1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31
32 static unsigned long io_map_base;
33
34
35 /*
36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39 * long will also starve other vCPUs. We have to also make sure that the page
40 * tables are not freed while we released the lock.
41 */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 phys_addr_t end,
44 int (*fn)(struct kvm_pgtable *, u64, u64),
45 bool resched)
46 {
47 int ret;
48 u64 next;
49
50 do {
51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 if (!pgt)
53 return -EINVAL;
54
55 next = stage2_pgd_addr_end(kvm, addr, end);
56 ret = fn(pgt, addr, next - addr);
57 if (ret)
58 break;
59
60 if (resched && next != end)
61 cond_resched_lock(&kvm->mmu_lock);
62 } while (addr = next, addr != end);
63
64 return ret;
65 }
66
67 #define stage2_apply_range_resched(kvm, addr, end, fn) \
68 stage2_apply_range(kvm, addr, end, fn, true)
69
memslot_is_logging(struct kvm_memory_slot * memslot)70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74
75 /**
76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77 * @kvm: pointer to kvm structure.
78 *
79 * Interface to HYP function to flush all VM TLB entries
80 */
kvm_flush_remote_tlbs(struct kvm * kvm)81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 ++kvm->stat.generic.remote_tlb_flush_requests;
84 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
85 }
86
kvm_is_device_pfn(unsigned long pfn)87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 return !pfn_is_map_memory(pfn);
90 }
91
stage2_memcache_zalloc_page(void * arg)92 static void *stage2_memcache_zalloc_page(void *arg)
93 {
94 struct kvm_mmu_memory_cache *mc = arg;
95
96 /* Allocated with __GFP_ZERO, so no need to zero */
97 return kvm_mmu_memory_cache_alloc(mc);
98 }
99
kvm_host_zalloc_pages_exact(size_t size)100 static void *kvm_host_zalloc_pages_exact(size_t size)
101 {
102 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
103 }
104
kvm_host_get_page(void * addr)105 static void kvm_host_get_page(void *addr)
106 {
107 get_page(virt_to_page(addr));
108 }
109
kvm_host_put_page(void * addr)110 static void kvm_host_put_page(void *addr)
111 {
112 put_page(virt_to_page(addr));
113 }
114
kvm_host_page_count(void * addr)115 static int kvm_host_page_count(void *addr)
116 {
117 return page_count(virt_to_page(addr));
118 }
119
kvm_host_pa(void * addr)120 static phys_addr_t kvm_host_pa(void *addr)
121 {
122 return __pa(addr);
123 }
124
kvm_host_va(phys_addr_t phys)125 static void *kvm_host_va(phys_addr_t phys)
126 {
127 return __va(phys);
128 }
129
clean_dcache_guest_page(void * va,size_t size)130 static void clean_dcache_guest_page(void *va, size_t size)
131 {
132 __clean_dcache_guest_page(va, size);
133 }
134
invalidate_icache_guest_page(void * va,size_t size)135 static void invalidate_icache_guest_page(void *va, size_t size)
136 {
137 __invalidate_icache_guest_page(va, size);
138 }
139
140 /*
141 * Unmapping vs dcache management:
142 *
143 * If a guest maps certain memory pages as uncached, all writes will
144 * bypass the data cache and go directly to RAM. However, the CPUs
145 * can still speculate reads (not writes) and fill cache lines with
146 * data.
147 *
148 * Those cache lines will be *clean* cache lines though, so a
149 * clean+invalidate operation is equivalent to an invalidate
150 * operation, because no cache lines are marked dirty.
151 *
152 * Those clean cache lines could be filled prior to an uncached write
153 * by the guest, and the cache coherent IO subsystem would therefore
154 * end up writing old data to disk.
155 *
156 * This is why right after unmapping a page/section and invalidating
157 * the corresponding TLBs, we flush to make sure the IO subsystem will
158 * never hit in the cache.
159 *
160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
161 * we then fully enforce cacheability of RAM, no matter what the guest
162 * does.
163 */
164 /**
165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
166 * @mmu: The KVM stage-2 MMU pointer
167 * @start: The intermediate physical base address of the range to unmap
168 * @size: The size of the area to unmap
169 * @may_block: Whether or not we are permitted to block
170 *
171 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
173 * destroying the VM), otherwise another faulting VCPU may come in and mess
174 * with things behind our backs.
175 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
177 bool may_block)
178 {
179 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
180 phys_addr_t end = start + size;
181
182 assert_spin_locked(&kvm->mmu_lock);
183 WARN_ON(size & ~PAGE_MASK);
184 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
185 may_block));
186 }
187
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
189 {
190 __unmap_stage2_range(mmu, start, size, true);
191 }
192
pkvm_stage2_flush(struct kvm * kvm)193 static void pkvm_stage2_flush(struct kvm *kvm)
194 {
195 struct kvm_pinned_page *ppage;
196
197 /*
198 * Contrary to stage2_apply_range(), we don't need to check
199 * whether the VM is being torn down, as this is always called
200 * from a vcpu thread, and the list is only ever freed on VM
201 * destroy (which only occurs when all vcpu are gone).
202 */
203 list_for_each_entry(ppage, &kvm->arch.pkvm.pinned_pages, link) {
204 __clean_dcache_guest_page(page_address(ppage->page), PAGE_SIZE);
205 cond_resched_lock(&kvm->mmu_lock);
206 }
207 }
208
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)209 static void stage2_flush_memslot(struct kvm *kvm,
210 struct kvm_memory_slot *memslot)
211 {
212 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
213 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
214
215 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
216 }
217
218 /**
219 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
220 * @kvm: The struct kvm pointer
221 *
222 * Go through the stage 2 page tables and invalidate any cache lines
223 * backing memory already mapped to the VM.
224 */
stage2_flush_vm(struct kvm * kvm)225 static void stage2_flush_vm(struct kvm *kvm)
226 {
227 struct kvm_memslots *slots;
228 struct kvm_memory_slot *memslot;
229 int idx;
230
231 idx = srcu_read_lock(&kvm->srcu);
232 spin_lock(&kvm->mmu_lock);
233
234 if (!is_protected_kvm_enabled()) {
235 slots = kvm_memslots(kvm);
236 kvm_for_each_memslot(memslot, slots)
237 stage2_flush_memslot(kvm, memslot);
238 } else if (!kvm_vm_is_protected(kvm)) {
239 pkvm_stage2_flush(kvm);
240 }
241
242 spin_unlock(&kvm->mmu_lock);
243 srcu_read_unlock(&kvm->srcu, idx);
244 }
245
246 /**
247 * free_hyp_pgds - free Hyp-mode page tables
248 */
free_hyp_pgds(void)249 void free_hyp_pgds(void)
250 {
251 mutex_lock(&kvm_hyp_pgd_mutex);
252 if (hyp_pgtable) {
253 kvm_pgtable_hyp_destroy(hyp_pgtable);
254 kfree(hyp_pgtable);
255 hyp_pgtable = NULL;
256 }
257 mutex_unlock(&kvm_hyp_pgd_mutex);
258 }
259
kvm_host_owns_hyp_mappings(void)260 static bool kvm_host_owns_hyp_mappings(void)
261 {
262 if (is_kernel_in_hyp_mode())
263 return false;
264
265 if (static_branch_likely(&kvm_protected_mode_initialized))
266 return false;
267
268 /*
269 * This can happen at boot time when __create_hyp_mappings() is called
270 * after the hyp protection has been enabled, but the static key has
271 * not been flipped yet.
272 */
273 if (!hyp_pgtable && is_protected_kvm_enabled())
274 return false;
275
276 WARN_ON(!hyp_pgtable);
277
278 return true;
279 }
280
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)281 static int __create_hyp_mappings(unsigned long start, unsigned long size,
282 unsigned long phys, enum kvm_pgtable_prot prot)
283 {
284 int err;
285
286 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
287 return -EINVAL;
288
289 mutex_lock(&kvm_hyp_pgd_mutex);
290 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
291 mutex_unlock(&kvm_hyp_pgd_mutex);
292
293 return err;
294 }
295
kvm_kaddr_to_phys(void * kaddr)296 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
297 {
298 if (!is_vmalloc_addr(kaddr)) {
299 BUG_ON(!virt_addr_valid(kaddr));
300 return __pa(kaddr);
301 } else {
302 return page_to_phys(vmalloc_to_page(kaddr)) +
303 offset_in_page(kaddr);
304 }
305 }
306
307 struct hyp_shared_pfn {
308 u64 pfn;
309 int count;
310 struct rb_node node;
311 };
312
313 static DEFINE_MUTEX(hyp_shared_pfns_lock);
314 static struct rb_root hyp_shared_pfns = RB_ROOT;
315
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)316 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
317 struct rb_node **parent)
318 {
319 struct hyp_shared_pfn *this;
320
321 *node = &hyp_shared_pfns.rb_node;
322 *parent = NULL;
323 while (**node) {
324 this = container_of(**node, struct hyp_shared_pfn, node);
325 *parent = **node;
326 if (this->pfn < pfn)
327 *node = &((**node)->rb_left);
328 else if (this->pfn > pfn)
329 *node = &((**node)->rb_right);
330 else
331 return this;
332 }
333
334 return NULL;
335 }
336
share_pfn_hyp(u64 pfn)337 static int share_pfn_hyp(u64 pfn)
338 {
339 struct rb_node **node, *parent;
340 struct hyp_shared_pfn *this;
341 int ret = 0;
342
343 mutex_lock(&hyp_shared_pfns_lock);
344 this = find_shared_pfn(pfn, &node, &parent);
345 if (this) {
346 this->count++;
347 goto unlock;
348 }
349
350 this = kzalloc(sizeof(*this), GFP_KERNEL);
351 if (!this) {
352 ret = -ENOMEM;
353 goto unlock;
354 }
355
356 this->pfn = pfn;
357 this->count = 1;
358 rb_link_node(&this->node, parent, node);
359 rb_insert_color(&this->node, &hyp_shared_pfns);
360 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
361 unlock:
362 mutex_unlock(&hyp_shared_pfns_lock);
363
364 return ret;
365 }
366
unshare_pfn_hyp(u64 pfn)367 static int unshare_pfn_hyp(u64 pfn)
368 {
369 struct rb_node **node, *parent;
370 struct hyp_shared_pfn *this;
371 int ret = 0;
372
373 mutex_lock(&hyp_shared_pfns_lock);
374 this = find_shared_pfn(pfn, &node, &parent);
375 if (WARN_ON(!this)) {
376 ret = -ENOENT;
377 goto unlock;
378 }
379
380 this->count--;
381 if (this->count)
382 goto unlock;
383
384 rb_erase(&this->node, &hyp_shared_pfns);
385 kfree(this);
386 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
387 unlock:
388 mutex_unlock(&hyp_shared_pfns_lock);
389
390 return ret;
391 }
392
kvm_share_hyp(void * from,void * to)393 int kvm_share_hyp(void *from, void *to)
394 {
395 phys_addr_t start, end, cur;
396 u64 pfn;
397 int ret;
398
399 if (is_kernel_in_hyp_mode())
400 return 0;
401
402 /*
403 * The share hcall maps things in the 'fixed-offset' region of the hyp
404 * VA space, so we can only share physically contiguous data-structures
405 * for now.
406 */
407 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
408 return -EINVAL;
409
410 if (kvm_host_owns_hyp_mappings())
411 return create_hyp_mappings(from, to, PAGE_HYP);
412
413 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
414 end = PAGE_ALIGN(__pa(to));
415 for (cur = start; cur < end; cur += PAGE_SIZE) {
416 pfn = __phys_to_pfn(cur);
417 ret = share_pfn_hyp(pfn);
418 if (ret)
419 return ret;
420 }
421
422 return 0;
423 }
424
kvm_unshare_hyp(void * from,void * to)425 void kvm_unshare_hyp(void *from, void *to)
426 {
427 phys_addr_t start, end, cur;
428 u64 pfn;
429
430 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
431 return;
432
433 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
434 end = PAGE_ALIGN(__pa(to));
435 for (cur = start; cur < end; cur += PAGE_SIZE) {
436 pfn = __phys_to_pfn(cur);
437 WARN_ON(unshare_pfn_hyp(pfn));
438 }
439 }
440
441 /**
442 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
443 * @from: The virtual kernel start address of the range
444 * @to: The virtual kernel end address of the range (exclusive)
445 * @prot: The protection to be applied to this range
446 *
447 * The same virtual address as the kernel virtual address is also used
448 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
449 * physical pages.
450 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)451 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
452 {
453 phys_addr_t phys_addr;
454 unsigned long virt_addr;
455 unsigned long start = kern_hyp_va((unsigned long)from);
456 unsigned long end = kern_hyp_va((unsigned long)to);
457
458 if (is_kernel_in_hyp_mode())
459 return 0;
460
461 if (!kvm_host_owns_hyp_mappings())
462 return -EPERM;
463
464 start = start & PAGE_MASK;
465 end = PAGE_ALIGN(end);
466
467 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
468 int err;
469
470 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
471 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
472 prot);
473 if (err)
474 return err;
475 }
476
477 return 0;
478 }
479
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)480 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
481 unsigned long *haddr,
482 enum kvm_pgtable_prot prot)
483 {
484 unsigned long base;
485 int ret = 0;
486
487 if (!kvm_host_owns_hyp_mappings()) {
488 base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
489 phys_addr, size, prot);
490 if (IS_ERR_OR_NULL((void *)base))
491 return PTR_ERR((void *)base);
492 *haddr = base;
493
494 return 0;
495 }
496
497 mutex_lock(&kvm_hyp_pgd_mutex);
498
499 /*
500 * This assumes that we have enough space below the idmap
501 * page to allocate our VAs. If not, the check below will
502 * kick. A potential alternative would be to detect that
503 * overflow and switch to an allocation above the idmap.
504 *
505 * The allocated size is always a multiple of PAGE_SIZE.
506 */
507 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
508 base = io_map_base - size;
509
510 /*
511 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
512 * allocating the new area, as it would indicate we've
513 * overflowed the idmap/IO address range.
514 */
515 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
516 ret = -ENOMEM;
517 else
518 io_map_base = base;
519
520 mutex_unlock(&kvm_hyp_pgd_mutex);
521
522 if (ret)
523 goto out;
524
525 ret = __create_hyp_mappings(base, size, phys_addr, prot);
526 if (ret)
527 goto out;
528
529 *haddr = base + offset_in_page(phys_addr);
530 out:
531 return ret;
532 }
533
534 /**
535 * create_hyp_io_mappings - Map IO into both kernel and HYP
536 * @phys_addr: The physical start address which gets mapped
537 * @size: Size of the region being mapped
538 * @kaddr: Kernel VA for this mapping
539 * @haddr: HYP VA for this mapping
540 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)541 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
542 void __iomem **kaddr,
543 void __iomem **haddr)
544 {
545 unsigned long addr;
546 int ret;
547
548 if (is_protected_kvm_enabled())
549 return -EPERM;
550
551 *kaddr = ioremap(phys_addr, size);
552 if (!*kaddr)
553 return -ENOMEM;
554
555 if (is_kernel_in_hyp_mode()) {
556 *haddr = *kaddr;
557 return 0;
558 }
559
560 ret = __create_hyp_private_mapping(phys_addr, size,
561 &addr, PAGE_HYP_DEVICE);
562 if (ret) {
563 iounmap(*kaddr);
564 *kaddr = NULL;
565 *haddr = NULL;
566 return ret;
567 }
568
569 *haddr = (void __iomem *)addr;
570 return 0;
571 }
572
573 /**
574 * create_hyp_exec_mappings - Map an executable range into HYP
575 * @phys_addr: The physical start address which gets mapped
576 * @size: Size of the region being mapped
577 * @haddr: HYP VA for this mapping
578 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)579 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
580 void **haddr)
581 {
582 unsigned long addr;
583 int ret;
584
585 BUG_ON(is_kernel_in_hyp_mode());
586
587 ret = __create_hyp_private_mapping(phys_addr, size,
588 &addr, PAGE_HYP_EXEC);
589 if (ret) {
590 *haddr = NULL;
591 return ret;
592 }
593
594 *haddr = (void *)addr;
595 return 0;
596 }
597
598 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
599 /* We shouldn't need any other callback to walk the PT */
600 .phys_to_virt = kvm_host_va,
601 };
602
get_user_mapping_size(struct kvm * kvm,u64 addr)603 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
604 {
605 struct kvm_pgtable pgt = {
606 .pgd = (kvm_pte_t *)kvm->mm->pgd,
607 .ia_bits = VA_BITS,
608 .start_level = (KVM_PGTABLE_MAX_LEVELS -
609 CONFIG_PGTABLE_LEVELS),
610 .mm_ops = &kvm_user_mm_ops,
611 };
612 unsigned long flags;
613 kvm_pte_t pte = 0; /* Keep GCC quiet... */
614 u32 level = ~0;
615 int ret;
616
617 /*
618 * Disable IRQs so that we hazard against a concurrent
619 * teardown of the userspace page tables (which relies on
620 * IPI-ing threads).
621 */
622 local_irq_save(flags);
623 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
624 local_irq_restore(flags);
625
626 if (ret)
627 return ret;
628
629 /*
630 * Not seeing an error, but not updating level? Something went
631 * deeply wrong...
632 */
633 if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
634 return -EFAULT;
635
636 /* Oops, the userspace PTs are gone... Replay the fault */
637 if (!kvm_pte_valid(pte))
638 return -EAGAIN;
639
640 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
641 }
642
643 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
644 .zalloc_page = stage2_memcache_zalloc_page,
645 .zalloc_pages_exact = kvm_host_zalloc_pages_exact,
646 .free_pages_exact = free_pages_exact,
647 .get_page = kvm_host_get_page,
648 .put_page = kvm_host_put_page,
649 .page_count = kvm_host_page_count,
650 .phys_to_virt = kvm_host_va,
651 .virt_to_phys = kvm_host_pa,
652 .dcache_clean_inval_poc = clean_dcache_guest_page,
653 .icache_inval_pou = invalidate_icache_guest_page,
654 };
655
656 /**
657 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
658 * @kvm: The pointer to the KVM structure
659 * @mmu: The pointer to the s2 MMU structure
660 * @type: The machine type of the virtual machine
661 *
662 * Allocates only the stage-2 HW PGD level table(s).
663 * Note we don't need locking here as this is only called when the VM is
664 * created, which can only be done once.
665 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)666 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
667 {
668 u32 kvm_ipa_limit = get_kvm_ipa_limit();
669 int cpu, err;
670 struct kvm_pgtable *pgt;
671 u64 mmfr0, mmfr1;
672 u32 phys_shift;
673
674 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
675 if (is_protected_kvm_enabled()) {
676 phys_shift = kvm_ipa_limit;
677 } else if (phys_shift) {
678 if (phys_shift > kvm_ipa_limit ||
679 phys_shift < ARM64_MIN_PARANGE_BITS)
680 return -EINVAL;
681 } else {
682 phys_shift = KVM_PHYS_SHIFT;
683 if (phys_shift > kvm_ipa_limit) {
684 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
685 current->comm);
686 return -EINVAL;
687 }
688 }
689
690 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
691 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
692 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
693 INIT_LIST_HEAD(&kvm->arch.pkvm.pinned_pages);
694 mmu->arch = &kvm->arch;
695
696 if (is_protected_kvm_enabled())
697 return 0;
698
699 if (mmu->pgt != NULL) {
700 kvm_err("kvm_arch already initialized?\n");
701 return -EINVAL;
702 }
703
704 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
705 if (!pgt)
706 return -ENOMEM;
707
708 mmu->arch = &kvm->arch;
709 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
710 if (err)
711 goto out_free_pgtable;
712
713 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
714 if (!mmu->last_vcpu_ran) {
715 err = -ENOMEM;
716 goto out_destroy_pgtable;
717 }
718
719 for_each_possible_cpu(cpu)
720 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
721
722 mmu->pgt = pgt;
723 mmu->pgd_phys = __pa(pgt->pgd);
724 WRITE_ONCE(mmu->vmid.vmid_gen, 0);
725 return 0;
726
727 out_destroy_pgtable:
728 kvm_pgtable_stage2_destroy(pgt);
729 out_free_pgtable:
730 kfree(pgt);
731 return err;
732 }
733
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)734 static void stage2_unmap_memslot(struct kvm *kvm,
735 struct kvm_memory_slot *memslot)
736 {
737 hva_t hva = memslot->userspace_addr;
738 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
739 phys_addr_t size = PAGE_SIZE * memslot->npages;
740 hva_t reg_end = hva + size;
741
742 /*
743 * A memory region could potentially cover multiple VMAs, and any holes
744 * between them, so iterate over all of them to find out if we should
745 * unmap any of them.
746 *
747 * +--------------------------------------------+
748 * +---------------+----------------+ +----------------+
749 * | : VMA 1 | VMA 2 | | VMA 3 : |
750 * +---------------+----------------+ +----------------+
751 * | memory region |
752 * +--------------------------------------------+
753 */
754 do {
755 struct vm_area_struct *vma;
756 hva_t vm_start, vm_end;
757
758 vma = find_vma_intersection(current->mm, hva, reg_end);
759 if (!vma)
760 break;
761
762 /*
763 * Take the intersection of this VMA with the memory region
764 */
765 vm_start = max(hva, vma->vm_start);
766 vm_end = min(reg_end, vma->vm_end);
767
768 if (!(vma->vm_flags & VM_PFNMAP)) {
769 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
770 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
771 }
772 hva = vm_end;
773 } while (hva < reg_end);
774 }
775
776 /**
777 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
778 * @kvm: The struct kvm pointer
779 *
780 * Go through the memregions and unmap any regular RAM
781 * backing memory already mapped to the VM.
782 */
stage2_unmap_vm(struct kvm * kvm)783 void stage2_unmap_vm(struct kvm *kvm)
784 {
785 struct kvm_memslots *slots;
786 struct kvm_memory_slot *memslot;
787 int idx;
788
789 idx = srcu_read_lock(&kvm->srcu);
790 mmap_read_lock(current->mm);
791 spin_lock(&kvm->mmu_lock);
792
793 slots = kvm_memslots(kvm);
794 kvm_for_each_memslot(memslot, slots)
795 stage2_unmap_memslot(kvm, memslot);
796
797 spin_unlock(&kvm->mmu_lock);
798 mmap_read_unlock(current->mm);
799 srcu_read_unlock(&kvm->srcu, idx);
800 }
801
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)802 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
803 {
804 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
805 struct kvm_pgtable *pgt = NULL;
806
807 if (is_protected_kvm_enabled())
808 return;
809
810 spin_lock(&kvm->mmu_lock);
811 pgt = mmu->pgt;
812 if (pgt) {
813 mmu->pgd_phys = 0;
814 mmu->pgt = NULL;
815 free_percpu(mmu->last_vcpu_ran);
816 }
817 spin_unlock(&kvm->mmu_lock);
818
819 if (pgt) {
820 kvm_pgtable_stage2_destroy(pgt);
821 kfree(pgt);
822 }
823 }
824
hyp_mc_free_fn(void * addr,void * unused)825 static void hyp_mc_free_fn(void *addr, void *unused)
826 {
827 free_page((unsigned long)addr);
828 }
829
hyp_mc_alloc_fn(void * unused)830 static void *hyp_mc_alloc_fn(void *unused)
831 {
832 return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
833 }
834
free_hyp_memcache(struct kvm_hyp_memcache * mc)835 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
836 {
837 if (is_protected_kvm_enabled())
838 __free_hyp_memcache(mc, hyp_mc_free_fn,
839 kvm_host_va, NULL);
840 }
841
topup_hyp_memcache(struct kvm_vcpu * vcpu)842 int topup_hyp_memcache(struct kvm_vcpu *vcpu)
843 {
844 if (!is_protected_kvm_enabled())
845 return 0;
846
847 return __topup_hyp_memcache(&vcpu->arch.pkvm_memcache,
848 kvm_mmu_cache_min_pages(vcpu->kvm),
849 hyp_mc_alloc_fn,
850 kvm_host_pa, NULL);
851 }
852
853 /**
854 * kvm_phys_addr_ioremap - map a device range to guest IPA
855 *
856 * @kvm: The KVM pointer
857 * @guest_ipa: The IPA at which to insert the mapping
858 * @pa: The physical address of the device
859 * @size: The size of the mapping
860 * @writable: Whether or not to create a writable mapping
861 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)862 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
863 phys_addr_t pa, unsigned long size, bool writable)
864 {
865 phys_addr_t addr;
866 int ret = 0;
867 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
868 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
869 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
870 KVM_PGTABLE_PROT_R |
871 (writable ? KVM_PGTABLE_PROT_W : 0);
872
873 if (is_protected_kvm_enabled())
874 return -EPERM;
875
876 size += offset_in_page(guest_ipa);
877 guest_ipa &= PAGE_MASK;
878
879 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
880 ret = kvm_mmu_topup_memory_cache(&cache,
881 kvm_mmu_cache_min_pages(kvm));
882 if (ret)
883 break;
884
885 spin_lock(&kvm->mmu_lock);
886 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
887 &cache);
888 spin_unlock(&kvm->mmu_lock);
889 if (ret)
890 break;
891
892 pa += PAGE_SIZE;
893 }
894
895 kvm_mmu_free_memory_cache(&cache);
896 return ret;
897 }
898
899 /**
900 * stage2_wp_range() - write protect stage2 memory region range
901 * @mmu: The KVM stage-2 MMU pointer
902 * @addr: Start address of range
903 * @end: End address of range
904 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)905 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
906 {
907 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
908 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
909 }
910
911 /**
912 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
913 * @kvm: The KVM pointer
914 * @slot: The memory slot to write protect
915 *
916 * Called to start logging dirty pages after memory region
917 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
918 * all present PUD, PMD and PTEs are write protected in the memory region.
919 * Afterwards read of dirty page log can be called.
920 *
921 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
922 * serializing operations for VM memory regions.
923 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)924 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
925 {
926 struct kvm_memslots *slots = kvm_memslots(kvm);
927 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
928 phys_addr_t start, end;
929
930 if (WARN_ON_ONCE(!memslot))
931 return;
932
933 start = memslot->base_gfn << PAGE_SHIFT;
934 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
935
936 spin_lock(&kvm->mmu_lock);
937 stage2_wp_range(&kvm->arch.mmu, start, end);
938 spin_unlock(&kvm->mmu_lock);
939 kvm_flush_remote_tlbs(kvm);
940 }
941
942 /**
943 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
944 * @kvm: The KVM pointer
945 * @slot: The memory slot associated with mask
946 * @gfn_offset: The gfn offset in memory slot
947 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
948 * slot to be write protected
949 *
950 * Walks bits set in mask write protects the associated pte's. Caller must
951 * acquire kvm_mmu_lock.
952 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)953 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
954 struct kvm_memory_slot *slot,
955 gfn_t gfn_offset, unsigned long mask)
956 {
957 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
958 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
959 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
960
961 stage2_wp_range(&kvm->arch.mmu, start, end);
962 }
963
964 /*
965 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
966 * dirty pages.
967 *
968 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
969 * enable dirty logging for them.
970 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)971 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
972 struct kvm_memory_slot *slot,
973 gfn_t gfn_offset, unsigned long mask)
974 {
975 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
976 }
977
kvm_send_hwpoison_signal(unsigned long address,short lsb)978 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
979 {
980 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
981 }
982
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)983 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
984 unsigned long hva,
985 unsigned long map_size)
986 {
987 gpa_t gpa_start;
988 hva_t uaddr_start, uaddr_end;
989 size_t size;
990
991 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
992 if (map_size == PAGE_SIZE)
993 return true;
994
995 size = memslot->npages * PAGE_SIZE;
996
997 gpa_start = memslot->base_gfn << PAGE_SHIFT;
998
999 uaddr_start = memslot->userspace_addr;
1000 uaddr_end = uaddr_start + size;
1001
1002 /*
1003 * Pages belonging to memslots that don't have the same alignment
1004 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1005 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1006 *
1007 * Consider a layout like the following:
1008 *
1009 * memslot->userspace_addr:
1010 * +-----+--------------------+--------------------+---+
1011 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1012 * +-----+--------------------+--------------------+---+
1013 *
1014 * memslot->base_gfn << PAGE_SHIFT:
1015 * +---+--------------------+--------------------+-----+
1016 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1017 * +---+--------------------+--------------------+-----+
1018 *
1019 * If we create those stage-2 blocks, we'll end up with this incorrect
1020 * mapping:
1021 * d -> f
1022 * e -> g
1023 * f -> h
1024 */
1025 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1026 return false;
1027
1028 /*
1029 * Next, let's make sure we're not trying to map anything not covered
1030 * by the memslot. This means we have to prohibit block size mappings
1031 * for the beginning and end of a non-block aligned and non-block sized
1032 * memory slot (illustrated by the head and tail parts of the
1033 * userspace view above containing pages 'abcde' and 'xyz',
1034 * respectively).
1035 *
1036 * Note that it doesn't matter if we do the check using the
1037 * userspace_addr or the base_gfn, as both are equally aligned (per
1038 * the check above) and equally sized.
1039 */
1040 return (hva & ~(map_size - 1)) >= uaddr_start &&
1041 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1042 }
1043
1044 /*
1045 * Check if the given hva is backed by a transparent huge page (THP) and
1046 * whether it can be mapped using block mapping in stage2. If so, adjust
1047 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1048 * supported. This will need to be updated to support other THP sizes.
1049 *
1050 * Returns the size of the mapping.
1051 */
1052 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1053 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1054 unsigned long hva, kvm_pfn_t *pfnp,
1055 phys_addr_t *ipap)
1056 {
1057 kvm_pfn_t pfn = *pfnp;
1058
1059 /*
1060 * Make sure the adjustment is done only for THP pages. Also make
1061 * sure that the HVA and IPA are sufficiently aligned and that the
1062 * block map is contained within the memslot.
1063 */
1064 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1065 int sz = get_user_mapping_size(kvm, hva);
1066
1067 if (sz < 0)
1068 return sz;
1069
1070 if (sz < PMD_SIZE)
1071 return PAGE_SIZE;
1072
1073 /*
1074 * The address we faulted on is backed by a transparent huge
1075 * page. However, because we map the compound huge page and
1076 * not the individual tail page, we need to transfer the
1077 * refcount to the head page. We have to be careful that the
1078 * THP doesn't start to split while we are adjusting the
1079 * refcounts.
1080 *
1081 * We are sure this doesn't happen, because mmu_notifier_retry
1082 * was successful and we are holding the mmu_lock, so if this
1083 * THP is trying to split, it will be blocked in the mmu
1084 * notifier before touching any of the pages, specifically
1085 * before being able to call __split_huge_page_refcount().
1086 *
1087 * We can therefore safely transfer the refcount from PG_tail
1088 * to PG_head and switch the pfn from a tail page to the head
1089 * page accordingly.
1090 */
1091 *ipap &= PMD_MASK;
1092 kvm_release_pfn_clean(pfn);
1093 pfn &= ~(PTRS_PER_PMD - 1);
1094 get_page(pfn_to_page(pfn));
1095 *pfnp = pfn;
1096
1097 return PMD_SIZE;
1098 }
1099
1100 /* Use page mapping if we cannot use block mapping. */
1101 return PAGE_SIZE;
1102 }
1103
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1104 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1105 {
1106 unsigned long pa;
1107
1108 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1109 return huge_page_shift(hstate_vma(vma));
1110
1111 if (!(vma->vm_flags & VM_PFNMAP))
1112 return PAGE_SHIFT;
1113
1114 VM_BUG_ON(is_vm_hugetlb_page(vma));
1115
1116 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1117
1118 #ifndef __PAGETABLE_PMD_FOLDED
1119 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1120 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1121 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1122 return PUD_SHIFT;
1123 #endif
1124
1125 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1126 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1127 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1128 return PMD_SHIFT;
1129
1130 return PAGE_SHIFT;
1131 }
1132
1133 /*
1134 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1135 * able to see the page's tags and therefore they must be initialised first. If
1136 * PG_mte_tagged is set, tags have already been initialised.
1137 *
1138 * The race in the test/set of the PG_mte_tagged flag is handled by:
1139 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1140 * racing to santise the same page
1141 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1142 * an mprotect() to add VM_MTE
1143 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1144 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1145 unsigned long size)
1146 {
1147 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1148 struct page *page;
1149
1150 if (!kvm_has_mte(kvm))
1151 return 0;
1152
1153 /*
1154 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
1155 * that may not support tags.
1156 */
1157 page = pfn_to_online_page(pfn);
1158
1159 if (!page)
1160 return -EFAULT;
1161
1162 for (i = 0; i < nr_pages; i++, page++) {
1163 if (!test_bit(PG_mte_tagged, &page->flags)) {
1164 mte_clear_page_tags(page_address(page));
1165 set_bit(PG_mte_tagged, &page->flags);
1166 }
1167 }
1168
1169 return 0;
1170 }
1171
pkvm_host_donate_guest(u64 pfn,u64 gfn)1172 static int pkvm_host_donate_guest(u64 pfn, u64 gfn)
1173 {
1174 struct arm_smccc_res res;
1175
1176 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__pkvm_host_donate_guest),
1177 pfn, gfn, &res);
1178 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1179
1180 /*
1181 * Getting -EPERM at this point implies that the pfn has already been
1182 * donated. This should only ever happen when two vCPUs faulted on the
1183 * same page, and the current one lost the race to do the donation.
1184 */
1185 return (res.a1 == -EPERM) ? -EAGAIN : res.a1;
1186 }
1187
pkvm_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,unsigned long hva)1188 static int pkvm_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1189 unsigned long hva)
1190 {
1191 struct mm_struct *mm = current->mm;
1192 unsigned int flags = FOLL_HWPOISON | FOLL_LONGTERM | FOLL_WRITE;
1193 struct kvm_pinned_page *ppage;
1194 struct kvm *kvm = vcpu->kvm;
1195 struct page *page;
1196 u64 pfn;
1197 int ret;
1198
1199 ret = topup_hyp_memcache(vcpu);
1200 if (ret)
1201 return -ENOMEM;
1202
1203 ppage = kmalloc(sizeof(*ppage), GFP_KERNEL_ACCOUNT);
1204 if (!ppage)
1205 return -ENOMEM;
1206
1207 ret = account_locked_vm(mm, 1, true);
1208 if (ret)
1209 goto free_ppage;
1210
1211 mmap_read_lock(mm);
1212 ret = pin_user_pages(hva, 1, flags, &page, NULL);
1213 mmap_read_unlock(mm);
1214
1215 if (ret == -EHWPOISON) {
1216 kvm_send_hwpoison_signal(hva, PAGE_SHIFT);
1217 ret = 0;
1218 goto dec_account;
1219 } else if (ret != 1) {
1220 ret = -EFAULT;
1221 goto dec_account;
1222 } else if (!PageSwapBacked(page)) {
1223 /*
1224 * We really can't deal with page-cache pages returned by GUP
1225 * because (a) we may trigger writeback of a page for which we
1226 * no longer have access and (b) page_mkclean() won't find the
1227 * stage-2 mapping in the rmap so we can get out-of-whack with
1228 * the filesystem when marking the page dirty during unpinning.
1229 *
1230 * Ideally we'd just restrict ourselves to anonymous pages, but
1231 * we also want to allow memfd (i.e. shmem) pages, so check for
1232 * pages backed by swap in the knowledge that the GUP pin will
1233 * prevent try_to_unmap() from succeeding.
1234 */
1235 ret = -EIO;
1236 goto unpin;
1237 }
1238
1239 spin_lock(&kvm->mmu_lock);
1240 pfn = page_to_pfn(page);
1241 ret = pkvm_host_donate_guest(pfn, fault_ipa >> PAGE_SHIFT);
1242 if (ret) {
1243 if (ret == -EAGAIN)
1244 ret = 0;
1245 goto unlock;
1246 }
1247
1248 ppage->page = page;
1249 INIT_LIST_HEAD(&ppage->link);
1250 list_add(&ppage->link, &kvm->arch.pkvm.pinned_pages);
1251 spin_unlock(&kvm->mmu_lock);
1252
1253 return 0;
1254
1255 unlock:
1256 spin_unlock(&kvm->mmu_lock);
1257 unpin:
1258 unpin_user_pages(&page, 1);
1259 dec_account:
1260 account_locked_vm(mm, 1, false);
1261 free_ppage:
1262 kfree(ppage);
1263
1264 return ret;
1265 }
1266
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1267 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1268 struct kvm_memory_slot *memslot, unsigned long hva,
1269 unsigned long fault_status)
1270 {
1271 int ret = 0;
1272 bool write_fault, writable, force_pte = false;
1273 bool exec_fault;
1274 bool device = false;
1275 bool shared;
1276 unsigned long mmu_seq;
1277 struct kvm *kvm = vcpu->kvm;
1278 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1279 struct vm_area_struct *vma;
1280 short vma_shift;
1281 gfn_t gfn;
1282 kvm_pfn_t pfn;
1283 bool logging_active = memslot_is_logging(memslot);
1284 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1285 long vma_pagesize, fault_granule;
1286 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1287 struct kvm_pgtable *pgt;
1288
1289 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1290 write_fault = kvm_is_write_fault(vcpu);
1291 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1292 VM_BUG_ON(write_fault && exec_fault);
1293
1294 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1295 kvm_err("Unexpected L2 read permission error\n");
1296 return -EFAULT;
1297 }
1298
1299 /*
1300 * Permission faults just need to update the existing leaf entry,
1301 * and so normally don't require allocations from the memcache. The
1302 * only exception to this is when dirty logging is enabled at runtime
1303 * and a write fault needs to collapse a block entry into a table.
1304 */
1305 if (fault_status != FSC_PERM ||
1306 (logging_active && write_fault)) {
1307 ret = kvm_mmu_topup_memory_cache(memcache,
1308 kvm_mmu_cache_min_pages(kvm));
1309 if (ret)
1310 return ret;
1311 }
1312
1313 /*
1314 * Let's check if we will get back a huge page backed by hugetlbfs, or
1315 * get block mapping for device MMIO region.
1316 */
1317 mmap_read_lock(current->mm);
1318 vma = vma_lookup(current->mm, hva);
1319 if (unlikely(!vma)) {
1320 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1321 mmap_read_unlock(current->mm);
1322 return -EFAULT;
1323 }
1324
1325 /*
1326 * logging_active is guaranteed to never be true for VM_PFNMAP
1327 * memslots.
1328 */
1329 if (logging_active) {
1330 force_pte = true;
1331 vma_shift = PAGE_SHIFT;
1332 } else {
1333 vma_shift = get_vma_page_shift(vma, hva);
1334 }
1335
1336 shared = (vma->vm_flags & VM_SHARED);
1337
1338 switch (vma_shift) {
1339 #ifndef __PAGETABLE_PMD_FOLDED
1340 case PUD_SHIFT:
1341 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1342 break;
1343 fallthrough;
1344 #endif
1345 case CONT_PMD_SHIFT:
1346 vma_shift = PMD_SHIFT;
1347 fallthrough;
1348 case PMD_SHIFT:
1349 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1350 break;
1351 fallthrough;
1352 case CONT_PTE_SHIFT:
1353 vma_shift = PAGE_SHIFT;
1354 force_pte = true;
1355 fallthrough;
1356 case PAGE_SHIFT:
1357 break;
1358 default:
1359 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1360 }
1361
1362 vma_pagesize = 1UL << vma_shift;
1363 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1364 fault_ipa &= ~(vma_pagesize - 1);
1365
1366 gfn = fault_ipa >> PAGE_SHIFT;
1367
1368 /*
1369 * Read mmu_notifier_seq so that KVM can detect if the results of
1370 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1371 * acquiring kvm->mmu_lock.
1372 *
1373 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1374 * with the smp_wmb() in kvm_dec_notifier_count().
1375 */
1376 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1377 mmap_read_unlock(current->mm);
1378
1379 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1380 write_fault, &writable, NULL);
1381 if (pfn == KVM_PFN_ERR_HWPOISON) {
1382 kvm_send_hwpoison_signal(hva, vma_shift);
1383 return 0;
1384 }
1385 if (is_error_noslot_pfn(pfn))
1386 return -EFAULT;
1387
1388 if (kvm_is_device_pfn(pfn)) {
1389 /*
1390 * If the page was identified as device early by looking at
1391 * the VMA flags, vma_pagesize is already representing the
1392 * largest quantity we can map. If instead it was mapped
1393 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1394 * and must not be upgraded.
1395 *
1396 * In both cases, we don't let transparent_hugepage_adjust()
1397 * change things at the last minute.
1398 */
1399 device = true;
1400 } else if (logging_active && !write_fault) {
1401 /*
1402 * Only actually map the page as writable if this was a write
1403 * fault.
1404 */
1405 writable = false;
1406 }
1407
1408 if (exec_fault && device)
1409 return -ENOEXEC;
1410
1411 spin_lock(&kvm->mmu_lock);
1412 pgt = vcpu->arch.hw_mmu->pgt;
1413 if (mmu_notifier_retry(kvm, mmu_seq))
1414 goto out_unlock;
1415
1416 /*
1417 * If we are not forced to use page mapping, check if we are
1418 * backed by a THP and thus use block mapping if possible.
1419 */
1420 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1421 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1422 vma_pagesize = fault_granule;
1423 else
1424 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1425 hva, &pfn,
1426 &fault_ipa);
1427
1428 if (vma_pagesize < 0) {
1429 ret = vma_pagesize;
1430 goto out_unlock;
1431 }
1432 }
1433
1434 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1435 /* Check the VMM hasn't introduced a new VM_SHARED VMA */
1436 if (!shared)
1437 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1438 else
1439 ret = -EFAULT;
1440 if (ret)
1441 goto out_unlock;
1442 }
1443
1444 if (writable)
1445 prot |= KVM_PGTABLE_PROT_W;
1446
1447 if (exec_fault)
1448 prot |= KVM_PGTABLE_PROT_X;
1449
1450 if (device)
1451 prot |= KVM_PGTABLE_PROT_DEVICE;
1452 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1453 prot |= KVM_PGTABLE_PROT_X;
1454
1455 /*
1456 * Under the premise of getting a FSC_PERM fault, we just need to relax
1457 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1458 * kvm_pgtable_stage2_map() should be called to change block size.
1459 */
1460 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1461 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1462 } else {
1463 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1464 __pfn_to_phys(pfn), prot,
1465 memcache);
1466 }
1467
1468 /* Mark the page dirty only if the fault is handled successfully */
1469 if (writable && !ret) {
1470 kvm_set_pfn_dirty(pfn);
1471 mark_page_dirty_in_slot(kvm, memslot, gfn);
1472 }
1473
1474 out_unlock:
1475 spin_unlock(&kvm->mmu_lock);
1476 kvm_set_pfn_accessed(pfn);
1477 kvm_release_pfn_clean(pfn);
1478 return ret != -EAGAIN ? ret : 0;
1479 }
1480
1481 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1482 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1483 {
1484 pte_t pte;
1485 kvm_pte_t kpte;
1486 struct kvm_s2_mmu *mmu;
1487
1488 trace_kvm_access_fault(fault_ipa);
1489
1490 spin_lock(&vcpu->kvm->mmu_lock);
1491 mmu = vcpu->arch.hw_mmu;
1492 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1493 spin_unlock(&vcpu->kvm->mmu_lock);
1494
1495 pte = __pte(kpte);
1496 if (pte_valid(pte))
1497 kvm_set_pfn_accessed(pte_pfn(pte));
1498 }
1499
1500 /**
1501 * kvm_handle_guest_abort - handles all 2nd stage aborts
1502 * @vcpu: the VCPU pointer
1503 *
1504 * Any abort that gets to the host is almost guaranteed to be caused by a
1505 * missing second stage translation table entry, which can mean that either the
1506 * guest simply needs more memory and we must allocate an appropriate page or it
1507 * can mean that the guest tried to access I/O memory, which is emulated by user
1508 * space. The distinction is based on the IPA causing the fault and whether this
1509 * memory region has been registered as standard RAM by user space.
1510 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1511 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1512 {
1513 unsigned long fault_status;
1514 phys_addr_t fault_ipa;
1515 struct kvm_memory_slot *memslot;
1516 unsigned long hva;
1517 bool is_iabt, write_fault, writable;
1518 gfn_t gfn;
1519 int ret, idx;
1520
1521 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1522
1523 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1524 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1525
1526 /* Synchronous External Abort? */
1527 if (kvm_vcpu_abt_issea(vcpu)) {
1528 /*
1529 * For RAS the host kernel may handle this abort.
1530 * There is no need to pass the error into the guest.
1531 */
1532 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1533 kvm_inject_vabt(vcpu);
1534
1535 return 1;
1536 }
1537
1538 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1539 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1540
1541 /* Check the stage-2 fault is trans. fault or write fault */
1542 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1543 fault_status != FSC_ACCESS) {
1544 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1545 kvm_vcpu_trap_get_class(vcpu),
1546 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1547 (unsigned long)kvm_vcpu_get_esr(vcpu));
1548 return -EFAULT;
1549 }
1550
1551 idx = srcu_read_lock(&vcpu->kvm->srcu);
1552
1553 gfn = fault_ipa >> PAGE_SHIFT;
1554 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1555 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1556 write_fault = kvm_is_write_fault(vcpu);
1557 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1558 /*
1559 * The guest has put either its instructions or its page-tables
1560 * somewhere it shouldn't have. Userspace won't be able to do
1561 * anything about this (there's no syndrome for a start), so
1562 * re-inject the abort back into the guest.
1563 */
1564 if (is_iabt) {
1565 ret = -ENOEXEC;
1566 goto out;
1567 }
1568
1569 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1570 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1571 ret = 1;
1572 goto out_unlock;
1573 }
1574
1575 /*
1576 * Check for a cache maintenance operation. Since we
1577 * ended-up here, we know it is outside of any memory
1578 * slot. But we can't find out if that is for a device,
1579 * or if the guest is just being stupid. The only thing
1580 * we know for sure is that this range cannot be cached.
1581 *
1582 * So let's assume that the guest is just being
1583 * cautious, and skip the instruction.
1584 */
1585 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1586 kvm_incr_pc(vcpu);
1587 ret = 1;
1588 goto out_unlock;
1589 }
1590
1591 /*
1592 * The IPA is reported as [MAX:12], so we need to
1593 * complement it with the bottom 12 bits from the
1594 * faulting VA. This is always 12 bits, irrespective
1595 * of the page size.
1596 */
1597 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & FAR_MASK;
1598 ret = io_mem_abort(vcpu, fault_ipa);
1599 goto out_unlock;
1600 }
1601
1602 /* Userspace should not be able to register out-of-bounds IPAs */
1603 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1604
1605 if (fault_status == FSC_ACCESS) {
1606 handle_access_fault(vcpu, fault_ipa);
1607 ret = 1;
1608 goto out_unlock;
1609 }
1610
1611
1612 if (is_protected_kvm_enabled())
1613 ret = pkvm_mem_abort(vcpu, fault_ipa, hva);
1614 else
1615 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1616 if (ret == 0)
1617 ret = 1;
1618 out:
1619 if (ret == -ENOEXEC) {
1620 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1621 ret = 1;
1622 }
1623 out_unlock:
1624 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1625 return ret;
1626 }
1627
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1628 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1629 {
1630 if (!kvm->arch.mmu.pgt)
1631 return false;
1632
1633 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1634 (range->end - range->start) << PAGE_SHIFT,
1635 range->may_block);
1636
1637 return false;
1638 }
1639
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1640 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1641 {
1642 kvm_pfn_t pfn = pte_pfn(range->pte);
1643 int ret;
1644
1645 if (!kvm->arch.mmu.pgt)
1646 return false;
1647
1648 WARN_ON(range->end - range->start != 1);
1649
1650 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1651 if (ret)
1652 return false;
1653
1654 /*
1655 * We've moved a page around, probably through CoW, so let's treat
1656 * it just like a translation fault and the map handler will clean
1657 * the cache to the PoC.
1658 *
1659 * The MMU notifiers will have unmapped a huge PMD before calling
1660 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1661 * therefore we never need to clear out a huge PMD through this
1662 * calling path and a memcache is not required.
1663 */
1664 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1665 PAGE_SIZE, __pfn_to_phys(pfn),
1666 KVM_PGTABLE_PROT_R, NULL);
1667
1668 return false;
1669 }
1670
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1671 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1672 {
1673 u64 size = (range->end - range->start) << PAGE_SHIFT;
1674 kvm_pte_t kpte;
1675 pte_t pte;
1676
1677 if (!kvm->arch.mmu.pgt)
1678 return false;
1679
1680 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1681
1682 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1683 range->start << PAGE_SHIFT);
1684 pte = __pte(kpte);
1685 return pte_valid(pte) && pte_young(pte);
1686 }
1687
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1688 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1689 {
1690 if (!kvm->arch.mmu.pgt)
1691 return false;
1692
1693 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1694 range->start << PAGE_SHIFT);
1695 }
1696
kvm_mmu_get_httbr(void)1697 phys_addr_t kvm_mmu_get_httbr(void)
1698 {
1699 return __pa(hyp_pgtable->pgd);
1700 }
1701
kvm_get_idmap_vector(void)1702 phys_addr_t kvm_get_idmap_vector(void)
1703 {
1704 return hyp_idmap_vector;
1705 }
1706
kvm_map_idmap_text(void)1707 static int kvm_map_idmap_text(void)
1708 {
1709 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1710 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1711 PAGE_HYP_EXEC);
1712 if (err)
1713 kvm_err("Failed to idmap %lx-%lx\n",
1714 hyp_idmap_start, hyp_idmap_end);
1715
1716 return err;
1717 }
1718
kvm_hyp_zalloc_page(void * arg)1719 static void *kvm_hyp_zalloc_page(void *arg)
1720 {
1721 return (void *)get_zeroed_page(GFP_KERNEL);
1722 }
1723
1724 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1725 .zalloc_page = kvm_hyp_zalloc_page,
1726 .get_page = kvm_host_get_page,
1727 .put_page = kvm_host_put_page,
1728 .phys_to_virt = kvm_host_va,
1729 .virt_to_phys = kvm_host_pa,
1730 };
1731
kvm_mmu_init(u32 * hyp_va_bits)1732 int kvm_mmu_init(u32 *hyp_va_bits)
1733 {
1734 int err;
1735
1736 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1737 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1738 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1739 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1740 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1741
1742 /*
1743 * We rely on the linker script to ensure at build time that the HYP
1744 * init code does not cross a page boundary.
1745 */
1746 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1747
1748 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1749 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1750 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1751 kvm_debug("HYP VA range: %lx:%lx\n",
1752 kern_hyp_va(PAGE_OFFSET),
1753 kern_hyp_va((unsigned long)high_memory - 1));
1754
1755 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1756 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1757 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1758 /*
1759 * The idmap page is intersecting with the VA space,
1760 * it is not safe to continue further.
1761 */
1762 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1763 err = -EINVAL;
1764 goto out;
1765 }
1766
1767 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1768 if (!hyp_pgtable) {
1769 kvm_err("Hyp mode page-table not allocated\n");
1770 err = -ENOMEM;
1771 goto out;
1772 }
1773
1774 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1775 if (err)
1776 goto out_free_pgtable;
1777
1778 err = kvm_map_idmap_text();
1779 if (err)
1780 goto out_destroy_pgtable;
1781
1782 io_map_base = hyp_idmap_start;
1783 return 0;
1784
1785 out_destroy_pgtable:
1786 kvm_pgtable_hyp_destroy(hyp_pgtable);
1787 out_free_pgtable:
1788 kfree(hyp_pgtable);
1789 hyp_pgtable = NULL;
1790 out:
1791 return err;
1792 }
1793
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1794 void kvm_arch_commit_memory_region(struct kvm *kvm,
1795 const struct kvm_userspace_memory_region *mem,
1796 struct kvm_memory_slot *old,
1797 const struct kvm_memory_slot *new,
1798 enum kvm_mr_change change)
1799 {
1800 /*
1801 * At this point memslot has been committed and there is an
1802 * allocated dirty_bitmap[], dirty pages will be tracked while the
1803 * memory slot is write protected.
1804 */
1805 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1806 /*
1807 * If we're with initial-all-set, we don't need to write
1808 * protect any pages because they're all reported as dirty.
1809 * Huge pages and normal pages will be write protect gradually.
1810 */
1811 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1812 kvm_mmu_wp_memory_region(kvm, mem->slot);
1813 }
1814 }
1815 }
1816
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1817 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1818 struct kvm_memory_slot *memslot,
1819 const struct kvm_userspace_memory_region *mem,
1820 enum kvm_mr_change change)
1821 {
1822 hva_t hva = mem->userspace_addr;
1823 hva_t reg_end = hva + mem->memory_size;
1824 int ret = 0;
1825
1826 /* In protected mode, cannot modify memslots once a VM has run. */
1827 if (is_protected_kvm_enabled() &&
1828 (change == KVM_MR_DELETE || change == KVM_MR_MOVE) &&
1829 kvm->arch.pkvm.shadow_handle) {
1830 return -EPERM;
1831 }
1832
1833 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1834 change != KVM_MR_FLAGS_ONLY)
1835 return 0;
1836
1837 /*
1838 * Prevent userspace from creating a memory region outside of the IPA
1839 * space addressable by the KVM guest IPA space.
1840 */
1841 if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1842 return -EFAULT;
1843
1844 mmap_read_lock(current->mm);
1845 /*
1846 * A memory region could potentially cover multiple VMAs, and any holes
1847 * between them, so iterate over all of them.
1848 *
1849 * +--------------------------------------------+
1850 * +---------------+----------------+ +----------------+
1851 * | : VMA 1 | VMA 2 | | VMA 3 : |
1852 * +---------------+----------------+ +----------------+
1853 * | memory region |
1854 * +--------------------------------------------+
1855 */
1856 do {
1857 struct vm_area_struct *vma;
1858
1859 vma = find_vma_intersection(current->mm, hva, reg_end);
1860 if (!vma)
1861 break;
1862
1863 /*
1864 * VM_SHARED mappings are not allowed with MTE to avoid races
1865 * when updating the PG_mte_tagged page flag, see
1866 * sanitise_mte_tags for more details.
1867 */
1868 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1869 ret = -EINVAL;
1870 break;
1871 }
1872
1873 if (vma->vm_flags & VM_PFNMAP) {
1874 /* IO region dirty page logging not allowed */
1875 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1876 ret = -EINVAL;
1877 break;
1878 }
1879 }
1880 hva = min(reg_end, vma->vm_end);
1881 } while (hva < reg_end);
1882
1883 mmap_read_unlock(current->mm);
1884 return ret;
1885 }
1886
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1887 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1888 {
1889 }
1890
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1891 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1892 {
1893 }
1894
kvm_arch_flush_shadow_all(struct kvm * kvm)1895 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1896 {
1897 kvm_free_stage2_pgd(&kvm->arch.mmu);
1898 }
1899
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1900 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1901 struct kvm_memory_slot *slot)
1902 {
1903 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1904 phys_addr_t size = slot->npages << PAGE_SHIFT;
1905
1906 /* Stage-2 is managed by hyp in protected mode. */
1907 if (is_protected_kvm_enabled())
1908 return;
1909
1910 spin_lock(&kvm->mmu_lock);
1911 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1912 spin_unlock(&kvm->mmu_lock);
1913 }
1914
1915 /*
1916 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1917 *
1918 * Main problems:
1919 * - S/W ops are local to a CPU (not broadcast)
1920 * - We have line migration behind our back (speculation)
1921 * - System caches don't support S/W at all (damn!)
1922 *
1923 * In the face of the above, the best we can do is to try and convert
1924 * S/W ops to VA ops. Because the guest is not allowed to infer the
1925 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1926 * which is a rather good thing for us.
1927 *
1928 * Also, it is only used when turning caches on/off ("The expected
1929 * usage of the cache maintenance instructions that operate by set/way
1930 * is associated with the cache maintenance instructions associated
1931 * with the powerdown and powerup of caches, if this is required by
1932 * the implementation.").
1933 *
1934 * We use the following policy:
1935 *
1936 * - If we trap a S/W operation, we enable VM trapping to detect
1937 * caches being turned on/off, and do a full clean.
1938 *
1939 * - We flush the caches on both caches being turned on and off.
1940 *
1941 * - Once the caches are enabled, we stop trapping VM ops.
1942 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1943 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1944 {
1945 unsigned long hcr = *vcpu_hcr(vcpu);
1946
1947 /*
1948 * If this is the first time we do a S/W operation
1949 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1950 * VM trapping.
1951 *
1952 * Otherwise, rely on the VM trapping to wait for the MMU +
1953 * Caches to be turned off. At that point, we'll be able to
1954 * clean the caches again.
1955 */
1956 if (!(hcr & HCR_TVM)) {
1957 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1958 vcpu_has_cache_enabled(vcpu));
1959 stage2_flush_vm(vcpu->kvm);
1960 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1961 }
1962 }
1963
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1964 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1965 {
1966 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1967
1968 /*
1969 * If switching the MMU+caches on, need to invalidate the caches.
1970 * If switching it off, need to clean the caches.
1971 * Clean + invalidate does the trick always.
1972 */
1973 if (now_enabled != was_enabled)
1974 stage2_flush_vm(vcpu->kvm);
1975
1976 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1977 if (now_enabled)
1978 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1979
1980 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1981 }
1982