1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56 return kvm_arch_vcpu_runnable(vcpu);
57 }
58
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61 return false;
62 }
63
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66 return 1;
67 }
68
69 /*
70 * Common checks before entering the guest world. Call with interrupts
71 * disabled.
72 *
73 * returns:
74 *
75 * == 1 if we're ready to go into guest state
76 * <= 0 if we need to go back to the host with return value
77 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80 int r;
81
82 WARN_ON(irqs_disabled());
83 hard_irq_disable();
84
85 while (true) {
86 if (need_resched()) {
87 local_irq_enable();
88 cond_resched();
89 hard_irq_disable();
90 continue;
91 }
92
93 if (signal_pending(current)) {
94 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95 vcpu->run->exit_reason = KVM_EXIT_INTR;
96 r = -EINTR;
97 break;
98 }
99
100 vcpu->mode = IN_GUEST_MODE;
101
102 /*
103 * Reading vcpu->requests must happen after setting vcpu->mode,
104 * so we don't miss a request because the requester sees
105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106 * before next entering the guest (and thus doesn't IPI).
107 * This also orders the write to mode from any reads
108 * to the page tables done while the VCPU is running.
109 * Please see the comment in kvm_flush_remote_tlbs.
110 */
111 smp_mb();
112
113 if (kvm_request_pending(vcpu)) {
114 /* Make sure we process requests preemptable */
115 local_irq_enable();
116 trace_kvm_check_requests(vcpu);
117 r = kvmppc_core_check_requests(vcpu);
118 hard_irq_disable();
119 if (r > 0)
120 continue;
121 break;
122 }
123
124 if (kvmppc_core_prepare_to_enter(vcpu)) {
125 /* interrupts got enabled in between, so we
126 are back at square 1 */
127 continue;
128 }
129
130 guest_enter_irqoff();
131 return 1;
132 }
133
134 /* return to host */
135 local_irq_enable();
136 return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144 int i;
145
146 shared->sprg0 = swab64(shared->sprg0);
147 shared->sprg1 = swab64(shared->sprg1);
148 shared->sprg2 = swab64(shared->sprg2);
149 shared->sprg3 = swab64(shared->sprg3);
150 shared->srr0 = swab64(shared->srr0);
151 shared->srr1 = swab64(shared->srr1);
152 shared->dar = swab64(shared->dar);
153 shared->msr = swab64(shared->msr);
154 shared->dsisr = swab32(shared->dsisr);
155 shared->int_pending = swab32(shared->int_pending);
156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163 int nr = kvmppc_get_gpr(vcpu, 11);
164 int r;
165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169 unsigned long r2 = 0;
170
171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172 /* 32 bit mode */
173 param1 &= 0xffffffff;
174 param2 &= 0xffffffff;
175 param3 &= 0xffffffff;
176 param4 &= 0xffffffff;
177 }
178
179 switch (nr) {
180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181 {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183 /* Book3S can be little endian, find it out here */
184 int shared_big_endian = true;
185 if (vcpu->arch.intr_msr & MSR_LE)
186 shared_big_endian = false;
187 if (shared_big_endian != vcpu->arch.shared_big_endian)
188 kvmppc_swab_shared(vcpu);
189 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193 /*
194 * Older versions of the Linux magic page code had
195 * a bug where they would map their trampoline code
196 * NX. If that's the case, remove !PR NX capability.
197 */
198 vcpu->arch.disable_kernel_nx = true;
199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200 }
201
202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206 /*
207 * Make sure our 4k magic page is in the same window of a 64k
208 * page within the guest and within the host's page.
209 */
210 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211 ((ulong)vcpu->arch.shared & 0xf000)) {
212 void *old_shared = vcpu->arch.shared;
213 ulong shared = (ulong)vcpu->arch.shared;
214 void *new_shared;
215
216 shared &= PAGE_MASK;
217 shared |= vcpu->arch.magic_page_pa & 0xf000;
218 new_shared = (void*)shared;
219 memcpy(new_shared, old_shared, 0x1000);
220 vcpu->arch.shared = new_shared;
221 }
222 #endif
223
224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226 r = EV_SUCCESS;
227 break;
228 }
229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235 /* Second return value is in r4 */
236 break;
237 case EV_HCALL_TOKEN(EV_IDLE):
238 r = EV_SUCCESS;
239 kvm_vcpu_block(vcpu);
240 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
kvmppc_sanity_check(struct kvm_vcpu * vcpu)253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
kvmppc_emulate_mmio(struct kvm_vcpu * vcpu)282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 u32 last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 /* XXX Deliver Program interrupt to guest. */
311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312 r = RESUME_HOST;
313 break;
314 }
315 default:
316 WARN_ON(1);
317 r = RESUME_GUEST;
318 }
319
320 return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325 bool data)
326 {
327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328 struct kvmppc_pte pte;
329 int r = -EINVAL;
330
331 vcpu->stat.st++;
332
333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335 size);
336
337 if ((!r) || (r == -EAGAIN))
338 return r;
339
340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341 XLATE_WRITE, &pte);
342 if (r < 0)
343 return r;
344
345 *eaddr = pte.raddr;
346
347 if (!pte.may_write)
348 return -EPERM;
349
350 /* Magic page override */
351 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354 void *magic = vcpu->arch.shared;
355 magic += pte.eaddr & 0xfff;
356 memcpy(magic, ptr, size);
357 return EMULATE_DONE;
358 }
359
360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361 return EMULATE_DO_MMIO;
362
363 return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368 bool data)
369 {
370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371 struct kvmppc_pte pte;
372 int rc = -EINVAL;
373
374 vcpu->stat.ld++;
375
376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378 size);
379
380 if ((!rc) || (rc == -EAGAIN))
381 return rc;
382
383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384 XLATE_READ, &pte);
385 if (rc)
386 return rc;
387
388 *eaddr = pte.raddr;
389
390 if (!pte.may_read)
391 return -EPERM;
392
393 if (!data && !pte.may_execute)
394 return -ENOEXEC;
395
396 /* Magic page override */
397 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400 void *magic = vcpu->arch.shared;
401 magic += pte.eaddr & 0xfff;
402 memcpy(ptr, magic, size);
403 return EMULATE_DONE;
404 }
405
406 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
407 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
408 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
409 if (rc)
410 return EMULATE_DO_MMIO;
411
412 return EMULATE_DONE;
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_ld);
415
kvm_arch_hardware_enable(void)416 int kvm_arch_hardware_enable(void)
417 {
418 return 0;
419 }
420
kvm_arch_hardware_setup(void * opaque)421 int kvm_arch_hardware_setup(void *opaque)
422 {
423 return 0;
424 }
425
kvm_arch_check_processor_compat(void * opaque)426 int kvm_arch_check_processor_compat(void *opaque)
427 {
428 return kvmppc_core_check_processor_compat();
429 }
430
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
432 {
433 struct kvmppc_ops *kvm_ops = NULL;
434 /*
435 * if we have both HV and PR enabled, default is HV
436 */
437 if (type == 0) {
438 if (kvmppc_hv_ops)
439 kvm_ops = kvmppc_hv_ops;
440 else
441 kvm_ops = kvmppc_pr_ops;
442 if (!kvm_ops)
443 goto err_out;
444 } else if (type == KVM_VM_PPC_HV) {
445 if (!kvmppc_hv_ops)
446 goto err_out;
447 kvm_ops = kvmppc_hv_ops;
448 } else if (type == KVM_VM_PPC_PR) {
449 if (!kvmppc_pr_ops)
450 goto err_out;
451 kvm_ops = kvmppc_pr_ops;
452 } else
453 goto err_out;
454
455 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
456 return -ENOENT;
457
458 kvm->arch.kvm_ops = kvm_ops;
459 return kvmppc_core_init_vm(kvm);
460 err_out:
461 return -EINVAL;
462 }
463
kvm_arch_destroy_vm(struct kvm * kvm)464 void kvm_arch_destroy_vm(struct kvm *kvm)
465 {
466 unsigned int i;
467 struct kvm_vcpu *vcpu;
468
469 #ifdef CONFIG_KVM_XICS
470 /*
471 * We call kick_all_cpus_sync() to ensure that all
472 * CPUs have executed any pending IPIs before we
473 * continue and free VCPUs structures below.
474 */
475 if (is_kvmppc_hv_enabled(kvm))
476 kick_all_cpus_sync();
477 #endif
478
479 kvm_for_each_vcpu(i, vcpu, kvm)
480 kvm_vcpu_destroy(vcpu);
481
482 mutex_lock(&kvm->lock);
483 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
484 kvm->vcpus[i] = NULL;
485
486 atomic_set(&kvm->online_vcpus, 0);
487
488 kvmppc_core_destroy_vm(kvm);
489
490 mutex_unlock(&kvm->lock);
491
492 /* drop the module reference */
493 module_put(kvm->arch.kvm_ops->owner);
494 }
495
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
497 {
498 int r;
499 /* Assume we're using HV mode when the HV module is loaded */
500 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
501
502 if (kvm) {
503 /*
504 * Hooray - we know which VM type we're running on. Depend on
505 * that rather than the guess above.
506 */
507 hv_enabled = is_kvmppc_hv_enabled(kvm);
508 }
509
510 switch (ext) {
511 #ifdef CONFIG_BOOKE
512 case KVM_CAP_PPC_BOOKE_SREGS:
513 case KVM_CAP_PPC_BOOKE_WATCHDOG:
514 case KVM_CAP_PPC_EPR:
515 #else
516 case KVM_CAP_PPC_SEGSTATE:
517 case KVM_CAP_PPC_HIOR:
518 case KVM_CAP_PPC_PAPR:
519 #endif
520 case KVM_CAP_PPC_UNSET_IRQ:
521 case KVM_CAP_PPC_IRQ_LEVEL:
522 case KVM_CAP_ENABLE_CAP:
523 case KVM_CAP_ONE_REG:
524 case KVM_CAP_IOEVENTFD:
525 case KVM_CAP_DEVICE_CTRL:
526 case KVM_CAP_IMMEDIATE_EXIT:
527 case KVM_CAP_SET_GUEST_DEBUG:
528 r = 1;
529 break;
530 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
531 case KVM_CAP_PPC_PAIRED_SINGLES:
532 case KVM_CAP_PPC_OSI:
533 case KVM_CAP_PPC_GET_PVINFO:
534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
535 case KVM_CAP_SW_TLB:
536 #endif
537 /* We support this only for PR */
538 r = !hv_enabled;
539 break;
540 #ifdef CONFIG_KVM_MPIC
541 case KVM_CAP_IRQ_MPIC:
542 r = 1;
543 break;
544 #endif
545
546 #ifdef CONFIG_PPC_BOOK3S_64
547 case KVM_CAP_SPAPR_TCE:
548 case KVM_CAP_SPAPR_TCE_64:
549 r = 1;
550 break;
551 case KVM_CAP_SPAPR_TCE_VFIO:
552 r = !!cpu_has_feature(CPU_FTR_HVMODE);
553 break;
554 case KVM_CAP_PPC_RTAS:
555 case KVM_CAP_PPC_FIXUP_HCALL:
556 case KVM_CAP_PPC_ENABLE_HCALL:
557 #ifdef CONFIG_KVM_XICS
558 case KVM_CAP_IRQ_XICS:
559 #endif
560 case KVM_CAP_PPC_GET_CPU_CHAR:
561 r = 1;
562 break;
563 #ifdef CONFIG_KVM_XIVE
564 case KVM_CAP_PPC_IRQ_XIVE:
565 /*
566 * We need XIVE to be enabled on the platform (implies
567 * a POWER9 processor) and the PowerNV platform, as
568 * nested is not yet supported.
569 */
570 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
571 kvmppc_xive_native_supported();
572 break;
573 #endif
574
575 case KVM_CAP_PPC_ALLOC_HTAB:
576 r = hv_enabled;
577 break;
578 #endif /* CONFIG_PPC_BOOK3S_64 */
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 case KVM_CAP_PPC_SMT:
581 r = 0;
582 if (kvm) {
583 if (kvm->arch.emul_smt_mode > 1)
584 r = kvm->arch.emul_smt_mode;
585 else
586 r = kvm->arch.smt_mode;
587 } else if (hv_enabled) {
588 if (cpu_has_feature(CPU_FTR_ARCH_300))
589 r = 1;
590 else
591 r = threads_per_subcore;
592 }
593 break;
594 case KVM_CAP_PPC_SMT_POSSIBLE:
595 r = 1;
596 if (hv_enabled) {
597 if (!cpu_has_feature(CPU_FTR_ARCH_300))
598 r = ((threads_per_subcore << 1) - 1);
599 else
600 /* P9 can emulate dbells, so allow any mode */
601 r = 8 | 4 | 2 | 1;
602 }
603 break;
604 case KVM_CAP_PPC_RMA:
605 r = 0;
606 break;
607 case KVM_CAP_PPC_HWRNG:
608 r = kvmppc_hwrng_present();
609 break;
610 case KVM_CAP_PPC_MMU_RADIX:
611 r = !!(hv_enabled && radix_enabled());
612 break;
613 case KVM_CAP_PPC_MMU_HASH_V3:
614 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
615 kvmppc_hv_ops->hash_v3_possible());
616 break;
617 case KVM_CAP_PPC_NESTED_HV:
618 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
619 !kvmppc_hv_ops->enable_nested(NULL));
620 break;
621 #endif
622 case KVM_CAP_SYNC_MMU:
623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
624 r = hv_enabled;
625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
626 r = 1;
627 #else
628 r = 0;
629 #endif
630 break;
631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
632 case KVM_CAP_PPC_HTAB_FD:
633 r = hv_enabled;
634 break;
635 #endif
636 case KVM_CAP_NR_VCPUS:
637 /*
638 * Recommending a number of CPUs is somewhat arbitrary; we
639 * return the number of present CPUs for -HV (since a host
640 * will have secondary threads "offline"), and for other KVM
641 * implementations just count online CPUs.
642 */
643 if (hv_enabled)
644 r = num_present_cpus();
645 else
646 r = num_online_cpus();
647 break;
648 case KVM_CAP_MAX_VCPUS:
649 r = KVM_MAX_VCPUS;
650 break;
651 case KVM_CAP_MAX_VCPU_ID:
652 r = KVM_MAX_VCPU_ID;
653 break;
654 #ifdef CONFIG_PPC_BOOK3S_64
655 case KVM_CAP_PPC_GET_SMMU_INFO:
656 r = 1;
657 break;
658 case KVM_CAP_SPAPR_MULTITCE:
659 r = 1;
660 break;
661 case KVM_CAP_SPAPR_RESIZE_HPT:
662 r = !!hv_enabled;
663 break;
664 #endif
665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
666 case KVM_CAP_PPC_FWNMI:
667 r = hv_enabled;
668 break;
669 #endif
670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
671 case KVM_CAP_PPC_HTM:
672 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
673 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
674 break;
675 #endif
676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
677 case KVM_CAP_PPC_SECURE_GUEST:
678 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
679 !kvmppc_hv_ops->enable_svm(NULL);
680 break;
681 case KVM_CAP_PPC_DAWR1:
682 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
683 !kvmppc_hv_ops->enable_dawr1(NULL));
684 break;
685 case KVM_CAP_PPC_RPT_INVALIDATE:
686 r = 1;
687 break;
688 #endif
689 default:
690 r = 0;
691 break;
692 }
693 return r;
694
695 }
696
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)697 long kvm_arch_dev_ioctl(struct file *filp,
698 unsigned int ioctl, unsigned long arg)
699 {
700 return -EINVAL;
701 }
702
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)703 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
704 {
705 kvmppc_core_free_memslot(kvm, slot);
706 }
707
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)708 int kvm_arch_prepare_memory_region(struct kvm *kvm,
709 struct kvm_memory_slot *memslot,
710 const struct kvm_userspace_memory_region *mem,
711 enum kvm_mr_change change)
712 {
713 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
714 }
715
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)716 void kvm_arch_commit_memory_region(struct kvm *kvm,
717 const struct kvm_userspace_memory_region *mem,
718 struct kvm_memory_slot *old,
719 const struct kvm_memory_slot *new,
720 enum kvm_mr_change change)
721 {
722 kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
723 }
724
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)725 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
726 struct kvm_memory_slot *slot)
727 {
728 kvmppc_core_flush_memslot(kvm, slot);
729 }
730
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)731 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
732 {
733 return 0;
734 }
735
kvmppc_decrementer_wakeup(struct hrtimer * timer)736 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
737 {
738 struct kvm_vcpu *vcpu;
739
740 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
741 kvmppc_decrementer_func(vcpu);
742
743 return HRTIMER_NORESTART;
744 }
745
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)746 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
747 {
748 int err;
749
750 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
751 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
752 vcpu->arch.dec_expires = get_tb();
753
754 #ifdef CONFIG_KVM_EXIT_TIMING
755 mutex_init(&vcpu->arch.exit_timing_lock);
756 #endif
757 err = kvmppc_subarch_vcpu_init(vcpu);
758 if (err)
759 return err;
760
761 err = kvmppc_core_vcpu_create(vcpu);
762 if (err)
763 goto out_vcpu_uninit;
764
765 vcpu->arch.waitp = &vcpu->wait;
766 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
767 return 0;
768
769 out_vcpu_uninit:
770 kvmppc_subarch_vcpu_uninit(vcpu);
771 return err;
772 }
773
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)774 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
775 {
776 }
777
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)778 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
779 {
780 /* Make sure we're not using the vcpu anymore */
781 hrtimer_cancel(&vcpu->arch.dec_timer);
782
783 kvmppc_remove_vcpu_debugfs(vcpu);
784
785 switch (vcpu->arch.irq_type) {
786 case KVMPPC_IRQ_MPIC:
787 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
788 break;
789 case KVMPPC_IRQ_XICS:
790 if (xics_on_xive())
791 kvmppc_xive_cleanup_vcpu(vcpu);
792 else
793 kvmppc_xics_free_icp(vcpu);
794 break;
795 case KVMPPC_IRQ_XIVE:
796 kvmppc_xive_native_cleanup_vcpu(vcpu);
797 break;
798 }
799
800 kvmppc_core_vcpu_free(vcpu);
801
802 kvmppc_subarch_vcpu_uninit(vcpu);
803 }
804
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)805 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
806 {
807 return kvmppc_core_pending_dec(vcpu);
808 }
809
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)810 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
811 {
812 #ifdef CONFIG_BOOKE
813 /*
814 * vrsave (formerly usprg0) isn't used by Linux, but may
815 * be used by the guest.
816 *
817 * On non-booke this is associated with Altivec and
818 * is handled by code in book3s.c.
819 */
820 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
821 #endif
822 kvmppc_core_vcpu_load(vcpu, cpu);
823 }
824
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)825 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
826 {
827 kvmppc_core_vcpu_put(vcpu);
828 #ifdef CONFIG_BOOKE
829 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
830 #endif
831 }
832
833 /*
834 * irq_bypass_add_producer and irq_bypass_del_producer are only
835 * useful if the architecture supports PCI passthrough.
836 * irq_bypass_stop and irq_bypass_start are not needed and so
837 * kvm_ops are not defined for them.
838 */
kvm_arch_has_irq_bypass(void)839 bool kvm_arch_has_irq_bypass(void)
840 {
841 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
842 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
843 }
844
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)845 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
846 struct irq_bypass_producer *prod)
847 {
848 struct kvm_kernel_irqfd *irqfd =
849 container_of(cons, struct kvm_kernel_irqfd, consumer);
850 struct kvm *kvm = irqfd->kvm;
851
852 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
853 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
854
855 return 0;
856 }
857
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)858 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
859 struct irq_bypass_producer *prod)
860 {
861 struct kvm_kernel_irqfd *irqfd =
862 container_of(cons, struct kvm_kernel_irqfd, consumer);
863 struct kvm *kvm = irqfd->kvm;
864
865 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
866 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
867 }
868
869 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)870 static inline int kvmppc_get_vsr_dword_offset(int index)
871 {
872 int offset;
873
874 if ((index != 0) && (index != 1))
875 return -1;
876
877 #ifdef __BIG_ENDIAN
878 offset = index;
879 #else
880 offset = 1 - index;
881 #endif
882
883 return offset;
884 }
885
kvmppc_get_vsr_word_offset(int index)886 static inline int kvmppc_get_vsr_word_offset(int index)
887 {
888 int offset;
889
890 if ((index > 3) || (index < 0))
891 return -1;
892
893 #ifdef __BIG_ENDIAN
894 offset = index;
895 #else
896 offset = 3 - index;
897 #endif
898 return offset;
899 }
900
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)901 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
902 u64 gpr)
903 {
904 union kvmppc_one_reg val;
905 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
906 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
907
908 if (offset == -1)
909 return;
910
911 if (index >= 32) {
912 val.vval = VCPU_VSX_VR(vcpu, index - 32);
913 val.vsxval[offset] = gpr;
914 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
915 } else {
916 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
917 }
918 }
919
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)920 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
921 u64 gpr)
922 {
923 union kvmppc_one_reg val;
924 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
925
926 if (index >= 32) {
927 val.vval = VCPU_VSX_VR(vcpu, index - 32);
928 val.vsxval[0] = gpr;
929 val.vsxval[1] = gpr;
930 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
931 } else {
932 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
933 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
934 }
935 }
936
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)937 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
938 u32 gpr)
939 {
940 union kvmppc_one_reg val;
941 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
942
943 if (index >= 32) {
944 val.vsx32val[0] = gpr;
945 val.vsx32val[1] = gpr;
946 val.vsx32val[2] = gpr;
947 val.vsx32val[3] = gpr;
948 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
949 } else {
950 val.vsx32val[0] = gpr;
951 val.vsx32val[1] = gpr;
952 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
953 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
954 }
955 }
956
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)957 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
958 u32 gpr32)
959 {
960 union kvmppc_one_reg val;
961 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
962 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
963 int dword_offset, word_offset;
964
965 if (offset == -1)
966 return;
967
968 if (index >= 32) {
969 val.vval = VCPU_VSX_VR(vcpu, index - 32);
970 val.vsx32val[offset] = gpr32;
971 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
972 } else {
973 dword_offset = offset / 2;
974 word_offset = offset % 2;
975 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
976 val.vsx32val[word_offset] = gpr32;
977 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
978 }
979 }
980 #endif /* CONFIG_VSX */
981
982 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)983 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
984 int index, int element_size)
985 {
986 int offset;
987 int elts = sizeof(vector128)/element_size;
988
989 if ((index < 0) || (index >= elts))
990 return -1;
991
992 if (kvmppc_need_byteswap(vcpu))
993 offset = elts - index - 1;
994 else
995 offset = index;
996
997 return offset;
998 }
999
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)1000 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1001 int index)
1002 {
1003 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1004 }
1005
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)1006 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1007 int index)
1008 {
1009 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1010 }
1011
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)1012 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1013 int index)
1014 {
1015 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1016 }
1017
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1018 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1019 int index)
1020 {
1021 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1022 }
1023
1024
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1025 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1026 u64 gpr)
1027 {
1028 union kvmppc_one_reg val;
1029 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1030 vcpu->arch.mmio_vmx_offset);
1031 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1032
1033 if (offset == -1)
1034 return;
1035
1036 val.vval = VCPU_VSX_VR(vcpu, index);
1037 val.vsxval[offset] = gpr;
1038 VCPU_VSX_VR(vcpu, index) = val.vval;
1039 }
1040
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1041 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1042 u32 gpr32)
1043 {
1044 union kvmppc_one_reg val;
1045 int offset = kvmppc_get_vmx_word_offset(vcpu,
1046 vcpu->arch.mmio_vmx_offset);
1047 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1048
1049 if (offset == -1)
1050 return;
1051
1052 val.vval = VCPU_VSX_VR(vcpu, index);
1053 val.vsx32val[offset] = gpr32;
1054 VCPU_VSX_VR(vcpu, index) = val.vval;
1055 }
1056
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1057 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1058 u16 gpr16)
1059 {
1060 union kvmppc_one_reg val;
1061 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1062 vcpu->arch.mmio_vmx_offset);
1063 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1064
1065 if (offset == -1)
1066 return;
1067
1068 val.vval = VCPU_VSX_VR(vcpu, index);
1069 val.vsx16val[offset] = gpr16;
1070 VCPU_VSX_VR(vcpu, index) = val.vval;
1071 }
1072
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1073 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1074 u8 gpr8)
1075 {
1076 union kvmppc_one_reg val;
1077 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1078 vcpu->arch.mmio_vmx_offset);
1079 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1080
1081 if (offset == -1)
1082 return;
1083
1084 val.vval = VCPU_VSX_VR(vcpu, index);
1085 val.vsx8val[offset] = gpr8;
1086 VCPU_VSX_VR(vcpu, index) = val.vval;
1087 }
1088 #endif /* CONFIG_ALTIVEC */
1089
1090 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1091 static inline u64 sp_to_dp(u32 fprs)
1092 {
1093 u64 fprd;
1094
1095 preempt_disable();
1096 enable_kernel_fp();
1097 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m"UPD_CONSTR (fprd) : "m"UPD_CONSTR (fprs)
1098 : "fr0");
1099 preempt_enable();
1100 return fprd;
1101 }
1102
dp_to_sp(u64 fprd)1103 static inline u32 dp_to_sp(u64 fprd)
1104 {
1105 u32 fprs;
1106
1107 preempt_disable();
1108 enable_kernel_fp();
1109 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m"UPD_CONSTR (fprs) : "m"UPD_CONSTR (fprd)
1110 : "fr0");
1111 preempt_enable();
1112 return fprs;
1113 }
1114
1115 #else
1116 #define sp_to_dp(x) (x)
1117 #define dp_to_sp(x) (x)
1118 #endif /* CONFIG_PPC_FPU */
1119
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu)1120 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1121 {
1122 struct kvm_run *run = vcpu->run;
1123 u64 gpr;
1124
1125 if (run->mmio.len > sizeof(gpr)) {
1126 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1127 return;
1128 }
1129
1130 if (!vcpu->arch.mmio_host_swabbed) {
1131 switch (run->mmio.len) {
1132 case 8: gpr = *(u64 *)run->mmio.data; break;
1133 case 4: gpr = *(u32 *)run->mmio.data; break;
1134 case 2: gpr = *(u16 *)run->mmio.data; break;
1135 case 1: gpr = *(u8 *)run->mmio.data; break;
1136 }
1137 } else {
1138 switch (run->mmio.len) {
1139 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1140 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1141 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1142 case 1: gpr = *(u8 *)run->mmio.data; break;
1143 }
1144 }
1145
1146 /* conversion between single and double precision */
1147 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1148 gpr = sp_to_dp(gpr);
1149
1150 if (vcpu->arch.mmio_sign_extend) {
1151 switch (run->mmio.len) {
1152 #ifdef CONFIG_PPC64
1153 case 4:
1154 gpr = (s64)(s32)gpr;
1155 break;
1156 #endif
1157 case 2:
1158 gpr = (s64)(s16)gpr;
1159 break;
1160 case 1:
1161 gpr = (s64)(s8)gpr;
1162 break;
1163 }
1164 }
1165
1166 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1167 case KVM_MMIO_REG_GPR:
1168 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1169 break;
1170 case KVM_MMIO_REG_FPR:
1171 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1172 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1173
1174 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1175 break;
1176 #ifdef CONFIG_PPC_BOOK3S
1177 case KVM_MMIO_REG_QPR:
1178 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1179 break;
1180 case KVM_MMIO_REG_FQPR:
1181 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1182 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1183 break;
1184 #endif
1185 #ifdef CONFIG_VSX
1186 case KVM_MMIO_REG_VSX:
1187 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1188 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1189
1190 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1191 kvmppc_set_vsr_dword(vcpu, gpr);
1192 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1193 kvmppc_set_vsr_word(vcpu, gpr);
1194 else if (vcpu->arch.mmio_copy_type ==
1195 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1196 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1197 else if (vcpu->arch.mmio_copy_type ==
1198 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1199 kvmppc_set_vsr_word_dump(vcpu, gpr);
1200 break;
1201 #endif
1202 #ifdef CONFIG_ALTIVEC
1203 case KVM_MMIO_REG_VMX:
1204 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1205 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1206
1207 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1208 kvmppc_set_vmx_dword(vcpu, gpr);
1209 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1210 kvmppc_set_vmx_word(vcpu, gpr);
1211 else if (vcpu->arch.mmio_copy_type ==
1212 KVMPPC_VMX_COPY_HWORD)
1213 kvmppc_set_vmx_hword(vcpu, gpr);
1214 else if (vcpu->arch.mmio_copy_type ==
1215 KVMPPC_VMX_COPY_BYTE)
1216 kvmppc_set_vmx_byte(vcpu, gpr);
1217 break;
1218 #endif
1219 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1220 case KVM_MMIO_REG_NESTED_GPR:
1221 if (kvmppc_need_byteswap(vcpu))
1222 gpr = swab64(gpr);
1223 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1224 sizeof(gpr));
1225 break;
1226 #endif
1227 default:
1228 BUG();
1229 }
1230 }
1231
__kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1232 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1233 unsigned int rt, unsigned int bytes,
1234 int is_default_endian, int sign_extend)
1235 {
1236 struct kvm_run *run = vcpu->run;
1237 int idx, ret;
1238 bool host_swabbed;
1239
1240 /* Pity C doesn't have a logical XOR operator */
1241 if (kvmppc_need_byteswap(vcpu)) {
1242 host_swabbed = is_default_endian;
1243 } else {
1244 host_swabbed = !is_default_endian;
1245 }
1246
1247 if (bytes > sizeof(run->mmio.data)) {
1248 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1249 run->mmio.len);
1250 }
1251
1252 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1253 run->mmio.len = bytes;
1254 run->mmio.is_write = 0;
1255
1256 vcpu->arch.io_gpr = rt;
1257 vcpu->arch.mmio_host_swabbed = host_swabbed;
1258 vcpu->mmio_needed = 1;
1259 vcpu->mmio_is_write = 0;
1260 vcpu->arch.mmio_sign_extend = sign_extend;
1261
1262 idx = srcu_read_lock(&vcpu->kvm->srcu);
1263
1264 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1265 bytes, &run->mmio.data);
1266
1267 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1268
1269 if (!ret) {
1270 kvmppc_complete_mmio_load(vcpu);
1271 vcpu->mmio_needed = 0;
1272 return EMULATE_DONE;
1273 }
1274
1275 return EMULATE_DO_MMIO;
1276 }
1277
kvmppc_handle_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1278 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1279 unsigned int rt, unsigned int bytes,
1280 int is_default_endian)
1281 {
1282 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1283 }
1284 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1285
1286 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1287 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1288 unsigned int rt, unsigned int bytes,
1289 int is_default_endian)
1290 {
1291 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1292 }
1293
1294 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1295 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1296 unsigned int rt, unsigned int bytes,
1297 int is_default_endian, int mmio_sign_extend)
1298 {
1299 enum emulation_result emulated = EMULATE_DONE;
1300
1301 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1302 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1303 return EMULATE_FAIL;
1304
1305 while (vcpu->arch.mmio_vsx_copy_nums) {
1306 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1307 is_default_endian, mmio_sign_extend);
1308
1309 if (emulated != EMULATE_DONE)
1310 break;
1311
1312 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1313
1314 vcpu->arch.mmio_vsx_copy_nums--;
1315 vcpu->arch.mmio_vsx_offset++;
1316 }
1317 return emulated;
1318 }
1319 #endif /* CONFIG_VSX */
1320
kvmppc_handle_store(struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1321 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1322 u64 val, unsigned int bytes, int is_default_endian)
1323 {
1324 struct kvm_run *run = vcpu->run;
1325 void *data = run->mmio.data;
1326 int idx, ret;
1327 bool host_swabbed;
1328
1329 /* Pity C doesn't have a logical XOR operator */
1330 if (kvmppc_need_byteswap(vcpu)) {
1331 host_swabbed = is_default_endian;
1332 } else {
1333 host_swabbed = !is_default_endian;
1334 }
1335
1336 if (bytes > sizeof(run->mmio.data)) {
1337 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1338 run->mmio.len);
1339 }
1340
1341 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1342 run->mmio.len = bytes;
1343 run->mmio.is_write = 1;
1344 vcpu->mmio_needed = 1;
1345 vcpu->mmio_is_write = 1;
1346
1347 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1348 val = dp_to_sp(val);
1349
1350 /* Store the value at the lowest bytes in 'data'. */
1351 if (!host_swabbed) {
1352 switch (bytes) {
1353 case 8: *(u64 *)data = val; break;
1354 case 4: *(u32 *)data = val; break;
1355 case 2: *(u16 *)data = val; break;
1356 case 1: *(u8 *)data = val; break;
1357 }
1358 } else {
1359 switch (bytes) {
1360 case 8: *(u64 *)data = swab64(val); break;
1361 case 4: *(u32 *)data = swab32(val); break;
1362 case 2: *(u16 *)data = swab16(val); break;
1363 case 1: *(u8 *)data = val; break;
1364 }
1365 }
1366
1367 idx = srcu_read_lock(&vcpu->kvm->srcu);
1368
1369 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1370 bytes, &run->mmio.data);
1371
1372 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1373
1374 if (!ret) {
1375 vcpu->mmio_needed = 0;
1376 return EMULATE_DONE;
1377 }
1378
1379 return EMULATE_DO_MMIO;
1380 }
1381 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1382
1383 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1384 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1385 {
1386 u32 dword_offset, word_offset;
1387 union kvmppc_one_reg reg;
1388 int vsx_offset = 0;
1389 int copy_type = vcpu->arch.mmio_copy_type;
1390 int result = 0;
1391
1392 switch (copy_type) {
1393 case KVMPPC_VSX_COPY_DWORD:
1394 vsx_offset =
1395 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1396
1397 if (vsx_offset == -1) {
1398 result = -1;
1399 break;
1400 }
1401
1402 if (rs < 32) {
1403 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1404 } else {
1405 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1406 *val = reg.vsxval[vsx_offset];
1407 }
1408 break;
1409
1410 case KVMPPC_VSX_COPY_WORD:
1411 vsx_offset =
1412 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1413
1414 if (vsx_offset == -1) {
1415 result = -1;
1416 break;
1417 }
1418
1419 if (rs < 32) {
1420 dword_offset = vsx_offset / 2;
1421 word_offset = vsx_offset % 2;
1422 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1423 *val = reg.vsx32val[word_offset];
1424 } else {
1425 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1426 *val = reg.vsx32val[vsx_offset];
1427 }
1428 break;
1429
1430 default:
1431 result = -1;
1432 break;
1433 }
1434
1435 return result;
1436 }
1437
kvmppc_handle_vsx_store(struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1438 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1439 int rs, unsigned int bytes, int is_default_endian)
1440 {
1441 u64 val;
1442 enum emulation_result emulated = EMULATE_DONE;
1443
1444 vcpu->arch.io_gpr = rs;
1445
1446 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1447 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1448 return EMULATE_FAIL;
1449
1450 while (vcpu->arch.mmio_vsx_copy_nums) {
1451 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1452 return EMULATE_FAIL;
1453
1454 emulated = kvmppc_handle_store(vcpu,
1455 val, bytes, is_default_endian);
1456
1457 if (emulated != EMULATE_DONE)
1458 break;
1459
1460 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1461
1462 vcpu->arch.mmio_vsx_copy_nums--;
1463 vcpu->arch.mmio_vsx_offset++;
1464 }
1465
1466 return emulated;
1467 }
1468
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu)1469 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1470 {
1471 struct kvm_run *run = vcpu->run;
1472 enum emulation_result emulated = EMULATE_FAIL;
1473 int r;
1474
1475 vcpu->arch.paddr_accessed += run->mmio.len;
1476
1477 if (!vcpu->mmio_is_write) {
1478 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1479 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1480 } else {
1481 emulated = kvmppc_handle_vsx_store(vcpu,
1482 vcpu->arch.io_gpr, run->mmio.len, 1);
1483 }
1484
1485 switch (emulated) {
1486 case EMULATE_DO_MMIO:
1487 run->exit_reason = KVM_EXIT_MMIO;
1488 r = RESUME_HOST;
1489 break;
1490 case EMULATE_FAIL:
1491 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1492 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1493 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1494 r = RESUME_HOST;
1495 break;
1496 default:
1497 r = RESUME_GUEST;
1498 break;
1499 }
1500 return r;
1501 }
1502 #endif /* CONFIG_VSX */
1503
1504 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1505 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1506 unsigned int rt, unsigned int bytes, int is_default_endian)
1507 {
1508 enum emulation_result emulated = EMULATE_DONE;
1509
1510 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1511 return EMULATE_FAIL;
1512
1513 while (vcpu->arch.mmio_vmx_copy_nums) {
1514 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1515 is_default_endian, 0);
1516
1517 if (emulated != EMULATE_DONE)
1518 break;
1519
1520 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1521 vcpu->arch.mmio_vmx_copy_nums--;
1522 vcpu->arch.mmio_vmx_offset++;
1523 }
1524
1525 return emulated;
1526 }
1527
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1528 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1529 {
1530 union kvmppc_one_reg reg;
1531 int vmx_offset = 0;
1532 int result = 0;
1533
1534 vmx_offset =
1535 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1536
1537 if (vmx_offset == -1)
1538 return -1;
1539
1540 reg.vval = VCPU_VSX_VR(vcpu, index);
1541 *val = reg.vsxval[vmx_offset];
1542
1543 return result;
1544 }
1545
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1546 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1547 {
1548 union kvmppc_one_reg reg;
1549 int vmx_offset = 0;
1550 int result = 0;
1551
1552 vmx_offset =
1553 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1554
1555 if (vmx_offset == -1)
1556 return -1;
1557
1558 reg.vval = VCPU_VSX_VR(vcpu, index);
1559 *val = reg.vsx32val[vmx_offset];
1560
1561 return result;
1562 }
1563
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1564 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1565 {
1566 union kvmppc_one_reg reg;
1567 int vmx_offset = 0;
1568 int result = 0;
1569
1570 vmx_offset =
1571 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1572
1573 if (vmx_offset == -1)
1574 return -1;
1575
1576 reg.vval = VCPU_VSX_VR(vcpu, index);
1577 *val = reg.vsx16val[vmx_offset];
1578
1579 return result;
1580 }
1581
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1582 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1583 {
1584 union kvmppc_one_reg reg;
1585 int vmx_offset = 0;
1586 int result = 0;
1587
1588 vmx_offset =
1589 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1590
1591 if (vmx_offset == -1)
1592 return -1;
1593
1594 reg.vval = VCPU_VSX_VR(vcpu, index);
1595 *val = reg.vsx8val[vmx_offset];
1596
1597 return result;
1598 }
1599
kvmppc_handle_vmx_store(struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1600 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1601 unsigned int rs, unsigned int bytes, int is_default_endian)
1602 {
1603 u64 val = 0;
1604 unsigned int index = rs & KVM_MMIO_REG_MASK;
1605 enum emulation_result emulated = EMULATE_DONE;
1606
1607 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1608 return EMULATE_FAIL;
1609
1610 vcpu->arch.io_gpr = rs;
1611
1612 while (vcpu->arch.mmio_vmx_copy_nums) {
1613 switch (vcpu->arch.mmio_copy_type) {
1614 case KVMPPC_VMX_COPY_DWORD:
1615 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1616 return EMULATE_FAIL;
1617
1618 break;
1619 case KVMPPC_VMX_COPY_WORD:
1620 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1621 return EMULATE_FAIL;
1622 break;
1623 case KVMPPC_VMX_COPY_HWORD:
1624 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1625 return EMULATE_FAIL;
1626 break;
1627 case KVMPPC_VMX_COPY_BYTE:
1628 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1629 return EMULATE_FAIL;
1630 break;
1631 default:
1632 return EMULATE_FAIL;
1633 }
1634
1635 emulated = kvmppc_handle_store(vcpu, val, bytes,
1636 is_default_endian);
1637 if (emulated != EMULATE_DONE)
1638 break;
1639
1640 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1641 vcpu->arch.mmio_vmx_copy_nums--;
1642 vcpu->arch.mmio_vmx_offset++;
1643 }
1644
1645 return emulated;
1646 }
1647
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu)1648 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1649 {
1650 struct kvm_run *run = vcpu->run;
1651 enum emulation_result emulated = EMULATE_FAIL;
1652 int r;
1653
1654 vcpu->arch.paddr_accessed += run->mmio.len;
1655
1656 if (!vcpu->mmio_is_write) {
1657 emulated = kvmppc_handle_vmx_load(vcpu,
1658 vcpu->arch.io_gpr, run->mmio.len, 1);
1659 } else {
1660 emulated = kvmppc_handle_vmx_store(vcpu,
1661 vcpu->arch.io_gpr, run->mmio.len, 1);
1662 }
1663
1664 switch (emulated) {
1665 case EMULATE_DO_MMIO:
1666 run->exit_reason = KVM_EXIT_MMIO;
1667 r = RESUME_HOST;
1668 break;
1669 case EMULATE_FAIL:
1670 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1671 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1672 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1673 r = RESUME_HOST;
1674 break;
1675 default:
1676 r = RESUME_GUEST;
1677 break;
1678 }
1679 return r;
1680 }
1681 #endif /* CONFIG_ALTIVEC */
1682
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1683 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1684 {
1685 int r = 0;
1686 union kvmppc_one_reg val;
1687 int size;
1688
1689 size = one_reg_size(reg->id);
1690 if (size > sizeof(val))
1691 return -EINVAL;
1692
1693 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1694 if (r == -EINVAL) {
1695 r = 0;
1696 switch (reg->id) {
1697 #ifdef CONFIG_ALTIVEC
1698 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1699 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1700 r = -ENXIO;
1701 break;
1702 }
1703 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1704 break;
1705 case KVM_REG_PPC_VSCR:
1706 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1707 r = -ENXIO;
1708 break;
1709 }
1710 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1711 break;
1712 case KVM_REG_PPC_VRSAVE:
1713 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1714 break;
1715 #endif /* CONFIG_ALTIVEC */
1716 default:
1717 r = -EINVAL;
1718 break;
1719 }
1720 }
1721
1722 if (r)
1723 return r;
1724
1725 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1726 r = -EFAULT;
1727
1728 return r;
1729 }
1730
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1731 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1732 {
1733 int r;
1734 union kvmppc_one_reg val;
1735 int size;
1736
1737 size = one_reg_size(reg->id);
1738 if (size > sizeof(val))
1739 return -EINVAL;
1740
1741 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1742 return -EFAULT;
1743
1744 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1745 if (r == -EINVAL) {
1746 r = 0;
1747 switch (reg->id) {
1748 #ifdef CONFIG_ALTIVEC
1749 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1750 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1751 r = -ENXIO;
1752 break;
1753 }
1754 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1755 break;
1756 case KVM_REG_PPC_VSCR:
1757 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1758 r = -ENXIO;
1759 break;
1760 }
1761 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1762 break;
1763 case KVM_REG_PPC_VRSAVE:
1764 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1765 r = -ENXIO;
1766 break;
1767 }
1768 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1769 break;
1770 #endif /* CONFIG_ALTIVEC */
1771 default:
1772 r = -EINVAL;
1773 break;
1774 }
1775 }
1776
1777 return r;
1778 }
1779
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1780 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1781 {
1782 struct kvm_run *run = vcpu->run;
1783 int r;
1784
1785 vcpu_load(vcpu);
1786
1787 if (vcpu->mmio_needed) {
1788 vcpu->mmio_needed = 0;
1789 if (!vcpu->mmio_is_write)
1790 kvmppc_complete_mmio_load(vcpu);
1791 #ifdef CONFIG_VSX
1792 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1793 vcpu->arch.mmio_vsx_copy_nums--;
1794 vcpu->arch.mmio_vsx_offset++;
1795 }
1796
1797 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1798 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1799 if (r == RESUME_HOST) {
1800 vcpu->mmio_needed = 1;
1801 goto out;
1802 }
1803 }
1804 #endif
1805 #ifdef CONFIG_ALTIVEC
1806 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1807 vcpu->arch.mmio_vmx_copy_nums--;
1808 vcpu->arch.mmio_vmx_offset++;
1809 }
1810
1811 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1812 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1813 if (r == RESUME_HOST) {
1814 vcpu->mmio_needed = 1;
1815 goto out;
1816 }
1817 }
1818 #endif
1819 } else if (vcpu->arch.osi_needed) {
1820 u64 *gprs = run->osi.gprs;
1821 int i;
1822
1823 for (i = 0; i < 32; i++)
1824 kvmppc_set_gpr(vcpu, i, gprs[i]);
1825 vcpu->arch.osi_needed = 0;
1826 } else if (vcpu->arch.hcall_needed) {
1827 int i;
1828
1829 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1830 for (i = 0; i < 9; ++i)
1831 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1832 vcpu->arch.hcall_needed = 0;
1833 #ifdef CONFIG_BOOKE
1834 } else if (vcpu->arch.epr_needed) {
1835 kvmppc_set_epr(vcpu, run->epr.epr);
1836 vcpu->arch.epr_needed = 0;
1837 #endif
1838 }
1839
1840 kvm_sigset_activate(vcpu);
1841
1842 if (run->immediate_exit)
1843 r = -EINTR;
1844 else
1845 r = kvmppc_vcpu_run(vcpu);
1846
1847 kvm_sigset_deactivate(vcpu);
1848
1849 #ifdef CONFIG_ALTIVEC
1850 out:
1851 #endif
1852 vcpu_put(vcpu);
1853 return r;
1854 }
1855
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1856 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1857 {
1858 if (irq->irq == KVM_INTERRUPT_UNSET) {
1859 kvmppc_core_dequeue_external(vcpu);
1860 return 0;
1861 }
1862
1863 kvmppc_core_queue_external(vcpu, irq);
1864
1865 kvm_vcpu_kick(vcpu);
1866
1867 return 0;
1868 }
1869
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1870 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1871 struct kvm_enable_cap *cap)
1872 {
1873 int r;
1874
1875 if (cap->flags)
1876 return -EINVAL;
1877
1878 switch (cap->cap) {
1879 case KVM_CAP_PPC_OSI:
1880 r = 0;
1881 vcpu->arch.osi_enabled = true;
1882 break;
1883 case KVM_CAP_PPC_PAPR:
1884 r = 0;
1885 vcpu->arch.papr_enabled = true;
1886 break;
1887 case KVM_CAP_PPC_EPR:
1888 r = 0;
1889 if (cap->args[0])
1890 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1891 else
1892 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1893 break;
1894 #ifdef CONFIG_BOOKE
1895 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1896 r = 0;
1897 vcpu->arch.watchdog_enabled = true;
1898 break;
1899 #endif
1900 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1901 case KVM_CAP_SW_TLB: {
1902 struct kvm_config_tlb cfg;
1903 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1904
1905 r = -EFAULT;
1906 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1907 break;
1908
1909 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1910 break;
1911 }
1912 #endif
1913 #ifdef CONFIG_KVM_MPIC
1914 case KVM_CAP_IRQ_MPIC: {
1915 struct fd f;
1916 struct kvm_device *dev;
1917
1918 r = -EBADF;
1919 f = fdget(cap->args[0]);
1920 if (!f.file)
1921 break;
1922
1923 r = -EPERM;
1924 dev = kvm_device_from_filp(f.file);
1925 if (dev)
1926 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1927
1928 fdput(f);
1929 break;
1930 }
1931 #endif
1932 #ifdef CONFIG_KVM_XICS
1933 case KVM_CAP_IRQ_XICS: {
1934 struct fd f;
1935 struct kvm_device *dev;
1936
1937 r = -EBADF;
1938 f = fdget(cap->args[0]);
1939 if (!f.file)
1940 break;
1941
1942 r = -EPERM;
1943 dev = kvm_device_from_filp(f.file);
1944 if (dev) {
1945 if (xics_on_xive())
1946 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1947 else
1948 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1949 }
1950
1951 fdput(f);
1952 break;
1953 }
1954 #endif /* CONFIG_KVM_XICS */
1955 #ifdef CONFIG_KVM_XIVE
1956 case KVM_CAP_PPC_IRQ_XIVE: {
1957 struct fd f;
1958 struct kvm_device *dev;
1959
1960 r = -EBADF;
1961 f = fdget(cap->args[0]);
1962 if (!f.file)
1963 break;
1964
1965 r = -ENXIO;
1966 if (!xive_enabled())
1967 break;
1968
1969 r = -EPERM;
1970 dev = kvm_device_from_filp(f.file);
1971 if (dev)
1972 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1973 cap->args[1]);
1974
1975 fdput(f);
1976 break;
1977 }
1978 #endif /* CONFIG_KVM_XIVE */
1979 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1980 case KVM_CAP_PPC_FWNMI:
1981 r = -EINVAL;
1982 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1983 break;
1984 r = 0;
1985 vcpu->kvm->arch.fwnmi_enabled = true;
1986 break;
1987 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1988 default:
1989 r = -EINVAL;
1990 break;
1991 }
1992
1993 if (!r)
1994 r = kvmppc_sanity_check(vcpu);
1995
1996 return r;
1997 }
1998
kvm_arch_intc_initialized(struct kvm * kvm)1999 bool kvm_arch_intc_initialized(struct kvm *kvm)
2000 {
2001 #ifdef CONFIG_KVM_MPIC
2002 if (kvm->arch.mpic)
2003 return true;
2004 #endif
2005 #ifdef CONFIG_KVM_XICS
2006 if (kvm->arch.xics || kvm->arch.xive)
2007 return true;
2008 #endif
2009 return false;
2010 }
2011
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2012 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2013 struct kvm_mp_state *mp_state)
2014 {
2015 return -EINVAL;
2016 }
2017
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)2018 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2019 struct kvm_mp_state *mp_state)
2020 {
2021 return -EINVAL;
2022 }
2023
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2024 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2025 unsigned int ioctl, unsigned long arg)
2026 {
2027 struct kvm_vcpu *vcpu = filp->private_data;
2028 void __user *argp = (void __user *)arg;
2029
2030 if (ioctl == KVM_INTERRUPT) {
2031 struct kvm_interrupt irq;
2032 if (copy_from_user(&irq, argp, sizeof(irq)))
2033 return -EFAULT;
2034 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2035 }
2036 return -ENOIOCTLCMD;
2037 }
2038
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2039 long kvm_arch_vcpu_ioctl(struct file *filp,
2040 unsigned int ioctl, unsigned long arg)
2041 {
2042 struct kvm_vcpu *vcpu = filp->private_data;
2043 void __user *argp = (void __user *)arg;
2044 long r;
2045
2046 switch (ioctl) {
2047 case KVM_ENABLE_CAP:
2048 {
2049 struct kvm_enable_cap cap;
2050 r = -EFAULT;
2051 if (copy_from_user(&cap, argp, sizeof(cap)))
2052 goto out;
2053 vcpu_load(vcpu);
2054 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2055 vcpu_put(vcpu);
2056 break;
2057 }
2058
2059 case KVM_SET_ONE_REG:
2060 case KVM_GET_ONE_REG:
2061 {
2062 struct kvm_one_reg reg;
2063 r = -EFAULT;
2064 if (copy_from_user(®, argp, sizeof(reg)))
2065 goto out;
2066 if (ioctl == KVM_SET_ONE_REG)
2067 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2068 else
2069 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2070 break;
2071 }
2072
2073 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2074 case KVM_DIRTY_TLB: {
2075 struct kvm_dirty_tlb dirty;
2076 r = -EFAULT;
2077 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2078 goto out;
2079 vcpu_load(vcpu);
2080 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2081 vcpu_put(vcpu);
2082 break;
2083 }
2084 #endif
2085 default:
2086 r = -EINVAL;
2087 }
2088
2089 out:
2090 return r;
2091 }
2092
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2093 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2094 {
2095 return VM_FAULT_SIGBUS;
2096 }
2097
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2098 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2099 {
2100 u32 inst_nop = 0x60000000;
2101 #ifdef CONFIG_KVM_BOOKE_HV
2102 u32 inst_sc1 = 0x44000022;
2103 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2104 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2105 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2106 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2107 #else
2108 u32 inst_lis = 0x3c000000;
2109 u32 inst_ori = 0x60000000;
2110 u32 inst_sc = 0x44000002;
2111 u32 inst_imm_mask = 0xffff;
2112
2113 /*
2114 * The hypercall to get into KVM from within guest context is as
2115 * follows:
2116 *
2117 * lis r0, r0, KVM_SC_MAGIC_R0@h
2118 * ori r0, KVM_SC_MAGIC_R0@l
2119 * sc
2120 * nop
2121 */
2122 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2123 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2124 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2125 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2126 #endif
2127
2128 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2129
2130 return 0;
2131 }
2132
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2133 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2134 bool line_status)
2135 {
2136 if (!irqchip_in_kernel(kvm))
2137 return -ENXIO;
2138
2139 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2140 irq_event->irq, irq_event->level,
2141 line_status);
2142 return 0;
2143 }
2144
2145
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2146 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2147 struct kvm_enable_cap *cap)
2148 {
2149 int r;
2150
2151 if (cap->flags)
2152 return -EINVAL;
2153
2154 switch (cap->cap) {
2155 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2156 case KVM_CAP_PPC_ENABLE_HCALL: {
2157 unsigned long hcall = cap->args[0];
2158
2159 r = -EINVAL;
2160 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2161 cap->args[1] > 1)
2162 break;
2163 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2164 break;
2165 if (cap->args[1])
2166 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2167 else
2168 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2169 r = 0;
2170 break;
2171 }
2172 case KVM_CAP_PPC_SMT: {
2173 unsigned long mode = cap->args[0];
2174 unsigned long flags = cap->args[1];
2175
2176 r = -EINVAL;
2177 if (kvm->arch.kvm_ops->set_smt_mode)
2178 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2179 break;
2180 }
2181
2182 case KVM_CAP_PPC_NESTED_HV:
2183 r = -EINVAL;
2184 if (!is_kvmppc_hv_enabled(kvm) ||
2185 !kvm->arch.kvm_ops->enable_nested)
2186 break;
2187 r = kvm->arch.kvm_ops->enable_nested(kvm);
2188 break;
2189 #endif
2190 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2191 case KVM_CAP_PPC_SECURE_GUEST:
2192 r = -EINVAL;
2193 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2194 break;
2195 r = kvm->arch.kvm_ops->enable_svm(kvm);
2196 break;
2197 case KVM_CAP_PPC_DAWR1:
2198 r = -EINVAL;
2199 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2200 break;
2201 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2202 break;
2203 #endif
2204 default:
2205 r = -EINVAL;
2206 break;
2207 }
2208
2209 return r;
2210 }
2211
2212 #ifdef CONFIG_PPC_BOOK3S_64
2213 /*
2214 * These functions check whether the underlying hardware is safe
2215 * against attacks based on observing the effects of speculatively
2216 * executed instructions, and whether it supplies instructions for
2217 * use in workarounds. The information comes from firmware, either
2218 * via the device tree on powernv platforms or from an hcall on
2219 * pseries platforms.
2220 */
2221 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2222 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2223 {
2224 struct h_cpu_char_result c;
2225 unsigned long rc;
2226
2227 if (!machine_is(pseries))
2228 return -ENOTTY;
2229
2230 rc = plpar_get_cpu_characteristics(&c);
2231 if (rc == H_SUCCESS) {
2232 cp->character = c.character;
2233 cp->behaviour = c.behaviour;
2234 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2235 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2236 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2237 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2238 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2239 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2240 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2241 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2242 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2243 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2244 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2245 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2246 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2247 }
2248 return 0;
2249 }
2250 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2251 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2252 {
2253 return -ENOTTY;
2254 }
2255 #endif
2256
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2257 static inline bool have_fw_feat(struct device_node *fw_features,
2258 const char *state, const char *name)
2259 {
2260 struct device_node *np;
2261 bool r = false;
2262
2263 np = of_get_child_by_name(fw_features, name);
2264 if (np) {
2265 r = of_property_read_bool(np, state);
2266 of_node_put(np);
2267 }
2268 return r;
2269 }
2270
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2271 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2272 {
2273 struct device_node *np, *fw_features;
2274 int r;
2275
2276 memset(cp, 0, sizeof(*cp));
2277 r = pseries_get_cpu_char(cp);
2278 if (r != -ENOTTY)
2279 return r;
2280
2281 np = of_find_node_by_name(NULL, "ibm,opal");
2282 if (np) {
2283 fw_features = of_get_child_by_name(np, "fw-features");
2284 of_node_put(np);
2285 if (!fw_features)
2286 return 0;
2287 if (have_fw_feat(fw_features, "enabled",
2288 "inst-spec-barrier-ori31,31,0"))
2289 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2290 if (have_fw_feat(fw_features, "enabled",
2291 "fw-bcctrl-serialized"))
2292 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2293 if (have_fw_feat(fw_features, "enabled",
2294 "inst-l1d-flush-ori30,30,0"))
2295 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2296 if (have_fw_feat(fw_features, "enabled",
2297 "inst-l1d-flush-trig2"))
2298 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2299 if (have_fw_feat(fw_features, "enabled",
2300 "fw-l1d-thread-split"))
2301 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2302 if (have_fw_feat(fw_features, "enabled",
2303 "fw-count-cache-disabled"))
2304 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2305 if (have_fw_feat(fw_features, "enabled",
2306 "fw-count-cache-flush-bcctr2,0,0"))
2307 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2308 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2309 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2310 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2311 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2312 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2313 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2314 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2315
2316 if (have_fw_feat(fw_features, "enabled",
2317 "speculation-policy-favor-security"))
2318 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2319 if (!have_fw_feat(fw_features, "disabled",
2320 "needs-l1d-flush-msr-pr-0-to-1"))
2321 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2322 if (!have_fw_feat(fw_features, "disabled",
2323 "needs-spec-barrier-for-bound-checks"))
2324 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2325 if (have_fw_feat(fw_features, "enabled",
2326 "needs-count-cache-flush-on-context-switch"))
2327 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2328 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2329 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2330 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2331 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2332
2333 of_node_put(fw_features);
2334 }
2335
2336 return 0;
2337 }
2338 #endif
2339
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2340 long kvm_arch_vm_ioctl(struct file *filp,
2341 unsigned int ioctl, unsigned long arg)
2342 {
2343 struct kvm *kvm __maybe_unused = filp->private_data;
2344 void __user *argp = (void __user *)arg;
2345 long r;
2346
2347 switch (ioctl) {
2348 case KVM_PPC_GET_PVINFO: {
2349 struct kvm_ppc_pvinfo pvinfo;
2350 memset(&pvinfo, 0, sizeof(pvinfo));
2351 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2352 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2353 r = -EFAULT;
2354 goto out;
2355 }
2356
2357 break;
2358 }
2359 #ifdef CONFIG_SPAPR_TCE_IOMMU
2360 case KVM_CREATE_SPAPR_TCE_64: {
2361 struct kvm_create_spapr_tce_64 create_tce_64;
2362
2363 r = -EFAULT;
2364 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2365 goto out;
2366 if (create_tce_64.flags) {
2367 r = -EINVAL;
2368 goto out;
2369 }
2370 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2371 goto out;
2372 }
2373 case KVM_CREATE_SPAPR_TCE: {
2374 struct kvm_create_spapr_tce create_tce;
2375 struct kvm_create_spapr_tce_64 create_tce_64;
2376
2377 r = -EFAULT;
2378 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2379 goto out;
2380
2381 create_tce_64.liobn = create_tce.liobn;
2382 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2383 create_tce_64.offset = 0;
2384 create_tce_64.size = create_tce.window_size >>
2385 IOMMU_PAGE_SHIFT_4K;
2386 create_tce_64.flags = 0;
2387 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2388 goto out;
2389 }
2390 #endif
2391 #ifdef CONFIG_PPC_BOOK3S_64
2392 case KVM_PPC_GET_SMMU_INFO: {
2393 struct kvm_ppc_smmu_info info;
2394 struct kvm *kvm = filp->private_data;
2395
2396 memset(&info, 0, sizeof(info));
2397 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2398 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2399 r = -EFAULT;
2400 break;
2401 }
2402 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2403 struct kvm *kvm = filp->private_data;
2404
2405 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2406 break;
2407 }
2408 case KVM_PPC_CONFIGURE_V3_MMU: {
2409 struct kvm *kvm = filp->private_data;
2410 struct kvm_ppc_mmuv3_cfg cfg;
2411
2412 r = -EINVAL;
2413 if (!kvm->arch.kvm_ops->configure_mmu)
2414 goto out;
2415 r = -EFAULT;
2416 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2417 goto out;
2418 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2419 break;
2420 }
2421 case KVM_PPC_GET_RMMU_INFO: {
2422 struct kvm *kvm = filp->private_data;
2423 struct kvm_ppc_rmmu_info info;
2424
2425 r = -EINVAL;
2426 if (!kvm->arch.kvm_ops->get_rmmu_info)
2427 goto out;
2428 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2429 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2430 r = -EFAULT;
2431 break;
2432 }
2433 case KVM_PPC_GET_CPU_CHAR: {
2434 struct kvm_ppc_cpu_char cpuchar;
2435
2436 r = kvmppc_get_cpu_char(&cpuchar);
2437 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2438 r = -EFAULT;
2439 break;
2440 }
2441 case KVM_PPC_SVM_OFF: {
2442 struct kvm *kvm = filp->private_data;
2443
2444 r = 0;
2445 if (!kvm->arch.kvm_ops->svm_off)
2446 goto out;
2447
2448 r = kvm->arch.kvm_ops->svm_off(kvm);
2449 break;
2450 }
2451 default: {
2452 struct kvm *kvm = filp->private_data;
2453 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2454 }
2455 #else /* CONFIG_PPC_BOOK3S_64 */
2456 default:
2457 r = -ENOTTY;
2458 #endif
2459 }
2460 out:
2461 return r;
2462 }
2463
2464 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2465 static unsigned long nr_lpids;
2466
kvmppc_alloc_lpid(void)2467 long kvmppc_alloc_lpid(void)
2468 {
2469 long lpid;
2470
2471 do {
2472 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2473 if (lpid >= nr_lpids) {
2474 pr_err("%s: No LPIDs free\n", __func__);
2475 return -ENOMEM;
2476 }
2477 } while (test_and_set_bit(lpid, lpid_inuse));
2478
2479 return lpid;
2480 }
2481 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2482
kvmppc_claim_lpid(long lpid)2483 void kvmppc_claim_lpid(long lpid)
2484 {
2485 set_bit(lpid, lpid_inuse);
2486 }
2487 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2488
kvmppc_free_lpid(long lpid)2489 void kvmppc_free_lpid(long lpid)
2490 {
2491 clear_bit(lpid, lpid_inuse);
2492 }
2493 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2494
kvmppc_init_lpid(unsigned long nr_lpids_param)2495 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2496 {
2497 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2498 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2499 }
2500 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2501
kvm_arch_init(void * opaque)2502 int kvm_arch_init(void *opaque)
2503 {
2504 return 0;
2505 }
2506
2507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2508