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2348 trans_pcie->fw_reset_state = FW_RESET_OK;
2349 wake_up(&trans_pcie->fw_reset_waitq);
2350 }
2351
2352 if (!polling)
2353 iwl_pcie_clear_irq(trans, entry->entry);
2354
2355 lock_map_release(&trans->sync_cmd_lockdep_map);
2356
2357 return IRQ_HANDLED;
2358 }
2359