1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Alexander Graf <agraf@suse.de>
7 * Kevin Wolf <mail@kevin-wolf.de>
8 * Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44
45 #include "book3s.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54 ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M _PAGE_COHERENT
65 #endif
66
kvmppc_is_split_real(struct kvm_vcpu * vcpu)67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69 ulong msr = kvmppc_get_msr(vcpu);
70 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75 ulong msr = kvmppc_get_msr(vcpu);
76 ulong pc = kvmppc_get_pc(vcpu);
77
78 /* We are in DR only split real mode */
79 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80 return;
81
82 /* We have not fixed up the guest already */
83 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84 return;
85
86 /* The code is in fixupable address space */
87 if (pc & SPLIT_HACK_MASK)
88 return;
89
90 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93
kvmppc_unfixup_split_real(struct kvm_vcpu * vcpu)94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97 ulong pc = kvmppc_get_pc(vcpu);
98 ulong lr = kvmppc_get_lr(vcpu);
99 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104 }
105 }
106
kvmppc_inject_interrupt_pr(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109 unsigned long msr, pc, new_msr, new_pc;
110
111 kvmppc_unfixup_split_real(vcpu);
112
113 msr = kvmppc_get_msr(vcpu);
114 pc = kvmppc_get_pc(vcpu);
115 new_msr = vcpu->arch.intr_msr;
116 new_pc = to_book3s(vcpu)->hior + vec;
117
118 #ifdef CONFIG_PPC_BOOK3S_64
119 /* If transactional, change to suspend mode on IRQ delivery */
120 if (MSR_TM_TRANSACTIONAL(msr))
121 new_msr |= MSR_TS_S;
122 else
123 new_msr |= msr & MSR_TS_MASK;
124 #endif
125
126 kvmppc_set_srr0(vcpu, pc);
127 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128 kvmppc_set_pc(vcpu, new_pc);
129 kvmppc_set_msr(vcpu, new_msr);
130 }
131
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138 svcpu->in_use = 0;
139 svcpu_put(svcpu);
140 #endif
141
142 /* Disable AIL if supported */
143 if (cpu_has_feature(CPU_FTR_HVMODE) &&
144 cpu_has_feature(CPU_FTR_ARCH_207S))
145 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
146
147 vcpu->cpu = smp_processor_id();
148 #ifdef CONFIG_PPC_BOOK3S_32
149 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
150 #endif
151
152 if (kvmppc_is_split_real(vcpu))
153 kvmppc_fixup_split_real(vcpu);
154
155 kvmppc_restore_tm_pr(vcpu);
156 }
157
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)158 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
159 {
160 #ifdef CONFIG_PPC_BOOK3S_64
161 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
162 if (svcpu->in_use) {
163 kvmppc_copy_from_svcpu(vcpu);
164 }
165 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
166 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
167 svcpu_put(svcpu);
168 #endif
169
170 if (kvmppc_is_split_real(vcpu))
171 kvmppc_unfixup_split_real(vcpu);
172
173 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
174 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
175 kvmppc_save_tm_pr(vcpu);
176
177 /* Enable AIL if supported */
178 if (cpu_has_feature(CPU_FTR_HVMODE) &&
179 cpu_has_feature(CPU_FTR_ARCH_207S))
180 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
181
182 vcpu->cpu = -1;
183 }
184
185 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)186 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
187 {
188 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
189
190 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
191 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
192 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
193 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
194 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
195 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
196 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
197 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
198 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
199 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
200 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
201 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
202 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
203 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
204 svcpu->cr = vcpu->arch.regs.ccr;
205 svcpu->xer = vcpu->arch.regs.xer;
206 svcpu->ctr = vcpu->arch.regs.ctr;
207 svcpu->lr = vcpu->arch.regs.link;
208 svcpu->pc = vcpu->arch.regs.nip;
209 #ifdef CONFIG_PPC_BOOK3S_64
210 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
211 #endif
212 /*
213 * Now also save the current time base value. We use this
214 * to find the guest purr and spurr value.
215 */
216 vcpu->arch.entry_tb = get_tb();
217 vcpu->arch.entry_vtb = get_vtb();
218 if (cpu_has_feature(CPU_FTR_ARCH_207S))
219 vcpu->arch.entry_ic = mfspr(SPRN_IC);
220 svcpu->in_use = true;
221
222 svcpu_put(svcpu);
223 }
224
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)225 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
226 {
227 ulong guest_msr = kvmppc_get_msr(vcpu);
228 ulong smsr = guest_msr;
229
230 /* Guest MSR values */
231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
232 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
233 MSR_TM | MSR_TS_MASK;
234 #else
235 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
236 #endif
237 /* Process MSR values */
238 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
239 /* External providers the guest reserved */
240 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
241 /* 64-bit Process MSR values */
242 #ifdef CONFIG_PPC_BOOK3S_64
243 smsr |= MSR_HV;
244 #endif
245 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
246 /*
247 * in guest privileged state, we want to fail all TM transactions.
248 * So disable MSR TM bit so that all tbegin. will be able to be
249 * trapped into host.
250 */
251 if (!(guest_msr & MSR_PR))
252 smsr &= ~MSR_TM;
253 #endif
254 vcpu->arch.shadow_msr = smsr;
255 }
256
257 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)258 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
259 {
260 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
261 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
262 ulong old_msr;
263 #endif
264
265 /*
266 * Maybe we were already preempted and synced the svcpu from
267 * our preempt notifiers. Don't bother touching this svcpu then.
268 */
269 if (!svcpu->in_use)
270 goto out;
271
272 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
273 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
274 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
275 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
276 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
277 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
278 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
279 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
280 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
281 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
282 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
283 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
284 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
285 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
286 vcpu->arch.regs.ccr = svcpu->cr;
287 vcpu->arch.regs.xer = svcpu->xer;
288 vcpu->arch.regs.ctr = svcpu->ctr;
289 vcpu->arch.regs.link = svcpu->lr;
290 vcpu->arch.regs.nip = svcpu->pc;
291 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
292 vcpu->arch.fault_dar = svcpu->fault_dar;
293 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
294 vcpu->arch.last_inst = svcpu->last_inst;
295 #ifdef CONFIG_PPC_BOOK3S_64
296 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
297 #endif
298 /*
299 * Update purr and spurr using time base on exit.
300 */
301 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
302 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
303 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
304 if (cpu_has_feature(CPU_FTR_ARCH_207S))
305 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
306
307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
308 /*
309 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
310 * notifying host:
311 * modified by unprivileged instructions like "tbegin"/"tend"/
312 * "tresume"/"tsuspend" in PR KVM guest.
313 *
314 * It is necessary to sync here to calculate a correct shadow_msr.
315 *
316 * privileged guest's tbegin will be failed at present. So we
317 * only take care of problem state guest.
318 */
319 old_msr = kvmppc_get_msr(vcpu);
320 if (unlikely((old_msr & MSR_PR) &&
321 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
322 (old_msr & (MSR_TS_MASK)))) {
323 old_msr &= ~(MSR_TS_MASK);
324 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
325 kvmppc_set_msr_fast(vcpu, old_msr);
326 kvmppc_recalc_shadow_msr(vcpu);
327 }
328 #endif
329
330 svcpu->in_use = false;
331
332 out:
333 svcpu_put(svcpu);
334 }
335
336 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)337 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
338 {
339 tm_enable();
340 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
341 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
342 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
343 tm_disable();
344 }
345
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)346 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
347 {
348 tm_enable();
349 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
350 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
351 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
352 tm_disable();
353 }
354
355 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
356 * hardware.
357 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)358 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
359 {
360 ulong exit_nr;
361 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
362 (MSR_FP | MSR_VEC | MSR_VSX);
363
364 if (!ext_diff)
365 return;
366
367 if (ext_diff == MSR_FP)
368 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
369 else if (ext_diff == MSR_VEC)
370 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
371 else
372 exit_nr = BOOK3S_INTERRUPT_VSX;
373
374 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
375 }
376
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)377 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
378 {
379 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
380 kvmppc_save_tm_sprs(vcpu);
381 return;
382 }
383
384 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
385 kvmppc_giveup_ext(vcpu, MSR_VSX);
386
387 preempt_disable();
388 _kvmppc_save_tm_pr(vcpu, mfmsr());
389 preempt_enable();
390 }
391
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)392 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
393 {
394 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
395 kvmppc_restore_tm_sprs(vcpu);
396 if (kvmppc_get_msr(vcpu) & MSR_TM) {
397 kvmppc_handle_lost_math_exts(vcpu);
398 if (vcpu->arch.fscr & FSCR_TAR)
399 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
400 }
401 return;
402 }
403
404 preempt_disable();
405 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
406 preempt_enable();
407
408 if (kvmppc_get_msr(vcpu) & MSR_TM) {
409 kvmppc_handle_lost_math_exts(vcpu);
410 if (vcpu->arch.fscr & FSCR_TAR)
411 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
412 }
413 }
414 #endif
415
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)416 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
417 {
418 int r = 1; /* Indicate we want to get back into the guest */
419
420 /* We misuse TLB_FLUSH to indicate that we want to clear
421 all shadow cache entries */
422 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
423 kvmppc_mmu_pte_flush(vcpu, 0, 0);
424
425 return r;
426 }
427
428 /************* MMU Notifiers *************/
do_kvm_unmap_gfn(struct kvm * kvm,struct kvm_gfn_range * range)429 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
430 {
431 long i;
432 struct kvm_vcpu *vcpu;
433
434 kvm_for_each_vcpu(i, vcpu, kvm)
435 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
436 range->end << PAGE_SHIFT);
437
438 return false;
439 }
440
kvm_unmap_gfn_range_pr(struct kvm * kvm,struct kvm_gfn_range * range)441 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
442 {
443 return do_kvm_unmap_gfn(kvm, range);
444 }
445
kvm_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)446 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
447 {
448 /* XXX could be more clever ;) */
449 return false;
450 }
451
kvm_test_age_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)452 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 /* XXX could be more clever ;) */
455 return false;
456 }
457
kvm_set_spte_gfn_pr(struct kvm * kvm,struct kvm_gfn_range * range)458 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460 /* The page will get remapped properly on its next fault */
461 return do_kvm_unmap_gfn(kvm, range);
462 }
463
464 /*****************************************/
465
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468 ulong old_msr;
469
470 /* For PAPR guest, make sure MSR reflects guest mode */
471 if (vcpu->arch.papr_enabled)
472 msr = (msr & ~MSR_HV) | MSR_ME;
473
474 #ifdef EXIT_DEBUG
475 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 /* We should never target guest MSR to TS=10 && PR=0,
480 * since we always fail transaction for guest privilege
481 * state.
482 */
483 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484 kvmppc_emulate_tabort(vcpu,
485 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487
488 old_msr = kvmppc_get_msr(vcpu);
489 msr &= to_book3s(vcpu)->msr_mask;
490 kvmppc_set_msr_fast(vcpu, msr);
491 kvmppc_recalc_shadow_msr(vcpu);
492
493 if (msr & MSR_POW) {
494 if (!vcpu->arch.pending_exceptions) {
495 kvm_vcpu_block(vcpu);
496 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
497 vcpu->stat.generic.halt_wakeup++;
498
499 /* Unset POW bit after we woke up */
500 msr &= ~MSR_POW;
501 kvmppc_set_msr_fast(vcpu, msr);
502 }
503 }
504
505 if (kvmppc_is_split_real(vcpu))
506 kvmppc_fixup_split_real(vcpu);
507 else
508 kvmppc_unfixup_split_real(vcpu);
509
510 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
511 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
512 kvmppc_mmu_flush_segments(vcpu);
513 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
514
515 /* Preload magic page segment when in kernel mode */
516 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
517 struct kvm_vcpu_arch *a = &vcpu->arch;
518
519 if (msr & MSR_DR)
520 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
521 else
522 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
523 }
524 }
525
526 /*
527 * When switching from 32 to 64-bit, we may have a stale 32-bit
528 * magic page around, we need to flush it. Typically 32-bit magic
529 * page will be instantiated when calling into RTAS. Note: We
530 * assume that such transition only happens while in kernel mode,
531 * ie, we never transition from user 32-bit to kernel 64-bit with
532 * a 32-bit magic page around.
533 */
534 if (vcpu->arch.magic_page_pa &&
535 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
536 /* going from RTAS to normal kernel code */
537 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
538 ~0xFFFUL);
539 }
540
541 /* Preload FPU if it's enabled */
542 if (kvmppc_get_msr(vcpu) & MSR_FP)
543 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
544
545 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
546 if (kvmppc_get_msr(vcpu) & MSR_TM)
547 kvmppc_handle_lost_math_exts(vcpu);
548 #endif
549 }
550
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)551 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
552 {
553 u32 host_pvr;
554
555 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
556 vcpu->arch.pvr = pvr;
557 #ifdef CONFIG_PPC_BOOK3S_64
558 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
559 kvmppc_mmu_book3s_64_init(vcpu);
560 if (!to_book3s(vcpu)->hior_explicit)
561 to_book3s(vcpu)->hior = 0xfff00000;
562 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
563 vcpu->arch.cpu_type = KVM_CPU_3S_64;
564 } else
565 #endif
566 {
567 kvmppc_mmu_book3s_32_init(vcpu);
568 if (!to_book3s(vcpu)->hior_explicit)
569 to_book3s(vcpu)->hior = 0;
570 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
571 vcpu->arch.cpu_type = KVM_CPU_3S_32;
572 }
573
574 kvmppc_sanity_check(vcpu);
575
576 /* If we are in hypervisor level on 970, we can tell the CPU to
577 * treat DCBZ as 32 bytes store */
578 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
579 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
580 !strcmp(cur_cpu_spec->platform, "ppc970"))
581 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
582
583 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
584 really needs them in a VM on Cell and force disable them. */
585 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
586 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
587
588 /*
589 * If they're asking for POWER6 or later, set the flag
590 * indicating that we can do multiple large page sizes
591 * and 1TB segments.
592 * Also set the flag that indicates that tlbie has the large
593 * page bit in the RB operand instead of the instruction.
594 */
595 switch (PVR_VER(pvr)) {
596 case PVR_POWER6:
597 case PVR_POWER7:
598 case PVR_POWER7p:
599 case PVR_POWER8:
600 case PVR_POWER8E:
601 case PVR_POWER8NVL:
602 case PVR_POWER9:
603 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604 BOOK3S_HFLAG_NEW_TLBIE;
605 break;
606 }
607
608 #ifdef CONFIG_PPC_BOOK3S_32
609 /* 32 bit Book3S always has 32 byte dcbz */
610 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612
613 /* On some CPUs we can execute paired single operations natively */
614 asm ( "mfpvr %0" : "=r"(host_pvr));
615 switch (host_pvr) {
616 case 0x00080200: /* lonestar 2.0 */
617 case 0x00088202: /* lonestar 2.2 */
618 case 0x70000100: /* gekko 1.0 */
619 case 0x00080100: /* gekko 2.0 */
620 case 0x00083203: /* gekko 2.3a */
621 case 0x00083213: /* gekko 2.3b */
622 case 0x00083204: /* gekko 2.4 */
623 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
624 case 0x00087200: /* broadway */
625 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626 /* Enable HID2.PSE - in case we need it later */
627 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628 }
629 }
630
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633 * emulate 32 bytes dcbz length.
634 *
635 * The Book3s_64 inventors also realized this case and implemented a special bit
636 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637 *
638 * My approach here is to patch the dcbz instruction on executing pages.
639 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642 struct page *hpage;
643 u64 hpage_offset;
644 u32 *page;
645 int i;
646
647 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
648 if (is_error_page(hpage))
649 return;
650
651 hpage_offset = pte->raddr & ~PAGE_MASK;
652 hpage_offset &= ~0xFFFULL;
653 hpage_offset /= 4;
654
655 get_page(hpage);
656 page = kmap_atomic(hpage);
657
658 /* patch dcbz into reserved instruction, so we trap */
659 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
660 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
661 page[i] &= cpu_to_be32(0xfffffff7);
662
663 kunmap_atomic(page);
664 put_page(hpage);
665 }
666
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)667 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
668 {
669 ulong mp_pa = vcpu->arch.magic_page_pa;
670
671 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
672 mp_pa = (uint32_t)mp_pa;
673
674 gpa &= ~0xFFFULL;
675 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
676 return true;
677 }
678
679 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
680 }
681
kvmppc_handle_pagefault(struct kvm_vcpu * vcpu,ulong eaddr,int vec)682 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
683 ulong eaddr, int vec)
684 {
685 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
686 bool iswrite = false;
687 int r = RESUME_GUEST;
688 int relocated;
689 int page_found = 0;
690 struct kvmppc_pte pte = { 0 };
691 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
692 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
693 u64 vsid;
694
695 relocated = data ? dr : ir;
696 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
697 iswrite = true;
698
699 /* Resolve real address if translation turned on */
700 if (relocated) {
701 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
702 } else {
703 pte.may_execute = true;
704 pte.may_read = true;
705 pte.may_write = true;
706 pte.raddr = eaddr & KVM_PAM;
707 pte.eaddr = eaddr;
708 pte.vpage = eaddr >> 12;
709 pte.page_size = MMU_PAGE_64K;
710 pte.wimg = HPTE_R_M;
711 }
712
713 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
714 case 0:
715 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
716 break;
717 case MSR_DR:
718 if (!data &&
719 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
720 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
721 pte.raddr &= ~SPLIT_HACK_MASK;
722 fallthrough;
723 case MSR_IR:
724 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
725
726 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
727 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
728 else
729 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
730 pte.vpage |= vsid;
731
732 if (vsid == -1)
733 page_found = -EINVAL;
734 break;
735 }
736
737 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
738 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
739 /*
740 * If we do the dcbz hack, we have to NX on every execution,
741 * so we can patch the executing code. This renders our guest
742 * NX-less.
743 */
744 pte.may_execute = !data;
745 }
746
747 if (page_found == -ENOENT || page_found == -EPERM) {
748 /* Page not found in guest PTE entries, or protection fault */
749 u64 flags;
750
751 if (page_found == -EPERM)
752 flags = DSISR_PROTFAULT;
753 else
754 flags = DSISR_NOHPTE;
755 if (data) {
756 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
757 kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
758 } else {
759 kvmppc_core_queue_inst_storage(vcpu, flags);
760 }
761 } else if (page_found == -EINVAL) {
762 /* Page not found in guest SLB */
763 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
764 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
765 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
766 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
767 /*
768 * There is already a host HPTE there, presumably
769 * a read-only one for a page the guest thinks
770 * is writable, so get rid of it first.
771 */
772 kvmppc_mmu_unmap_page(vcpu, &pte);
773 }
774 /* The guest's PTE is not mapped yet. Map on the host */
775 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
776 /* Exit KVM if mapping failed */
777 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
778 return RESUME_HOST;
779 }
780 if (data)
781 vcpu->stat.sp_storage++;
782 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
783 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
784 kvmppc_patch_dcbz(vcpu, &pte);
785 } else {
786 /* MMIO */
787 vcpu->stat.mmio_exits++;
788 vcpu->arch.paddr_accessed = pte.raddr;
789 vcpu->arch.vaddr_accessed = pte.eaddr;
790 r = kvmppc_emulate_mmio(vcpu);
791 if ( r == RESUME_HOST_NV )
792 r = RESUME_HOST;
793 }
794
795 return r;
796 }
797
798 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)799 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
800 {
801 struct thread_struct *t = ¤t->thread;
802
803 /*
804 * VSX instructions can access FP and vector registers, so if
805 * we are giving up VSX, make sure we give up FP and VMX as well.
806 */
807 if (msr & MSR_VSX)
808 msr |= MSR_FP | MSR_VEC;
809
810 msr &= vcpu->arch.guest_owned_ext;
811 if (!msr)
812 return;
813
814 #ifdef DEBUG_EXT
815 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
816 #endif
817
818 if (msr & MSR_FP) {
819 /*
820 * Note that on CPUs with VSX, giveup_fpu stores
821 * both the traditional FP registers and the added VSX
822 * registers into thread.fp_state.fpr[].
823 */
824 if (t->regs->msr & MSR_FP)
825 giveup_fpu(current);
826 t->fp_save_area = NULL;
827 }
828
829 #ifdef CONFIG_ALTIVEC
830 if (msr & MSR_VEC) {
831 if (current->thread.regs->msr & MSR_VEC)
832 giveup_altivec(current);
833 t->vr_save_area = NULL;
834 }
835 #endif
836
837 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
838 kvmppc_recalc_shadow_msr(vcpu);
839 }
840
841 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)842 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
843 {
844 #ifdef CONFIG_PPC_BOOK3S_64
845 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
846 /* Facility not available to the guest, ignore giveup request*/
847 return;
848 }
849
850 switch (fac) {
851 case FSCR_TAR_LG:
852 vcpu->arch.tar = mfspr(SPRN_TAR);
853 mtspr(SPRN_TAR, current->thread.tar);
854 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
855 break;
856 }
857 #endif
858 }
859
860 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)861 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
862 ulong msr)
863 {
864 struct thread_struct *t = ¤t->thread;
865
866 /* When we have paired singles, we emulate in software */
867 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
868 return RESUME_GUEST;
869
870 if (!(kvmppc_get_msr(vcpu) & msr)) {
871 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
872 return RESUME_GUEST;
873 }
874
875 if (msr == MSR_VSX) {
876 /* No VSX? Give an illegal instruction interrupt */
877 #ifdef CONFIG_VSX
878 if (!cpu_has_feature(CPU_FTR_VSX))
879 #endif
880 {
881 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
882 return RESUME_GUEST;
883 }
884
885 /*
886 * We have to load up all the FP and VMX registers before
887 * we can let the guest use VSX instructions.
888 */
889 msr = MSR_FP | MSR_VEC | MSR_VSX;
890 }
891
892 /* See if we already own all the ext(s) needed */
893 msr &= ~vcpu->arch.guest_owned_ext;
894 if (!msr)
895 return RESUME_GUEST;
896
897 #ifdef DEBUG_EXT
898 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
899 #endif
900
901 if (msr & MSR_FP) {
902 preempt_disable();
903 enable_kernel_fp();
904 load_fp_state(&vcpu->arch.fp);
905 disable_kernel_fp();
906 t->fp_save_area = &vcpu->arch.fp;
907 preempt_enable();
908 }
909
910 if (msr & MSR_VEC) {
911 #ifdef CONFIG_ALTIVEC
912 preempt_disable();
913 enable_kernel_altivec();
914 load_vr_state(&vcpu->arch.vr);
915 disable_kernel_altivec();
916 t->vr_save_area = &vcpu->arch.vr;
917 preempt_enable();
918 #endif
919 }
920
921 t->regs->msr |= msr;
922 vcpu->arch.guest_owned_ext |= msr;
923 kvmppc_recalc_shadow_msr(vcpu);
924
925 return RESUME_GUEST;
926 }
927
928 /*
929 * Kernel code using FP or VMX could have flushed guest state to
930 * the thread_struct; if so, get it back now.
931 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)932 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
933 {
934 unsigned long lost_ext;
935
936 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
937 if (!lost_ext)
938 return;
939
940 if (lost_ext & MSR_FP) {
941 preempt_disable();
942 enable_kernel_fp();
943 load_fp_state(&vcpu->arch.fp);
944 disable_kernel_fp();
945 preempt_enable();
946 }
947 #ifdef CONFIG_ALTIVEC
948 if (lost_ext & MSR_VEC) {
949 preempt_disable();
950 enable_kernel_altivec();
951 load_vr_state(&vcpu->arch.vr);
952 disable_kernel_altivec();
953 preempt_enable();
954 }
955 #endif
956 current->thread.regs->msr |= lost_ext;
957 }
958
959 #ifdef CONFIG_PPC_BOOK3S_64
960
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)961 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
962 {
963 /* Inject the Interrupt Cause field and trigger a guest interrupt */
964 vcpu->arch.fscr &= ~(0xffULL << 56);
965 vcpu->arch.fscr |= (fac << 56);
966 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
967 }
968
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)969 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
970 {
971 enum emulation_result er = EMULATE_FAIL;
972
973 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
974 er = kvmppc_emulate_instruction(vcpu);
975
976 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
977 /* Couldn't emulate, trigger interrupt in guest */
978 kvmppc_trigger_fac_interrupt(vcpu, fac);
979 }
980 }
981
982 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)983 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
984 {
985 bool guest_fac_enabled;
986 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
987
988 /*
989 * Not every facility is enabled by FSCR bits, check whether the
990 * guest has this facility enabled at all.
991 */
992 switch (fac) {
993 case FSCR_TAR_LG:
994 case FSCR_EBB_LG:
995 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
996 break;
997 case FSCR_TM_LG:
998 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
999 break;
1000 default:
1001 guest_fac_enabled = false;
1002 break;
1003 }
1004
1005 if (!guest_fac_enabled) {
1006 /* Facility not enabled by the guest */
1007 kvmppc_trigger_fac_interrupt(vcpu, fac);
1008 return RESUME_GUEST;
1009 }
1010
1011 switch (fac) {
1012 case FSCR_TAR_LG:
1013 /* TAR switching isn't lazy in Linux yet */
1014 current->thread.tar = mfspr(SPRN_TAR);
1015 mtspr(SPRN_TAR, vcpu->arch.tar);
1016 vcpu->arch.shadow_fscr |= FSCR_TAR;
1017 break;
1018 default:
1019 kvmppc_emulate_fac(vcpu, fac);
1020 break;
1021 }
1022
1023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1025 * for TM spr can trigger TM fac unavailable. In this case, the
1026 * emulation is handled by kvmppc_emulate_fac(), which invokes
1027 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1028 * RT for NV registers. So it need to restore those NV reg to reflect
1029 * the update.
1030 */
1031 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1032 return RESUME_GUEST_NV;
1033 #endif
1034
1035 return RESUME_GUEST;
1036 }
1037
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1038 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1039 {
1040 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1041 /* TAR got dropped, drop it in shadow too */
1042 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1043 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1044 vcpu->arch.fscr = fscr;
1045 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1046 return;
1047 }
1048
1049 vcpu->arch.fscr = fscr;
1050 }
1051 #endif
1052
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1053 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1054 {
1055 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1056 u64 msr = kvmppc_get_msr(vcpu);
1057
1058 kvmppc_set_msr(vcpu, msr | MSR_SE);
1059 }
1060 }
1061
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1062 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1063 {
1064 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1065 u64 msr = kvmppc_get_msr(vcpu);
1066
1067 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1068 }
1069 }
1070
kvmppc_exit_pr_progint(struct kvm_vcpu * vcpu,unsigned int exit_nr)1071 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1072 {
1073 enum emulation_result er;
1074 ulong flags;
1075 u32 last_inst;
1076 int emul, r;
1077
1078 /*
1079 * shadow_srr1 only contains valid flags if we came here via a program
1080 * exception. The other exceptions (emulation assist, FP unavailable,
1081 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1082 * exception when injecting a program interrupt into the guest.
1083 */
1084 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1085 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1086 else
1087 flags = SRR1_PROGILL;
1088
1089 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1090 if (emul != EMULATE_DONE)
1091 return RESUME_GUEST;
1092
1093 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1094 #ifdef EXIT_DEBUG
1095 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1096 kvmppc_get_pc(vcpu), last_inst);
1097 #endif
1098 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1099 kvmppc_core_queue_program(vcpu, flags);
1100 return RESUME_GUEST;
1101 }
1102 }
1103
1104 vcpu->stat.emulated_inst_exits++;
1105 er = kvmppc_emulate_instruction(vcpu);
1106 switch (er) {
1107 case EMULATE_DONE:
1108 r = RESUME_GUEST_NV;
1109 break;
1110 case EMULATE_AGAIN:
1111 r = RESUME_GUEST;
1112 break;
1113 case EMULATE_FAIL:
1114 pr_crit("%s: emulation at %lx failed (%08x)\n",
1115 __func__, kvmppc_get_pc(vcpu), last_inst);
1116 kvmppc_core_queue_program(vcpu, flags);
1117 r = RESUME_GUEST;
1118 break;
1119 case EMULATE_DO_MMIO:
1120 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1121 r = RESUME_HOST_NV;
1122 break;
1123 case EMULATE_EXIT_USER:
1124 r = RESUME_HOST_NV;
1125 break;
1126 default:
1127 BUG();
1128 }
1129
1130 return r;
1131 }
1132
kvmppc_handle_exit_pr(struct kvm_vcpu * vcpu,unsigned int exit_nr)1133 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1134 {
1135 struct kvm_run *run = vcpu->run;
1136 int r = RESUME_HOST;
1137 int s;
1138
1139 vcpu->stat.sum_exits++;
1140
1141 run->exit_reason = KVM_EXIT_UNKNOWN;
1142 run->ready_for_interrupt_injection = 1;
1143
1144 /* We get here with MSR.EE=1 */
1145
1146 trace_kvm_exit(exit_nr, vcpu);
1147 guest_exit();
1148
1149 switch (exit_nr) {
1150 case BOOK3S_INTERRUPT_INST_STORAGE:
1151 {
1152 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1153 vcpu->stat.pf_instruc++;
1154
1155 if (kvmppc_is_split_real(vcpu))
1156 kvmppc_fixup_split_real(vcpu);
1157
1158 #ifdef CONFIG_PPC_BOOK3S_32
1159 /* We set segments as unused segments when invalidating them. So
1160 * treat the respective fault as segment fault. */
1161 {
1162 struct kvmppc_book3s_shadow_vcpu *svcpu;
1163 u32 sr;
1164
1165 svcpu = svcpu_get(vcpu);
1166 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1167 svcpu_put(svcpu);
1168 if (sr == SR_INVALID) {
1169 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1170 r = RESUME_GUEST;
1171 break;
1172 }
1173 }
1174 #endif
1175
1176 /* only care about PTEG not found errors, but leave NX alone */
1177 if (shadow_srr1 & 0x40000000) {
1178 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1179 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1180 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1181 vcpu->stat.sp_instruc++;
1182 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1183 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1184 /*
1185 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1186 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1187 * that no guest that needs the dcbz hack does NX.
1188 */
1189 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1190 r = RESUME_GUEST;
1191 } else {
1192 kvmppc_core_queue_inst_storage(vcpu,
1193 shadow_srr1 & 0x58000000);
1194 r = RESUME_GUEST;
1195 }
1196 break;
1197 }
1198 case BOOK3S_INTERRUPT_DATA_STORAGE:
1199 {
1200 ulong dar = kvmppc_get_fault_dar(vcpu);
1201 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1202 vcpu->stat.pf_storage++;
1203
1204 #ifdef CONFIG_PPC_BOOK3S_32
1205 /* We set segments as unused segments when invalidating them. So
1206 * treat the respective fault as segment fault. */
1207 {
1208 struct kvmppc_book3s_shadow_vcpu *svcpu;
1209 u32 sr;
1210
1211 svcpu = svcpu_get(vcpu);
1212 sr = svcpu->sr[dar >> SID_SHIFT];
1213 svcpu_put(svcpu);
1214 if (sr == SR_INVALID) {
1215 kvmppc_mmu_map_segment(vcpu, dar);
1216 r = RESUME_GUEST;
1217 break;
1218 }
1219 }
1220 #endif
1221
1222 /*
1223 * We need to handle missing shadow PTEs, and
1224 * protection faults due to us mapping a page read-only
1225 * when the guest thinks it is writable.
1226 */
1227 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1228 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1229 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1230 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1231 } else {
1232 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1233 r = RESUME_GUEST;
1234 }
1235 break;
1236 }
1237 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1238 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1239 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1240 kvmppc_book3s_queue_irqprio(vcpu,
1241 BOOK3S_INTERRUPT_DATA_SEGMENT);
1242 }
1243 r = RESUME_GUEST;
1244 break;
1245 case BOOK3S_INTERRUPT_INST_SEGMENT:
1246 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1247 kvmppc_book3s_queue_irqprio(vcpu,
1248 BOOK3S_INTERRUPT_INST_SEGMENT);
1249 }
1250 r = RESUME_GUEST;
1251 break;
1252 /* We're good on these - the host merely wanted to get our attention */
1253 case BOOK3S_INTERRUPT_DECREMENTER:
1254 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1255 case BOOK3S_INTERRUPT_DOORBELL:
1256 case BOOK3S_INTERRUPT_H_DOORBELL:
1257 vcpu->stat.dec_exits++;
1258 r = RESUME_GUEST;
1259 break;
1260 case BOOK3S_INTERRUPT_EXTERNAL:
1261 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1262 case BOOK3S_INTERRUPT_H_VIRT:
1263 vcpu->stat.ext_intr_exits++;
1264 r = RESUME_GUEST;
1265 break;
1266 case BOOK3S_INTERRUPT_HMI:
1267 case BOOK3S_INTERRUPT_PERFMON:
1268 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1269 r = RESUME_GUEST;
1270 break;
1271 case BOOK3S_INTERRUPT_PROGRAM:
1272 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1273 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1274 break;
1275 case BOOK3S_INTERRUPT_SYSCALL:
1276 {
1277 u32 last_sc;
1278 int emul;
1279
1280 /* Get last sc for papr */
1281 if (vcpu->arch.papr_enabled) {
1282 /* The sc instuction points SRR0 to the next inst */
1283 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1284 if (emul != EMULATE_DONE) {
1285 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1286 r = RESUME_GUEST;
1287 break;
1288 }
1289 }
1290
1291 if (vcpu->arch.papr_enabled &&
1292 (last_sc == 0x44000022) &&
1293 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1294 /* SC 1 papr hypercalls */
1295 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1296 int i;
1297
1298 #ifdef CONFIG_PPC_BOOK3S_64
1299 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1300 r = RESUME_GUEST;
1301 break;
1302 }
1303 #endif
1304
1305 run->papr_hcall.nr = cmd;
1306 for (i = 0; i < 9; ++i) {
1307 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1308 run->papr_hcall.args[i] = gpr;
1309 }
1310 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1311 vcpu->arch.hcall_needed = 1;
1312 r = RESUME_HOST;
1313 } else if (vcpu->arch.osi_enabled &&
1314 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1315 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1316 /* MOL hypercalls */
1317 u64 *gprs = run->osi.gprs;
1318 int i;
1319
1320 run->exit_reason = KVM_EXIT_OSI;
1321 for (i = 0; i < 32; i++)
1322 gprs[i] = kvmppc_get_gpr(vcpu, i);
1323 vcpu->arch.osi_needed = 1;
1324 r = RESUME_HOST_NV;
1325 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1326 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1327 /* KVM PV hypercalls */
1328 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1329 r = RESUME_GUEST;
1330 } else {
1331 /* Guest syscalls */
1332 vcpu->stat.syscall_exits++;
1333 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1334 r = RESUME_GUEST;
1335 }
1336 break;
1337 }
1338 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1339 case BOOK3S_INTERRUPT_ALTIVEC:
1340 case BOOK3S_INTERRUPT_VSX:
1341 {
1342 int ext_msr = 0;
1343 int emul;
1344 u32 last_inst;
1345
1346 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1347 /* Do paired single instruction emulation */
1348 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1349 &last_inst);
1350 if (emul == EMULATE_DONE)
1351 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1352 else
1353 r = RESUME_GUEST;
1354
1355 break;
1356 }
1357
1358 /* Enable external provider */
1359 switch (exit_nr) {
1360 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1361 ext_msr = MSR_FP;
1362 break;
1363
1364 case BOOK3S_INTERRUPT_ALTIVEC:
1365 ext_msr = MSR_VEC;
1366 break;
1367
1368 case BOOK3S_INTERRUPT_VSX:
1369 ext_msr = MSR_VSX;
1370 break;
1371 }
1372
1373 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1374 break;
1375 }
1376 case BOOK3S_INTERRUPT_ALIGNMENT:
1377 {
1378 u32 last_inst;
1379 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1380
1381 if (emul == EMULATE_DONE) {
1382 u32 dsisr;
1383 u64 dar;
1384
1385 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1386 dar = kvmppc_alignment_dar(vcpu, last_inst);
1387
1388 kvmppc_set_dsisr(vcpu, dsisr);
1389 kvmppc_set_dar(vcpu, dar);
1390
1391 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1392 }
1393 r = RESUME_GUEST;
1394 break;
1395 }
1396 #ifdef CONFIG_PPC_BOOK3S_64
1397 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1398 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1399 break;
1400 #endif
1401 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1402 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1403 r = RESUME_GUEST;
1404 break;
1405 case BOOK3S_INTERRUPT_TRACE:
1406 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1407 run->exit_reason = KVM_EXIT_DEBUG;
1408 r = RESUME_HOST;
1409 } else {
1410 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1411 r = RESUME_GUEST;
1412 }
1413 break;
1414 default:
1415 {
1416 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1417 /* Ugh - bork here! What did we get? */
1418 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1419 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1420 r = RESUME_HOST;
1421 BUG();
1422 break;
1423 }
1424 }
1425
1426 if (!(r & RESUME_HOST)) {
1427 /* To avoid clobbering exit_reason, only check for signals if
1428 * we aren't already exiting to userspace for some other
1429 * reason. */
1430
1431 /*
1432 * Interrupts could be timers for the guest which we have to
1433 * inject again, so let's postpone them until we're in the guest
1434 * and if we really did time things so badly, then we just exit
1435 * again due to a host external interrupt.
1436 */
1437 s = kvmppc_prepare_to_enter(vcpu);
1438 if (s <= 0)
1439 r = s;
1440 else {
1441 /* interrupts now hard-disabled */
1442 kvmppc_fix_ee_before_entry();
1443 }
1444
1445 kvmppc_handle_lost_ext(vcpu);
1446 }
1447
1448 trace_kvm_book3s_reenter(r, vcpu);
1449
1450 return r;
1451 }
1452
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1453 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1454 struct kvm_sregs *sregs)
1455 {
1456 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1457 int i;
1458
1459 sregs->pvr = vcpu->arch.pvr;
1460
1461 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1462 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1463 for (i = 0; i < 64; i++) {
1464 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1465 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1466 }
1467 } else {
1468 for (i = 0; i < 16; i++)
1469 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1470
1471 for (i = 0; i < 8; i++) {
1472 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1473 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1474 }
1475 }
1476
1477 return 0;
1478 }
1479
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1480 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1481 struct kvm_sregs *sregs)
1482 {
1483 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1484 int i;
1485
1486 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1487
1488 vcpu3s->sdr1 = sregs->u.s.sdr1;
1489 #ifdef CONFIG_PPC_BOOK3S_64
1490 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1491 /* Flush all SLB entries */
1492 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1493 vcpu->arch.mmu.slbia(vcpu);
1494
1495 for (i = 0; i < 64; i++) {
1496 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1497 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1498
1499 if (rb & SLB_ESID_V)
1500 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1501 }
1502 } else
1503 #endif
1504 {
1505 for (i = 0; i < 16; i++) {
1506 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1507 }
1508 for (i = 0; i < 8; i++) {
1509 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1510 (u32)sregs->u.s.ppc32.ibat[i]);
1511 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1512 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1513 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1514 (u32)sregs->u.s.ppc32.dbat[i]);
1515 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1516 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1517 }
1518 }
1519
1520 /* Flush the MMU after messing with the segments */
1521 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1522
1523 return 0;
1524 }
1525
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1526 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1527 union kvmppc_one_reg *val)
1528 {
1529 int r = 0;
1530
1531 switch (id) {
1532 case KVM_REG_PPC_DEBUG_INST:
1533 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1534 break;
1535 case KVM_REG_PPC_HIOR:
1536 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1537 break;
1538 case KVM_REG_PPC_VTB:
1539 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1540 break;
1541 case KVM_REG_PPC_LPCR:
1542 case KVM_REG_PPC_LPCR_64:
1543 /*
1544 * We are only interested in the LPCR_ILE bit
1545 */
1546 if (vcpu->arch.intr_msr & MSR_LE)
1547 *val = get_reg_val(id, LPCR_ILE);
1548 else
1549 *val = get_reg_val(id, 0);
1550 break;
1551 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1552 case KVM_REG_PPC_TFHAR:
1553 *val = get_reg_val(id, vcpu->arch.tfhar);
1554 break;
1555 case KVM_REG_PPC_TFIAR:
1556 *val = get_reg_val(id, vcpu->arch.tfiar);
1557 break;
1558 case KVM_REG_PPC_TEXASR:
1559 *val = get_reg_val(id, vcpu->arch.texasr);
1560 break;
1561 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1562 *val = get_reg_val(id,
1563 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1564 break;
1565 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1566 {
1567 int i, j;
1568
1569 i = id - KVM_REG_PPC_TM_VSR0;
1570 if (i < 32)
1571 for (j = 0; j < TS_FPRWIDTH; j++)
1572 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1573 else {
1574 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1575 val->vval = vcpu->arch.vr_tm.vr[i-32];
1576 else
1577 r = -ENXIO;
1578 }
1579 break;
1580 }
1581 case KVM_REG_PPC_TM_CR:
1582 *val = get_reg_val(id, vcpu->arch.cr_tm);
1583 break;
1584 case KVM_REG_PPC_TM_XER:
1585 *val = get_reg_val(id, vcpu->arch.xer_tm);
1586 break;
1587 case KVM_REG_PPC_TM_LR:
1588 *val = get_reg_val(id, vcpu->arch.lr_tm);
1589 break;
1590 case KVM_REG_PPC_TM_CTR:
1591 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1592 break;
1593 case KVM_REG_PPC_TM_FPSCR:
1594 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1595 break;
1596 case KVM_REG_PPC_TM_AMR:
1597 *val = get_reg_val(id, vcpu->arch.amr_tm);
1598 break;
1599 case KVM_REG_PPC_TM_PPR:
1600 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1601 break;
1602 case KVM_REG_PPC_TM_VRSAVE:
1603 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1604 break;
1605 case KVM_REG_PPC_TM_VSCR:
1606 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1607 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1608 else
1609 r = -ENXIO;
1610 break;
1611 case KVM_REG_PPC_TM_DSCR:
1612 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1613 break;
1614 case KVM_REG_PPC_TM_TAR:
1615 *val = get_reg_val(id, vcpu->arch.tar_tm);
1616 break;
1617 #endif
1618 default:
1619 r = -EINVAL;
1620 break;
1621 }
1622
1623 return r;
1624 }
1625
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1626 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1627 {
1628 if (new_lpcr & LPCR_ILE)
1629 vcpu->arch.intr_msr |= MSR_LE;
1630 else
1631 vcpu->arch.intr_msr &= ~MSR_LE;
1632 }
1633
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1634 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1635 union kvmppc_one_reg *val)
1636 {
1637 int r = 0;
1638
1639 switch (id) {
1640 case KVM_REG_PPC_HIOR:
1641 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1642 to_book3s(vcpu)->hior_explicit = true;
1643 break;
1644 case KVM_REG_PPC_VTB:
1645 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1646 break;
1647 case KVM_REG_PPC_LPCR:
1648 case KVM_REG_PPC_LPCR_64:
1649 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1650 break;
1651 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1652 case KVM_REG_PPC_TFHAR:
1653 vcpu->arch.tfhar = set_reg_val(id, *val);
1654 break;
1655 case KVM_REG_PPC_TFIAR:
1656 vcpu->arch.tfiar = set_reg_val(id, *val);
1657 break;
1658 case KVM_REG_PPC_TEXASR:
1659 vcpu->arch.texasr = set_reg_val(id, *val);
1660 break;
1661 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1662 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1663 set_reg_val(id, *val);
1664 break;
1665 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1666 {
1667 int i, j;
1668
1669 i = id - KVM_REG_PPC_TM_VSR0;
1670 if (i < 32)
1671 for (j = 0; j < TS_FPRWIDTH; j++)
1672 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1673 else
1674 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1675 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1676 else
1677 r = -ENXIO;
1678 break;
1679 }
1680 case KVM_REG_PPC_TM_CR:
1681 vcpu->arch.cr_tm = set_reg_val(id, *val);
1682 break;
1683 case KVM_REG_PPC_TM_XER:
1684 vcpu->arch.xer_tm = set_reg_val(id, *val);
1685 break;
1686 case KVM_REG_PPC_TM_LR:
1687 vcpu->arch.lr_tm = set_reg_val(id, *val);
1688 break;
1689 case KVM_REG_PPC_TM_CTR:
1690 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1691 break;
1692 case KVM_REG_PPC_TM_FPSCR:
1693 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1694 break;
1695 case KVM_REG_PPC_TM_AMR:
1696 vcpu->arch.amr_tm = set_reg_val(id, *val);
1697 break;
1698 case KVM_REG_PPC_TM_PPR:
1699 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1700 break;
1701 case KVM_REG_PPC_TM_VRSAVE:
1702 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1703 break;
1704 case KVM_REG_PPC_TM_VSCR:
1705 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1706 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1707 else
1708 r = -ENXIO;
1709 break;
1710 case KVM_REG_PPC_TM_DSCR:
1711 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1712 break;
1713 case KVM_REG_PPC_TM_TAR:
1714 vcpu->arch.tar_tm = set_reg_val(id, *val);
1715 break;
1716 #endif
1717 default:
1718 r = -EINVAL;
1719 break;
1720 }
1721
1722 return r;
1723 }
1724
kvmppc_core_vcpu_create_pr(struct kvm_vcpu * vcpu)1725 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1726 {
1727 struct kvmppc_vcpu_book3s *vcpu_book3s;
1728 unsigned long p;
1729 int err;
1730
1731 err = -ENOMEM;
1732
1733 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1734 if (!vcpu_book3s)
1735 goto out;
1736 vcpu->arch.book3s = vcpu_book3s;
1737
1738 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1739 vcpu->arch.shadow_vcpu =
1740 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1741 if (!vcpu->arch.shadow_vcpu)
1742 goto free_vcpu3s;
1743 #endif
1744
1745 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1746 if (!p)
1747 goto free_shadow_vcpu;
1748 vcpu->arch.shared = (void *)p;
1749 #ifdef CONFIG_PPC_BOOK3S_64
1750 /* Always start the shared struct in native endian mode */
1751 #ifdef __BIG_ENDIAN__
1752 vcpu->arch.shared_big_endian = true;
1753 #else
1754 vcpu->arch.shared_big_endian = false;
1755 #endif
1756
1757 /*
1758 * Default to the same as the host if we're on sufficiently
1759 * recent machine that we have 1TB segments;
1760 * otherwise default to PPC970FX.
1761 */
1762 vcpu->arch.pvr = 0x3C0301;
1763 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1764 vcpu->arch.pvr = mfspr(SPRN_PVR);
1765 vcpu->arch.intr_msr = MSR_SF;
1766 #else
1767 /* default to book3s_32 (750) */
1768 vcpu->arch.pvr = 0x84202;
1769 vcpu->arch.intr_msr = 0;
1770 #endif
1771 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1772 vcpu->arch.slb_nr = 64;
1773
1774 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1775
1776 err = kvmppc_mmu_init_pr(vcpu);
1777 if (err < 0)
1778 goto free_shared_page;
1779
1780 return 0;
1781
1782 free_shared_page:
1783 free_page((unsigned long)vcpu->arch.shared);
1784 free_shadow_vcpu:
1785 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1786 kfree(vcpu->arch.shadow_vcpu);
1787 free_vcpu3s:
1788 #endif
1789 vfree(vcpu_book3s);
1790 out:
1791 return err;
1792 }
1793
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1794 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1795 {
1796 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1797
1798 kvmppc_mmu_destroy_pr(vcpu);
1799 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1800 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1801 kfree(vcpu->arch.shadow_vcpu);
1802 #endif
1803 vfree(vcpu_book3s);
1804 }
1805
kvmppc_vcpu_run_pr(struct kvm_vcpu * vcpu)1806 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1807 {
1808 int ret;
1809
1810 /* Check if we can run the vcpu at all */
1811 if (!vcpu->arch.sane) {
1812 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1813 ret = -EINVAL;
1814 goto out;
1815 }
1816
1817 kvmppc_setup_debug(vcpu);
1818
1819 /*
1820 * Interrupts could be timers for the guest which we have to inject
1821 * again, so let's postpone them until we're in the guest and if we
1822 * really did time things so badly, then we just exit again due to
1823 * a host external interrupt.
1824 */
1825 ret = kvmppc_prepare_to_enter(vcpu);
1826 if (ret <= 0)
1827 goto out;
1828 /* interrupts now hard-disabled */
1829
1830 /* Save FPU, Altivec and VSX state */
1831 giveup_all(current);
1832
1833 /* Preload FPU if it's enabled */
1834 if (kvmppc_get_msr(vcpu) & MSR_FP)
1835 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1836
1837 kvmppc_fix_ee_before_entry();
1838
1839 ret = __kvmppc_vcpu_run(vcpu);
1840
1841 kvmppc_clear_debug(vcpu);
1842
1843 /* No need for guest_exit. It's done in handle_exit.
1844 We also get here with interrupts enabled. */
1845
1846 /* Make sure we save the guest FPU/Altivec/VSX state */
1847 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1848
1849 /* Make sure we save the guest TAR/EBB/DSCR state */
1850 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1851
1852 srr_regs_clobbered();
1853 out:
1854 vcpu->mode = OUTSIDE_GUEST_MODE;
1855 return ret;
1856 }
1857
1858 /*
1859 * Get (and clear) the dirty memory log for a memory slot.
1860 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1861 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1862 struct kvm_dirty_log *log)
1863 {
1864 struct kvm_memory_slot *memslot;
1865 struct kvm_vcpu *vcpu;
1866 ulong ga, ga_end;
1867 int is_dirty = 0;
1868 int r;
1869 unsigned long n;
1870
1871 mutex_lock(&kvm->slots_lock);
1872
1873 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1874 if (r)
1875 goto out;
1876
1877 /* If nothing is dirty, don't bother messing with page tables. */
1878 if (is_dirty) {
1879 ga = memslot->base_gfn << PAGE_SHIFT;
1880 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1881
1882 kvm_for_each_vcpu(n, vcpu, kvm)
1883 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1884
1885 n = kvm_dirty_bitmap_bytes(memslot);
1886 memset(memslot->dirty_bitmap, 0, n);
1887 }
1888
1889 r = 0;
1890 out:
1891 mutex_unlock(&kvm->slots_lock);
1892 return r;
1893 }
1894
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1895 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1896 struct kvm_memory_slot *memslot)
1897 {
1898 return;
1899 }
1900
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1901 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1902 struct kvm_memory_slot *memslot,
1903 const struct kvm_userspace_memory_region *mem,
1904 enum kvm_mr_change change)
1905 {
1906 return 0;
1907 }
1908
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1909 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1910 const struct kvm_userspace_memory_region *mem,
1911 const struct kvm_memory_slot *old,
1912 const struct kvm_memory_slot *new,
1913 enum kvm_mr_change change)
1914 {
1915 return;
1916 }
1917
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * slot)1918 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1919 {
1920 return;
1921 }
1922
1923 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1924 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1925 struct kvm_ppc_smmu_info *info)
1926 {
1927 long int i;
1928 struct kvm_vcpu *vcpu;
1929
1930 info->flags = 0;
1931
1932 /* SLB is always 64 entries */
1933 info->slb_size = 64;
1934
1935 /* Standard 4k base page size segment */
1936 info->sps[0].page_shift = 12;
1937 info->sps[0].slb_enc = 0;
1938 info->sps[0].enc[0].page_shift = 12;
1939 info->sps[0].enc[0].pte_enc = 0;
1940
1941 /*
1942 * 64k large page size.
1943 * We only want to put this in if the CPUs we're emulating
1944 * support it, but unfortunately we don't have a vcpu easily
1945 * to hand here to test. Just pick the first vcpu, and if
1946 * that doesn't exist yet, report the minimum capability,
1947 * i.e., no 64k pages.
1948 * 1T segment support goes along with 64k pages.
1949 */
1950 i = 1;
1951 vcpu = kvm_get_vcpu(kvm, 0);
1952 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1953 info->flags = KVM_PPC_1T_SEGMENTS;
1954 info->sps[i].page_shift = 16;
1955 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1956 info->sps[i].enc[0].page_shift = 16;
1957 info->sps[i].enc[0].pte_enc = 1;
1958 ++i;
1959 }
1960
1961 /* Standard 16M large page size segment */
1962 info->sps[i].page_shift = 24;
1963 info->sps[i].slb_enc = SLB_VSID_L;
1964 info->sps[i].enc[0].page_shift = 24;
1965 info->sps[i].enc[0].pte_enc = 0;
1966
1967 return 0;
1968 }
1969
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1970 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1971 {
1972 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1973 return -ENODEV;
1974 /* Require flags and process table base and size to all be zero. */
1975 if (cfg->flags || cfg->process_table)
1976 return -EINVAL;
1977 return 0;
1978 }
1979
1980 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1981 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1982 struct kvm_ppc_smmu_info *info)
1983 {
1984 /* We should not get called */
1985 BUG();
1986 return 0;
1987 }
1988 #endif /* CONFIG_PPC64 */
1989
1990 static unsigned int kvm_global_user_count = 0;
1991 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1992
kvmppc_core_init_vm_pr(struct kvm * kvm)1993 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1994 {
1995 mutex_init(&kvm->arch.hpt_mutex);
1996
1997 #ifdef CONFIG_PPC_BOOK3S_64
1998 /* Start out with the default set of hcalls enabled */
1999 kvmppc_pr_init_default_hcalls(kvm);
2000 #endif
2001
2002 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2003 spin_lock(&kvm_global_user_count_lock);
2004 if (++kvm_global_user_count == 1)
2005 pseries_disable_reloc_on_exc();
2006 spin_unlock(&kvm_global_user_count_lock);
2007 }
2008 return 0;
2009 }
2010
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2011 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2012 {
2013 #ifdef CONFIG_PPC64
2014 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2015 #endif
2016
2017 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2018 spin_lock(&kvm_global_user_count_lock);
2019 BUG_ON(kvm_global_user_count == 0);
2020 if (--kvm_global_user_count == 0)
2021 pseries_enable_reloc_on_exc();
2022 spin_unlock(&kvm_global_user_count_lock);
2023 }
2024 }
2025
kvmppc_core_check_processor_compat_pr(void)2026 static int kvmppc_core_check_processor_compat_pr(void)
2027 {
2028 /*
2029 * PR KVM can work on POWER9 inside a guest partition
2030 * running in HPT mode. It can't work if we are using
2031 * radix translation (because radix provides no way for
2032 * a process to have unique translations in quadrant 3).
2033 */
2034 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2035 return -EIO;
2036 return 0;
2037 }
2038
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2039 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2040 unsigned int ioctl, unsigned long arg)
2041 {
2042 return -ENOTTY;
2043 }
2044
2045 static struct kvmppc_ops kvm_ops_pr = {
2046 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2047 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2048 .get_one_reg = kvmppc_get_one_reg_pr,
2049 .set_one_reg = kvmppc_set_one_reg_pr,
2050 .vcpu_load = kvmppc_core_vcpu_load_pr,
2051 .vcpu_put = kvmppc_core_vcpu_put_pr,
2052 .inject_interrupt = kvmppc_inject_interrupt_pr,
2053 .set_msr = kvmppc_set_msr_pr,
2054 .vcpu_run = kvmppc_vcpu_run_pr,
2055 .vcpu_create = kvmppc_core_vcpu_create_pr,
2056 .vcpu_free = kvmppc_core_vcpu_free_pr,
2057 .check_requests = kvmppc_core_check_requests_pr,
2058 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2059 .flush_memslot = kvmppc_core_flush_memslot_pr,
2060 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2061 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2062 .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2063 .age_gfn = kvm_age_gfn_pr,
2064 .test_age_gfn = kvm_test_age_gfn_pr,
2065 .set_spte_gfn = kvm_set_spte_gfn_pr,
2066 .free_memslot = kvmppc_core_free_memslot_pr,
2067 .init_vm = kvmppc_core_init_vm_pr,
2068 .destroy_vm = kvmppc_core_destroy_vm_pr,
2069 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2070 .emulate_op = kvmppc_core_emulate_op_pr,
2071 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2072 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2073 .fast_vcpu_kick = kvm_vcpu_kick,
2074 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2075 #ifdef CONFIG_PPC_BOOK3S_64
2076 .hcall_implemented = kvmppc_hcall_impl_pr,
2077 .configure_mmu = kvm_configure_mmu_pr,
2078 #endif
2079 .giveup_ext = kvmppc_giveup_ext,
2080 };
2081
2082
kvmppc_book3s_init_pr(void)2083 int kvmppc_book3s_init_pr(void)
2084 {
2085 int r;
2086
2087 r = kvmppc_core_check_processor_compat_pr();
2088 if (r < 0)
2089 return r;
2090
2091 kvm_ops_pr.owner = THIS_MODULE;
2092 kvmppc_pr_ops = &kvm_ops_pr;
2093
2094 r = kvmppc_mmu_hpte_sysinit();
2095 return r;
2096 }
2097
kvmppc_book3s_exit_pr(void)2098 void kvmppc_book3s_exit_pr(void)
2099 {
2100 kvmppc_pr_ops = NULL;
2101 kvmppc_mmu_hpte_sysexit();
2102 }
2103
2104 /*
2105 * We only support separate modules for book3s 64
2106 */
2107 #ifdef CONFIG_PPC_BOOK3S_64
2108
2109 module_init(kvmppc_book3s_init_pr);
2110 module_exit(kvmppc_book3s_exit_pr);
2111
2112 MODULE_LICENSE("GPL");
2113 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2114 MODULE_ALIAS("devname:kvm");
2115 #endif
2116