• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67 
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70 
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 	.set = set_nx_huge_pages,
73 	.get = param_get_bool,
74 };
75 
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 	.set = set_nx_huge_pages_recovery_ratio,
78 	.get = param_get_uint,
79 };
80 
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 		&nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86 
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89 
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98 
99 static int max_huge_page_level __read_mostly;
100 static int tdp_root_level __read_mostly;
101 static int max_tdp_level __read_mostly;
102 
103 enum {
104 	AUDIT_PRE_PAGE_FAULT,
105 	AUDIT_POST_PAGE_FAULT,
106 	AUDIT_PRE_PTE_WRITE,
107 	AUDIT_POST_PTE_WRITE,
108 	AUDIT_PRE_SYNC,
109 	AUDIT_POST_SYNC
110 };
111 
112 #ifdef MMU_DEBUG
113 bool dbg = 0;
114 module_param(dbg, bool, 0644);
115 #endif
116 
117 #define PTE_PREFETCH_NUM		8
118 
119 #define PT32_LEVEL_BITS 10
120 
121 #define PT32_LEVEL_SHIFT(level) \
122 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123 
124 #define PT32_LVL_OFFSET_MASK(level) \
125 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 						* PT32_LEVEL_BITS))) - 1))
127 
128 #define PT32_INDEX(address, level)\
129 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130 
131 
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137 					    * PT32_LEVEL_BITS))) - 1))
138 
139 #include <trace/events/kvm.h>
140 
141 /* make pte_list_desc fit well in cache lines */
142 #define PTE_LIST_EXT 14
143 
144 /*
145  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
146  * at the start; then accessing it will only use one single cacheline for
147  * either full (entries==PTE_LIST_EXT) case or entries<=6.
148  */
149 struct pte_list_desc {
150 	struct pte_list_desc *more;
151 	/*
152 	 * Stores number of entries stored in the pte_list_desc.  No need to be
153 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
154 	 */
155 	u64 spte_count;
156 	u64 *sptes[PTE_LIST_EXT];
157 };
158 
159 struct kvm_shadow_walk_iterator {
160 	u64 addr;
161 	hpa_t shadow_addr;
162 	u64 *sptep;
163 	int level;
164 	unsigned index;
165 };
166 
167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
168 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
169 					 (_root), (_addr));                \
170 	     shadow_walk_okay(&(_walker));			           \
171 	     shadow_walk_next(&(_walker)))
172 
173 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
174 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
175 	     shadow_walk_okay(&(_walker));			\
176 	     shadow_walk_next(&(_walker)))
177 
178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
179 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
180 	     shadow_walk_okay(&(_walker)) &&				\
181 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
182 	     __shadow_walk_next(&(_walker), spte))
183 
184 static struct kmem_cache *pte_list_desc_cache;
185 struct kmem_cache *mmu_page_header_cache;
186 static struct percpu_counter kvm_total_used_mmu_pages;
187 
188 static void mmu_spte_set(u64 *sptep, u64 spte);
189 static union kvm_mmu_page_role
190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191 
192 struct kvm_mmu_role_regs {
193 	const unsigned long cr0;
194 	const unsigned long cr4;
195 	const u64 efer;
196 };
197 
198 #define CREATE_TRACE_POINTS
199 #include "mmutrace.h"
200 
201 /*
202  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
203  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
204  * the single source of truth for the MMU's state.
205  */
206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 {									\
209 	return !!(regs->reg & flag);					\
210 }
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
221 
222 /*
223  * The MMU itself (with a valid role) is the single source of truth for the
224  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
225  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
226  * and the vCPU may be incorrect/irrelevant.
227  */
228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
230 {								\
231 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
232 }
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
236 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
237 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
238 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
239 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
240 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
242 
vcpu_to_role_regs(struct kvm_vcpu * vcpu)243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
244 {
245 	struct kvm_mmu_role_regs regs = {
246 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
247 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
248 		.efer = vcpu->arch.efer,
249 	};
250 
251 	return regs;
252 }
253 
role_regs_to_root_level(struct kvm_mmu_role_regs * regs)254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
255 {
256 	if (!____is_cr0_pg(regs))
257 		return 0;
258 	else if (____is_efer_lma(regs))
259 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
260 					       PT64_ROOT_4LEVEL;
261 	else if (____is_cr4_pae(regs))
262 		return PT32E_ROOT_LEVEL;
263 	else
264 		return PT32_ROOT_LEVEL;
265 }
266 
kvm_available_flush_tlb_with_range(void)267 static inline bool kvm_available_flush_tlb_with_range(void)
268 {
269 	return kvm_x86_ops.tlb_remote_flush_with_range;
270 }
271 
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
273 		struct kvm_tlb_range *range)
274 {
275 	int ret = -ENOTSUPP;
276 
277 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279 
280 	if (ret)
281 		kvm_flush_remote_tlbs(kvm);
282 }
283 
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285 		u64 start_gfn, u64 pages)
286 {
287 	struct kvm_tlb_range range;
288 
289 	range.start_gfn = start_gfn;
290 	range.pages = pages;
291 
292 	kvm_flush_remote_tlbs_with_range(kvm, &range);
293 }
294 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
296 			   unsigned int access)
297 {
298 	u64 spte = make_mmio_spte(vcpu, gfn, access);
299 
300 	trace_mark_mmio_spte(sptep, gfn, spte);
301 	mmu_spte_set(sptep, spte);
302 }
303 
get_mmio_spte_gfn(u64 spte)304 static gfn_t get_mmio_spte_gfn(u64 spte)
305 {
306 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307 
308 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309 	       & shadow_nonpresent_or_rsvd_mask;
310 
311 	return gpa >> PAGE_SHIFT;
312 }
313 
get_mmio_spte_access(u64 spte)314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316 	return spte & shadow_mmio_access_mask;
317 }
318 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320 {
321 	u64 kvm_gen, spte_gen, gen;
322 
323 	gen = kvm_vcpu_memslots(vcpu)->generation;
324 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
325 		return false;
326 
327 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328 	spte_gen = get_mmio_spte_generation(spte);
329 
330 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
331 	return likely(kvm_gen == spte_gen);
332 }
333 
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
335                                   struct x86_exception *exception)
336 {
337         return gpa;
338 }
339 
is_cpuid_PSE36(void)340 static int is_cpuid_PSE36(void)
341 {
342 	return 1;
343 }
344 
pse36_gfn_delta(u32 gpte)345 static gfn_t pse36_gfn_delta(u32 gpte)
346 {
347 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
348 
349 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
350 }
351 
352 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)353 static void __set_spte(u64 *sptep, u64 spte)
354 {
355 	WRITE_ONCE(*sptep, spte);
356 }
357 
__update_clear_spte_fast(u64 * sptep,u64 spte)358 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359 {
360 	WRITE_ONCE(*sptep, spte);
361 }
362 
__update_clear_spte_slow(u64 * sptep,u64 spte)363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365 	return xchg(sptep, spte);
366 }
367 
__get_spte_lockless(u64 * sptep)368 static u64 __get_spte_lockless(u64 *sptep)
369 {
370 	return READ_ONCE(*sptep);
371 }
372 #else
373 union split_spte {
374 	struct {
375 		u32 spte_low;
376 		u32 spte_high;
377 	};
378 	u64 spte;
379 };
380 
count_spte_clear(u64 * sptep,u64 spte)381 static void count_spte_clear(u64 *sptep, u64 spte)
382 {
383 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
384 
385 	if (is_shadow_present_pte(spte))
386 		return;
387 
388 	/* Ensure the spte is completely set before we increase the count */
389 	smp_wmb();
390 	sp->clear_spte_count++;
391 }
392 
__set_spte(u64 * sptep,u64 spte)393 static void __set_spte(u64 *sptep, u64 spte)
394 {
395 	union split_spte *ssptep, sspte;
396 
397 	ssptep = (union split_spte *)sptep;
398 	sspte = (union split_spte)spte;
399 
400 	ssptep->spte_high = sspte.spte_high;
401 
402 	/*
403 	 * If we map the spte from nonpresent to present, We should store
404 	 * the high bits firstly, then set present bit, so cpu can not
405 	 * fetch this spte while we are setting the spte.
406 	 */
407 	smp_wmb();
408 
409 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 }
411 
__update_clear_spte_fast(u64 * sptep,u64 spte)412 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
413 {
414 	union split_spte *ssptep, sspte;
415 
416 	ssptep = (union split_spte *)sptep;
417 	sspte = (union split_spte)spte;
418 
419 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420 
421 	/*
422 	 * If we map the spte from present to nonpresent, we should clear
423 	 * present bit firstly to avoid vcpu fetch the old high bits.
424 	 */
425 	smp_wmb();
426 
427 	ssptep->spte_high = sspte.spte_high;
428 	count_spte_clear(sptep, spte);
429 }
430 
__update_clear_spte_slow(u64 * sptep,u64 spte)431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
432 {
433 	union split_spte *ssptep, sspte, orig;
434 
435 	ssptep = (union split_spte *)sptep;
436 	sspte = (union split_spte)spte;
437 
438 	/* xchg acts as a barrier before the setting of the high bits */
439 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440 	orig.spte_high = ssptep->spte_high;
441 	ssptep->spte_high = sspte.spte_high;
442 	count_spte_clear(sptep, spte);
443 
444 	return orig.spte;
445 }
446 
447 /*
448  * The idea using the light way get the spte on x86_32 guest is from
449  * gup_get_pte (mm/gup.c).
450  *
451  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
452  * coalesces them and we are running out of the MMU lock.  Therefore
453  * we need to protect against in-progress updates of the spte.
454  *
455  * Reading the spte while an update is in progress may get the old value
456  * for the high part of the spte.  The race is fine for a present->non-present
457  * change (because the high part of the spte is ignored for non-present spte),
458  * but for a present->present change we must reread the spte.
459  *
460  * All such changes are done in two steps (present->non-present and
461  * non-present->present), hence it is enough to count the number of
462  * present->non-present updates: if it changed while reading the spte,
463  * we might have hit the race.  This is done using clear_spte_count.
464  */
__get_spte_lockless(u64 * sptep)465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
468 	union split_spte spte, *orig = (union split_spte *)sptep;
469 	int count;
470 
471 retry:
472 	count = sp->clear_spte_count;
473 	smp_rmb();
474 
475 	spte.spte_low = orig->spte_low;
476 	smp_rmb();
477 
478 	spte.spte_high = orig->spte_high;
479 	smp_rmb();
480 
481 	if (unlikely(spte.spte_low != orig->spte_low ||
482 	      count != sp->clear_spte_count))
483 		goto retry;
484 
485 	return spte.spte;
486 }
487 #endif
488 
spte_has_volatile_bits(u64 spte)489 static bool spte_has_volatile_bits(u64 spte)
490 {
491 	if (!is_shadow_present_pte(spte))
492 		return false;
493 
494 	/*
495 	 * Always atomically update spte if it can be updated
496 	 * out of mmu-lock, it can ensure dirty bit is not lost,
497 	 * also, it can help us to get a stable is_writable_pte()
498 	 * to ensure tlb flush is not missed.
499 	 */
500 	if (spte_can_locklessly_be_made_writable(spte) ||
501 	    is_access_track_spte(spte))
502 		return true;
503 
504 	if (spte_ad_enabled(spte)) {
505 		if ((spte & shadow_accessed_mask) == 0 ||
506 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
507 			return true;
508 	}
509 
510 	return false;
511 }
512 
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
mmu_spte_set(u64 * sptep,u64 new_spte)519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521 	WARN_ON(is_shadow_present_pte(*sptep));
522 	__set_spte(sptep, new_spte);
523 }
524 
525 /*
526  * Update the SPTE (excluding the PFN), but do not track changes in its
527  * accessed/dirty status.
528  */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530 {
531 	u64 old_spte = *sptep;
532 
533 	WARN_ON(!is_shadow_present_pte(new_spte));
534 
535 	if (!is_shadow_present_pte(old_spte)) {
536 		mmu_spte_set(sptep, new_spte);
537 		return old_spte;
538 	}
539 
540 	if (!spte_has_volatile_bits(old_spte))
541 		__update_clear_spte_fast(sptep, new_spte);
542 	else
543 		old_spte = __update_clear_spte_slow(sptep, new_spte);
544 
545 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
546 
547 	return old_spte;
548 }
549 
550 /* Rules for using mmu_spte_update:
551  * Update the state bits, it means the mapped pfn is not changed.
552  *
553  * Whenever we overwrite a writable spte with a read-only one we
554  * should flush remote TLBs. Otherwise rmap_write_protect
555  * will find a read-only spte, even though the writable spte
556  * might be cached on a CPU's TLB, the return value indicates this
557  * case.
558  *
559  * Returns true if the TLB needs to be flushed
560  */
mmu_spte_update(u64 * sptep,u64 new_spte)561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563 	bool flush = false;
564 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
565 
566 	if (!is_shadow_present_pte(old_spte))
567 		return false;
568 
569 	/*
570 	 * For the spte updated out of mmu-lock is safe, since
571 	 * we always atomically update it, see the comments in
572 	 * spte_has_volatile_bits().
573 	 */
574 	if (spte_can_locklessly_be_made_writable(old_spte) &&
575 	      !is_writable_pte(new_spte))
576 		flush = true;
577 
578 	/*
579 	 * Flush TLB when accessed/dirty states are changed in the page tables,
580 	 * to guarantee consistency between TLB and page tables.
581 	 */
582 
583 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
584 		flush = true;
585 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586 	}
587 
588 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
589 		flush = true;
590 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591 	}
592 
593 	return flush;
594 }
595 
596 /*
597  * Rules for using mmu_spte_clear_track_bits:
598  * It sets the sptep from present to nonpresent, and track the
599  * state bits, it is used to clear the last level sptep.
600  * Returns the old PTE.
601  */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603 {
604 	kvm_pfn_t pfn;
605 	u64 old_spte = *sptep;
606 	int level = sptep_to_sp(sptep)->role.level;
607 
608 	if (!spte_has_volatile_bits(old_spte))
609 		__update_clear_spte_fast(sptep, 0ull);
610 	else
611 		old_spte = __update_clear_spte_slow(sptep, 0ull);
612 
613 	if (!is_shadow_present_pte(old_spte))
614 		return old_spte;
615 
616 	kvm_update_page_stats(kvm, level, -1);
617 
618 	pfn = spte_to_pfn(old_spte);
619 
620 	/*
621 	 * KVM does not hold the refcount of the page used by
622 	 * kvm mmu, before reclaiming the page, we should
623 	 * unmap it from mmu first.
624 	 */
625 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626 
627 	if (is_accessed_spte(old_spte))
628 		kvm_set_pfn_accessed(pfn);
629 
630 	if (is_dirty_spte(old_spte))
631 		kvm_set_pfn_dirty(pfn);
632 
633 	return old_spte;
634 }
635 
636 /*
637  * Rules for using mmu_spte_clear_no_track:
638  * Directly clear spte without caring the state bits of sptep,
639  * it is used to set the upper level spte.
640  */
mmu_spte_clear_no_track(u64 * sptep)641 static void mmu_spte_clear_no_track(u64 *sptep)
642 {
643 	__update_clear_spte_fast(sptep, 0ull);
644 }
645 
mmu_spte_get_lockless(u64 * sptep)646 static u64 mmu_spte_get_lockless(u64 *sptep)
647 {
648 	return __get_spte_lockless(sptep);
649 }
650 
651 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)652 static u64 restore_acc_track_spte(u64 spte)
653 {
654 	u64 new_spte = spte;
655 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
656 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657 
658 	WARN_ON_ONCE(spte_ad_enabled(spte));
659 	WARN_ON_ONCE(!is_access_track_spte(spte));
660 
661 	new_spte &= ~shadow_acc_track_mask;
662 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
663 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664 	new_spte |= saved_bits;
665 
666 	return new_spte;
667 }
668 
669 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)670 static bool mmu_spte_age(u64 *sptep)
671 {
672 	u64 spte = mmu_spte_get_lockless(sptep);
673 
674 	if (!is_accessed_spte(spte))
675 		return false;
676 
677 	if (spte_ad_enabled(spte)) {
678 		clear_bit((ffs(shadow_accessed_mask) - 1),
679 			  (unsigned long *)sptep);
680 	} else {
681 		/*
682 		 * Capture the dirty status of the page, so that it doesn't get
683 		 * lost when the SPTE is marked for access tracking.
684 		 */
685 		if (is_writable_pte(spte))
686 			kvm_set_pfn_dirty(spte_to_pfn(spte));
687 
688 		spte = mark_spte_for_access_track(spte);
689 		mmu_spte_update_no_track(sptep, spte);
690 	}
691 
692 	return true;
693 }
694 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
696 {
697 	if (is_tdp_mmu(vcpu->arch.mmu)) {
698 		kvm_tdp_mmu_walk_lockless_begin();
699 	} else {
700 		/*
701 		 * Prevent page table teardown by making any free-er wait during
702 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
703 		 */
704 		local_irq_disable();
705 
706 		/*
707 		 * Make sure a following spte read is not reordered ahead of the write
708 		 * to vcpu->mode.
709 		 */
710 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
711 	}
712 }
713 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
715 {
716 	if (is_tdp_mmu(vcpu->arch.mmu)) {
717 		kvm_tdp_mmu_walk_lockless_end();
718 	} else {
719 		/*
720 		 * Make sure the write to vcpu->mode is not reordered in front of
721 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
722 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
723 		 */
724 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
725 		local_irq_enable();
726 	}
727 }
728 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730 {
731 	int r;
732 
733 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736 	if (r)
737 		return r;
738 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
739 				       PT64_ROOT_MAX_LEVEL);
740 	if (r)
741 		return r;
742 	if (maybe_indirect) {
743 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
744 					       PT64_ROOT_MAX_LEVEL);
745 		if (r)
746 			return r;
747 	}
748 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
749 					  PT64_ROOT_MAX_LEVEL);
750 }
751 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
753 {
754 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
755 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
756 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
757 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 }
759 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761 {
762 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 }
764 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766 {
767 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 }
769 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
771 {
772 	if (!sp->role.direct)
773 		return sp->gfns[index];
774 
775 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
776 }
777 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
779 {
780 	if (!sp->role.direct) {
781 		sp->gfns[index] = gfn;
782 		return;
783 	}
784 
785 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
786 		pr_err_ratelimited("gfn mismatch under direct page %llx "
787 				   "(expected %llx, got %llx)\n",
788 				   sp->gfn,
789 				   kvm_mmu_page_get_gfn(sp, index), gfn);
790 }
791 
792 /*
793  * Return the pointer to the large page information for a given gfn,
794  * handling slots that are not large page aligned.
795  */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797 		const struct kvm_memory_slot *slot, int level)
798 {
799 	unsigned long idx;
800 
801 	idx = gfn_to_index(gfn, slot->base_gfn, level);
802 	return &slot->arch.lpage_info[level - 2][idx];
803 }
804 
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806 					    gfn_t gfn, int count)
807 {
808 	struct kvm_lpage_info *linfo;
809 	int i;
810 
811 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812 		linfo = lpage_info_slot(gfn, slot, i);
813 		linfo->disallow_lpage += count;
814 		WARN_ON(linfo->disallow_lpage < 0);
815 	}
816 }
817 
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 {
820 	update_gfn_disallow_lpage_count(slot, gfn, 1);
821 }
822 
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 {
825 	update_gfn_disallow_lpage_count(slot, gfn, -1);
826 }
827 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830 	struct kvm_memslots *slots;
831 	struct kvm_memory_slot *slot;
832 	gfn_t gfn;
833 
834 	kvm->arch.indirect_shadow_pages++;
835 	gfn = sp->gfn;
836 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
837 	slot = __gfn_to_memslot(slots, gfn);
838 
839 	/* the non-leaf shadow pages are keeping readonly. */
840 	if (sp->role.level > PG_LEVEL_4K)
841 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
842 						    KVM_PAGE_TRACK_WRITE);
843 
844 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
845 }
846 
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
848 {
849 	if (sp->lpage_disallowed)
850 		return;
851 
852 	++kvm->stat.nx_lpage_splits;
853 	list_add_tail(&sp->lpage_disallowed_link,
854 		      &kvm->arch.lpage_disallowed_mmu_pages);
855 	sp->lpage_disallowed = true;
856 }
857 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
859 {
860 	struct kvm_memslots *slots;
861 	struct kvm_memory_slot *slot;
862 	gfn_t gfn;
863 
864 	kvm->arch.indirect_shadow_pages--;
865 	gfn = sp->gfn;
866 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
867 	slot = __gfn_to_memslot(slots, gfn);
868 	if (sp->role.level > PG_LEVEL_4K)
869 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
870 						       KVM_PAGE_TRACK_WRITE);
871 
872 	kvm_mmu_gfn_allow_lpage(slot, gfn);
873 }
874 
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877 	--kvm->stat.nx_lpage_splits;
878 	sp->lpage_disallowed = false;
879 	list_del(&sp->lpage_disallowed_link);
880 }
881 
882 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884 			    bool no_dirty_log)
885 {
886 	struct kvm_memory_slot *slot;
887 
888 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890 		return NULL;
891 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892 		return NULL;
893 
894 	return slot;
895 }
896 
897 /*
898  * About rmap_head encoding:
899  *
900  * If the bit zero of rmap_head->val is clear, then it points to the only spte
901  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902  * pte_list_desc containing more mappings.
903  */
904 
905 /*
906  * Returns the number of pointers in the rmap chain, not counting the new one.
907  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909 			struct kvm_rmap_head *rmap_head)
910 {
911 	struct pte_list_desc *desc;
912 	int count = 0;
913 
914 	if (!rmap_head->val) {
915 		rmap_printk("%p %llx 0->1\n", spte, *spte);
916 		rmap_head->val = (unsigned long)spte;
917 	} else if (!(rmap_head->val & 1)) {
918 		rmap_printk("%p %llx 1->many\n", spte, *spte);
919 		desc = mmu_alloc_pte_list_desc(vcpu);
920 		desc->sptes[0] = (u64 *)rmap_head->val;
921 		desc->sptes[1] = spte;
922 		desc->spte_count = 2;
923 		rmap_head->val = (unsigned long)desc | 1;
924 		++count;
925 	} else {
926 		rmap_printk("%p %llx many->many\n", spte, *spte);
927 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928 		while (desc->spte_count == PTE_LIST_EXT) {
929 			count += PTE_LIST_EXT;
930 			if (!desc->more) {
931 				desc->more = mmu_alloc_pte_list_desc(vcpu);
932 				desc = desc->more;
933 				desc->spte_count = 0;
934 				break;
935 			}
936 			desc = desc->more;
937 		}
938 		count += desc->spte_count;
939 		desc->sptes[desc->spte_count++] = spte;
940 	}
941 	return count;
942 }
943 
944 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
946 			   struct pte_list_desc *desc, int i,
947 			   struct pte_list_desc *prev_desc)
948 {
949 	int j = desc->spte_count - 1;
950 
951 	desc->sptes[i] = desc->sptes[j];
952 	desc->sptes[j] = NULL;
953 	desc->spte_count--;
954 	if (desc->spte_count)
955 		return;
956 	if (!prev_desc && !desc->more)
957 		rmap_head->val = 0;
958 	else
959 		if (prev_desc)
960 			prev_desc->more = desc->more;
961 		else
962 			rmap_head->val = (unsigned long)desc->more | 1;
963 	mmu_free_pte_list_desc(desc);
964 }
965 
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967 {
968 	struct pte_list_desc *desc;
969 	struct pte_list_desc *prev_desc;
970 	int i;
971 
972 	if (!rmap_head->val) {
973 		pr_err("%s: %p 0->BUG\n", __func__, spte);
974 		BUG();
975 	} else if (!(rmap_head->val & 1)) {
976 		rmap_printk("%p 1->0\n", spte);
977 		if ((u64 *)rmap_head->val != spte) {
978 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
979 			BUG();
980 		}
981 		rmap_head->val = 0;
982 	} else {
983 		rmap_printk("%p many->many\n", spte);
984 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985 		prev_desc = NULL;
986 		while (desc) {
987 			for (i = 0; i < desc->spte_count; ++i) {
988 				if (desc->sptes[i] == spte) {
989 					pte_list_desc_remove_entry(rmap_head,
990 							desc, i, prev_desc);
991 					return;
992 				}
993 			}
994 			prev_desc = desc;
995 			desc = desc->more;
996 		}
997 		pr_err("%s: %p many->many\n", __func__, spte);
998 		BUG();
999 	}
1000 }
1001 
pte_list_remove(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1003 			    u64 *sptep)
1004 {
1005 	mmu_spte_clear_track_bits(kvm, sptep);
1006 	__pte_list_remove(sptep, rmap_head);
1007 }
1008 
1009 /* Return true if rmap existed, false otherwise */
pte_list_destroy(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1011 {
1012 	struct pte_list_desc *desc, *next;
1013 	int i;
1014 
1015 	if (!rmap_head->val)
1016 		return false;
1017 
1018 	if (!(rmap_head->val & 1)) {
1019 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1020 		goto out;
1021 	}
1022 
1023 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 
1025 	for (; desc; desc = next) {
1026 		for (i = 0; i < desc->spte_count; i++)
1027 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1028 		next = desc->more;
1029 		mmu_free_pte_list_desc(desc);
1030 	}
1031 out:
1032 	/* rmap_head is meaningless now, remember to reset it */
1033 	rmap_head->val = 0;
1034 	return true;
1035 }
1036 
pte_list_count(struct kvm_rmap_head * rmap_head)1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1038 {
1039 	struct pte_list_desc *desc;
1040 	unsigned int count = 0;
1041 
1042 	if (!rmap_head->val)
1043 		return 0;
1044 	else if (!(rmap_head->val & 1))
1045 		return 1;
1046 
1047 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1048 
1049 	while (desc) {
1050 		count += desc->spte_count;
1051 		desc = desc->more;
1052 	}
1053 
1054 	return count;
1055 }
1056 
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1058 					 const struct kvm_memory_slot *slot)
1059 {
1060 	unsigned long idx;
1061 
1062 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1063 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 }
1065 
rmap_can_add(struct kvm_vcpu * vcpu)1066 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1067 {
1068 	struct kvm_mmu_memory_cache *mc;
1069 
1070 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 }
1073 
rmap_remove(struct kvm * kvm,u64 * spte)1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076 	struct kvm_memslots *slots;
1077 	struct kvm_memory_slot *slot;
1078 	struct kvm_mmu_page *sp;
1079 	gfn_t gfn;
1080 	struct kvm_rmap_head *rmap_head;
1081 
1082 	sp = sptep_to_sp(spte);
1083 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084 
1085 	/*
1086 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1087 	 * so we have to determine which memslots to use based on context
1088 	 * information in sp->role.
1089 	 */
1090 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1091 
1092 	slot = __gfn_to_memslot(slots, gfn);
1093 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1094 
1095 	__pte_list_remove(spte, rmap_head);
1096 }
1097 
1098 /*
1099  * Used by the following functions to iterate through the sptes linked by a
1100  * rmap.  All fields are private and not assumed to be used outside.
1101  */
1102 struct rmap_iterator {
1103 	/* private fields */
1104 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1105 	int pos;			/* index of the sptep */
1106 };
1107 
1108 /*
1109  * Iteration must be started by this function.  This should also be used after
1110  * removing/dropping sptes from the rmap link because in such cases the
1111  * information in the iterator may not be valid.
1112  *
1113  * Returns sptep if found, NULL otherwise.
1114  */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1115 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1116 			   struct rmap_iterator *iter)
1117 {
1118 	u64 *sptep;
1119 
1120 	if (!rmap_head->val)
1121 		return NULL;
1122 
1123 	if (!(rmap_head->val & 1)) {
1124 		iter->desc = NULL;
1125 		sptep = (u64 *)rmap_head->val;
1126 		goto out;
1127 	}
1128 
1129 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1130 	iter->pos = 0;
1131 	sptep = iter->desc->sptes[iter->pos];
1132 out:
1133 	BUG_ON(!is_shadow_present_pte(*sptep));
1134 	return sptep;
1135 }
1136 
1137 /*
1138  * Must be used with a valid iterator: e.g. after rmap_get_first().
1139  *
1140  * Returns sptep if found, NULL otherwise.
1141  */
rmap_get_next(struct rmap_iterator * iter)1142 static u64 *rmap_get_next(struct rmap_iterator *iter)
1143 {
1144 	u64 *sptep;
1145 
1146 	if (iter->desc) {
1147 		if (iter->pos < PTE_LIST_EXT - 1) {
1148 			++iter->pos;
1149 			sptep = iter->desc->sptes[iter->pos];
1150 			if (sptep)
1151 				goto out;
1152 		}
1153 
1154 		iter->desc = iter->desc->more;
1155 
1156 		if (iter->desc) {
1157 			iter->pos = 0;
1158 			/* desc->sptes[0] cannot be NULL */
1159 			sptep = iter->desc->sptes[iter->pos];
1160 			goto out;
1161 		}
1162 	}
1163 
1164 	return NULL;
1165 out:
1166 	BUG_ON(!is_shadow_present_pte(*sptep));
1167 	return sptep;
1168 }
1169 
1170 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1171 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1172 	     _spte_; _spte_ = rmap_get_next(_iter_))
1173 
drop_spte(struct kvm * kvm,u64 * sptep)1174 static void drop_spte(struct kvm *kvm, u64 *sptep)
1175 {
1176 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1177 
1178 	if (is_shadow_present_pte(old_spte))
1179 		rmap_remove(kvm, sptep);
1180 }
1181 
1182 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1183 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1184 {
1185 	if (is_large_pte(*sptep)) {
1186 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1187 		drop_spte(kvm, sptep);
1188 		return true;
1189 	}
1190 
1191 	return false;
1192 }
1193 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1194 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1195 {
1196 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1197 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1198 
1199 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1200 			KVM_PAGES_PER_HPAGE(sp->role.level));
1201 	}
1202 }
1203 
1204 /*
1205  * Write-protect on the specified @sptep, @pt_protect indicates whether
1206  * spte write-protection is caused by protecting shadow page table.
1207  *
1208  * Note: write protection is difference between dirty logging and spte
1209  * protection:
1210  * - for dirty logging, the spte can be set to writable at anytime if
1211  *   its dirty bitmap is properly set.
1212  * - for spte protection, the spte can be writable only after unsync-ing
1213  *   shadow page.
1214  *
1215  * Return true if tlb need be flushed.
1216  */
spte_write_protect(u64 * sptep,bool pt_protect)1217 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1218 {
1219 	u64 spte = *sptep;
1220 
1221 	if (!is_writable_pte(spte) &&
1222 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1223 		return false;
1224 
1225 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1226 
1227 	if (pt_protect)
1228 		spte &= ~shadow_mmu_writable_mask;
1229 	spte = spte & ~PT_WRITABLE_MASK;
1230 
1231 	return mmu_spte_update(sptep, spte);
1232 }
1233 
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1234 static bool __rmap_write_protect(struct kvm *kvm,
1235 				 struct kvm_rmap_head *rmap_head,
1236 				 bool pt_protect)
1237 {
1238 	u64 *sptep;
1239 	struct rmap_iterator iter;
1240 	bool flush = false;
1241 
1242 	for_each_rmap_spte(rmap_head, &iter, sptep)
1243 		flush |= spte_write_protect(sptep, pt_protect);
1244 
1245 	return flush;
1246 }
1247 
spte_clear_dirty(u64 * sptep)1248 static bool spte_clear_dirty(u64 *sptep)
1249 {
1250 	u64 spte = *sptep;
1251 
1252 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1253 
1254 	MMU_WARN_ON(!spte_ad_enabled(spte));
1255 	spte &= ~shadow_dirty_mask;
1256 	return mmu_spte_update(sptep, spte);
1257 }
1258 
spte_wrprot_for_clear_dirty(u64 * sptep)1259 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1260 {
1261 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1262 					       (unsigned long *)sptep);
1263 	if (was_writable && !spte_ad_enabled(*sptep))
1264 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1265 
1266 	return was_writable;
1267 }
1268 
1269 /*
1270  * Gets the GFN ready for another round of dirty logging by clearing the
1271  *	- D bit on ad-enabled SPTEs, and
1272  *	- W bit on ad-disabled SPTEs.
1273  * Returns true iff any D or W bits were cleared.
1274  */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1275 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1276 			       const struct kvm_memory_slot *slot)
1277 {
1278 	u64 *sptep;
1279 	struct rmap_iterator iter;
1280 	bool flush = false;
1281 
1282 	for_each_rmap_spte(rmap_head, &iter, sptep)
1283 		if (spte_ad_need_write_protect(*sptep))
1284 			flush |= spte_wrprot_for_clear_dirty(sptep);
1285 		else
1286 			flush |= spte_clear_dirty(sptep);
1287 
1288 	return flush;
1289 }
1290 
1291 /**
1292  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1293  * @kvm: kvm instance
1294  * @slot: slot to protect
1295  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1296  * @mask: indicates which pages we should protect
1297  *
1298  * Used when we do not need to care about huge page mappings.
1299  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1300 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1301 				     struct kvm_memory_slot *slot,
1302 				     gfn_t gfn_offset, unsigned long mask)
1303 {
1304 	struct kvm_rmap_head *rmap_head;
1305 
1306 	if (is_tdp_mmu_enabled(kvm))
1307 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1308 				slot->base_gfn + gfn_offset, mask, true);
1309 
1310 	if (!kvm_memslots_have_rmaps(kvm))
1311 		return;
1312 
1313 	while (mask) {
1314 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 					PG_LEVEL_4K, slot);
1316 		__rmap_write_protect(kvm, rmap_head, false);
1317 
1318 		/* clear the first set bit */
1319 		mask &= mask - 1;
1320 	}
1321 }
1322 
1323 /**
1324  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1325  * protect the page if the D-bit isn't supported.
1326  * @kvm: kvm instance
1327  * @slot: slot to clear D-bit
1328  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1329  * @mask: indicates which pages we should clear D-bit
1330  *
1331  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1332  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1333 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1334 					 struct kvm_memory_slot *slot,
1335 					 gfn_t gfn_offset, unsigned long mask)
1336 {
1337 	struct kvm_rmap_head *rmap_head;
1338 
1339 	if (is_tdp_mmu_enabled(kvm))
1340 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1341 				slot->base_gfn + gfn_offset, mask, false);
1342 
1343 	if (!kvm_memslots_have_rmaps(kvm))
1344 		return;
1345 
1346 	while (mask) {
1347 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1348 					PG_LEVEL_4K, slot);
1349 		__rmap_clear_dirty(kvm, rmap_head, slot);
1350 
1351 		/* clear the first set bit */
1352 		mask &= mask - 1;
1353 	}
1354 }
1355 
1356 /**
1357  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1358  * PT level pages.
1359  *
1360  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1361  * enable dirty logging for them.
1362  *
1363  * We need to care about huge page mappings: e.g. during dirty logging we may
1364  * have such mappings.
1365  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1366 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1367 				struct kvm_memory_slot *slot,
1368 				gfn_t gfn_offset, unsigned long mask)
1369 {
1370 	/*
1371 	 * Huge pages are NOT write protected when we start dirty logging in
1372 	 * initially-all-set mode; must write protect them here so that they
1373 	 * are split to 4K on the first write.
1374 	 *
1375 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1376 	 * of memslot has no such restriction, so the range can cross two large
1377 	 * pages.
1378 	 */
1379 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1380 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1381 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1382 
1383 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1384 
1385 		/* Cross two large pages? */
1386 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1387 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1388 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1389 						       PG_LEVEL_2M);
1390 	}
1391 
1392 	/* Now handle 4K PTEs.  */
1393 	if (kvm_x86_ops.cpu_dirty_log_size)
1394 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1395 	else
1396 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1397 }
1398 
kvm_cpu_dirty_log_size(void)1399 int kvm_cpu_dirty_log_size(void)
1400 {
1401 	return kvm_x86_ops.cpu_dirty_log_size;
1402 }
1403 
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1404 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1405 				    struct kvm_memory_slot *slot, u64 gfn,
1406 				    int min_level)
1407 {
1408 	struct kvm_rmap_head *rmap_head;
1409 	int i;
1410 	bool write_protected = false;
1411 
1412 	if (kvm_memslots_have_rmaps(kvm)) {
1413 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1414 			rmap_head = gfn_to_rmap(gfn, i, slot);
1415 			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1416 		}
1417 	}
1418 
1419 	if (is_tdp_mmu_enabled(kvm))
1420 		write_protected |=
1421 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1422 
1423 	return write_protected;
1424 }
1425 
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1426 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1427 {
1428 	struct kvm_memory_slot *slot;
1429 
1430 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1431 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1432 }
1433 
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1434 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1435 			  const struct kvm_memory_slot *slot)
1436 {
1437 	return pte_list_destroy(kvm, rmap_head);
1438 }
1439 
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1440 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1441 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1442 			    pte_t unused)
1443 {
1444 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1445 }
1446 
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t pte)1447 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1448 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1449 			      pte_t pte)
1450 {
1451 	u64 *sptep;
1452 	struct rmap_iterator iter;
1453 	int need_flush = 0;
1454 	u64 new_spte;
1455 	kvm_pfn_t new_pfn;
1456 
1457 	WARN_ON(pte_huge(pte));
1458 	new_pfn = pte_pfn(pte);
1459 
1460 restart:
1461 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1462 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1463 			    sptep, *sptep, gfn, level);
1464 
1465 		need_flush = 1;
1466 
1467 		if (pte_write(pte)) {
1468 			pte_list_remove(kvm, rmap_head, sptep);
1469 			goto restart;
1470 		} else {
1471 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1472 					*sptep, new_pfn);
1473 
1474 			mmu_spte_clear_track_bits(kvm, sptep);
1475 			mmu_spte_set(sptep, new_spte);
1476 		}
1477 	}
1478 
1479 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1480 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1481 		return 0;
1482 	}
1483 
1484 	return need_flush;
1485 }
1486 
1487 struct slot_rmap_walk_iterator {
1488 	/* input fields. */
1489 	const struct kvm_memory_slot *slot;
1490 	gfn_t start_gfn;
1491 	gfn_t end_gfn;
1492 	int start_level;
1493 	int end_level;
1494 
1495 	/* output fields. */
1496 	gfn_t gfn;
1497 	struct kvm_rmap_head *rmap;
1498 	int level;
1499 
1500 	/* private field. */
1501 	struct kvm_rmap_head *end_rmap;
1502 };
1503 
1504 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1505 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1506 {
1507 	iterator->level = level;
1508 	iterator->gfn = iterator->start_gfn;
1509 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1510 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1511 }
1512 
1513 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1514 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515 		    const struct kvm_memory_slot *slot, int start_level,
1516 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1517 {
1518 	iterator->slot = slot;
1519 	iterator->start_level = start_level;
1520 	iterator->end_level = end_level;
1521 	iterator->start_gfn = start_gfn;
1522 	iterator->end_gfn = end_gfn;
1523 
1524 	rmap_walk_init_level(iterator, iterator->start_level);
1525 }
1526 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1527 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1528 {
1529 	return !!iterator->rmap;
1530 }
1531 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1532 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1533 {
1534 	if (++iterator->rmap <= iterator->end_rmap) {
1535 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1536 		return;
1537 	}
1538 
1539 	if (++iterator->level > iterator->end_level) {
1540 		iterator->rmap = NULL;
1541 		return;
1542 	}
1543 
1544 	rmap_walk_init_level(iterator, iterator->level);
1545 }
1546 
1547 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1548 	   _start_gfn, _end_gfn, _iter_)				\
1549 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1550 				 _end_level_, _start_gfn, _end_gfn);	\
1551 	     slot_rmap_walk_okay(_iter_);				\
1552 	     slot_rmap_walk_next(_iter_))
1553 
1554 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 			       struct kvm_memory_slot *slot, gfn_t gfn,
1556 			       int level, pte_t pte);
1557 
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,rmap_handler_t handler)1558 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1559 						 struct kvm_gfn_range *range,
1560 						 rmap_handler_t handler)
1561 {
1562 	struct slot_rmap_walk_iterator iterator;
1563 	bool ret = false;
1564 
1565 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1566 				 range->start, range->end - 1, &iterator)
1567 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1568 			       iterator.level, range->pte);
1569 
1570 	return ret;
1571 }
1572 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1573 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1574 {
1575 	bool flush = false;
1576 
1577 	if (kvm_memslots_have_rmaps(kvm))
1578 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1579 
1580 	if (is_tdp_mmu_enabled(kvm))
1581 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1582 
1583 	return flush;
1584 }
1585 
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1586 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1587 {
1588 	bool flush = false;
1589 
1590 	if (kvm_memslots_have_rmaps(kvm))
1591 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1592 
1593 	if (is_tdp_mmu_enabled(kvm))
1594 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1595 
1596 	return flush;
1597 }
1598 
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1599 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1600 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1601 			  pte_t unused)
1602 {
1603 	u64 *sptep;
1604 	struct rmap_iterator iter;
1605 	int young = 0;
1606 
1607 	for_each_rmap_spte(rmap_head, &iter, sptep)
1608 		young |= mmu_spte_age(sptep);
1609 
1610 	return young;
1611 }
1612 
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1613 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614 			       struct kvm_memory_slot *slot, gfn_t gfn,
1615 			       int level, pte_t unused)
1616 {
1617 	u64 *sptep;
1618 	struct rmap_iterator iter;
1619 
1620 	for_each_rmap_spte(rmap_head, &iter, sptep)
1621 		if (is_accessed_spte(*sptep))
1622 			return 1;
1623 	return 0;
1624 }
1625 
1626 #define RMAP_RECYCLE_THRESHOLD 1000
1627 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1628 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1629 {
1630 	struct kvm_memory_slot *slot;
1631 	struct kvm_mmu_page *sp;
1632 	struct kvm_rmap_head *rmap_head;
1633 	int rmap_count;
1634 
1635 	sp = sptep_to_sp(spte);
1636 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1637 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1638 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1639 	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1640 
1641 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1642 		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1643 		kvm_flush_remote_tlbs_with_address(
1644 				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1645 	}
1646 }
1647 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1648 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1649 {
1650 	bool young = false;
1651 
1652 	if (kvm_memslots_have_rmaps(kvm))
1653 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1654 
1655 	if (is_tdp_mmu_enabled(kvm))
1656 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1657 
1658 	return young;
1659 }
1660 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1661 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1662 {
1663 	bool young = false;
1664 
1665 	if (kvm_memslots_have_rmaps(kvm))
1666 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1667 
1668 	if (is_tdp_mmu_enabled(kvm))
1669 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1670 
1671 	return young;
1672 }
1673 
1674 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1675 static int is_empty_shadow_page(u64 *spt)
1676 {
1677 	u64 *pos;
1678 	u64 *end;
1679 
1680 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1681 		if (is_shadow_present_pte(*pos)) {
1682 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1683 			       pos, *pos);
1684 			return 0;
1685 		}
1686 	return 1;
1687 }
1688 #endif
1689 
1690 /*
1691  * This value is the sum of all of the kvm instances's
1692  * kvm->arch.n_used_mmu_pages values.  We need a global,
1693  * aggregate version in order to make the slab shrinker
1694  * faster
1695  */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)1696 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1697 {
1698 	kvm->arch.n_used_mmu_pages += nr;
1699 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1700 }
1701 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1702 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1703 {
1704 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1705 	hlist_del(&sp->hash_link);
1706 	list_del(&sp->link);
1707 	free_page((unsigned long)sp->spt);
1708 	if (!sp->role.direct)
1709 		free_page((unsigned long)sp->gfns);
1710 	kmem_cache_free(mmu_page_header_cache, sp);
1711 }
1712 
kvm_page_table_hashfn(gfn_t gfn)1713 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1714 {
1715 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1716 }
1717 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1718 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1719 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1720 {
1721 	if (!parent_pte)
1722 		return;
1723 
1724 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1725 }
1726 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1727 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1728 				       u64 *parent_pte)
1729 {
1730 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1731 }
1732 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1733 static void drop_parent_pte(struct kvm_mmu_page *sp,
1734 			    u64 *parent_pte)
1735 {
1736 	mmu_page_remove_parent_pte(sp, parent_pte);
1737 	mmu_spte_clear_no_track(parent_pte);
1738 }
1739 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1740 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1741 {
1742 	struct kvm_mmu_page *sp;
1743 
1744 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1745 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1746 	if (!direct)
1747 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1748 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1749 
1750 	/*
1751 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1752 	 * depends on valid pages being added to the head of the list.  See
1753 	 * comments in kvm_zap_obsolete_pages().
1754 	 */
1755 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1756 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1757 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1758 	return sp;
1759 }
1760 
1761 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1762 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1763 {
1764 	u64 *sptep;
1765 	struct rmap_iterator iter;
1766 
1767 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1768 		mark_unsync(sptep);
1769 	}
1770 }
1771 
mark_unsync(u64 * spte)1772 static void mark_unsync(u64 *spte)
1773 {
1774 	struct kvm_mmu_page *sp;
1775 	unsigned int index;
1776 
1777 	sp = sptep_to_sp(spte);
1778 	index = spte - sp->spt;
1779 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1780 		return;
1781 	if (sp->unsync_children++)
1782 		return;
1783 	kvm_mmu_mark_parents_unsync(sp);
1784 }
1785 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1786 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1787 			       struct kvm_mmu_page *sp)
1788 {
1789 	return 0;
1790 }
1791 
1792 #define KVM_PAGE_ARRAY_NR 16
1793 
1794 struct kvm_mmu_pages {
1795 	struct mmu_page_and_offset {
1796 		struct kvm_mmu_page *sp;
1797 		unsigned int idx;
1798 	} page[KVM_PAGE_ARRAY_NR];
1799 	unsigned int nr;
1800 };
1801 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1802 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1803 			 int idx)
1804 {
1805 	int i;
1806 
1807 	if (sp->unsync)
1808 		for (i=0; i < pvec->nr; i++)
1809 			if (pvec->page[i].sp == sp)
1810 				return 0;
1811 
1812 	pvec->page[pvec->nr].sp = sp;
1813 	pvec->page[pvec->nr].idx = idx;
1814 	pvec->nr++;
1815 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1816 }
1817 
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1818 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1819 {
1820 	--sp->unsync_children;
1821 	WARN_ON((int)sp->unsync_children < 0);
1822 	__clear_bit(idx, sp->unsync_child_bitmap);
1823 }
1824 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1825 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1826 			   struct kvm_mmu_pages *pvec)
1827 {
1828 	int i, ret, nr_unsync_leaf = 0;
1829 
1830 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1831 		struct kvm_mmu_page *child;
1832 		u64 ent = sp->spt[i];
1833 
1834 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1835 			clear_unsync_child_bit(sp, i);
1836 			continue;
1837 		}
1838 
1839 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1840 
1841 		if (child->unsync_children) {
1842 			if (mmu_pages_add(pvec, child, i))
1843 				return -ENOSPC;
1844 
1845 			ret = __mmu_unsync_walk(child, pvec);
1846 			if (!ret) {
1847 				clear_unsync_child_bit(sp, i);
1848 				continue;
1849 			} else if (ret > 0) {
1850 				nr_unsync_leaf += ret;
1851 			} else
1852 				return ret;
1853 		} else if (child->unsync) {
1854 			nr_unsync_leaf++;
1855 			if (mmu_pages_add(pvec, child, i))
1856 				return -ENOSPC;
1857 		} else
1858 			clear_unsync_child_bit(sp, i);
1859 	}
1860 
1861 	return nr_unsync_leaf;
1862 }
1863 
1864 #define INVALID_INDEX (-1)
1865 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1866 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1867 			   struct kvm_mmu_pages *pvec)
1868 {
1869 	pvec->nr = 0;
1870 	if (!sp->unsync_children)
1871 		return 0;
1872 
1873 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1874 	return __mmu_unsync_walk(sp, pvec);
1875 }
1876 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1877 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1878 {
1879 	WARN_ON(!sp->unsync);
1880 	trace_kvm_mmu_sync_page(sp);
1881 	sp->unsync = 0;
1882 	--kvm->stat.mmu_unsync;
1883 }
1884 
1885 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1886 				     struct list_head *invalid_list);
1887 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1888 				    struct list_head *invalid_list);
1889 
1890 #define for_each_valid_sp(_kvm, _sp, _list)				\
1891 	hlist_for_each_entry(_sp, _list, hash_link)			\
1892 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1893 		} else
1894 
1895 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1896 	for_each_valid_sp(_kvm, _sp,					\
1897 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1898 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1899 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1900 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1901 			 struct list_head *invalid_list)
1902 {
1903 	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1904 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1905 		return false;
1906 	}
1907 
1908 	return true;
1909 }
1910 
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1911 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1912 					struct list_head *invalid_list,
1913 					bool remote_flush)
1914 {
1915 	if (!remote_flush && list_empty(invalid_list))
1916 		return false;
1917 
1918 	if (!list_empty(invalid_list))
1919 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1920 	else
1921 		kvm_flush_remote_tlbs(kvm);
1922 	return true;
1923 }
1924 
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1925 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1926 				 struct list_head *invalid_list,
1927 				 bool remote_flush, bool local_flush)
1928 {
1929 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1930 		return;
1931 
1932 	if (local_flush)
1933 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1934 }
1935 
1936 #ifdef CONFIG_KVM_MMU_AUDIT
1937 #include "mmu_audit.c"
1938 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1939 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1940 static void mmu_audit_disable(void) { }
1941 #endif
1942 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1943 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1944 {
1945 	return sp->role.invalid ||
1946 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1947 }
1948 
1949 struct mmu_page_path {
1950 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1951 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1952 };
1953 
1954 #define for_each_sp(pvec, sp, parents, i)			\
1955 		for (i = mmu_pages_first(&pvec, &parents);	\
1956 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1957 			i = mmu_pages_next(&pvec, &parents, i))
1958 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1959 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1960 			  struct mmu_page_path *parents,
1961 			  int i)
1962 {
1963 	int n;
1964 
1965 	for (n = i+1; n < pvec->nr; n++) {
1966 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1967 		unsigned idx = pvec->page[n].idx;
1968 		int level = sp->role.level;
1969 
1970 		parents->idx[level-1] = idx;
1971 		if (level == PG_LEVEL_4K)
1972 			break;
1973 
1974 		parents->parent[level-2] = sp;
1975 	}
1976 
1977 	return n;
1978 }
1979 
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1980 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1981 			   struct mmu_page_path *parents)
1982 {
1983 	struct kvm_mmu_page *sp;
1984 	int level;
1985 
1986 	if (pvec->nr == 0)
1987 		return 0;
1988 
1989 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1990 
1991 	sp = pvec->page[0].sp;
1992 	level = sp->role.level;
1993 	WARN_ON(level == PG_LEVEL_4K);
1994 
1995 	parents->parent[level-2] = sp;
1996 
1997 	/* Also set up a sentinel.  Further entries in pvec are all
1998 	 * children of sp, so this element is never overwritten.
1999 	 */
2000 	parents->parent[level-1] = NULL;
2001 	return mmu_pages_next(pvec, parents, 0);
2002 }
2003 
mmu_pages_clear_parents(struct mmu_page_path * parents)2004 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2005 {
2006 	struct kvm_mmu_page *sp;
2007 	unsigned int level = 0;
2008 
2009 	do {
2010 		unsigned int idx = parents->idx[level];
2011 		sp = parents->parent[level];
2012 		if (!sp)
2013 			return;
2014 
2015 		WARN_ON(idx == INVALID_INDEX);
2016 		clear_unsync_child_bit(sp, idx);
2017 		level++;
2018 	} while (!sp->unsync_children);
2019 }
2020 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)2021 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2022 			     struct kvm_mmu_page *parent, bool can_yield)
2023 {
2024 	int i;
2025 	struct kvm_mmu_page *sp;
2026 	struct mmu_page_path parents;
2027 	struct kvm_mmu_pages pages;
2028 	LIST_HEAD(invalid_list);
2029 	bool flush = false;
2030 
2031 	while (mmu_unsync_walk(parent, &pages)) {
2032 		bool protected = false;
2033 
2034 		for_each_sp(pages, sp, parents, i)
2035 			protected |= rmap_write_protect(vcpu, sp->gfn);
2036 
2037 		if (protected) {
2038 			kvm_flush_remote_tlbs(vcpu->kvm);
2039 			flush = false;
2040 		}
2041 
2042 		for_each_sp(pages, sp, parents, i) {
2043 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2044 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2045 			mmu_pages_clear_parents(&parents);
2046 		}
2047 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2048 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2049 			if (!can_yield) {
2050 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2051 				return -EINTR;
2052 			}
2053 
2054 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2055 			flush = false;
2056 		}
2057 	}
2058 
2059 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2060 	return 0;
2061 }
2062 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2063 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2064 {
2065 	atomic_set(&sp->write_flooding_count,  0);
2066 }
2067 
clear_sp_write_flooding_count(u64 * spte)2068 static void clear_sp_write_flooding_count(u64 *spte)
2069 {
2070 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2071 }
2072 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2073 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2074 					     gfn_t gfn,
2075 					     gva_t gaddr,
2076 					     unsigned level,
2077 					     int direct,
2078 					     unsigned int access)
2079 {
2080 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2081 	union kvm_mmu_page_role role;
2082 	struct hlist_head *sp_list;
2083 	unsigned quadrant;
2084 	struct kvm_mmu_page *sp;
2085 	int collisions = 0;
2086 	LIST_HEAD(invalid_list);
2087 
2088 	role = vcpu->arch.mmu->mmu_role.base;
2089 	role.level = level;
2090 	role.direct = direct;
2091 	if (role.direct)
2092 		role.gpte_is_8_bytes = true;
2093 	role.access = access;
2094 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2095 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2096 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2097 		role.quadrant = quadrant;
2098 	}
2099 
2100 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2101 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2102 		if (sp->gfn != gfn) {
2103 			collisions++;
2104 			continue;
2105 		}
2106 
2107 		if (sp->role.word != role.word) {
2108 			/*
2109 			 * If the guest is creating an upper-level page, zap
2110 			 * unsync pages for the same gfn.  While it's possible
2111 			 * the guest is using recursive page tables, in all
2112 			 * likelihood the guest has stopped using the unsync
2113 			 * page and is installing a completely unrelated page.
2114 			 * Unsync pages must not be left as is, because the new
2115 			 * upper-level page will be write-protected.
2116 			 */
2117 			if (level > PG_LEVEL_4K && sp->unsync)
2118 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2119 							 &invalid_list);
2120 			continue;
2121 		}
2122 
2123 		if (direct_mmu)
2124 			goto trace_get_page;
2125 
2126 		if (sp->unsync) {
2127 			/*
2128 			 * The page is good, but is stale.  kvm_sync_page does
2129 			 * get the latest guest state, but (unlike mmu_unsync_children)
2130 			 * it doesn't write-protect the page or mark it synchronized!
2131 			 * This way the validity of the mapping is ensured, but the
2132 			 * overhead of write protection is not incurred until the
2133 			 * guest invalidates the TLB mapping.  This allows multiple
2134 			 * SPs for a single gfn to be unsync.
2135 			 *
2136 			 * If the sync fails, the page is zapped.  If so, break
2137 			 * in order to rebuild it.
2138 			 */
2139 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2140 				break;
2141 
2142 			WARN_ON(!list_empty(&invalid_list));
2143 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2144 		}
2145 
2146 		__clear_sp_write_flooding_count(sp);
2147 
2148 trace_get_page:
2149 		trace_kvm_mmu_get_page(sp, false);
2150 		goto out;
2151 	}
2152 
2153 	++vcpu->kvm->stat.mmu_cache_miss;
2154 
2155 	sp = kvm_mmu_alloc_page(vcpu, direct);
2156 
2157 	sp->gfn = gfn;
2158 	sp->role = role;
2159 	hlist_add_head(&sp->hash_link, sp_list);
2160 	if (!direct) {
2161 		account_shadowed(vcpu->kvm, sp);
2162 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2163 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2164 	}
2165 	trace_kvm_mmu_get_page(sp, true);
2166 out:
2167 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2168 
2169 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2170 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2171 	return sp;
2172 }
2173 
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2174 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2175 					struct kvm_vcpu *vcpu, hpa_t root,
2176 					u64 addr)
2177 {
2178 	iterator->addr = addr;
2179 	iterator->shadow_addr = root;
2180 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2181 
2182 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2183 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2184 	    !vcpu->arch.mmu->direct_map)
2185 		iterator->level = PT32E_ROOT_LEVEL;
2186 
2187 	if (iterator->level == PT32E_ROOT_LEVEL) {
2188 		/*
2189 		 * prev_root is currently only used for 64-bit hosts. So only
2190 		 * the active root_hpa is valid here.
2191 		 */
2192 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2193 
2194 		iterator->shadow_addr
2195 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2196 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2197 		--iterator->level;
2198 		if (!iterator->shadow_addr)
2199 			iterator->level = 0;
2200 	}
2201 }
2202 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2203 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2204 			     struct kvm_vcpu *vcpu, u64 addr)
2205 {
2206 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2207 				    addr);
2208 }
2209 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2210 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2211 {
2212 	if (iterator->level < PG_LEVEL_4K)
2213 		return false;
2214 
2215 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2216 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2217 	return true;
2218 }
2219 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2220 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2221 			       u64 spte)
2222 {
2223 	if (is_last_spte(spte, iterator->level)) {
2224 		iterator->level = 0;
2225 		return;
2226 	}
2227 
2228 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2229 	--iterator->level;
2230 }
2231 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2232 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2233 {
2234 	__shadow_walk_next(iterator, *iterator->sptep);
2235 }
2236 
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2237 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2238 			     struct kvm_mmu_page *sp)
2239 {
2240 	u64 spte;
2241 
2242 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2243 
2244 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2245 
2246 	mmu_spte_set(sptep, spte);
2247 
2248 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2249 
2250 	if (sp->unsync_children || sp->unsync)
2251 		mark_unsync(sptep);
2252 }
2253 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2254 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2255 				   unsigned direct_access)
2256 {
2257 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2258 		struct kvm_mmu_page *child;
2259 
2260 		/*
2261 		 * For the direct sp, if the guest pte's dirty bit
2262 		 * changed form clean to dirty, it will corrupt the
2263 		 * sp's access: allow writable in the read-only sp,
2264 		 * so we should update the spte at this point to get
2265 		 * a new sp with the correct access.
2266 		 */
2267 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2268 		if (child->role.access == direct_access)
2269 			return;
2270 
2271 		drop_parent_pte(child, sptep);
2272 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2273 	}
2274 }
2275 
2276 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2277 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2278 			    u64 *spte, struct list_head *invalid_list)
2279 {
2280 	u64 pte;
2281 	struct kvm_mmu_page *child;
2282 
2283 	pte = *spte;
2284 	if (is_shadow_present_pte(pte)) {
2285 		if (is_last_spte(pte, sp->role.level)) {
2286 			drop_spte(kvm, spte);
2287 		} else {
2288 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2289 			drop_parent_pte(child, spte);
2290 
2291 			/*
2292 			 * Recursively zap nested TDP SPs, parentless SPs are
2293 			 * unlikely to be used again in the near future.  This
2294 			 * avoids retaining a large number of stale nested SPs.
2295 			 */
2296 			if (tdp_enabled && invalid_list &&
2297 			    child->role.guest_mode && !child->parent_ptes.val)
2298 				return kvm_mmu_prepare_zap_page(kvm, child,
2299 								invalid_list);
2300 		}
2301 	} else if (is_mmio_spte(pte)) {
2302 		mmu_spte_clear_no_track(spte);
2303 	}
2304 	return 0;
2305 }
2306 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2307 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2308 					struct kvm_mmu_page *sp,
2309 					struct list_head *invalid_list)
2310 {
2311 	int zapped = 0;
2312 	unsigned i;
2313 
2314 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2315 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2316 
2317 	return zapped;
2318 }
2319 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2320 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2321 {
2322 	u64 *sptep;
2323 	struct rmap_iterator iter;
2324 
2325 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2326 		drop_parent_pte(sp, sptep);
2327 }
2328 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2329 static int mmu_zap_unsync_children(struct kvm *kvm,
2330 				   struct kvm_mmu_page *parent,
2331 				   struct list_head *invalid_list)
2332 {
2333 	int i, zapped = 0;
2334 	struct mmu_page_path parents;
2335 	struct kvm_mmu_pages pages;
2336 
2337 	if (parent->role.level == PG_LEVEL_4K)
2338 		return 0;
2339 
2340 	while (mmu_unsync_walk(parent, &pages)) {
2341 		struct kvm_mmu_page *sp;
2342 
2343 		for_each_sp(pages, sp, parents, i) {
2344 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2345 			mmu_pages_clear_parents(&parents);
2346 			zapped++;
2347 		}
2348 	}
2349 
2350 	return zapped;
2351 }
2352 
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2353 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2354 				       struct kvm_mmu_page *sp,
2355 				       struct list_head *invalid_list,
2356 				       int *nr_zapped)
2357 {
2358 	bool list_unstable;
2359 
2360 	lockdep_assert_held_write(&kvm->mmu_lock);
2361 	trace_kvm_mmu_prepare_zap_page(sp);
2362 	++kvm->stat.mmu_shadow_zapped;
2363 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2364 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2365 	kvm_mmu_unlink_parents(kvm, sp);
2366 
2367 	/* Zapping children means active_mmu_pages has become unstable. */
2368 	list_unstable = *nr_zapped;
2369 
2370 	if (!sp->role.invalid && !sp->role.direct)
2371 		unaccount_shadowed(kvm, sp);
2372 
2373 	if (sp->unsync)
2374 		kvm_unlink_unsync_page(kvm, sp);
2375 	if (!sp->root_count) {
2376 		/* Count self */
2377 		(*nr_zapped)++;
2378 
2379 		/*
2380 		 * Already invalid pages (previously active roots) are not on
2381 		 * the active page list.  See list_del() in the "else" case of
2382 		 * !sp->root_count.
2383 		 */
2384 		if (sp->role.invalid)
2385 			list_add(&sp->link, invalid_list);
2386 		else
2387 			list_move(&sp->link, invalid_list);
2388 		kvm_mod_used_mmu_pages(kvm, -1);
2389 	} else {
2390 		/*
2391 		 * Remove the active root from the active page list, the root
2392 		 * will be explicitly freed when the root_count hits zero.
2393 		 */
2394 		list_del(&sp->link);
2395 
2396 		/*
2397 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2398 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2399 		 * treats invalid shadow pages as being obsolete.
2400 		 */
2401 		if (!is_obsolete_sp(kvm, sp))
2402 			kvm_reload_remote_mmus(kvm);
2403 	}
2404 
2405 	if (sp->lpage_disallowed)
2406 		unaccount_huge_nx_page(kvm, sp);
2407 
2408 	sp->role.invalid = 1;
2409 	return list_unstable;
2410 }
2411 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2412 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2413 				     struct list_head *invalid_list)
2414 {
2415 	int nr_zapped;
2416 
2417 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2418 	return nr_zapped;
2419 }
2420 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2421 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2422 				    struct list_head *invalid_list)
2423 {
2424 	struct kvm_mmu_page *sp, *nsp;
2425 
2426 	if (list_empty(invalid_list))
2427 		return;
2428 
2429 	/*
2430 	 * We need to make sure everyone sees our modifications to
2431 	 * the page tables and see changes to vcpu->mode here. The barrier
2432 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2433 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2434 	 *
2435 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2436 	 * guest mode and/or lockless shadow page table walks.
2437 	 */
2438 	kvm_flush_remote_tlbs(kvm);
2439 
2440 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2441 		WARN_ON(!sp->role.invalid || sp->root_count);
2442 		kvm_mmu_free_page(sp);
2443 	}
2444 }
2445 
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2446 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2447 						  unsigned long nr_to_zap)
2448 {
2449 	unsigned long total_zapped = 0;
2450 	struct kvm_mmu_page *sp, *tmp;
2451 	LIST_HEAD(invalid_list);
2452 	bool unstable;
2453 	int nr_zapped;
2454 
2455 	if (list_empty(&kvm->arch.active_mmu_pages))
2456 		return 0;
2457 
2458 restart:
2459 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2460 		/*
2461 		 * Don't zap active root pages, the page itself can't be freed
2462 		 * and zapping it will just force vCPUs to realloc and reload.
2463 		 */
2464 		if (sp->root_count)
2465 			continue;
2466 
2467 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2468 						      &nr_zapped);
2469 		total_zapped += nr_zapped;
2470 		if (total_zapped >= nr_to_zap)
2471 			break;
2472 
2473 		if (unstable)
2474 			goto restart;
2475 	}
2476 
2477 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2478 
2479 	kvm->stat.mmu_recycled += total_zapped;
2480 	return total_zapped;
2481 }
2482 
kvm_mmu_available_pages(struct kvm * kvm)2483 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2484 {
2485 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2486 		return kvm->arch.n_max_mmu_pages -
2487 			kvm->arch.n_used_mmu_pages;
2488 
2489 	return 0;
2490 }
2491 
make_mmu_pages_available(struct kvm_vcpu * vcpu)2492 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2493 {
2494 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2495 
2496 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2497 		return 0;
2498 
2499 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2500 
2501 	/*
2502 	 * Note, this check is intentionally soft, it only guarantees that one
2503 	 * page is available, while the caller may end up allocating as many as
2504 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2505 	 * exceeding the (arbitrary by default) limit will not harm the host,
2506 	 * being too aggressive may unnecessarily kill the guest, and getting an
2507 	 * exact count is far more trouble than it's worth, especially in the
2508 	 * page fault paths.
2509 	 */
2510 	if (!kvm_mmu_available_pages(vcpu->kvm))
2511 		return -ENOSPC;
2512 	return 0;
2513 }
2514 
2515 /*
2516  * Changing the number of mmu pages allocated to the vm
2517  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2518  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2519 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2520 {
2521 	write_lock(&kvm->mmu_lock);
2522 
2523 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2524 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2525 						  goal_nr_mmu_pages);
2526 
2527 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2528 	}
2529 
2530 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2531 
2532 	write_unlock(&kvm->mmu_lock);
2533 }
2534 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2535 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2536 {
2537 	struct kvm_mmu_page *sp;
2538 	LIST_HEAD(invalid_list);
2539 	int r;
2540 
2541 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2542 	r = 0;
2543 	write_lock(&kvm->mmu_lock);
2544 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2545 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2546 			 sp->role.word);
2547 		r = 1;
2548 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2549 	}
2550 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2551 	write_unlock(&kvm->mmu_lock);
2552 
2553 	return r;
2554 }
2555 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)2556 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2557 {
2558 	gpa_t gpa;
2559 	int r;
2560 
2561 	if (vcpu->arch.mmu->direct_map)
2562 		return 0;
2563 
2564 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2565 
2566 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2567 
2568 	return r;
2569 }
2570 
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2571 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2572 {
2573 	trace_kvm_mmu_unsync_page(sp);
2574 	++vcpu->kvm->stat.mmu_unsync;
2575 	sp->unsync = 1;
2576 
2577 	kvm_mmu_mark_parents_unsync(sp);
2578 }
2579 
2580 /*
2581  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2582  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2583  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2584  * be write-protected.
2585  */
mmu_try_to_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2586 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2587 {
2588 	struct kvm_mmu_page *sp;
2589 	bool locked = false;
2590 
2591 	/*
2592 	 * Force write-protection if the page is being tracked.  Note, the page
2593 	 * track machinery is used to write-protect upper-level shadow pages,
2594 	 * i.e. this guards the role.level == 4K assertion below!
2595 	 */
2596 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2597 		return -EPERM;
2598 
2599 	/*
2600 	 * The page is not write-tracked, mark existing shadow pages unsync
2601 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2602 	 * that case, KVM must complete emulation of the guest TLB flush before
2603 	 * allowing shadow pages to become unsync (writable by the guest).
2604 	 */
2605 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2606 		if (!can_unsync)
2607 			return -EPERM;
2608 
2609 		if (sp->unsync)
2610 			continue;
2611 
2612 		/*
2613 		 * TDP MMU page faults require an additional spinlock as they
2614 		 * run with mmu_lock held for read, not write, and the unsync
2615 		 * logic is not thread safe.  Take the spinklock regardless of
2616 		 * the MMU type to avoid extra conditionals/parameters, there's
2617 		 * no meaningful penalty if mmu_lock is held for write.
2618 		 */
2619 		if (!locked) {
2620 			locked = true;
2621 			spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2622 
2623 			/*
2624 			 * Recheck after taking the spinlock, a different vCPU
2625 			 * may have since marked the page unsync.  A false
2626 			 * positive on the unprotected check above is not
2627 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2628 			 * for write, i.e. unsync cannot transition from 0->1
2629 			 * while this CPU holds mmu_lock for read (or write).
2630 			 */
2631 			if (READ_ONCE(sp->unsync))
2632 				continue;
2633 		}
2634 
2635 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2636 		kvm_unsync_page(vcpu, sp);
2637 	}
2638 	if (locked)
2639 		spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2640 
2641 	/*
2642 	 * We need to ensure that the marking of unsync pages is visible
2643 	 * before the SPTE is updated to allow writes because
2644 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2645 	 * the MMU lock and so can race with this. If the SPTE was updated
2646 	 * before the page had been marked as unsync-ed, something like the
2647 	 * following could happen:
2648 	 *
2649 	 * CPU 1                    CPU 2
2650 	 * ---------------------------------------------------------------------
2651 	 * 1.2 Host updates SPTE
2652 	 *     to be writable
2653 	 *                      2.1 Guest writes a GPTE for GVA X.
2654 	 *                          (GPTE being in the guest page table shadowed
2655 	 *                           by the SP from CPU 1.)
2656 	 *                          This reads SPTE during the page table walk.
2657 	 *                          Since SPTE.W is read as 1, there is no
2658 	 *                          fault.
2659 	 *
2660 	 *                      2.2 Guest issues TLB flush.
2661 	 *                          That causes a VM Exit.
2662 	 *
2663 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2664 	 *                          false and skips the page.
2665 	 *
2666 	 *                      2.4 Guest accesses GVA X.
2667 	 *                          Since the mapping in the SP was not updated,
2668 	 *                          so the old mapping for GVA X incorrectly
2669 	 *                          gets used.
2670 	 * 1.1 Host marks SP
2671 	 *     as unsync
2672 	 *     (sp->unsync = true)
2673 	 *
2674 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2675 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2676 	 * pairs with this write barrier.
2677 	 */
2678 	smp_wmb();
2679 
2680 	return 0;
2681 }
2682 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2683 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2684 		    unsigned int pte_access, int level,
2685 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2686 		    bool can_unsync, bool host_writable)
2687 {
2688 	u64 spte;
2689 	struct kvm_mmu_page *sp;
2690 	int ret;
2691 
2692 	sp = sptep_to_sp(sptep);
2693 
2694 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2695 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2696 
2697 	if (spte & PT_WRITABLE_MASK)
2698 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2699 
2700 	if (*sptep == spte)
2701 		ret |= SET_SPTE_SPURIOUS;
2702 	else if (mmu_spte_update(sptep, spte))
2703 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2704 	return ret;
2705 }
2706 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,bool write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2707 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2708 			unsigned int pte_access, bool write_fault, int level,
2709 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2710 			bool host_writable)
2711 {
2712 	int was_rmapped = 0;
2713 	int set_spte_ret;
2714 	int ret = RET_PF_FIXED;
2715 	bool flush = false;
2716 
2717 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2718 		 *sptep, write_fault, gfn);
2719 
2720 	if (unlikely(is_noslot_pfn(pfn))) {
2721 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2722 		return RET_PF_EMULATE;
2723 	}
2724 
2725 	if (is_shadow_present_pte(*sptep)) {
2726 		/*
2727 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2728 		 * the parent of the now unreachable PTE.
2729 		 */
2730 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2731 			struct kvm_mmu_page *child;
2732 			u64 pte = *sptep;
2733 
2734 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2735 			drop_parent_pte(child, sptep);
2736 			flush = true;
2737 		} else if (pfn != spte_to_pfn(*sptep)) {
2738 			pgprintk("hfn old %llx new %llx\n",
2739 				 spte_to_pfn(*sptep), pfn);
2740 			drop_spte(vcpu->kvm, sptep);
2741 			flush = true;
2742 		} else
2743 			was_rmapped = 1;
2744 	}
2745 
2746 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2747 				speculative, true, host_writable);
2748 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2749 		if (write_fault)
2750 			ret = RET_PF_EMULATE;
2751 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2752 	}
2753 
2754 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2755 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2756 				KVM_PAGES_PER_HPAGE(level));
2757 
2758 	/*
2759 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2760 	 * are identical, and emulation is not required.
2761 	 */
2762 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2763 		WARN_ON_ONCE(!was_rmapped);
2764 		return RET_PF_SPURIOUS;
2765 	}
2766 
2767 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2768 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2769 
2770 	if (!was_rmapped) {
2771 		kvm_update_page_stats(vcpu->kvm, level, 1);
2772 		rmap_add(vcpu, sptep, gfn);
2773 	}
2774 
2775 	return ret;
2776 }
2777 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2778 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2779 				     bool no_dirty_log)
2780 {
2781 	struct kvm_memory_slot *slot;
2782 
2783 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2784 	if (!slot)
2785 		return KVM_PFN_ERR_FAULT;
2786 
2787 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2788 }
2789 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2790 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2791 				    struct kvm_mmu_page *sp,
2792 				    u64 *start, u64 *end)
2793 {
2794 	struct page *pages[PTE_PREFETCH_NUM];
2795 	struct kvm_memory_slot *slot;
2796 	unsigned int access = sp->role.access;
2797 	int i, ret;
2798 	gfn_t gfn;
2799 
2800 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2801 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2802 	if (!slot)
2803 		return -1;
2804 
2805 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2806 	if (ret <= 0)
2807 		return -1;
2808 
2809 	for (i = 0; i < ret; i++, gfn++, start++) {
2810 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2811 			     page_to_pfn(pages[i]), true, true);
2812 		put_page(pages[i]);
2813 	}
2814 
2815 	return 0;
2816 }
2817 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2818 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2819 				  struct kvm_mmu_page *sp, u64 *sptep)
2820 {
2821 	u64 *spte, *start = NULL;
2822 	int i;
2823 
2824 	WARN_ON(!sp->role.direct);
2825 
2826 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2827 	spte = sp->spt + i;
2828 
2829 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2830 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2831 			if (!start)
2832 				continue;
2833 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2834 				break;
2835 			start = NULL;
2836 		} else if (!start)
2837 			start = spte;
2838 	}
2839 }
2840 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2841 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2842 {
2843 	struct kvm_mmu_page *sp;
2844 
2845 	sp = sptep_to_sp(sptep);
2846 
2847 	/*
2848 	 * Without accessed bits, there's no way to distinguish between
2849 	 * actually accessed translations and prefetched, so disable pte
2850 	 * prefetch if accessed bits aren't available.
2851 	 */
2852 	if (sp_ad_disabled(sp))
2853 		return;
2854 
2855 	if (sp->role.level > PG_LEVEL_4K)
2856 		return;
2857 
2858 	/*
2859 	 * If addresses are being invalidated, skip prefetching to avoid
2860 	 * accidentally prefetching those addresses.
2861 	 */
2862 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2863 		return;
2864 
2865 	__direct_pte_prefetch(vcpu, sp, sptep);
2866 }
2867 
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,const struct kvm_memory_slot * slot)2868 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2869 				  const struct kvm_memory_slot *slot)
2870 {
2871 	unsigned long hva;
2872 	pte_t *pte;
2873 	int level;
2874 
2875 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2876 		return PG_LEVEL_4K;
2877 
2878 	/*
2879 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2880 	 * is not solely for performance, it's also necessary to avoid the
2881 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2882 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2883 	 * page fault steps have already verified the guest isn't writing a
2884 	 * read-only memslot.
2885 	 */
2886 	hva = __gfn_to_hva_memslot(slot, gfn);
2887 
2888 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2889 	if (unlikely(!pte))
2890 		return PG_LEVEL_4K;
2891 
2892 	return level;
2893 }
2894 
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t pfn,int max_level)2895 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2896 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2897 			      kvm_pfn_t pfn, int max_level)
2898 {
2899 	struct kvm_lpage_info *linfo;
2900 	int host_level;
2901 
2902 	max_level = min(max_level, max_huge_page_level);
2903 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2904 		linfo = lpage_info_slot(gfn, slot, max_level);
2905 		if (!linfo->disallow_lpage)
2906 			break;
2907 	}
2908 
2909 	if (max_level == PG_LEVEL_4K)
2910 		return PG_LEVEL_4K;
2911 
2912 	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2913 	return min(host_level, max_level);
2914 }
2915 
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,int max_level,kvm_pfn_t * pfnp,bool huge_page_disallowed,int * req_level)2916 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2917 			    int max_level, kvm_pfn_t *pfnp,
2918 			    bool huge_page_disallowed, int *req_level)
2919 {
2920 	struct kvm_memory_slot *slot;
2921 	kvm_pfn_t pfn = *pfnp;
2922 	kvm_pfn_t mask;
2923 	int level;
2924 
2925 	*req_level = PG_LEVEL_4K;
2926 
2927 	if (unlikely(max_level == PG_LEVEL_4K))
2928 		return PG_LEVEL_4K;
2929 
2930 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2931 		return PG_LEVEL_4K;
2932 
2933 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2934 	if (!slot)
2935 		return PG_LEVEL_4K;
2936 
2937 	/*
2938 	 * Enforce the iTLB multihit workaround after capturing the requested
2939 	 * level, which will be used to do precise, accurate accounting.
2940 	 */
2941 	*req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2942 	if (level == PG_LEVEL_4K || huge_page_disallowed)
2943 		return PG_LEVEL_4K;
2944 
2945 	/*
2946 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2947 	 * the pmd can't be split from under us.
2948 	 */
2949 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2950 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2951 	*pfnp = pfn & ~mask;
2952 
2953 	return level;
2954 }
2955 
disallowed_hugepage_adjust(u64 spte,gfn_t gfn,int cur_level,kvm_pfn_t * pfnp,int * goal_levelp)2956 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2957 				kvm_pfn_t *pfnp, int *goal_levelp)
2958 {
2959 	int level = *goal_levelp;
2960 
2961 	if (cur_level == level && level > PG_LEVEL_4K &&
2962 	    is_shadow_present_pte(spte) &&
2963 	    !is_large_pte(spte)) {
2964 		/*
2965 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2966 		 * and __direct_map would like to create a large PTE
2967 		 * instead: just force them to go down another level,
2968 		 * patching back for them into pfn the next 9 bits of
2969 		 * the address.
2970 		 */
2971 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2972 				KVM_PAGES_PER_HPAGE(level - 1);
2973 		*pfnp |= gfn & page_mask;
2974 		(*goal_levelp)--;
2975 	}
2976 }
2977 
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault,bool is_tdp)2978 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2979 			int map_writable, int max_level, kvm_pfn_t pfn,
2980 			bool prefault, bool is_tdp)
2981 {
2982 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2983 	bool write = error_code & PFERR_WRITE_MASK;
2984 	bool exec = error_code & PFERR_FETCH_MASK;
2985 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2986 	struct kvm_shadow_walk_iterator it;
2987 	struct kvm_mmu_page *sp;
2988 	int level, req_level, ret;
2989 	gfn_t gfn = gpa >> PAGE_SHIFT;
2990 	gfn_t base_gfn = gfn;
2991 
2992 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2993 					huge_page_disallowed, &req_level);
2994 
2995 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2996 	for_each_shadow_entry(vcpu, gpa, it) {
2997 		/*
2998 		 * We cannot overwrite existing page tables with an NX
2999 		 * large page, as the leaf could be executable.
3000 		 */
3001 		if (nx_huge_page_workaround_enabled)
3002 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3003 						   &pfn, &level);
3004 
3005 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3006 		if (it.level == level)
3007 			break;
3008 
3009 		drop_large_spte(vcpu, it.sptep);
3010 		if (is_shadow_present_pte(*it.sptep))
3011 			continue;
3012 
3013 		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3014 				      it.level - 1, true, ACC_ALL);
3015 
3016 		link_shadow_page(vcpu, it.sptep, sp);
3017 		if (is_tdp && huge_page_disallowed &&
3018 		    req_level >= it.level)
3019 			account_huge_nx_page(vcpu->kvm, sp);
3020 	}
3021 
3022 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3023 			   write, level, base_gfn, pfn, prefault,
3024 			   map_writable);
3025 	if (ret == RET_PF_SPURIOUS)
3026 		return ret;
3027 
3028 	direct_pte_prefetch(vcpu, it.sptep);
3029 	++vcpu->stat.pf_fixed;
3030 	return ret;
3031 }
3032 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3033 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3034 {
3035 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3036 }
3037 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3038 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3039 {
3040 	/*
3041 	 * Do not cache the mmio info caused by writing the readonly gfn
3042 	 * into the spte otherwise read access on readonly gfn also can
3043 	 * caused mmio page fault and treat it as mmio access.
3044 	 */
3045 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3046 		return RET_PF_EMULATE;
3047 
3048 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3049 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3050 		return RET_PF_RETRY;
3051 	}
3052 
3053 	return -EFAULT;
3054 }
3055 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned int access,int * ret_val)3056 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3057 				kvm_pfn_t pfn, unsigned int access,
3058 				int *ret_val)
3059 {
3060 	/* The pfn is invalid, report the error! */
3061 	if (unlikely(is_error_pfn(pfn))) {
3062 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3063 		return true;
3064 	}
3065 
3066 	if (unlikely(is_noslot_pfn(pfn))) {
3067 		vcpu_cache_mmio_info(vcpu, gva, gfn,
3068 				     access & shadow_mmio_access_mask);
3069 		/*
3070 		 * If MMIO caching is disabled, emulate immediately without
3071 		 * touching the shadow page tables as attempting to install an
3072 		 * MMIO SPTE will just be an expensive nop.
3073 		 */
3074 		if (unlikely(!shadow_mmio_value)) {
3075 			*ret_val = RET_PF_EMULATE;
3076 			return true;
3077 		}
3078 	}
3079 
3080 	return false;
3081 }
3082 
page_fault_can_be_fast(u32 error_code)3083 static bool page_fault_can_be_fast(u32 error_code)
3084 {
3085 	/*
3086 	 * Do not fix the mmio spte with invalid generation number which
3087 	 * need to be updated by slow page fault path.
3088 	 */
3089 	if (unlikely(error_code & PFERR_RSVD_MASK))
3090 		return false;
3091 
3092 	/* See if the page fault is due to an NX violation */
3093 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3094 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3095 		return false;
3096 
3097 	/*
3098 	 * #PF can be fast if:
3099 	 * 1. The shadow page table entry is not present, which could mean that
3100 	 *    the fault is potentially caused by access tracking (if enabled).
3101 	 * 2. The shadow page table entry is present and the fault
3102 	 *    is caused by write-protect, that means we just need change the W
3103 	 *    bit of the spte which can be done out of mmu-lock.
3104 	 *
3105 	 * However, if access tracking is disabled we know that a non-present
3106 	 * page must be a genuine page fault where we have to create a new SPTE.
3107 	 * So, if access tracking is disabled, we return true only for write
3108 	 * accesses to a present page.
3109 	 */
3110 
3111 	return shadow_acc_track_mask != 0 ||
3112 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3113 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3114 }
3115 
3116 /*
3117  * Returns true if the SPTE was fixed successfully. Otherwise,
3118  * someone else modified the SPTE from its original value.
3119  */
3120 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)3121 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3122 			u64 *sptep, u64 old_spte, u64 new_spte)
3123 {
3124 	gfn_t gfn;
3125 
3126 	WARN_ON(!sp->role.direct);
3127 
3128 	/*
3129 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3130 	 * order to eliminate unnecessary PML logging. See comments in
3131 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3132 	 * enabled, so we do not do this. This might result in the same GPA
3133 	 * to be logged in PML buffer again when the write really happens, and
3134 	 * eventually to be called by mark_page_dirty twice. But it's also no
3135 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3136 	 * so non-PML cases won't be impacted.
3137 	 *
3138 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3139 	 */
3140 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3141 		return false;
3142 
3143 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3144 		/*
3145 		 * The gfn of direct spte is stable since it is
3146 		 * calculated by sp->gfn.
3147 		 */
3148 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3149 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3150 	}
3151 
3152 	return true;
3153 }
3154 
is_access_allowed(u32 fault_err_code,u64 spte)3155 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3156 {
3157 	if (fault_err_code & PFERR_FETCH_MASK)
3158 		return is_executable_pte(spte);
3159 
3160 	if (fault_err_code & PFERR_WRITE_MASK)
3161 		return is_writable_pte(spte);
3162 
3163 	/* Fault was on Read access */
3164 	return spte & PT_PRESENT_MASK;
3165 }
3166 
3167 /*
3168  * Returns the last level spte pointer of the shadow page walk for the given
3169  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3170  * walk could be performed, returns NULL and *spte does not contain valid data.
3171  *
3172  * Contract:
3173  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3174  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3175  */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3176 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3177 {
3178 	struct kvm_shadow_walk_iterator iterator;
3179 	u64 old_spte;
3180 	u64 *sptep = NULL;
3181 
3182 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3183 		sptep = iterator.sptep;
3184 		*spte = old_spte;
3185 
3186 		if (!is_shadow_present_pte(old_spte))
3187 			break;
3188 	}
3189 
3190 	return sptep;
3191 }
3192 
3193 /*
3194  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3195  */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code)3196 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3197 {
3198 	struct kvm_mmu_page *sp;
3199 	int ret = RET_PF_INVALID;
3200 	u64 spte = 0ull;
3201 	u64 *sptep = NULL;
3202 	uint retry_count = 0;
3203 
3204 	if (!page_fault_can_be_fast(error_code))
3205 		return ret;
3206 
3207 	walk_shadow_page_lockless_begin(vcpu);
3208 
3209 	do {
3210 		u64 new_spte;
3211 
3212 		if (is_tdp_mmu(vcpu->arch.mmu))
3213 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3214 		else
3215 			sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3216 
3217 		if (!is_shadow_present_pte(spte))
3218 			break;
3219 
3220 		sp = sptep_to_sp(sptep);
3221 		if (!is_last_spte(spte, sp->role.level))
3222 			break;
3223 
3224 		/*
3225 		 * Check whether the memory access that caused the fault would
3226 		 * still cause it if it were to be performed right now. If not,
3227 		 * then this is a spurious fault caused by TLB lazily flushed,
3228 		 * or some other CPU has already fixed the PTE after the
3229 		 * current CPU took the fault.
3230 		 *
3231 		 * Need not check the access of upper level table entries since
3232 		 * they are always ACC_ALL.
3233 		 */
3234 		if (is_access_allowed(error_code, spte)) {
3235 			ret = RET_PF_SPURIOUS;
3236 			break;
3237 		}
3238 
3239 		new_spte = spte;
3240 
3241 		if (is_access_track_spte(spte))
3242 			new_spte = restore_acc_track_spte(new_spte);
3243 
3244 		/*
3245 		 * Currently, to simplify the code, write-protection can
3246 		 * be removed in the fast path only if the SPTE was
3247 		 * write-protected for dirty-logging or access tracking.
3248 		 */
3249 		if ((error_code & PFERR_WRITE_MASK) &&
3250 		    spte_can_locklessly_be_made_writable(spte)) {
3251 			new_spte |= PT_WRITABLE_MASK;
3252 
3253 			/*
3254 			 * Do not fix write-permission on the large spte.  Since
3255 			 * we only dirty the first page into the dirty-bitmap in
3256 			 * fast_pf_fix_direct_spte(), other pages are missed
3257 			 * if its slot has dirty logging enabled.
3258 			 *
3259 			 * Instead, we let the slow page fault path create a
3260 			 * normal spte to fix the access.
3261 			 *
3262 			 * See the comments in kvm_arch_commit_memory_region().
3263 			 */
3264 			if (sp->role.level > PG_LEVEL_4K)
3265 				break;
3266 		}
3267 
3268 		/* Verify that the fault can be handled in the fast path */
3269 		if (new_spte == spte ||
3270 		    !is_access_allowed(error_code, new_spte))
3271 			break;
3272 
3273 		/*
3274 		 * Currently, fast page fault only works for direct mapping
3275 		 * since the gfn is not stable for indirect shadow page. See
3276 		 * Documentation/virt/kvm/locking.rst to get more detail.
3277 		 */
3278 		if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3279 			ret = RET_PF_FIXED;
3280 			break;
3281 		}
3282 
3283 		if (++retry_count > 4) {
3284 			printk_once(KERN_WARNING
3285 				"kvm: Fast #PF retrying more than 4 times.\n");
3286 			break;
3287 		}
3288 
3289 	} while (true);
3290 
3291 	trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3292 	walk_shadow_page_lockless_end(vcpu);
3293 
3294 	return ret;
3295 }
3296 
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3297 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3298 			       struct list_head *invalid_list)
3299 {
3300 	struct kvm_mmu_page *sp;
3301 
3302 	if (!VALID_PAGE(*root_hpa))
3303 		return;
3304 
3305 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3306 	if (WARN_ON(!sp))
3307 		return;
3308 
3309 	if (is_tdp_mmu_page(sp))
3310 		kvm_tdp_mmu_put_root(kvm, sp, false);
3311 	else if (!--sp->root_count && sp->role.invalid)
3312 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3313 
3314 	*root_hpa = INVALID_PAGE;
3315 }
3316 
3317 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3318 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3319 			ulong roots_to_free)
3320 {
3321 	struct kvm *kvm = vcpu->kvm;
3322 	int i;
3323 	LIST_HEAD(invalid_list);
3324 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3325 
3326 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3327 
3328 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3329 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3330 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3331 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3332 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3333 				break;
3334 
3335 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3336 			return;
3337 	}
3338 
3339 	write_lock(&kvm->mmu_lock);
3340 
3341 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3342 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3343 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3344 					   &invalid_list);
3345 
3346 	if (free_active_root) {
3347 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3348 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3349 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3350 		} else if (mmu->pae_root) {
3351 			for (i = 0; i < 4; ++i) {
3352 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3353 					continue;
3354 
3355 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3356 						   &invalid_list);
3357 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3358 			}
3359 		}
3360 		mmu->root_hpa = INVALID_PAGE;
3361 		mmu->root_pgd = 0;
3362 	}
3363 
3364 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3365 	write_unlock(&kvm->mmu_lock);
3366 }
3367 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3368 
kvm_mmu_free_guest_mode_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3369 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3370 {
3371 	unsigned long roots_to_free = 0;
3372 	hpa_t root_hpa;
3373 	int i;
3374 
3375 	/*
3376 	 * This should not be called while L2 is active, L2 can't invalidate
3377 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3378 	 */
3379 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3380 
3381 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3382 		root_hpa = mmu->prev_roots[i].hpa;
3383 		if (!VALID_PAGE(root_hpa))
3384 			continue;
3385 
3386 		if (!to_shadow_page(root_hpa) ||
3387 			to_shadow_page(root_hpa)->role.guest_mode)
3388 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3389 	}
3390 
3391 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3392 }
3393 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3394 
3395 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3396 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3397 {
3398 	int ret = 0;
3399 
3400 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3401 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3402 		ret = 1;
3403 	}
3404 
3405 	return ret;
3406 }
3407 
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3408 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3409 			    u8 level, bool direct)
3410 {
3411 	struct kvm_mmu_page *sp;
3412 
3413 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3414 	++sp->root_count;
3415 
3416 	return __pa(sp->spt);
3417 }
3418 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3419 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3420 {
3421 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3422 	u8 shadow_root_level = mmu->shadow_root_level;
3423 	hpa_t root;
3424 	unsigned i;
3425 	int r;
3426 
3427 	write_lock(&vcpu->kvm->mmu_lock);
3428 	r = make_mmu_pages_available(vcpu);
3429 	if (r < 0)
3430 		goto out_unlock;
3431 
3432 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3433 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3434 		mmu->root_hpa = root;
3435 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3436 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3437 		mmu->root_hpa = root;
3438 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3439 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3440 			r = -EIO;
3441 			goto out_unlock;
3442 		}
3443 
3444 		for (i = 0; i < 4; ++i) {
3445 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3446 
3447 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3448 					      i << 30, PT32_ROOT_LEVEL, true);
3449 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3450 					   shadow_me_mask;
3451 		}
3452 		mmu->root_hpa = __pa(mmu->pae_root);
3453 	} else {
3454 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3455 		r = -EIO;
3456 		goto out_unlock;
3457 	}
3458 
3459 	/* root_pgd is ignored for direct MMUs. */
3460 	mmu->root_pgd = 0;
3461 out_unlock:
3462 	write_unlock(&vcpu->kvm->mmu_lock);
3463 	return r;
3464 }
3465 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3466 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3467 {
3468 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3469 	u64 pdptrs[4], pm_mask;
3470 	gfn_t root_gfn, root_pgd;
3471 	hpa_t root;
3472 	unsigned i;
3473 	int r;
3474 
3475 	root_pgd = mmu->get_guest_pgd(vcpu);
3476 	root_gfn = root_pgd >> PAGE_SHIFT;
3477 
3478 	if (mmu_check_root(vcpu, root_gfn))
3479 		return 1;
3480 
3481 	/*
3482 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3483 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3484 	 */
3485 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3486 		for (i = 0; i < 4; ++i) {
3487 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3488 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3489 				continue;
3490 
3491 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3492 				return 1;
3493 		}
3494 	}
3495 
3496 	r = alloc_all_memslots_rmaps(vcpu->kvm);
3497 	if (r)
3498 		return r;
3499 
3500 	write_lock(&vcpu->kvm->mmu_lock);
3501 	r = make_mmu_pages_available(vcpu);
3502 	if (r < 0)
3503 		goto out_unlock;
3504 
3505 	/*
3506 	 * Do we shadow a long mode page table? If so we need to
3507 	 * write-protect the guests page table root.
3508 	 */
3509 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3510 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3511 				      mmu->shadow_root_level, false);
3512 		mmu->root_hpa = root;
3513 		goto set_root_pgd;
3514 	}
3515 
3516 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3517 		r = -EIO;
3518 		goto out_unlock;
3519 	}
3520 
3521 	/*
3522 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3523 	 * or a PAE 3-level page table. In either case we need to be aware that
3524 	 * the shadow page table may be a PAE or a long mode page table.
3525 	 */
3526 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3527 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3528 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3529 
3530 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3531 			r = -EIO;
3532 			goto out_unlock;
3533 		}
3534 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3535 
3536 		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3537 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3538 				r = -EIO;
3539 				goto out_unlock;
3540 			}
3541 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3542 		}
3543 	}
3544 
3545 	for (i = 0; i < 4; ++i) {
3546 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3547 
3548 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3549 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3550 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3551 				continue;
3552 			}
3553 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3554 		}
3555 
3556 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3557 				      PT32_ROOT_LEVEL, false);
3558 		mmu->pae_root[i] = root | pm_mask;
3559 	}
3560 
3561 	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3562 		mmu->root_hpa = __pa(mmu->pml5_root);
3563 	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3564 		mmu->root_hpa = __pa(mmu->pml4_root);
3565 	else
3566 		mmu->root_hpa = __pa(mmu->pae_root);
3567 
3568 set_root_pgd:
3569 	mmu->root_pgd = root_pgd;
3570 out_unlock:
3571 	write_unlock(&vcpu->kvm->mmu_lock);
3572 
3573 	return r;
3574 }
3575 
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)3576 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3577 {
3578 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3579 	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3580 	u64 *pml5_root = NULL;
3581 	u64 *pml4_root = NULL;
3582 	u64 *pae_root;
3583 
3584 	/*
3585 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3586 	 * tables are allocated and initialized at root creation as there is no
3587 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3588 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3589 	 */
3590 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3591 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3592 		return 0;
3593 
3594 	/*
3595 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3596 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3597 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3598 	 * is allocated if the other roots are valid and pml5 is needed, as any
3599 	 * prior MMU would also have required pml5.
3600 	 */
3601 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3602 		return 0;
3603 
3604 	/*
3605 	 * The special roots should always be allocated in concert.  Yell and
3606 	 * bail if KVM ends up in a state where only one of the roots is valid.
3607 	 */
3608 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3609 			 (need_pml5 && mmu->pml5_root)))
3610 		return -EIO;
3611 
3612 	/*
3613 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3614 	 * doesn't need to be decrypted.
3615 	 */
3616 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3617 	if (!pae_root)
3618 		return -ENOMEM;
3619 
3620 #ifdef CONFIG_X86_64
3621 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3622 	if (!pml4_root)
3623 		goto err_pml4;
3624 
3625 	if (need_pml5) {
3626 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3627 		if (!pml5_root)
3628 			goto err_pml5;
3629 	}
3630 #endif
3631 
3632 	mmu->pae_root = pae_root;
3633 	mmu->pml4_root = pml4_root;
3634 	mmu->pml5_root = pml5_root;
3635 
3636 	return 0;
3637 
3638 #ifdef CONFIG_X86_64
3639 err_pml5:
3640 	free_page((unsigned long)pml4_root);
3641 err_pml4:
3642 	free_page((unsigned long)pae_root);
3643 	return -ENOMEM;
3644 #endif
3645 }
3646 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3647 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3648 {
3649 	int i;
3650 	struct kvm_mmu_page *sp;
3651 
3652 	if (vcpu->arch.mmu->direct_map)
3653 		return;
3654 
3655 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3656 		return;
3657 
3658 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3659 
3660 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3661 		hpa_t root = vcpu->arch.mmu->root_hpa;
3662 		sp = to_shadow_page(root);
3663 
3664 		/*
3665 		 * Even if another CPU was marking the SP as unsync-ed
3666 		 * simultaneously, any guest page table changes are not
3667 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3668 		 * flush strictly after those changes are made. We only need to
3669 		 * ensure that the other CPU sets these flags before any actual
3670 		 * changes to the page tables are made. The comments in
3671 		 * mmu_try_to_unsync_pages() describe what could go wrong if
3672 		 * this requirement isn't satisfied.
3673 		 */
3674 		if (!smp_load_acquire(&sp->unsync) &&
3675 		    !smp_load_acquire(&sp->unsync_children))
3676 			return;
3677 
3678 		write_lock(&vcpu->kvm->mmu_lock);
3679 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3680 
3681 		mmu_sync_children(vcpu, sp, true);
3682 
3683 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3684 		write_unlock(&vcpu->kvm->mmu_lock);
3685 		return;
3686 	}
3687 
3688 	write_lock(&vcpu->kvm->mmu_lock);
3689 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3690 
3691 	for (i = 0; i < 4; ++i) {
3692 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3693 
3694 		if (IS_VALID_PAE_ROOT(root)) {
3695 			root &= PT64_BASE_ADDR_MASK;
3696 			sp = to_shadow_page(root);
3697 			mmu_sync_children(vcpu, sp, true);
3698 		}
3699 	}
3700 
3701 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3702 	write_unlock(&vcpu->kvm->mmu_lock);
3703 }
3704 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3705 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3706 				  u32 access, struct x86_exception *exception)
3707 {
3708 	if (exception)
3709 		exception->error_code = 0;
3710 	return vaddr;
3711 }
3712 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3713 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3714 					 u32 access,
3715 					 struct x86_exception *exception)
3716 {
3717 	if (exception)
3718 		exception->error_code = 0;
3719 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3720 }
3721 
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3722 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3723 {
3724 	/*
3725 	 * A nested guest cannot use the MMIO cache if it is using nested
3726 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3727 	 */
3728 	if (mmu_is_nested(vcpu))
3729 		return false;
3730 
3731 	if (direct)
3732 		return vcpu_match_mmio_gpa(vcpu, addr);
3733 
3734 	return vcpu_match_mmio_gva(vcpu, addr);
3735 }
3736 
3737 /*
3738  * Return the level of the lowest level SPTE added to sptes.
3739  * That SPTE may be non-present.
3740  *
3741  * Must be called between walk_shadow_page_lockless_{begin,end}.
3742  */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)3743 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3744 {
3745 	struct kvm_shadow_walk_iterator iterator;
3746 	int leaf = -1;
3747 	u64 spte;
3748 
3749 	for (shadow_walk_init(&iterator, vcpu, addr),
3750 	     *root_level = iterator.level;
3751 	     shadow_walk_okay(&iterator);
3752 	     __shadow_walk_next(&iterator, spte)) {
3753 		leaf = iterator.level;
3754 		spte = mmu_spte_get_lockless(iterator.sptep);
3755 
3756 		sptes[leaf] = spte;
3757 
3758 		if (!is_shadow_present_pte(spte))
3759 			break;
3760 	}
3761 
3762 	return leaf;
3763 }
3764 
3765 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3766 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3767 {
3768 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3769 	struct rsvd_bits_validate *rsvd_check;
3770 	int root, leaf, level;
3771 	bool reserved = false;
3772 
3773 	walk_shadow_page_lockless_begin(vcpu);
3774 
3775 	if (is_tdp_mmu(vcpu->arch.mmu))
3776 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3777 	else
3778 		leaf = get_walk(vcpu, addr, sptes, &root);
3779 
3780 	walk_shadow_page_lockless_end(vcpu);
3781 
3782 	if (unlikely(leaf < 0)) {
3783 		*sptep = 0ull;
3784 		return reserved;
3785 	}
3786 
3787 	*sptep = sptes[leaf];
3788 
3789 	/*
3790 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3791 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3792 	 * design, always have reserved bits set.  The purpose of the checks is
3793 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3794 	 */
3795 	if (!is_shadow_present_pte(sptes[leaf]))
3796 		leaf++;
3797 
3798 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3799 
3800 	for (level = root; level >= leaf; level--)
3801 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3802 
3803 	if (reserved) {
3804 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3805 		       __func__, addr);
3806 		for (level = root; level >= leaf; level--)
3807 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3808 			       sptes[level], level,
3809 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3810 	}
3811 
3812 	return reserved;
3813 }
3814 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3815 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3816 {
3817 	u64 spte;
3818 	bool reserved;
3819 
3820 	if (mmio_info_in_cache(vcpu, addr, direct))
3821 		return RET_PF_EMULATE;
3822 
3823 	reserved = get_mmio_spte(vcpu, addr, &spte);
3824 	if (WARN_ON(reserved))
3825 		return -EINVAL;
3826 
3827 	if (is_mmio_spte(spte)) {
3828 		gfn_t gfn = get_mmio_spte_gfn(spte);
3829 		unsigned int access = get_mmio_spte_access(spte);
3830 
3831 		if (!check_mmio_spte(vcpu, spte))
3832 			return RET_PF_INVALID;
3833 
3834 		if (direct)
3835 			addr = 0;
3836 
3837 		trace_handle_mmio_page_fault(addr, gfn, access);
3838 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3839 		return RET_PF_EMULATE;
3840 	}
3841 
3842 	/*
3843 	 * If the page table is zapped by other cpus, let CPU fault again on
3844 	 * the address.
3845 	 */
3846 	return RET_PF_RETRY;
3847 }
3848 
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3849 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3850 					 u32 error_code, gfn_t gfn)
3851 {
3852 	if (unlikely(error_code & PFERR_RSVD_MASK))
3853 		return false;
3854 
3855 	if (!(error_code & PFERR_PRESENT_MASK) ||
3856 	      !(error_code & PFERR_WRITE_MASK))
3857 		return false;
3858 
3859 	/*
3860 	 * guest is writing the page which is write tracked which can
3861 	 * not be fixed by page fault handler.
3862 	 */
3863 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3864 		return true;
3865 
3866 	return false;
3867 }
3868 
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3869 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3870 {
3871 	struct kvm_shadow_walk_iterator iterator;
3872 	u64 spte;
3873 
3874 	walk_shadow_page_lockless_begin(vcpu);
3875 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3876 		clear_sp_write_flooding_count(iterator.sptep);
3877 		if (!is_shadow_present_pte(spte))
3878 			break;
3879 	}
3880 	walk_shadow_page_lockless_end(vcpu);
3881 }
3882 
alloc_apf_token(struct kvm_vcpu * vcpu)3883 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3884 {
3885 	/* make sure the token value is not 0 */
3886 	u32 id = vcpu->arch.apf.id;
3887 
3888 	if (id << 12 == 0)
3889 		vcpu->arch.apf.id = 1;
3890 
3891 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3892 }
3893 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3894 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3895 				    gfn_t gfn)
3896 {
3897 	struct kvm_arch_async_pf arch;
3898 
3899 	arch.token = alloc_apf_token(vcpu);
3900 	arch.gfn = gfn;
3901 	arch.direct_map = vcpu->arch.mmu->direct_map;
3902 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3903 
3904 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3905 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3906 }
3907 
kvm_faultin_pfn(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,hva_t * hva,bool write,bool * writable,int * r)3908 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3909 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3910 			 bool write, bool *writable, int *r)
3911 {
3912 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3913 	bool async;
3914 
3915 	/*
3916 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3917 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3918 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3919 	 */
3920 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3921 		goto out_retry;
3922 
3923 	if (!kvm_is_visible_memslot(slot)) {
3924 		/* Don't expose private memslots to L2. */
3925 		if (is_guest_mode(vcpu)) {
3926 			*pfn = KVM_PFN_NOSLOT;
3927 			*writable = false;
3928 			return false;
3929 		}
3930 		/*
3931 		 * If the APIC access page exists but is disabled, go directly
3932 		 * to emulation without caching the MMIO access or creating a
3933 		 * MMIO SPTE.  That way the cache doesn't need to be purged
3934 		 * when the AVIC is re-enabled.
3935 		 */
3936 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3937 		    !kvm_apicv_activated(vcpu->kvm)) {
3938 			*r = RET_PF_EMULATE;
3939 			return true;
3940 		}
3941 	}
3942 
3943 	async = false;
3944 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3945 				    write, writable, hva);
3946 	if (!async)
3947 		return false; /* *pfn has correct page already */
3948 
3949 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3950 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3951 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3952 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3953 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3954 			goto out_retry;
3955 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3956 			goto out_retry;
3957 	}
3958 
3959 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3960 				    write, writable, hva);
3961 	return false;
3962 
3963 out_retry:
3964 	*r = RET_PF_RETRY;
3965 	return true;
3966 }
3967 
direct_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault,int max_level,bool is_tdp)3968 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3969 			     bool prefault, int max_level, bool is_tdp)
3970 {
3971 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3972 	bool write = error_code & PFERR_WRITE_MASK;
3973 	bool map_writable;
3974 
3975 	gfn_t gfn = gpa >> PAGE_SHIFT;
3976 	unsigned long mmu_seq;
3977 	kvm_pfn_t pfn;
3978 	hva_t hva;
3979 	int r;
3980 
3981 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3982 		return RET_PF_EMULATE;
3983 
3984 	r = fast_page_fault(vcpu, gpa, error_code);
3985 	if (r != RET_PF_INVALID)
3986 		return r;
3987 
3988 	r = mmu_topup_memory_caches(vcpu, false);
3989 	if (r)
3990 		return r;
3991 
3992 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3993 	smp_rmb();
3994 
3995 	if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
3996 			 write, &map_writable, &r))
3997 		return r;
3998 
3999 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4000 		return r;
4001 
4002 	r = RET_PF_RETRY;
4003 
4004 	if (is_tdp_mmu_fault)
4005 		read_lock(&vcpu->kvm->mmu_lock);
4006 	else
4007 		write_lock(&vcpu->kvm->mmu_lock);
4008 
4009 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4010 		goto out_unlock;
4011 
4012 	if (is_tdp_mmu_fault) {
4013 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
4014 				    pfn, prefault);
4015 	} else {
4016 		r = make_mmu_pages_available(vcpu);
4017 		if (r)
4018 			goto out_unlock;
4019 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
4020 				 prefault, is_tdp);
4021 	}
4022 
4023 out_unlock:
4024 	if (is_tdp_mmu_fault)
4025 		read_unlock(&vcpu->kvm->mmu_lock);
4026 	else
4027 		write_unlock(&vcpu->kvm->mmu_lock);
4028 	kvm_release_pfn_clean(pfn);
4029 	return r;
4030 }
4031 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4032 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4033 				u32 error_code, bool prefault)
4034 {
4035 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4036 
4037 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4038 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4039 				 PG_LEVEL_2M, false);
4040 }
4041 
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4042 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4043 				u64 fault_address, char *insn, int insn_len)
4044 {
4045 	int r = 1;
4046 	u32 flags = vcpu->arch.apf.host_apf_flags;
4047 
4048 #ifndef CONFIG_X86_64
4049 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4050 	if (WARN_ON_ONCE(fault_address >> 32))
4051 		return -EFAULT;
4052 #endif
4053 
4054 	vcpu->arch.l1tf_flush_l1d = true;
4055 	if (!flags) {
4056 		trace_kvm_page_fault(fault_address, error_code);
4057 
4058 		if (kvm_event_needs_reinjection(vcpu))
4059 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4060 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4061 				insn_len);
4062 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4063 		vcpu->arch.apf.host_apf_flags = 0;
4064 		local_irq_disable();
4065 		kvm_async_pf_task_wait_schedule(fault_address);
4066 		local_irq_enable();
4067 	} else {
4068 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4069 	}
4070 
4071 	return r;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4074 
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4075 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4076 		       bool prefault)
4077 {
4078 	int max_level;
4079 
4080 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4081 	     max_level > PG_LEVEL_4K;
4082 	     max_level--) {
4083 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4084 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4085 
4086 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4087 			break;
4088 	}
4089 
4090 	return direct_page_fault(vcpu, gpa, error_code, prefault,
4091 				 max_level, true);
4092 }
4093 
nonpaging_init_context(struct kvm_mmu * context)4094 static void nonpaging_init_context(struct kvm_mmu *context)
4095 {
4096 	context->page_fault = nonpaging_page_fault;
4097 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4098 	context->sync_page = nonpaging_sync_page;
4099 	context->invlpg = NULL;
4100 	context->direct_map = true;
4101 }
4102 
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4103 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4104 				  union kvm_mmu_page_role role)
4105 {
4106 	return (role.direct || pgd == root->pgd) &&
4107 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4108 	       role.word == to_shadow_page(root->hpa)->role.word;
4109 }
4110 
4111 /*
4112  * Find out if a previously cached root matching the new pgd/role is available.
4113  * The current root is also inserted into the cache.
4114  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4115  * returned.
4116  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4117  * false is returned. This root should now be freed by the caller.
4118  */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4119 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4120 				  union kvm_mmu_page_role new_role)
4121 {
4122 	uint i;
4123 	struct kvm_mmu_root_info root;
4124 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4125 
4126 	root.pgd = mmu->root_pgd;
4127 	root.hpa = mmu->root_hpa;
4128 
4129 	if (is_root_usable(&root, new_pgd, new_role))
4130 		return true;
4131 
4132 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4133 		swap(root, mmu->prev_roots[i]);
4134 
4135 		if (is_root_usable(&root, new_pgd, new_role))
4136 			break;
4137 	}
4138 
4139 	mmu->root_hpa = root.hpa;
4140 	mmu->root_pgd = root.pgd;
4141 
4142 	return i < KVM_MMU_NUM_PREV_ROOTS;
4143 }
4144 
fast_pgd_switch(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4145 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4146 			    union kvm_mmu_page_role new_role)
4147 {
4148 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4149 
4150 	/*
4151 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4152 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4153 	 * later if necessary.
4154 	 */
4155 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4156 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4157 		return cached_root_available(vcpu, new_pgd, new_role);
4158 
4159 	return false;
4160 }
4161 
__kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4162 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4163 			      union kvm_mmu_page_role new_role)
4164 {
4165 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4166 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4167 		return;
4168 	}
4169 
4170 	/*
4171 	 * It's possible that the cached previous root page is obsolete because
4172 	 * of a change in the MMU generation number. However, changing the
4173 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4174 	 * free the root set here and allocate a new one.
4175 	 */
4176 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4177 
4178 	if (force_flush_and_sync_on_reuse) {
4179 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4180 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4181 	}
4182 
4183 	/*
4184 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4185 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4186 	 * valid. So clear any cached MMIO info even when we don't need to sync
4187 	 * the shadow page tables.
4188 	 */
4189 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4190 
4191 	/*
4192 	 * If this is a direct root page, it doesn't have a write flooding
4193 	 * count. Otherwise, clear the write flooding count.
4194 	 */
4195 	if (!new_role.direct)
4196 		__clear_sp_write_flooding_count(
4197 				to_shadow_page(vcpu->arch.mmu->root_hpa));
4198 }
4199 
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)4200 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4201 {
4202 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4203 }
4204 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4205 
get_cr3(struct kvm_vcpu * vcpu)4206 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4207 {
4208 	return kvm_read_cr3(vcpu);
4209 }
4210 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access,int * nr_present)4211 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4212 			   unsigned int access, int *nr_present)
4213 {
4214 	if (unlikely(is_mmio_spte(*sptep))) {
4215 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4216 			mmu_spte_clear_no_track(sptep);
4217 			return true;
4218 		}
4219 
4220 		(*nr_present)++;
4221 		mark_mmio_spte(vcpu, sptep, gfn, access);
4222 		return true;
4223 	}
4224 
4225 	return false;
4226 }
4227 
4228 #define PTTYPE_EPT 18 /* arbitrary */
4229 #define PTTYPE PTTYPE_EPT
4230 #include "paging_tmpl.h"
4231 #undef PTTYPE
4232 
4233 #define PTTYPE 64
4234 #include "paging_tmpl.h"
4235 #undef PTTYPE
4236 
4237 #define PTTYPE 32
4238 #include "paging_tmpl.h"
4239 #undef PTTYPE
4240 
4241 static void
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)4242 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4243 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4244 			bool pse, bool amd)
4245 {
4246 	u64 gbpages_bit_rsvd = 0;
4247 	u64 nonleaf_bit8_rsvd = 0;
4248 	u64 high_bits_rsvd;
4249 
4250 	rsvd_check->bad_mt_xwr = 0;
4251 
4252 	if (!gbpages)
4253 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4254 
4255 	if (level == PT32E_ROOT_LEVEL)
4256 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4257 	else
4258 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4259 
4260 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4261 	if (!nx)
4262 		high_bits_rsvd |= rsvd_bits(63, 63);
4263 
4264 	/*
4265 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4266 	 * leaf entries) on AMD CPUs only.
4267 	 */
4268 	if (amd)
4269 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4270 
4271 	switch (level) {
4272 	case PT32_ROOT_LEVEL:
4273 		/* no rsvd bits for 2 level 4K page table entries */
4274 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4275 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4276 		rsvd_check->rsvd_bits_mask[1][0] =
4277 			rsvd_check->rsvd_bits_mask[0][0];
4278 
4279 		if (!pse) {
4280 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4281 			break;
4282 		}
4283 
4284 		if (is_cpuid_PSE36())
4285 			/* 36bits PSE 4MB page */
4286 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4287 		else
4288 			/* 32 bits PSE 4MB page */
4289 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4290 		break;
4291 	case PT32E_ROOT_LEVEL:
4292 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4293 						   high_bits_rsvd |
4294 						   rsvd_bits(5, 8) |
4295 						   rsvd_bits(1, 2);	/* PDPTE */
4296 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4297 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4298 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4299 						   rsvd_bits(13, 20);	/* large page */
4300 		rsvd_check->rsvd_bits_mask[1][0] =
4301 			rsvd_check->rsvd_bits_mask[0][0];
4302 		break;
4303 	case PT64_ROOT_5LEVEL:
4304 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4305 						   nonleaf_bit8_rsvd |
4306 						   rsvd_bits(7, 7);
4307 		rsvd_check->rsvd_bits_mask[1][4] =
4308 			rsvd_check->rsvd_bits_mask[0][4];
4309 		fallthrough;
4310 	case PT64_ROOT_4LEVEL:
4311 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4312 						   nonleaf_bit8_rsvd |
4313 						   rsvd_bits(7, 7);
4314 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4315 						   gbpages_bit_rsvd;
4316 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4317 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4318 		rsvd_check->rsvd_bits_mask[1][3] =
4319 			rsvd_check->rsvd_bits_mask[0][3];
4320 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4321 						   gbpages_bit_rsvd |
4322 						   rsvd_bits(13, 29);
4323 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4324 						   rsvd_bits(13, 20); /* large page */
4325 		rsvd_check->rsvd_bits_mask[1][0] =
4326 			rsvd_check->rsvd_bits_mask[0][0];
4327 		break;
4328 	}
4329 }
4330 
guest_can_use_gbpages(struct kvm_vcpu * vcpu)4331 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4332 {
4333 	/*
4334 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4335 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4336 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4337 	 * walk for performance and complexity reasons.  Not to mention KVM
4338 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4339 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4340 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4341 	 */
4342 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4343 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4344 }
4345 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4346 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4347 				  struct kvm_mmu *context)
4348 {
4349 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4350 				vcpu->arch.reserved_gpa_bits,
4351 				context->root_level, is_efer_nx(context),
4352 				guest_can_use_gbpages(vcpu),
4353 				is_cr4_pse(context),
4354 				guest_cpuid_is_amd_or_hygon(vcpu));
4355 }
4356 
4357 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly)4358 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4359 			    u64 pa_bits_rsvd, bool execonly)
4360 {
4361 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4362 	u64 bad_mt_xwr;
4363 
4364 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4365 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4366 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4367 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4368 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4369 
4370 	/* large page */
4371 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4372 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4373 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4374 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4375 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4376 
4377 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4378 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4379 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4380 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4381 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4382 	if (!execonly) {
4383 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4384 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4385 	}
4386 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4387 }
4388 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4389 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4390 		struct kvm_mmu *context, bool execonly)
4391 {
4392 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4393 				    vcpu->arch.reserved_gpa_bits, execonly);
4394 }
4395 
reserved_hpa_bits(void)4396 static inline u64 reserved_hpa_bits(void)
4397 {
4398 	return rsvd_bits(shadow_phys_bits, 63);
4399 }
4400 
4401 /*
4402  * the page table on host is the shadow page table for the page
4403  * table in guest or amd nested guest, its mmu features completely
4404  * follow the features in guest.
4405  */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4406 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4407 					struct kvm_mmu *context)
4408 {
4409 	/*
4410 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4411 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4412 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4413 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4414 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4415 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4416 	 */
4417 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4418 
4419 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4420 	bool is_amd = true;
4421 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4422 	bool is_pse = false;
4423 	struct rsvd_bits_validate *shadow_zero_check;
4424 	int i;
4425 
4426 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4427 
4428 	shadow_zero_check = &context->shadow_zero_check;
4429 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4430 				context->shadow_root_level, uses_nx,
4431 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4432 
4433 	if (!shadow_me_mask)
4434 		return;
4435 
4436 	for (i = context->shadow_root_level; --i >= 0;) {
4437 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4438 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4439 	}
4440 
4441 }
4442 
boot_cpu_is_amd(void)4443 static inline bool boot_cpu_is_amd(void)
4444 {
4445 	WARN_ON_ONCE(!tdp_enabled);
4446 	return shadow_x_mask == 0;
4447 }
4448 
4449 /*
4450  * the direct page table on host, use as much mmu features as
4451  * possible, however, kvm currently does not do execution-protection.
4452  */
4453 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4454 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4455 				struct kvm_mmu *context)
4456 {
4457 	struct rsvd_bits_validate *shadow_zero_check;
4458 	int i;
4459 
4460 	shadow_zero_check = &context->shadow_zero_check;
4461 
4462 	if (boot_cpu_is_amd())
4463 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4464 					context->shadow_root_level, false,
4465 					boot_cpu_has(X86_FEATURE_GBPAGES),
4466 					false, true);
4467 	else
4468 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4469 					    reserved_hpa_bits(), false);
4470 
4471 	if (!shadow_me_mask)
4472 		return;
4473 
4474 	for (i = context->shadow_root_level; --i >= 0;) {
4475 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4476 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4477 	}
4478 }
4479 
4480 /*
4481  * as the comments in reset_shadow_zero_bits_mask() except it
4482  * is the shadow page table for intel nested guest.
4483  */
4484 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4485 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4486 				struct kvm_mmu *context, bool execonly)
4487 {
4488 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4489 				    reserved_hpa_bits(), execonly);
4490 }
4491 
4492 #define BYTE_MASK(access) \
4493 	((1 & (access) ? 2 : 0) | \
4494 	 (2 & (access) ? 4 : 0) | \
4495 	 (3 & (access) ? 8 : 0) | \
4496 	 (4 & (access) ? 16 : 0) | \
4497 	 (5 & (access) ? 32 : 0) | \
4498 	 (6 & (access) ? 64 : 0) | \
4499 	 (7 & (access) ? 128 : 0))
4500 
4501 
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)4502 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4503 {
4504 	unsigned byte;
4505 
4506 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4507 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4508 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4509 
4510 	bool cr4_smep = is_cr4_smep(mmu);
4511 	bool cr4_smap = is_cr4_smap(mmu);
4512 	bool cr0_wp = is_cr0_wp(mmu);
4513 	bool efer_nx = is_efer_nx(mmu);
4514 
4515 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4516 		unsigned pfec = byte << 1;
4517 
4518 		/*
4519 		 * Each "*f" variable has a 1 bit for each UWX value
4520 		 * that causes a fault with the given PFEC.
4521 		 */
4522 
4523 		/* Faults from writes to non-writable pages */
4524 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4525 		/* Faults from user mode accesses to supervisor pages */
4526 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4527 		/* Faults from fetches of non-executable pages*/
4528 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4529 		/* Faults from kernel mode fetches of user pages */
4530 		u8 smepf = 0;
4531 		/* Faults from kernel mode accesses of user pages */
4532 		u8 smapf = 0;
4533 
4534 		if (!ept) {
4535 			/* Faults from kernel mode accesses to user pages */
4536 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4537 
4538 			/* Not really needed: !nx will cause pte.nx to fault */
4539 			if (!efer_nx)
4540 				ff = 0;
4541 
4542 			/* Allow supervisor writes if !cr0.wp */
4543 			if (!cr0_wp)
4544 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4545 
4546 			/* Disallow supervisor fetches of user code if cr4.smep */
4547 			if (cr4_smep)
4548 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4549 
4550 			/*
4551 			 * SMAP:kernel-mode data accesses from user-mode
4552 			 * mappings should fault. A fault is considered
4553 			 * as a SMAP violation if all of the following
4554 			 * conditions are true:
4555 			 *   - X86_CR4_SMAP is set in CR4
4556 			 *   - A user page is accessed
4557 			 *   - The access is not a fetch
4558 			 *   - Page fault in kernel mode
4559 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4560 			 *
4561 			 * Here, we cover the first three conditions.
4562 			 * The fourth is computed dynamically in permission_fault();
4563 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4564 			 * *not* subject to SMAP restrictions.
4565 			 */
4566 			if (cr4_smap)
4567 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4568 		}
4569 
4570 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4571 	}
4572 }
4573 
4574 /*
4575 * PKU is an additional mechanism by which the paging controls access to
4576 * user-mode addresses based on the value in the PKRU register.  Protection
4577 * key violations are reported through a bit in the page fault error code.
4578 * Unlike other bits of the error code, the PK bit is not known at the
4579 * call site of e.g. gva_to_gpa; it must be computed directly in
4580 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4581 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4582 *
4583 * In particular the following conditions come from the error code, the
4584 * page tables and the machine state:
4585 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4586 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4587 * - PK is always zero if U=0 in the page tables
4588 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4589 *
4590 * The PKRU bitmask caches the result of these four conditions.  The error
4591 * code (minus the P bit) and the page table's U bit form an index into the
4592 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4593 * with the two bits of the PKRU register corresponding to the protection key.
4594 * For the first three conditions above the bits will be 00, thus masking
4595 * away both AD and WD.  For all reads or if the last condition holds, WD
4596 * only will be masked away.
4597 */
update_pkru_bitmask(struct kvm_mmu * mmu)4598 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4599 {
4600 	unsigned bit;
4601 	bool wp;
4602 
4603 	mmu->pkru_mask = 0;
4604 
4605 	if (!is_cr4_pke(mmu))
4606 		return;
4607 
4608 	wp = is_cr0_wp(mmu);
4609 
4610 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4611 		unsigned pfec, pkey_bits;
4612 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4613 
4614 		pfec = bit << 1;
4615 		ff = pfec & PFERR_FETCH_MASK;
4616 		uf = pfec & PFERR_USER_MASK;
4617 		wf = pfec & PFERR_WRITE_MASK;
4618 
4619 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4620 		pte_user = pfec & PFERR_RSVD_MASK;
4621 
4622 		/*
4623 		 * Only need to check the access which is not an
4624 		 * instruction fetch and is to a user page.
4625 		 */
4626 		check_pkey = (!ff && pte_user);
4627 		/*
4628 		 * write access is controlled by PKRU if it is a
4629 		 * user access or CR0.WP = 1.
4630 		 */
4631 		check_write = check_pkey && wf && (uf || wp);
4632 
4633 		/* PKRU.AD stops both read and write access. */
4634 		pkey_bits = !!check_pkey;
4635 		/* PKRU.WD stops write access. */
4636 		pkey_bits |= (!!check_write) << 1;
4637 
4638 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4639 	}
4640 }
4641 
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4642 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4643 					struct kvm_mmu *mmu)
4644 {
4645 	if (!is_cr0_pg(mmu))
4646 		return;
4647 
4648 	reset_rsvds_bits_mask(vcpu, mmu);
4649 	update_permission_bitmask(mmu, false);
4650 	update_pkru_bitmask(mmu);
4651 }
4652 
paging64_init_context(struct kvm_mmu * context)4653 static void paging64_init_context(struct kvm_mmu *context)
4654 {
4655 	context->page_fault = paging64_page_fault;
4656 	context->gva_to_gpa = paging64_gva_to_gpa;
4657 	context->sync_page = paging64_sync_page;
4658 	context->invlpg = paging64_invlpg;
4659 	context->direct_map = false;
4660 }
4661 
paging32_init_context(struct kvm_mmu * context)4662 static void paging32_init_context(struct kvm_mmu *context)
4663 {
4664 	context->page_fault = paging32_page_fault;
4665 	context->gva_to_gpa = paging32_gva_to_gpa;
4666 	context->sync_page = paging32_sync_page;
4667 	context->invlpg = paging32_invlpg;
4668 	context->direct_map = false;
4669 }
4670 
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4671 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4672 							 struct kvm_mmu_role_regs *regs)
4673 {
4674 	union kvm_mmu_extended_role ext = {0};
4675 
4676 	if (____is_cr0_pg(regs)) {
4677 		ext.cr0_pg = 1;
4678 		ext.cr4_pae = ____is_cr4_pae(regs);
4679 		ext.cr4_smep = ____is_cr4_smep(regs);
4680 		ext.cr4_smap = ____is_cr4_smap(regs);
4681 		ext.cr4_pse = ____is_cr4_pse(regs);
4682 
4683 		/* PKEY and LA57 are active iff long mode is active. */
4684 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4685 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4686 		ext.efer_lma = ____is_efer_lma(regs);
4687 	}
4688 
4689 	ext.valid = 1;
4690 
4691 	return ext;
4692 }
4693 
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4694 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4695 						   struct kvm_mmu_role_regs *regs,
4696 						   bool base_only)
4697 {
4698 	union kvm_mmu_role role = {0};
4699 
4700 	role.base.access = ACC_ALL;
4701 	if (____is_cr0_pg(regs)) {
4702 		role.base.efer_nx = ____is_efer_nx(regs);
4703 		role.base.cr0_wp = ____is_cr0_wp(regs);
4704 	}
4705 	role.base.smm = is_smm(vcpu);
4706 	role.base.guest_mode = is_guest_mode(vcpu);
4707 
4708 	if (base_only)
4709 		return role;
4710 
4711 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4712 
4713 	return role;
4714 }
4715 
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4716 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4717 {
4718 	/* tdp_root_level is architecture forced level, use it if nonzero */
4719 	if (tdp_root_level)
4720 		return tdp_root_level;
4721 
4722 	/* Use 5-level TDP if and only if it's useful/necessary. */
4723 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4724 		return 4;
4725 
4726 	return max_tdp_level;
4727 }
4728 
4729 static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4730 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4731 				struct kvm_mmu_role_regs *regs, bool base_only)
4732 {
4733 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4734 
4735 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4736 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4737 	role.base.direct = true;
4738 	role.base.gpte_is_8_bytes = true;
4739 
4740 	return role;
4741 }
4742 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4743 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4744 {
4745 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4746 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4747 	union kvm_mmu_role new_role =
4748 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4749 
4750 	if (new_role.as_u64 == context->mmu_role.as_u64)
4751 		return;
4752 
4753 	context->mmu_role.as_u64 = new_role.as_u64;
4754 	context->page_fault = kvm_tdp_page_fault;
4755 	context->sync_page = nonpaging_sync_page;
4756 	context->invlpg = NULL;
4757 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4758 	context->direct_map = true;
4759 	context->get_guest_pgd = get_cr3;
4760 	context->get_pdptr = kvm_pdptr_read;
4761 	context->inject_page_fault = kvm_inject_page_fault;
4762 	context->root_level = role_regs_to_root_level(&regs);
4763 
4764 	if (!is_cr0_pg(context))
4765 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4766 	else if (is_cr4_pae(context))
4767 		context->gva_to_gpa = paging64_gva_to_gpa;
4768 	else
4769 		context->gva_to_gpa = paging32_gva_to_gpa;
4770 
4771 	reset_guest_paging_metadata(vcpu, context);
4772 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4773 }
4774 
4775 static union kvm_mmu_role
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4776 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4777 				      struct kvm_mmu_role_regs *regs, bool base_only)
4778 {
4779 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4780 
4781 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4782 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4783 	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4784 
4785 	return role;
4786 }
4787 
4788 static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4789 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4790 				   struct kvm_mmu_role_regs *regs, bool base_only)
4791 {
4792 	union kvm_mmu_role role =
4793 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4794 
4795 	role.base.direct = !____is_cr0_pg(regs);
4796 
4797 	if (!____is_efer_lma(regs))
4798 		role.base.level = PT32E_ROOT_LEVEL;
4799 	else if (____is_cr4_la57(regs))
4800 		role.base.level = PT64_ROOT_5LEVEL;
4801 	else
4802 		role.base.level = PT64_ROOT_4LEVEL;
4803 
4804 	return role;
4805 }
4806 
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,struct kvm_mmu_role_regs * regs,union kvm_mmu_role new_role)4807 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4808 				    struct kvm_mmu_role_regs *regs,
4809 				    union kvm_mmu_role new_role)
4810 {
4811 	if (new_role.as_u64 == context->mmu_role.as_u64)
4812 		return;
4813 
4814 	context->mmu_role.as_u64 = new_role.as_u64;
4815 
4816 	if (!is_cr0_pg(context))
4817 		nonpaging_init_context(context);
4818 	else if (is_cr4_pae(context))
4819 		paging64_init_context(context);
4820 	else
4821 		paging32_init_context(context);
4822 	context->root_level = role_regs_to_root_level(regs);
4823 
4824 	reset_guest_paging_metadata(vcpu, context);
4825 	context->shadow_root_level = new_role.base.level;
4826 
4827 	reset_shadow_zero_bits_mask(vcpu, context);
4828 }
4829 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4830 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4831 				struct kvm_mmu_role_regs *regs)
4832 {
4833 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4834 	union kvm_mmu_role new_role =
4835 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4836 
4837 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4838 }
4839 
4840 static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4841 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4842 				   struct kvm_mmu_role_regs *regs)
4843 {
4844 	union kvm_mmu_role role =
4845 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4846 
4847 	role.base.direct = false;
4848 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4849 
4850 	return role;
4851 }
4852 
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)4853 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4854 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4855 {
4856 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4857 	struct kvm_mmu_role_regs regs = {
4858 		.cr0 = cr0,
4859 		.cr4 = cr4 & ~X86_CR4_PKE,
4860 		.efer = efer,
4861 	};
4862 	union kvm_mmu_role new_role;
4863 
4864 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4865 
4866 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4867 
4868 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4869 }
4870 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4871 
4872 static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4873 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4874 				   bool execonly, u8 level)
4875 {
4876 	union kvm_mmu_role role = {0};
4877 
4878 	/* SMM flag is inherited from root_mmu */
4879 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4880 
4881 	role.base.level = level;
4882 	role.base.gpte_is_8_bytes = true;
4883 	role.base.direct = false;
4884 	role.base.ad_disabled = !accessed_dirty;
4885 	role.base.guest_mode = true;
4886 	role.base.access = ACC_ALL;
4887 
4888 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4889 	role.ext.word = 0;
4890 	role.ext.execonly = execonly;
4891 	role.ext.valid = 1;
4892 
4893 	return role;
4894 }
4895 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4896 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4897 			     bool accessed_dirty, gpa_t new_eptp)
4898 {
4899 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4900 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4901 	union kvm_mmu_role new_role =
4902 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4903 						   execonly, level);
4904 
4905 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4906 
4907 	if (new_role.as_u64 == context->mmu_role.as_u64)
4908 		return;
4909 
4910 	context->mmu_role.as_u64 = new_role.as_u64;
4911 
4912 	context->shadow_root_level = level;
4913 
4914 	context->ept_ad = accessed_dirty;
4915 	context->page_fault = ept_page_fault;
4916 	context->gva_to_gpa = ept_gva_to_gpa;
4917 	context->sync_page = ept_sync_page;
4918 	context->invlpg = ept_invlpg;
4919 	context->root_level = level;
4920 	context->direct_map = false;
4921 
4922 	update_permission_bitmask(context, true);
4923 	context->pkru_mask = 0;
4924 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4925 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4926 }
4927 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4928 
init_kvm_softmmu(struct kvm_vcpu * vcpu)4929 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4930 {
4931 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4932 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4933 
4934 	kvm_init_shadow_mmu(vcpu, &regs);
4935 
4936 	context->get_guest_pgd     = get_cr3;
4937 	context->get_pdptr         = kvm_pdptr_read;
4938 	context->inject_page_fault = kvm_inject_page_fault;
4939 }
4940 
4941 static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4942 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4943 {
4944 	union kvm_mmu_role role;
4945 
4946 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4947 
4948 	/*
4949 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4950 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4951 	 * to "true" to try to detect bogus usage of the nested MMU.
4952 	 */
4953 	role.base.direct = true;
4954 	role.base.level = role_regs_to_root_level(regs);
4955 	return role;
4956 }
4957 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4958 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4959 {
4960 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4961 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4962 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4963 
4964 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4965 		return;
4966 
4967 	g_context->mmu_role.as_u64 = new_role.as_u64;
4968 	g_context->get_guest_pgd     = get_cr3;
4969 	g_context->get_pdptr         = kvm_pdptr_read;
4970 	g_context->inject_page_fault = kvm_inject_page_fault;
4971 	g_context->root_level        = new_role.base.level;
4972 
4973 	/*
4974 	 * L2 page tables are never shadowed, so there is no need to sync
4975 	 * SPTEs.
4976 	 */
4977 	g_context->invlpg            = NULL;
4978 
4979 	/*
4980 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4981 	 * L1's nested page tables (e.g. EPT12). The nested translation
4982 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4983 	 * L2's page tables as the first level of translation and L1's
4984 	 * nested page tables as the second level of translation. Basically
4985 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4986 	 */
4987 	if (!is_paging(vcpu))
4988 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4989 	else if (is_long_mode(vcpu))
4990 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4991 	else if (is_pae(vcpu))
4992 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4993 	else
4994 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4995 
4996 	reset_guest_paging_metadata(vcpu, g_context);
4997 }
4998 
kvm_init_mmu(struct kvm_vcpu * vcpu)4999 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5000 {
5001 	if (mmu_is_nested(vcpu))
5002 		init_kvm_nested_mmu(vcpu);
5003 	else if (tdp_enabled)
5004 		init_kvm_tdp_mmu(vcpu);
5005 	else
5006 		init_kvm_softmmu(vcpu);
5007 }
5008 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5009 
5010 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)5011 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5012 {
5013 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5014 	union kvm_mmu_role role;
5015 
5016 	if (tdp_enabled)
5017 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5018 	else
5019 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5020 
5021 	return role.base;
5022 }
5023 
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5024 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5025 {
5026 	/*
5027 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5028 	 * information is factored into reserved bit calculations.
5029 	 */
5030 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5031 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5032 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5033 	kvm_mmu_reset_context(vcpu);
5034 
5035 	/*
5036 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5037 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5038 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5039 	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
5040 	 * sweep the problem under the rug.
5041 	 *
5042 	 * KVM's horrific CPUID ABI makes the problem all but impossible to
5043 	 * solve, as correctly handling multiple vCPU models (with respect to
5044 	 * paging and physical address properties) in a single VM would require
5045 	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
5046 	 * is very undesirable as it would double the memory requirements for
5047 	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5048 	 * no sane VMM mucks with the core vCPU model on the fly.
5049 	 */
5050 	if (vcpu->arch.last_vmentry_cpu != -1) {
5051 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5052 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5053 	}
5054 }
5055 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5056 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5057 {
5058 	kvm_mmu_unload(vcpu);
5059 	kvm_init_mmu(vcpu);
5060 }
5061 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5062 
kvm_mmu_load(struct kvm_vcpu * vcpu)5063 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5064 {
5065 	int r;
5066 
5067 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5068 	if (r)
5069 		goto out;
5070 	r = mmu_alloc_special_roots(vcpu);
5071 	if (r)
5072 		goto out;
5073 	if (vcpu->arch.mmu->direct_map)
5074 		r = mmu_alloc_direct_roots(vcpu);
5075 	else
5076 		r = mmu_alloc_shadow_roots(vcpu);
5077 	if (r)
5078 		goto out;
5079 
5080 	kvm_mmu_sync_roots(vcpu);
5081 
5082 	kvm_mmu_load_pgd(vcpu);
5083 	static_call(kvm_x86_tlb_flush_current)(vcpu);
5084 out:
5085 	return r;
5086 }
5087 
kvm_mmu_unload(struct kvm_vcpu * vcpu)5088 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5089 {
5090 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5091 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5092 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5093 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5094 }
5095 
need_remote_flush(u64 old,u64 new)5096 static bool need_remote_flush(u64 old, u64 new)
5097 {
5098 	if (!is_shadow_present_pte(old))
5099 		return false;
5100 	if (!is_shadow_present_pte(new))
5101 		return true;
5102 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5103 		return true;
5104 	old ^= shadow_nx_mask;
5105 	new ^= shadow_nx_mask;
5106 	return (old & ~new & PT64_PERM_MASK) != 0;
5107 }
5108 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5109 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5110 				    int *bytes)
5111 {
5112 	u64 gentry = 0;
5113 	int r;
5114 
5115 	/*
5116 	 * Assume that the pte write on a page table of the same type
5117 	 * as the current vcpu paging mode since we update the sptes only
5118 	 * when they have the same mode.
5119 	 */
5120 	if (is_pae(vcpu) && *bytes == 4) {
5121 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5122 		*gpa &= ~(gpa_t)7;
5123 		*bytes = 8;
5124 	}
5125 
5126 	if (*bytes == 4 || *bytes == 8) {
5127 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5128 		if (r)
5129 			gentry = 0;
5130 	}
5131 
5132 	return gentry;
5133 }
5134 
5135 /*
5136  * If we're seeing too many writes to a page, it may no longer be a page table,
5137  * or we may be forking, in which case it is better to unmap the page.
5138  */
detect_write_flooding(struct kvm_mmu_page * sp)5139 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5140 {
5141 	/*
5142 	 * Skip write-flooding detected for the sp whose level is 1, because
5143 	 * it can become unsync, then the guest page is not write-protected.
5144 	 */
5145 	if (sp->role.level == PG_LEVEL_4K)
5146 		return false;
5147 
5148 	atomic_inc(&sp->write_flooding_count);
5149 	return atomic_read(&sp->write_flooding_count) >= 3;
5150 }
5151 
5152 /*
5153  * Misaligned accesses are too much trouble to fix up; also, they usually
5154  * indicate a page is not used as a page table.
5155  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5156 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5157 				    int bytes)
5158 {
5159 	unsigned offset, pte_size, misaligned;
5160 
5161 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5162 		 gpa, bytes, sp->role.word);
5163 
5164 	offset = offset_in_page(gpa);
5165 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5166 
5167 	/*
5168 	 * Sometimes, the OS only writes the last one bytes to update status
5169 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5170 	 */
5171 	if (!(offset & (pte_size - 1)) && bytes == 1)
5172 		return false;
5173 
5174 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5175 	misaligned |= bytes < 4;
5176 
5177 	return misaligned;
5178 }
5179 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5180 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5181 {
5182 	unsigned page_offset, quadrant;
5183 	u64 *spte;
5184 	int level;
5185 
5186 	page_offset = offset_in_page(gpa);
5187 	level = sp->role.level;
5188 	*nspte = 1;
5189 	if (!sp->role.gpte_is_8_bytes) {
5190 		page_offset <<= 1;	/* 32->64 */
5191 		/*
5192 		 * A 32-bit pde maps 4MB while the shadow pdes map
5193 		 * only 2MB.  So we need to double the offset again
5194 		 * and zap two pdes instead of one.
5195 		 */
5196 		if (level == PT32_ROOT_LEVEL) {
5197 			page_offset &= ~7; /* kill rounding error */
5198 			page_offset <<= 1;
5199 			*nspte = 2;
5200 		}
5201 		quadrant = page_offset >> PAGE_SHIFT;
5202 		page_offset &= ~PAGE_MASK;
5203 		if (quadrant != sp->role.quadrant)
5204 			return NULL;
5205 	}
5206 
5207 	spte = &sp->spt[page_offset / sizeof(*spte)];
5208 	return spte;
5209 }
5210 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5211 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5212 			      const u8 *new, int bytes,
5213 			      struct kvm_page_track_notifier_node *node)
5214 {
5215 	gfn_t gfn = gpa >> PAGE_SHIFT;
5216 	struct kvm_mmu_page *sp;
5217 	LIST_HEAD(invalid_list);
5218 	u64 entry, gentry, *spte;
5219 	int npte;
5220 	bool remote_flush, local_flush;
5221 
5222 	/*
5223 	 * If we don't have indirect shadow pages, it means no page is
5224 	 * write-protected, so we can exit simply.
5225 	 */
5226 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5227 		return;
5228 
5229 	remote_flush = local_flush = false;
5230 
5231 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5232 
5233 	/*
5234 	 * No need to care whether allocation memory is successful
5235 	 * or not since pte prefetch is skipped if it does not have
5236 	 * enough objects in the cache.
5237 	 */
5238 	mmu_topup_memory_caches(vcpu, true);
5239 
5240 	write_lock(&vcpu->kvm->mmu_lock);
5241 
5242 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5243 
5244 	++vcpu->kvm->stat.mmu_pte_write;
5245 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5246 
5247 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5248 		if (detect_write_misaligned(sp, gpa, bytes) ||
5249 		      detect_write_flooding(sp)) {
5250 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5251 			++vcpu->kvm->stat.mmu_flooded;
5252 			continue;
5253 		}
5254 
5255 		spte = get_written_sptes(sp, gpa, &npte);
5256 		if (!spte)
5257 			continue;
5258 
5259 		local_flush = true;
5260 		while (npte--) {
5261 			entry = *spte;
5262 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5263 			if (gentry && sp->role.level != PG_LEVEL_4K)
5264 				++vcpu->kvm->stat.mmu_pde_zapped;
5265 			if (need_remote_flush(entry, *spte))
5266 				remote_flush = true;
5267 			++spte;
5268 		}
5269 	}
5270 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5271 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5272 	write_unlock(&vcpu->kvm->mmu_lock);
5273 }
5274 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5275 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5276 		       void *insn, int insn_len)
5277 {
5278 	int r, emulation_type = EMULTYPE_PF;
5279 	bool direct = vcpu->arch.mmu->direct_map;
5280 
5281 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5282 		return RET_PF_RETRY;
5283 
5284 	r = RET_PF_INVALID;
5285 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5286 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5287 		if (r == RET_PF_EMULATE)
5288 			goto emulate;
5289 	}
5290 
5291 	if (r == RET_PF_INVALID) {
5292 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5293 					  lower_32_bits(error_code), false);
5294 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5295 			return -EIO;
5296 	}
5297 
5298 	if (r < 0)
5299 		return r;
5300 	if (r != RET_PF_EMULATE)
5301 		return 1;
5302 
5303 	/*
5304 	 * Before emulating the instruction, check if the error code
5305 	 * was due to a RO violation while translating the guest page.
5306 	 * This can occur when using nested virtualization with nested
5307 	 * paging in both guests. If true, we simply unprotect the page
5308 	 * and resume the guest.
5309 	 */
5310 	if (vcpu->arch.mmu->direct_map &&
5311 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5312 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5313 		return 1;
5314 	}
5315 
5316 	/*
5317 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5318 	 * optimistically try to just unprotect the page and let the processor
5319 	 * re-execute the instruction that caused the page fault.  Do not allow
5320 	 * retrying MMIO emulation, as it's not only pointless but could also
5321 	 * cause us to enter an infinite loop because the processor will keep
5322 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5323 	 * from a nested guest is also pointless and dangerous as we are only
5324 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5325 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5326 	 */
5327 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5328 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5329 emulate:
5330 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5331 				       insn_len);
5332 }
5333 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5334 
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5335 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5336 			    gva_t gva, hpa_t root_hpa)
5337 {
5338 	int i;
5339 
5340 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5341 	if (mmu != &vcpu->arch.guest_mmu) {
5342 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5343 		if (is_noncanonical_address(gva, vcpu))
5344 			return;
5345 
5346 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5347 	}
5348 
5349 	if (!mmu->invlpg)
5350 		return;
5351 
5352 	if (root_hpa == INVALID_PAGE) {
5353 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5354 
5355 		/*
5356 		 * INVLPG is required to invalidate any global mappings for the VA,
5357 		 * irrespective of PCID. Since it would take us roughly similar amount
5358 		 * of work to determine whether any of the prev_root mappings of the VA
5359 		 * is marked global, or to just sync it blindly, so we might as well
5360 		 * just always sync it.
5361 		 *
5362 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5363 		 * synced when switching to that cr3, so nothing needs to be done here
5364 		 * for them.
5365 		 */
5366 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5367 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5368 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5369 	} else {
5370 		mmu->invlpg(vcpu, gva, root_hpa);
5371 	}
5372 }
5373 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5374 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5375 {
5376 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5377 	++vcpu->stat.invlpg;
5378 }
5379 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5380 
5381 
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5382 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5383 {
5384 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5385 	bool tlb_flush = false;
5386 	uint i;
5387 
5388 	if (pcid == kvm_get_active_pcid(vcpu)) {
5389 		if (mmu->invlpg)
5390 			mmu->invlpg(vcpu, gva, mmu->root_hpa);
5391 		tlb_flush = true;
5392 	}
5393 
5394 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5395 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5396 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5397 			if (mmu->invlpg)
5398 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5399 			tlb_flush = true;
5400 		}
5401 	}
5402 
5403 	if (tlb_flush)
5404 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5405 
5406 	++vcpu->stat.invlpg;
5407 
5408 	/*
5409 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5410 	 * synced when switching to that cr3, so nothing needs to be done here
5411 	 * for them.
5412 	 */
5413 }
5414 
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)5415 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5416 		       int tdp_max_root_level, int tdp_huge_page_level)
5417 {
5418 	tdp_enabled = enable_tdp;
5419 	tdp_root_level = tdp_forced_root_level;
5420 	max_tdp_level = tdp_max_root_level;
5421 
5422 	/*
5423 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5424 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5425 	 * the kernel is not.  But, KVM never creates a page size greater than
5426 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5427 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5428 	 */
5429 	if (tdp_enabled)
5430 		max_huge_page_level = tdp_huge_page_level;
5431 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5432 		max_huge_page_level = PG_LEVEL_1G;
5433 	else
5434 		max_huge_page_level = PG_LEVEL_2M;
5435 }
5436 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5437 
5438 /* The return value indicates if tlb flush on all vcpus is needed. */
5439 typedef bool (*slot_level_handler) (struct kvm *kvm,
5440 				    struct kvm_rmap_head *rmap_head,
5441 				    const struct kvm_memory_slot *slot);
5442 
5443 /* The caller should hold mmu-lock before calling this function. */
5444 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool flush_on_yield,bool flush)5445 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5446 			slot_level_handler fn, int start_level, int end_level,
5447 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5448 			bool flush)
5449 {
5450 	struct slot_rmap_walk_iterator iterator;
5451 
5452 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5453 			end_gfn, &iterator) {
5454 		if (iterator.rmap)
5455 			flush |= fn(kvm, iterator.rmap, memslot);
5456 
5457 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5458 			if (flush && flush_on_yield) {
5459 				kvm_flush_remote_tlbs_with_address(kvm,
5460 						start_gfn,
5461 						iterator.gfn - start_gfn + 1);
5462 				flush = false;
5463 			}
5464 			cond_resched_rwlock_write(&kvm->mmu_lock);
5465 		}
5466 	}
5467 
5468 	return flush;
5469 }
5470 
5471 static __always_inline bool
slot_handle_level(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool flush_on_yield)5472 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5473 		  slot_level_handler fn, int start_level, int end_level,
5474 		  bool flush_on_yield)
5475 {
5476 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5477 			end_level, memslot->base_gfn,
5478 			memslot->base_gfn + memslot->npages - 1,
5479 			flush_on_yield, false);
5480 }
5481 
5482 static __always_inline bool
slot_handle_level_4k(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,bool flush_on_yield)5483 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5484 		     slot_level_handler fn, bool flush_on_yield)
5485 {
5486 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5487 				 PG_LEVEL_4K, flush_on_yield);
5488 }
5489 
free_mmu_pages(struct kvm_mmu * mmu)5490 static void free_mmu_pages(struct kvm_mmu *mmu)
5491 {
5492 	if (!tdp_enabled && mmu->pae_root)
5493 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5494 	free_page((unsigned long)mmu->pae_root);
5495 	free_page((unsigned long)mmu->pml4_root);
5496 	free_page((unsigned long)mmu->pml5_root);
5497 }
5498 
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5499 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5500 {
5501 	struct page *page;
5502 	int i;
5503 
5504 	mmu->root_hpa = INVALID_PAGE;
5505 	mmu->root_pgd = 0;
5506 	mmu->translate_gpa = translate_gpa;
5507 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5508 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5509 
5510 	/*
5511 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5512 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5513 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5514 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5515 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5516 	 * generally doesn't use PAE paging and can skip allocating the PDP
5517 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5518 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5519 	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5520 	 */
5521 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5522 		return 0;
5523 
5524 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5525 	if (!page)
5526 		return -ENOMEM;
5527 
5528 	mmu->pae_root = page_address(page);
5529 
5530 	/*
5531 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5532 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5533 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5534 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5535 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5536 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5537 	 */
5538 	if (!tdp_enabled)
5539 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5540 	else
5541 		WARN_ON_ONCE(shadow_me_mask);
5542 
5543 	for (i = 0; i < 4; ++i)
5544 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5545 
5546 	return 0;
5547 }
5548 
kvm_mmu_create(struct kvm_vcpu * vcpu)5549 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5550 {
5551 	int ret;
5552 
5553 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5554 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5555 
5556 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5557 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5558 
5559 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5560 
5561 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5562 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5563 
5564 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5565 
5566 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5567 	if (ret)
5568 		return ret;
5569 
5570 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5571 	if (ret)
5572 		goto fail_allocate_root;
5573 
5574 	return ret;
5575  fail_allocate_root:
5576 	free_mmu_pages(&vcpu->arch.guest_mmu);
5577 	return ret;
5578 }
5579 
5580 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)5581 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5582 {
5583 	struct kvm_mmu_page *sp, *node;
5584 	int nr_zapped, batch = 0;
5585 	bool unstable;
5586 
5587 restart:
5588 	list_for_each_entry_safe_reverse(sp, node,
5589 	      &kvm->arch.active_mmu_pages, link) {
5590 		/*
5591 		 * No obsolete valid page exists before a newly created page
5592 		 * since active_mmu_pages is a FIFO list.
5593 		 */
5594 		if (!is_obsolete_sp(kvm, sp))
5595 			break;
5596 
5597 		/*
5598 		 * Invalid pages should never land back on the list of active
5599 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5600 		 * infinite loop if the page gets put back on the list (again).
5601 		 */
5602 		if (WARN_ON(sp->role.invalid))
5603 			continue;
5604 
5605 		/*
5606 		 * No need to flush the TLB since we're only zapping shadow
5607 		 * pages with an obsolete generation number and all vCPUS have
5608 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5609 		 * be in active use by the guest.
5610 		 */
5611 		if (batch >= BATCH_ZAP_PAGES &&
5612 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5613 			batch = 0;
5614 			goto restart;
5615 		}
5616 
5617 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5618 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
5619 		batch += nr_zapped;
5620 
5621 		if (unstable)
5622 			goto restart;
5623 	}
5624 
5625 	/*
5626 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5627 	 * KVM is not in the middle of a lockless shadow page table walk, which
5628 	 * may reference the pages.
5629 	 */
5630 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5631 }
5632 
5633 /*
5634  * Fast invalidate all shadow pages and use lock-break technique
5635  * to zap obsolete pages.
5636  *
5637  * It's required when memslot is being deleted or VM is being
5638  * destroyed, in these cases, we should ensure that KVM MMU does
5639  * not use any resource of the being-deleted slot or all slots
5640  * after calling the function.
5641  */
kvm_mmu_zap_all_fast(struct kvm * kvm)5642 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5643 {
5644 	lockdep_assert_held(&kvm->slots_lock);
5645 
5646 	write_lock(&kvm->mmu_lock);
5647 	trace_kvm_mmu_zap_all_fast(kvm);
5648 
5649 	/*
5650 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5651 	 * held for the entire duration of zapping obsolete pages, it's
5652 	 * impossible for there to be multiple invalid generations associated
5653 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5654 	 * one valid generation and (at most) one invalid generation.
5655 	 */
5656 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5657 
5658 	/* In order to ensure all threads see this change when
5659 	 * handling the MMU reload signal, this must happen in the
5660 	 * same critical section as kvm_reload_remote_mmus, and
5661 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5662 	 * could drop the MMU lock and yield.
5663 	 */
5664 	if (is_tdp_mmu_enabled(kvm))
5665 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5666 
5667 	/*
5668 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5669 	 * Then all vcpus will switch to new shadow page table with the new
5670 	 * mmu_valid_gen.
5671 	 *
5672 	 * Note: we need to do this under the protection of mmu_lock,
5673 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5674 	 */
5675 	kvm_reload_remote_mmus(kvm);
5676 
5677 	kvm_zap_obsolete_pages(kvm);
5678 
5679 	write_unlock(&kvm->mmu_lock);
5680 
5681 	if (is_tdp_mmu_enabled(kvm)) {
5682 		read_lock(&kvm->mmu_lock);
5683 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5684 		read_unlock(&kvm->mmu_lock);
5685 	}
5686 }
5687 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5688 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5689 {
5690 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5691 }
5692 
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5693 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5694 			struct kvm_memory_slot *slot,
5695 			struct kvm_page_track_notifier_node *node)
5696 {
5697 	kvm_mmu_zap_all_fast(kvm);
5698 }
5699 
kvm_mmu_init_vm(struct kvm * kvm)5700 void kvm_mmu_init_vm(struct kvm *kvm)
5701 {
5702 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5703 
5704 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5705 
5706 	if (!kvm_mmu_init_tdp_mmu(kvm))
5707 		/*
5708 		 * No smp_load/store wrappers needed here as we are in
5709 		 * VM init and there cannot be any memslots / other threads
5710 		 * accessing this struct kvm yet.
5711 		 */
5712 		kvm->arch.memslots_have_rmaps = true;
5713 
5714 	node->track_write = kvm_mmu_pte_write;
5715 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5716 	kvm_page_track_register_notifier(kvm, node);
5717 }
5718 
kvm_mmu_uninit_vm(struct kvm * kvm)5719 void kvm_mmu_uninit_vm(struct kvm *kvm)
5720 {
5721 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5722 
5723 	kvm_page_track_unregister_notifier(kvm, node);
5724 
5725 	kvm_mmu_uninit_tdp_mmu(kvm);
5726 }
5727 
5728 /*
5729  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5730  * (not including it)
5731  */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5732 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5733 {
5734 	struct kvm_memslots *slots;
5735 	struct kvm_memory_slot *memslot;
5736 	int i;
5737 	bool flush = false;
5738 
5739 	write_lock(&kvm->mmu_lock);
5740 
5741 	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5742 
5743 	if (kvm_memslots_have_rmaps(kvm)) {
5744 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5745 			slots = __kvm_memslots(kvm, i);
5746 			kvm_for_each_memslot(memslot, slots) {
5747 				gfn_t start, end;
5748 
5749 				start = max(gfn_start, memslot->base_gfn);
5750 				end = min(gfn_end, memslot->base_gfn + memslot->npages);
5751 				if (start >= end)
5752 					continue;
5753 
5754 				flush = slot_handle_level_range(kvm,
5755 						(const struct kvm_memory_slot *) memslot,
5756 						kvm_zap_rmapp, PG_LEVEL_4K,
5757 						KVM_MAX_HUGEPAGE_LEVEL, start,
5758 						end - 1, true, flush);
5759 			}
5760 		}
5761 		if (flush)
5762 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5763 							   gfn_end - gfn_start);
5764 	}
5765 
5766 	if (is_tdp_mmu_enabled(kvm)) {
5767 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5768 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5769 							  gfn_end, flush);
5770 	}
5771 
5772 	if (flush)
5773 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5774 						   gfn_end - gfn_start);
5775 
5776 	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5777 
5778 	write_unlock(&kvm->mmu_lock);
5779 }
5780 
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5781 static bool slot_rmap_write_protect(struct kvm *kvm,
5782 				    struct kvm_rmap_head *rmap_head,
5783 				    const struct kvm_memory_slot *slot)
5784 {
5785 	return __rmap_write_protect(kvm, rmap_head, false);
5786 }
5787 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)5788 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5789 				      const struct kvm_memory_slot *memslot,
5790 				      int start_level)
5791 {
5792 	bool flush = false;
5793 
5794 	if (kvm_memslots_have_rmaps(kvm)) {
5795 		write_lock(&kvm->mmu_lock);
5796 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5797 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5798 					  false);
5799 		write_unlock(&kvm->mmu_lock);
5800 	}
5801 
5802 	if (is_tdp_mmu_enabled(kvm)) {
5803 		read_lock(&kvm->mmu_lock);
5804 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5805 		read_unlock(&kvm->mmu_lock);
5806 	}
5807 
5808 	/*
5809 	 * We can flush all the TLBs out of the mmu lock without TLB
5810 	 * corruption since we just change the spte from writable to
5811 	 * readonly so that we only need to care the case of changing
5812 	 * spte from present to present (changing the spte from present
5813 	 * to nonpresent will flush all the TLBs immediately), in other
5814 	 * words, the only case we care is mmu_spte_update() where we
5815 	 * have checked Host-writable | MMU-writable instead of
5816 	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5817 	 * anymore.
5818 	 */
5819 	if (flush)
5820 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5821 }
5822 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5823 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5824 					 struct kvm_rmap_head *rmap_head,
5825 					 const struct kvm_memory_slot *slot)
5826 {
5827 	u64 *sptep;
5828 	struct rmap_iterator iter;
5829 	int need_tlb_flush = 0;
5830 	kvm_pfn_t pfn;
5831 	struct kvm_mmu_page *sp;
5832 
5833 restart:
5834 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5835 		sp = sptep_to_sp(sptep);
5836 		pfn = spte_to_pfn(*sptep);
5837 
5838 		/*
5839 		 * We cannot do huge page mapping for indirect shadow pages,
5840 		 * which are found on the last rmap (level = 1) when not using
5841 		 * tdp; such shadow pages are synced with the page table in
5842 		 * the guest, and the guest page table is using 4K page size
5843 		 * mapping if the indirect sp has level = 1.
5844 		 */
5845 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5846 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5847 							       pfn, PG_LEVEL_NUM)) {
5848 			pte_list_remove(kvm, rmap_head, sptep);
5849 
5850 			if (kvm_available_flush_tlb_with_range())
5851 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5852 					KVM_PAGES_PER_HPAGE(sp->role.level));
5853 			else
5854 				need_tlb_flush = 1;
5855 
5856 			goto restart;
5857 		}
5858 	}
5859 
5860 	return need_tlb_flush;
5861 }
5862 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)5863 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5864 				   const struct kvm_memory_slot *slot)
5865 {
5866 	if (kvm_memslots_have_rmaps(kvm)) {
5867 		write_lock(&kvm->mmu_lock);
5868 		/*
5869 		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
5870 		 * logging at a 4k granularity and never creates collapsible
5871 		 * 2m SPTEs during dirty logging.
5872 		 */
5873 		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5874 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5875 		write_unlock(&kvm->mmu_lock);
5876 	}
5877 
5878 	if (is_tdp_mmu_enabled(kvm)) {
5879 		read_lock(&kvm->mmu_lock);
5880 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5881 		read_unlock(&kvm->mmu_lock);
5882 	}
5883 }
5884 
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)5885 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5886 					const struct kvm_memory_slot *memslot)
5887 {
5888 	/*
5889 	 * All current use cases for flushing the TLBs for a specific memslot
5890 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5891 	 * The interaction between the various operations on memslot must be
5892 	 * serialized by slots_locks to ensure the TLB flush from one operation
5893 	 * is observed by any other operation on the same memslot.
5894 	 */
5895 	lockdep_assert_held(&kvm->slots_lock);
5896 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5897 					   memslot->npages);
5898 }
5899 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)5900 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5901 				   const struct kvm_memory_slot *memslot)
5902 {
5903 	bool flush = false;
5904 
5905 	if (kvm_memslots_have_rmaps(kvm)) {
5906 		write_lock(&kvm->mmu_lock);
5907 		/*
5908 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
5909 		 * support dirty logging at a 4k granularity.
5910 		 */
5911 		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5912 		write_unlock(&kvm->mmu_lock);
5913 	}
5914 
5915 	if (is_tdp_mmu_enabled(kvm)) {
5916 		read_lock(&kvm->mmu_lock);
5917 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5918 		read_unlock(&kvm->mmu_lock);
5919 	}
5920 
5921 	/*
5922 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5923 	 * function is only used for dirty logging, in which case flushing TLB
5924 	 * out of mmu lock also guarantees no dirty pages will be lost in
5925 	 * dirty_bitmap.
5926 	 */
5927 	if (flush)
5928 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5929 }
5930 
kvm_mmu_zap_all(struct kvm * kvm)5931 void kvm_mmu_zap_all(struct kvm *kvm)
5932 {
5933 	struct kvm_mmu_page *sp, *node;
5934 	LIST_HEAD(invalid_list);
5935 	int ign;
5936 
5937 	write_lock(&kvm->mmu_lock);
5938 restart:
5939 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5940 		if (WARN_ON(sp->role.invalid))
5941 			continue;
5942 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5943 			goto restart;
5944 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5945 			goto restart;
5946 	}
5947 
5948 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5949 
5950 	if (is_tdp_mmu_enabled(kvm))
5951 		kvm_tdp_mmu_zap_all(kvm);
5952 
5953 	write_unlock(&kvm->mmu_lock);
5954 }
5955 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5956 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5957 {
5958 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5959 
5960 	gen &= MMIO_SPTE_GEN_MASK;
5961 
5962 	/*
5963 	 * Generation numbers are incremented in multiples of the number of
5964 	 * address spaces in order to provide unique generations across all
5965 	 * address spaces.  Strip what is effectively the address space
5966 	 * modifier prior to checking for a wrap of the MMIO generation so
5967 	 * that a wrap in any address space is detected.
5968 	 */
5969 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5970 
5971 	/*
5972 	 * The very rare case: if the MMIO generation number has wrapped,
5973 	 * zap all shadow pages.
5974 	 */
5975 	if (unlikely(gen == 0)) {
5976 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5977 		kvm_mmu_zap_all_fast(kvm);
5978 	}
5979 }
5980 
5981 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5982 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5983 {
5984 	struct kvm *kvm;
5985 	int nr_to_scan = sc->nr_to_scan;
5986 	unsigned long freed = 0;
5987 
5988 	mutex_lock(&kvm_lock);
5989 
5990 	list_for_each_entry(kvm, &vm_list, vm_list) {
5991 		int idx;
5992 		LIST_HEAD(invalid_list);
5993 
5994 		/*
5995 		 * Never scan more than sc->nr_to_scan VM instances.
5996 		 * Will not hit this condition practically since we do not try
5997 		 * to shrink more than one VM and it is very unlikely to see
5998 		 * !n_used_mmu_pages so many times.
5999 		 */
6000 		if (!nr_to_scan--)
6001 			break;
6002 		/*
6003 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6004 		 * here. We may skip a VM instance errorneosly, but we do not
6005 		 * want to shrink a VM that only started to populate its MMU
6006 		 * anyway.
6007 		 */
6008 		if (!kvm->arch.n_used_mmu_pages &&
6009 		    !kvm_has_zapped_obsolete_pages(kvm))
6010 			continue;
6011 
6012 		idx = srcu_read_lock(&kvm->srcu);
6013 		write_lock(&kvm->mmu_lock);
6014 
6015 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6016 			kvm_mmu_commit_zap_page(kvm,
6017 			      &kvm->arch.zapped_obsolete_pages);
6018 			goto unlock;
6019 		}
6020 
6021 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6022 
6023 unlock:
6024 		write_unlock(&kvm->mmu_lock);
6025 		srcu_read_unlock(&kvm->srcu, idx);
6026 
6027 		/*
6028 		 * unfair on small ones
6029 		 * per-vm shrinkers cry out
6030 		 * sadness comes quickly
6031 		 */
6032 		list_move_tail(&kvm->vm_list, &vm_list);
6033 		break;
6034 	}
6035 
6036 	mutex_unlock(&kvm_lock);
6037 	return freed;
6038 }
6039 
6040 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6041 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6042 {
6043 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6044 }
6045 
6046 static struct shrinker mmu_shrinker = {
6047 	.count_objects = mmu_shrink_count,
6048 	.scan_objects = mmu_shrink_scan,
6049 	.seeks = DEFAULT_SEEKS * 10,
6050 };
6051 
mmu_destroy_caches(void)6052 static void mmu_destroy_caches(void)
6053 {
6054 	kmem_cache_destroy(pte_list_desc_cache);
6055 	kmem_cache_destroy(mmu_page_header_cache);
6056 }
6057 
get_nx_auto_mode(void)6058 static bool get_nx_auto_mode(void)
6059 {
6060 	/* Return true when CPU has the bug, and mitigations are ON */
6061 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6062 }
6063 
__set_nx_huge_pages(bool val)6064 static void __set_nx_huge_pages(bool val)
6065 {
6066 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6067 }
6068 
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6069 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6070 {
6071 	bool old_val = nx_huge_pages;
6072 	bool new_val;
6073 
6074 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6075 	if (sysfs_streq(val, "off"))
6076 		new_val = 0;
6077 	else if (sysfs_streq(val, "force"))
6078 		new_val = 1;
6079 	else if (sysfs_streq(val, "auto"))
6080 		new_val = get_nx_auto_mode();
6081 	else if (strtobool(val, &new_val) < 0)
6082 		return -EINVAL;
6083 
6084 	__set_nx_huge_pages(new_val);
6085 
6086 	if (new_val != old_val) {
6087 		struct kvm *kvm;
6088 
6089 		mutex_lock(&kvm_lock);
6090 
6091 		list_for_each_entry(kvm, &vm_list, vm_list) {
6092 			mutex_lock(&kvm->slots_lock);
6093 			kvm_mmu_zap_all_fast(kvm);
6094 			mutex_unlock(&kvm->slots_lock);
6095 
6096 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6097 		}
6098 		mutex_unlock(&kvm_lock);
6099 	}
6100 
6101 	return 0;
6102 }
6103 
6104 /*
6105  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6106  * its default value of -1 is technically undefined behavior for a boolean.
6107  */
kvm_mmu_x86_module_init(void)6108 void __init kvm_mmu_x86_module_init(void)
6109 {
6110 	if (nx_huge_pages == -1)
6111 		__set_nx_huge_pages(get_nx_auto_mode());
6112 }
6113 
6114 /*
6115  * The bulk of the MMU initialization is deferred until the vendor module is
6116  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6117  * to be reset when a potentially different vendor module is loaded.
6118  */
kvm_mmu_vendor_module_init(void)6119 int kvm_mmu_vendor_module_init(void)
6120 {
6121 	int ret = -ENOMEM;
6122 
6123 	/*
6124 	 * MMU roles use union aliasing which is, generally speaking, an
6125 	 * undefined behavior. However, we supposedly know how compilers behave
6126 	 * and the current status quo is unlikely to change. Guardians below are
6127 	 * supposed to let us know if the assumption becomes false.
6128 	 */
6129 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6130 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6131 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6132 
6133 	kvm_mmu_reset_all_pte_masks();
6134 
6135 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6136 					    sizeof(struct pte_list_desc),
6137 					    0, SLAB_ACCOUNT, NULL);
6138 	if (!pte_list_desc_cache)
6139 		goto out;
6140 
6141 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6142 						  sizeof(struct kvm_mmu_page),
6143 						  0, SLAB_ACCOUNT, NULL);
6144 	if (!mmu_page_header_cache)
6145 		goto out;
6146 
6147 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6148 		goto out;
6149 
6150 	ret = register_shrinker(&mmu_shrinker);
6151 	if (ret)
6152 		goto out;
6153 
6154 	return 0;
6155 
6156 out:
6157 	mmu_destroy_caches();
6158 	return ret;
6159 }
6160 
6161 /*
6162  * Calculate mmu pages needed for kvm.
6163  */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)6164 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6165 {
6166 	unsigned long nr_mmu_pages;
6167 	unsigned long nr_pages = 0;
6168 	struct kvm_memslots *slots;
6169 	struct kvm_memory_slot *memslot;
6170 	int i;
6171 
6172 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6173 		slots = __kvm_memslots(kvm, i);
6174 
6175 		kvm_for_each_memslot(memslot, slots)
6176 			nr_pages += memslot->npages;
6177 	}
6178 
6179 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6180 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6181 
6182 	return nr_mmu_pages;
6183 }
6184 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6185 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6186 {
6187 	kvm_mmu_unload(vcpu);
6188 	free_mmu_pages(&vcpu->arch.root_mmu);
6189 	free_mmu_pages(&vcpu->arch.guest_mmu);
6190 	mmu_free_memory_caches(vcpu);
6191 }
6192 
kvm_mmu_vendor_module_exit(void)6193 void kvm_mmu_vendor_module_exit(void)
6194 {
6195 	mmu_destroy_caches();
6196 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6197 	unregister_shrinker(&mmu_shrinker);
6198 	mmu_audit_disable();
6199 }
6200 
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)6201 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6202 {
6203 	unsigned int old_val;
6204 	int err;
6205 
6206 	old_val = nx_huge_pages_recovery_ratio;
6207 	err = param_set_uint(val, kp);
6208 	if (err)
6209 		return err;
6210 
6211 	if (READ_ONCE(nx_huge_pages) &&
6212 	    !old_val && nx_huge_pages_recovery_ratio) {
6213 		struct kvm *kvm;
6214 
6215 		mutex_lock(&kvm_lock);
6216 
6217 		list_for_each_entry(kvm, &vm_list, vm_list)
6218 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6219 
6220 		mutex_unlock(&kvm_lock);
6221 	}
6222 
6223 	return err;
6224 }
6225 
kvm_recover_nx_lpages(struct kvm * kvm)6226 static void kvm_recover_nx_lpages(struct kvm *kvm)
6227 {
6228 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6229 	int rcu_idx;
6230 	struct kvm_mmu_page *sp;
6231 	unsigned int ratio;
6232 	LIST_HEAD(invalid_list);
6233 	bool flush = false;
6234 	ulong to_zap;
6235 
6236 	rcu_idx = srcu_read_lock(&kvm->srcu);
6237 	write_lock(&kvm->mmu_lock);
6238 
6239 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6240 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6241 	for ( ; to_zap; --to_zap) {
6242 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6243 			break;
6244 
6245 		/*
6246 		 * We use a separate list instead of just using active_mmu_pages
6247 		 * because the number of lpage_disallowed pages is expected to
6248 		 * be relatively small compared to the total.
6249 		 */
6250 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6251 				      struct kvm_mmu_page,
6252 				      lpage_disallowed_link);
6253 		WARN_ON_ONCE(!sp->lpage_disallowed);
6254 		if (is_tdp_mmu_page(sp)) {
6255 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6256 		} else {
6257 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6258 			WARN_ON_ONCE(sp->lpage_disallowed);
6259 		}
6260 
6261 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6262 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6263 			cond_resched_rwlock_write(&kvm->mmu_lock);
6264 			flush = false;
6265 		}
6266 	}
6267 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6268 
6269 	write_unlock(&kvm->mmu_lock);
6270 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6271 }
6272 
get_nx_lpage_recovery_timeout(u64 start_time)6273 static long get_nx_lpage_recovery_timeout(u64 start_time)
6274 {
6275 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6276 		? start_time + 60 * HZ - get_jiffies_64()
6277 		: MAX_SCHEDULE_TIMEOUT;
6278 }
6279 
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6280 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6281 {
6282 	u64 start_time;
6283 	long remaining_time;
6284 
6285 	while (true) {
6286 		start_time = get_jiffies_64();
6287 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6288 
6289 		set_current_state(TASK_INTERRUPTIBLE);
6290 		while (!kthread_should_stop() && remaining_time > 0) {
6291 			schedule_timeout(remaining_time);
6292 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6293 			set_current_state(TASK_INTERRUPTIBLE);
6294 		}
6295 
6296 		set_current_state(TASK_RUNNING);
6297 
6298 		if (kthread_should_stop())
6299 			return 0;
6300 
6301 		kvm_recover_nx_lpages(kvm);
6302 	}
6303 }
6304 
kvm_mmu_post_init_vm(struct kvm * kvm)6305 int kvm_mmu_post_init_vm(struct kvm *kvm)
6306 {
6307 	int err;
6308 
6309 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6310 					  "kvm-nx-lpage-recovery",
6311 					  &kvm->arch.nx_lpage_recovery_thread);
6312 	if (!err)
6313 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6314 
6315 	return err;
6316 }
6317 
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6318 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6319 {
6320 	if (kvm->arch.nx_lpage_recovery_thread)
6321 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6322 }
6323