• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mm_types.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/mm.h>
28 #include <linux/uaccess.h>
29 #include <linux/mman.h>
30 #include <linux/memory.h>
31 #include "kfd_priv.h"
32 #include "kfd_events.h"
33 #include "kfd_iommu.h"
34 #include <linux/device.h>
35 
36 /*
37  * Wrapper around wait_queue_entry_t
38  */
39 struct kfd_event_waiter {
40 	wait_queue_entry_t wait;
41 	struct kfd_event *event; /* Event to wait for */
42 	bool activated;		 /* Becomes true when event is signaled */
43 };
44 
45 /*
46  * Each signal event needs a 64-bit signal slot where the signaler will write
47  * a 1 before sending an interrupt. (This is needed because some interrupts
48  * do not contain enough spare data bits to identify an event.)
49  * We get whole pages and map them to the process VA.
50  * Individual signal events use their event_id as slot index.
51  */
52 struct kfd_signal_page {
53 	uint64_t *kernel_address;
54 	uint64_t __user *user_address;
55 	bool need_to_free_pages;
56 };
57 
58 
page_slots(struct kfd_signal_page * page)59 static uint64_t *page_slots(struct kfd_signal_page *page)
60 {
61 	return page->kernel_address;
62 }
63 
allocate_signal_page(struct kfd_process * p)64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
65 {
66 	void *backing_store;
67 	struct kfd_signal_page *page;
68 
69 	page = kzalloc(sizeof(*page), GFP_KERNEL);
70 	if (!page)
71 		return NULL;
72 
73 	backing_store = (void *) __get_free_pages(GFP_KERNEL,
74 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
75 	if (!backing_store)
76 		goto fail_alloc_signal_store;
77 
78 	/* Initialize all events to unsignaled */
79 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
80 	       KFD_SIGNAL_EVENT_LIMIT * 8);
81 
82 	page->kernel_address = backing_store;
83 	page->need_to_free_pages = true;
84 	pr_debug("Allocated new event signal page at %p, for process %p\n",
85 			page, p);
86 
87 	return page;
88 
89 fail_alloc_signal_store:
90 	kfree(page);
91 	return NULL;
92 }
93 
allocate_event_notification_slot(struct kfd_process * p,struct kfd_event * ev)94 static int allocate_event_notification_slot(struct kfd_process *p,
95 					    struct kfd_event *ev)
96 {
97 	int id;
98 
99 	if (!p->signal_page) {
100 		p->signal_page = allocate_signal_page(p);
101 		if (!p->signal_page)
102 			return -ENOMEM;
103 		/* Oldest user mode expects 256 event slots */
104 		p->signal_mapped_size = 256*8;
105 	}
106 
107 	/*
108 	 * Compatibility with old user mode: Only use signal slots
109 	 * user mode has mapped, may be less than
110 	 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
111 	 * of the event limit without breaking user mode.
112 	 */
113 	id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
114 		       GFP_KERNEL);
115 	if (id < 0)
116 		return id;
117 
118 	ev->event_id = id;
119 	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
120 
121 	return 0;
122 }
123 
124 /*
125  * Assumes that p->event_mutex is held and of course that p is not going
126  * away (current or locked).
127  */
lookup_event_by_id(struct kfd_process * p,uint32_t id)128 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
129 {
130 	return idr_find(&p->event_idr, id);
131 }
132 
133 /**
134  * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
135  * @p:     Pointer to struct kfd_process
136  * @id:    ID to look up
137  * @bits:  Number of valid bits in @id
138  *
139  * Finds the first signaled event with a matching partial ID. If no
140  * matching signaled event is found, returns NULL. In that case the
141  * caller should assume that the partial ID is invalid and do an
142  * exhaustive search of all siglaned events.
143  *
144  * If multiple events with the same partial ID signal at the same
145  * time, they will be found one interrupt at a time, not necessarily
146  * in the same order the interrupts occurred. As long as the number of
147  * interrupts is correct, all signaled events will be seen by the
148  * driver.
149  */
lookup_signaled_event_by_partial_id(struct kfd_process * p,uint32_t id,uint32_t bits)150 static struct kfd_event *lookup_signaled_event_by_partial_id(
151 	struct kfd_process *p, uint32_t id, uint32_t bits)
152 {
153 	struct kfd_event *ev;
154 
155 	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
156 		return NULL;
157 
158 	/* Fast path for the common case that @id is not a partial ID
159 	 * and we only need a single lookup.
160 	 */
161 	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
162 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
163 			return NULL;
164 
165 		return idr_find(&p->event_idr, id);
166 	}
167 
168 	/* General case for partial IDs: Iterate over all matching IDs
169 	 * and find the first one that has signaled.
170 	 */
171 	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
172 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
173 			continue;
174 
175 		ev = idr_find(&p->event_idr, id);
176 	}
177 
178 	return ev;
179 }
180 
create_signal_event(struct file * devkfd,struct kfd_process * p,struct kfd_event * ev)181 static int create_signal_event(struct file *devkfd,
182 				struct kfd_process *p,
183 				struct kfd_event *ev)
184 {
185 	int ret;
186 
187 	if (p->signal_mapped_size &&
188 	    p->signal_event_count == p->signal_mapped_size / 8) {
189 		if (!p->signal_event_limit_reached) {
190 			pr_debug("Signal event wasn't created because limit was reached\n");
191 			p->signal_event_limit_reached = true;
192 		}
193 		return -ENOSPC;
194 	}
195 
196 	ret = allocate_event_notification_slot(p, ev);
197 	if (ret) {
198 		pr_warn("Signal event wasn't created because out of kernel memory\n");
199 		return ret;
200 	}
201 
202 	p->signal_event_count++;
203 
204 	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
205 	pr_debug("Signal event number %zu created with id %d, address %p\n",
206 			p->signal_event_count, ev->event_id,
207 			ev->user_signal_address);
208 
209 	return 0;
210 }
211 
create_other_event(struct kfd_process * p,struct kfd_event * ev)212 static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
213 {
214 	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
215 	 * intentional integer overflow to -1 without a compiler
216 	 * warning. idr_alloc treats a negative value as "maximum
217 	 * signed integer".
218 	 */
219 	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
220 			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
221 			   GFP_KERNEL);
222 
223 	if (id < 0)
224 		return id;
225 	ev->event_id = id;
226 
227 	return 0;
228 }
229 
kfd_event_init_process(struct kfd_process * p)230 void kfd_event_init_process(struct kfd_process *p)
231 {
232 	mutex_init(&p->event_mutex);
233 	idr_init(&p->event_idr);
234 	p->signal_page = NULL;
235 	p->signal_event_count = 0;
236 }
237 
destroy_event(struct kfd_process * p,struct kfd_event * ev)238 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
239 {
240 	struct kfd_event_waiter *waiter;
241 
242 	/* Wake up pending waiters. They will return failure */
243 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
244 		waiter->event = NULL;
245 	wake_up_all(&ev->wq);
246 
247 	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
248 	    ev->type == KFD_EVENT_TYPE_DEBUG)
249 		p->signal_event_count--;
250 
251 	idr_remove(&p->event_idr, ev->event_id);
252 	kfree(ev);
253 }
254 
destroy_events(struct kfd_process * p)255 static void destroy_events(struct kfd_process *p)
256 {
257 	struct kfd_event *ev;
258 	uint32_t id;
259 
260 	idr_for_each_entry(&p->event_idr, ev, id)
261 		destroy_event(p, ev);
262 	idr_destroy(&p->event_idr);
263 }
264 
265 /*
266  * We assume that the process is being destroyed and there is no need to
267  * unmap the pages or keep bookkeeping data in order.
268  */
shutdown_signal_page(struct kfd_process * p)269 static void shutdown_signal_page(struct kfd_process *p)
270 {
271 	struct kfd_signal_page *page = p->signal_page;
272 
273 	if (page) {
274 		if (page->need_to_free_pages)
275 			free_pages((unsigned long)page->kernel_address,
276 				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
277 		kfree(page);
278 	}
279 }
280 
kfd_event_free_process(struct kfd_process * p)281 void kfd_event_free_process(struct kfd_process *p)
282 {
283 	destroy_events(p);
284 	shutdown_signal_page(p);
285 }
286 
event_can_be_gpu_signaled(const struct kfd_event * ev)287 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
288 {
289 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
290 					ev->type == KFD_EVENT_TYPE_DEBUG;
291 }
292 
event_can_be_cpu_signaled(const struct kfd_event * ev)293 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
294 {
295 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
296 }
297 
kfd_event_page_set(struct kfd_process * p,void * kernel_address,uint64_t size)298 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
299 		       uint64_t size)
300 {
301 	struct kfd_signal_page *page;
302 
303 	if (p->signal_page)
304 		return -EBUSY;
305 
306 	page = kzalloc(sizeof(*page), GFP_KERNEL);
307 	if (!page)
308 		return -ENOMEM;
309 
310 	/* Initialize all events to unsignaled */
311 	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
312 	       KFD_SIGNAL_EVENT_LIMIT * 8);
313 
314 	page->kernel_address = kernel_address;
315 
316 	p->signal_page = page;
317 	p->signal_mapped_size = size;
318 
319 	return 0;
320 }
321 
kfd_event_create(struct file * devkfd,struct kfd_process * p,uint32_t event_type,bool auto_reset,uint32_t node_id,uint32_t * event_id,uint32_t * event_trigger_data,uint64_t * event_page_offset,uint32_t * event_slot_index)322 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
323 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
324 		     uint32_t *event_id, uint32_t *event_trigger_data,
325 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
326 {
327 	int ret = 0;
328 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
329 
330 	if (!ev)
331 		return -ENOMEM;
332 
333 	ev->type = event_type;
334 	ev->auto_reset = auto_reset;
335 	ev->signaled = false;
336 
337 	init_waitqueue_head(&ev->wq);
338 
339 	*event_page_offset = 0;
340 
341 	mutex_lock(&p->event_mutex);
342 
343 	switch (event_type) {
344 	case KFD_EVENT_TYPE_SIGNAL:
345 	case KFD_EVENT_TYPE_DEBUG:
346 		ret = create_signal_event(devkfd, p, ev);
347 		if (!ret) {
348 			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
349 			*event_slot_index = ev->event_id;
350 		}
351 		break;
352 	default:
353 		ret = create_other_event(p, ev);
354 		break;
355 	}
356 
357 	if (!ret) {
358 		*event_id = ev->event_id;
359 		*event_trigger_data = ev->event_id;
360 	} else {
361 		kfree(ev);
362 	}
363 
364 	mutex_unlock(&p->event_mutex);
365 
366 	return ret;
367 }
368 
369 /* Assumes that p is current. */
kfd_event_destroy(struct kfd_process * p,uint32_t event_id)370 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
371 {
372 	struct kfd_event *ev;
373 	int ret = 0;
374 
375 	mutex_lock(&p->event_mutex);
376 
377 	ev = lookup_event_by_id(p, event_id);
378 
379 	if (ev)
380 		destroy_event(p, ev);
381 	else
382 		ret = -EINVAL;
383 
384 	mutex_unlock(&p->event_mutex);
385 	return ret;
386 }
387 
set_event(struct kfd_event * ev)388 static void set_event(struct kfd_event *ev)
389 {
390 	struct kfd_event_waiter *waiter;
391 
392 	/* Auto reset if the list is non-empty and we're waking
393 	 * someone. waitqueue_active is safe here because we're
394 	 * protected by the p->event_mutex, which is also held when
395 	 * updating the wait queues in kfd_wait_on_events.
396 	 */
397 	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
398 
399 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
400 		waiter->activated = true;
401 
402 	wake_up_all(&ev->wq);
403 }
404 
405 /* Assumes that p is current. */
kfd_set_event(struct kfd_process * p,uint32_t event_id)406 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
407 {
408 	int ret = 0;
409 	struct kfd_event *ev;
410 
411 	mutex_lock(&p->event_mutex);
412 
413 	ev = lookup_event_by_id(p, event_id);
414 
415 	if (ev && event_can_be_cpu_signaled(ev))
416 		set_event(ev);
417 	else
418 		ret = -EINVAL;
419 
420 	mutex_unlock(&p->event_mutex);
421 	return ret;
422 }
423 
reset_event(struct kfd_event * ev)424 static void reset_event(struct kfd_event *ev)
425 {
426 	ev->signaled = false;
427 }
428 
429 /* Assumes that p is current. */
kfd_reset_event(struct kfd_process * p,uint32_t event_id)430 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
431 {
432 	int ret = 0;
433 	struct kfd_event *ev;
434 
435 	mutex_lock(&p->event_mutex);
436 
437 	ev = lookup_event_by_id(p, event_id);
438 
439 	if (ev && event_can_be_cpu_signaled(ev))
440 		reset_event(ev);
441 	else
442 		ret = -EINVAL;
443 
444 	mutex_unlock(&p->event_mutex);
445 	return ret;
446 
447 }
448 
acknowledge_signal(struct kfd_process * p,struct kfd_event * ev)449 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
450 {
451 	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
452 }
453 
set_event_from_interrupt(struct kfd_process * p,struct kfd_event * ev)454 static void set_event_from_interrupt(struct kfd_process *p,
455 					struct kfd_event *ev)
456 {
457 	if (ev && event_can_be_gpu_signaled(ev)) {
458 		acknowledge_signal(p, ev);
459 		set_event(ev);
460 	}
461 }
462 
kfd_signal_event_interrupt(u32 pasid,uint32_t partial_id,uint32_t valid_id_bits)463 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
464 				uint32_t valid_id_bits)
465 {
466 	struct kfd_event *ev = NULL;
467 
468 	/*
469 	 * Because we are called from arbitrary context (workqueue) as opposed
470 	 * to process context, kfd_process could attempt to exit while we are
471 	 * running so the lookup function increments the process ref count.
472 	 */
473 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
474 
475 	if (!p)
476 		return; /* Presumably process exited. */
477 
478 	mutex_lock(&p->event_mutex);
479 
480 	if (valid_id_bits)
481 		ev = lookup_signaled_event_by_partial_id(p, partial_id,
482 							 valid_id_bits);
483 	if (ev) {
484 		set_event_from_interrupt(p, ev);
485 	} else if (p->signal_page) {
486 		/*
487 		 * Partial ID lookup failed. Assume that the event ID
488 		 * in the interrupt payload was invalid and do an
489 		 * exhaustive search of signaled events.
490 		 */
491 		uint64_t *slots = page_slots(p->signal_page);
492 		uint32_t id;
493 
494 		if (valid_id_bits)
495 			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
496 					     partial_id, valid_id_bits);
497 
498 		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
499 			/* With relatively few events, it's faster to
500 			 * iterate over the event IDR
501 			 */
502 			idr_for_each_entry(&p->event_idr, ev, id) {
503 				if (id >= KFD_SIGNAL_EVENT_LIMIT)
504 					break;
505 
506 				if (slots[id] != UNSIGNALED_EVENT_SLOT)
507 					set_event_from_interrupt(p, ev);
508 			}
509 		} else {
510 			/* With relatively many events, it's faster to
511 			 * iterate over the signal slots and lookup
512 			 * only signaled events from the IDR.
513 			 */
514 			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
515 				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
516 					ev = lookup_event_by_id(p, id);
517 					set_event_from_interrupt(p, ev);
518 				}
519 		}
520 	}
521 
522 	mutex_unlock(&p->event_mutex);
523 	kfd_unref_process(p);
524 }
525 
alloc_event_waiters(uint32_t num_events)526 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
527 {
528 	struct kfd_event_waiter *event_waiters;
529 	uint32_t i;
530 
531 	event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
532 				GFP_KERNEL);
533 	if (!event_waiters)
534 		return NULL;
535 
536 	for (i = 0; i < num_events; i++)
537 		init_wait(&event_waiters[i].wait);
538 
539 	return event_waiters;
540 }
541 
init_event_waiter_get_status(struct kfd_process * p,struct kfd_event_waiter * waiter,uint32_t event_id)542 static int init_event_waiter_get_status(struct kfd_process *p,
543 		struct kfd_event_waiter *waiter,
544 		uint32_t event_id)
545 {
546 	struct kfd_event *ev = lookup_event_by_id(p, event_id);
547 
548 	if (!ev)
549 		return -EINVAL;
550 
551 	waiter->event = ev;
552 	waiter->activated = ev->signaled;
553 	ev->signaled = ev->signaled && !ev->auto_reset;
554 
555 	return 0;
556 }
557 
init_event_waiter_add_to_waitlist(struct kfd_event_waiter * waiter)558 static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
559 {
560 	struct kfd_event *ev = waiter->event;
561 
562 	/* Only add to the wait list if we actually need to
563 	 * wait on this event.
564 	 */
565 	if (!waiter->activated)
566 		add_wait_queue(&ev->wq, &waiter->wait);
567 }
568 
569 /* test_event_condition - Test condition of events being waited for
570  * @all:           Return completion only if all events have signaled
571  * @num_events:    Number of events to wait for
572  * @event_waiters: Array of event waiters, one per event
573  *
574  * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
575  * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
576  * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
577  * the events have been destroyed.
578  */
test_event_condition(bool all,uint32_t num_events,struct kfd_event_waiter * event_waiters)579 static uint32_t test_event_condition(bool all, uint32_t num_events,
580 				struct kfd_event_waiter *event_waiters)
581 {
582 	uint32_t i;
583 	uint32_t activated_count = 0;
584 
585 	for (i = 0; i < num_events; i++) {
586 		if (!event_waiters[i].event)
587 			return KFD_IOC_WAIT_RESULT_FAIL;
588 
589 		if (event_waiters[i].activated) {
590 			if (!all)
591 				return KFD_IOC_WAIT_RESULT_COMPLETE;
592 
593 			activated_count++;
594 		}
595 	}
596 
597 	return activated_count == num_events ?
598 		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
599 }
600 
601 /*
602  * Copy event specific data, if defined.
603  * Currently only memory exception events have additional data to copy to user
604  */
copy_signaled_event_data(uint32_t num_events,struct kfd_event_waiter * event_waiters,struct kfd_event_data __user * data)605 static int copy_signaled_event_data(uint32_t num_events,
606 		struct kfd_event_waiter *event_waiters,
607 		struct kfd_event_data __user *data)
608 {
609 	struct kfd_hsa_memory_exception_data *src;
610 	struct kfd_hsa_memory_exception_data __user *dst;
611 	struct kfd_event_waiter *waiter;
612 	struct kfd_event *event;
613 	uint32_t i;
614 
615 	for (i = 0; i < num_events; i++) {
616 		waiter = &event_waiters[i];
617 		event = waiter->event;
618 		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
619 			dst = &data[i].memory_exception_data;
620 			src = &event->memory_exception_data;
621 			if (copy_to_user(dst, src,
622 				sizeof(struct kfd_hsa_memory_exception_data)))
623 				return -EFAULT;
624 		}
625 	}
626 
627 	return 0;
628 
629 }
630 
631 
632 
user_timeout_to_jiffies(uint32_t user_timeout_ms)633 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
634 {
635 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
636 		return 0;
637 
638 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
639 		return MAX_SCHEDULE_TIMEOUT;
640 
641 	/*
642 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
643 	 * but we consider them finite.
644 	 * This hack is wrong, but nobody is likely to notice.
645 	 */
646 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
647 
648 	return msecs_to_jiffies(user_timeout_ms) + 1;
649 }
650 
free_waiters(uint32_t num_events,struct kfd_event_waiter * waiters)651 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
652 {
653 	uint32_t i;
654 
655 	for (i = 0; i < num_events; i++)
656 		if (waiters[i].event)
657 			remove_wait_queue(&waiters[i].event->wq,
658 					  &waiters[i].wait);
659 
660 	kfree(waiters);
661 }
662 
kfd_wait_on_events(struct kfd_process * p,uint32_t num_events,void __user * data,bool all,uint32_t user_timeout_ms,uint32_t * wait_result)663 int kfd_wait_on_events(struct kfd_process *p,
664 		       uint32_t num_events, void __user *data,
665 		       bool all, uint32_t user_timeout_ms,
666 		       uint32_t *wait_result)
667 {
668 	struct kfd_event_data __user *events =
669 			(struct kfd_event_data __user *) data;
670 	uint32_t i;
671 	int ret = 0;
672 
673 	struct kfd_event_waiter *event_waiters = NULL;
674 	long timeout = user_timeout_to_jiffies(user_timeout_ms);
675 
676 	event_waiters = alloc_event_waiters(num_events);
677 	if (!event_waiters) {
678 		ret = -ENOMEM;
679 		goto out;
680 	}
681 
682 	mutex_lock(&p->event_mutex);
683 
684 	for (i = 0; i < num_events; i++) {
685 		struct kfd_event_data event_data;
686 
687 		if (copy_from_user(&event_data, &events[i],
688 				sizeof(struct kfd_event_data))) {
689 			ret = -EFAULT;
690 			goto out_unlock;
691 		}
692 
693 		ret = init_event_waiter_get_status(p, &event_waiters[i],
694 				event_data.event_id);
695 		if (ret)
696 			goto out_unlock;
697 	}
698 
699 	/* Check condition once. */
700 	*wait_result = test_event_condition(all, num_events, event_waiters);
701 	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
702 		ret = copy_signaled_event_data(num_events,
703 					       event_waiters, events);
704 		goto out_unlock;
705 	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
706 		/* This should not happen. Events shouldn't be
707 		 * destroyed while we're holding the event_mutex
708 		 */
709 		goto out_unlock;
710 	}
711 
712 	/* Add to wait lists if we need to wait. */
713 	for (i = 0; i < num_events; i++)
714 		init_event_waiter_add_to_waitlist(&event_waiters[i]);
715 
716 	mutex_unlock(&p->event_mutex);
717 
718 	while (true) {
719 		if (fatal_signal_pending(current)) {
720 			ret = -EINTR;
721 			break;
722 		}
723 
724 		if (signal_pending(current)) {
725 			/*
726 			 * This is wrong when a nonzero, non-infinite timeout
727 			 * is specified. We need to use
728 			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
729 			 * contains a union with data for each user and it's
730 			 * in generic kernel code that I don't want to
731 			 * touch yet.
732 			 */
733 			ret = -ERESTARTSYS;
734 			break;
735 		}
736 
737 		/* Set task state to interruptible sleep before
738 		 * checking wake-up conditions. A concurrent wake-up
739 		 * will put the task back into runnable state. In that
740 		 * case schedule_timeout will not put the task to
741 		 * sleep and we'll get a chance to re-check the
742 		 * updated conditions almost immediately. Otherwise,
743 		 * this race condition would lead to a soft hang or a
744 		 * very long sleep.
745 		 */
746 		set_current_state(TASK_INTERRUPTIBLE);
747 
748 		*wait_result = test_event_condition(all, num_events,
749 						    event_waiters);
750 		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
751 			break;
752 
753 		if (timeout <= 0)
754 			break;
755 
756 		timeout = schedule_timeout(timeout);
757 	}
758 	__set_current_state(TASK_RUNNING);
759 
760 	/* copy_signaled_event_data may sleep. So this has to happen
761 	 * after the task state is set back to RUNNING.
762 	 */
763 	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
764 		ret = copy_signaled_event_data(num_events,
765 					       event_waiters, events);
766 
767 	mutex_lock(&p->event_mutex);
768 out_unlock:
769 	free_waiters(num_events, event_waiters);
770 	mutex_unlock(&p->event_mutex);
771 out:
772 	if (ret)
773 		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
774 	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
775 		ret = -EIO;
776 
777 	return ret;
778 }
779 
kfd_event_mmap(struct kfd_process * p,struct vm_area_struct * vma)780 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
781 {
782 	unsigned long pfn;
783 	struct kfd_signal_page *page;
784 	int ret;
785 
786 	/* check required size doesn't exceed the allocated size */
787 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
788 			get_order(vma->vm_end - vma->vm_start)) {
789 		pr_err("Event page mmap requested illegal size\n");
790 		return -EINVAL;
791 	}
792 
793 	page = p->signal_page;
794 	if (!page) {
795 		/* Probably KFD bug, but mmap is user-accessible. */
796 		pr_debug("Signal page could not be found\n");
797 		return -EINVAL;
798 	}
799 
800 	pfn = __pa(page->kernel_address);
801 	pfn >>= PAGE_SHIFT;
802 
803 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
804 		       | VM_DONTDUMP | VM_PFNMAP;
805 
806 	pr_debug("Mapping signal page\n");
807 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
808 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
809 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
810 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
811 	pr_debug("     size                == 0x%08lX\n",
812 			vma->vm_end - vma->vm_start);
813 
814 	page->user_address = (uint64_t __user *)vma->vm_start;
815 
816 	/* mapping the page to user process */
817 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
818 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
819 	if (!ret)
820 		p->signal_mapped_size = vma->vm_end - vma->vm_start;
821 
822 	return ret;
823 }
824 
825 /*
826  * Assumes that p->event_mutex is held and of course
827  * that p is not going away (current or locked).
828  */
lookup_events_by_type_and_signal(struct kfd_process * p,int type,void * event_data)829 static void lookup_events_by_type_and_signal(struct kfd_process *p,
830 		int type, void *event_data)
831 {
832 	struct kfd_hsa_memory_exception_data *ev_data;
833 	struct kfd_event *ev;
834 	uint32_t id;
835 	bool send_signal = true;
836 
837 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
838 
839 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
840 	idr_for_each_entry_continue(&p->event_idr, ev, id)
841 		if (ev->type == type) {
842 			send_signal = false;
843 			dev_dbg(kfd_device,
844 					"Event found: id %X type %d",
845 					ev->event_id, ev->type);
846 			set_event(ev);
847 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
848 				ev->memory_exception_data = *ev_data;
849 		}
850 
851 	if (type == KFD_EVENT_TYPE_MEMORY) {
852 		dev_warn(kfd_device,
853 			"Sending SIGSEGV to process %d (pasid 0x%x)",
854 				p->lead_thread->pid, p->pasid);
855 		send_sig(SIGSEGV, p->lead_thread, 0);
856 	}
857 
858 	/* Send SIGTERM no event of type "type" has been found*/
859 	if (send_signal) {
860 		if (send_sigterm) {
861 			dev_warn(kfd_device,
862 				"Sending SIGTERM to process %d (pasid 0x%x)",
863 					p->lead_thread->pid, p->pasid);
864 			send_sig(SIGTERM, p->lead_thread, 0);
865 		} else {
866 			dev_err(kfd_device,
867 				"Process %d (pasid 0x%x) got unhandled exception",
868 				p->lead_thread->pid, p->pasid);
869 		}
870 	}
871 }
872 
873 #ifdef KFD_SUPPORT_IOMMU_V2
kfd_signal_iommu_event(struct kfd_dev * dev,u32 pasid,unsigned long address,bool is_write_requested,bool is_execute_requested)874 void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
875 		unsigned long address, bool is_write_requested,
876 		bool is_execute_requested)
877 {
878 	struct kfd_hsa_memory_exception_data memory_exception_data;
879 	struct vm_area_struct *vma;
880 
881 	/*
882 	 * Because we are called from arbitrary context (workqueue) as opposed
883 	 * to process context, kfd_process could attempt to exit while we are
884 	 * running so the lookup function increments the process ref count.
885 	 */
886 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
887 	struct mm_struct *mm;
888 
889 	if (!p)
890 		return; /* Presumably process exited. */
891 
892 	/* Take a safe reference to the mm_struct, which may otherwise
893 	 * disappear even while the kfd_process is still referenced.
894 	 */
895 	mm = get_task_mm(p->lead_thread);
896 	if (!mm) {
897 		kfd_unref_process(p);
898 		return; /* Process is exiting */
899 	}
900 
901 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
902 
903 	mmap_read_lock(mm);
904 	vma = find_vma(mm, address);
905 
906 	memory_exception_data.gpu_id = dev->id;
907 	memory_exception_data.va = address;
908 	/* Set failure reason */
909 	memory_exception_data.failure.NotPresent = 1;
910 	memory_exception_data.failure.NoExecute = 0;
911 	memory_exception_data.failure.ReadOnly = 0;
912 	if (vma && address >= vma->vm_start) {
913 		memory_exception_data.failure.NotPresent = 0;
914 
915 		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
916 			memory_exception_data.failure.ReadOnly = 1;
917 		else
918 			memory_exception_data.failure.ReadOnly = 0;
919 
920 		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
921 			memory_exception_data.failure.NoExecute = 1;
922 		else
923 			memory_exception_data.failure.NoExecute = 0;
924 	}
925 
926 	mmap_read_unlock(mm);
927 	mmput(mm);
928 
929 	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
930 			memory_exception_data.failure.NotPresent,
931 			memory_exception_data.failure.NoExecute,
932 			memory_exception_data.failure.ReadOnly);
933 
934 	/* Workaround on Raven to not kill the process when memory is freed
935 	 * before IOMMU is able to finish processing all the excessive PPRs
936 	 */
937 	if (dev->device_info->asic_family != CHIP_RAVEN &&
938 	    dev->device_info->asic_family != CHIP_RENOIR) {
939 		mutex_lock(&p->event_mutex);
940 
941 		/* Lookup events by type and signal them */
942 		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
943 				&memory_exception_data);
944 
945 		mutex_unlock(&p->event_mutex);
946 	}
947 
948 	kfd_unref_process(p);
949 }
950 #endif /* KFD_SUPPORT_IOMMU_V2 */
951 
kfd_signal_hw_exception_event(u32 pasid)952 void kfd_signal_hw_exception_event(u32 pasid)
953 {
954 	/*
955 	 * Because we are called from arbitrary context (workqueue) as opposed
956 	 * to process context, kfd_process could attempt to exit while we are
957 	 * running so the lookup function increments the process ref count.
958 	 */
959 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
960 
961 	if (!p)
962 		return; /* Presumably process exited. */
963 
964 	mutex_lock(&p->event_mutex);
965 
966 	/* Lookup events by type and signal them */
967 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
968 
969 	mutex_unlock(&p->event_mutex);
970 	kfd_unref_process(p);
971 }
972 
kfd_signal_vm_fault_event(struct kfd_dev * dev,u32 pasid,struct kfd_vm_fault_info * info)973 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
974 				struct kfd_vm_fault_info *info)
975 {
976 	struct kfd_event *ev;
977 	uint32_t id;
978 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
979 	struct kfd_hsa_memory_exception_data memory_exception_data;
980 
981 	if (!p)
982 		return; /* Presumably process exited. */
983 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
984 	memory_exception_data.gpu_id = dev->id;
985 	memory_exception_data.failure.imprecise = true;
986 	/* Set failure reason */
987 	if (info) {
988 		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
989 		memory_exception_data.failure.NotPresent =
990 			info->prot_valid ? 1 : 0;
991 		memory_exception_data.failure.NoExecute =
992 			info->prot_exec ? 1 : 0;
993 		memory_exception_data.failure.ReadOnly =
994 			info->prot_write ? 1 : 0;
995 		memory_exception_data.failure.imprecise = 0;
996 	}
997 	mutex_lock(&p->event_mutex);
998 
999 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1000 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1001 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1002 			ev->memory_exception_data = memory_exception_data;
1003 			set_event(ev);
1004 		}
1005 
1006 	mutex_unlock(&p->event_mutex);
1007 	kfd_unref_process(p);
1008 }
1009 
kfd_signal_reset_event(struct kfd_dev * dev)1010 void kfd_signal_reset_event(struct kfd_dev *dev)
1011 {
1012 	struct kfd_hsa_hw_exception_data hw_exception_data;
1013 	struct kfd_hsa_memory_exception_data memory_exception_data;
1014 	struct kfd_process *p;
1015 	struct kfd_event *ev;
1016 	unsigned int temp;
1017 	uint32_t id, idx;
1018 	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1019 			KFD_HW_EXCEPTION_ECC :
1020 			KFD_HW_EXCEPTION_GPU_HANG;
1021 
1022 	/* Whole gpu reset caused by GPU hang and memory is lost */
1023 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1024 	hw_exception_data.gpu_id = dev->id;
1025 	hw_exception_data.memory_lost = 1;
1026 	hw_exception_data.reset_cause = reset_cause;
1027 
1028 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1029 	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1030 	memory_exception_data.gpu_id = dev->id;
1031 	memory_exception_data.failure.imprecise = true;
1032 
1033 	idx = srcu_read_lock(&kfd_processes_srcu);
1034 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1035 		mutex_lock(&p->event_mutex);
1036 		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1037 		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1038 			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1039 				ev->hw_exception_data = hw_exception_data;
1040 				set_event(ev);
1041 			}
1042 			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1043 			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1044 				ev->memory_exception_data = memory_exception_data;
1045 				set_event(ev);
1046 			}
1047 		}
1048 		mutex_unlock(&p->event_mutex);
1049 	}
1050 	srcu_read_unlock(&kfd_processes_srcu, idx);
1051 }
1052 
kfd_signal_poison_consumed_event(struct kfd_dev * dev,u32 pasid)1053 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid)
1054 {
1055 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1056 	struct kfd_hsa_memory_exception_data memory_exception_data;
1057 	struct kfd_hsa_hw_exception_data hw_exception_data;
1058 	struct kfd_event *ev;
1059 	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1060 
1061 	if (!p)
1062 		return; /* Presumably process exited. */
1063 
1064 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1065 	hw_exception_data.gpu_id = dev->id;
1066 	hw_exception_data.memory_lost = 1;
1067 	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1068 
1069 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1070 	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1071 	memory_exception_data.gpu_id = dev->id;
1072 	memory_exception_data.failure.imprecise = true;
1073 
1074 	mutex_lock(&p->event_mutex);
1075 	idr_for_each_entry_continue(&p->event_idr, ev, id) {
1076 		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1077 			ev->hw_exception_data = hw_exception_data;
1078 			set_event(ev);
1079 		}
1080 
1081 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1082 			ev->memory_exception_data = memory_exception_data;
1083 			set_event(ev);
1084 		}
1085 	}
1086 	mutex_unlock(&p->event_mutex);
1087 
1088 	/* user application will handle SIGBUS signal */
1089 	send_sig(SIGBUS, p->lead_thread, 0);
1090 
1091 	kfd_unref_process(p);
1092 }
1093