• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 #include <trace/hooks/timekeeping.h>
28 
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32 
33 #define TK_CLEAR_NTP		(1 << 0)
34 #define TK_MIRROR		(1 << 1)
35 #define TK_CLOCK_WAS_SET	(1 << 2)
36 
37 enum timekeeping_adv_mode {
38 	/* Update timekeeper when a tick has passed */
39 	TK_ADV_TICK,
40 
41 	/* Update timekeeper on a direct frequency change */
42 	TK_ADV_FREQ
43 };
44 
45 DEFINE_RAW_SPINLOCK(timekeeper_lock);
46 
47 /*
48  * The most important data for readout fits into a single 64 byte
49  * cache line.
50  */
51 static struct {
52 	seqcount_raw_spinlock_t	seq;
53 	struct timekeeper	timekeeper;
54 } tk_core ____cacheline_aligned = {
55 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
56 };
57 
58 static struct timekeeper shadow_timekeeper;
59 
60 /* flag for if timekeeping is suspended */
61 int __read_mostly timekeeping_suspended;
62 
63 /**
64  * struct tk_fast - NMI safe timekeeper
65  * @seq:	Sequence counter for protecting updates. The lowest bit
66  *		is the index for the tk_read_base array
67  * @base:	tk_read_base array. Access is indexed by the lowest bit of
68  *		@seq.
69  *
70  * See @update_fast_timekeeper() below.
71  */
72 struct tk_fast {
73 	seqcount_latch_t	seq;
74 	struct tk_read_base	base[2];
75 };
76 
77 /* Suspend-time cycles value for halted fast timekeeper. */
78 static u64 cycles_at_suspend;
79 
dummy_clock_read(struct clocksource * cs)80 static u64 dummy_clock_read(struct clocksource *cs)
81 {
82 	if (timekeeping_suspended)
83 		return cycles_at_suspend;
84 	return local_clock();
85 }
86 
87 static struct clocksource dummy_clock = {
88 	.read = dummy_clock_read,
89 };
90 
91 /*
92  * Boot time initialization which allows local_clock() to be utilized
93  * during early boot when clocksources are not available. local_clock()
94  * returns nanoseconds already so no conversion is required, hence mult=1
95  * and shift=0. When the first proper clocksource is installed then
96  * the fast time keepers are updated with the correct values.
97  */
98 #define FAST_TK_INIT						\
99 	{							\
100 		.clock		= &dummy_clock,			\
101 		.mask		= CLOCKSOURCE_MASK(64),		\
102 		.mult		= 1,				\
103 		.shift		= 0,				\
104 	}
105 
106 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
107 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
108 	.base[0] = FAST_TK_INIT,
109 	.base[1] = FAST_TK_INIT,
110 };
111 
112 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
113 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
114 	.base[0] = FAST_TK_INIT,
115 	.base[1] = FAST_TK_INIT,
116 };
117 
tk_normalize_xtime(struct timekeeper * tk)118 static inline void tk_normalize_xtime(struct timekeeper *tk)
119 {
120 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
121 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
122 		tk->xtime_sec++;
123 	}
124 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
125 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
126 		tk->raw_sec++;
127 	}
128 }
129 
tk_xtime(const struct timekeeper * tk)130 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
131 {
132 	struct timespec64 ts;
133 
134 	ts.tv_sec = tk->xtime_sec;
135 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
136 	return ts;
137 }
138 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)139 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
140 {
141 	tk->xtime_sec = ts->tv_sec;
142 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
143 }
144 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)145 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
146 {
147 	tk->xtime_sec += ts->tv_sec;
148 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
149 	tk_normalize_xtime(tk);
150 }
151 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)152 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
153 {
154 	struct timespec64 tmp;
155 
156 	/*
157 	 * Verify consistency of: offset_real = -wall_to_monotonic
158 	 * before modifying anything
159 	 */
160 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
161 					-tk->wall_to_monotonic.tv_nsec);
162 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
163 	tk->wall_to_monotonic = wtm;
164 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
165 	tk->offs_real = timespec64_to_ktime(tmp);
166 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
167 }
168 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)169 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
170 {
171 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
172 	/*
173 	 * Timespec representation for VDSO update to avoid 64bit division
174 	 * on every update.
175 	 */
176 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
177 }
178 
179 /*
180  * tk_clock_read - atomic clocksource read() helper
181  *
182  * This helper is necessary to use in the read paths because, while the
183  * seqcount ensures we don't return a bad value while structures are updated,
184  * it doesn't protect from potential crashes. There is the possibility that
185  * the tkr's clocksource may change between the read reference, and the
186  * clock reference passed to the read function.  This can cause crashes if
187  * the wrong clocksource is passed to the wrong read function.
188  * This isn't necessary to use when holding the timekeeper_lock or doing
189  * a read of the fast-timekeeper tkrs (which is protected by its own locking
190  * and update logic).
191  */
tk_clock_read(const struct tk_read_base * tkr)192 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
193 {
194 	struct clocksource *clock = READ_ONCE(tkr->clock);
195 
196 	return clock->read(clock);
197 }
198 
199 #ifdef CONFIG_DEBUG_TIMEKEEPING
200 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
201 
timekeeping_check_update(struct timekeeper * tk,u64 offset)202 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204 
205 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
206 	const char *name = tk->tkr_mono.clock->name;
207 
208 	if (offset > max_cycles) {
209 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
210 				offset, name, max_cycles);
211 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
212 	} else {
213 		if (offset > (max_cycles >> 1)) {
214 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
215 					offset, name, max_cycles >> 1);
216 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
217 		}
218 	}
219 
220 	if (tk->underflow_seen) {
221 		if (jiffies - tk->last_warning > WARNING_FREQ) {
222 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
223 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
224 			printk_deferred("         Your kernel is probably still fine.\n");
225 			tk->last_warning = jiffies;
226 		}
227 		tk->underflow_seen = 0;
228 	}
229 
230 	if (tk->overflow_seen) {
231 		if (jiffies - tk->last_warning > WARNING_FREQ) {
232 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
233 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
234 			printk_deferred("         Your kernel is probably still fine.\n");
235 			tk->last_warning = jiffies;
236 		}
237 		tk->overflow_seen = 0;
238 	}
239 }
240 
timekeeping_get_delta(const struct tk_read_base * tkr)241 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
242 {
243 	struct timekeeper *tk = &tk_core.timekeeper;
244 	u64 now, last, mask, max, delta;
245 	unsigned int seq;
246 
247 	/*
248 	 * Since we're called holding a seqcount, the data may shift
249 	 * under us while we're doing the calculation. This can cause
250 	 * false positives, since we'd note a problem but throw the
251 	 * results away. So nest another seqcount here to atomically
252 	 * grab the points we are checking with.
253 	 */
254 	do {
255 		seq = read_seqcount_begin(&tk_core.seq);
256 		now = tk_clock_read(tkr);
257 		last = tkr->cycle_last;
258 		mask = tkr->mask;
259 		max = tkr->clock->max_cycles;
260 	} while (read_seqcount_retry(&tk_core.seq, seq));
261 
262 	delta = clocksource_delta(now, last, mask);
263 
264 	/*
265 	 * Try to catch underflows by checking if we are seeing small
266 	 * mask-relative negative values.
267 	 */
268 	if (unlikely((~delta & mask) < (mask >> 3))) {
269 		tk->underflow_seen = 1;
270 		delta = 0;
271 	}
272 
273 	/* Cap delta value to the max_cycles values to avoid mult overflows */
274 	if (unlikely(delta > max)) {
275 		tk->overflow_seen = 1;
276 		delta = tkr->clock->max_cycles;
277 	}
278 
279 	return delta;
280 }
281 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)282 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
283 {
284 }
timekeeping_get_delta(const struct tk_read_base * tkr)285 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
286 {
287 	u64 cycle_now, delta;
288 
289 	/* read clocksource */
290 	cycle_now = tk_clock_read(tkr);
291 
292 	/* calculate the delta since the last update_wall_time */
293 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
294 
295 	return delta;
296 }
297 #endif
298 
299 /**
300  * tk_setup_internals - Set up internals to use clocksource clock.
301  *
302  * @tk:		The target timekeeper to setup.
303  * @clock:		Pointer to clocksource.
304  *
305  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
306  * pair and interval request.
307  *
308  * Unless you're the timekeeping code, you should not be using this!
309  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)310 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
311 {
312 	u64 interval;
313 	u64 tmp, ntpinterval;
314 	struct clocksource *old_clock;
315 
316 	++tk->cs_was_changed_seq;
317 	old_clock = tk->tkr_mono.clock;
318 	tk->tkr_mono.clock = clock;
319 	tk->tkr_mono.mask = clock->mask;
320 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
321 
322 	tk->tkr_raw.clock = clock;
323 	tk->tkr_raw.mask = clock->mask;
324 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
325 
326 	/* Do the ns -> cycle conversion first, using original mult */
327 	tmp = NTP_INTERVAL_LENGTH;
328 	tmp <<= clock->shift;
329 	ntpinterval = tmp;
330 	tmp += clock->mult/2;
331 	do_div(tmp, clock->mult);
332 	if (tmp == 0)
333 		tmp = 1;
334 
335 	interval = (u64) tmp;
336 	tk->cycle_interval = interval;
337 
338 	/* Go back from cycles -> shifted ns */
339 	tk->xtime_interval = interval * clock->mult;
340 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
341 	tk->raw_interval = interval * clock->mult;
342 
343 	 /* if changing clocks, convert xtime_nsec shift units */
344 	if (old_clock) {
345 		int shift_change = clock->shift - old_clock->shift;
346 		if (shift_change < 0) {
347 			tk->tkr_mono.xtime_nsec >>= -shift_change;
348 			tk->tkr_raw.xtime_nsec >>= -shift_change;
349 		} else {
350 			tk->tkr_mono.xtime_nsec <<= shift_change;
351 			tk->tkr_raw.xtime_nsec <<= shift_change;
352 		}
353 	}
354 
355 	tk->tkr_mono.shift = clock->shift;
356 	tk->tkr_raw.shift = clock->shift;
357 
358 	tk->ntp_error = 0;
359 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
360 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
361 
362 	/*
363 	 * The timekeeper keeps its own mult values for the currently
364 	 * active clocksource. These value will be adjusted via NTP
365 	 * to counteract clock drifting.
366 	 */
367 	tk->tkr_mono.mult = clock->mult;
368 	tk->tkr_raw.mult = clock->mult;
369 	tk->ntp_err_mult = 0;
370 	tk->skip_second_overflow = 0;
371 }
372 
373 /* Timekeeper helper functions. */
374 
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)375 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
376 {
377 	u64 nsec;
378 
379 	nsec = delta * tkr->mult + tkr->xtime_nsec;
380 	nsec >>= tkr->shift;
381 
382 	return nsec;
383 }
384 
timekeeping_get_ns(const struct tk_read_base * tkr)385 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
386 {
387 	u64 delta;
388 
389 	delta = timekeeping_get_delta(tkr);
390 	return timekeeping_delta_to_ns(tkr, delta);
391 }
392 
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)393 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
394 {
395 	u64 delta;
396 
397 	/* calculate the delta since the last update_wall_time */
398 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
399 	return timekeeping_delta_to_ns(tkr, delta);
400 }
401 
402 /**
403  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
404  * @tkr: Timekeeping readout base from which we take the update
405  * @tkf: Pointer to NMI safe timekeeper
406  *
407  * We want to use this from any context including NMI and tracing /
408  * instrumenting the timekeeping code itself.
409  *
410  * Employ the latch technique; see @raw_write_seqcount_latch.
411  *
412  * So if a NMI hits the update of base[0] then it will use base[1]
413  * which is still consistent. In the worst case this can result is a
414  * slightly wrong timestamp (a few nanoseconds). See
415  * @ktime_get_mono_fast_ns.
416  */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)417 static void update_fast_timekeeper(const struct tk_read_base *tkr,
418 				   struct tk_fast *tkf)
419 {
420 	struct tk_read_base *base = tkf->base;
421 
422 	/* Force readers off to base[1] */
423 	raw_write_seqcount_latch(&tkf->seq);
424 
425 	/* Update base[0] */
426 	memcpy(base, tkr, sizeof(*base));
427 
428 	/* Force readers back to base[0] */
429 	raw_write_seqcount_latch(&tkf->seq);
430 
431 	/* Update base[1] */
432 	memcpy(base + 1, base, sizeof(*base));
433 }
434 
__ktime_get_fast_ns(struct tk_fast * tkf)435 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
436 {
437 	struct tk_read_base *tkr;
438 	unsigned int seq;
439 	u64 now;
440 
441 	do {
442 		seq = raw_read_seqcount_latch(&tkf->seq);
443 		tkr = tkf->base + (seq & 0x01);
444 		now = ktime_to_ns(tkr->base);
445 
446 		now += timekeeping_delta_to_ns(tkr,
447 				clocksource_delta(
448 					tk_clock_read(tkr),
449 					tkr->cycle_last,
450 					tkr->mask));
451 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
452 
453 	return now;
454 }
455 
456 /**
457  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
458  *
459  * This timestamp is not guaranteed to be monotonic across an update.
460  * The timestamp is calculated by:
461  *
462  *	now = base_mono + clock_delta * slope
463  *
464  * So if the update lowers the slope, readers who are forced to the
465  * not yet updated second array are still using the old steeper slope.
466  *
467  * tmono
468  * ^
469  * |    o  n
470  * |   o n
471  * |  u
472  * | o
473  * |o
474  * |12345678---> reader order
475  *
476  * o = old slope
477  * u = update
478  * n = new slope
479  *
480  * So reader 6 will observe time going backwards versus reader 5.
481  *
482  * While other CPUs are likely to be able to observe that, the only way
483  * for a CPU local observation is when an NMI hits in the middle of
484  * the update. Timestamps taken from that NMI context might be ahead
485  * of the following timestamps. Callers need to be aware of that and
486  * deal with it.
487  */
ktime_get_mono_fast_ns(void)488 u64 notrace ktime_get_mono_fast_ns(void)
489 {
490 	return __ktime_get_fast_ns(&tk_fast_mono);
491 }
492 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
493 
494 /**
495  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
496  *
497  * Contrary to ktime_get_mono_fast_ns() this is always correct because the
498  * conversion factor is not affected by NTP/PTP correction.
499  */
ktime_get_raw_fast_ns(void)500 u64 notrace ktime_get_raw_fast_ns(void)
501 {
502 	return __ktime_get_fast_ns(&tk_fast_raw);
503 }
504 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
505 
506 /**
507  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
508  *
509  * To keep it NMI safe since we're accessing from tracing, we're not using a
510  * separate timekeeper with updates to monotonic clock and boot offset
511  * protected with seqcounts. This has the following minor side effects:
512  *
513  * (1) Its possible that a timestamp be taken after the boot offset is updated
514  * but before the timekeeper is updated. If this happens, the new boot offset
515  * is added to the old timekeeping making the clock appear to update slightly
516  * earlier:
517  *    CPU 0                                        CPU 1
518  *    timekeeping_inject_sleeptime64()
519  *    __timekeeping_inject_sleeptime(tk, delta);
520  *                                                 timestamp();
521  *    timekeeping_update(tk, TK_CLEAR_NTP...);
522  *
523  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
524  * partially updated.  Since the tk->offs_boot update is a rare event, this
525  * should be a rare occurrence which postprocessing should be able to handle.
526  *
527  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
528  * apply as well.
529  */
ktime_get_boot_fast_ns(void)530 u64 notrace ktime_get_boot_fast_ns(void)
531 {
532 	struct timekeeper *tk = &tk_core.timekeeper;
533 
534 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
535 }
536 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
537 
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)538 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
539 {
540 	struct tk_read_base *tkr;
541 	u64 basem, baser, delta;
542 	unsigned int seq;
543 
544 	do {
545 		seq = raw_read_seqcount_latch(&tkf->seq);
546 		tkr = tkf->base + (seq & 0x01);
547 		basem = ktime_to_ns(tkr->base);
548 		baser = ktime_to_ns(tkr->base_real);
549 
550 		delta = timekeeping_delta_to_ns(tkr,
551 				clocksource_delta(tk_clock_read(tkr),
552 				tkr->cycle_last, tkr->mask));
553 	} while (read_seqcount_latch_retry(&tkf->seq, seq));
554 
555 	if (mono)
556 		*mono = basem + delta;
557 	return baser + delta;
558 }
559 
560 /**
561  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
562  *
563  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
564  */
ktime_get_real_fast_ns(void)565 u64 ktime_get_real_fast_ns(void)
566 {
567 	return __ktime_get_real_fast(&tk_fast_mono, NULL);
568 }
569 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
570 
571 /**
572  * ktime_get_fast_timestamps: - NMI safe timestamps
573  * @snapshot:	Pointer to timestamp storage
574  *
575  * Stores clock monotonic, boottime and realtime timestamps.
576  *
577  * Boot time is a racy access on 32bit systems if the sleep time injection
578  * happens late during resume and not in timekeeping_resume(). That could
579  * be avoided by expanding struct tk_read_base with boot offset for 32bit
580  * and adding more overhead to the update. As this is a hard to observe
581  * once per resume event which can be filtered with reasonable effort using
582  * the accurate mono/real timestamps, it's probably not worth the trouble.
583  *
584  * Aside of that it might be possible on 32 and 64 bit to observe the
585  * following when the sleep time injection happens late:
586  *
587  * CPU 0				CPU 1
588  * timekeeping_resume()
589  * ktime_get_fast_timestamps()
590  *	mono, real = __ktime_get_real_fast()
591  *					inject_sleep_time()
592  *					   update boot offset
593  *	boot = mono + bootoffset;
594  *
595  * That means that boot time already has the sleep time adjustment, but
596  * real time does not. On the next readout both are in sync again.
597  *
598  * Preventing this for 64bit is not really feasible without destroying the
599  * careful cache layout of the timekeeper because the sequence count and
600  * struct tk_read_base would then need two cache lines instead of one.
601  *
602  * Access to the time keeper clock source is disabled across the innermost
603  * steps of suspend/resume. The accessors still work, but the timestamps
604  * are frozen until time keeping is resumed which happens very early.
605  *
606  * For regular suspend/resume there is no observable difference vs. sched
607  * clock, but it might affect some of the nasty low level debug printks.
608  *
609  * OTOH, access to sched clock is not guaranteed across suspend/resume on
610  * all systems either so it depends on the hardware in use.
611  *
612  * If that turns out to be a real problem then this could be mitigated by
613  * using sched clock in a similar way as during early boot. But it's not as
614  * trivial as on early boot because it needs some careful protection
615  * against the clock monotonic timestamp jumping backwards on resume.
616  */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)617 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
618 {
619 	struct timekeeper *tk = &tk_core.timekeeper;
620 
621 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
622 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
623 }
624 
625 /**
626  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
627  * @tk: Timekeeper to snapshot.
628  *
629  * It generally is unsafe to access the clocksource after timekeeping has been
630  * suspended, so take a snapshot of the readout base of @tk and use it as the
631  * fast timekeeper's readout base while suspended.  It will return the same
632  * number of cycles every time until timekeeping is resumed at which time the
633  * proper readout base for the fast timekeeper will be restored automatically.
634  */
halt_fast_timekeeper(const struct timekeeper * tk)635 static void halt_fast_timekeeper(const struct timekeeper *tk)
636 {
637 	static struct tk_read_base tkr_dummy;
638 	const struct tk_read_base *tkr = &tk->tkr_mono;
639 
640 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
641 	cycles_at_suspend = tk_clock_read(tkr);
642 	tkr_dummy.clock = &dummy_clock;
643 	tkr_dummy.base_real = tkr->base + tk->offs_real;
644 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
645 
646 	tkr = &tk->tkr_raw;
647 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
648 	tkr_dummy.clock = &dummy_clock;
649 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
650 }
651 
652 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
653 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)654 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
655 {
656 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
657 }
658 
659 /**
660  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
661  * @nb: Pointer to the notifier block to register
662  */
pvclock_gtod_register_notifier(struct notifier_block * nb)663 int pvclock_gtod_register_notifier(struct notifier_block *nb)
664 {
665 	struct timekeeper *tk = &tk_core.timekeeper;
666 	unsigned long flags;
667 	int ret;
668 
669 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
670 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
671 	update_pvclock_gtod(tk, true);
672 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
673 
674 	return ret;
675 }
676 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
677 
678 /**
679  * pvclock_gtod_unregister_notifier - unregister a pvclock
680  * timedata update listener
681  * @nb: Pointer to the notifier block to unregister
682  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)683 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
684 {
685 	unsigned long flags;
686 	int ret;
687 
688 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
689 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
690 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
691 
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
695 
696 /*
697  * tk_update_leap_state - helper to update the next_leap_ktime
698  */
tk_update_leap_state(struct timekeeper * tk)699 static inline void tk_update_leap_state(struct timekeeper *tk)
700 {
701 	tk->next_leap_ktime = ntp_get_next_leap();
702 	if (tk->next_leap_ktime != KTIME_MAX)
703 		/* Convert to monotonic time */
704 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
705 }
706 
707 /*
708  * Update the ktime_t based scalar nsec members of the timekeeper
709  */
tk_update_ktime_data(struct timekeeper * tk)710 static inline void tk_update_ktime_data(struct timekeeper *tk)
711 {
712 	u64 seconds;
713 	u32 nsec;
714 
715 	/*
716 	 * The xtime based monotonic readout is:
717 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
718 	 * The ktime based monotonic readout is:
719 	 *	nsec = base_mono + now();
720 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
721 	 */
722 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
723 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
724 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
725 
726 	/*
727 	 * The sum of the nanoseconds portions of xtime and
728 	 * wall_to_monotonic can be greater/equal one second. Take
729 	 * this into account before updating tk->ktime_sec.
730 	 */
731 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
732 	if (nsec >= NSEC_PER_SEC)
733 		seconds++;
734 	tk->ktime_sec = seconds;
735 
736 	/* Update the monotonic raw base */
737 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
738 }
739 
740 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)741 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
742 {
743 	if (action & TK_CLEAR_NTP) {
744 		tk->ntp_error = 0;
745 		ntp_clear();
746 	}
747 
748 	tk_update_leap_state(tk);
749 	tk_update_ktime_data(tk);
750 
751 	update_vsyscall(tk);
752 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
753 
754 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
755 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
756 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
757 
758 	if (action & TK_CLOCK_WAS_SET)
759 		tk->clock_was_set_seq++;
760 	/*
761 	 * The mirroring of the data to the shadow-timekeeper needs
762 	 * to happen last here to ensure we don't over-write the
763 	 * timekeeper structure on the next update with stale data
764 	 */
765 	if (action & TK_MIRROR)
766 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
767 		       sizeof(tk_core.timekeeper));
768 }
769 
770 /**
771  * timekeeping_forward_now - update clock to the current time
772  * @tk:		Pointer to the timekeeper to update
773  *
774  * Forward the current clock to update its state since the last call to
775  * update_wall_time(). This is useful before significant clock changes,
776  * as it avoids having to deal with this time offset explicitly.
777  */
timekeeping_forward_now(struct timekeeper * tk)778 static void timekeeping_forward_now(struct timekeeper *tk)
779 {
780 	u64 cycle_now, delta;
781 
782 	cycle_now = tk_clock_read(&tk->tkr_mono);
783 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
784 	tk->tkr_mono.cycle_last = cycle_now;
785 	tk->tkr_raw.cycle_last  = cycle_now;
786 
787 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
788 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
789 
790 	tk_normalize_xtime(tk);
791 }
792 
793 /**
794  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
795  * @ts:		pointer to the timespec to be set
796  *
797  * Returns the time of day in a timespec64 (WARN if suspended).
798  */
ktime_get_real_ts64(struct timespec64 * ts)799 void ktime_get_real_ts64(struct timespec64 *ts)
800 {
801 	struct timekeeper *tk = &tk_core.timekeeper;
802 	unsigned int seq;
803 	u64 nsecs;
804 
805 	WARN_ON(timekeeping_suspended);
806 
807 	do {
808 		seq = read_seqcount_begin(&tk_core.seq);
809 
810 		ts->tv_sec = tk->xtime_sec;
811 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
812 
813 	} while (read_seqcount_retry(&tk_core.seq, seq));
814 
815 	ts->tv_nsec = 0;
816 	timespec64_add_ns(ts, nsecs);
817 }
818 EXPORT_SYMBOL(ktime_get_real_ts64);
819 
ktime_get(void)820 ktime_t ktime_get(void)
821 {
822 	struct timekeeper *tk = &tk_core.timekeeper;
823 	unsigned int seq;
824 	ktime_t base;
825 	u64 nsecs;
826 
827 	WARN_ON(timekeeping_suspended);
828 
829 	do {
830 		seq = read_seqcount_begin(&tk_core.seq);
831 		base = tk->tkr_mono.base;
832 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
833 
834 	} while (read_seqcount_retry(&tk_core.seq, seq));
835 
836 	return ktime_add_ns(base, nsecs);
837 }
838 EXPORT_SYMBOL_GPL(ktime_get);
839 
ktime_get_resolution_ns(void)840 u32 ktime_get_resolution_ns(void)
841 {
842 	struct timekeeper *tk = &tk_core.timekeeper;
843 	unsigned int seq;
844 	u32 nsecs;
845 
846 	WARN_ON(timekeeping_suspended);
847 
848 	do {
849 		seq = read_seqcount_begin(&tk_core.seq);
850 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
851 	} while (read_seqcount_retry(&tk_core.seq, seq));
852 
853 	return nsecs;
854 }
855 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
856 
857 static ktime_t *offsets[TK_OFFS_MAX] = {
858 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
859 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
860 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
861 };
862 
ktime_get_with_offset(enum tk_offsets offs)863 ktime_t ktime_get_with_offset(enum tk_offsets offs)
864 {
865 	struct timekeeper *tk = &tk_core.timekeeper;
866 	unsigned int seq;
867 	ktime_t base, *offset = offsets[offs];
868 	u64 nsecs;
869 
870 	WARN_ON(timekeeping_suspended);
871 
872 	do {
873 		seq = read_seqcount_begin(&tk_core.seq);
874 		base = ktime_add(tk->tkr_mono.base, *offset);
875 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
876 
877 	} while (read_seqcount_retry(&tk_core.seq, seq));
878 
879 	return ktime_add_ns(base, nsecs);
880 
881 }
882 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
883 
ktime_get_coarse_with_offset(enum tk_offsets offs)884 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
885 {
886 	struct timekeeper *tk = &tk_core.timekeeper;
887 	unsigned int seq;
888 	ktime_t base, *offset = offsets[offs];
889 	u64 nsecs;
890 
891 	WARN_ON(timekeeping_suspended);
892 
893 	do {
894 		seq = read_seqcount_begin(&tk_core.seq);
895 		base = ktime_add(tk->tkr_mono.base, *offset);
896 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
897 
898 	} while (read_seqcount_retry(&tk_core.seq, seq));
899 
900 	return ktime_add_ns(base, nsecs);
901 }
902 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
903 
904 /**
905  * ktime_mono_to_any() - convert monotonic time to any other time
906  * @tmono:	time to convert.
907  * @offs:	which offset to use
908  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)909 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
910 {
911 	ktime_t *offset = offsets[offs];
912 	unsigned int seq;
913 	ktime_t tconv;
914 
915 	do {
916 		seq = read_seqcount_begin(&tk_core.seq);
917 		tconv = ktime_add(tmono, *offset);
918 	} while (read_seqcount_retry(&tk_core.seq, seq));
919 
920 	return tconv;
921 }
922 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
923 
924 /**
925  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
926  */
ktime_get_raw(void)927 ktime_t ktime_get_raw(void)
928 {
929 	struct timekeeper *tk = &tk_core.timekeeper;
930 	unsigned int seq;
931 	ktime_t base;
932 	u64 nsecs;
933 
934 	do {
935 		seq = read_seqcount_begin(&tk_core.seq);
936 		base = tk->tkr_raw.base;
937 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
938 
939 	} while (read_seqcount_retry(&tk_core.seq, seq));
940 
941 	return ktime_add_ns(base, nsecs);
942 }
943 EXPORT_SYMBOL_GPL(ktime_get_raw);
944 
945 /**
946  * ktime_get_ts64 - get the monotonic clock in timespec64 format
947  * @ts:		pointer to timespec variable
948  *
949  * The function calculates the monotonic clock from the realtime
950  * clock and the wall_to_monotonic offset and stores the result
951  * in normalized timespec64 format in the variable pointed to by @ts.
952  */
ktime_get_ts64(struct timespec64 * ts)953 void ktime_get_ts64(struct timespec64 *ts)
954 {
955 	struct timekeeper *tk = &tk_core.timekeeper;
956 	struct timespec64 tomono;
957 	unsigned int seq;
958 	u64 nsec;
959 
960 	WARN_ON(timekeeping_suspended);
961 
962 	do {
963 		seq = read_seqcount_begin(&tk_core.seq);
964 		ts->tv_sec = tk->xtime_sec;
965 		nsec = timekeeping_get_ns(&tk->tkr_mono);
966 		tomono = tk->wall_to_monotonic;
967 
968 	} while (read_seqcount_retry(&tk_core.seq, seq));
969 
970 	ts->tv_sec += tomono.tv_sec;
971 	ts->tv_nsec = 0;
972 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
973 }
974 EXPORT_SYMBOL_GPL(ktime_get_ts64);
975 
976 /**
977  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
978  *
979  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
980  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
981  * works on both 32 and 64 bit systems. On 32 bit systems the readout
982  * covers ~136 years of uptime which should be enough to prevent
983  * premature wrap arounds.
984  */
ktime_get_seconds(void)985 time64_t ktime_get_seconds(void)
986 {
987 	struct timekeeper *tk = &tk_core.timekeeper;
988 
989 	WARN_ON(timekeeping_suspended);
990 	return tk->ktime_sec;
991 }
992 EXPORT_SYMBOL_GPL(ktime_get_seconds);
993 
994 /**
995  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
996  *
997  * Returns the wall clock seconds since 1970.
998  *
999  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1000  * 32bit systems the access must be protected with the sequence
1001  * counter to provide "atomic" access to the 64bit tk->xtime_sec
1002  * value.
1003  */
ktime_get_real_seconds(void)1004 time64_t ktime_get_real_seconds(void)
1005 {
1006 	struct timekeeper *tk = &tk_core.timekeeper;
1007 	time64_t seconds;
1008 	unsigned int seq;
1009 
1010 	if (IS_ENABLED(CONFIG_64BIT))
1011 		return tk->xtime_sec;
1012 
1013 	do {
1014 		seq = read_seqcount_begin(&tk_core.seq);
1015 		seconds = tk->xtime_sec;
1016 
1017 	} while (read_seqcount_retry(&tk_core.seq, seq));
1018 
1019 	return seconds;
1020 }
1021 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1022 
1023 /**
1024  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1025  * but without the sequence counter protect. This internal function
1026  * is called just when timekeeping lock is already held.
1027  */
__ktime_get_real_seconds(void)1028 noinstr time64_t __ktime_get_real_seconds(void)
1029 {
1030 	struct timekeeper *tk = &tk_core.timekeeper;
1031 
1032 	return tk->xtime_sec;
1033 }
1034 
1035 /**
1036  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1037  * @systime_snapshot:	pointer to struct receiving the system time snapshot
1038  */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1039 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1040 {
1041 	struct timekeeper *tk = &tk_core.timekeeper;
1042 	unsigned int seq;
1043 	ktime_t base_raw;
1044 	ktime_t base_real;
1045 	u64 nsec_raw;
1046 	u64 nsec_real;
1047 	u64 now;
1048 
1049 	WARN_ON_ONCE(timekeeping_suspended);
1050 
1051 	do {
1052 		seq = read_seqcount_begin(&tk_core.seq);
1053 		now = tk_clock_read(&tk->tkr_mono);
1054 		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1055 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1056 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1057 		base_real = ktime_add(tk->tkr_mono.base,
1058 				      tk_core.timekeeper.offs_real);
1059 		base_raw = tk->tkr_raw.base;
1060 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1061 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1062 	} while (read_seqcount_retry(&tk_core.seq, seq));
1063 
1064 	systime_snapshot->cycles = now;
1065 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1066 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1067 }
1068 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1069 
1070 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1071 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1072 {
1073 	u64 tmp, rem;
1074 
1075 	tmp = div64_u64_rem(*base, div, &rem);
1076 
1077 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1078 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1079 		return -EOVERFLOW;
1080 	tmp *= mult;
1081 
1082 	rem = div64_u64(rem * mult, div);
1083 	*base = tmp + rem;
1084 	return 0;
1085 }
1086 
1087 /**
1088  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1089  * @history:			Snapshot representing start of history
1090  * @partial_history_cycles:	Cycle offset into history (fractional part)
1091  * @total_history_cycles:	Total history length in cycles
1092  * @discontinuity:		True indicates clock was set on history period
1093  * @ts:				Cross timestamp that should be adjusted using
1094  *	partial/total ratio
1095  *
1096  * Helper function used by get_device_system_crosststamp() to correct the
1097  * crosstimestamp corresponding to the start of the current interval to the
1098  * system counter value (timestamp point) provided by the driver. The
1099  * total_history_* quantities are the total history starting at the provided
1100  * reference point and ending at the start of the current interval. The cycle
1101  * count between the driver timestamp point and the start of the current
1102  * interval is partial_history_cycles.
1103  */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1104 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1105 					 u64 partial_history_cycles,
1106 					 u64 total_history_cycles,
1107 					 bool discontinuity,
1108 					 struct system_device_crosststamp *ts)
1109 {
1110 	struct timekeeper *tk = &tk_core.timekeeper;
1111 	u64 corr_raw, corr_real;
1112 	bool interp_forward;
1113 	int ret;
1114 
1115 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1116 		return 0;
1117 
1118 	/* Interpolate shortest distance from beginning or end of history */
1119 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1120 	partial_history_cycles = interp_forward ?
1121 		total_history_cycles - partial_history_cycles :
1122 		partial_history_cycles;
1123 
1124 	/*
1125 	 * Scale the monotonic raw time delta by:
1126 	 *	partial_history_cycles / total_history_cycles
1127 	 */
1128 	corr_raw = (u64)ktime_to_ns(
1129 		ktime_sub(ts->sys_monoraw, history->raw));
1130 	ret = scale64_check_overflow(partial_history_cycles,
1131 				     total_history_cycles, &corr_raw);
1132 	if (ret)
1133 		return ret;
1134 
1135 	/*
1136 	 * If there is a discontinuity in the history, scale monotonic raw
1137 	 *	correction by:
1138 	 *	mult(real)/mult(raw) yielding the realtime correction
1139 	 * Otherwise, calculate the realtime correction similar to monotonic
1140 	 *	raw calculation
1141 	 */
1142 	if (discontinuity) {
1143 		corr_real = mul_u64_u32_div
1144 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1145 	} else {
1146 		corr_real = (u64)ktime_to_ns(
1147 			ktime_sub(ts->sys_realtime, history->real));
1148 		ret = scale64_check_overflow(partial_history_cycles,
1149 					     total_history_cycles, &corr_real);
1150 		if (ret)
1151 			return ret;
1152 	}
1153 
1154 	/* Fixup monotonic raw and real time time values */
1155 	if (interp_forward) {
1156 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1157 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1158 	} else {
1159 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1160 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 /*
1167  * cycle_between - true if test occurs chronologically between before and after
1168  */
cycle_between(u64 before,u64 test,u64 after)1169 static bool cycle_between(u64 before, u64 test, u64 after)
1170 {
1171 	if (test > before && test < after)
1172 		return true;
1173 	if (test < before && before > after)
1174 		return true;
1175 	return false;
1176 }
1177 
1178 /**
1179  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1180  * @get_time_fn:	Callback to get simultaneous device time and
1181  *	system counter from the device driver
1182  * @ctx:		Context passed to get_time_fn()
1183  * @history_begin:	Historical reference point used to interpolate system
1184  *	time when counter provided by the driver is before the current interval
1185  * @xtstamp:		Receives simultaneously captured system and device time
1186  *
1187  * Reads a timestamp from a device and correlates it to system time
1188  */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1189 int get_device_system_crosststamp(int (*get_time_fn)
1190 				  (ktime_t *device_time,
1191 				   struct system_counterval_t *sys_counterval,
1192 				   void *ctx),
1193 				  void *ctx,
1194 				  struct system_time_snapshot *history_begin,
1195 				  struct system_device_crosststamp *xtstamp)
1196 {
1197 	struct system_counterval_t system_counterval;
1198 	struct timekeeper *tk = &tk_core.timekeeper;
1199 	u64 cycles, now, interval_start;
1200 	unsigned int clock_was_set_seq = 0;
1201 	ktime_t base_real, base_raw;
1202 	u64 nsec_real, nsec_raw;
1203 	u8 cs_was_changed_seq;
1204 	unsigned int seq;
1205 	bool do_interp;
1206 	int ret;
1207 
1208 	do {
1209 		seq = read_seqcount_begin(&tk_core.seq);
1210 		/*
1211 		 * Try to synchronously capture device time and a system
1212 		 * counter value calling back into the device driver
1213 		 */
1214 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1215 		if (ret)
1216 			return ret;
1217 
1218 		/*
1219 		 * Verify that the clocksource associated with the captured
1220 		 * system counter value is the same as the currently installed
1221 		 * timekeeper clocksource
1222 		 */
1223 		if (tk->tkr_mono.clock != system_counterval.cs)
1224 			return -ENODEV;
1225 		cycles = system_counterval.cycles;
1226 
1227 		/*
1228 		 * Check whether the system counter value provided by the
1229 		 * device driver is on the current timekeeping interval.
1230 		 */
1231 		now = tk_clock_read(&tk->tkr_mono);
1232 		interval_start = tk->tkr_mono.cycle_last;
1233 		if (!cycle_between(interval_start, cycles, now)) {
1234 			clock_was_set_seq = tk->clock_was_set_seq;
1235 			cs_was_changed_seq = tk->cs_was_changed_seq;
1236 			cycles = interval_start;
1237 			do_interp = true;
1238 		} else {
1239 			do_interp = false;
1240 		}
1241 
1242 		base_real = ktime_add(tk->tkr_mono.base,
1243 				      tk_core.timekeeper.offs_real);
1244 		base_raw = tk->tkr_raw.base;
1245 
1246 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1247 						     system_counterval.cycles);
1248 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1249 						    system_counterval.cycles);
1250 	} while (read_seqcount_retry(&tk_core.seq, seq));
1251 
1252 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1253 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1254 
1255 	/*
1256 	 * Interpolate if necessary, adjusting back from the start of the
1257 	 * current interval
1258 	 */
1259 	if (do_interp) {
1260 		u64 partial_history_cycles, total_history_cycles;
1261 		bool discontinuity;
1262 
1263 		/*
1264 		 * Check that the counter value occurs after the provided
1265 		 * history reference and that the history doesn't cross a
1266 		 * clocksource change
1267 		 */
1268 		if (!history_begin ||
1269 		    !cycle_between(history_begin->cycles,
1270 				   system_counterval.cycles, cycles) ||
1271 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1272 			return -EINVAL;
1273 		partial_history_cycles = cycles - system_counterval.cycles;
1274 		total_history_cycles = cycles - history_begin->cycles;
1275 		discontinuity =
1276 			history_begin->clock_was_set_seq != clock_was_set_seq;
1277 
1278 		ret = adjust_historical_crosststamp(history_begin,
1279 						    partial_history_cycles,
1280 						    total_history_cycles,
1281 						    discontinuity, xtstamp);
1282 		if (ret)
1283 			return ret;
1284 	}
1285 
1286 	return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1289 
1290 /**
1291  * do_settimeofday64 - Sets the time of day.
1292  * @ts:     pointer to the timespec64 variable containing the new time
1293  *
1294  * Sets the time of day to the new time and update NTP and notify hrtimers
1295  */
do_settimeofday64(const struct timespec64 * ts)1296 int do_settimeofday64(const struct timespec64 *ts)
1297 {
1298 	struct timekeeper *tk = &tk_core.timekeeper;
1299 	struct timespec64 ts_delta, xt;
1300 	unsigned long flags;
1301 	int ret = 0;
1302 
1303 	if (!timespec64_valid_settod(ts))
1304 		return -EINVAL;
1305 
1306 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1307 	write_seqcount_begin(&tk_core.seq);
1308 
1309 	timekeeping_forward_now(tk);
1310 
1311 	xt = tk_xtime(tk);
1312 	ts_delta = timespec64_sub(*ts, xt);
1313 
1314 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1315 		ret = -EINVAL;
1316 		goto out;
1317 	}
1318 
1319 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1320 
1321 	tk_set_xtime(tk, ts);
1322 out:
1323 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324 
1325 	write_seqcount_end(&tk_core.seq);
1326 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327 
1328 	trace_android_rvh_tk_based_time_sync(tk);
1329 
1330 	/* Signal hrtimers about time change */
1331 	clock_was_set(CLOCK_SET_WALL);
1332 
1333 	if (!ret) {
1334 		audit_tk_injoffset(ts_delta);
1335 		add_device_randomness(ts, sizeof(*ts));
1336 	}
1337 
1338 	return ret;
1339 }
1340 EXPORT_SYMBOL(do_settimeofday64);
1341 
1342 /**
1343  * timekeeping_inject_offset - Adds or subtracts from the current time.
1344  * @ts:		Pointer to the timespec variable containing the offset
1345  *
1346  * Adds or subtracts an offset value from the current time.
1347  */
timekeeping_inject_offset(const struct timespec64 * ts)1348 static int timekeeping_inject_offset(const struct timespec64 *ts)
1349 {
1350 	struct timekeeper *tk = &tk_core.timekeeper;
1351 	unsigned long flags;
1352 	struct timespec64 tmp;
1353 	int ret = 0;
1354 
1355 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1356 		return -EINVAL;
1357 
1358 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1359 	write_seqcount_begin(&tk_core.seq);
1360 
1361 	timekeeping_forward_now(tk);
1362 
1363 	/* Make sure the proposed value is valid */
1364 	tmp = timespec64_add(tk_xtime(tk), *ts);
1365 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1366 	    !timespec64_valid_settod(&tmp)) {
1367 		ret = -EINVAL;
1368 		goto error;
1369 	}
1370 
1371 	tk_xtime_add(tk, ts);
1372 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1373 
1374 error: /* even if we error out, we forwarded the time, so call update */
1375 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1376 
1377 	write_seqcount_end(&tk_core.seq);
1378 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1379 
1380 	/* Signal hrtimers about time change */
1381 	clock_was_set(CLOCK_SET_WALL);
1382 
1383 	return ret;
1384 }
1385 
1386 /*
1387  * Indicates if there is an offset between the system clock and the hardware
1388  * clock/persistent clock/rtc.
1389  */
1390 int persistent_clock_is_local;
1391 
1392 /*
1393  * Adjust the time obtained from the CMOS to be UTC time instead of
1394  * local time.
1395  *
1396  * This is ugly, but preferable to the alternatives.  Otherwise we
1397  * would either need to write a program to do it in /etc/rc (and risk
1398  * confusion if the program gets run more than once; it would also be
1399  * hard to make the program warp the clock precisely n hours)  or
1400  * compile in the timezone information into the kernel.  Bad, bad....
1401  *
1402  *						- TYT, 1992-01-01
1403  *
1404  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1405  * as real UNIX machines always do it. This avoids all headaches about
1406  * daylight saving times and warping kernel clocks.
1407  */
timekeeping_warp_clock(void)1408 void timekeeping_warp_clock(void)
1409 {
1410 	if (sys_tz.tz_minuteswest != 0) {
1411 		struct timespec64 adjust;
1412 
1413 		persistent_clock_is_local = 1;
1414 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1415 		adjust.tv_nsec = 0;
1416 		timekeeping_inject_offset(&adjust);
1417 	}
1418 }
1419 
1420 /*
1421  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1422  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1423 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1424 {
1425 	tk->tai_offset = tai_offset;
1426 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1427 }
1428 
1429 /*
1430  * change_clocksource - Swaps clocksources if a new one is available
1431  *
1432  * Accumulates current time interval and initializes new clocksource
1433  */
change_clocksource(void * data)1434 static int change_clocksource(void *data)
1435 {
1436 	struct timekeeper *tk = &tk_core.timekeeper;
1437 	struct clocksource *new, *old = NULL;
1438 	unsigned long flags;
1439 	bool change = false;
1440 
1441 	new = (struct clocksource *) data;
1442 
1443 	/*
1444 	 * If the cs is in module, get a module reference. Succeeds
1445 	 * for built-in code (owner == NULL) as well.
1446 	 */
1447 	if (try_module_get(new->owner)) {
1448 		if (!new->enable || new->enable(new) == 0)
1449 			change = true;
1450 		else
1451 			module_put(new->owner);
1452 	}
1453 
1454 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1455 	write_seqcount_begin(&tk_core.seq);
1456 
1457 	timekeeping_forward_now(tk);
1458 
1459 	if (change) {
1460 		old = tk->tkr_mono.clock;
1461 		tk_setup_internals(tk, new);
1462 	}
1463 
1464 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1465 
1466 	write_seqcount_end(&tk_core.seq);
1467 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1468 
1469 	if (old) {
1470 		if (old->disable)
1471 			old->disable(old);
1472 
1473 		module_put(old->owner);
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 /**
1480  * timekeeping_notify - Install a new clock source
1481  * @clock:		pointer to the clock source
1482  *
1483  * This function is called from clocksource.c after a new, better clock
1484  * source has been registered. The caller holds the clocksource_mutex.
1485  */
timekeeping_notify(struct clocksource * clock)1486 int timekeeping_notify(struct clocksource *clock)
1487 {
1488 	struct timekeeper *tk = &tk_core.timekeeper;
1489 
1490 	if (tk->tkr_mono.clock == clock)
1491 		return 0;
1492 	stop_machine(change_clocksource, clock, NULL);
1493 	tick_clock_notify();
1494 	return tk->tkr_mono.clock == clock ? 0 : -1;
1495 }
1496 
1497 /**
1498  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1499  * @ts:		pointer to the timespec64 to be set
1500  *
1501  * Returns the raw monotonic time (completely un-modified by ntp)
1502  */
ktime_get_raw_ts64(struct timespec64 * ts)1503 void ktime_get_raw_ts64(struct timespec64 *ts)
1504 {
1505 	struct timekeeper *tk = &tk_core.timekeeper;
1506 	unsigned int seq;
1507 	u64 nsecs;
1508 
1509 	do {
1510 		seq = read_seqcount_begin(&tk_core.seq);
1511 		ts->tv_sec = tk->raw_sec;
1512 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1513 
1514 	} while (read_seqcount_retry(&tk_core.seq, seq));
1515 
1516 	ts->tv_nsec = 0;
1517 	timespec64_add_ns(ts, nsecs);
1518 }
1519 EXPORT_SYMBOL(ktime_get_raw_ts64);
1520 
1521 
1522 /**
1523  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1524  */
timekeeping_valid_for_hres(void)1525 int timekeeping_valid_for_hres(void)
1526 {
1527 	struct timekeeper *tk = &tk_core.timekeeper;
1528 	unsigned int seq;
1529 	int ret;
1530 
1531 	do {
1532 		seq = read_seqcount_begin(&tk_core.seq);
1533 
1534 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1535 
1536 	} while (read_seqcount_retry(&tk_core.seq, seq));
1537 
1538 	return ret;
1539 }
1540 
1541 /**
1542  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1543  */
timekeeping_max_deferment(void)1544 u64 timekeeping_max_deferment(void)
1545 {
1546 	struct timekeeper *tk = &tk_core.timekeeper;
1547 	unsigned int seq;
1548 	u64 ret;
1549 
1550 	do {
1551 		seq = read_seqcount_begin(&tk_core.seq);
1552 
1553 		ret = tk->tkr_mono.clock->max_idle_ns;
1554 
1555 	} while (read_seqcount_retry(&tk_core.seq, seq));
1556 
1557 	return ret;
1558 }
1559 
1560 /**
1561  * read_persistent_clock64 -  Return time from the persistent clock.
1562  * @ts: Pointer to the storage for the readout value
1563  *
1564  * Weak dummy function for arches that do not yet support it.
1565  * Reads the time from the battery backed persistent clock.
1566  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1567  *
1568  *  XXX - Do be sure to remove it once all arches implement it.
1569  */
read_persistent_clock64(struct timespec64 * ts)1570 void __weak read_persistent_clock64(struct timespec64 *ts)
1571 {
1572 	ts->tv_sec = 0;
1573 	ts->tv_nsec = 0;
1574 }
1575 
1576 /**
1577  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1578  *                                        from the boot.
1579  *
1580  * Weak dummy function for arches that do not yet support it.
1581  * @wall_time:	- current time as returned by persistent clock
1582  * @boot_offset: - offset that is defined as wall_time - boot_time
1583  *
1584  * The default function calculates offset based on the current value of
1585  * local_clock(). This way architectures that support sched_clock() but don't
1586  * support dedicated boot time clock will provide the best estimate of the
1587  * boot time.
1588  */
1589 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1590 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1591 				     struct timespec64 *boot_offset)
1592 {
1593 	read_persistent_clock64(wall_time);
1594 	*boot_offset = ns_to_timespec64(local_clock());
1595 }
1596 
1597 /*
1598  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1599  *
1600  * The flag starts of false and is only set when a suspend reaches
1601  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1602  * timekeeper clocksource is not stopping across suspend and has been
1603  * used to update sleep time. If the timekeeper clocksource has stopped
1604  * then the flag stays true and is used by the RTC resume code to decide
1605  * whether sleeptime must be injected and if so the flag gets false then.
1606  *
1607  * If a suspend fails before reaching timekeeping_resume() then the flag
1608  * stays false and prevents erroneous sleeptime injection.
1609  */
1610 static bool suspend_timing_needed;
1611 
1612 /* Flag for if there is a persistent clock on this platform */
1613 static bool persistent_clock_exists;
1614 
1615 /*
1616  * timekeeping_init - Initializes the clocksource and common timekeeping values
1617  */
timekeeping_init(void)1618 void __init timekeeping_init(void)
1619 {
1620 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1621 	struct timekeeper *tk = &tk_core.timekeeper;
1622 	struct clocksource *clock;
1623 	unsigned long flags;
1624 
1625 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1626 	if (timespec64_valid_settod(&wall_time) &&
1627 	    timespec64_to_ns(&wall_time) > 0) {
1628 		persistent_clock_exists = true;
1629 	} else if (timespec64_to_ns(&wall_time) != 0) {
1630 		pr_warn("Persistent clock returned invalid value");
1631 		wall_time = (struct timespec64){0};
1632 	}
1633 
1634 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1635 		boot_offset = (struct timespec64){0};
1636 
1637 	/*
1638 	 * We want set wall_to_mono, so the following is true:
1639 	 * wall time + wall_to_mono = boot time
1640 	 */
1641 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1642 
1643 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1644 	write_seqcount_begin(&tk_core.seq);
1645 	ntp_init();
1646 
1647 	clock = clocksource_default_clock();
1648 	if (clock->enable)
1649 		clock->enable(clock);
1650 	tk_setup_internals(tk, clock);
1651 
1652 	tk_set_xtime(tk, &wall_time);
1653 	tk->raw_sec = 0;
1654 
1655 	tk_set_wall_to_mono(tk, wall_to_mono);
1656 
1657 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658 
1659 	write_seqcount_end(&tk_core.seq);
1660 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 }
1662 
1663 /* time in seconds when suspend began for persistent clock */
1664 static struct timespec64 timekeeping_suspend_time;
1665 
1666 /**
1667  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1668  * @tk:		Pointer to the timekeeper to be updated
1669  * @delta:	Pointer to the delta value in timespec64 format
1670  *
1671  * Takes a timespec offset measuring a suspend interval and properly
1672  * adds the sleep offset to the timekeeping variables.
1673  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1674 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1675 					   const struct timespec64 *delta)
1676 {
1677 	if (!timespec64_valid_strict(delta)) {
1678 		printk_deferred(KERN_WARNING
1679 				"__timekeeping_inject_sleeptime: Invalid "
1680 				"sleep delta value!\n");
1681 		return;
1682 	}
1683 	tk_xtime_add(tk, delta);
1684 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1685 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1686 	tk_debug_account_sleep_time(delta);
1687 }
1688 
1689 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1690 /**
1691  * We have three kinds of time sources to use for sleep time
1692  * injection, the preference order is:
1693  * 1) non-stop clocksource
1694  * 2) persistent clock (ie: RTC accessible when irqs are off)
1695  * 3) RTC
1696  *
1697  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1698  * If system has neither 1) nor 2), 3) will be used finally.
1699  *
1700  *
1701  * If timekeeping has injected sleeptime via either 1) or 2),
1702  * 3) becomes needless, so in this case we don't need to call
1703  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1704  * means.
1705  */
timekeeping_rtc_skipresume(void)1706 bool timekeeping_rtc_skipresume(void)
1707 {
1708 	return !suspend_timing_needed;
1709 }
1710 
1711 /**
1712  * 1) can be determined whether to use or not only when doing
1713  * timekeeping_resume() which is invoked after rtc_suspend(),
1714  * so we can't skip rtc_suspend() surely if system has 1).
1715  *
1716  * But if system has 2), 2) will definitely be used, so in this
1717  * case we don't need to call rtc_suspend(), and this is what
1718  * timekeeping_rtc_skipsuspend() means.
1719  */
timekeeping_rtc_skipsuspend(void)1720 bool timekeeping_rtc_skipsuspend(void)
1721 {
1722 	return persistent_clock_exists;
1723 }
1724 
1725 /**
1726  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1727  * @delta: pointer to a timespec64 delta value
1728  *
1729  * This hook is for architectures that cannot support read_persistent_clock64
1730  * because their RTC/persistent clock is only accessible when irqs are enabled.
1731  * and also don't have an effective nonstop clocksource.
1732  *
1733  * This function should only be called by rtc_resume(), and allows
1734  * a suspend offset to be injected into the timekeeping values.
1735  */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1736 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1737 {
1738 	struct timekeeper *tk = &tk_core.timekeeper;
1739 	unsigned long flags;
1740 
1741 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1742 	write_seqcount_begin(&tk_core.seq);
1743 
1744 	suspend_timing_needed = false;
1745 
1746 	timekeeping_forward_now(tk);
1747 
1748 	__timekeeping_inject_sleeptime(tk, delta);
1749 
1750 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1751 
1752 	write_seqcount_end(&tk_core.seq);
1753 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1754 
1755 	/* Signal hrtimers about time change */
1756 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1757 }
1758 #endif
1759 
1760 /**
1761  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1762  */
timekeeping_resume(void)1763 void timekeeping_resume(void)
1764 {
1765 	struct timekeeper *tk = &tk_core.timekeeper;
1766 	struct clocksource *clock = tk->tkr_mono.clock;
1767 	unsigned long flags;
1768 	struct timespec64 ts_new, ts_delta;
1769 	u64 cycle_now, nsec;
1770 	bool inject_sleeptime = false;
1771 
1772 	read_persistent_clock64(&ts_new);
1773 
1774 	clockevents_resume();
1775 	clocksource_resume();
1776 
1777 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1778 	write_seqcount_begin(&tk_core.seq);
1779 
1780 	/*
1781 	 * After system resumes, we need to calculate the suspended time and
1782 	 * compensate it for the OS time. There are 3 sources that could be
1783 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1784 	 * device.
1785 	 *
1786 	 * One specific platform may have 1 or 2 or all of them, and the
1787 	 * preference will be:
1788 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1789 	 * The less preferred source will only be tried if there is no better
1790 	 * usable source. The rtc part is handled separately in rtc core code.
1791 	 */
1792 	cycle_now = tk_clock_read(&tk->tkr_mono);
1793 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1794 	if (nsec > 0) {
1795 		ts_delta = ns_to_timespec64(nsec);
1796 		inject_sleeptime = true;
1797 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1798 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1799 		inject_sleeptime = true;
1800 	}
1801 
1802 	if (inject_sleeptime) {
1803 		suspend_timing_needed = false;
1804 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1805 	}
1806 
1807 	/* Re-base the last cycle value */
1808 	tk->tkr_mono.cycle_last = cycle_now;
1809 	tk->tkr_raw.cycle_last  = cycle_now;
1810 
1811 	tk->ntp_error = 0;
1812 	timekeeping_suspended = 0;
1813 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1814 	write_seqcount_end(&tk_core.seq);
1815 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1816 
1817 	touch_softlockup_watchdog();
1818 
1819 	/* Resume the clockevent device(s) and hrtimers */
1820 	tick_resume();
1821 	/* Notify timerfd as resume is equivalent to clock_was_set() */
1822 	timerfd_resume();
1823 }
1824 
timekeeping_suspend(void)1825 int timekeeping_suspend(void)
1826 {
1827 	struct timekeeper *tk = &tk_core.timekeeper;
1828 	unsigned long flags;
1829 	struct timespec64		delta, delta_delta;
1830 	static struct timespec64	old_delta;
1831 	struct clocksource *curr_clock;
1832 	u64 cycle_now;
1833 
1834 	read_persistent_clock64(&timekeeping_suspend_time);
1835 
1836 	/*
1837 	 * On some systems the persistent_clock can not be detected at
1838 	 * timekeeping_init by its return value, so if we see a valid
1839 	 * value returned, update the persistent_clock_exists flag.
1840 	 */
1841 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1842 		persistent_clock_exists = true;
1843 
1844 	suspend_timing_needed = true;
1845 
1846 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1847 	write_seqcount_begin(&tk_core.seq);
1848 	timekeeping_forward_now(tk);
1849 	timekeeping_suspended = 1;
1850 
1851 	/*
1852 	 * Since we've called forward_now, cycle_last stores the value
1853 	 * just read from the current clocksource. Save this to potentially
1854 	 * use in suspend timing.
1855 	 */
1856 	curr_clock = tk->tkr_mono.clock;
1857 	cycle_now = tk->tkr_mono.cycle_last;
1858 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1859 
1860 	if (persistent_clock_exists) {
1861 		/*
1862 		 * To avoid drift caused by repeated suspend/resumes,
1863 		 * which each can add ~1 second drift error,
1864 		 * try to compensate so the difference in system time
1865 		 * and persistent_clock time stays close to constant.
1866 		 */
1867 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1868 		delta_delta = timespec64_sub(delta, old_delta);
1869 		if (abs(delta_delta.tv_sec) >= 2) {
1870 			/*
1871 			 * if delta_delta is too large, assume time correction
1872 			 * has occurred and set old_delta to the current delta.
1873 			 */
1874 			old_delta = delta;
1875 		} else {
1876 			/* Otherwise try to adjust old_system to compensate */
1877 			timekeeping_suspend_time =
1878 				timespec64_add(timekeeping_suspend_time, delta_delta);
1879 		}
1880 	}
1881 
1882 	timekeeping_update(tk, TK_MIRROR);
1883 	halt_fast_timekeeper(tk);
1884 	write_seqcount_end(&tk_core.seq);
1885 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1886 
1887 	tick_suspend();
1888 	clocksource_suspend();
1889 	clockevents_suspend();
1890 
1891 	return 0;
1892 }
1893 
1894 /* sysfs resume/suspend bits for timekeeping */
1895 static struct syscore_ops timekeeping_syscore_ops = {
1896 	.resume		= timekeeping_resume,
1897 	.suspend	= timekeeping_suspend,
1898 };
1899 
timekeeping_init_ops(void)1900 static int __init timekeeping_init_ops(void)
1901 {
1902 	register_syscore_ops(&timekeeping_syscore_ops);
1903 	return 0;
1904 }
1905 device_initcall(timekeeping_init_ops);
1906 
1907 /*
1908  * Apply a multiplier adjustment to the timekeeper
1909  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1910 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1911 							 s64 offset,
1912 							 s32 mult_adj)
1913 {
1914 	s64 interval = tk->cycle_interval;
1915 
1916 	if (mult_adj == 0) {
1917 		return;
1918 	} else if (mult_adj == -1) {
1919 		interval = -interval;
1920 		offset = -offset;
1921 	} else if (mult_adj != 1) {
1922 		interval *= mult_adj;
1923 		offset *= mult_adj;
1924 	}
1925 
1926 	/*
1927 	 * So the following can be confusing.
1928 	 *
1929 	 * To keep things simple, lets assume mult_adj == 1 for now.
1930 	 *
1931 	 * When mult_adj != 1, remember that the interval and offset values
1932 	 * have been appropriately scaled so the math is the same.
1933 	 *
1934 	 * The basic idea here is that we're increasing the multiplier
1935 	 * by one, this causes the xtime_interval to be incremented by
1936 	 * one cycle_interval. This is because:
1937 	 *	xtime_interval = cycle_interval * mult
1938 	 * So if mult is being incremented by one:
1939 	 *	xtime_interval = cycle_interval * (mult + 1)
1940 	 * Its the same as:
1941 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1942 	 * Which can be shortened to:
1943 	 *	xtime_interval += cycle_interval
1944 	 *
1945 	 * So offset stores the non-accumulated cycles. Thus the current
1946 	 * time (in shifted nanoseconds) is:
1947 	 *	now = (offset * adj) + xtime_nsec
1948 	 * Now, even though we're adjusting the clock frequency, we have
1949 	 * to keep time consistent. In other words, we can't jump back
1950 	 * in time, and we also want to avoid jumping forward in time.
1951 	 *
1952 	 * So given the same offset value, we need the time to be the same
1953 	 * both before and after the freq adjustment.
1954 	 *	now = (offset * adj_1) + xtime_nsec_1
1955 	 *	now = (offset * adj_2) + xtime_nsec_2
1956 	 * So:
1957 	 *	(offset * adj_1) + xtime_nsec_1 =
1958 	 *		(offset * adj_2) + xtime_nsec_2
1959 	 * And we know:
1960 	 *	adj_2 = adj_1 + 1
1961 	 * So:
1962 	 *	(offset * adj_1) + xtime_nsec_1 =
1963 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1964 	 *	(offset * adj_1) + xtime_nsec_1 =
1965 	 *		(offset * adj_1) + offset + xtime_nsec_2
1966 	 * Canceling the sides:
1967 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1968 	 * Which gives us:
1969 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1970 	 * Which simplifies to:
1971 	 *	xtime_nsec -= offset
1972 	 */
1973 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1974 		/* NTP adjustment caused clocksource mult overflow */
1975 		WARN_ON_ONCE(1);
1976 		return;
1977 	}
1978 
1979 	tk->tkr_mono.mult += mult_adj;
1980 	tk->xtime_interval += interval;
1981 	tk->tkr_mono.xtime_nsec -= offset;
1982 }
1983 
1984 /*
1985  * Adjust the timekeeper's multiplier to the correct frequency
1986  * and also to reduce the accumulated error value.
1987  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1988 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1989 {
1990 	u32 mult;
1991 
1992 	/*
1993 	 * Determine the multiplier from the current NTP tick length.
1994 	 * Avoid expensive division when the tick length doesn't change.
1995 	 */
1996 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1997 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1998 	} else {
1999 		tk->ntp_tick = ntp_tick_length();
2000 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2001 				 tk->xtime_remainder, tk->cycle_interval);
2002 	}
2003 
2004 	/*
2005 	 * If the clock is behind the NTP time, increase the multiplier by 1
2006 	 * to catch up with it. If it's ahead and there was a remainder in the
2007 	 * tick division, the clock will slow down. Otherwise it will stay
2008 	 * ahead until the tick length changes to a non-divisible value.
2009 	 */
2010 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2011 	mult += tk->ntp_err_mult;
2012 
2013 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2014 
2015 	if (unlikely(tk->tkr_mono.clock->maxadj &&
2016 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2017 			> tk->tkr_mono.clock->maxadj))) {
2018 		printk_once(KERN_WARNING
2019 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2020 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2021 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2022 	}
2023 
2024 	/*
2025 	 * It may be possible that when we entered this function, xtime_nsec
2026 	 * was very small.  Further, if we're slightly speeding the clocksource
2027 	 * in the code above, its possible the required corrective factor to
2028 	 * xtime_nsec could cause it to underflow.
2029 	 *
2030 	 * Now, since we have already accumulated the second and the NTP
2031 	 * subsystem has been notified via second_overflow(), we need to skip
2032 	 * the next update.
2033 	 */
2034 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2035 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2036 							tk->tkr_mono.shift;
2037 		tk->xtime_sec--;
2038 		tk->skip_second_overflow = 1;
2039 	}
2040 }
2041 
2042 /*
2043  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2044  *
2045  * Helper function that accumulates the nsecs greater than a second
2046  * from the xtime_nsec field to the xtime_secs field.
2047  * It also calls into the NTP code to handle leapsecond processing.
2048  */
accumulate_nsecs_to_secs(struct timekeeper * tk)2049 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2050 {
2051 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2052 	unsigned int clock_set = 0;
2053 
2054 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2055 		int leap;
2056 
2057 		tk->tkr_mono.xtime_nsec -= nsecps;
2058 		tk->xtime_sec++;
2059 
2060 		/*
2061 		 * Skip NTP update if this second was accumulated before,
2062 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2063 		 */
2064 		if (unlikely(tk->skip_second_overflow)) {
2065 			tk->skip_second_overflow = 0;
2066 			continue;
2067 		}
2068 
2069 		/* Figure out if its a leap sec and apply if needed */
2070 		leap = second_overflow(tk->xtime_sec);
2071 		if (unlikely(leap)) {
2072 			struct timespec64 ts;
2073 
2074 			tk->xtime_sec += leap;
2075 
2076 			ts.tv_sec = leap;
2077 			ts.tv_nsec = 0;
2078 			tk_set_wall_to_mono(tk,
2079 				timespec64_sub(tk->wall_to_monotonic, ts));
2080 
2081 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2082 
2083 			clock_set = TK_CLOCK_WAS_SET;
2084 		}
2085 	}
2086 	return clock_set;
2087 }
2088 
2089 /*
2090  * logarithmic_accumulation - shifted accumulation of cycles
2091  *
2092  * This functions accumulates a shifted interval of cycles into
2093  * a shifted interval nanoseconds. Allows for O(log) accumulation
2094  * loop.
2095  *
2096  * Returns the unconsumed cycles.
2097  */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2098 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2099 				    u32 shift, unsigned int *clock_set)
2100 {
2101 	u64 interval = tk->cycle_interval << shift;
2102 	u64 snsec_per_sec;
2103 
2104 	/* If the offset is smaller than a shifted interval, do nothing */
2105 	if (offset < interval)
2106 		return offset;
2107 
2108 	/* Accumulate one shifted interval */
2109 	offset -= interval;
2110 	tk->tkr_mono.cycle_last += interval;
2111 	tk->tkr_raw.cycle_last  += interval;
2112 
2113 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2114 	*clock_set |= accumulate_nsecs_to_secs(tk);
2115 
2116 	/* Accumulate raw time */
2117 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2118 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2119 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2120 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2121 		tk->raw_sec++;
2122 	}
2123 
2124 	/* Accumulate error between NTP and clock interval */
2125 	tk->ntp_error += tk->ntp_tick << shift;
2126 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2127 						(tk->ntp_error_shift + shift);
2128 
2129 	return offset;
2130 }
2131 
2132 /*
2133  * timekeeping_advance - Updates the timekeeper to the current time and
2134  * current NTP tick length
2135  */
timekeeping_advance(enum timekeeping_adv_mode mode)2136 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2137 {
2138 	struct timekeeper *real_tk = &tk_core.timekeeper;
2139 	struct timekeeper *tk = &shadow_timekeeper;
2140 	u64 offset;
2141 	int shift = 0, maxshift;
2142 	unsigned int clock_set = 0;
2143 	unsigned long flags;
2144 
2145 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2146 
2147 	/* Make sure we're fully resumed: */
2148 	if (unlikely(timekeeping_suspended))
2149 		goto out;
2150 
2151 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2152 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2153 
2154 	/* Check if there's really nothing to do */
2155 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2156 		goto out;
2157 
2158 	/* Do some additional sanity checking */
2159 	timekeeping_check_update(tk, offset);
2160 
2161 	/*
2162 	 * With NO_HZ we may have to accumulate many cycle_intervals
2163 	 * (think "ticks") worth of time at once. To do this efficiently,
2164 	 * we calculate the largest doubling multiple of cycle_intervals
2165 	 * that is smaller than the offset.  We then accumulate that
2166 	 * chunk in one go, and then try to consume the next smaller
2167 	 * doubled multiple.
2168 	 */
2169 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2170 	shift = max(0, shift);
2171 	/* Bound shift to one less than what overflows tick_length */
2172 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2173 	shift = min(shift, maxshift);
2174 	while (offset >= tk->cycle_interval) {
2175 		offset = logarithmic_accumulation(tk, offset, shift,
2176 							&clock_set);
2177 		if (offset < tk->cycle_interval<<shift)
2178 			shift--;
2179 	}
2180 
2181 	/* Adjust the multiplier to correct NTP error */
2182 	timekeeping_adjust(tk, offset);
2183 
2184 	/*
2185 	 * Finally, make sure that after the rounding
2186 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2187 	 */
2188 	clock_set |= accumulate_nsecs_to_secs(tk);
2189 
2190 	write_seqcount_begin(&tk_core.seq);
2191 	/*
2192 	 * Update the real timekeeper.
2193 	 *
2194 	 * We could avoid this memcpy by switching pointers, but that
2195 	 * requires changes to all other timekeeper usage sites as
2196 	 * well, i.e. move the timekeeper pointer getter into the
2197 	 * spinlocked/seqcount protected sections. And we trade this
2198 	 * memcpy under the tk_core.seq against one before we start
2199 	 * updating.
2200 	 */
2201 	timekeeping_update(tk, clock_set);
2202 	memcpy(real_tk, tk, sizeof(*tk));
2203 	/* The memcpy must come last. Do not put anything here! */
2204 	write_seqcount_end(&tk_core.seq);
2205 out:
2206 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2207 
2208 	return !!clock_set;
2209 }
2210 
2211 /**
2212  * update_wall_time - Uses the current clocksource to increment the wall time
2213  *
2214  */
update_wall_time(void)2215 void update_wall_time(void)
2216 {
2217 	if (timekeeping_advance(TK_ADV_TICK))
2218 		clock_was_set_delayed();
2219 }
2220 
2221 /**
2222  * getboottime64 - Return the real time of system boot.
2223  * @ts:		pointer to the timespec64 to be set
2224  *
2225  * Returns the wall-time of boot in a timespec64.
2226  *
2227  * This is based on the wall_to_monotonic offset and the total suspend
2228  * time. Calls to settimeofday will affect the value returned (which
2229  * basically means that however wrong your real time clock is at boot time,
2230  * you get the right time here).
2231  */
getboottime64(struct timespec64 * ts)2232 void getboottime64(struct timespec64 *ts)
2233 {
2234 	struct timekeeper *tk = &tk_core.timekeeper;
2235 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2236 
2237 	*ts = ktime_to_timespec64(t);
2238 }
2239 EXPORT_SYMBOL_GPL(getboottime64);
2240 
ktime_get_coarse_real_ts64(struct timespec64 * ts)2241 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2242 {
2243 	struct timekeeper *tk = &tk_core.timekeeper;
2244 	unsigned int seq;
2245 
2246 	do {
2247 		seq = read_seqcount_begin(&tk_core.seq);
2248 
2249 		*ts = tk_xtime(tk);
2250 	} while (read_seqcount_retry(&tk_core.seq, seq));
2251 }
2252 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2253 
ktime_get_coarse_ts64(struct timespec64 * ts)2254 void ktime_get_coarse_ts64(struct timespec64 *ts)
2255 {
2256 	struct timekeeper *tk = &tk_core.timekeeper;
2257 	struct timespec64 now, mono;
2258 	unsigned int seq;
2259 
2260 	do {
2261 		seq = read_seqcount_begin(&tk_core.seq);
2262 
2263 		now = tk_xtime(tk);
2264 		mono = tk->wall_to_monotonic;
2265 	} while (read_seqcount_retry(&tk_core.seq, seq));
2266 
2267 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2268 				now.tv_nsec + mono.tv_nsec);
2269 }
2270 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2271 
2272 /*
2273  * Must hold jiffies_lock
2274  */
do_timer(unsigned long ticks)2275 void do_timer(unsigned long ticks)
2276 {
2277 	jiffies_64 += ticks;
2278 	calc_global_load();
2279 }
2280 
2281 /**
2282  * ktime_get_update_offsets_now - hrtimer helper
2283  * @cwsseq:	pointer to check and store the clock was set sequence number
2284  * @offs_real:	pointer to storage for monotonic -> realtime offset
2285  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2286  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2287  *
2288  * Returns current monotonic time and updates the offsets if the
2289  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2290  * different.
2291  *
2292  * Called from hrtimer_interrupt() or retrigger_next_event()
2293  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2294 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2295 				     ktime_t *offs_boot, ktime_t *offs_tai)
2296 {
2297 	struct timekeeper *tk = &tk_core.timekeeper;
2298 	unsigned int seq;
2299 	ktime_t base;
2300 	u64 nsecs;
2301 
2302 	do {
2303 		seq = read_seqcount_begin(&tk_core.seq);
2304 
2305 		base = tk->tkr_mono.base;
2306 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2307 		base = ktime_add_ns(base, nsecs);
2308 
2309 		if (*cwsseq != tk->clock_was_set_seq) {
2310 			*cwsseq = tk->clock_was_set_seq;
2311 			*offs_real = tk->offs_real;
2312 			*offs_boot = tk->offs_boot;
2313 			*offs_tai = tk->offs_tai;
2314 		}
2315 
2316 		/* Handle leapsecond insertion adjustments */
2317 		if (unlikely(base >= tk->next_leap_ktime))
2318 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2319 
2320 	} while (read_seqcount_retry(&tk_core.seq, seq));
2321 
2322 	return base;
2323 }
2324 
2325 /*
2326  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2327  */
timekeeping_validate_timex(const struct __kernel_timex * txc)2328 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2329 {
2330 	if (txc->modes & ADJ_ADJTIME) {
2331 		/* singleshot must not be used with any other mode bits */
2332 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2333 			return -EINVAL;
2334 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2335 		    !capable(CAP_SYS_TIME))
2336 			return -EPERM;
2337 	} else {
2338 		/* In order to modify anything, you gotta be super-user! */
2339 		if (txc->modes && !capable(CAP_SYS_TIME))
2340 			return -EPERM;
2341 		/*
2342 		 * if the quartz is off by more than 10% then
2343 		 * something is VERY wrong!
2344 		 */
2345 		if (txc->modes & ADJ_TICK &&
2346 		    (txc->tick <  900000/USER_HZ ||
2347 		     txc->tick > 1100000/USER_HZ))
2348 			return -EINVAL;
2349 	}
2350 
2351 	if (txc->modes & ADJ_SETOFFSET) {
2352 		/* In order to inject time, you gotta be super-user! */
2353 		if (!capable(CAP_SYS_TIME))
2354 			return -EPERM;
2355 
2356 		/*
2357 		 * Validate if a timespec/timeval used to inject a time
2358 		 * offset is valid.  Offsets can be positive or negative, so
2359 		 * we don't check tv_sec. The value of the timeval/timespec
2360 		 * is the sum of its fields,but *NOTE*:
2361 		 * The field tv_usec/tv_nsec must always be non-negative and
2362 		 * we can't have more nanoseconds/microseconds than a second.
2363 		 */
2364 		if (txc->time.tv_usec < 0)
2365 			return -EINVAL;
2366 
2367 		if (txc->modes & ADJ_NANO) {
2368 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2369 				return -EINVAL;
2370 		} else {
2371 			if (txc->time.tv_usec >= USEC_PER_SEC)
2372 				return -EINVAL;
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * Check for potential multiplication overflows that can
2378 	 * only happen on 64-bit systems:
2379 	 */
2380 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2381 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2382 			return -EINVAL;
2383 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2384 			return -EINVAL;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 /**
2391  * random_get_entropy_fallback - Returns the raw clock source value,
2392  * used by random.c for platforms with no valid random_get_entropy().
2393  */
random_get_entropy_fallback(void)2394 unsigned long random_get_entropy_fallback(void)
2395 {
2396 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2397 	struct clocksource *clock = READ_ONCE(tkr->clock);
2398 
2399 	if (unlikely(timekeeping_suspended || !clock))
2400 		return 0;
2401 	return clock->read(clock);
2402 }
2403 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2404 
2405 /**
2406  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2407  */
do_adjtimex(struct __kernel_timex * txc)2408 int do_adjtimex(struct __kernel_timex *txc)
2409 {
2410 	struct timekeeper *tk = &tk_core.timekeeper;
2411 	struct audit_ntp_data ad;
2412 	bool clock_set = false;
2413 	struct timespec64 ts;
2414 	unsigned long flags;
2415 	s32 orig_tai, tai;
2416 	int ret;
2417 
2418 	/* Validate the data before disabling interrupts */
2419 	ret = timekeeping_validate_timex(txc);
2420 	if (ret)
2421 		return ret;
2422 	add_device_randomness(txc, sizeof(*txc));
2423 
2424 	if (txc->modes & ADJ_SETOFFSET) {
2425 		struct timespec64 delta;
2426 		delta.tv_sec  = txc->time.tv_sec;
2427 		delta.tv_nsec = txc->time.tv_usec;
2428 		if (!(txc->modes & ADJ_NANO))
2429 			delta.tv_nsec *= 1000;
2430 		ret = timekeeping_inject_offset(&delta);
2431 		if (ret)
2432 			return ret;
2433 
2434 		audit_tk_injoffset(delta);
2435 	}
2436 
2437 	audit_ntp_init(&ad);
2438 
2439 	ktime_get_real_ts64(&ts);
2440 	add_device_randomness(&ts, sizeof(ts));
2441 
2442 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2443 	write_seqcount_begin(&tk_core.seq);
2444 
2445 	orig_tai = tai = tk->tai_offset;
2446 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2447 
2448 	if (tai != orig_tai) {
2449 		__timekeeping_set_tai_offset(tk, tai);
2450 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2451 		clock_set = true;
2452 	}
2453 	tk_update_leap_state(tk);
2454 
2455 	write_seqcount_end(&tk_core.seq);
2456 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2457 
2458 	audit_ntp_log(&ad);
2459 
2460 	/* Update the multiplier immediately if frequency was set directly */
2461 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2462 		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2463 
2464 	if (clock_set)
2465 		clock_was_set(CLOCK_REALTIME);
2466 
2467 	ntp_notify_cmos_timer();
2468 
2469 	return ret;
2470 }
2471 
2472 #ifdef CONFIG_NTP_PPS
2473 /**
2474  * hardpps() - Accessor function to NTP __hardpps function
2475  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2476 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2477 {
2478 	unsigned long flags;
2479 
2480 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2481 	write_seqcount_begin(&tk_core.seq);
2482 
2483 	__hardpps(phase_ts, raw_ts);
2484 
2485 	write_seqcount_end(&tk_core.seq);
2486 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2487 }
2488 EXPORT_SYMBOL(hardpps);
2489 #endif /* CONFIG_NTP_PPS */
2490