• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 #undef CREATE_TRACE_POINTS
31 #include <trace/hooks/mm.h>
32 #include "internal.h"
33 
34 #include "slab.h"
35 
36 enum slab_state slab_state;
37 LIST_HEAD(slab_caches);
38 DEFINE_MUTEX(slab_mutex);
39 struct kmem_cache *kmem_cache;
40 
41 #ifdef CONFIG_HARDENED_USERCOPY
42 bool usercopy_fallback __ro_after_init =
43 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
44 module_param(usercopy_fallback, bool, 0400);
45 MODULE_PARM_DESC(usercopy_fallback,
46 		"WARN instead of reject usercopy whitelist violations");
47 #endif
48 
49 static LIST_HEAD(slab_caches_to_rcu_destroy);
50 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
51 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
52 		    slab_caches_to_rcu_destroy_workfn);
53 
54 /*
55  * Set of flags that will prevent slab merging
56  */
57 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
58 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
59 		SLAB_FAILSLAB | kasan_never_merge())
60 
61 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
62 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
63 
64 /*
65  * Merge control. If this is set then no merging of slab caches will occur.
66  */
67 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
68 
setup_slab_nomerge(char * str)69 static int __init setup_slab_nomerge(char *str)
70 {
71 	slab_nomerge = true;
72 	return 1;
73 }
74 
setup_slab_merge(char * str)75 static int __init setup_slab_merge(char *str)
76 {
77 	slab_nomerge = false;
78 	return 1;
79 }
80 
81 #ifdef CONFIG_SLUB
82 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
83 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
84 #endif
85 
86 __setup("slab_nomerge", setup_slab_nomerge);
87 __setup("slab_merge", setup_slab_merge);
88 
89 /*
90  * Determine the size of a slab object
91  */
kmem_cache_size(struct kmem_cache * s)92 unsigned int kmem_cache_size(struct kmem_cache *s)
93 {
94 	return s->object_size;
95 }
96 EXPORT_SYMBOL(kmem_cache_size);
97 
98 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)99 static int kmem_cache_sanity_check(const char *name, unsigned int size)
100 {
101 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
102 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
103 		return -EINVAL;
104 	}
105 
106 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
107 	return 0;
108 }
109 #else
kmem_cache_sanity_check(const char * name,unsigned int size)110 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
111 {
112 	return 0;
113 }
114 #endif
115 
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)116 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
117 {
118 	size_t i;
119 
120 	for (i = 0; i < nr; i++) {
121 		if (s)
122 			kmem_cache_free(s, p[i]);
123 		else
124 			kfree(p[i]);
125 	}
126 }
127 
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)128 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
129 								void **p)
130 {
131 	size_t i;
132 
133 	for (i = 0; i < nr; i++) {
134 		void *x = p[i] = kmem_cache_alloc(s, flags);
135 		if (!x) {
136 			__kmem_cache_free_bulk(s, i, p);
137 			return 0;
138 		}
139 	}
140 	return i;
141 }
142 
143 /*
144  * Figure out what the alignment of the objects will be given a set of
145  * flags, a user specified alignment and the size of the objects.
146  */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)147 static unsigned int calculate_alignment(slab_flags_t flags,
148 		unsigned int align, unsigned int size)
149 {
150 	/*
151 	 * If the user wants hardware cache aligned objects then follow that
152 	 * suggestion if the object is sufficiently large.
153 	 *
154 	 * The hardware cache alignment cannot override the specified
155 	 * alignment though. If that is greater then use it.
156 	 */
157 	if (flags & SLAB_HWCACHE_ALIGN) {
158 		unsigned int ralign;
159 
160 		ralign = cache_line_size();
161 		while (size <= ralign / 2)
162 			ralign /= 2;
163 		align = max(align, ralign);
164 	}
165 
166 	align = max(align, arch_slab_minalign());
167 
168 	return ALIGN(align, sizeof(void *));
169 }
170 
171 /*
172  * Find a mergeable slab cache
173  */
slab_unmergeable(struct kmem_cache * s)174 int slab_unmergeable(struct kmem_cache *s)
175 {
176 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
177 		return 1;
178 
179 	if (s->ctor)
180 		return 1;
181 
182 	if (s->usersize)
183 		return 1;
184 
185 	/*
186 	 * We may have set a slab to be unmergeable during bootstrap.
187 	 */
188 	if (s->refcount < 0)
189 		return 1;
190 
191 	return 0;
192 }
193 
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))194 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
195 		slab_flags_t flags, const char *name, void (*ctor)(void *))
196 {
197 	struct kmem_cache *s;
198 
199 	if (slab_nomerge)
200 		return NULL;
201 
202 	if (ctor)
203 		return NULL;
204 
205 	size = ALIGN(size, sizeof(void *));
206 	align = calculate_alignment(flags, align, size);
207 	size = ALIGN(size, align);
208 	flags = kmem_cache_flags(size, flags, name);
209 
210 	if (flags & SLAB_NEVER_MERGE)
211 		return NULL;
212 
213 	list_for_each_entry_reverse(s, &slab_caches, list) {
214 		if (slab_unmergeable(s))
215 			continue;
216 
217 		if (size > s->size)
218 			continue;
219 
220 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
221 			continue;
222 		/*
223 		 * Check if alignment is compatible.
224 		 * Courtesy of Adrian Drzewiecki
225 		 */
226 		if ((s->size & ~(align - 1)) != s->size)
227 			continue;
228 
229 		if (s->size - size >= sizeof(void *))
230 			continue;
231 
232 		if (IS_ENABLED(CONFIG_SLAB) && align &&
233 			(align > s->align || s->align % align))
234 			continue;
235 
236 		return s;
237 	}
238 	return NULL;
239 }
240 
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)241 static struct kmem_cache *create_cache(const char *name,
242 		unsigned int object_size, unsigned int align,
243 		slab_flags_t flags, unsigned int useroffset,
244 		unsigned int usersize, void (*ctor)(void *),
245 		struct kmem_cache *root_cache)
246 {
247 	struct kmem_cache *s;
248 	int err;
249 
250 	if (WARN_ON(useroffset + usersize > object_size))
251 		useroffset = usersize = 0;
252 
253 	err = -ENOMEM;
254 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
255 	if (!s)
256 		goto out;
257 
258 	s->name = name;
259 	s->size = s->object_size = object_size;
260 	s->align = align;
261 	s->ctor = ctor;
262 	s->useroffset = useroffset;
263 	s->usersize = usersize;
264 
265 	err = __kmem_cache_create(s, flags);
266 	if (err)
267 		goto out_free_cache;
268 
269 	s->refcount = 1;
270 	list_add(&s->list, &slab_caches);
271 out:
272 	if (err)
273 		return ERR_PTR(err);
274 	return s;
275 
276 out_free_cache:
277 	kmem_cache_free(kmem_cache, s);
278 	goto out;
279 }
280 
281 /**
282  * kmem_cache_create_usercopy - Create a cache with a region suitable
283  * for copying to userspace
284  * @name: A string which is used in /proc/slabinfo to identify this cache.
285  * @size: The size of objects to be created in this cache.
286  * @align: The required alignment for the objects.
287  * @flags: SLAB flags
288  * @useroffset: Usercopy region offset
289  * @usersize: Usercopy region size
290  * @ctor: A constructor for the objects.
291  *
292  * Cannot be called within a interrupt, but can be interrupted.
293  * The @ctor is run when new pages are allocated by the cache.
294  *
295  * The flags are
296  *
297  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
298  * to catch references to uninitialised memory.
299  *
300  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
301  * for buffer overruns.
302  *
303  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
304  * cacheline.  This can be beneficial if you're counting cycles as closely
305  * as davem.
306  *
307  * Return: a pointer to the cache on success, NULL on failure.
308  */
309 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))310 kmem_cache_create_usercopy(const char *name,
311 		  unsigned int size, unsigned int align,
312 		  slab_flags_t flags,
313 		  unsigned int useroffset, unsigned int usersize,
314 		  void (*ctor)(void *))
315 {
316 	struct kmem_cache *s = NULL;
317 	const char *cache_name;
318 	int err;
319 
320 #ifdef CONFIG_SLUB_DEBUG
321 	/*
322 	 * If no slub_debug was enabled globally, the static key is not yet
323 	 * enabled by setup_slub_debug(). Enable it if the cache is being
324 	 * created with any of the debugging flags passed explicitly.
325 	 */
326 	if (flags & SLAB_DEBUG_FLAGS)
327 		static_branch_enable(&slub_debug_enabled);
328 #endif
329 
330 	mutex_lock(&slab_mutex);
331 
332 	err = kmem_cache_sanity_check(name, size);
333 	if (err) {
334 		goto out_unlock;
335 	}
336 
337 	/* Refuse requests with allocator specific flags */
338 	if (flags & ~SLAB_FLAGS_PERMITTED) {
339 		err = -EINVAL;
340 		goto out_unlock;
341 	}
342 
343 	/*
344 	 * Some allocators will constraint the set of valid flags to a subset
345 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
346 	 * case, and we'll just provide them with a sanitized version of the
347 	 * passed flags.
348 	 */
349 	flags &= CACHE_CREATE_MASK;
350 
351 	/* Fail closed on bad usersize of useroffset values. */
352 	if (WARN_ON(!usersize && useroffset) ||
353 	    WARN_ON(size < usersize || size - usersize < useroffset))
354 		usersize = useroffset = 0;
355 
356 	if (!usersize)
357 		s = __kmem_cache_alias(name, size, align, flags, ctor);
358 	if (s)
359 		goto out_unlock;
360 
361 	cache_name = kstrdup_const(name, GFP_KERNEL);
362 	if (!cache_name) {
363 		err = -ENOMEM;
364 		goto out_unlock;
365 	}
366 
367 	s = create_cache(cache_name, size,
368 			 calculate_alignment(flags, align, size),
369 			 flags, useroffset, usersize, ctor, NULL);
370 	if (IS_ERR(s)) {
371 		err = PTR_ERR(s);
372 		kfree_const(cache_name);
373 	}
374 
375 out_unlock:
376 	mutex_unlock(&slab_mutex);
377 
378 	if (err) {
379 		if (flags & SLAB_PANIC)
380 			panic("%s: Failed to create slab '%s'. Error %d\n",
381 				__func__, name, err);
382 		else {
383 			pr_warn("%s(%s) failed with error %d\n",
384 				__func__, name, err);
385 			dump_stack();
386 		}
387 		return NULL;
388 	}
389 	return s;
390 }
391 EXPORT_SYMBOL(kmem_cache_create_usercopy);
392 
393 /**
394  * kmem_cache_create - Create a cache.
395  * @name: A string which is used in /proc/slabinfo to identify this cache.
396  * @size: The size of objects to be created in this cache.
397  * @align: The required alignment for the objects.
398  * @flags: SLAB flags
399  * @ctor: A constructor for the objects.
400  *
401  * Cannot be called within a interrupt, but can be interrupted.
402  * The @ctor is run when new pages are allocated by the cache.
403  *
404  * The flags are
405  *
406  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
407  * to catch references to uninitialised memory.
408  *
409  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
410  * for buffer overruns.
411  *
412  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
413  * cacheline.  This can be beneficial if you're counting cycles as closely
414  * as davem.
415  *
416  * Return: a pointer to the cache on success, NULL on failure.
417  */
418 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))419 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
420 		slab_flags_t flags, void (*ctor)(void *))
421 {
422 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
423 					  ctor);
424 }
425 EXPORT_SYMBOL(kmem_cache_create);
426 
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)427 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
428 {
429 	LIST_HEAD(to_destroy);
430 	struct kmem_cache *s, *s2;
431 
432 	/*
433 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
434 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
435 	 * through RCU and the associated kmem_cache are dereferenced
436 	 * while freeing the pages, so the kmem_caches should be freed only
437 	 * after the pending RCU operations are finished.  As rcu_barrier()
438 	 * is a pretty slow operation, we batch all pending destructions
439 	 * asynchronously.
440 	 */
441 	mutex_lock(&slab_mutex);
442 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
443 	mutex_unlock(&slab_mutex);
444 
445 	if (list_empty(&to_destroy))
446 		return;
447 
448 	rcu_barrier();
449 
450 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
451 		debugfs_slab_release(s);
452 		kfence_shutdown_cache(s);
453 #ifdef SLAB_SUPPORTS_SYSFS
454 		sysfs_slab_release(s);
455 #else
456 		slab_kmem_cache_release(s);
457 #endif
458 	}
459 }
460 
shutdown_cache(struct kmem_cache * s)461 static int shutdown_cache(struct kmem_cache *s)
462 {
463 	/* free asan quarantined objects */
464 	kasan_cache_shutdown(s);
465 
466 	if (__kmem_cache_shutdown(s) != 0)
467 		return -EBUSY;
468 
469 	list_del(&s->list);
470 
471 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
472 #ifdef SLAB_SUPPORTS_SYSFS
473 		sysfs_slab_unlink(s);
474 #endif
475 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
476 		schedule_work(&slab_caches_to_rcu_destroy_work);
477 	} else {
478 		kfence_shutdown_cache(s);
479 		debugfs_slab_release(s);
480 #ifdef SLAB_SUPPORTS_SYSFS
481 		sysfs_slab_unlink(s);
482 		sysfs_slab_release(s);
483 #else
484 		slab_kmem_cache_release(s);
485 #endif
486 	}
487 
488 	return 0;
489 }
490 
slab_kmem_cache_release(struct kmem_cache * s)491 void slab_kmem_cache_release(struct kmem_cache *s)
492 {
493 	__kmem_cache_release(s);
494 	kfree_const(s->name);
495 	kmem_cache_free(kmem_cache, s);
496 }
497 
kmem_cache_destroy(struct kmem_cache * s)498 void kmem_cache_destroy(struct kmem_cache *s)
499 {
500 	int err;
501 
502 	if (unlikely(!s) || !kasan_check_byte(s))
503 		return;
504 
505 	cpus_read_lock();
506 	mutex_lock(&slab_mutex);
507 
508 	s->refcount--;
509 	if (s->refcount)
510 		goto out_unlock;
511 
512 	err = shutdown_cache(s);
513 	if (err) {
514 		pr_err("%s %s: Slab cache still has objects\n",
515 		       __func__, s->name);
516 		dump_stack();
517 	}
518 out_unlock:
519 	mutex_unlock(&slab_mutex);
520 	cpus_read_unlock();
521 }
522 EXPORT_SYMBOL(kmem_cache_destroy);
523 
524 /**
525  * kmem_cache_shrink - Shrink a cache.
526  * @cachep: The cache to shrink.
527  *
528  * Releases as many slabs as possible for a cache.
529  * To help debugging, a zero exit status indicates all slabs were released.
530  *
531  * Return: %0 if all slabs were released, non-zero otherwise
532  */
kmem_cache_shrink(struct kmem_cache * cachep)533 int kmem_cache_shrink(struct kmem_cache *cachep)
534 {
535 	int ret;
536 
537 
538 	kasan_cache_shrink(cachep);
539 	ret = __kmem_cache_shrink(cachep);
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL(kmem_cache_shrink);
544 
slab_is_available(void)545 bool slab_is_available(void)
546 {
547 	return slab_state >= UP;
548 }
549 
550 #ifdef CONFIG_PRINTK
551 /**
552  * kmem_valid_obj - does the pointer reference a valid slab object?
553  * @object: pointer to query.
554  *
555  * Return: %true if the pointer is to a not-yet-freed object from
556  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
557  * is to an already-freed object, and %false otherwise.
558  */
kmem_valid_obj(void * object)559 bool kmem_valid_obj(void *object)
560 {
561 	struct page *page;
562 
563 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
564 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
565 		return false;
566 	page = virt_to_head_page(object);
567 	return PageSlab(page);
568 }
569 EXPORT_SYMBOL_GPL(kmem_valid_obj);
570 
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)571 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
572 {
573 	if (__kfence_obj_info(kpp, object, page))
574 		return;
575 	__kmem_obj_info(kpp, object, page);
576 }
577 
578 /**
579  * kmem_dump_obj - Print available slab provenance information
580  * @object: slab object for which to find provenance information.
581  *
582  * This function uses pr_cont(), so that the caller is expected to have
583  * printed out whatever preamble is appropriate.  The provenance information
584  * depends on the type of object and on how much debugging is enabled.
585  * For a slab-cache object, the fact that it is a slab object is printed,
586  * and, if available, the slab name, return address, and stack trace from
587  * the allocation and last free path of that object.
588  *
589  * This function will splat if passed a pointer to a non-slab object.
590  * If you are not sure what type of object you have, you should instead
591  * use mem_dump_obj().
592  */
kmem_dump_obj(void * object)593 void kmem_dump_obj(void *object)
594 {
595 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
596 	int i;
597 	struct page *page;
598 	unsigned long ptroffset;
599 	struct kmem_obj_info kp = { };
600 
601 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
602 		return;
603 	page = virt_to_head_page(object);
604 	if (WARN_ON_ONCE(!PageSlab(page))) {
605 		pr_cont(" non-slab memory.\n");
606 		return;
607 	}
608 	kmem_obj_info(&kp, object, page);
609 	if (kp.kp_slab_cache)
610 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
611 	else
612 		pr_cont(" slab%s", cp);
613 	if (is_kfence_address(object))
614 		pr_cont(" (kfence)");
615 	if (kp.kp_objp)
616 		pr_cont(" start %px", kp.kp_objp);
617 	if (kp.kp_data_offset)
618 		pr_cont(" data offset %lu", kp.kp_data_offset);
619 	if (kp.kp_objp) {
620 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
621 		pr_cont(" pointer offset %lu", ptroffset);
622 	}
623 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
624 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
625 	if (kp.kp_ret)
626 		pr_cont(" allocated at %pS\n", kp.kp_ret);
627 	else
628 		pr_cont("\n");
629 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
630 		if (!kp.kp_stack[i])
631 			break;
632 		pr_info("    %pS\n", kp.kp_stack[i]);
633 	}
634 
635 	if (kp.kp_free_stack[0])
636 		pr_cont(" Free path:\n");
637 
638 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
639 		if (!kp.kp_free_stack[i])
640 			break;
641 		pr_info("    %pS\n", kp.kp_free_stack[i]);
642 	}
643 
644 }
645 EXPORT_SYMBOL_GPL(kmem_dump_obj);
646 #endif
647 
648 #ifndef CONFIG_SLOB
649 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)650 void __init create_boot_cache(struct kmem_cache *s, const char *name,
651 		unsigned int size, slab_flags_t flags,
652 		unsigned int useroffset, unsigned int usersize)
653 {
654 	int err;
655 	unsigned int align = ARCH_KMALLOC_MINALIGN;
656 
657 	s->name = name;
658 	s->size = s->object_size = size;
659 
660 	/*
661 	 * For power of two sizes, guarantee natural alignment for kmalloc
662 	 * caches, regardless of SL*B debugging options.
663 	 */
664 	if (is_power_of_2(size))
665 		align = max(align, size);
666 	s->align = calculate_alignment(flags, align, size);
667 
668 	s->useroffset = useroffset;
669 	s->usersize = usersize;
670 
671 	err = __kmem_cache_create(s, flags);
672 
673 	if (err)
674 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
675 					name, size, err);
676 
677 	s->refcount = -1;	/* Exempt from merging for now */
678 }
679 
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)680 struct kmem_cache *__init create_kmalloc_cache(const char *name,
681 		unsigned int size, slab_flags_t flags,
682 		unsigned int useroffset, unsigned int usersize)
683 {
684 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
685 
686 	if (!s)
687 		panic("Out of memory when creating slab %s\n", name);
688 
689 	create_boot_cache(s, name, size, flags, useroffset, usersize);
690 	kasan_cache_create_kmalloc(s);
691 	list_add(&s->list, &slab_caches);
692 	s->refcount = 1;
693 	return s;
694 }
695 
696 struct kmem_cache *
697 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
698 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
699 EXPORT_SYMBOL(kmalloc_caches);
700 
701 /* This variable is intentionally unused. Preserved for KMI stability. */
702 bool android_kmalloc_64_create __ro_after_init;
703 EXPORT_SYMBOL(android_kmalloc_64_create);
704 
705 /*
706  * Conversion table for small slabs sizes / 8 to the index in the
707  * kmalloc array. This is necessary for slabs < 192 since we have non power
708  * of two cache sizes there. The size of larger slabs can be determined using
709  * fls.
710  */
711 static u8 size_index[24] __ro_after_init = {
712 	3,	/* 8 */
713 	4,	/* 16 */
714 	5,	/* 24 */
715 	5,	/* 32 */
716 	6,	/* 40 */
717 	6,	/* 48 */
718 	6,	/* 56 */
719 	6,	/* 64 */
720 	1,	/* 72 */
721 	1,	/* 80 */
722 	1,	/* 88 */
723 	1,	/* 96 */
724 	7,	/* 104 */
725 	7,	/* 112 */
726 	7,	/* 120 */
727 	7,	/* 128 */
728 	2,	/* 136 */
729 	2,	/* 144 */
730 	2,	/* 152 */
731 	2,	/* 160 */
732 	2,	/* 168 */
733 	2,	/* 176 */
734 	2,	/* 184 */
735 	2	/* 192 */
736 };
737 
size_index_elem(unsigned int bytes)738 static inline unsigned int size_index_elem(unsigned int bytes)
739 {
740 	return (bytes - 1) / 8;
741 }
742 
743 /*
744  * Find the kmem_cache structure that serves a given size of
745  * allocation
746  */
kmalloc_slab(size_t size,gfp_t flags)747 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
748 {
749 	unsigned int index;
750 	struct kmem_cache *s = NULL;
751 
752 	if (size <= 192) {
753 		if (!size)
754 			return ZERO_SIZE_PTR;
755 
756 		index = size_index[size_index_elem(size)];
757 	} else {
758 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
759 			return NULL;
760 		index = fls(size - 1);
761 	}
762 
763 	trace_android_vh_kmalloc_slab(index, flags, &s);
764 	if (s)
765 		return s;
766 
767 	return kmalloc_caches[kmalloc_type(flags)][index];
768 }
769 
770 #ifdef CONFIG_ZONE_DMA
771 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
772 #else
773 #define KMALLOC_DMA_NAME(sz)
774 #endif
775 
776 #ifdef CONFIG_MEMCG_KMEM
777 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
778 #else
779 #define KMALLOC_CGROUP_NAME(sz)
780 #endif
781 
782 #define INIT_KMALLOC_INFO(__size, __short_size)			\
783 {								\
784 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
785 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
786 	KMALLOC_CGROUP_NAME(__short_size)			\
787 	KMALLOC_DMA_NAME(__short_size)				\
788 	.size = __size,						\
789 }
790 
791 /*
792  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
793  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
794  * kmalloc-32M.
795  */
796 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
797 	INIT_KMALLOC_INFO(0, 0),
798 	INIT_KMALLOC_INFO(96, 96),
799 	INIT_KMALLOC_INFO(192, 192),
800 	INIT_KMALLOC_INFO(8, 8),
801 	INIT_KMALLOC_INFO(16, 16),
802 	INIT_KMALLOC_INFO(32, 32),
803 	INIT_KMALLOC_INFO(64, 64),
804 	INIT_KMALLOC_INFO(128, 128),
805 	INIT_KMALLOC_INFO(256, 256),
806 	INIT_KMALLOC_INFO(512, 512),
807 	INIT_KMALLOC_INFO(1024, 1k),
808 	INIT_KMALLOC_INFO(2048, 2k),
809 	INIT_KMALLOC_INFO(4096, 4k),
810 	INIT_KMALLOC_INFO(8192, 8k),
811 	INIT_KMALLOC_INFO(16384, 16k),
812 	INIT_KMALLOC_INFO(32768, 32k),
813 	INIT_KMALLOC_INFO(65536, 64k),
814 	INIT_KMALLOC_INFO(131072, 128k),
815 	INIT_KMALLOC_INFO(262144, 256k),
816 	INIT_KMALLOC_INFO(524288, 512k),
817 	INIT_KMALLOC_INFO(1048576, 1M),
818 	INIT_KMALLOC_INFO(2097152, 2M),
819 	INIT_KMALLOC_INFO(4194304, 4M),
820 	INIT_KMALLOC_INFO(8388608, 8M),
821 	INIT_KMALLOC_INFO(16777216, 16M),
822 	INIT_KMALLOC_INFO(33554432, 32M)
823 };
824 
825 /*
826  * Patch up the size_index table if we have strange large alignment
827  * requirements for the kmalloc array. This is only the case for
828  * MIPS it seems. The standard arches will not generate any code here.
829  *
830  * Largest permitted alignment is 256 bytes due to the way we
831  * handle the index determination for the smaller caches.
832  *
833  * Make sure that nothing crazy happens if someone starts tinkering
834  * around with ARCH_KMALLOC_MINALIGN
835  */
setup_kmalloc_cache_index_table(void)836 void __init setup_kmalloc_cache_index_table(void)
837 {
838 	unsigned int i;
839 
840 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
841 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
842 
843 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
844 		unsigned int elem = size_index_elem(i);
845 
846 		if (elem >= ARRAY_SIZE(size_index))
847 			break;
848 		size_index[elem] = KMALLOC_SHIFT_LOW;
849 	}
850 
851 	if (KMALLOC_MIN_SIZE >= 64) {
852 		/*
853 		 * The 96 byte size cache is not used if the alignment
854 		 * is 64 byte.
855 		 */
856 		for (i = 64 + 8; i <= 96; i += 8)
857 			size_index[size_index_elem(i)] = 7;
858 
859 	}
860 
861 	if (KMALLOC_MIN_SIZE >= 128) {
862 		/*
863 		 * The 192 byte sized cache is not used if the alignment
864 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
865 		 * instead.
866 		 */
867 		for (i = 128 + 8; i <= 192; i += 8)
868 			size_index[size_index_elem(i)] = 8;
869 	}
870 }
871 
872 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)873 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
874 {
875 	if (type == KMALLOC_RECLAIM) {
876 		flags |= SLAB_RECLAIM_ACCOUNT;
877 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
878 		if (cgroup_memory_nokmem) {
879 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
880 			return;
881 		}
882 		flags |= SLAB_ACCOUNT;
883 	}
884 
885 	kmalloc_caches[type][idx] = create_kmalloc_cache(
886 					kmalloc_info[idx].name[type],
887 					kmalloc_info[idx].size, flags, 0,
888 					kmalloc_info[idx].size);
889 
890 	/*
891 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
892 	 * KMALLOC_NORMAL caches.
893 	 */
894 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
895 		kmalloc_caches[type][idx]->refcount = -1;
896 }
897 
898 /*
899  * Create the kmalloc array. Some of the regular kmalloc arrays
900  * may already have been created because they were needed to
901  * enable allocations for slab creation.
902  */
create_kmalloc_caches(slab_flags_t flags)903 void __init create_kmalloc_caches(slab_flags_t flags)
904 {
905 	int i;
906 	enum kmalloc_cache_type type;
907 
908 	/*
909 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
910 	 */
911 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
912 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
913 			if (!kmalloc_caches[type][i])
914 				new_kmalloc_cache(i, type, flags);
915 
916 			/*
917 			 * Caches that are not of the two-to-the-power-of size.
918 			 * These have to be created immediately after the
919 			 * earlier power of two caches
920 			 */
921 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
922 					!kmalloc_caches[type][1])
923 				new_kmalloc_cache(1, type, flags);
924 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
925 					!kmalloc_caches[type][2])
926 				new_kmalloc_cache(2, type, flags);
927 		}
928 	}
929 
930 	/* Kmalloc array is now usable */
931 	slab_state = UP;
932 
933 #ifdef CONFIG_ZONE_DMA
934 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
935 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
936 
937 		if (s) {
938 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
939 				kmalloc_info[i].name[KMALLOC_DMA],
940 				kmalloc_info[i].size,
941 				SLAB_CACHE_DMA | flags, 0,
942 				kmalloc_info[i].size);
943 		}
944 	}
945 #endif
946 }
947 #endif /* !CONFIG_SLOB */
948 
kmalloc_fix_flags(gfp_t flags)949 gfp_t kmalloc_fix_flags(gfp_t flags)
950 {
951 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
952 
953 	flags &= ~GFP_SLAB_BUG_MASK;
954 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
955 			invalid_mask, &invalid_mask, flags, &flags);
956 	dump_stack();
957 
958 	return flags;
959 }
960 
961 /*
962  * To avoid unnecessary overhead, we pass through large allocation requests
963  * directly to the page allocator. We use __GFP_COMP, because we will need to
964  * know the allocation order to free the pages properly in kfree.
965  */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)966 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
967 {
968 	void *ret = NULL;
969 	struct page *page;
970 
971 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
972 		flags = kmalloc_fix_flags(flags);
973 
974 	flags |= __GFP_COMP;
975 	page = alloc_pages(flags, order);
976 	if (likely(page)) {
977 		ret = page_address(page);
978 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
979 				      PAGE_SIZE << order);
980 	}
981 
982 	trace_android_vh_kmalloc_order_alloced(page, size, flags);
983 
984 	ret = kasan_kmalloc_large(ret, size, flags);
985 	/* As ret might get tagged, call kmemleak hook after KASAN. */
986 	kmemleak_alloc(ret, size, 1, flags);
987 	return ret;
988 }
989 EXPORT_SYMBOL(kmalloc_order);
990 
991 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)992 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
993 {
994 	void *ret = kmalloc_order(size, flags, order);
995 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
996 	return ret;
997 }
998 EXPORT_SYMBOL(kmalloc_order_trace);
999 #endif
1000 
1001 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1002 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)1003 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1004 			       unsigned int count)
1005 {
1006 	unsigned int rand;
1007 	unsigned int i;
1008 
1009 	for (i = 0; i < count; i++)
1010 		list[i] = i;
1011 
1012 	/* Fisher-Yates shuffle */
1013 	for (i = count - 1; i > 0; i--) {
1014 		rand = prandom_u32_state(state);
1015 		rand %= (i + 1);
1016 		swap(list[i], list[rand]);
1017 	}
1018 }
1019 
1020 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1021 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1022 				    gfp_t gfp)
1023 {
1024 	struct rnd_state state;
1025 
1026 	if (count < 2 || cachep->random_seq)
1027 		return 0;
1028 
1029 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1030 	if (!cachep->random_seq)
1031 		return -ENOMEM;
1032 
1033 	/* Get best entropy at this stage of boot */
1034 	prandom_seed_state(&state, get_random_long());
1035 
1036 	freelist_randomize(&state, cachep->random_seq, count);
1037 	return 0;
1038 }
1039 
1040 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1041 void cache_random_seq_destroy(struct kmem_cache *cachep)
1042 {
1043 	kfree(cachep->random_seq);
1044 	cachep->random_seq = NULL;
1045 }
1046 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1047 
1048 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1049 #ifdef CONFIG_SLAB
1050 #define SLABINFO_RIGHTS (0600)
1051 #else
1052 #define SLABINFO_RIGHTS (0400)
1053 #endif
1054 
print_slabinfo_header(struct seq_file * m)1055 static void print_slabinfo_header(struct seq_file *m)
1056 {
1057 	/*
1058 	 * Output format version, so at least we can change it
1059 	 * without _too_ many complaints.
1060 	 */
1061 #ifdef CONFIG_DEBUG_SLAB
1062 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1063 #else
1064 	seq_puts(m, "slabinfo - version: 2.1\n");
1065 #endif
1066 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1067 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1068 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1069 #ifdef CONFIG_DEBUG_SLAB
1070 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1071 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1072 #endif
1073 	trace_android_vh_print_slabinfo_header(m);
1074 	seq_putc(m, '\n');
1075 }
1076 
slab_start(struct seq_file * m,loff_t * pos)1077 void *slab_start(struct seq_file *m, loff_t *pos)
1078 {
1079 	mutex_lock(&slab_mutex);
1080 	return seq_list_start(&slab_caches, *pos);
1081 }
1082 
slab_next(struct seq_file * m,void * p,loff_t * pos)1083 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1084 {
1085 	return seq_list_next(p, &slab_caches, pos);
1086 }
1087 
slab_stop(struct seq_file * m,void * p)1088 void slab_stop(struct seq_file *m, void *p)
1089 {
1090 	mutex_unlock(&slab_mutex);
1091 }
1092 
cache_show(struct kmem_cache * s,struct seq_file * m)1093 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1094 {
1095 	struct slabinfo sinfo;
1096 
1097 	memset(&sinfo, 0, sizeof(sinfo));
1098 	get_slabinfo(s, &sinfo);
1099 
1100 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1101 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1102 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1103 
1104 	seq_printf(m, " : tunables %4u %4u %4u",
1105 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1106 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1107 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1108 	slabinfo_show_stats(m, s);
1109 	trace_android_vh_cache_show(m, &sinfo, s);
1110 	seq_putc(m, '\n');
1111 }
1112 
slab_show(struct seq_file * m,void * p)1113 static int slab_show(struct seq_file *m, void *p)
1114 {
1115 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1116 
1117 	if (p == slab_caches.next)
1118 		print_slabinfo_header(m);
1119 	cache_show(s, m);
1120 	return 0;
1121 }
1122 
dump_unreclaimable_slab(void)1123 void dump_unreclaimable_slab(void)
1124 {
1125 	struct kmem_cache *s;
1126 	struct slabinfo sinfo;
1127 
1128 	/*
1129 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1130 	 * sleep in oom path. But, without mutex hold, it may introduce a
1131 	 * risk of crash.
1132 	 * Use mutex_trylock to protect the list traverse, dump nothing
1133 	 * without acquiring the mutex.
1134 	 */
1135 	if (!mutex_trylock(&slab_mutex)) {
1136 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1137 		return;
1138 	}
1139 
1140 	pr_info("Unreclaimable slab info:\n");
1141 	pr_info("Name                      Used          Total\n");
1142 
1143 	list_for_each_entry(s, &slab_caches, list) {
1144 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1145 			continue;
1146 
1147 		get_slabinfo(s, &sinfo);
1148 
1149 		if (sinfo.num_objs > 0)
1150 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1151 				(sinfo.active_objs * s->size) / 1024,
1152 				(sinfo.num_objs * s->size) / 1024);
1153 	}
1154 	mutex_unlock(&slab_mutex);
1155 }
1156 
1157 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1158 int memcg_slab_show(struct seq_file *m, void *p)
1159 {
1160 	/*
1161 	 * Deprecated.
1162 	 * Please, take a look at tools/cgroup/slabinfo.py .
1163 	 */
1164 	return 0;
1165 }
1166 #endif
1167 
1168 /*
1169  * slabinfo_op - iterator that generates /proc/slabinfo
1170  *
1171  * Output layout:
1172  * cache-name
1173  * num-active-objs
1174  * total-objs
1175  * object size
1176  * num-active-slabs
1177  * total-slabs
1178  * num-pages-per-slab
1179  * + further values on SMP and with statistics enabled
1180  */
1181 static const struct seq_operations slabinfo_op = {
1182 	.start = slab_start,
1183 	.next = slab_next,
1184 	.stop = slab_stop,
1185 	.show = slab_show,
1186 };
1187 
slabinfo_open(struct inode * inode,struct file * file)1188 static int slabinfo_open(struct inode *inode, struct file *file)
1189 {
1190 	return seq_open(file, &slabinfo_op);
1191 }
1192 
1193 static const struct proc_ops slabinfo_proc_ops = {
1194 	.proc_flags	= PROC_ENTRY_PERMANENT,
1195 	.proc_open	= slabinfo_open,
1196 	.proc_read	= seq_read,
1197 	.proc_write	= slabinfo_write,
1198 	.proc_lseek	= seq_lseek,
1199 	.proc_release	= seq_release,
1200 };
1201 
slab_proc_init(void)1202 static int __init slab_proc_init(void)
1203 {
1204 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1205 	return 0;
1206 }
1207 module_init(slab_proc_init);
1208 
1209 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1210 
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1211 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1212 					   gfp_t flags)
1213 {
1214 	void *ret;
1215 	size_t ks;
1216 
1217 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1218 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1219 		if (!kasan_check_byte(p))
1220 			return NULL;
1221 		ks = kfence_ksize(p) ?: __ksize(p);
1222 	} else
1223 		ks = 0;
1224 
1225 	/* If the object still fits, repoison it precisely. */
1226 	if (ks >= new_size) {
1227 		p = kasan_krealloc((void *)p, new_size, flags);
1228 		return (void *)p;
1229 	}
1230 
1231 	ret = kmalloc_track_caller(new_size, flags);
1232 	if (ret && p) {
1233 		/* Disable KASAN checks as the object's redzone is accessed. */
1234 		kasan_disable_current();
1235 		memcpy(ret, kasan_reset_tag(p), ks);
1236 		kasan_enable_current();
1237 	}
1238 
1239 	return ret;
1240 }
1241 
1242 /**
1243  * krealloc - reallocate memory. The contents will remain unchanged.
1244  * @p: object to reallocate memory for.
1245  * @new_size: how many bytes of memory are required.
1246  * @flags: the type of memory to allocate.
1247  *
1248  * The contents of the object pointed to are preserved up to the
1249  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1250  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1251  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1252  *
1253  * Return: pointer to the allocated memory or %NULL in case of error
1254  */
krealloc(const void * p,size_t new_size,gfp_t flags)1255 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1256 {
1257 	void *ret;
1258 
1259 	if (unlikely(!new_size)) {
1260 		kfree(p);
1261 		return ZERO_SIZE_PTR;
1262 	}
1263 
1264 	ret = __do_krealloc(p, new_size, flags);
1265 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1266 		kfree(p);
1267 
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL(krealloc);
1271 
1272 /**
1273  * kfree_sensitive - Clear sensitive information in memory before freeing
1274  * @p: object to free memory of
1275  *
1276  * The memory of the object @p points to is zeroed before freed.
1277  * If @p is %NULL, kfree_sensitive() does nothing.
1278  *
1279  * Note: this function zeroes the whole allocated buffer which can be a good
1280  * deal bigger than the requested buffer size passed to kmalloc(). So be
1281  * careful when using this function in performance sensitive code.
1282  */
kfree_sensitive(const void * p)1283 void kfree_sensitive(const void *p)
1284 {
1285 	size_t ks;
1286 	void *mem = (void *)p;
1287 
1288 	ks = ksize(mem);
1289 	if (ks)
1290 		memzero_explicit(mem, ks);
1291 	kfree(mem);
1292 }
1293 EXPORT_SYMBOL(kfree_sensitive);
1294 
1295 /**
1296  * ksize - get the actual amount of memory allocated for a given object
1297  * @objp: Pointer to the object
1298  *
1299  * kmalloc may internally round up allocations and return more memory
1300  * than requested. ksize() can be used to determine the actual amount of
1301  * memory allocated. The caller may use this additional memory, even though
1302  * a smaller amount of memory was initially specified with the kmalloc call.
1303  * The caller must guarantee that objp points to a valid object previously
1304  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1305  * must not be freed during the duration of the call.
1306  *
1307  * Return: size of the actual memory used by @objp in bytes
1308  */
ksize(const void * objp)1309 size_t ksize(const void *objp)
1310 {
1311 	size_t size;
1312 
1313 	/*
1314 	 * We need to first check that the pointer to the object is valid, and
1315 	 * only then unpoison the memory. The report printed from ksize() is
1316 	 * more useful, then when it's printed later when the behaviour could
1317 	 * be undefined due to a potential use-after-free or double-free.
1318 	 *
1319 	 * We use kasan_check_byte(), which is supported for the hardware
1320 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1321 	 *
1322 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1323 	 * ksize() writing to and potentially corrupting the memory region.
1324 	 *
1325 	 * We want to perform the check before __ksize(), to avoid potentially
1326 	 * crashing in __ksize() due to accessing invalid metadata.
1327 	 */
1328 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1329 		return 0;
1330 
1331 	size = kfence_ksize(objp) ?: __ksize(objp);
1332 	/*
1333 	 * We assume that ksize callers could use whole allocated area,
1334 	 * so we need to unpoison this area.
1335 	 */
1336 	kasan_unpoison_range(objp, size);
1337 	return size;
1338 }
1339 EXPORT_SYMBOL(ksize);
1340 
1341 /* Tracepoints definitions. */
1342 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1343 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1344 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1345 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1346 EXPORT_TRACEPOINT_SYMBOL(kfree);
1347 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1348 
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1349 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1350 {
1351 	if (__should_failslab(s, gfpflags))
1352 		return -ENOMEM;
1353 	return 0;
1354 }
1355 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1356