• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
no_open(struct inode * inode,struct file * file)118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
inode_init_always(struct super_block * sb,struct inode * inode)131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	spin_lock_init(&inode->i_lock);
171 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 
173 	init_rwsem(&inode->i_rwsem);
174 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 
176 	atomic_set(&inode->i_dio_count, 0);
177 
178 	mapping->a_ops = &empty_aops;
179 	mapping->host = inode;
180 	mapping->flags = 0;
181 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
182 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
183 	mapping->wb_err = 0;
184 	atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 	atomic_set(&mapping->nr_thps, 0);
187 #endif
188 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 	mapping->private_data = NULL;
190 	mapping->writeback_index = 0;
191 	init_rwsem(&mapping->invalidate_lock);
192 	lockdep_set_class_and_name(&mapping->invalidate_lock,
193 				   &sb->s_type->invalidate_lock_key,
194 				   "mapping.invalidate_lock");
195 	inode->i_private = NULL;
196 	inode->i_mapping = mapping;
197 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
198 #ifdef CONFIG_FS_POSIX_ACL
199 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
200 #endif
201 
202 #ifdef CONFIG_FSNOTIFY
203 	inode->i_fsnotify_mask = 0;
204 #endif
205 	inode->i_flctx = NULL;
206 
207 	if (unlikely(security_inode_alloc(inode)))
208 		return -ENOMEM;
209 	this_cpu_inc(nr_inodes);
210 
211 	return 0;
212 }
213 EXPORT_SYMBOL(inode_init_always);
214 
free_inode_nonrcu(struct inode * inode)215 void free_inode_nonrcu(struct inode *inode)
216 {
217 	kmem_cache_free(inode_cachep, inode);
218 }
219 EXPORT_SYMBOL(free_inode_nonrcu);
220 
i_callback(struct rcu_head * head)221 static void i_callback(struct rcu_head *head)
222 {
223 	struct inode *inode = container_of(head, struct inode, i_rcu);
224 	if (inode->free_inode)
225 		inode->free_inode(inode);
226 	else
227 		free_inode_nonrcu(inode);
228 }
229 
alloc_inode(struct super_block * sb)230 static struct inode *alloc_inode(struct super_block *sb)
231 {
232 	const struct super_operations *ops = sb->s_op;
233 	struct inode *inode;
234 
235 	if (ops->alloc_inode)
236 		inode = ops->alloc_inode(sb);
237 	else
238 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
239 
240 	if (!inode)
241 		return NULL;
242 
243 	if (unlikely(inode_init_always(sb, inode))) {
244 		if (ops->destroy_inode) {
245 			ops->destroy_inode(inode);
246 			if (!ops->free_inode)
247 				return NULL;
248 		}
249 		inode->free_inode = ops->free_inode;
250 		i_callback(&inode->i_rcu);
251 		return NULL;
252 	}
253 
254 	return inode;
255 }
256 
__destroy_inode(struct inode * inode)257 void __destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(inode_has_buffers(inode));
260 	inode_detach_wb(inode);
261 	security_inode_free(inode);
262 	fsnotify_inode_delete(inode);
263 	locks_free_lock_context(inode);
264 	if (!inode->i_nlink) {
265 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
266 		atomic_long_dec(&inode->i_sb->s_remove_count);
267 	}
268 
269 #ifdef CONFIG_FS_POSIX_ACL
270 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
271 		posix_acl_release(inode->i_acl);
272 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
273 		posix_acl_release(inode->i_default_acl);
274 #endif
275 	this_cpu_dec(nr_inodes);
276 }
277 EXPORT_SYMBOL(__destroy_inode);
278 
destroy_inode(struct inode * inode)279 static void destroy_inode(struct inode *inode)
280 {
281 	const struct super_operations *ops = inode->i_sb->s_op;
282 
283 	BUG_ON(!list_empty(&inode->i_lru));
284 	__destroy_inode(inode);
285 	if (ops->destroy_inode) {
286 		ops->destroy_inode(inode);
287 		if (!ops->free_inode)
288 			return;
289 	}
290 	inode->free_inode = ops->free_inode;
291 	call_rcu(&inode->i_rcu, i_callback);
292 }
293 
294 /**
295  * drop_nlink - directly drop an inode's link count
296  * @inode: inode
297  *
298  * This is a low-level filesystem helper to replace any
299  * direct filesystem manipulation of i_nlink.  In cases
300  * where we are attempting to track writes to the
301  * filesystem, a decrement to zero means an imminent
302  * write when the file is truncated and actually unlinked
303  * on the filesystem.
304  */
drop_nlink(struct inode * inode)305 void drop_nlink(struct inode *inode)
306 {
307 	WARN_ON(inode->i_nlink == 0);
308 	inode->__i_nlink--;
309 	if (!inode->i_nlink)
310 		atomic_long_inc(&inode->i_sb->s_remove_count);
311 }
312 EXPORT_SYMBOL_NS(drop_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
313 
314 /**
315  * clear_nlink - directly zero an inode's link count
316  * @inode: inode
317  *
318  * This is a low-level filesystem helper to replace any
319  * direct filesystem manipulation of i_nlink.  See
320  * drop_nlink() for why we care about i_nlink hitting zero.
321  */
clear_nlink(struct inode * inode)322 void clear_nlink(struct inode *inode)
323 {
324 	if (inode->i_nlink) {
325 		inode->__i_nlink = 0;
326 		atomic_long_inc(&inode->i_sb->s_remove_count);
327 	}
328 }
329 EXPORT_SYMBOL(clear_nlink);
330 
331 /**
332  * set_nlink - directly set an inode's link count
333  * @inode: inode
334  * @nlink: new nlink (should be non-zero)
335  *
336  * This is a low-level filesystem helper to replace any
337  * direct filesystem manipulation of i_nlink.
338  */
set_nlink(struct inode * inode,unsigned int nlink)339 void set_nlink(struct inode *inode, unsigned int nlink)
340 {
341 	if (!nlink) {
342 		clear_nlink(inode);
343 	} else {
344 		/* Yes, some filesystems do change nlink from zero to one */
345 		if (inode->i_nlink == 0)
346 			atomic_long_dec(&inode->i_sb->s_remove_count);
347 
348 		inode->__i_nlink = nlink;
349 	}
350 }
351 EXPORT_SYMBOL_NS(set_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
352 
353 /**
354  * inc_nlink - directly increment an inode's link count
355  * @inode: inode
356  *
357  * This is a low-level filesystem helper to replace any
358  * direct filesystem manipulation of i_nlink.  Currently,
359  * it is only here for parity with dec_nlink().
360  */
inc_nlink(struct inode * inode)361 void inc_nlink(struct inode *inode)
362 {
363 	if (unlikely(inode->i_nlink == 0)) {
364 		WARN_ON(!(inode->i_state & I_LINKABLE));
365 		atomic_long_dec(&inode->i_sb->s_remove_count);
366 	}
367 
368 	inode->__i_nlink++;
369 }
370 EXPORT_SYMBOL(inc_nlink);
371 
__address_space_init_once(struct address_space * mapping)372 static void __address_space_init_once(struct address_space *mapping)
373 {
374 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
375 	init_rwsem(&mapping->i_mmap_rwsem);
376 	INIT_LIST_HEAD(&mapping->private_list);
377 	spin_lock_init(&mapping->private_lock);
378 	mapping->i_mmap = RB_ROOT_CACHED;
379 }
380 
address_space_init_once(struct address_space * mapping)381 void address_space_init_once(struct address_space *mapping)
382 {
383 	memset(mapping, 0, sizeof(*mapping));
384 	__address_space_init_once(mapping);
385 }
386 EXPORT_SYMBOL(address_space_init_once);
387 
388 /*
389  * These are initializations that only need to be done
390  * once, because the fields are idempotent across use
391  * of the inode, so let the slab aware of that.
392  */
inode_init_once(struct inode * inode)393 void inode_init_once(struct inode *inode)
394 {
395 	memset(inode, 0, sizeof(*inode));
396 	INIT_HLIST_NODE(&inode->i_hash);
397 	INIT_LIST_HEAD(&inode->i_devices);
398 	INIT_LIST_HEAD(&inode->i_io_list);
399 	INIT_LIST_HEAD(&inode->i_wb_list);
400 	INIT_LIST_HEAD(&inode->i_lru);
401 	__address_space_init_once(&inode->i_data);
402 	i_size_ordered_init(inode);
403 }
404 EXPORT_SYMBOL_NS(inode_init_once, ANDROID_GKI_VFS_EXPORT_ONLY);
405 
init_once(void * foo)406 static void init_once(void *foo)
407 {
408 	struct inode *inode = (struct inode *) foo;
409 
410 	inode_init_once(inode);
411 }
412 
413 /*
414  * inode->i_lock must be held
415  */
__iget(struct inode * inode)416 void __iget(struct inode *inode)
417 {
418 	atomic_inc(&inode->i_count);
419 }
420 
421 /*
422  * get additional reference to inode; caller must already hold one.
423  */
ihold(struct inode * inode)424 void ihold(struct inode *inode)
425 {
426 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
427 }
428 EXPORT_SYMBOL_NS(ihold, ANDROID_GKI_VFS_EXPORT_ONLY);
429 
inode_lru_list_add(struct inode * inode)430 static void inode_lru_list_add(struct inode *inode)
431 {
432 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
433 		this_cpu_inc(nr_unused);
434 	else
435 		inode->i_state |= I_REFERENCED;
436 }
437 
438 /*
439  * Add inode to LRU if needed (inode is unused and clean).
440  *
441  * Needs inode->i_lock held.
442  */
inode_add_lru(struct inode * inode)443 void inode_add_lru(struct inode *inode)
444 {
445 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
446 				I_FREEING | I_WILL_FREE)) &&
447 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
448 		inode_lru_list_add(inode);
449 }
450 
451 
inode_lru_list_del(struct inode * inode)452 static void inode_lru_list_del(struct inode *inode)
453 {
454 
455 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
456 		this_cpu_dec(nr_unused);
457 }
458 
459 /**
460  * inode_sb_list_add - add inode to the superblock list of inodes
461  * @inode: inode to add
462  */
inode_sb_list_add(struct inode * inode)463 void inode_sb_list_add(struct inode *inode)
464 {
465 	spin_lock(&inode->i_sb->s_inode_list_lock);
466 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
467 	spin_unlock(&inode->i_sb->s_inode_list_lock);
468 }
469 EXPORT_SYMBOL_GPL(inode_sb_list_add);
470 
inode_sb_list_del(struct inode * inode)471 static inline void inode_sb_list_del(struct inode *inode)
472 {
473 	if (!list_empty(&inode->i_sb_list)) {
474 		spin_lock(&inode->i_sb->s_inode_list_lock);
475 		list_del_init(&inode->i_sb_list);
476 		spin_unlock(&inode->i_sb->s_inode_list_lock);
477 	}
478 }
479 
hash(struct super_block * sb,unsigned long hashval)480 static unsigned long hash(struct super_block *sb, unsigned long hashval)
481 {
482 	unsigned long tmp;
483 
484 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
485 			L1_CACHE_BYTES;
486 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
487 	return tmp & i_hash_mask;
488 }
489 
490 /**
491  *	__insert_inode_hash - hash an inode
492  *	@inode: unhashed inode
493  *	@hashval: unsigned long value used to locate this object in the
494  *		inode_hashtable.
495  *
496  *	Add an inode to the inode hash for this superblock.
497  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)498 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
499 {
500 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
501 
502 	spin_lock(&inode_hash_lock);
503 	spin_lock(&inode->i_lock);
504 	hlist_add_head_rcu(&inode->i_hash, b);
505 	spin_unlock(&inode->i_lock);
506 	spin_unlock(&inode_hash_lock);
507 }
508 EXPORT_SYMBOL_NS(__insert_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
509 
510 /**
511  *	__remove_inode_hash - remove an inode from the hash
512  *	@inode: inode to unhash
513  *
514  *	Remove an inode from the superblock.
515  */
__remove_inode_hash(struct inode * inode)516 void __remove_inode_hash(struct inode *inode)
517 {
518 	spin_lock(&inode_hash_lock);
519 	spin_lock(&inode->i_lock);
520 	hlist_del_init_rcu(&inode->i_hash);
521 	spin_unlock(&inode->i_lock);
522 	spin_unlock(&inode_hash_lock);
523 }
524 EXPORT_SYMBOL_NS(__remove_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
525 
clear_inode(struct inode * inode)526 void clear_inode(struct inode *inode)
527 {
528 	/*
529 	 * We have to cycle the i_pages lock here because reclaim can be in the
530 	 * process of removing the last page (in __delete_from_page_cache())
531 	 * and we must not free the mapping under it.
532 	 */
533 	xa_lock_irq(&inode->i_data.i_pages);
534 	BUG_ON(inode->i_data.nrpages);
535 	/*
536 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
537 	 * two known and long-standing ways in which nodes may get left behind
538 	 * (when deep radix-tree node allocation failed partway; or when THP
539 	 * collapse_file() failed). Until those two known cases are cleaned up,
540 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
541 	 * nor even WARN_ON(!mapping_empty).
542 	 */
543 	xa_unlock_irq(&inode->i_data.i_pages);
544 	BUG_ON(!list_empty(&inode->i_data.private_list));
545 	BUG_ON(!(inode->i_state & I_FREEING));
546 	BUG_ON(inode->i_state & I_CLEAR);
547 	BUG_ON(!list_empty(&inode->i_wb_list));
548 	/* don't need i_lock here, no concurrent mods to i_state */
549 	inode->i_state = I_FREEING | I_CLEAR;
550 }
551 EXPORT_SYMBOL_NS(clear_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
552 
553 /*
554  * Free the inode passed in, removing it from the lists it is still connected
555  * to. We remove any pages still attached to the inode and wait for any IO that
556  * is still in progress before finally destroying the inode.
557  *
558  * An inode must already be marked I_FREEING so that we avoid the inode being
559  * moved back onto lists if we race with other code that manipulates the lists
560  * (e.g. writeback_single_inode). The caller is responsible for setting this.
561  *
562  * An inode must already be removed from the LRU list before being evicted from
563  * the cache. This should occur atomically with setting the I_FREEING state
564  * flag, so no inodes here should ever be on the LRU when being evicted.
565  */
evict(struct inode * inode)566 static void evict(struct inode *inode)
567 {
568 	const struct super_operations *op = inode->i_sb->s_op;
569 
570 	BUG_ON(!(inode->i_state & I_FREEING));
571 	BUG_ON(!list_empty(&inode->i_lru));
572 
573 	if (!list_empty(&inode->i_io_list))
574 		inode_io_list_del(inode);
575 
576 	inode_sb_list_del(inode);
577 
578 	/*
579 	 * Wait for flusher thread to be done with the inode so that filesystem
580 	 * does not start destroying it while writeback is still running. Since
581 	 * the inode has I_FREEING set, flusher thread won't start new work on
582 	 * the inode.  We just have to wait for running writeback to finish.
583 	 */
584 	inode_wait_for_writeback(inode);
585 
586 	if (op->evict_inode) {
587 		op->evict_inode(inode);
588 	} else {
589 		truncate_inode_pages_final(&inode->i_data);
590 		clear_inode(inode);
591 	}
592 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
593 		cd_forget(inode);
594 
595 	remove_inode_hash(inode);
596 
597 	spin_lock(&inode->i_lock);
598 	wake_up_bit(&inode->i_state, __I_NEW);
599 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
600 	spin_unlock(&inode->i_lock);
601 
602 	destroy_inode(inode);
603 }
604 
605 /*
606  * dispose_list - dispose of the contents of a local list
607  * @head: the head of the list to free
608  *
609  * Dispose-list gets a local list with local inodes in it, so it doesn't
610  * need to worry about list corruption and SMP locks.
611  */
dispose_list(struct list_head * head)612 static void dispose_list(struct list_head *head)
613 {
614 	while (!list_empty(head)) {
615 		struct inode *inode;
616 
617 		inode = list_first_entry(head, struct inode, i_lru);
618 		list_del_init(&inode->i_lru);
619 
620 		evict(inode);
621 		cond_resched();
622 	}
623 }
624 
625 /**
626  * evict_inodes	- evict all evictable inodes for a superblock
627  * @sb:		superblock to operate on
628  *
629  * Make sure that no inodes with zero refcount are retained.  This is
630  * called by superblock shutdown after having SB_ACTIVE flag removed,
631  * so any inode reaching zero refcount during or after that call will
632  * be immediately evicted.
633  */
evict_inodes(struct super_block * sb)634 void evict_inodes(struct super_block *sb)
635 {
636 	struct inode *inode, *next;
637 	LIST_HEAD(dispose);
638 
639 again:
640 	spin_lock(&sb->s_inode_list_lock);
641 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 		if (atomic_read(&inode->i_count))
643 			continue;
644 
645 		spin_lock(&inode->i_lock);
646 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 			spin_unlock(&inode->i_lock);
648 			continue;
649 		}
650 
651 		inode->i_state |= I_FREEING;
652 		inode_lru_list_del(inode);
653 		spin_unlock(&inode->i_lock);
654 		list_add(&inode->i_lru, &dispose);
655 
656 		/*
657 		 * We can have a ton of inodes to evict at unmount time given
658 		 * enough memory, check to see if we need to go to sleep for a
659 		 * bit so we don't livelock.
660 		 */
661 		if (need_resched()) {
662 			spin_unlock(&sb->s_inode_list_lock);
663 			cond_resched();
664 			dispose_list(&dispose);
665 			goto again;
666 		}
667 	}
668 	spin_unlock(&sb->s_inode_list_lock);
669 
670 	dispose_list(&dispose);
671 }
672 EXPORT_SYMBOL_GPL(evict_inodes);
673 
674 /**
675  * invalidate_inodes	- attempt to free all inodes on a superblock
676  * @sb:		superblock to operate on
677  * @kill_dirty: flag to guide handling of dirty inodes
678  *
679  * Attempts to free all inodes for a given superblock.  If there were any
680  * busy inodes return a non-zero value, else zero.
681  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
682  * them as busy.
683  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)684 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
685 {
686 	int busy = 0;
687 	struct inode *inode, *next;
688 	LIST_HEAD(dispose);
689 
690 again:
691 	spin_lock(&sb->s_inode_list_lock);
692 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
693 		spin_lock(&inode->i_lock);
694 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
695 			spin_unlock(&inode->i_lock);
696 			continue;
697 		}
698 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
699 			spin_unlock(&inode->i_lock);
700 			busy = 1;
701 			continue;
702 		}
703 		if (atomic_read(&inode->i_count)) {
704 			spin_unlock(&inode->i_lock);
705 			busy = 1;
706 			continue;
707 		}
708 
709 		inode->i_state |= I_FREEING;
710 		inode_lru_list_del(inode);
711 		spin_unlock(&inode->i_lock);
712 		list_add(&inode->i_lru, &dispose);
713 		if (need_resched()) {
714 			spin_unlock(&sb->s_inode_list_lock);
715 			cond_resched();
716 			dispose_list(&dispose);
717 			goto again;
718 		}
719 	}
720 	spin_unlock(&sb->s_inode_list_lock);
721 
722 	dispose_list(&dispose);
723 
724 	return busy;
725 }
726 
727 /*
728  * Isolate the inode from the LRU in preparation for freeing it.
729  *
730  * Any inodes which are pinned purely because of attached pagecache have their
731  * pagecache removed.  If the inode has metadata buffers attached to
732  * mapping->private_list then try to remove them.
733  *
734  * If the inode has the I_REFERENCED flag set, then it means that it has been
735  * used recently - the flag is set in iput_final(). When we encounter such an
736  * inode, clear the flag and move it to the back of the LRU so it gets another
737  * pass through the LRU before it gets reclaimed. This is necessary because of
738  * the fact we are doing lazy LRU updates to minimise lock contention so the
739  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
740  * with this flag set because they are the inodes that are out of order.
741  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)742 static enum lru_status inode_lru_isolate(struct list_head *item,
743 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
744 {
745 	struct list_head *freeable = arg;
746 	struct inode	*inode = container_of(item, struct inode, i_lru);
747 
748 	/*
749 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
750 	 * If we fail to get the lock, just skip it.
751 	 */
752 	if (!spin_trylock(&inode->i_lock))
753 		return LRU_SKIP;
754 
755 	/*
756 	 * Referenced or dirty inodes are still in use. Give them another pass
757 	 * through the LRU as we canot reclaim them now.
758 	 */
759 	if (atomic_read(&inode->i_count) ||
760 	    (inode->i_state & ~I_REFERENCED)) {
761 		list_lru_isolate(lru, &inode->i_lru);
762 		spin_unlock(&inode->i_lock);
763 		this_cpu_dec(nr_unused);
764 		return LRU_REMOVED;
765 	}
766 
767 	/* recently referenced inodes get one more pass */
768 	if (inode->i_state & I_REFERENCED) {
769 		inode->i_state &= ~I_REFERENCED;
770 		spin_unlock(&inode->i_lock);
771 		return LRU_ROTATE;
772 	}
773 
774 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
775 		__iget(inode);
776 		spin_unlock(&inode->i_lock);
777 		spin_unlock(lru_lock);
778 		if (remove_inode_buffers(inode)) {
779 			unsigned long reap;
780 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
781 			if (current_is_kswapd())
782 				__count_vm_events(KSWAPD_INODESTEAL, reap);
783 			else
784 				__count_vm_events(PGINODESTEAL, reap);
785 			if (current->reclaim_state)
786 				current->reclaim_state->reclaimed_slab += reap;
787 		}
788 		iput(inode);
789 		spin_lock(lru_lock);
790 		return LRU_RETRY;
791 	}
792 
793 	WARN_ON(inode->i_state & I_NEW);
794 	inode->i_state |= I_FREEING;
795 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
796 	spin_unlock(&inode->i_lock);
797 
798 	this_cpu_dec(nr_unused);
799 	return LRU_REMOVED;
800 }
801 
802 /*
803  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
804  * This is called from the superblock shrinker function with a number of inodes
805  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
806  * then are freed outside inode_lock by dispose_list().
807  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)808 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
809 {
810 	LIST_HEAD(freeable);
811 	long freed;
812 
813 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
814 				     inode_lru_isolate, &freeable);
815 	dispose_list(&freeable);
816 	return freed;
817 }
818 
819 static void __wait_on_freeing_inode(struct inode *inode);
820 /*
821  * Called with the inode lock held.
822  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)823 static struct inode *find_inode(struct super_block *sb,
824 				struct hlist_head *head,
825 				int (*test)(struct inode *, void *),
826 				void *data)
827 {
828 	struct inode *inode = NULL;
829 
830 repeat:
831 	hlist_for_each_entry(inode, head, i_hash) {
832 		if (inode->i_sb != sb)
833 			continue;
834 		if (!test(inode, data))
835 			continue;
836 		spin_lock(&inode->i_lock);
837 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
838 			__wait_on_freeing_inode(inode);
839 			goto repeat;
840 		}
841 		if (unlikely(inode->i_state & I_CREATING)) {
842 			spin_unlock(&inode->i_lock);
843 			return ERR_PTR(-ESTALE);
844 		}
845 		__iget(inode);
846 		spin_unlock(&inode->i_lock);
847 		return inode;
848 	}
849 	return NULL;
850 }
851 
852 /*
853  * find_inode_fast is the fast path version of find_inode, see the comment at
854  * iget_locked for details.
855  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)856 static struct inode *find_inode_fast(struct super_block *sb,
857 				struct hlist_head *head, unsigned long ino)
858 {
859 	struct inode *inode = NULL;
860 
861 repeat:
862 	hlist_for_each_entry(inode, head, i_hash) {
863 		if (inode->i_ino != ino)
864 			continue;
865 		if (inode->i_sb != sb)
866 			continue;
867 		spin_lock(&inode->i_lock);
868 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
869 			__wait_on_freeing_inode(inode);
870 			goto repeat;
871 		}
872 		if (unlikely(inode->i_state & I_CREATING)) {
873 			spin_unlock(&inode->i_lock);
874 			return ERR_PTR(-ESTALE);
875 		}
876 		__iget(inode);
877 		spin_unlock(&inode->i_lock);
878 		return inode;
879 	}
880 	return NULL;
881 }
882 
883 /*
884  * Each cpu owns a range of LAST_INO_BATCH numbers.
885  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
886  * to renew the exhausted range.
887  *
888  * This does not significantly increase overflow rate because every CPU can
889  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
890  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
891  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
892  * overflow rate by 2x, which does not seem too significant.
893  *
894  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
895  * error if st_ino won't fit in target struct field. Use 32bit counter
896  * here to attempt to avoid that.
897  */
898 #define LAST_INO_BATCH 1024
899 static DEFINE_PER_CPU(unsigned int, last_ino);
900 
get_next_ino(void)901 unsigned int get_next_ino(void)
902 {
903 	unsigned int *p = &get_cpu_var(last_ino);
904 	unsigned int res = *p;
905 
906 #ifdef CONFIG_SMP
907 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
908 		static atomic_t shared_last_ino;
909 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
910 
911 		res = next - LAST_INO_BATCH;
912 	}
913 #endif
914 
915 	res++;
916 	/* get_next_ino should not provide a 0 inode number */
917 	if (unlikely(!res))
918 		res++;
919 	*p = res;
920 	put_cpu_var(last_ino);
921 	return res;
922 }
923 EXPORT_SYMBOL(get_next_ino);
924 
925 /**
926  *	new_inode_pseudo 	- obtain an inode
927  *	@sb: superblock
928  *
929  *	Allocates a new inode for given superblock.
930  *	Inode wont be chained in superblock s_inodes list
931  *	This means :
932  *	- fs can't be unmount
933  *	- quotas, fsnotify, writeback can't work
934  */
new_inode_pseudo(struct super_block * sb)935 struct inode *new_inode_pseudo(struct super_block *sb)
936 {
937 	struct inode *inode = alloc_inode(sb);
938 
939 	if (inode) {
940 		spin_lock(&inode->i_lock);
941 		inode->i_state = 0;
942 		spin_unlock(&inode->i_lock);
943 		INIT_LIST_HEAD(&inode->i_sb_list);
944 	}
945 	return inode;
946 }
947 
948 /**
949  *	new_inode 	- obtain an inode
950  *	@sb: superblock
951  *
952  *	Allocates a new inode for given superblock. The default gfp_mask
953  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
954  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
955  *	for the page cache are not reclaimable or migratable,
956  *	mapping_set_gfp_mask() must be called with suitable flags on the
957  *	newly created inode's mapping
958  *
959  */
new_inode(struct super_block * sb)960 struct inode *new_inode(struct super_block *sb)
961 {
962 	struct inode *inode;
963 
964 	spin_lock_prefetch(&sb->s_inode_list_lock);
965 
966 	inode = new_inode_pseudo(sb);
967 	if (inode)
968 		inode_sb_list_add(inode);
969 	return inode;
970 }
971 EXPORT_SYMBOL(new_inode);
972 
973 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)974 void lockdep_annotate_inode_mutex_key(struct inode *inode)
975 {
976 	if (S_ISDIR(inode->i_mode)) {
977 		struct file_system_type *type = inode->i_sb->s_type;
978 
979 		/* Set new key only if filesystem hasn't already changed it */
980 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
981 			/*
982 			 * ensure nobody is actually holding i_mutex
983 			 */
984 			// mutex_destroy(&inode->i_mutex);
985 			init_rwsem(&inode->i_rwsem);
986 			lockdep_set_class(&inode->i_rwsem,
987 					  &type->i_mutex_dir_key);
988 		}
989 	}
990 }
991 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
992 #endif
993 
994 /**
995  * unlock_new_inode - clear the I_NEW state and wake up any waiters
996  * @inode:	new inode to unlock
997  *
998  * Called when the inode is fully initialised to clear the new state of the
999  * inode and wake up anyone waiting for the inode to finish initialisation.
1000  */
unlock_new_inode(struct inode * inode)1001 void unlock_new_inode(struct inode *inode)
1002 {
1003 	lockdep_annotate_inode_mutex_key(inode);
1004 	spin_lock(&inode->i_lock);
1005 	WARN_ON(!(inode->i_state & I_NEW));
1006 	inode->i_state &= ~I_NEW & ~I_CREATING;
1007 	smp_mb();
1008 	wake_up_bit(&inode->i_state, __I_NEW);
1009 	spin_unlock(&inode->i_lock);
1010 }
1011 EXPORT_SYMBOL_NS(unlock_new_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
1012 
discard_new_inode(struct inode * inode)1013 void discard_new_inode(struct inode *inode)
1014 {
1015 	lockdep_annotate_inode_mutex_key(inode);
1016 	spin_lock(&inode->i_lock);
1017 	WARN_ON(!(inode->i_state & I_NEW));
1018 	inode->i_state &= ~I_NEW;
1019 	smp_mb();
1020 	wake_up_bit(&inode->i_state, __I_NEW);
1021 	spin_unlock(&inode->i_lock);
1022 	iput(inode);
1023 }
1024 EXPORT_SYMBOL(discard_new_inode);
1025 
1026 /**
1027  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1028  *
1029  * Lock any non-NULL argument. The caller must make sure that if he is passing
1030  * in two directories, one is not ancestor of the other.  Zero, one or two
1031  * objects may be locked by this function.
1032  *
1033  * @inode1: first inode to lock
1034  * @inode2: second inode to lock
1035  * @subclass1: inode lock subclass for the first lock obtained
1036  * @subclass2: inode lock subclass for the second lock obtained
1037  */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1038 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1039 		     unsigned subclass1, unsigned subclass2)
1040 {
1041 	if (!inode1 || !inode2) {
1042 		/*
1043 		 * Make sure @subclass1 will be used for the acquired lock.
1044 		 * This is not strictly necessary (no current caller cares) but
1045 		 * let's keep things consistent.
1046 		 */
1047 		if (!inode1)
1048 			swap(inode1, inode2);
1049 		goto lock;
1050 	}
1051 
1052 	/*
1053 	 * If one object is directory and the other is not, we must make sure
1054 	 * to lock directory first as the other object may be its child.
1055 	 */
1056 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1057 		if (inode1 > inode2)
1058 			swap(inode1, inode2);
1059 	} else if (!S_ISDIR(inode1->i_mode))
1060 		swap(inode1, inode2);
1061 lock:
1062 	if (inode1)
1063 		inode_lock_nested(inode1, subclass1);
1064 	if (inode2 && inode2 != inode1)
1065 		inode_lock_nested(inode2, subclass2);
1066 }
1067 
1068 /**
1069  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1070  *
1071  * Lock any non-NULL argument that is not a directory.
1072  * Zero, one or two objects may be locked by this function.
1073  *
1074  * @inode1: first inode to lock
1075  * @inode2: second inode to lock
1076  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1077 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1078 {
1079 	if (inode1 > inode2)
1080 		swap(inode1, inode2);
1081 
1082 	if (inode1 && !S_ISDIR(inode1->i_mode))
1083 		inode_lock(inode1);
1084 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1085 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1086 }
1087 EXPORT_SYMBOL(lock_two_nondirectories);
1088 
1089 /**
1090  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1091  * @inode1: first inode to unlock
1092  * @inode2: second inode to unlock
1093  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1094 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1095 {
1096 	if (inode1 && !S_ISDIR(inode1->i_mode))
1097 		inode_unlock(inode1);
1098 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1099 		inode_unlock(inode2);
1100 }
1101 EXPORT_SYMBOL(unlock_two_nondirectories);
1102 
1103 /**
1104  * inode_insert5 - obtain an inode from a mounted file system
1105  * @inode:	pre-allocated inode to use for insert to cache
1106  * @hashval:	hash value (usually inode number) to get
1107  * @test:	callback used for comparisons between inodes
1108  * @set:	callback used to initialize a new struct inode
1109  * @data:	opaque data pointer to pass to @test and @set
1110  *
1111  * Search for the inode specified by @hashval and @data in the inode cache,
1112  * and if present it is return it with an increased reference count. This is
1113  * a variant of iget5_locked() for callers that don't want to fail on memory
1114  * allocation of inode.
1115  *
1116  * If the inode is not in cache, insert the pre-allocated inode to cache and
1117  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1118  * to fill it in before unlocking it via unlock_new_inode().
1119  *
1120  * Note both @test and @set are called with the inode_hash_lock held, so can't
1121  * sleep.
1122  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1123 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1124 			    int (*test)(struct inode *, void *),
1125 			    int (*set)(struct inode *, void *), void *data)
1126 {
1127 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1128 	struct inode *old;
1129 	bool creating = inode->i_state & I_CREATING;
1130 
1131 again:
1132 	spin_lock(&inode_hash_lock);
1133 	old = find_inode(inode->i_sb, head, test, data);
1134 	if (unlikely(old)) {
1135 		/*
1136 		 * Uhhuh, somebody else created the same inode under us.
1137 		 * Use the old inode instead of the preallocated one.
1138 		 */
1139 		spin_unlock(&inode_hash_lock);
1140 		if (IS_ERR(old))
1141 			return NULL;
1142 		wait_on_inode(old);
1143 		if (unlikely(inode_unhashed(old))) {
1144 			iput(old);
1145 			goto again;
1146 		}
1147 		return old;
1148 	}
1149 
1150 	if (set && unlikely(set(inode, data))) {
1151 		inode = NULL;
1152 		goto unlock;
1153 	}
1154 
1155 	/*
1156 	 * Return the locked inode with I_NEW set, the
1157 	 * caller is responsible for filling in the contents
1158 	 */
1159 	spin_lock(&inode->i_lock);
1160 	inode->i_state |= I_NEW;
1161 	hlist_add_head_rcu(&inode->i_hash, head);
1162 	spin_unlock(&inode->i_lock);
1163 	if (!creating)
1164 		inode_sb_list_add(inode);
1165 unlock:
1166 	spin_unlock(&inode_hash_lock);
1167 
1168 	return inode;
1169 }
1170 EXPORT_SYMBOL(inode_insert5);
1171 
1172 /**
1173  * iget5_locked - obtain an inode from a mounted file system
1174  * @sb:		super block of file system
1175  * @hashval:	hash value (usually inode number) to get
1176  * @test:	callback used for comparisons between inodes
1177  * @set:	callback used to initialize a new struct inode
1178  * @data:	opaque data pointer to pass to @test and @set
1179  *
1180  * Search for the inode specified by @hashval and @data in the inode cache,
1181  * and if present it is return it with an increased reference count. This is
1182  * a generalized version of iget_locked() for file systems where the inode
1183  * number is not sufficient for unique identification of an inode.
1184  *
1185  * If the inode is not in cache, allocate a new inode and return it locked,
1186  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1187  * before unlocking it via unlock_new_inode().
1188  *
1189  * Note both @test and @set are called with the inode_hash_lock held, so can't
1190  * sleep.
1191  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1192 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1193 		int (*test)(struct inode *, void *),
1194 		int (*set)(struct inode *, void *), void *data)
1195 {
1196 	struct inode *inode = ilookup5(sb, hashval, test, data);
1197 
1198 	if (!inode) {
1199 		struct inode *new = alloc_inode(sb);
1200 
1201 		if (new) {
1202 			new->i_state = 0;
1203 			inode = inode_insert5(new, hashval, test, set, data);
1204 			if (unlikely(inode != new))
1205 				destroy_inode(new);
1206 		}
1207 	}
1208 	return inode;
1209 }
1210 EXPORT_SYMBOL_NS(iget5_locked, ANDROID_GKI_VFS_EXPORT_ONLY);
1211 
1212 /**
1213  * iget_locked - obtain an inode from a mounted file system
1214  * @sb:		super block of file system
1215  * @ino:	inode number to get
1216  *
1217  * Search for the inode specified by @ino in the inode cache and if present
1218  * return it with an increased reference count. This is for file systems
1219  * where the inode number is sufficient for unique identification of an inode.
1220  *
1221  * If the inode is not in cache, allocate a new inode and return it locked,
1222  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1223  * before unlocking it via unlock_new_inode().
1224  */
iget_locked(struct super_block * sb,unsigned long ino)1225 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1226 {
1227 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1228 	struct inode *inode;
1229 again:
1230 	spin_lock(&inode_hash_lock);
1231 	inode = find_inode_fast(sb, head, ino);
1232 	spin_unlock(&inode_hash_lock);
1233 	if (inode) {
1234 		if (IS_ERR(inode))
1235 			return NULL;
1236 		wait_on_inode(inode);
1237 		if (unlikely(inode_unhashed(inode))) {
1238 			iput(inode);
1239 			goto again;
1240 		}
1241 		return inode;
1242 	}
1243 
1244 	inode = alloc_inode(sb);
1245 	if (inode) {
1246 		struct inode *old;
1247 
1248 		spin_lock(&inode_hash_lock);
1249 		/* We released the lock, so.. */
1250 		old = find_inode_fast(sb, head, ino);
1251 		if (!old) {
1252 			inode->i_ino = ino;
1253 			spin_lock(&inode->i_lock);
1254 			inode->i_state = I_NEW;
1255 			hlist_add_head_rcu(&inode->i_hash, head);
1256 			spin_unlock(&inode->i_lock);
1257 			inode_sb_list_add(inode);
1258 			spin_unlock(&inode_hash_lock);
1259 
1260 			/* Return the locked inode with I_NEW set, the
1261 			 * caller is responsible for filling in the contents
1262 			 */
1263 			return inode;
1264 		}
1265 
1266 		/*
1267 		 * Uhhuh, somebody else created the same inode under
1268 		 * us. Use the old inode instead of the one we just
1269 		 * allocated.
1270 		 */
1271 		spin_unlock(&inode_hash_lock);
1272 		destroy_inode(inode);
1273 		if (IS_ERR(old))
1274 			return NULL;
1275 		inode = old;
1276 		wait_on_inode(inode);
1277 		if (unlikely(inode_unhashed(inode))) {
1278 			iput(inode);
1279 			goto again;
1280 		}
1281 	}
1282 	return inode;
1283 }
1284 EXPORT_SYMBOL(iget_locked);
1285 
1286 /*
1287  * search the inode cache for a matching inode number.
1288  * If we find one, then the inode number we are trying to
1289  * allocate is not unique and so we should not use it.
1290  *
1291  * Returns 1 if the inode number is unique, 0 if it is not.
1292  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1293 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1294 {
1295 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1296 	struct inode *inode;
1297 
1298 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1299 		if (inode->i_ino == ino && inode->i_sb == sb)
1300 			return 0;
1301 	}
1302 	return 1;
1303 }
1304 
1305 /**
1306  *	iunique - get a unique inode number
1307  *	@sb: superblock
1308  *	@max_reserved: highest reserved inode number
1309  *
1310  *	Obtain an inode number that is unique on the system for a given
1311  *	superblock. This is used by file systems that have no natural
1312  *	permanent inode numbering system. An inode number is returned that
1313  *	is higher than the reserved limit but unique.
1314  *
1315  *	BUGS:
1316  *	With a large number of inodes live on the file system this function
1317  *	currently becomes quite slow.
1318  */
iunique(struct super_block * sb,ino_t max_reserved)1319 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1320 {
1321 	/*
1322 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1323 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1324 	 * here to attempt to avoid that.
1325 	 */
1326 	static DEFINE_SPINLOCK(iunique_lock);
1327 	static unsigned int counter;
1328 	ino_t res;
1329 
1330 	rcu_read_lock();
1331 	spin_lock(&iunique_lock);
1332 	do {
1333 		if (counter <= max_reserved)
1334 			counter = max_reserved + 1;
1335 		res = counter++;
1336 	} while (!test_inode_iunique(sb, res));
1337 	spin_unlock(&iunique_lock);
1338 	rcu_read_unlock();
1339 
1340 	return res;
1341 }
1342 EXPORT_SYMBOL_NS(iunique, ANDROID_GKI_VFS_EXPORT_ONLY);
1343 
igrab(struct inode * inode)1344 struct inode *igrab(struct inode *inode)
1345 {
1346 	spin_lock(&inode->i_lock);
1347 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1348 		__iget(inode);
1349 		spin_unlock(&inode->i_lock);
1350 	} else {
1351 		spin_unlock(&inode->i_lock);
1352 		/*
1353 		 * Handle the case where s_op->clear_inode is not been
1354 		 * called yet, and somebody is calling igrab
1355 		 * while the inode is getting freed.
1356 		 */
1357 		inode = NULL;
1358 	}
1359 	return inode;
1360 }
1361 EXPORT_SYMBOL(igrab);
1362 
1363 /**
1364  * ilookup5_nowait - search for an inode in the inode cache
1365  * @sb:		super block of file system to search
1366  * @hashval:	hash value (usually inode number) to search for
1367  * @test:	callback used for comparisons between inodes
1368  * @data:	opaque data pointer to pass to @test
1369  *
1370  * Search for the inode specified by @hashval and @data in the inode cache.
1371  * If the inode is in the cache, the inode is returned with an incremented
1372  * reference count.
1373  *
1374  * Note: I_NEW is not waited upon so you have to be very careful what you do
1375  * with the returned inode.  You probably should be using ilookup5() instead.
1376  *
1377  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1378  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1379 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1380 		int (*test)(struct inode *, void *), void *data)
1381 {
1382 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1383 	struct inode *inode;
1384 
1385 	spin_lock(&inode_hash_lock);
1386 	inode = find_inode(sb, head, test, data);
1387 	spin_unlock(&inode_hash_lock);
1388 
1389 	return IS_ERR(inode) ? NULL : inode;
1390 }
1391 EXPORT_SYMBOL(ilookup5_nowait);
1392 
1393 /**
1394  * ilookup5 - search for an inode in the inode cache
1395  * @sb:		super block of file system to search
1396  * @hashval:	hash value (usually inode number) to search for
1397  * @test:	callback used for comparisons between inodes
1398  * @data:	opaque data pointer to pass to @test
1399  *
1400  * Search for the inode specified by @hashval and @data in the inode cache,
1401  * and if the inode is in the cache, return the inode with an incremented
1402  * reference count.  Waits on I_NEW before returning the inode.
1403  * returned with an incremented reference count.
1404  *
1405  * This is a generalized version of ilookup() for file systems where the
1406  * inode number is not sufficient for unique identification of an inode.
1407  *
1408  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1409  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1410 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1411 		int (*test)(struct inode *, void *), void *data)
1412 {
1413 	struct inode *inode;
1414 again:
1415 	inode = ilookup5_nowait(sb, hashval, test, data);
1416 	if (inode) {
1417 		wait_on_inode(inode);
1418 		if (unlikely(inode_unhashed(inode))) {
1419 			iput(inode);
1420 			goto again;
1421 		}
1422 	}
1423 	return inode;
1424 }
1425 EXPORT_SYMBOL_NS(ilookup5, ANDROID_GKI_VFS_EXPORT_ONLY);
1426 
1427 /**
1428  * ilookup - search for an inode in the inode cache
1429  * @sb:		super block of file system to search
1430  * @ino:	inode number to search for
1431  *
1432  * Search for the inode @ino in the inode cache, and if the inode is in the
1433  * cache, the inode is returned with an incremented reference count.
1434  */
ilookup(struct super_block * sb,unsigned long ino)1435 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1436 {
1437 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1438 	struct inode *inode;
1439 again:
1440 	spin_lock(&inode_hash_lock);
1441 	inode = find_inode_fast(sb, head, ino);
1442 	spin_unlock(&inode_hash_lock);
1443 
1444 	if (inode) {
1445 		if (IS_ERR(inode))
1446 			return NULL;
1447 		wait_on_inode(inode);
1448 		if (unlikely(inode_unhashed(inode))) {
1449 			iput(inode);
1450 			goto again;
1451 		}
1452 	}
1453 	return inode;
1454 }
1455 EXPORT_SYMBOL(ilookup);
1456 
1457 /**
1458  * find_inode_nowait - find an inode in the inode cache
1459  * @sb:		super block of file system to search
1460  * @hashval:	hash value (usually inode number) to search for
1461  * @match:	callback used for comparisons between inodes
1462  * @data:	opaque data pointer to pass to @match
1463  *
1464  * Search for the inode specified by @hashval and @data in the inode
1465  * cache, where the helper function @match will return 0 if the inode
1466  * does not match, 1 if the inode does match, and -1 if the search
1467  * should be stopped.  The @match function must be responsible for
1468  * taking the i_lock spin_lock and checking i_state for an inode being
1469  * freed or being initialized, and incrementing the reference count
1470  * before returning 1.  It also must not sleep, since it is called with
1471  * the inode_hash_lock spinlock held.
1472  *
1473  * This is a even more generalized version of ilookup5() when the
1474  * function must never block --- find_inode() can block in
1475  * __wait_on_freeing_inode() --- or when the caller can not increment
1476  * the reference count because the resulting iput() might cause an
1477  * inode eviction.  The tradeoff is that the @match funtion must be
1478  * very carefully implemented.
1479  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1480 struct inode *find_inode_nowait(struct super_block *sb,
1481 				unsigned long hashval,
1482 				int (*match)(struct inode *, unsigned long,
1483 					     void *),
1484 				void *data)
1485 {
1486 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1487 	struct inode *inode, *ret_inode = NULL;
1488 	int mval;
1489 
1490 	spin_lock(&inode_hash_lock);
1491 	hlist_for_each_entry(inode, head, i_hash) {
1492 		if (inode->i_sb != sb)
1493 			continue;
1494 		mval = match(inode, hashval, data);
1495 		if (mval == 0)
1496 			continue;
1497 		if (mval == 1)
1498 			ret_inode = inode;
1499 		goto out;
1500 	}
1501 out:
1502 	spin_unlock(&inode_hash_lock);
1503 	return ret_inode;
1504 }
1505 EXPORT_SYMBOL(find_inode_nowait);
1506 
1507 /**
1508  * find_inode_rcu - find an inode in the inode cache
1509  * @sb:		Super block of file system to search
1510  * @hashval:	Key to hash
1511  * @test:	Function to test match on an inode
1512  * @data:	Data for test function
1513  *
1514  * Search for the inode specified by @hashval and @data in the inode cache,
1515  * where the helper function @test will return 0 if the inode does not match
1516  * and 1 if it does.  The @test function must be responsible for taking the
1517  * i_lock spin_lock and checking i_state for an inode being freed or being
1518  * initialized.
1519  *
1520  * If successful, this will return the inode for which the @test function
1521  * returned 1 and NULL otherwise.
1522  *
1523  * The @test function is not permitted to take a ref on any inode presented.
1524  * It is also not permitted to sleep.
1525  *
1526  * The caller must hold the RCU read lock.
1527  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1528 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1529 			     int (*test)(struct inode *, void *), void *data)
1530 {
1531 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1532 	struct inode *inode;
1533 
1534 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1535 			 "suspicious find_inode_rcu() usage");
1536 
1537 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1538 		if (inode->i_sb == sb &&
1539 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1540 		    test(inode, data))
1541 			return inode;
1542 	}
1543 	return NULL;
1544 }
1545 EXPORT_SYMBOL(find_inode_rcu);
1546 
1547 /**
1548  * find_inode_by_ino_rcu - Find an inode in the inode cache
1549  * @sb:		Super block of file system to search
1550  * @ino:	The inode number to match
1551  *
1552  * Search for the inode specified by @hashval and @data in the inode cache,
1553  * where the helper function @test will return 0 if the inode does not match
1554  * and 1 if it does.  The @test function must be responsible for taking the
1555  * i_lock spin_lock and checking i_state for an inode being freed or being
1556  * initialized.
1557  *
1558  * If successful, this will return the inode for which the @test function
1559  * returned 1 and NULL otherwise.
1560  *
1561  * The @test function is not permitted to take a ref on any inode presented.
1562  * It is also not permitted to sleep.
1563  *
1564  * The caller must hold the RCU read lock.
1565  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1566 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1567 				    unsigned long ino)
1568 {
1569 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1570 	struct inode *inode;
1571 
1572 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1573 			 "suspicious find_inode_by_ino_rcu() usage");
1574 
1575 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1576 		if (inode->i_ino == ino &&
1577 		    inode->i_sb == sb &&
1578 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1579 		    return inode;
1580 	}
1581 	return NULL;
1582 }
1583 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1584 
insert_inode_locked(struct inode * inode)1585 int insert_inode_locked(struct inode *inode)
1586 {
1587 	struct super_block *sb = inode->i_sb;
1588 	ino_t ino = inode->i_ino;
1589 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1590 
1591 	while (1) {
1592 		struct inode *old = NULL;
1593 		spin_lock(&inode_hash_lock);
1594 		hlist_for_each_entry(old, head, i_hash) {
1595 			if (old->i_ino != ino)
1596 				continue;
1597 			if (old->i_sb != sb)
1598 				continue;
1599 			spin_lock(&old->i_lock);
1600 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1601 				spin_unlock(&old->i_lock);
1602 				continue;
1603 			}
1604 			break;
1605 		}
1606 		if (likely(!old)) {
1607 			spin_lock(&inode->i_lock);
1608 			inode->i_state |= I_NEW | I_CREATING;
1609 			hlist_add_head_rcu(&inode->i_hash, head);
1610 			spin_unlock(&inode->i_lock);
1611 			spin_unlock(&inode_hash_lock);
1612 			return 0;
1613 		}
1614 		if (unlikely(old->i_state & I_CREATING)) {
1615 			spin_unlock(&old->i_lock);
1616 			spin_unlock(&inode_hash_lock);
1617 			return -EBUSY;
1618 		}
1619 		__iget(old);
1620 		spin_unlock(&old->i_lock);
1621 		spin_unlock(&inode_hash_lock);
1622 		wait_on_inode(old);
1623 		if (unlikely(!inode_unhashed(old))) {
1624 			iput(old);
1625 			return -EBUSY;
1626 		}
1627 		iput(old);
1628 	}
1629 }
1630 EXPORT_SYMBOL(insert_inode_locked);
1631 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1632 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1633 		int (*test)(struct inode *, void *), void *data)
1634 {
1635 	struct inode *old;
1636 
1637 	inode->i_state |= I_CREATING;
1638 	old = inode_insert5(inode, hashval, test, NULL, data);
1639 
1640 	if (old != inode) {
1641 		iput(old);
1642 		return -EBUSY;
1643 	}
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(insert_inode_locked4);
1647 
1648 
generic_delete_inode(struct inode * inode)1649 int generic_delete_inode(struct inode *inode)
1650 {
1651 	return 1;
1652 }
1653 EXPORT_SYMBOL(generic_delete_inode);
1654 
1655 /*
1656  * Called when we're dropping the last reference
1657  * to an inode.
1658  *
1659  * Call the FS "drop_inode()" function, defaulting to
1660  * the legacy UNIX filesystem behaviour.  If it tells
1661  * us to evict inode, do so.  Otherwise, retain inode
1662  * in cache if fs is alive, sync and evict if fs is
1663  * shutting down.
1664  */
iput_final(struct inode * inode)1665 static void iput_final(struct inode *inode)
1666 {
1667 	struct super_block *sb = inode->i_sb;
1668 	const struct super_operations *op = inode->i_sb->s_op;
1669 	unsigned long state;
1670 	int drop;
1671 
1672 	WARN_ON(inode->i_state & I_NEW);
1673 
1674 	if (op->drop_inode)
1675 		drop = op->drop_inode(inode);
1676 	else
1677 		drop = generic_drop_inode(inode);
1678 
1679 	if (!drop &&
1680 	    !(inode->i_state & I_DONTCACHE) &&
1681 	    (sb->s_flags & SB_ACTIVE)) {
1682 		inode_add_lru(inode);
1683 		spin_unlock(&inode->i_lock);
1684 		return;
1685 	}
1686 
1687 	state = inode->i_state;
1688 	if (!drop) {
1689 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1690 		spin_unlock(&inode->i_lock);
1691 
1692 		write_inode_now(inode, 1);
1693 
1694 		spin_lock(&inode->i_lock);
1695 		state = inode->i_state;
1696 		WARN_ON(state & I_NEW);
1697 		state &= ~I_WILL_FREE;
1698 	}
1699 
1700 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1701 	if (!list_empty(&inode->i_lru))
1702 		inode_lru_list_del(inode);
1703 	spin_unlock(&inode->i_lock);
1704 
1705 	evict(inode);
1706 }
1707 
1708 /**
1709  *	iput	- put an inode
1710  *	@inode: inode to put
1711  *
1712  *	Puts an inode, dropping its usage count. If the inode use count hits
1713  *	zero, the inode is then freed and may also be destroyed.
1714  *
1715  *	Consequently, iput() can sleep.
1716  */
iput(struct inode * inode)1717 void iput(struct inode *inode)
1718 {
1719 	if (!inode)
1720 		return;
1721 	BUG_ON(inode->i_state & I_CLEAR);
1722 retry:
1723 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1724 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1725 			atomic_inc(&inode->i_count);
1726 			spin_unlock(&inode->i_lock);
1727 			trace_writeback_lazytime_iput(inode);
1728 			mark_inode_dirty_sync(inode);
1729 			goto retry;
1730 		}
1731 		iput_final(inode);
1732 	}
1733 }
1734 EXPORT_SYMBOL(iput);
1735 
1736 #ifdef CONFIG_BLOCK
1737 /**
1738  *	bmap	- find a block number in a file
1739  *	@inode:  inode owning the block number being requested
1740  *	@block: pointer containing the block to find
1741  *
1742  *	Replaces the value in ``*block`` with the block number on the device holding
1743  *	corresponding to the requested block number in the file.
1744  *	That is, asked for block 4 of inode 1 the function will replace the
1745  *	4 in ``*block``, with disk block relative to the disk start that holds that
1746  *	block of the file.
1747  *
1748  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1749  *	hole, returns 0 and ``*block`` is also set to 0.
1750  */
bmap(struct inode * inode,sector_t * block)1751 int bmap(struct inode *inode, sector_t *block)
1752 {
1753 	if (!inode->i_mapping->a_ops->bmap)
1754 		return -EINVAL;
1755 
1756 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(bmap);
1760 #endif
1761 
1762 /*
1763  * With relative atime, only update atime if the previous atime is
1764  * earlier than either the ctime or mtime or if at least a day has
1765  * passed since the last atime update.
1766  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1767 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1768 			     struct timespec64 now)
1769 {
1770 
1771 	if (!(mnt->mnt_flags & MNT_RELATIME))
1772 		return 1;
1773 	/*
1774 	 * Is mtime younger than atime? If yes, update atime:
1775 	 */
1776 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1777 		return 1;
1778 	/*
1779 	 * Is ctime younger than atime? If yes, update atime:
1780 	 */
1781 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1782 		return 1;
1783 
1784 	/*
1785 	 * Is the previous atime value older than a day? If yes,
1786 	 * update atime:
1787 	 */
1788 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1789 		return 1;
1790 	/*
1791 	 * Good, we can skip the atime update:
1792 	 */
1793 	return 0;
1794 }
1795 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1796 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1797 {
1798 	int dirty_flags = 0;
1799 
1800 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1801 		if (flags & S_ATIME)
1802 			inode->i_atime = *time;
1803 		if (flags & S_CTIME)
1804 			inode->i_ctime = *time;
1805 		if (flags & S_MTIME)
1806 			inode->i_mtime = *time;
1807 
1808 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1809 			dirty_flags |= I_DIRTY_TIME;
1810 		else
1811 			dirty_flags |= I_DIRTY_SYNC;
1812 	}
1813 
1814 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1815 		dirty_flags |= I_DIRTY_SYNC;
1816 
1817 	__mark_inode_dirty(inode, dirty_flags);
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL(generic_update_time);
1821 
1822 /*
1823  * This does the actual work of updating an inodes time or version.  Must have
1824  * had called mnt_want_write() before calling this.
1825  */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1826 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1827 {
1828 	if (inode->i_op->update_time)
1829 		return inode->i_op->update_time(inode, time, flags);
1830 	return generic_update_time(inode, time, flags);
1831 }
1832 EXPORT_SYMBOL(inode_update_time);
1833 
1834 /**
1835  *	atime_needs_update	-	update the access time
1836  *	@path: the &struct path to update
1837  *	@inode: inode to update
1838  *
1839  *	Update the accessed time on an inode and mark it for writeback.
1840  *	This function automatically handles read only file systems and media,
1841  *	as well as the "noatime" flag and inode specific "noatime" markers.
1842  */
atime_needs_update(const struct path * path,struct inode * inode)1843 bool atime_needs_update(const struct path *path, struct inode *inode)
1844 {
1845 	struct vfsmount *mnt = path->mnt;
1846 	struct timespec64 now;
1847 
1848 	if (inode->i_flags & S_NOATIME)
1849 		return false;
1850 
1851 	/* Atime updates will likely cause i_uid and i_gid to be written
1852 	 * back improprely if their true value is unknown to the vfs.
1853 	 */
1854 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1855 		return false;
1856 
1857 	if (IS_NOATIME(inode))
1858 		return false;
1859 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1860 		return false;
1861 
1862 	if (mnt->mnt_flags & MNT_NOATIME)
1863 		return false;
1864 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1865 		return false;
1866 
1867 	now = current_time(inode);
1868 
1869 	if (!relatime_need_update(mnt, inode, now))
1870 		return false;
1871 
1872 	if (timespec64_equal(&inode->i_atime, &now))
1873 		return false;
1874 
1875 	return true;
1876 }
1877 
touch_atime(const struct path * path)1878 void touch_atime(const struct path *path)
1879 {
1880 	struct vfsmount *mnt = path->mnt;
1881 	struct inode *inode = d_inode(path->dentry);
1882 	struct timespec64 now;
1883 
1884 	if (!atime_needs_update(path, inode))
1885 		return;
1886 
1887 	if (!sb_start_write_trylock(inode->i_sb))
1888 		return;
1889 
1890 	if (__mnt_want_write(mnt) != 0)
1891 		goto skip_update;
1892 	/*
1893 	 * File systems can error out when updating inodes if they need to
1894 	 * allocate new space to modify an inode (such is the case for
1895 	 * Btrfs), but since we touch atime while walking down the path we
1896 	 * really don't care if we failed to update the atime of the file,
1897 	 * so just ignore the return value.
1898 	 * We may also fail on filesystems that have the ability to make parts
1899 	 * of the fs read only, e.g. subvolumes in Btrfs.
1900 	 */
1901 	now = current_time(inode);
1902 	inode_update_time(inode, &now, S_ATIME);
1903 	__mnt_drop_write(mnt);
1904 skip_update:
1905 	sb_end_write(inode->i_sb);
1906 }
1907 EXPORT_SYMBOL_NS(touch_atime, ANDROID_GKI_VFS_EXPORT_ONLY);
1908 
1909 /*
1910  * Return mask of changes for notify_change() that need to be done as a
1911  * response to write or truncate. Return 0 if nothing has to be changed.
1912  * Negative value on error (change should be denied).
1913  */
dentry_needs_remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry)1914 int dentry_needs_remove_privs(struct user_namespace *mnt_userns,
1915 			      struct dentry *dentry)
1916 {
1917 	struct inode *inode = d_inode(dentry);
1918 	int mask = 0;
1919 	int ret;
1920 
1921 	if (IS_NOSEC(inode))
1922 		return 0;
1923 
1924 	mask = setattr_should_drop_suidgid(mnt_userns, inode);
1925 	ret = security_inode_need_killpriv(dentry);
1926 	if (ret < 0)
1927 		return ret;
1928 	if (ret)
1929 		mask |= ATTR_KILL_PRIV;
1930 	return mask;
1931 }
1932 
__remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry,int kill)1933 static int __remove_privs(struct user_namespace *mnt_userns,
1934 			  struct dentry *dentry, int kill)
1935 {
1936 	struct iattr newattrs;
1937 
1938 	newattrs.ia_valid = ATTR_FORCE | kill;
1939 	/*
1940 	 * Note we call this on write, so notify_change will not
1941 	 * encounter any conflicting delegations:
1942 	 */
1943 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1944 }
1945 
1946 /*
1947  * Remove special file priviledges (suid, capabilities) when file is written
1948  * to or truncated.
1949  */
file_remove_privs(struct file * file)1950 int file_remove_privs(struct file *file)
1951 {
1952 	struct dentry *dentry = file_dentry(file);
1953 	struct inode *inode = file_inode(file);
1954 	int kill;
1955 	int error = 0;
1956 
1957 	/*
1958 	 * Fast path for nothing security related.
1959 	 * As well for non-regular files, e.g. blkdev inodes.
1960 	 * For example, blkdev_write_iter() might get here
1961 	 * trying to remove privs which it is not allowed to.
1962 	 */
1963 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1964 		return 0;
1965 
1966 	kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry);
1967 	if (kill < 0)
1968 		return kill;
1969 	if (kill)
1970 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1971 	if (!error)
1972 		inode_has_no_xattr(inode);
1973 
1974 	return error;
1975 }
1976 EXPORT_SYMBOL_NS(file_remove_privs, ANDROID_GKI_VFS_EXPORT_ONLY);
1977 
1978 /**
1979  *	file_update_time	-	update mtime and ctime time
1980  *	@file: file accessed
1981  *
1982  *	Update the mtime and ctime members of an inode and mark the inode
1983  *	for writeback.  Note that this function is meant exclusively for
1984  *	usage in the file write path of filesystems, and filesystems may
1985  *	choose to explicitly ignore update via this function with the
1986  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1987  *	timestamps are handled by the server.  This can return an error for
1988  *	file systems who need to allocate space in order to update an inode.
1989  */
1990 
file_update_time(struct file * file)1991 int file_update_time(struct file *file)
1992 {
1993 	struct inode *inode = file_inode(file);
1994 	struct timespec64 now;
1995 	int sync_it = 0;
1996 	int ret;
1997 
1998 	/* First try to exhaust all avenues to not sync */
1999 	if (IS_NOCMTIME(inode))
2000 		return 0;
2001 
2002 	now = current_time(inode);
2003 	if (!timespec64_equal(&inode->i_mtime, &now))
2004 		sync_it = S_MTIME;
2005 
2006 	if (!timespec64_equal(&inode->i_ctime, &now))
2007 		sync_it |= S_CTIME;
2008 
2009 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2010 		sync_it |= S_VERSION;
2011 
2012 	if (!sync_it)
2013 		return 0;
2014 
2015 	/* Finally allowed to write? Takes lock. */
2016 	if (__mnt_want_write_file(file))
2017 		return 0;
2018 
2019 	ret = inode_update_time(inode, &now, sync_it);
2020 	__mnt_drop_write_file(file);
2021 
2022 	return ret;
2023 }
2024 EXPORT_SYMBOL(file_update_time);
2025 
2026 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2027 int file_modified(struct file *file)
2028 {
2029 	int err;
2030 
2031 	/*
2032 	 * Clear the security bits if the process is not being run by root.
2033 	 * This keeps people from modifying setuid and setgid binaries.
2034 	 */
2035 	err = file_remove_privs(file);
2036 	if (err)
2037 		return err;
2038 
2039 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2040 		return 0;
2041 
2042 	return file_update_time(file);
2043 }
2044 EXPORT_SYMBOL(file_modified);
2045 
inode_needs_sync(struct inode * inode)2046 int inode_needs_sync(struct inode *inode)
2047 {
2048 	if (IS_SYNC(inode))
2049 		return 1;
2050 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2051 		return 1;
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL(inode_needs_sync);
2055 
2056 /*
2057  * If we try to find an inode in the inode hash while it is being
2058  * deleted, we have to wait until the filesystem completes its
2059  * deletion before reporting that it isn't found.  This function waits
2060  * until the deletion _might_ have completed.  Callers are responsible
2061  * to recheck inode state.
2062  *
2063  * It doesn't matter if I_NEW is not set initially, a call to
2064  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2065  * will DTRT.
2066  */
__wait_on_freeing_inode(struct inode * inode)2067 static void __wait_on_freeing_inode(struct inode *inode)
2068 {
2069 	wait_queue_head_t *wq;
2070 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2071 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2072 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2073 	spin_unlock(&inode->i_lock);
2074 	spin_unlock(&inode_hash_lock);
2075 	schedule();
2076 	finish_wait(wq, &wait.wq_entry);
2077 	spin_lock(&inode_hash_lock);
2078 }
2079 
2080 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2081 static int __init set_ihash_entries(char *str)
2082 {
2083 	if (!str)
2084 		return 0;
2085 	ihash_entries = simple_strtoul(str, &str, 0);
2086 	return 1;
2087 }
2088 __setup("ihash_entries=", set_ihash_entries);
2089 
2090 /*
2091  * Initialize the waitqueues and inode hash table.
2092  */
inode_init_early(void)2093 void __init inode_init_early(void)
2094 {
2095 	/* If hashes are distributed across NUMA nodes, defer
2096 	 * hash allocation until vmalloc space is available.
2097 	 */
2098 	if (hashdist)
2099 		return;
2100 
2101 	inode_hashtable =
2102 		alloc_large_system_hash("Inode-cache",
2103 					sizeof(struct hlist_head),
2104 					ihash_entries,
2105 					14,
2106 					HASH_EARLY | HASH_ZERO,
2107 					&i_hash_shift,
2108 					&i_hash_mask,
2109 					0,
2110 					0);
2111 }
2112 
inode_init(void)2113 void __init inode_init(void)
2114 {
2115 	/* inode slab cache */
2116 	inode_cachep = kmem_cache_create("inode_cache",
2117 					 sizeof(struct inode),
2118 					 0,
2119 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2120 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2121 					 init_once);
2122 
2123 	/* Hash may have been set up in inode_init_early */
2124 	if (!hashdist)
2125 		return;
2126 
2127 	inode_hashtable =
2128 		alloc_large_system_hash("Inode-cache",
2129 					sizeof(struct hlist_head),
2130 					ihash_entries,
2131 					14,
2132 					HASH_ZERO,
2133 					&i_hash_shift,
2134 					&i_hash_mask,
2135 					0,
2136 					0);
2137 }
2138 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2139 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2140 {
2141 	inode->i_mode = mode;
2142 	if (S_ISCHR(mode)) {
2143 		inode->i_fop = &def_chr_fops;
2144 		inode->i_rdev = rdev;
2145 	} else if (S_ISBLK(mode)) {
2146 		inode->i_fop = &def_blk_fops;
2147 		inode->i_rdev = rdev;
2148 	} else if (S_ISFIFO(mode))
2149 		inode->i_fop = &pipefifo_fops;
2150 	else if (S_ISSOCK(mode))
2151 		;	/* leave it no_open_fops */
2152 	else
2153 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2154 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2155 				  inode->i_ino);
2156 }
2157 EXPORT_SYMBOL_NS(init_special_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
2158 
2159 /**
2160  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2161  * @mnt_userns:	User namespace of the mount the inode was created from
2162  * @inode: New inode
2163  * @dir: Directory inode
2164  * @mode: mode of the new inode
2165  *
2166  * If the inode has been created through an idmapped mount the user namespace of
2167  * the vfsmount must be passed through @mnt_userns. This function will then take
2168  * care to map the inode according to @mnt_userns before checking permissions
2169  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2170  * checking is to be performed on the raw inode simply passs init_user_ns.
2171  */
inode_init_owner(struct user_namespace * mnt_userns,struct inode * inode,const struct inode * dir,umode_t mode)2172 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2173 		      const struct inode *dir, umode_t mode)
2174 {
2175 	inode_fsuid_set(inode, mnt_userns);
2176 	if (dir && dir->i_mode & S_ISGID) {
2177 		inode->i_gid = dir->i_gid;
2178 
2179 		/* Directories are special, and always inherit S_ISGID */
2180 		if (S_ISDIR(mode))
2181 			mode |= S_ISGID;
2182 	} else
2183 		inode_fsgid_set(inode, mnt_userns);
2184 	inode->i_mode = mode;
2185 }
2186 EXPORT_SYMBOL_NS(inode_init_owner, ANDROID_GKI_VFS_EXPORT_ONLY);
2187 
2188 /**
2189  * inode_owner_or_capable - check current task permissions to inode
2190  * @mnt_userns:	user namespace of the mount the inode was found from
2191  * @inode: inode being checked
2192  *
2193  * Return true if current either has CAP_FOWNER in a namespace with the
2194  * inode owner uid mapped, or owns the file.
2195  *
2196  * If the inode has been found through an idmapped mount the user namespace of
2197  * the vfsmount must be passed through @mnt_userns. This function will then take
2198  * care to map the inode according to @mnt_userns before checking permissions.
2199  * On non-idmapped mounts or if permission checking is to be performed on the
2200  * raw inode simply passs init_user_ns.
2201  */
inode_owner_or_capable(struct user_namespace * mnt_userns,const struct inode * inode)2202 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2203 			    const struct inode *inode)
2204 {
2205 	kuid_t i_uid;
2206 	struct user_namespace *ns;
2207 
2208 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2209 	if (uid_eq(current_fsuid(), i_uid))
2210 		return true;
2211 
2212 	ns = current_user_ns();
2213 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2214 		return true;
2215 	return false;
2216 }
2217 EXPORT_SYMBOL(inode_owner_or_capable);
2218 
2219 /*
2220  * Direct i/o helper functions
2221  */
__inode_dio_wait(struct inode * inode)2222 static void __inode_dio_wait(struct inode *inode)
2223 {
2224 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2225 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2226 
2227 	do {
2228 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2229 		if (atomic_read(&inode->i_dio_count))
2230 			schedule();
2231 	} while (atomic_read(&inode->i_dio_count));
2232 	finish_wait(wq, &q.wq_entry);
2233 }
2234 
2235 /**
2236  * inode_dio_wait - wait for outstanding DIO requests to finish
2237  * @inode: inode to wait for
2238  *
2239  * Waits for all pending direct I/O requests to finish so that we can
2240  * proceed with a truncate or equivalent operation.
2241  *
2242  * Must be called under a lock that serializes taking new references
2243  * to i_dio_count, usually by inode->i_mutex.
2244  */
inode_dio_wait(struct inode * inode)2245 void inode_dio_wait(struct inode *inode)
2246 {
2247 	if (atomic_read(&inode->i_dio_count))
2248 		__inode_dio_wait(inode);
2249 }
2250 EXPORT_SYMBOL_NS(inode_dio_wait, ANDROID_GKI_VFS_EXPORT_ONLY);
2251 
2252 /*
2253  * inode_set_flags - atomically set some inode flags
2254  *
2255  * Note: the caller should be holding i_mutex, or else be sure that
2256  * they have exclusive access to the inode structure (i.e., while the
2257  * inode is being instantiated).  The reason for the cmpxchg() loop
2258  * --- which wouldn't be necessary if all code paths which modify
2259  * i_flags actually followed this rule, is that there is at least one
2260  * code path which doesn't today so we use cmpxchg() out of an abundance
2261  * of caution.
2262  *
2263  * In the long run, i_mutex is overkill, and we should probably look
2264  * at using the i_lock spinlock to protect i_flags, and then make sure
2265  * it is so documented in include/linux/fs.h and that all code follows
2266  * the locking convention!!
2267  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2268 void inode_set_flags(struct inode *inode, unsigned int flags,
2269 		     unsigned int mask)
2270 {
2271 	WARN_ON_ONCE(flags & ~mask);
2272 	set_mask_bits(&inode->i_flags, mask, flags);
2273 }
2274 EXPORT_SYMBOL_NS(inode_set_flags, ANDROID_GKI_VFS_EXPORT_ONLY);
2275 
inode_nohighmem(struct inode * inode)2276 void inode_nohighmem(struct inode *inode)
2277 {
2278 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2279 }
2280 EXPORT_SYMBOL(inode_nohighmem);
2281 
2282 /**
2283  * timestamp_truncate - Truncate timespec to a granularity
2284  * @t: Timespec
2285  * @inode: inode being updated
2286  *
2287  * Truncate a timespec to the granularity supported by the fs
2288  * containing the inode. Always rounds down. gran must
2289  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2290  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2291 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2292 {
2293 	struct super_block *sb = inode->i_sb;
2294 	unsigned int gran = sb->s_time_gran;
2295 
2296 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2297 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2298 		t.tv_nsec = 0;
2299 
2300 	/* Avoid division in the common cases 1 ns and 1 s. */
2301 	if (gran == 1)
2302 		; /* nothing */
2303 	else if (gran == NSEC_PER_SEC)
2304 		t.tv_nsec = 0;
2305 	else if (gran > 1 && gran < NSEC_PER_SEC)
2306 		t.tv_nsec -= t.tv_nsec % gran;
2307 	else
2308 		WARN(1, "invalid file time granularity: %u", gran);
2309 	return t;
2310 }
2311 EXPORT_SYMBOL_NS(timestamp_truncate, ANDROID_GKI_VFS_EXPORT_ONLY);
2312 
2313 /**
2314  * current_time - Return FS time
2315  * @inode: inode.
2316  *
2317  * Return the current time truncated to the time granularity supported by
2318  * the fs.
2319  *
2320  * Note that inode and inode->sb cannot be NULL.
2321  * Otherwise, the function warns and returns time without truncation.
2322  */
current_time(struct inode * inode)2323 struct timespec64 current_time(struct inode *inode)
2324 {
2325 	struct timespec64 now;
2326 
2327 	ktime_get_coarse_real_ts64(&now);
2328 
2329 	if (unlikely(!inode->i_sb)) {
2330 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2331 		return now;
2332 	}
2333 
2334 	return timestamp_truncate(now, inode);
2335 }
2336 EXPORT_SYMBOL(current_time);
2337 
2338 /**
2339  * inode_set_ctime_current - set the ctime to current_time
2340  * @inode: inode
2341  *
2342  * Set the inode->i_ctime to the current value for the inode. Returns
2343  * the current value that was assigned to i_ctime.
2344  */
inode_set_ctime_current(struct inode * inode)2345 struct timespec64 inode_set_ctime_current(struct inode *inode)
2346 {
2347 	struct timespec64 now = current_time(inode);
2348 
2349 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2350 	return now;
2351 }
2352 EXPORT_SYMBOL(inode_set_ctime_current);
2353 
2354 /**
2355  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2356  * @mnt_userns: user namespace of the mount @inode was found from
2357  * @inode:	inode to check
2358  * @gid:	the new/current gid of @inode
2359  *
2360  * Check wether @gid is in the caller's group list or if the caller is
2361  * privileged with CAP_FSETID over @inode. This can be used to determine
2362  * whether the setgid bit can be kept or must be dropped.
2363  *
2364  * Return: true if the caller is sufficiently privileged, false if not.
2365  */
in_group_or_capable(struct user_namespace * mnt_userns,const struct inode * inode,kgid_t gid)2366 bool in_group_or_capable(struct user_namespace *mnt_userns,
2367 			 const struct inode *inode, kgid_t gid)
2368 {
2369 	if (in_group_p(gid))
2370 		return true;
2371 	if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
2372 		return true;
2373 	return false;
2374 }
2375 
2376 /**
2377  * mode_strip_sgid - handle the sgid bit for non-directories
2378  * @mnt_userns: User namespace of the mount the inode was created from
2379  * @dir: parent directory inode
2380  * @mode: mode of the file to be created in @dir
2381  *
2382  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2383  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2384  * either in the group of the parent directory or they have CAP_FSETID
2385  * in their user namespace and are privileged over the parent directory.
2386  * In all other cases, strip the S_ISGID bit from @mode.
2387  *
2388  * Return: the new mode to use for the file
2389  */
mode_strip_sgid(struct user_namespace * mnt_userns,const struct inode * dir,umode_t mode)2390 umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2391 			const struct inode *dir, umode_t mode)
2392 {
2393 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2394 		return mode;
2395 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2396 		return mode;
2397 	if (in_group_or_capable(mnt_userns, dir,
2398 				i_gid_into_mnt(mnt_userns, dir)))
2399 		return mode;
2400 	return mode & ~S_ISGID;
2401 }
2402 EXPORT_SYMBOL(mode_strip_sgid);
2403