1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 #undef CREATE_TRACE_POINTS
31 #include <trace/hooks/mm.h>
32 #include "internal.h"
33
34 #include "slab.h"
35
36 enum slab_state slab_state;
37 LIST_HEAD(slab_caches);
38 DEFINE_MUTEX(slab_mutex);
39 struct kmem_cache *kmem_cache;
40
41 #ifdef CONFIG_HARDENED_USERCOPY
42 bool usercopy_fallback __ro_after_init =
43 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
44 module_param(usercopy_fallback, bool, 0400);
45 MODULE_PARM_DESC(usercopy_fallback,
46 "WARN instead of reject usercopy whitelist violations");
47 #endif
48
49 static LIST_HEAD(slab_caches_to_rcu_destroy);
50 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
51 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
52 slab_caches_to_rcu_destroy_workfn);
53
54 /*
55 * Set of flags that will prevent slab merging
56 */
57 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
58 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
59 SLAB_FAILSLAB | kasan_never_merge())
60
61 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
62 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
63
64 /*
65 * Merge control. If this is set then no merging of slab caches will occur.
66 */
67 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
68
setup_slab_nomerge(char * str)69 static int __init setup_slab_nomerge(char *str)
70 {
71 slab_nomerge = true;
72 return 1;
73 }
74
setup_slab_merge(char * str)75 static int __init setup_slab_merge(char *str)
76 {
77 slab_nomerge = false;
78 return 1;
79 }
80
81 #ifdef CONFIG_SLUB
82 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
83 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
84 #endif
85
86 __setup("slab_nomerge", setup_slab_nomerge);
87 __setup("slab_merge", setup_slab_merge);
88
89 /*
90 * Determine the size of a slab object
91 */
kmem_cache_size(struct kmem_cache * s)92 unsigned int kmem_cache_size(struct kmem_cache *s)
93 {
94 return s->object_size;
95 }
96 EXPORT_SYMBOL(kmem_cache_size);
97
98 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)99 static int kmem_cache_sanity_check(const char *name, unsigned int size)
100 {
101 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
102 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
103 return -EINVAL;
104 }
105
106 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
107 return 0;
108 }
109 #else
kmem_cache_sanity_check(const char * name,unsigned int size)110 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
111 {
112 return 0;
113 }
114 #endif
115
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)116 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
117 {
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 if (s)
122 kmem_cache_free(s, p[i]);
123 else
124 kfree(p[i]);
125 }
126 }
127
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)128 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
129 void **p)
130 {
131 size_t i;
132
133 for (i = 0; i < nr; i++) {
134 void *x = p[i] = kmem_cache_alloc(s, flags);
135 if (!x) {
136 __kmem_cache_free_bulk(s, i, p);
137 return 0;
138 }
139 }
140 return i;
141 }
142
143 /*
144 * Figure out what the alignment of the objects will be given a set of
145 * flags, a user specified alignment and the size of the objects.
146 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)147 static unsigned int calculate_alignment(slab_flags_t flags,
148 unsigned int align, unsigned int size)
149 {
150 /*
151 * If the user wants hardware cache aligned objects then follow that
152 * suggestion if the object is sufficiently large.
153 *
154 * The hardware cache alignment cannot override the specified
155 * alignment though. If that is greater then use it.
156 */
157 if (flags & SLAB_HWCACHE_ALIGN) {
158 unsigned int ralign;
159
160 ralign = cache_line_size();
161 while (size <= ralign / 2)
162 ralign /= 2;
163 align = max(align, ralign);
164 }
165
166 align = max(align, arch_slab_minalign());
167
168 return ALIGN(align, sizeof(void *));
169 }
170
171 /*
172 * Find a mergeable slab cache
173 */
slab_unmergeable(struct kmem_cache * s)174 int slab_unmergeable(struct kmem_cache *s)
175 {
176 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
177 return 1;
178
179 if (s->ctor)
180 return 1;
181
182 if (s->usersize)
183 return 1;
184
185 /*
186 * We may have set a slab to be unmergeable during bootstrap.
187 */
188 if (s->refcount < 0)
189 return 1;
190
191 return 0;
192 }
193
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))194 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
195 slab_flags_t flags, const char *name, void (*ctor)(void *))
196 {
197 struct kmem_cache *s;
198
199 if (slab_nomerge)
200 return NULL;
201
202 if (ctor)
203 return NULL;
204
205 size = ALIGN(size, sizeof(void *));
206 align = calculate_alignment(flags, align, size);
207 size = ALIGN(size, align);
208 flags = kmem_cache_flags(size, flags, name);
209
210 if (flags & SLAB_NEVER_MERGE)
211 return NULL;
212
213 list_for_each_entry_reverse(s, &slab_caches, list) {
214 if (slab_unmergeable(s))
215 continue;
216
217 if (size > s->size)
218 continue;
219
220 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
221 continue;
222 /*
223 * Check if alignment is compatible.
224 * Courtesy of Adrian Drzewiecki
225 */
226 if ((s->size & ~(align - 1)) != s->size)
227 continue;
228
229 if (s->size - size >= sizeof(void *))
230 continue;
231
232 if (IS_ENABLED(CONFIG_SLAB) && align &&
233 (align > s->align || s->align % align))
234 continue;
235
236 return s;
237 }
238 return NULL;
239 }
240
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)241 static struct kmem_cache *create_cache(const char *name,
242 unsigned int object_size, unsigned int align,
243 slab_flags_t flags, unsigned int useroffset,
244 unsigned int usersize, void (*ctor)(void *),
245 struct kmem_cache *root_cache)
246 {
247 struct kmem_cache *s;
248 int err;
249
250 if (WARN_ON(useroffset + usersize > object_size))
251 useroffset = usersize = 0;
252
253 err = -ENOMEM;
254 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
255 if (!s)
256 goto out;
257
258 s->name = name;
259 s->size = s->object_size = object_size;
260 s->align = align;
261 s->ctor = ctor;
262 s->useroffset = useroffset;
263 s->usersize = usersize;
264
265 err = __kmem_cache_create(s, flags);
266 if (err)
267 goto out_free_cache;
268
269 s->refcount = 1;
270 list_add(&s->list, &slab_caches);
271 out:
272 if (err)
273 return ERR_PTR(err);
274 return s;
275
276 out_free_cache:
277 kmem_cache_free(kmem_cache, s);
278 goto out;
279 }
280
281 /**
282 * kmem_cache_create_usercopy - Create a cache with a region suitable
283 * for copying to userspace
284 * @name: A string which is used in /proc/slabinfo to identify this cache.
285 * @size: The size of objects to be created in this cache.
286 * @align: The required alignment for the objects.
287 * @flags: SLAB flags
288 * @useroffset: Usercopy region offset
289 * @usersize: Usercopy region size
290 * @ctor: A constructor for the objects.
291 *
292 * Cannot be called within a interrupt, but can be interrupted.
293 * The @ctor is run when new pages are allocated by the cache.
294 *
295 * The flags are
296 *
297 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
298 * to catch references to uninitialised memory.
299 *
300 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
301 * for buffer overruns.
302 *
303 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
304 * cacheline. This can be beneficial if you're counting cycles as closely
305 * as davem.
306 *
307 * Return: a pointer to the cache on success, NULL on failure.
308 */
309 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))310 kmem_cache_create_usercopy(const char *name,
311 unsigned int size, unsigned int align,
312 slab_flags_t flags,
313 unsigned int useroffset, unsigned int usersize,
314 void (*ctor)(void *))
315 {
316 struct kmem_cache *s = NULL;
317 const char *cache_name;
318 int err;
319
320 #ifdef CONFIG_SLUB_DEBUG
321 /*
322 * If no slub_debug was enabled globally, the static key is not yet
323 * enabled by setup_slub_debug(). Enable it if the cache is being
324 * created with any of the debugging flags passed explicitly.
325 */
326 if (flags & SLAB_DEBUG_FLAGS)
327 static_branch_enable(&slub_debug_enabled);
328 #endif
329
330 mutex_lock(&slab_mutex);
331
332 err = kmem_cache_sanity_check(name, size);
333 if (err) {
334 goto out_unlock;
335 }
336
337 /* Refuse requests with allocator specific flags */
338 if (flags & ~SLAB_FLAGS_PERMITTED) {
339 err = -EINVAL;
340 goto out_unlock;
341 }
342
343 /*
344 * Some allocators will constraint the set of valid flags to a subset
345 * of all flags. We expect them to define CACHE_CREATE_MASK in this
346 * case, and we'll just provide them with a sanitized version of the
347 * passed flags.
348 */
349 flags &= CACHE_CREATE_MASK;
350
351 /* Fail closed on bad usersize of useroffset values. */
352 if (WARN_ON(!usersize && useroffset) ||
353 WARN_ON(size < usersize || size - usersize < useroffset))
354 usersize = useroffset = 0;
355
356 if (!usersize)
357 s = __kmem_cache_alias(name, size, align, flags, ctor);
358 if (s)
359 goto out_unlock;
360
361 cache_name = kstrdup_const(name, GFP_KERNEL);
362 if (!cache_name) {
363 err = -ENOMEM;
364 goto out_unlock;
365 }
366
367 s = create_cache(cache_name, size,
368 calculate_alignment(flags, align, size),
369 flags, useroffset, usersize, ctor, NULL);
370 if (IS_ERR(s)) {
371 err = PTR_ERR(s);
372 kfree_const(cache_name);
373 }
374
375 out_unlock:
376 mutex_unlock(&slab_mutex);
377
378 if (err) {
379 if (flags & SLAB_PANIC)
380 panic("%s: Failed to create slab '%s'. Error %d\n",
381 __func__, name, err);
382 else {
383 pr_warn("%s(%s) failed with error %d\n",
384 __func__, name, err);
385 dump_stack();
386 }
387 return NULL;
388 }
389 return s;
390 }
391 EXPORT_SYMBOL(kmem_cache_create_usercopy);
392
393 /**
394 * kmem_cache_create - Create a cache.
395 * @name: A string which is used in /proc/slabinfo to identify this cache.
396 * @size: The size of objects to be created in this cache.
397 * @align: The required alignment for the objects.
398 * @flags: SLAB flags
399 * @ctor: A constructor for the objects.
400 *
401 * Cannot be called within a interrupt, but can be interrupted.
402 * The @ctor is run when new pages are allocated by the cache.
403 *
404 * The flags are
405 *
406 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
407 * to catch references to uninitialised memory.
408 *
409 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
410 * for buffer overruns.
411 *
412 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
413 * cacheline. This can be beneficial if you're counting cycles as closely
414 * as davem.
415 *
416 * Return: a pointer to the cache on success, NULL on failure.
417 */
418 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))419 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
420 slab_flags_t flags, void (*ctor)(void *))
421 {
422 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
423 ctor);
424 }
425 EXPORT_SYMBOL(kmem_cache_create);
426
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)427 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
428 {
429 LIST_HEAD(to_destroy);
430 struct kmem_cache *s, *s2;
431
432 /*
433 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
434 * @slab_caches_to_rcu_destroy list. The slab pages are freed
435 * through RCU and the associated kmem_cache are dereferenced
436 * while freeing the pages, so the kmem_caches should be freed only
437 * after the pending RCU operations are finished. As rcu_barrier()
438 * is a pretty slow operation, we batch all pending destructions
439 * asynchronously.
440 */
441 mutex_lock(&slab_mutex);
442 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
443 mutex_unlock(&slab_mutex);
444
445 if (list_empty(&to_destroy))
446 return;
447
448 rcu_barrier();
449
450 list_for_each_entry_safe(s, s2, &to_destroy, list) {
451 debugfs_slab_release(s);
452 kfence_shutdown_cache(s);
453 #ifdef SLAB_SUPPORTS_SYSFS
454 sysfs_slab_release(s);
455 #else
456 slab_kmem_cache_release(s);
457 #endif
458 }
459 }
460
shutdown_cache(struct kmem_cache * s)461 static int shutdown_cache(struct kmem_cache *s)
462 {
463 /* free asan quarantined objects */
464 kasan_cache_shutdown(s);
465
466 if (__kmem_cache_shutdown(s) != 0)
467 return -EBUSY;
468
469 list_del(&s->list);
470
471 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
472 #ifdef SLAB_SUPPORTS_SYSFS
473 sysfs_slab_unlink(s);
474 #endif
475 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
476 schedule_work(&slab_caches_to_rcu_destroy_work);
477 } else {
478 kfence_shutdown_cache(s);
479 debugfs_slab_release(s);
480 #ifdef SLAB_SUPPORTS_SYSFS
481 sysfs_slab_unlink(s);
482 sysfs_slab_release(s);
483 #else
484 slab_kmem_cache_release(s);
485 #endif
486 }
487
488 return 0;
489 }
490
slab_kmem_cache_release(struct kmem_cache * s)491 void slab_kmem_cache_release(struct kmem_cache *s)
492 {
493 __kmem_cache_release(s);
494 kfree_const(s->name);
495 kmem_cache_free(kmem_cache, s);
496 }
497
kmem_cache_destroy(struct kmem_cache * s)498 void kmem_cache_destroy(struct kmem_cache *s)
499 {
500 int err;
501
502 if (unlikely(!s) || !kasan_check_byte(s))
503 return;
504
505 cpus_read_lock();
506 mutex_lock(&slab_mutex);
507
508 s->refcount--;
509 if (s->refcount)
510 goto out_unlock;
511
512 err = shutdown_cache(s);
513 if (err) {
514 pr_err("%s %s: Slab cache still has objects\n",
515 __func__, s->name);
516 dump_stack();
517 }
518 out_unlock:
519 mutex_unlock(&slab_mutex);
520 cpus_read_unlock();
521 }
522 EXPORT_SYMBOL(kmem_cache_destroy);
523
524 /**
525 * kmem_cache_shrink - Shrink a cache.
526 * @cachep: The cache to shrink.
527 *
528 * Releases as many slabs as possible for a cache.
529 * To help debugging, a zero exit status indicates all slabs were released.
530 *
531 * Return: %0 if all slabs were released, non-zero otherwise
532 */
kmem_cache_shrink(struct kmem_cache * cachep)533 int kmem_cache_shrink(struct kmem_cache *cachep)
534 {
535 int ret;
536
537
538 kasan_cache_shrink(cachep);
539 ret = __kmem_cache_shrink(cachep);
540
541 return ret;
542 }
543 EXPORT_SYMBOL(kmem_cache_shrink);
544
slab_is_available(void)545 bool slab_is_available(void)
546 {
547 return slab_state >= UP;
548 }
549
550 #ifdef CONFIG_PRINTK
551 /**
552 * kmem_valid_obj - does the pointer reference a valid slab object?
553 * @object: pointer to query.
554 *
555 * Return: %true if the pointer is to a not-yet-freed object from
556 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
557 * is to an already-freed object, and %false otherwise.
558 */
kmem_valid_obj(void * object)559 bool kmem_valid_obj(void *object)
560 {
561 struct page *page;
562
563 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
564 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
565 return false;
566 page = virt_to_head_page(object);
567 return PageSlab(page);
568 }
569 EXPORT_SYMBOL_GPL(kmem_valid_obj);
570
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)571 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
572 {
573 if (__kfence_obj_info(kpp, object, page))
574 return;
575 __kmem_obj_info(kpp, object, page);
576 }
577
578 /**
579 * kmem_dump_obj - Print available slab provenance information
580 * @object: slab object for which to find provenance information.
581 *
582 * This function uses pr_cont(), so that the caller is expected to have
583 * printed out whatever preamble is appropriate. The provenance information
584 * depends on the type of object and on how much debugging is enabled.
585 * For a slab-cache object, the fact that it is a slab object is printed,
586 * and, if available, the slab name, return address, and stack trace from
587 * the allocation and last free path of that object.
588 *
589 * This function will splat if passed a pointer to a non-slab object.
590 * If you are not sure what type of object you have, you should instead
591 * use mem_dump_obj().
592 */
kmem_dump_obj(void * object)593 void kmem_dump_obj(void *object)
594 {
595 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
596 int i;
597 struct page *page;
598 unsigned long ptroffset;
599 struct kmem_obj_info kp = { };
600
601 if (WARN_ON_ONCE(!virt_addr_valid(object)))
602 return;
603 page = virt_to_head_page(object);
604 if (WARN_ON_ONCE(!PageSlab(page))) {
605 pr_cont(" non-slab memory.\n");
606 return;
607 }
608 kmem_obj_info(&kp, object, page);
609 if (kp.kp_slab_cache)
610 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
611 else
612 pr_cont(" slab%s", cp);
613 if (is_kfence_address(object))
614 pr_cont(" (kfence)");
615 if (kp.kp_objp)
616 pr_cont(" start %px", kp.kp_objp);
617 if (kp.kp_data_offset)
618 pr_cont(" data offset %lu", kp.kp_data_offset);
619 if (kp.kp_objp) {
620 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
621 pr_cont(" pointer offset %lu", ptroffset);
622 }
623 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
624 pr_cont(" size %u", kp.kp_slab_cache->usersize);
625 if (kp.kp_ret)
626 pr_cont(" allocated at %pS\n", kp.kp_ret);
627 else
628 pr_cont("\n");
629 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
630 if (!kp.kp_stack[i])
631 break;
632 pr_info(" %pS\n", kp.kp_stack[i]);
633 }
634
635 if (kp.kp_free_stack[0])
636 pr_cont(" Free path:\n");
637
638 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
639 if (!kp.kp_free_stack[i])
640 break;
641 pr_info(" %pS\n", kp.kp_free_stack[i]);
642 }
643
644 }
645 EXPORT_SYMBOL_GPL(kmem_dump_obj);
646 #endif
647
648 #ifndef CONFIG_SLOB
649 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)650 void __init create_boot_cache(struct kmem_cache *s, const char *name,
651 unsigned int size, slab_flags_t flags,
652 unsigned int useroffset, unsigned int usersize)
653 {
654 int err;
655 unsigned int align = ARCH_KMALLOC_MINALIGN;
656
657 s->name = name;
658 s->size = s->object_size = size;
659
660 /*
661 * For power of two sizes, guarantee natural alignment for kmalloc
662 * caches, regardless of SL*B debugging options.
663 */
664 if (is_power_of_2(size))
665 align = max(align, size);
666 s->align = calculate_alignment(flags, align, size);
667
668 s->useroffset = useroffset;
669 s->usersize = usersize;
670
671 err = __kmem_cache_create(s, flags);
672
673 if (err)
674 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
675 name, size, err);
676
677 s->refcount = -1; /* Exempt from merging for now */
678 }
679
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)680 struct kmem_cache *__init create_kmalloc_cache(const char *name,
681 unsigned int size, slab_flags_t flags,
682 unsigned int useroffset, unsigned int usersize)
683 {
684 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
685
686 if (!s)
687 panic("Out of memory when creating slab %s\n", name);
688
689 create_boot_cache(s, name, size, flags, useroffset, usersize);
690 kasan_cache_create_kmalloc(s);
691 list_add(&s->list, &slab_caches);
692 s->refcount = 1;
693 return s;
694 }
695
696 struct kmem_cache *
697 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
698 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
699 EXPORT_SYMBOL(kmalloc_caches);
700
701 /* This variable is intentionally unused. Preserved for KMI stability. */
702 bool android_kmalloc_64_create __ro_after_init;
703 EXPORT_SYMBOL(android_kmalloc_64_create);
704
705 /*
706 * Conversion table for small slabs sizes / 8 to the index in the
707 * kmalloc array. This is necessary for slabs < 192 since we have non power
708 * of two cache sizes there. The size of larger slabs can be determined using
709 * fls.
710 */
711 static u8 size_index[24] __ro_after_init = {
712 3, /* 8 */
713 4, /* 16 */
714 5, /* 24 */
715 5, /* 32 */
716 6, /* 40 */
717 6, /* 48 */
718 6, /* 56 */
719 6, /* 64 */
720 1, /* 72 */
721 1, /* 80 */
722 1, /* 88 */
723 1, /* 96 */
724 7, /* 104 */
725 7, /* 112 */
726 7, /* 120 */
727 7, /* 128 */
728 2, /* 136 */
729 2, /* 144 */
730 2, /* 152 */
731 2, /* 160 */
732 2, /* 168 */
733 2, /* 176 */
734 2, /* 184 */
735 2 /* 192 */
736 };
737
size_index_elem(unsigned int bytes)738 static inline unsigned int size_index_elem(unsigned int bytes)
739 {
740 return (bytes - 1) / 8;
741 }
742
743 /*
744 * Find the kmem_cache structure that serves a given size of
745 * allocation
746 */
kmalloc_slab(size_t size,gfp_t flags)747 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
748 {
749 unsigned int index;
750 struct kmem_cache *s = NULL;
751
752 if (size <= 192) {
753 if (!size)
754 return ZERO_SIZE_PTR;
755
756 index = size_index[size_index_elem(size)];
757 } else {
758 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
759 return NULL;
760 index = fls(size - 1);
761 }
762
763 trace_android_vh_kmalloc_slab(index, flags, &s);
764 if (s)
765 return s;
766
767 return kmalloc_caches[kmalloc_type(flags)][index];
768 }
769
770 #ifdef CONFIG_ZONE_DMA
771 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
772 #else
773 #define KMALLOC_DMA_NAME(sz)
774 #endif
775
776 #ifdef CONFIG_MEMCG_KMEM
777 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
778 #else
779 #define KMALLOC_CGROUP_NAME(sz)
780 #endif
781
782 #define INIT_KMALLOC_INFO(__size, __short_size) \
783 { \
784 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
785 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
786 KMALLOC_CGROUP_NAME(__short_size) \
787 KMALLOC_DMA_NAME(__short_size) \
788 .size = __size, \
789 }
790
791 /*
792 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
793 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
794 * kmalloc-32M.
795 */
796 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
797 INIT_KMALLOC_INFO(0, 0),
798 INIT_KMALLOC_INFO(96, 96),
799 INIT_KMALLOC_INFO(192, 192),
800 INIT_KMALLOC_INFO(8, 8),
801 INIT_KMALLOC_INFO(16, 16),
802 INIT_KMALLOC_INFO(32, 32),
803 INIT_KMALLOC_INFO(64, 64),
804 INIT_KMALLOC_INFO(128, 128),
805 INIT_KMALLOC_INFO(256, 256),
806 INIT_KMALLOC_INFO(512, 512),
807 INIT_KMALLOC_INFO(1024, 1k),
808 INIT_KMALLOC_INFO(2048, 2k),
809 INIT_KMALLOC_INFO(4096, 4k),
810 INIT_KMALLOC_INFO(8192, 8k),
811 INIT_KMALLOC_INFO(16384, 16k),
812 INIT_KMALLOC_INFO(32768, 32k),
813 INIT_KMALLOC_INFO(65536, 64k),
814 INIT_KMALLOC_INFO(131072, 128k),
815 INIT_KMALLOC_INFO(262144, 256k),
816 INIT_KMALLOC_INFO(524288, 512k),
817 INIT_KMALLOC_INFO(1048576, 1M),
818 INIT_KMALLOC_INFO(2097152, 2M),
819 INIT_KMALLOC_INFO(4194304, 4M),
820 INIT_KMALLOC_INFO(8388608, 8M),
821 INIT_KMALLOC_INFO(16777216, 16M),
822 INIT_KMALLOC_INFO(33554432, 32M)
823 };
824
825 /*
826 * Patch up the size_index table if we have strange large alignment
827 * requirements for the kmalloc array. This is only the case for
828 * MIPS it seems. The standard arches will not generate any code here.
829 *
830 * Largest permitted alignment is 256 bytes due to the way we
831 * handle the index determination for the smaller caches.
832 *
833 * Make sure that nothing crazy happens if someone starts tinkering
834 * around with ARCH_KMALLOC_MINALIGN
835 */
setup_kmalloc_cache_index_table(void)836 void __init setup_kmalloc_cache_index_table(void)
837 {
838 unsigned int i;
839
840 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
841 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
842
843 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
844 unsigned int elem = size_index_elem(i);
845
846 if (elem >= ARRAY_SIZE(size_index))
847 break;
848 size_index[elem] = KMALLOC_SHIFT_LOW;
849 }
850
851 if (KMALLOC_MIN_SIZE >= 64) {
852 /*
853 * The 96 byte size cache is not used if the alignment
854 * is 64 byte.
855 */
856 for (i = 64 + 8; i <= 96; i += 8)
857 size_index[size_index_elem(i)] = 7;
858
859 }
860
861 if (KMALLOC_MIN_SIZE >= 128) {
862 /*
863 * The 192 byte sized cache is not used if the alignment
864 * is 128 byte. Redirect kmalloc to use the 256 byte cache
865 * instead.
866 */
867 for (i = 128 + 8; i <= 192; i += 8)
868 size_index[size_index_elem(i)] = 8;
869 }
870 }
871
872 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)873 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
874 {
875 if (type == KMALLOC_RECLAIM) {
876 flags |= SLAB_RECLAIM_ACCOUNT;
877 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
878 if (cgroup_memory_nokmem) {
879 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
880 return;
881 }
882 flags |= SLAB_ACCOUNT;
883 }
884
885 kmalloc_caches[type][idx] = create_kmalloc_cache(
886 kmalloc_info[idx].name[type],
887 kmalloc_info[idx].size, flags, 0,
888 kmalloc_info[idx].size);
889
890 /*
891 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
892 * KMALLOC_NORMAL caches.
893 */
894 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
895 kmalloc_caches[type][idx]->refcount = -1;
896 }
897
898 /*
899 * Create the kmalloc array. Some of the regular kmalloc arrays
900 * may already have been created because they were needed to
901 * enable allocations for slab creation.
902 */
create_kmalloc_caches(slab_flags_t flags)903 void __init create_kmalloc_caches(slab_flags_t flags)
904 {
905 int i;
906 enum kmalloc_cache_type type;
907
908 /*
909 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
910 */
911 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
912 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
913 if (!kmalloc_caches[type][i])
914 new_kmalloc_cache(i, type, flags);
915
916 /*
917 * Caches that are not of the two-to-the-power-of size.
918 * These have to be created immediately after the
919 * earlier power of two caches
920 */
921 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
922 !kmalloc_caches[type][1])
923 new_kmalloc_cache(1, type, flags);
924 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
925 !kmalloc_caches[type][2])
926 new_kmalloc_cache(2, type, flags);
927 }
928 }
929
930 /* Kmalloc array is now usable */
931 slab_state = UP;
932
933 #ifdef CONFIG_ZONE_DMA
934 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
935 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
936
937 if (s) {
938 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
939 kmalloc_info[i].name[KMALLOC_DMA],
940 kmalloc_info[i].size,
941 SLAB_CACHE_DMA | flags, 0,
942 kmalloc_info[i].size);
943 }
944 }
945 #endif
946 }
947 #endif /* !CONFIG_SLOB */
948
kmalloc_fix_flags(gfp_t flags)949 gfp_t kmalloc_fix_flags(gfp_t flags)
950 {
951 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
952
953 flags &= ~GFP_SLAB_BUG_MASK;
954 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
955 invalid_mask, &invalid_mask, flags, &flags);
956 dump_stack();
957
958 return flags;
959 }
960
961 /*
962 * To avoid unnecessary overhead, we pass through large allocation requests
963 * directly to the page allocator. We use __GFP_COMP, because we will need to
964 * know the allocation order to free the pages properly in kfree.
965 */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)966 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
967 {
968 void *ret = NULL;
969 struct page *page;
970
971 if (unlikely(flags & GFP_SLAB_BUG_MASK))
972 flags = kmalloc_fix_flags(flags);
973
974 flags |= __GFP_COMP;
975 page = alloc_pages(flags, order);
976 if (likely(page)) {
977 ret = page_address(page);
978 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
979 PAGE_SIZE << order);
980 }
981
982 trace_android_vh_kmalloc_order_alloced(page, size, flags);
983
984 ret = kasan_kmalloc_large(ret, size, flags);
985 /* As ret might get tagged, call kmemleak hook after KASAN. */
986 kmemleak_alloc(ret, size, 1, flags);
987 return ret;
988 }
989 EXPORT_SYMBOL(kmalloc_order);
990
991 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)992 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
993 {
994 void *ret = kmalloc_order(size, flags, order);
995 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
996 return ret;
997 }
998 EXPORT_SYMBOL(kmalloc_order_trace);
999 #endif
1000
1001 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1002 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)1003 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1004 unsigned int count)
1005 {
1006 unsigned int rand;
1007 unsigned int i;
1008
1009 for (i = 0; i < count; i++)
1010 list[i] = i;
1011
1012 /* Fisher-Yates shuffle */
1013 for (i = count - 1; i > 0; i--) {
1014 rand = prandom_u32_state(state);
1015 rand %= (i + 1);
1016 swap(list[i], list[rand]);
1017 }
1018 }
1019
1020 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1021 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1022 gfp_t gfp)
1023 {
1024 struct rnd_state state;
1025
1026 if (count < 2 || cachep->random_seq)
1027 return 0;
1028
1029 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1030 if (!cachep->random_seq)
1031 return -ENOMEM;
1032
1033 /* Get best entropy at this stage of boot */
1034 prandom_seed_state(&state, get_random_long());
1035
1036 freelist_randomize(&state, cachep->random_seq, count);
1037 return 0;
1038 }
1039
1040 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1041 void cache_random_seq_destroy(struct kmem_cache *cachep)
1042 {
1043 kfree(cachep->random_seq);
1044 cachep->random_seq = NULL;
1045 }
1046 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1047
1048 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1049 #ifdef CONFIG_SLAB
1050 #define SLABINFO_RIGHTS (0600)
1051 #else
1052 #define SLABINFO_RIGHTS (0400)
1053 #endif
1054
print_slabinfo_header(struct seq_file * m)1055 static void print_slabinfo_header(struct seq_file *m)
1056 {
1057 /*
1058 * Output format version, so at least we can change it
1059 * without _too_ many complaints.
1060 */
1061 #ifdef CONFIG_DEBUG_SLAB
1062 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1063 #else
1064 seq_puts(m, "slabinfo - version: 2.1\n");
1065 #endif
1066 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1067 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1068 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1069 #ifdef CONFIG_DEBUG_SLAB
1070 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1071 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1072 #endif
1073 trace_android_vh_print_slabinfo_header(m);
1074 seq_putc(m, '\n');
1075 }
1076
slab_start(struct seq_file * m,loff_t * pos)1077 void *slab_start(struct seq_file *m, loff_t *pos)
1078 {
1079 mutex_lock(&slab_mutex);
1080 return seq_list_start(&slab_caches, *pos);
1081 }
1082
slab_next(struct seq_file * m,void * p,loff_t * pos)1083 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1084 {
1085 return seq_list_next(p, &slab_caches, pos);
1086 }
1087
slab_stop(struct seq_file * m,void * p)1088 void slab_stop(struct seq_file *m, void *p)
1089 {
1090 mutex_unlock(&slab_mutex);
1091 }
1092
cache_show(struct kmem_cache * s,struct seq_file * m)1093 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1094 {
1095 struct slabinfo sinfo;
1096
1097 memset(&sinfo, 0, sizeof(sinfo));
1098 get_slabinfo(s, &sinfo);
1099
1100 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1101 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1102 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1103
1104 seq_printf(m, " : tunables %4u %4u %4u",
1105 sinfo.limit, sinfo.batchcount, sinfo.shared);
1106 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1107 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1108 slabinfo_show_stats(m, s);
1109 trace_android_vh_cache_show(m, &sinfo, s);
1110 seq_putc(m, '\n');
1111 }
1112
slab_show(struct seq_file * m,void * p)1113 static int slab_show(struct seq_file *m, void *p)
1114 {
1115 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1116
1117 if (p == slab_caches.next)
1118 print_slabinfo_header(m);
1119 cache_show(s, m);
1120 return 0;
1121 }
1122
dump_unreclaimable_slab(void)1123 void dump_unreclaimable_slab(void)
1124 {
1125 struct kmem_cache *s;
1126 struct slabinfo sinfo;
1127
1128 /*
1129 * Here acquiring slab_mutex is risky since we don't prefer to get
1130 * sleep in oom path. But, without mutex hold, it may introduce a
1131 * risk of crash.
1132 * Use mutex_trylock to protect the list traverse, dump nothing
1133 * without acquiring the mutex.
1134 */
1135 if (!mutex_trylock(&slab_mutex)) {
1136 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1137 return;
1138 }
1139
1140 pr_info("Unreclaimable slab info:\n");
1141 pr_info("Name Used Total\n");
1142
1143 list_for_each_entry(s, &slab_caches, list) {
1144 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1145 continue;
1146
1147 get_slabinfo(s, &sinfo);
1148
1149 if (sinfo.num_objs > 0)
1150 pr_info("%-17s %10luKB %10luKB\n", s->name,
1151 (sinfo.active_objs * s->size) / 1024,
1152 (sinfo.num_objs * s->size) / 1024);
1153 }
1154 mutex_unlock(&slab_mutex);
1155 }
1156
1157 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1158 int memcg_slab_show(struct seq_file *m, void *p)
1159 {
1160 /*
1161 * Deprecated.
1162 * Please, take a look at tools/cgroup/slabinfo.py .
1163 */
1164 return 0;
1165 }
1166 #endif
1167
1168 /*
1169 * slabinfo_op - iterator that generates /proc/slabinfo
1170 *
1171 * Output layout:
1172 * cache-name
1173 * num-active-objs
1174 * total-objs
1175 * object size
1176 * num-active-slabs
1177 * total-slabs
1178 * num-pages-per-slab
1179 * + further values on SMP and with statistics enabled
1180 */
1181 static const struct seq_operations slabinfo_op = {
1182 .start = slab_start,
1183 .next = slab_next,
1184 .stop = slab_stop,
1185 .show = slab_show,
1186 };
1187
slabinfo_open(struct inode * inode,struct file * file)1188 static int slabinfo_open(struct inode *inode, struct file *file)
1189 {
1190 return seq_open(file, &slabinfo_op);
1191 }
1192
1193 static const struct proc_ops slabinfo_proc_ops = {
1194 .proc_flags = PROC_ENTRY_PERMANENT,
1195 .proc_open = slabinfo_open,
1196 .proc_read = seq_read,
1197 .proc_write = slabinfo_write,
1198 .proc_lseek = seq_lseek,
1199 .proc_release = seq_release,
1200 };
1201
slab_proc_init(void)1202 static int __init slab_proc_init(void)
1203 {
1204 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1205 return 0;
1206 }
1207 module_init(slab_proc_init);
1208
1209 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1210
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1211 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1212 gfp_t flags)
1213 {
1214 void *ret;
1215 size_t ks;
1216
1217 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1218 if (likely(!ZERO_OR_NULL_PTR(p))) {
1219 if (!kasan_check_byte(p))
1220 return NULL;
1221 ks = kfence_ksize(p) ?: __ksize(p);
1222 } else
1223 ks = 0;
1224
1225 /* If the object still fits, repoison it precisely. */
1226 if (ks >= new_size) {
1227 p = kasan_krealloc((void *)p, new_size, flags);
1228 return (void *)p;
1229 }
1230
1231 ret = kmalloc_track_caller(new_size, flags);
1232 if (ret && p) {
1233 /* Disable KASAN checks as the object's redzone is accessed. */
1234 kasan_disable_current();
1235 memcpy(ret, kasan_reset_tag(p), ks);
1236 kasan_enable_current();
1237 }
1238
1239 return ret;
1240 }
1241
1242 /**
1243 * krealloc - reallocate memory. The contents will remain unchanged.
1244 * @p: object to reallocate memory for.
1245 * @new_size: how many bytes of memory are required.
1246 * @flags: the type of memory to allocate.
1247 *
1248 * The contents of the object pointed to are preserved up to the
1249 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1250 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1251 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1252 *
1253 * Return: pointer to the allocated memory or %NULL in case of error
1254 */
krealloc(const void * p,size_t new_size,gfp_t flags)1255 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1256 {
1257 void *ret;
1258
1259 if (unlikely(!new_size)) {
1260 kfree(p);
1261 return ZERO_SIZE_PTR;
1262 }
1263
1264 ret = __do_krealloc(p, new_size, flags);
1265 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1266 kfree(p);
1267
1268 return ret;
1269 }
1270 EXPORT_SYMBOL(krealloc);
1271
1272 /**
1273 * kfree_sensitive - Clear sensitive information in memory before freeing
1274 * @p: object to free memory of
1275 *
1276 * The memory of the object @p points to is zeroed before freed.
1277 * If @p is %NULL, kfree_sensitive() does nothing.
1278 *
1279 * Note: this function zeroes the whole allocated buffer which can be a good
1280 * deal bigger than the requested buffer size passed to kmalloc(). So be
1281 * careful when using this function in performance sensitive code.
1282 */
kfree_sensitive(const void * p)1283 void kfree_sensitive(const void *p)
1284 {
1285 size_t ks;
1286 void *mem = (void *)p;
1287
1288 ks = ksize(mem);
1289 if (ks)
1290 memzero_explicit(mem, ks);
1291 kfree(mem);
1292 }
1293 EXPORT_SYMBOL(kfree_sensitive);
1294
1295 /**
1296 * ksize - get the actual amount of memory allocated for a given object
1297 * @objp: Pointer to the object
1298 *
1299 * kmalloc may internally round up allocations and return more memory
1300 * than requested. ksize() can be used to determine the actual amount of
1301 * memory allocated. The caller may use this additional memory, even though
1302 * a smaller amount of memory was initially specified with the kmalloc call.
1303 * The caller must guarantee that objp points to a valid object previously
1304 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1305 * must not be freed during the duration of the call.
1306 *
1307 * Return: size of the actual memory used by @objp in bytes
1308 */
ksize(const void * objp)1309 size_t ksize(const void *objp)
1310 {
1311 size_t size;
1312
1313 /*
1314 * We need to first check that the pointer to the object is valid, and
1315 * only then unpoison the memory. The report printed from ksize() is
1316 * more useful, then when it's printed later when the behaviour could
1317 * be undefined due to a potential use-after-free or double-free.
1318 *
1319 * We use kasan_check_byte(), which is supported for the hardware
1320 * tag-based KASAN mode, unlike kasan_check_read/write().
1321 *
1322 * If the pointed to memory is invalid, we return 0 to avoid users of
1323 * ksize() writing to and potentially corrupting the memory region.
1324 *
1325 * We want to perform the check before __ksize(), to avoid potentially
1326 * crashing in __ksize() due to accessing invalid metadata.
1327 */
1328 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1329 return 0;
1330
1331 size = kfence_ksize(objp) ?: __ksize(objp);
1332 /*
1333 * We assume that ksize callers could use whole allocated area,
1334 * so we need to unpoison this area.
1335 */
1336 kasan_unpoison_range(objp, size);
1337 return size;
1338 }
1339 EXPORT_SYMBOL(ksize);
1340
1341 /* Tracepoints definitions. */
1342 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1343 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1344 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1345 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1346 EXPORT_TRACEPOINT_SYMBOL(kfree);
1347 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1348
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1349 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1350 {
1351 if (__should_failslab(s, gfpflags))
1352 return -ENOMEM;
1353 return 0;
1354 }
1355 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1356