1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
lockdep_enabled(void)83 static __always_inline bool lockdep_enabled(void)
84 {
85 if (!debug_locks)
86 return false;
87
88 if (this_cpu_read(lockdep_recursion))
89 return false;
90
91 if (current->lockdep_recursion)
92 return false;
93
94 return true;
95 }
96
97 /*
98 * lockdep_lock: protects the lockdep graph, the hashes and the
99 * class/list/hash allocators.
100 *
101 * This is one of the rare exceptions where it's justified
102 * to use a raw spinlock - we really dont want the spinlock
103 * code to recurse back into the lockdep code...
104 */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
lockdep_lock(void)108 static inline void lockdep_lock(void)
109 {
110 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112 __this_cpu_inc(lockdep_recursion);
113 arch_spin_lock(&__lock);
114 __owner = current;
115 }
116
lockdep_unlock(void)117 static inline void lockdep_unlock(void)
118 {
119 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 return;
123
124 __owner = NULL;
125 arch_spin_unlock(&__lock);
126 __this_cpu_dec(lockdep_recursion);
127 }
128
lockdep_assert_locked(void)129 static inline bool lockdep_assert_locked(void)
130 {
131 return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
graph_lock(void)137 static int graph_lock(void)
138 {
139 lockdep_lock();
140 /*
141 * Make sure that if another CPU detected a bug while
142 * walking the graph we dont change it (while the other
143 * CPU is busy printing out stuff with the graph lock
144 * dropped already)
145 */
146 if (!debug_locks) {
147 lockdep_unlock();
148 return 0;
149 }
150 return 1;
151 }
152
graph_unlock(void)153 static inline void graph_unlock(void)
154 {
155 lockdep_unlock();
156 }
157
158 /*
159 * Turn lock debugging off and return with 0 if it was off already,
160 * and also release the graph lock:
161 */
debug_locks_off_graph_unlock(void)162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 int ret = debug_locks_off();
165
166 lockdep_unlock();
167
168 return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176 * All data structures here are protected by the global debug_lock.
177 *
178 * nr_lock_classes is the number of elements of lock_classes[] that is
179 * in use.
180 */
181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 unsigned long max_lock_class_idx;
187 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
188 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
189
hlock_class(struct held_lock * hlock)190 static inline struct lock_class *hlock_class(struct held_lock *hlock)
191 {
192 unsigned int class_idx = hlock->class_idx;
193
194 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
195 barrier();
196
197 if (!test_bit(class_idx, lock_classes_in_use)) {
198 /*
199 * Someone passed in garbage, we give up.
200 */
201 DEBUG_LOCKS_WARN_ON(1);
202 return NULL;
203 }
204
205 /*
206 * At this point, if the passed hlock->class_idx is still garbage,
207 * we just have to live with it
208 */
209 return lock_classes + class_idx;
210 }
211
212 #ifdef CONFIG_LOCK_STAT
213 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
214
lockstat_clock(void)215 static inline u64 lockstat_clock(void)
216 {
217 return local_clock();
218 }
219
lock_point(unsigned long points[],unsigned long ip)220 static int lock_point(unsigned long points[], unsigned long ip)
221 {
222 int i;
223
224 for (i = 0; i < LOCKSTAT_POINTS; i++) {
225 if (points[i] == 0) {
226 points[i] = ip;
227 break;
228 }
229 if (points[i] == ip)
230 break;
231 }
232
233 return i;
234 }
235
lock_time_inc(struct lock_time * lt,u64 time)236 static void lock_time_inc(struct lock_time *lt, u64 time)
237 {
238 if (time > lt->max)
239 lt->max = time;
240
241 if (time < lt->min || !lt->nr)
242 lt->min = time;
243
244 lt->total += time;
245 lt->nr++;
246 }
247
lock_time_add(struct lock_time * src,struct lock_time * dst)248 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
249 {
250 if (!src->nr)
251 return;
252
253 if (src->max > dst->max)
254 dst->max = src->max;
255
256 if (src->min < dst->min || !dst->nr)
257 dst->min = src->min;
258
259 dst->total += src->total;
260 dst->nr += src->nr;
261 }
262
lock_stats(struct lock_class * class)263 struct lock_class_stats lock_stats(struct lock_class *class)
264 {
265 struct lock_class_stats stats;
266 int cpu, i;
267
268 memset(&stats, 0, sizeof(struct lock_class_stats));
269 for_each_possible_cpu(cpu) {
270 struct lock_class_stats *pcs =
271 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
272
273 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
274 stats.contention_point[i] += pcs->contention_point[i];
275
276 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
277 stats.contending_point[i] += pcs->contending_point[i];
278
279 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
280 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
281
282 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
283 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
284
285 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
286 stats.bounces[i] += pcs->bounces[i];
287 }
288
289 return stats;
290 }
291
clear_lock_stats(struct lock_class * class)292 void clear_lock_stats(struct lock_class *class)
293 {
294 int cpu;
295
296 for_each_possible_cpu(cpu) {
297 struct lock_class_stats *cpu_stats =
298 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
299
300 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
301 }
302 memset(class->contention_point, 0, sizeof(class->contention_point));
303 memset(class->contending_point, 0, sizeof(class->contending_point));
304 }
305
get_lock_stats(struct lock_class * class)306 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
307 {
308 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
309 }
310
lock_release_holdtime(struct held_lock * hlock)311 static void lock_release_holdtime(struct held_lock *hlock)
312 {
313 struct lock_class_stats *stats;
314 u64 holdtime;
315
316 if (!lock_stat)
317 return;
318
319 holdtime = lockstat_clock() - hlock->holdtime_stamp;
320
321 stats = get_lock_stats(hlock_class(hlock));
322 if (hlock->read)
323 lock_time_inc(&stats->read_holdtime, holdtime);
324 else
325 lock_time_inc(&stats->write_holdtime, holdtime);
326 }
327 #else
lock_release_holdtime(struct held_lock * hlock)328 static inline void lock_release_holdtime(struct held_lock *hlock)
329 {
330 }
331 #endif
332
333 /*
334 * We keep a global list of all lock classes. The list is only accessed with
335 * the lockdep spinlock lock held. free_lock_classes is a list with free
336 * elements. These elements are linked together by the lock_entry member in
337 * struct lock_class.
338 */
339 static LIST_HEAD(all_lock_classes);
340 static LIST_HEAD(free_lock_classes);
341
342 /**
343 * struct pending_free - information about data structures about to be freed
344 * @zapped: Head of a list with struct lock_class elements.
345 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
346 * are about to be freed.
347 */
348 struct pending_free {
349 struct list_head zapped;
350 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
351 };
352
353 /**
354 * struct delayed_free - data structures used for delayed freeing
355 *
356 * A data structure for delayed freeing of data structures that may be
357 * accessed by RCU readers at the time these were freed.
358 *
359 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
360 * @index: Index of @pf to which freed data structures are added.
361 * @scheduled: Whether or not an RCU callback has been scheduled.
362 * @pf: Array with information about data structures about to be freed.
363 */
364 static struct delayed_free {
365 struct rcu_head rcu_head;
366 int index;
367 int scheduled;
368 struct pending_free pf[2];
369 } delayed_free;
370
371 /*
372 * The lockdep classes are in a hash-table as well, for fast lookup:
373 */
374 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
375 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
376 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
377 #define classhashentry(key) (classhash_table + __classhashfn((key)))
378
379 static struct hlist_head classhash_table[CLASSHASH_SIZE];
380
381 /*
382 * We put the lock dependency chains into a hash-table as well, to cache
383 * their existence:
384 */
385 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
386 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
387 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
388 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
389
390 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
391
392 /*
393 * the id of held_lock
394 */
hlock_id(struct held_lock * hlock)395 static inline u16 hlock_id(struct held_lock *hlock)
396 {
397 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
398
399 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
400 }
401
chain_hlock_class_idx(u16 hlock_id)402 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
403 {
404 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
405 }
406
407 /*
408 * The hash key of the lock dependency chains is a hash itself too:
409 * it's a hash of all locks taken up to that lock, including that lock.
410 * It's a 64-bit hash, because it's important for the keys to be
411 * unique.
412 */
iterate_chain_key(u64 key,u32 idx)413 static inline u64 iterate_chain_key(u64 key, u32 idx)
414 {
415 u32 k0 = key, k1 = key >> 32;
416
417 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
418
419 return k0 | (u64)k1 << 32;
420 }
421
lockdep_init_task(struct task_struct * task)422 void lockdep_init_task(struct task_struct *task)
423 {
424 task->lockdep_depth = 0; /* no locks held yet */
425 task->curr_chain_key = INITIAL_CHAIN_KEY;
426 task->lockdep_recursion = 0;
427 }
428
lockdep_recursion_inc(void)429 static __always_inline void lockdep_recursion_inc(void)
430 {
431 __this_cpu_inc(lockdep_recursion);
432 }
433
lockdep_recursion_finish(void)434 static __always_inline void lockdep_recursion_finish(void)
435 {
436 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
437 __this_cpu_write(lockdep_recursion, 0);
438 }
439
lockdep_set_selftest_task(struct task_struct * task)440 void lockdep_set_selftest_task(struct task_struct *task)
441 {
442 lockdep_selftest_task_struct = task;
443 }
444
445 /*
446 * Debugging switches:
447 */
448
449 #define VERBOSE 0
450 #define VERY_VERBOSE 0
451
452 #if VERBOSE
453 # define HARDIRQ_VERBOSE 1
454 # define SOFTIRQ_VERBOSE 1
455 #else
456 # define HARDIRQ_VERBOSE 0
457 # define SOFTIRQ_VERBOSE 0
458 #endif
459
460 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
461 /*
462 * Quick filtering for interesting events:
463 */
class_filter(struct lock_class * class)464 static int class_filter(struct lock_class *class)
465 {
466 #if 0
467 /* Example */
468 if (class->name_version == 1 &&
469 !strcmp(class->name, "lockname"))
470 return 1;
471 if (class->name_version == 1 &&
472 !strcmp(class->name, "&struct->lockfield"))
473 return 1;
474 #endif
475 /* Filter everything else. 1 would be to allow everything else */
476 return 0;
477 }
478 #endif
479
verbose(struct lock_class * class)480 static int verbose(struct lock_class *class)
481 {
482 #if VERBOSE
483 return class_filter(class);
484 #endif
485 return 0;
486 }
487
print_lockdep_off(const char * bug_msg)488 static void print_lockdep_off(const char *bug_msg)
489 {
490 printk(KERN_DEBUG "%s\n", bug_msg);
491 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
492 #ifdef CONFIG_LOCK_STAT
493 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
494 #endif
495 }
496
497 unsigned long nr_stack_trace_entries;
498
499 #ifdef CONFIG_PROVE_LOCKING
500 /**
501 * struct lock_trace - single stack backtrace
502 * @hash_entry: Entry in a stack_trace_hash[] list.
503 * @hash: jhash() of @entries.
504 * @nr_entries: Number of entries in @entries.
505 * @entries: Actual stack backtrace.
506 */
507 struct lock_trace {
508 struct hlist_node hash_entry;
509 u32 hash;
510 u32 nr_entries;
511 unsigned long entries[] __aligned(sizeof(unsigned long));
512 };
513 #define LOCK_TRACE_SIZE_IN_LONGS \
514 (sizeof(struct lock_trace) / sizeof(unsigned long))
515 /*
516 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
517 */
518 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
519 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
520
traces_identical(struct lock_trace * t1,struct lock_trace * t2)521 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
522 {
523 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
524 memcmp(t1->entries, t2->entries,
525 t1->nr_entries * sizeof(t1->entries[0])) == 0;
526 }
527
save_trace(void)528 static struct lock_trace *save_trace(void)
529 {
530 struct lock_trace *trace, *t2;
531 struct hlist_head *hash_head;
532 u32 hash;
533 int max_entries;
534
535 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
536 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
537
538 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
539 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
540 LOCK_TRACE_SIZE_IN_LONGS;
541
542 if (max_entries <= 0) {
543 if (!debug_locks_off_graph_unlock())
544 return NULL;
545
546 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
547 dump_stack();
548
549 return NULL;
550 }
551 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
552
553 hash = jhash(trace->entries, trace->nr_entries *
554 sizeof(trace->entries[0]), 0);
555 trace->hash = hash;
556 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
557 hlist_for_each_entry(t2, hash_head, hash_entry) {
558 if (traces_identical(trace, t2))
559 return t2;
560 }
561 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
562 hlist_add_head(&trace->hash_entry, hash_head);
563
564 return trace;
565 }
566
567 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)568 u64 lockdep_stack_trace_count(void)
569 {
570 struct lock_trace *trace;
571 u64 c = 0;
572 int i;
573
574 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
575 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
576 c++;
577 }
578 }
579
580 return c;
581 }
582
583 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)584 u64 lockdep_stack_hash_count(void)
585 {
586 u64 c = 0;
587 int i;
588
589 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
590 if (!hlist_empty(&stack_trace_hash[i]))
591 c++;
592
593 return c;
594 }
595 #endif
596
597 unsigned int nr_hardirq_chains;
598 unsigned int nr_softirq_chains;
599 unsigned int nr_process_chains;
600 unsigned int max_lockdep_depth;
601
602 #ifdef CONFIG_DEBUG_LOCKDEP
603 /*
604 * Various lockdep statistics:
605 */
606 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
607 #endif
608
609 #ifdef CONFIG_PROVE_LOCKING
610 /*
611 * Locking printouts:
612 */
613
614 #define __USAGE(__STATE) \
615 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
616 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
617 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
618 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
619
620 static const char *usage_str[] =
621 {
622 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
623 #include "lockdep_states.h"
624 #undef LOCKDEP_STATE
625 [LOCK_USED] = "INITIAL USE",
626 [LOCK_USED_READ] = "INITIAL READ USE",
627 /* abused as string storage for verify_lock_unused() */
628 [LOCK_USAGE_STATES] = "IN-NMI",
629 };
630 #endif
631
__get_key_name(const struct lockdep_subclass_key * key,char * str)632 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
633 {
634 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
635 }
636
lock_flag(enum lock_usage_bit bit)637 static inline unsigned long lock_flag(enum lock_usage_bit bit)
638 {
639 return 1UL << bit;
640 }
641
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)642 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
643 {
644 /*
645 * The usage character defaults to '.' (i.e., irqs disabled and not in
646 * irq context), which is the safest usage category.
647 */
648 char c = '.';
649
650 /*
651 * The order of the following usage checks matters, which will
652 * result in the outcome character as follows:
653 *
654 * - '+': irq is enabled and not in irq context
655 * - '-': in irq context and irq is disabled
656 * - '?': in irq context and irq is enabled
657 */
658 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
659 c = '+';
660 if (class->usage_mask & lock_flag(bit))
661 c = '?';
662 } else if (class->usage_mask & lock_flag(bit))
663 c = '-';
664
665 return c;
666 }
667
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])668 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
669 {
670 int i = 0;
671
672 #define LOCKDEP_STATE(__STATE) \
673 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
674 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
675 #include "lockdep_states.h"
676 #undef LOCKDEP_STATE
677
678 usage[i] = '\0';
679 }
680
__print_lock_name(struct lock_class * class)681 static void __print_lock_name(struct lock_class *class)
682 {
683 char str[KSYM_NAME_LEN];
684 const char *name;
685
686 name = class->name;
687 if (!name) {
688 name = __get_key_name(class->key, str);
689 printk(KERN_CONT "%s", name);
690 } else {
691 printk(KERN_CONT "%s", name);
692 if (class->name_version > 1)
693 printk(KERN_CONT "#%d", class->name_version);
694 if (class->subclass)
695 printk(KERN_CONT "/%d", class->subclass);
696 }
697 }
698
print_lock_name(struct lock_class * class)699 static void print_lock_name(struct lock_class *class)
700 {
701 char usage[LOCK_USAGE_CHARS];
702
703 get_usage_chars(class, usage);
704
705 printk(KERN_CONT " (");
706 __print_lock_name(class);
707 printk(KERN_CONT "){%s}-{%d:%d}", usage,
708 class->wait_type_outer ?: class->wait_type_inner,
709 class->wait_type_inner);
710 }
711
print_lockdep_cache(struct lockdep_map * lock)712 static void print_lockdep_cache(struct lockdep_map *lock)
713 {
714 const char *name;
715 char str[KSYM_NAME_LEN];
716
717 name = lock->name;
718 if (!name)
719 name = __get_key_name(lock->key->subkeys, str);
720
721 printk(KERN_CONT "%s", name);
722 }
723
print_lock(struct held_lock * hlock)724 static void print_lock(struct held_lock *hlock)
725 {
726 /*
727 * We can be called locklessly through debug_show_all_locks() so be
728 * extra careful, the hlock might have been released and cleared.
729 *
730 * If this indeed happens, lets pretend it does not hurt to continue
731 * to print the lock unless the hlock class_idx does not point to a
732 * registered class. The rationale here is: since we don't attempt
733 * to distinguish whether we are in this situation, if it just
734 * happened we can't count on class_idx to tell either.
735 */
736 struct lock_class *lock = hlock_class(hlock);
737
738 if (!lock) {
739 printk(KERN_CONT "<RELEASED>\n");
740 return;
741 }
742
743 printk(KERN_CONT "%px", hlock->instance);
744 print_lock_name(lock);
745 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
746 }
747
lockdep_print_held_locks(struct task_struct * p)748 static void lockdep_print_held_locks(struct task_struct *p)
749 {
750 int i, depth = READ_ONCE(p->lockdep_depth);
751
752 if (!depth)
753 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
754 else
755 printk("%d lock%s held by %s/%d:\n", depth,
756 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
757 /*
758 * It's not reliable to print a task's held locks if it's not sleeping
759 * and it's not the current task.
760 */
761 if (p != current && task_is_running(p))
762 return;
763 for (i = 0; i < depth; i++) {
764 printk(" #%d: ", i);
765 print_lock(p->held_locks + i);
766 }
767 }
768
print_kernel_ident(void)769 static void print_kernel_ident(void)
770 {
771 printk("%s %.*s %s\n", init_utsname()->release,
772 (int)strcspn(init_utsname()->version, " "),
773 init_utsname()->version,
774 print_tainted());
775 }
776
very_verbose(struct lock_class * class)777 static int very_verbose(struct lock_class *class)
778 {
779 #if VERY_VERBOSE
780 return class_filter(class);
781 #endif
782 return 0;
783 }
784
785 /*
786 * Is this the address of a static object:
787 */
788 #ifdef __KERNEL__
static_obj(const void * obj)789 static int static_obj(const void *obj)
790 {
791 unsigned long start = (unsigned long) &_stext,
792 end = (unsigned long) &_end,
793 addr = (unsigned long) obj;
794
795 if (arch_is_kernel_initmem_freed(addr))
796 return 0;
797
798 /*
799 * static variable?
800 */
801 if ((addr >= start) && (addr < end))
802 return 1;
803
804 if (arch_is_kernel_data(addr))
805 return 1;
806
807 /*
808 * in-kernel percpu var?
809 */
810 if (is_kernel_percpu_address(addr))
811 return 1;
812
813 /*
814 * module static or percpu var?
815 */
816 return is_module_address(addr) || is_module_percpu_address(addr);
817 }
818 #endif
819
820 /*
821 * To make lock name printouts unique, we calculate a unique
822 * class->name_version generation counter. The caller must hold the graph
823 * lock.
824 */
count_matching_names(struct lock_class * new_class)825 static int count_matching_names(struct lock_class *new_class)
826 {
827 struct lock_class *class;
828 int count = 0;
829
830 if (!new_class->name)
831 return 0;
832
833 list_for_each_entry(class, &all_lock_classes, lock_entry) {
834 if (new_class->key - new_class->subclass == class->key)
835 return class->name_version;
836 if (class->name && !strcmp(class->name, new_class->name))
837 count = max(count, class->name_version);
838 }
839
840 return count + 1;
841 }
842
843 /* used from NMI context -- must be lockless */
844 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)845 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
846 {
847 struct lockdep_subclass_key *key;
848 struct hlist_head *hash_head;
849 struct lock_class *class;
850
851 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
852 instrumentation_begin();
853 debug_locks_off();
854 printk(KERN_ERR
855 "BUG: looking up invalid subclass: %u\n", subclass);
856 printk(KERN_ERR
857 "turning off the locking correctness validator.\n");
858 dump_stack();
859 instrumentation_end();
860 return NULL;
861 }
862
863 /*
864 * If it is not initialised then it has never been locked,
865 * so it won't be present in the hash table.
866 */
867 if (unlikely(!lock->key))
868 return NULL;
869
870 /*
871 * NOTE: the class-key must be unique. For dynamic locks, a static
872 * lock_class_key variable is passed in through the mutex_init()
873 * (or spin_lock_init()) call - which acts as the key. For static
874 * locks we use the lock object itself as the key.
875 */
876 BUILD_BUG_ON(sizeof(struct lock_class_key) >
877 sizeof(struct lockdep_map));
878
879 key = lock->key->subkeys + subclass;
880
881 hash_head = classhashentry(key);
882
883 /*
884 * We do an RCU walk of the hash, see lockdep_free_key_range().
885 */
886 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
887 return NULL;
888
889 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
890 if (class->key == key) {
891 /*
892 * Huh! same key, different name? Did someone trample
893 * on some memory? We're most confused.
894 */
895 WARN_ON_ONCE(class->name != lock->name &&
896 lock->key != &__lockdep_no_validate__);
897 return class;
898 }
899 }
900
901 return NULL;
902 }
903
904 /*
905 * Static locks do not have their class-keys yet - for them the key is
906 * the lock object itself. If the lock is in the per cpu area, the
907 * canonical address of the lock (per cpu offset removed) is used.
908 */
assign_lock_key(struct lockdep_map * lock)909 static bool assign_lock_key(struct lockdep_map *lock)
910 {
911 unsigned long can_addr, addr = (unsigned long)lock;
912
913 #ifdef __KERNEL__
914 /*
915 * lockdep_free_key_range() assumes that struct lock_class_key
916 * objects do not overlap. Since we use the address of lock
917 * objects as class key for static objects, check whether the
918 * size of lock_class_key objects does not exceed the size of
919 * the smallest lock object.
920 */
921 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
922 #endif
923
924 if (__is_kernel_percpu_address(addr, &can_addr))
925 lock->key = (void *)can_addr;
926 else if (__is_module_percpu_address(addr, &can_addr))
927 lock->key = (void *)can_addr;
928 else if (static_obj(lock))
929 lock->key = (void *)lock;
930 else {
931 /* Debug-check: all keys must be persistent! */
932 debug_locks_off();
933 pr_err("INFO: trying to register non-static key.\n");
934 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
935 pr_err("you didn't initialize this object before use?\n");
936 pr_err("turning off the locking correctness validator.\n");
937 dump_stack();
938 return false;
939 }
940
941 return true;
942 }
943
944 #ifdef CONFIG_DEBUG_LOCKDEP
945
946 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)947 static bool in_list(struct list_head *e, struct list_head *h)
948 {
949 struct list_head *f;
950
951 list_for_each(f, h) {
952 if (e == f)
953 return true;
954 }
955
956 return false;
957 }
958
959 /*
960 * Check whether entry @e occurs in any of the locks_after or locks_before
961 * lists.
962 */
in_any_class_list(struct list_head * e)963 static bool in_any_class_list(struct list_head *e)
964 {
965 struct lock_class *class;
966 int i;
967
968 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
969 class = &lock_classes[i];
970 if (in_list(e, &class->locks_after) ||
971 in_list(e, &class->locks_before))
972 return true;
973 }
974 return false;
975 }
976
class_lock_list_valid(struct lock_class * c,struct list_head * h)977 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
978 {
979 struct lock_list *e;
980
981 list_for_each_entry(e, h, entry) {
982 if (e->links_to != c) {
983 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
984 c->name ? : "(?)",
985 (unsigned long)(e - list_entries),
986 e->links_to && e->links_to->name ?
987 e->links_to->name : "(?)",
988 e->class && e->class->name ? e->class->name :
989 "(?)");
990 return false;
991 }
992 }
993 return true;
994 }
995
996 #ifdef CONFIG_PROVE_LOCKING
997 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
998 #endif
999
check_lock_chain_key(struct lock_chain * chain)1000 static bool check_lock_chain_key(struct lock_chain *chain)
1001 {
1002 #ifdef CONFIG_PROVE_LOCKING
1003 u64 chain_key = INITIAL_CHAIN_KEY;
1004 int i;
1005
1006 for (i = chain->base; i < chain->base + chain->depth; i++)
1007 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1008 /*
1009 * The 'unsigned long long' casts avoid that a compiler warning
1010 * is reported when building tools/lib/lockdep.
1011 */
1012 if (chain->chain_key != chain_key) {
1013 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1014 (unsigned long long)(chain - lock_chains),
1015 (unsigned long long)chain->chain_key,
1016 (unsigned long long)chain_key);
1017 return false;
1018 }
1019 #endif
1020 return true;
1021 }
1022
in_any_zapped_class_list(struct lock_class * class)1023 static bool in_any_zapped_class_list(struct lock_class *class)
1024 {
1025 struct pending_free *pf;
1026 int i;
1027
1028 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1029 if (in_list(&class->lock_entry, &pf->zapped))
1030 return true;
1031 }
1032
1033 return false;
1034 }
1035
__check_data_structures(void)1036 static bool __check_data_structures(void)
1037 {
1038 struct lock_class *class;
1039 struct lock_chain *chain;
1040 struct hlist_head *head;
1041 struct lock_list *e;
1042 int i;
1043
1044 /* Check whether all classes occur in a lock list. */
1045 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1046 class = &lock_classes[i];
1047 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1048 !in_list(&class->lock_entry, &free_lock_classes) &&
1049 !in_any_zapped_class_list(class)) {
1050 printk(KERN_INFO "class %px/%s is not in any class list\n",
1051 class, class->name ? : "(?)");
1052 return false;
1053 }
1054 }
1055
1056 /* Check whether all classes have valid lock lists. */
1057 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1058 class = &lock_classes[i];
1059 if (!class_lock_list_valid(class, &class->locks_before))
1060 return false;
1061 if (!class_lock_list_valid(class, &class->locks_after))
1062 return false;
1063 }
1064
1065 /* Check the chain_key of all lock chains. */
1066 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1067 head = chainhash_table + i;
1068 hlist_for_each_entry_rcu(chain, head, entry) {
1069 if (!check_lock_chain_key(chain))
1070 return false;
1071 }
1072 }
1073
1074 /*
1075 * Check whether all list entries that are in use occur in a class
1076 * lock list.
1077 */
1078 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1079 e = list_entries + i;
1080 if (!in_any_class_list(&e->entry)) {
1081 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1082 (unsigned int)(e - list_entries),
1083 e->class->name ? : "(?)",
1084 e->links_to->name ? : "(?)");
1085 return false;
1086 }
1087 }
1088
1089 /*
1090 * Check whether all list entries that are not in use do not occur in
1091 * a class lock list.
1092 */
1093 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1094 e = list_entries + i;
1095 if (in_any_class_list(&e->entry)) {
1096 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1097 (unsigned int)(e - list_entries),
1098 e->class && e->class->name ? e->class->name :
1099 "(?)",
1100 e->links_to && e->links_to->name ?
1101 e->links_to->name : "(?)");
1102 return false;
1103 }
1104 }
1105
1106 return true;
1107 }
1108
1109 int check_consistency = 0;
1110 module_param(check_consistency, int, 0644);
1111
check_data_structures(void)1112 static void check_data_structures(void)
1113 {
1114 static bool once = false;
1115
1116 if (check_consistency && !once) {
1117 if (!__check_data_structures()) {
1118 once = true;
1119 WARN_ON(once);
1120 }
1121 }
1122 }
1123
1124 #else /* CONFIG_DEBUG_LOCKDEP */
1125
check_data_structures(void)1126 static inline void check_data_structures(void) { }
1127
1128 #endif /* CONFIG_DEBUG_LOCKDEP */
1129
1130 static void init_chain_block_buckets(void);
1131
1132 /*
1133 * Initialize the lock_classes[] array elements, the free_lock_classes list
1134 * and also the delayed_free structure.
1135 */
init_data_structures_once(void)1136 static void init_data_structures_once(void)
1137 {
1138 static bool __read_mostly ds_initialized, rcu_head_initialized;
1139 int i;
1140
1141 if (likely(rcu_head_initialized))
1142 return;
1143
1144 if (system_state >= SYSTEM_SCHEDULING) {
1145 init_rcu_head(&delayed_free.rcu_head);
1146 rcu_head_initialized = true;
1147 }
1148
1149 if (ds_initialized)
1150 return;
1151
1152 ds_initialized = true;
1153
1154 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1155 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1156
1157 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1158 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1159 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1160 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1161 }
1162 init_chain_block_buckets();
1163 }
1164
keyhashentry(const struct lock_class_key * key)1165 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1166 {
1167 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1168
1169 return lock_keys_hash + hash;
1170 }
1171
1172 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1173 void lockdep_register_key(struct lock_class_key *key)
1174 {
1175 struct hlist_head *hash_head;
1176 struct lock_class_key *k;
1177 unsigned long flags;
1178
1179 if (WARN_ON_ONCE(static_obj(key)))
1180 return;
1181 hash_head = keyhashentry(key);
1182
1183 raw_local_irq_save(flags);
1184 if (!graph_lock())
1185 goto restore_irqs;
1186 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1187 if (WARN_ON_ONCE(k == key))
1188 goto out_unlock;
1189 }
1190 hlist_add_head_rcu(&key->hash_entry, hash_head);
1191 out_unlock:
1192 graph_unlock();
1193 restore_irqs:
1194 raw_local_irq_restore(flags);
1195 }
1196 EXPORT_SYMBOL_GPL(lockdep_register_key);
1197
1198 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1199 static bool is_dynamic_key(const struct lock_class_key *key)
1200 {
1201 struct hlist_head *hash_head;
1202 struct lock_class_key *k;
1203 bool found = false;
1204
1205 if (WARN_ON_ONCE(static_obj(key)))
1206 return false;
1207
1208 /*
1209 * If lock debugging is disabled lock_keys_hash[] may contain
1210 * pointers to memory that has already been freed. Avoid triggering
1211 * a use-after-free in that case by returning early.
1212 */
1213 if (!debug_locks)
1214 return true;
1215
1216 hash_head = keyhashentry(key);
1217
1218 rcu_read_lock();
1219 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1220 if (k == key) {
1221 found = true;
1222 break;
1223 }
1224 }
1225 rcu_read_unlock();
1226
1227 return found;
1228 }
1229
1230 /*
1231 * Register a lock's class in the hash-table, if the class is not present
1232 * yet. Otherwise we look it up. We cache the result in the lock object
1233 * itself, so actual lookup of the hash should be once per lock object.
1234 */
1235 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1236 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1237 {
1238 struct lockdep_subclass_key *key;
1239 struct hlist_head *hash_head;
1240 struct lock_class *class;
1241 int idx;
1242
1243 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1244
1245 class = look_up_lock_class(lock, subclass);
1246 if (likely(class))
1247 goto out_set_class_cache;
1248
1249 if (!lock->key) {
1250 if (!assign_lock_key(lock))
1251 return NULL;
1252 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1253 return NULL;
1254 }
1255
1256 key = lock->key->subkeys + subclass;
1257 hash_head = classhashentry(key);
1258
1259 if (!graph_lock()) {
1260 return NULL;
1261 }
1262 /*
1263 * We have to do the hash-walk again, to avoid races
1264 * with another CPU:
1265 */
1266 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1267 if (class->key == key)
1268 goto out_unlock_set;
1269 }
1270
1271 init_data_structures_once();
1272
1273 /* Allocate a new lock class and add it to the hash. */
1274 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1275 lock_entry);
1276 if (!class) {
1277 if (!debug_locks_off_graph_unlock()) {
1278 return NULL;
1279 }
1280
1281 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1282 dump_stack();
1283 return NULL;
1284 }
1285 nr_lock_classes++;
1286 __set_bit(class - lock_classes, lock_classes_in_use);
1287 debug_atomic_inc(nr_unused_locks);
1288 class->key = key;
1289 class->name = lock->name;
1290 class->subclass = subclass;
1291 WARN_ON_ONCE(!list_empty(&class->locks_before));
1292 WARN_ON_ONCE(!list_empty(&class->locks_after));
1293 class->name_version = count_matching_names(class);
1294 class->wait_type_inner = lock->wait_type_inner;
1295 class->wait_type_outer = lock->wait_type_outer;
1296 class->lock_type = lock->lock_type;
1297 /*
1298 * We use RCU's safe list-add method to make
1299 * parallel walking of the hash-list safe:
1300 */
1301 hlist_add_head_rcu(&class->hash_entry, hash_head);
1302 /*
1303 * Remove the class from the free list and add it to the global list
1304 * of classes.
1305 */
1306 list_move_tail(&class->lock_entry, &all_lock_classes);
1307 idx = class - lock_classes;
1308 if (idx > max_lock_class_idx)
1309 max_lock_class_idx = idx;
1310
1311 if (verbose(class)) {
1312 graph_unlock();
1313
1314 printk("\nnew class %px: %s", class->key, class->name);
1315 if (class->name_version > 1)
1316 printk(KERN_CONT "#%d", class->name_version);
1317 printk(KERN_CONT "\n");
1318 dump_stack();
1319
1320 if (!graph_lock()) {
1321 return NULL;
1322 }
1323 }
1324 out_unlock_set:
1325 graph_unlock();
1326
1327 out_set_class_cache:
1328 if (!subclass || force)
1329 lock->class_cache[0] = class;
1330 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1331 lock->class_cache[subclass] = class;
1332
1333 /*
1334 * Hash collision, did we smoke some? We found a class with a matching
1335 * hash but the subclass -- which is hashed in -- didn't match.
1336 */
1337 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1338 return NULL;
1339
1340 return class;
1341 }
1342
1343 #ifdef CONFIG_PROVE_LOCKING
1344 /*
1345 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1346 * with NULL on failure)
1347 */
alloc_list_entry(void)1348 static struct lock_list *alloc_list_entry(void)
1349 {
1350 int idx = find_first_zero_bit(list_entries_in_use,
1351 ARRAY_SIZE(list_entries));
1352
1353 if (idx >= ARRAY_SIZE(list_entries)) {
1354 if (!debug_locks_off_graph_unlock())
1355 return NULL;
1356
1357 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1358 dump_stack();
1359 return NULL;
1360 }
1361 nr_list_entries++;
1362 __set_bit(idx, list_entries_in_use);
1363 return list_entries + idx;
1364 }
1365
1366 /*
1367 * Add a new dependency to the head of the list:
1368 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1369 static int add_lock_to_list(struct lock_class *this,
1370 struct lock_class *links_to, struct list_head *head,
1371 u16 distance, u8 dep,
1372 const struct lock_trace *trace)
1373 {
1374 struct lock_list *entry;
1375 /*
1376 * Lock not present yet - get a new dependency struct and
1377 * add it to the list:
1378 */
1379 entry = alloc_list_entry();
1380 if (!entry)
1381 return 0;
1382
1383 entry->class = this;
1384 entry->links_to = links_to;
1385 entry->dep = dep;
1386 entry->distance = distance;
1387 entry->trace = trace;
1388 /*
1389 * Both allocation and removal are done under the graph lock; but
1390 * iteration is under RCU-sched; see look_up_lock_class() and
1391 * lockdep_free_key_range().
1392 */
1393 list_add_tail_rcu(&entry->entry, head);
1394
1395 return 1;
1396 }
1397
1398 /*
1399 * For good efficiency of modular, we use power of 2
1400 */
1401 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1402 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1403
1404 /*
1405 * The circular_queue and helpers are used to implement graph
1406 * breadth-first search (BFS) algorithm, by which we can determine
1407 * whether there is a path from a lock to another. In deadlock checks,
1408 * a path from the next lock to be acquired to a previous held lock
1409 * indicates that adding the <prev> -> <next> lock dependency will
1410 * produce a circle in the graph. Breadth-first search instead of
1411 * depth-first search is used in order to find the shortest (circular)
1412 * path.
1413 */
1414 struct circular_queue {
1415 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1416 unsigned int front, rear;
1417 };
1418
1419 static struct circular_queue lock_cq;
1420
1421 unsigned int max_bfs_queue_depth;
1422
1423 static unsigned int lockdep_dependency_gen_id;
1424
__cq_init(struct circular_queue * cq)1425 static inline void __cq_init(struct circular_queue *cq)
1426 {
1427 cq->front = cq->rear = 0;
1428 lockdep_dependency_gen_id++;
1429 }
1430
__cq_empty(struct circular_queue * cq)1431 static inline int __cq_empty(struct circular_queue *cq)
1432 {
1433 return (cq->front == cq->rear);
1434 }
1435
__cq_full(struct circular_queue * cq)1436 static inline int __cq_full(struct circular_queue *cq)
1437 {
1438 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1439 }
1440
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1441 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1442 {
1443 if (__cq_full(cq))
1444 return -1;
1445
1446 cq->element[cq->rear] = elem;
1447 cq->rear = (cq->rear + 1) & CQ_MASK;
1448 return 0;
1449 }
1450
1451 /*
1452 * Dequeue an element from the circular_queue, return a lock_list if
1453 * the queue is not empty, or NULL if otherwise.
1454 */
__cq_dequeue(struct circular_queue * cq)1455 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1456 {
1457 struct lock_list * lock;
1458
1459 if (__cq_empty(cq))
1460 return NULL;
1461
1462 lock = cq->element[cq->front];
1463 cq->front = (cq->front + 1) & CQ_MASK;
1464
1465 return lock;
1466 }
1467
__cq_get_elem_count(struct circular_queue * cq)1468 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1469 {
1470 return (cq->rear - cq->front) & CQ_MASK;
1471 }
1472
mark_lock_accessed(struct lock_list * lock)1473 static inline void mark_lock_accessed(struct lock_list *lock)
1474 {
1475 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1476 }
1477
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1478 static inline void visit_lock_entry(struct lock_list *lock,
1479 struct lock_list *parent)
1480 {
1481 lock->parent = parent;
1482 }
1483
lock_accessed(struct lock_list * lock)1484 static inline unsigned long lock_accessed(struct lock_list *lock)
1485 {
1486 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1487 }
1488
get_lock_parent(struct lock_list * child)1489 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1490 {
1491 return child->parent;
1492 }
1493
get_lock_depth(struct lock_list * child)1494 static inline int get_lock_depth(struct lock_list *child)
1495 {
1496 int depth = 0;
1497 struct lock_list *parent;
1498
1499 while ((parent = get_lock_parent(child))) {
1500 child = parent;
1501 depth++;
1502 }
1503 return depth;
1504 }
1505
1506 /*
1507 * Return the forward or backward dependency list.
1508 *
1509 * @lock: the lock_list to get its class's dependency list
1510 * @offset: the offset to struct lock_class to determine whether it is
1511 * locks_after or locks_before
1512 */
get_dep_list(struct lock_list * lock,int offset)1513 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1514 {
1515 void *lock_class = lock->class;
1516
1517 return lock_class + offset;
1518 }
1519 /*
1520 * Return values of a bfs search:
1521 *
1522 * BFS_E* indicates an error
1523 * BFS_R* indicates a result (match or not)
1524 *
1525 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1526 *
1527 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1528 *
1529 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1530 * *@target_entry.
1531 *
1532 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1533 * _unchanged_.
1534 */
1535 enum bfs_result {
1536 BFS_EINVALIDNODE = -2,
1537 BFS_EQUEUEFULL = -1,
1538 BFS_RMATCH = 0,
1539 BFS_RNOMATCH = 1,
1540 };
1541
1542 /*
1543 * bfs_result < 0 means error
1544 */
bfs_error(enum bfs_result res)1545 static inline bool bfs_error(enum bfs_result res)
1546 {
1547 return res < 0;
1548 }
1549
1550 /*
1551 * DEP_*_BIT in lock_list::dep
1552 *
1553 * For dependency @prev -> @next:
1554 *
1555 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1556 * (->read == 2)
1557 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1558 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1559 * EN: @prev is exclusive locker and @next is non-recursive locker
1560 *
1561 * Note that we define the value of DEP_*_BITs so that:
1562 * bit0 is prev->read == 0
1563 * bit1 is next->read != 2
1564 */
1565 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1566 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1567 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1568 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1569
1570 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1571 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1572 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1573 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1574
1575 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1576 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1577 {
1578 return (prev->read == 0) + ((next->read != 2) << 1);
1579 }
1580
calc_dep(struct held_lock * prev,struct held_lock * next)1581 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1582 {
1583 return 1U << __calc_dep_bit(prev, next);
1584 }
1585
1586 /*
1587 * calculate the dep_bit for backwards edges. We care about whether @prev is
1588 * shared and whether @next is recursive.
1589 */
1590 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1591 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1592 {
1593 return (next->read != 2) + ((prev->read == 0) << 1);
1594 }
1595
calc_depb(struct held_lock * prev,struct held_lock * next)1596 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1597 {
1598 return 1U << __calc_dep_bitb(prev, next);
1599 }
1600
1601 /*
1602 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1603 * search.
1604 */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1605 static inline void __bfs_init_root(struct lock_list *lock,
1606 struct lock_class *class)
1607 {
1608 lock->class = class;
1609 lock->parent = NULL;
1610 lock->only_xr = 0;
1611 }
1612
1613 /*
1614 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1615 * root for a BFS search.
1616 *
1617 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1618 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1619 * and -(S*)->.
1620 */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1621 static inline void bfs_init_root(struct lock_list *lock,
1622 struct held_lock *hlock)
1623 {
1624 __bfs_init_root(lock, hlock_class(hlock));
1625 lock->only_xr = (hlock->read == 2);
1626 }
1627
1628 /*
1629 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1630 *
1631 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1632 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1633 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1634 */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1635 static inline void bfs_init_rootb(struct lock_list *lock,
1636 struct held_lock *hlock)
1637 {
1638 __bfs_init_root(lock, hlock_class(hlock));
1639 lock->only_xr = (hlock->read != 0);
1640 }
1641
__bfs_next(struct lock_list * lock,int offset)1642 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1643 {
1644 if (!lock || !lock->parent)
1645 return NULL;
1646
1647 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1648 &lock->entry, struct lock_list, entry);
1649 }
1650
1651 /*
1652 * Breadth-First Search to find a strong path in the dependency graph.
1653 *
1654 * @source_entry: the source of the path we are searching for.
1655 * @data: data used for the second parameter of @match function
1656 * @match: match function for the search
1657 * @target_entry: pointer to the target of a matched path
1658 * @offset: the offset to struct lock_class to determine whether it is
1659 * locks_after or locks_before
1660 *
1661 * We may have multiple edges (considering different kinds of dependencies,
1662 * e.g. ER and SN) between two nodes in the dependency graph. But
1663 * only the strong dependency path in the graph is relevant to deadlocks. A
1664 * strong dependency path is a dependency path that doesn't have two adjacent
1665 * dependencies as -(*R)-> -(S*)->, please see:
1666 *
1667 * Documentation/locking/lockdep-design.rst
1668 *
1669 * for more explanation of the definition of strong dependency paths
1670 *
1671 * In __bfs(), we only traverse in the strong dependency path:
1672 *
1673 * In lock_list::only_xr, we record whether the previous dependency only
1674 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1675 * filter out any -(S*)-> in the current dependency and after that, the
1676 * ->only_xr is set according to whether we only have -(*R)-> left.
1677 */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1678 static enum bfs_result __bfs(struct lock_list *source_entry,
1679 void *data,
1680 bool (*match)(struct lock_list *entry, void *data),
1681 bool (*skip)(struct lock_list *entry, void *data),
1682 struct lock_list **target_entry,
1683 int offset)
1684 {
1685 struct circular_queue *cq = &lock_cq;
1686 struct lock_list *lock = NULL;
1687 struct lock_list *entry;
1688 struct list_head *head;
1689 unsigned int cq_depth;
1690 bool first;
1691
1692 lockdep_assert_locked();
1693
1694 __cq_init(cq);
1695 __cq_enqueue(cq, source_entry);
1696
1697 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1698 if (!lock->class)
1699 return BFS_EINVALIDNODE;
1700
1701 /*
1702 * Step 1: check whether we already finish on this one.
1703 *
1704 * If we have visited all the dependencies from this @lock to
1705 * others (iow, if we have visited all lock_list entries in
1706 * @lock->class->locks_{after,before}) we skip, otherwise go
1707 * and visit all the dependencies in the list and mark this
1708 * list accessed.
1709 */
1710 if (lock_accessed(lock))
1711 continue;
1712 else
1713 mark_lock_accessed(lock);
1714
1715 /*
1716 * Step 2: check whether prev dependency and this form a strong
1717 * dependency path.
1718 */
1719 if (lock->parent) { /* Parent exists, check prev dependency */
1720 u8 dep = lock->dep;
1721 bool prev_only_xr = lock->parent->only_xr;
1722
1723 /*
1724 * Mask out all -(S*)-> if we only have *R in previous
1725 * step, because -(*R)-> -(S*)-> don't make up a strong
1726 * dependency.
1727 */
1728 if (prev_only_xr)
1729 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1730
1731 /* If nothing left, we skip */
1732 if (!dep)
1733 continue;
1734
1735 /* If there are only -(*R)-> left, set that for the next step */
1736 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1737 }
1738
1739 /*
1740 * Step 3: we haven't visited this and there is a strong
1741 * dependency path to this, so check with @match.
1742 * If @skip is provide and returns true, we skip this
1743 * lock (and any path this lock is in).
1744 */
1745 if (skip && skip(lock, data))
1746 continue;
1747
1748 if (match(lock, data)) {
1749 *target_entry = lock;
1750 return BFS_RMATCH;
1751 }
1752
1753 /*
1754 * Step 4: if not match, expand the path by adding the
1755 * forward or backwards dependencies in the search
1756 *
1757 */
1758 first = true;
1759 head = get_dep_list(lock, offset);
1760 list_for_each_entry_rcu(entry, head, entry) {
1761 visit_lock_entry(entry, lock);
1762
1763 /*
1764 * Note we only enqueue the first of the list into the
1765 * queue, because we can always find a sibling
1766 * dependency from one (see __bfs_next()), as a result
1767 * the space of queue is saved.
1768 */
1769 if (!first)
1770 continue;
1771
1772 first = false;
1773
1774 if (__cq_enqueue(cq, entry))
1775 return BFS_EQUEUEFULL;
1776
1777 cq_depth = __cq_get_elem_count(cq);
1778 if (max_bfs_queue_depth < cq_depth)
1779 max_bfs_queue_depth = cq_depth;
1780 }
1781 }
1782
1783 return BFS_RNOMATCH;
1784 }
1785
1786 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1787 __bfs_forwards(struct lock_list *src_entry,
1788 void *data,
1789 bool (*match)(struct lock_list *entry, void *data),
1790 bool (*skip)(struct lock_list *entry, void *data),
1791 struct lock_list **target_entry)
1792 {
1793 return __bfs(src_entry, data, match, skip, target_entry,
1794 offsetof(struct lock_class, locks_after));
1795
1796 }
1797
1798 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1799 __bfs_backwards(struct lock_list *src_entry,
1800 void *data,
1801 bool (*match)(struct lock_list *entry, void *data),
1802 bool (*skip)(struct lock_list *entry, void *data),
1803 struct lock_list **target_entry)
1804 {
1805 return __bfs(src_entry, data, match, skip, target_entry,
1806 offsetof(struct lock_class, locks_before));
1807
1808 }
1809
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1810 static void print_lock_trace(const struct lock_trace *trace,
1811 unsigned int spaces)
1812 {
1813 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1814 }
1815
1816 /*
1817 * Print a dependency chain entry (this is only done when a deadlock
1818 * has been detected):
1819 */
1820 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1821 print_circular_bug_entry(struct lock_list *target, int depth)
1822 {
1823 if (debug_locks_silent)
1824 return;
1825 printk("\n-> #%u", depth);
1826 print_lock_name(target->class);
1827 printk(KERN_CONT ":\n");
1828 print_lock_trace(target->trace, 6);
1829 }
1830
1831 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1832 print_circular_lock_scenario(struct held_lock *src,
1833 struct held_lock *tgt,
1834 struct lock_list *prt)
1835 {
1836 struct lock_class *source = hlock_class(src);
1837 struct lock_class *target = hlock_class(tgt);
1838 struct lock_class *parent = prt->class;
1839
1840 /*
1841 * A direct locking problem where unsafe_class lock is taken
1842 * directly by safe_class lock, then all we need to show
1843 * is the deadlock scenario, as it is obvious that the
1844 * unsafe lock is taken under the safe lock.
1845 *
1846 * But if there is a chain instead, where the safe lock takes
1847 * an intermediate lock (middle_class) where this lock is
1848 * not the same as the safe lock, then the lock chain is
1849 * used to describe the problem. Otherwise we would need
1850 * to show a different CPU case for each link in the chain
1851 * from the safe_class lock to the unsafe_class lock.
1852 */
1853 if (parent != source) {
1854 printk("Chain exists of:\n ");
1855 __print_lock_name(source);
1856 printk(KERN_CONT " --> ");
1857 __print_lock_name(parent);
1858 printk(KERN_CONT " --> ");
1859 __print_lock_name(target);
1860 printk(KERN_CONT "\n\n");
1861 }
1862
1863 printk(" Possible unsafe locking scenario:\n\n");
1864 printk(" CPU0 CPU1\n");
1865 printk(" ---- ----\n");
1866 printk(" lock(");
1867 __print_lock_name(target);
1868 printk(KERN_CONT ");\n");
1869 printk(" lock(");
1870 __print_lock_name(parent);
1871 printk(KERN_CONT ");\n");
1872 printk(" lock(");
1873 __print_lock_name(target);
1874 printk(KERN_CONT ");\n");
1875 printk(" lock(");
1876 __print_lock_name(source);
1877 printk(KERN_CONT ");\n");
1878 printk("\n *** DEADLOCK ***\n\n");
1879 }
1880
1881 /*
1882 * When a circular dependency is detected, print the
1883 * header first:
1884 */
1885 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1886 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1887 struct held_lock *check_src,
1888 struct held_lock *check_tgt)
1889 {
1890 struct task_struct *curr = current;
1891
1892 if (debug_locks_silent)
1893 return;
1894
1895 pr_warn("\n");
1896 pr_warn("======================================================\n");
1897 pr_warn("WARNING: possible circular locking dependency detected\n");
1898 print_kernel_ident();
1899 pr_warn("------------------------------------------------------\n");
1900 pr_warn("%s/%d is trying to acquire lock:\n",
1901 curr->comm, task_pid_nr(curr));
1902 print_lock(check_src);
1903
1904 pr_warn("\nbut task is already holding lock:\n");
1905
1906 print_lock(check_tgt);
1907 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1908 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1909
1910 print_circular_bug_entry(entry, depth);
1911 }
1912
1913 /*
1914 * We are about to add A -> B into the dependency graph, and in __bfs() a
1915 * strong dependency path A -> .. -> B is found: hlock_class equals
1916 * entry->class.
1917 *
1918 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1919 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1920 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1921 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1922 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1923 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1924 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1925 *
1926 * We need to make sure both the start and the end of A -> .. -> B is not
1927 * weaker than A -> B. For the start part, please see the comment in
1928 * check_redundant(). For the end part, we need:
1929 *
1930 * Either
1931 *
1932 * a) A -> B is -(*R)-> (everything is not weaker than that)
1933 *
1934 * or
1935 *
1936 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1937 *
1938 */
hlock_equal(struct lock_list * entry,void * data)1939 static inline bool hlock_equal(struct lock_list *entry, void *data)
1940 {
1941 struct held_lock *hlock = (struct held_lock *)data;
1942
1943 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1944 (hlock->read == 2 || /* A -> B is -(*R)-> */
1945 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1946 }
1947
1948 /*
1949 * We are about to add B -> A into the dependency graph, and in __bfs() a
1950 * strong dependency path A -> .. -> B is found: hlock_class equals
1951 * entry->class.
1952 *
1953 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1954 * dependency cycle, that means:
1955 *
1956 * Either
1957 *
1958 * a) B -> A is -(E*)->
1959 *
1960 * or
1961 *
1962 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1963 *
1964 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1965 */
hlock_conflict(struct lock_list * entry,void * data)1966 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1967 {
1968 struct held_lock *hlock = (struct held_lock *)data;
1969
1970 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1971 (hlock->read == 0 || /* B -> A is -(E*)-> */
1972 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1973 }
1974
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1975 static noinline void print_circular_bug(struct lock_list *this,
1976 struct lock_list *target,
1977 struct held_lock *check_src,
1978 struct held_lock *check_tgt)
1979 {
1980 struct task_struct *curr = current;
1981 struct lock_list *parent;
1982 struct lock_list *first_parent;
1983 int depth;
1984
1985 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1986 return;
1987
1988 this->trace = save_trace();
1989 if (!this->trace)
1990 return;
1991
1992 depth = get_lock_depth(target);
1993
1994 print_circular_bug_header(target, depth, check_src, check_tgt);
1995
1996 parent = get_lock_parent(target);
1997 first_parent = parent;
1998
1999 while (parent) {
2000 print_circular_bug_entry(parent, --depth);
2001 parent = get_lock_parent(parent);
2002 }
2003
2004 printk("\nother info that might help us debug this:\n\n");
2005 print_circular_lock_scenario(check_src, check_tgt,
2006 first_parent);
2007
2008 lockdep_print_held_locks(curr);
2009
2010 printk("\nstack backtrace:\n");
2011 dump_stack();
2012 }
2013
print_bfs_bug(int ret)2014 static noinline void print_bfs_bug(int ret)
2015 {
2016 if (!debug_locks_off_graph_unlock())
2017 return;
2018
2019 /*
2020 * Breadth-first-search failed, graph got corrupted?
2021 */
2022 WARN(1, "lockdep bfs error:%d\n", ret);
2023 }
2024
noop_count(struct lock_list * entry,void * data)2025 static bool noop_count(struct lock_list *entry, void *data)
2026 {
2027 (*(unsigned long *)data)++;
2028 return false;
2029 }
2030
__lockdep_count_forward_deps(struct lock_list * this)2031 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2032 {
2033 unsigned long count = 0;
2034 struct lock_list *target_entry;
2035
2036 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2037
2038 return count;
2039 }
lockdep_count_forward_deps(struct lock_class * class)2040 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2041 {
2042 unsigned long ret, flags;
2043 struct lock_list this;
2044
2045 __bfs_init_root(&this, class);
2046
2047 raw_local_irq_save(flags);
2048 lockdep_lock();
2049 ret = __lockdep_count_forward_deps(&this);
2050 lockdep_unlock();
2051 raw_local_irq_restore(flags);
2052
2053 return ret;
2054 }
2055
__lockdep_count_backward_deps(struct lock_list * this)2056 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2057 {
2058 unsigned long count = 0;
2059 struct lock_list *target_entry;
2060
2061 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2062
2063 return count;
2064 }
2065
lockdep_count_backward_deps(struct lock_class * class)2066 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2067 {
2068 unsigned long ret, flags;
2069 struct lock_list this;
2070
2071 __bfs_init_root(&this, class);
2072
2073 raw_local_irq_save(flags);
2074 lockdep_lock();
2075 ret = __lockdep_count_backward_deps(&this);
2076 lockdep_unlock();
2077 raw_local_irq_restore(flags);
2078
2079 return ret;
2080 }
2081
2082 /*
2083 * Check that the dependency graph starting at <src> can lead to
2084 * <target> or not.
2085 */
2086 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2087 check_path(struct held_lock *target, struct lock_list *src_entry,
2088 bool (*match)(struct lock_list *entry, void *data),
2089 bool (*skip)(struct lock_list *entry, void *data),
2090 struct lock_list **target_entry)
2091 {
2092 enum bfs_result ret;
2093
2094 ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2095
2096 if (unlikely(bfs_error(ret)))
2097 print_bfs_bug(ret);
2098
2099 return ret;
2100 }
2101
2102 /*
2103 * Prove that the dependency graph starting at <src> can not
2104 * lead to <target>. If it can, there is a circle when adding
2105 * <target> -> <src> dependency.
2106 *
2107 * Print an error and return BFS_RMATCH if it does.
2108 */
2109 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2110 check_noncircular(struct held_lock *src, struct held_lock *target,
2111 struct lock_trace **const trace)
2112 {
2113 enum bfs_result ret;
2114 struct lock_list *target_entry;
2115 struct lock_list src_entry;
2116
2117 bfs_init_root(&src_entry, src);
2118
2119 debug_atomic_inc(nr_cyclic_checks);
2120
2121 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2122
2123 if (unlikely(ret == BFS_RMATCH)) {
2124 if (!*trace) {
2125 /*
2126 * If save_trace fails here, the printing might
2127 * trigger a WARN but because of the !nr_entries it
2128 * should not do bad things.
2129 */
2130 *trace = save_trace();
2131 }
2132
2133 print_circular_bug(&src_entry, target_entry, src, target);
2134 }
2135
2136 return ret;
2137 }
2138
2139 #ifdef CONFIG_TRACE_IRQFLAGS
2140
2141 /*
2142 * Forwards and backwards subgraph searching, for the purposes of
2143 * proving that two subgraphs can be connected by a new dependency
2144 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2145 *
2146 * A irq safe->unsafe deadlock happens with the following conditions:
2147 *
2148 * 1) We have a strong dependency path A -> ... -> B
2149 *
2150 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2151 * irq can create a new dependency B -> A (consider the case that a holder
2152 * of B gets interrupted by an irq whose handler will try to acquire A).
2153 *
2154 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2155 * strong circle:
2156 *
2157 * For the usage bits of B:
2158 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2159 * ENABLED_IRQ usage suffices.
2160 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2161 * ENABLED_IRQ_*_READ usage suffices.
2162 *
2163 * For the usage bits of A:
2164 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2165 * USED_IN_IRQ usage suffices.
2166 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2167 * USED_IN_IRQ_*_READ usage suffices.
2168 */
2169
2170 /*
2171 * There is a strong dependency path in the dependency graph: A -> B, and now
2172 * we need to decide which usage bit of A should be accumulated to detect
2173 * safe->unsafe bugs.
2174 *
2175 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2176 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2177 *
2178 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2179 * path, any usage of A should be considered. Otherwise, we should only
2180 * consider _READ usage.
2181 */
usage_accumulate(struct lock_list * entry,void * mask)2182 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2183 {
2184 if (!entry->only_xr)
2185 *(unsigned long *)mask |= entry->class->usage_mask;
2186 else /* Mask out _READ usage bits */
2187 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2188
2189 return false;
2190 }
2191
2192 /*
2193 * There is a strong dependency path in the dependency graph: A -> B, and now
2194 * we need to decide which usage bit of B conflicts with the usage bits of A,
2195 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2196 *
2197 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2198 * path, any usage of B should be considered. Otherwise, we should only
2199 * consider _READ usage.
2200 */
usage_match(struct lock_list * entry,void * mask)2201 static inline bool usage_match(struct lock_list *entry, void *mask)
2202 {
2203 if (!entry->only_xr)
2204 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2205 else /* Mask out _READ usage bits */
2206 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2207 }
2208
usage_skip(struct lock_list * entry,void * mask)2209 static inline bool usage_skip(struct lock_list *entry, void *mask)
2210 {
2211 /*
2212 * Skip local_lock() for irq inversion detection.
2213 *
2214 * For !RT, local_lock() is not a real lock, so it won't carry any
2215 * dependency.
2216 *
2217 * For RT, an irq inversion happens when we have lock A and B, and on
2218 * some CPU we can have:
2219 *
2220 * lock(A);
2221 * <interrupted>
2222 * lock(B);
2223 *
2224 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2225 *
2226 * Now we prove local_lock() cannot exist in that dependency. First we
2227 * have the observation for any lock chain L1 -> ... -> Ln, for any
2228 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2229 * wait context check will complain. And since B is not a sleep lock,
2230 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2231 * local_lock() is 3, which is greater than 2, therefore there is no
2232 * way the local_lock() exists in the dependency B -> ... -> A.
2233 *
2234 * As a result, we will skip local_lock(), when we search for irq
2235 * inversion bugs.
2236 */
2237 if (entry->class->lock_type == LD_LOCK_PERCPU) {
2238 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2239 return false;
2240
2241 return true;
2242 }
2243
2244 return false;
2245 }
2246
2247 /*
2248 * Find a node in the forwards-direction dependency sub-graph starting
2249 * at @root->class that matches @bit.
2250 *
2251 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2252 * into *@target_entry.
2253 */
2254 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2255 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2256 struct lock_list **target_entry)
2257 {
2258 enum bfs_result result;
2259
2260 debug_atomic_inc(nr_find_usage_forwards_checks);
2261
2262 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2263
2264 return result;
2265 }
2266
2267 /*
2268 * Find a node in the backwards-direction dependency sub-graph starting
2269 * at @root->class that matches @bit.
2270 */
2271 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2272 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2273 struct lock_list **target_entry)
2274 {
2275 enum bfs_result result;
2276
2277 debug_atomic_inc(nr_find_usage_backwards_checks);
2278
2279 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2280
2281 return result;
2282 }
2283
print_lock_class_header(struct lock_class * class,int depth)2284 static void print_lock_class_header(struct lock_class *class, int depth)
2285 {
2286 int bit;
2287
2288 printk("%*s->", depth, "");
2289 print_lock_name(class);
2290 #ifdef CONFIG_DEBUG_LOCKDEP
2291 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2292 #endif
2293 printk(KERN_CONT " {\n");
2294
2295 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2296 if (class->usage_mask & (1 << bit)) {
2297 int len = depth;
2298
2299 len += printk("%*s %s", depth, "", usage_str[bit]);
2300 len += printk(KERN_CONT " at:\n");
2301 print_lock_trace(class->usage_traces[bit], len);
2302 }
2303 }
2304 printk("%*s }\n", depth, "");
2305
2306 printk("%*s ... key at: [<%px>] %pS\n",
2307 depth, "", class->key, class->key);
2308 }
2309
2310 /*
2311 * Dependency path printing:
2312 *
2313 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2314 * printing out each lock in the dependency path will help on understanding how
2315 * the deadlock could happen. Here are some details about dependency path
2316 * printing:
2317 *
2318 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2319 * for a lock dependency A -> B, there are two lock_lists:
2320 *
2321 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2322 * ->links_to is A. In this case, we can say the lock_list is
2323 * "A -> B" (forwards case).
2324 *
2325 * b) lock_list in the ->locks_before list of B, whose ->class is A
2326 * and ->links_to is B. In this case, we can say the lock_list is
2327 * "B <- A" (bacwards case).
2328 *
2329 * The ->trace of both a) and b) point to the call trace where B was
2330 * acquired with A held.
2331 *
2332 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2333 * represent a certain lock dependency, it only provides an initial entry
2334 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2335 * ->class is A, as a result BFS will search all dependencies starting with
2336 * A, e.g. A -> B or A -> C.
2337 *
2338 * The notation of a forwards helper lock_list is like "-> A", which means
2339 * we should search the forwards dependencies starting with "A", e.g A -> B
2340 * or A -> C.
2341 *
2342 * The notation of a bacwards helper lock_list is like "<- B", which means
2343 * we should search the backwards dependencies ending with "B", e.g.
2344 * B <- A or B <- C.
2345 */
2346
2347 /*
2348 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2349 *
2350 * We have a lock dependency path as follow:
2351 *
2352 * @root @leaf
2353 * | |
2354 * V V
2355 * ->parent ->parent
2356 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2357 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2358 *
2359 * , so it's natural that we start from @leaf and print every ->class and
2360 * ->trace until we reach the @root.
2361 */
2362 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2363 print_shortest_lock_dependencies(struct lock_list *leaf,
2364 struct lock_list *root)
2365 {
2366 struct lock_list *entry = leaf;
2367 int depth;
2368
2369 /*compute depth from generated tree by BFS*/
2370 depth = get_lock_depth(leaf);
2371
2372 do {
2373 print_lock_class_header(entry->class, depth);
2374 printk("%*s ... acquired at:\n", depth, "");
2375 print_lock_trace(entry->trace, 2);
2376 printk("\n");
2377
2378 if (depth == 0 && (entry != root)) {
2379 printk("lockdep:%s bad path found in chain graph\n", __func__);
2380 break;
2381 }
2382
2383 entry = get_lock_parent(entry);
2384 depth--;
2385 } while (entry && (depth >= 0));
2386 }
2387
2388 /*
2389 * printk the shortest lock dependencies from @leaf to @root.
2390 *
2391 * We have a lock dependency path (from a backwards search) as follow:
2392 *
2393 * @leaf @root
2394 * | |
2395 * V V
2396 * ->parent ->parent
2397 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2398 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2399 *
2400 * , so when we iterate from @leaf to @root, we actually print the lock
2401 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2402 *
2403 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2404 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2405 * trace of L1 in the dependency path, which is alright, because most of the
2406 * time we can figure out where L1 is held from the call trace of L2.
2407 */
2408 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2409 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2410 struct lock_list *root)
2411 {
2412 struct lock_list *entry = leaf;
2413 const struct lock_trace *trace = NULL;
2414 int depth;
2415
2416 /*compute depth from generated tree by BFS*/
2417 depth = get_lock_depth(leaf);
2418
2419 do {
2420 print_lock_class_header(entry->class, depth);
2421 if (trace) {
2422 printk("%*s ... acquired at:\n", depth, "");
2423 print_lock_trace(trace, 2);
2424 printk("\n");
2425 }
2426
2427 /*
2428 * Record the pointer to the trace for the next lock_list
2429 * entry, see the comments for the function.
2430 */
2431 trace = entry->trace;
2432
2433 if (depth == 0 && (entry != root)) {
2434 printk("lockdep:%s bad path found in chain graph\n", __func__);
2435 break;
2436 }
2437
2438 entry = get_lock_parent(entry);
2439 depth--;
2440 } while (entry && (depth >= 0));
2441 }
2442
2443 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2444 print_irq_lock_scenario(struct lock_list *safe_entry,
2445 struct lock_list *unsafe_entry,
2446 struct lock_class *prev_class,
2447 struct lock_class *next_class)
2448 {
2449 struct lock_class *safe_class = safe_entry->class;
2450 struct lock_class *unsafe_class = unsafe_entry->class;
2451 struct lock_class *middle_class = prev_class;
2452
2453 if (middle_class == safe_class)
2454 middle_class = next_class;
2455
2456 /*
2457 * A direct locking problem where unsafe_class lock is taken
2458 * directly by safe_class lock, then all we need to show
2459 * is the deadlock scenario, as it is obvious that the
2460 * unsafe lock is taken under the safe lock.
2461 *
2462 * But if there is a chain instead, where the safe lock takes
2463 * an intermediate lock (middle_class) where this lock is
2464 * not the same as the safe lock, then the lock chain is
2465 * used to describe the problem. Otherwise we would need
2466 * to show a different CPU case for each link in the chain
2467 * from the safe_class lock to the unsafe_class lock.
2468 */
2469 if (middle_class != unsafe_class) {
2470 printk("Chain exists of:\n ");
2471 __print_lock_name(safe_class);
2472 printk(KERN_CONT " --> ");
2473 __print_lock_name(middle_class);
2474 printk(KERN_CONT " --> ");
2475 __print_lock_name(unsafe_class);
2476 printk(KERN_CONT "\n\n");
2477 }
2478
2479 printk(" Possible interrupt unsafe locking scenario:\n\n");
2480 printk(" CPU0 CPU1\n");
2481 printk(" ---- ----\n");
2482 printk(" lock(");
2483 __print_lock_name(unsafe_class);
2484 printk(KERN_CONT ");\n");
2485 printk(" local_irq_disable();\n");
2486 printk(" lock(");
2487 __print_lock_name(safe_class);
2488 printk(KERN_CONT ");\n");
2489 printk(" lock(");
2490 __print_lock_name(middle_class);
2491 printk(KERN_CONT ");\n");
2492 printk(" <Interrupt>\n");
2493 printk(" lock(");
2494 __print_lock_name(safe_class);
2495 printk(KERN_CONT ");\n");
2496 printk("\n *** DEADLOCK ***\n\n");
2497 }
2498
2499 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2500 print_bad_irq_dependency(struct task_struct *curr,
2501 struct lock_list *prev_root,
2502 struct lock_list *next_root,
2503 struct lock_list *backwards_entry,
2504 struct lock_list *forwards_entry,
2505 struct held_lock *prev,
2506 struct held_lock *next,
2507 enum lock_usage_bit bit1,
2508 enum lock_usage_bit bit2,
2509 const char *irqclass)
2510 {
2511 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2512 return;
2513
2514 pr_warn("\n");
2515 pr_warn("=====================================================\n");
2516 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2517 irqclass, irqclass);
2518 print_kernel_ident();
2519 pr_warn("-----------------------------------------------------\n");
2520 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2521 curr->comm, task_pid_nr(curr),
2522 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2523 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2524 lockdep_hardirqs_enabled(),
2525 curr->softirqs_enabled);
2526 print_lock(next);
2527
2528 pr_warn("\nand this task is already holding:\n");
2529 print_lock(prev);
2530 pr_warn("which would create a new lock dependency:\n");
2531 print_lock_name(hlock_class(prev));
2532 pr_cont(" ->");
2533 print_lock_name(hlock_class(next));
2534 pr_cont("\n");
2535
2536 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2537 irqclass);
2538 print_lock_name(backwards_entry->class);
2539 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2540
2541 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2542
2543 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2544 print_lock_name(forwards_entry->class);
2545 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2546 pr_warn("...");
2547
2548 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2549
2550 pr_warn("\nother info that might help us debug this:\n\n");
2551 print_irq_lock_scenario(backwards_entry, forwards_entry,
2552 hlock_class(prev), hlock_class(next));
2553
2554 lockdep_print_held_locks(curr);
2555
2556 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2557 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2558
2559 pr_warn("\nthe dependencies between the lock to be acquired");
2560 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2561 next_root->trace = save_trace();
2562 if (!next_root->trace)
2563 return;
2564 print_shortest_lock_dependencies(forwards_entry, next_root);
2565
2566 pr_warn("\nstack backtrace:\n");
2567 dump_stack();
2568 }
2569
2570 static const char *state_names[] = {
2571 #define LOCKDEP_STATE(__STATE) \
2572 __stringify(__STATE),
2573 #include "lockdep_states.h"
2574 #undef LOCKDEP_STATE
2575 };
2576
2577 static const char *state_rnames[] = {
2578 #define LOCKDEP_STATE(__STATE) \
2579 __stringify(__STATE)"-READ",
2580 #include "lockdep_states.h"
2581 #undef LOCKDEP_STATE
2582 };
2583
state_name(enum lock_usage_bit bit)2584 static inline const char *state_name(enum lock_usage_bit bit)
2585 {
2586 if (bit & LOCK_USAGE_READ_MASK)
2587 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2588 else
2589 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2590 }
2591
2592 /*
2593 * The bit number is encoded like:
2594 *
2595 * bit0: 0 exclusive, 1 read lock
2596 * bit1: 0 used in irq, 1 irq enabled
2597 * bit2-n: state
2598 */
exclusive_bit(int new_bit)2599 static int exclusive_bit(int new_bit)
2600 {
2601 int state = new_bit & LOCK_USAGE_STATE_MASK;
2602 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2603
2604 /*
2605 * keep state, bit flip the direction and strip read.
2606 */
2607 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2608 }
2609
2610 /*
2611 * Observe that when given a bitmask where each bitnr is encoded as above, a
2612 * right shift of the mask transforms the individual bitnrs as -1 and
2613 * conversely, a left shift transforms into +1 for the individual bitnrs.
2614 *
2615 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2616 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2617 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2618 *
2619 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2620 *
2621 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2622 * all bits set) and recompose with bitnr1 flipped.
2623 */
invert_dir_mask(unsigned long mask)2624 static unsigned long invert_dir_mask(unsigned long mask)
2625 {
2626 unsigned long excl = 0;
2627
2628 /* Invert dir */
2629 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2630 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2631
2632 return excl;
2633 }
2634
2635 /*
2636 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2637 * usage may cause deadlock too, for example:
2638 *
2639 * P1 P2
2640 * <irq disabled>
2641 * write_lock(l1); <irq enabled>
2642 * read_lock(l2);
2643 * write_lock(l2);
2644 * <in irq>
2645 * read_lock(l1);
2646 *
2647 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2648 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2649 * deadlock.
2650 *
2651 * In fact, all of the following cases may cause deadlocks:
2652 *
2653 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2654 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2655 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2656 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2657 *
2658 * As a result, to calculate the "exclusive mask", first we invert the
2659 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2660 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2661 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2662 */
exclusive_mask(unsigned long mask)2663 static unsigned long exclusive_mask(unsigned long mask)
2664 {
2665 unsigned long excl = invert_dir_mask(mask);
2666
2667 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2668 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2669
2670 return excl;
2671 }
2672
2673 /*
2674 * Retrieve the _possible_ original mask to which @mask is
2675 * exclusive. Ie: this is the opposite of exclusive_mask().
2676 * Note that 2 possible original bits can match an exclusive
2677 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2678 * cleared. So both are returned for each exclusive bit.
2679 */
original_mask(unsigned long mask)2680 static unsigned long original_mask(unsigned long mask)
2681 {
2682 unsigned long excl = invert_dir_mask(mask);
2683
2684 /* Include read in existing usages */
2685 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2686 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2687
2688 return excl;
2689 }
2690
2691 /*
2692 * Find the first pair of bit match between an original
2693 * usage mask and an exclusive usage mask.
2694 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2695 static int find_exclusive_match(unsigned long mask,
2696 unsigned long excl_mask,
2697 enum lock_usage_bit *bitp,
2698 enum lock_usage_bit *excl_bitp)
2699 {
2700 int bit, excl, excl_read;
2701
2702 for_each_set_bit(bit, &mask, LOCK_USED) {
2703 /*
2704 * exclusive_bit() strips the read bit, however,
2705 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2706 * to search excl | LOCK_USAGE_READ_MASK as well.
2707 */
2708 excl = exclusive_bit(bit);
2709 excl_read = excl | LOCK_USAGE_READ_MASK;
2710 if (excl_mask & lock_flag(excl)) {
2711 *bitp = bit;
2712 *excl_bitp = excl;
2713 return 0;
2714 } else if (excl_mask & lock_flag(excl_read)) {
2715 *bitp = bit;
2716 *excl_bitp = excl_read;
2717 return 0;
2718 }
2719 }
2720 return -1;
2721 }
2722
2723 /*
2724 * Prove that the new dependency does not connect a hardirq-safe(-read)
2725 * lock with a hardirq-unsafe lock - to achieve this we search
2726 * the backwards-subgraph starting at <prev>, and the
2727 * forwards-subgraph starting at <next>:
2728 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2729 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2730 struct held_lock *next)
2731 {
2732 unsigned long usage_mask = 0, forward_mask, backward_mask;
2733 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2734 struct lock_list *target_entry1;
2735 struct lock_list *target_entry;
2736 struct lock_list this, that;
2737 enum bfs_result ret;
2738
2739 /*
2740 * Step 1: gather all hard/soft IRQs usages backward in an
2741 * accumulated usage mask.
2742 */
2743 bfs_init_rootb(&this, prev);
2744
2745 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2746 if (bfs_error(ret)) {
2747 print_bfs_bug(ret);
2748 return 0;
2749 }
2750
2751 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2752 if (!usage_mask)
2753 return 1;
2754
2755 /*
2756 * Step 2: find exclusive uses forward that match the previous
2757 * backward accumulated mask.
2758 */
2759 forward_mask = exclusive_mask(usage_mask);
2760
2761 bfs_init_root(&that, next);
2762
2763 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2764 if (bfs_error(ret)) {
2765 print_bfs_bug(ret);
2766 return 0;
2767 }
2768 if (ret == BFS_RNOMATCH)
2769 return 1;
2770
2771 /*
2772 * Step 3: we found a bad match! Now retrieve a lock from the backward
2773 * list whose usage mask matches the exclusive usage mask from the
2774 * lock found on the forward list.
2775 *
2776 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2777 * the follow case:
2778 *
2779 * When trying to add A -> B to the graph, we find that there is a
2780 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2781 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2782 * invert bits of M's usage_mask, we will find another lock N that is
2783 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2784 * cause a inversion deadlock.
2785 */
2786 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2787
2788 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2789 if (bfs_error(ret)) {
2790 print_bfs_bug(ret);
2791 return 0;
2792 }
2793 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2794 return 1;
2795
2796 /*
2797 * Step 4: narrow down to a pair of incompatible usage bits
2798 * and report it.
2799 */
2800 ret = find_exclusive_match(target_entry->class->usage_mask,
2801 target_entry1->class->usage_mask,
2802 &backward_bit, &forward_bit);
2803 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2804 return 1;
2805
2806 print_bad_irq_dependency(curr, &this, &that,
2807 target_entry, target_entry1,
2808 prev, next,
2809 backward_bit, forward_bit,
2810 state_name(backward_bit));
2811
2812 return 0;
2813 }
2814
2815 #else
2816
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2817 static inline int check_irq_usage(struct task_struct *curr,
2818 struct held_lock *prev, struct held_lock *next)
2819 {
2820 return 1;
2821 }
2822
usage_skip(struct lock_list * entry,void * mask)2823 static inline bool usage_skip(struct lock_list *entry, void *mask)
2824 {
2825 return false;
2826 }
2827
2828 #endif /* CONFIG_TRACE_IRQFLAGS */
2829
2830 #ifdef CONFIG_LOCKDEP_SMALL
2831 /*
2832 * Check that the dependency graph starting at <src> can lead to
2833 * <target> or not. If it can, <src> -> <target> dependency is already
2834 * in the graph.
2835 *
2836 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2837 * any error appears in the bfs search.
2838 */
2839 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2840 check_redundant(struct held_lock *src, struct held_lock *target)
2841 {
2842 enum bfs_result ret;
2843 struct lock_list *target_entry;
2844 struct lock_list src_entry;
2845
2846 bfs_init_root(&src_entry, src);
2847 /*
2848 * Special setup for check_redundant().
2849 *
2850 * To report redundant, we need to find a strong dependency path that
2851 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2852 * we need to let __bfs() only search for a path starting at a -(E*)->,
2853 * we achieve this by setting the initial node's ->only_xr to true in
2854 * that case. And if <prev> is S, we set initial ->only_xr to false
2855 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2856 */
2857 src_entry.only_xr = src->read == 0;
2858
2859 debug_atomic_inc(nr_redundant_checks);
2860
2861 /*
2862 * Note: we skip local_lock() for redundant check, because as the
2863 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2864 * the same.
2865 */
2866 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2867
2868 if (ret == BFS_RMATCH)
2869 debug_atomic_inc(nr_redundant);
2870
2871 return ret;
2872 }
2873
2874 #else
2875
2876 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2877 check_redundant(struct held_lock *src, struct held_lock *target)
2878 {
2879 return BFS_RNOMATCH;
2880 }
2881
2882 #endif
2883
inc_chains(int irq_context)2884 static void inc_chains(int irq_context)
2885 {
2886 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2887 nr_hardirq_chains++;
2888 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2889 nr_softirq_chains++;
2890 else
2891 nr_process_chains++;
2892 }
2893
dec_chains(int irq_context)2894 static void dec_chains(int irq_context)
2895 {
2896 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2897 nr_hardirq_chains--;
2898 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2899 nr_softirq_chains--;
2900 else
2901 nr_process_chains--;
2902 }
2903
2904 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2905 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2906 {
2907 struct lock_class *next = hlock_class(nxt);
2908 struct lock_class *prev = hlock_class(prv);
2909
2910 printk(" Possible unsafe locking scenario:\n\n");
2911 printk(" CPU0\n");
2912 printk(" ----\n");
2913 printk(" lock(");
2914 __print_lock_name(prev);
2915 printk(KERN_CONT ");\n");
2916 printk(" lock(");
2917 __print_lock_name(next);
2918 printk(KERN_CONT ");\n");
2919 printk("\n *** DEADLOCK ***\n\n");
2920 printk(" May be due to missing lock nesting notation\n\n");
2921 }
2922
2923 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2924 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2925 struct held_lock *next)
2926 {
2927 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2928 return;
2929
2930 pr_warn("\n");
2931 pr_warn("============================================\n");
2932 pr_warn("WARNING: possible recursive locking detected\n");
2933 print_kernel_ident();
2934 pr_warn("--------------------------------------------\n");
2935 pr_warn("%s/%d is trying to acquire lock:\n",
2936 curr->comm, task_pid_nr(curr));
2937 print_lock(next);
2938 pr_warn("\nbut task is already holding lock:\n");
2939 print_lock(prev);
2940
2941 pr_warn("\nother info that might help us debug this:\n");
2942 print_deadlock_scenario(next, prev);
2943 lockdep_print_held_locks(curr);
2944
2945 pr_warn("\nstack backtrace:\n");
2946 dump_stack();
2947 }
2948
2949 /*
2950 * Check whether we are holding such a class already.
2951 *
2952 * (Note that this has to be done separately, because the graph cannot
2953 * detect such classes of deadlocks.)
2954 *
2955 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2956 * lock class is held but nest_lock is also held, i.e. we rely on the
2957 * nest_lock to avoid the deadlock.
2958 */
2959 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2960 check_deadlock(struct task_struct *curr, struct held_lock *next)
2961 {
2962 struct held_lock *prev;
2963 struct held_lock *nest = NULL;
2964 int i;
2965
2966 for (i = 0; i < curr->lockdep_depth; i++) {
2967 prev = curr->held_locks + i;
2968
2969 if (prev->instance == next->nest_lock)
2970 nest = prev;
2971
2972 if (hlock_class(prev) != hlock_class(next))
2973 continue;
2974
2975 /*
2976 * Allow read-after-read recursion of the same
2977 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2978 */
2979 if ((next->read == 2) && prev->read)
2980 continue;
2981
2982 /*
2983 * We're holding the nest_lock, which serializes this lock's
2984 * nesting behaviour.
2985 */
2986 if (nest)
2987 return 2;
2988
2989 print_deadlock_bug(curr, prev, next);
2990 return 0;
2991 }
2992 return 1;
2993 }
2994
2995 /*
2996 * There was a chain-cache miss, and we are about to add a new dependency
2997 * to a previous lock. We validate the following rules:
2998 *
2999 * - would the adding of the <prev> -> <next> dependency create a
3000 * circular dependency in the graph? [== circular deadlock]
3001 *
3002 * - does the new prev->next dependency connect any hardirq-safe lock
3003 * (in the full backwards-subgraph starting at <prev>) with any
3004 * hardirq-unsafe lock (in the full forwards-subgraph starting at
3005 * <next>)? [== illegal lock inversion with hardirq contexts]
3006 *
3007 * - does the new prev->next dependency connect any softirq-safe lock
3008 * (in the full backwards-subgraph starting at <prev>) with any
3009 * softirq-unsafe lock (in the full forwards-subgraph starting at
3010 * <next>)? [== illegal lock inversion with softirq contexts]
3011 *
3012 * any of these scenarios could lead to a deadlock.
3013 *
3014 * Then if all the validations pass, we add the forwards and backwards
3015 * dependency.
3016 */
3017 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3018 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3019 struct held_lock *next, u16 distance,
3020 struct lock_trace **const trace)
3021 {
3022 struct lock_list *entry;
3023 enum bfs_result ret;
3024
3025 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3026 /*
3027 * The warning statements below may trigger a use-after-free
3028 * of the class name. It is better to trigger a use-after free
3029 * and to have the class name most of the time instead of not
3030 * having the class name available.
3031 */
3032 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3033 "Detected use-after-free of lock class %px/%s\n",
3034 hlock_class(prev),
3035 hlock_class(prev)->name);
3036 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3037 "Detected use-after-free of lock class %px/%s\n",
3038 hlock_class(next),
3039 hlock_class(next)->name);
3040 return 2;
3041 }
3042
3043 /*
3044 * Prove that the new <prev> -> <next> dependency would not
3045 * create a circular dependency in the graph. (We do this by
3046 * a breadth-first search into the graph starting at <next>,
3047 * and check whether we can reach <prev>.)
3048 *
3049 * The search is limited by the size of the circular queue (i.e.,
3050 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3051 * in the graph whose neighbours are to be checked.
3052 */
3053 ret = check_noncircular(next, prev, trace);
3054 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3055 return 0;
3056
3057 if (!check_irq_usage(curr, prev, next))
3058 return 0;
3059
3060 /*
3061 * Is the <prev> -> <next> dependency already present?
3062 *
3063 * (this may occur even though this is a new chain: consider
3064 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3065 * chains - the second one will be new, but L1 already has
3066 * L2 added to its dependency list, due to the first chain.)
3067 */
3068 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3069 if (entry->class == hlock_class(next)) {
3070 if (distance == 1)
3071 entry->distance = 1;
3072 entry->dep |= calc_dep(prev, next);
3073
3074 /*
3075 * Also, update the reverse dependency in @next's
3076 * ->locks_before list.
3077 *
3078 * Here we reuse @entry as the cursor, which is fine
3079 * because we won't go to the next iteration of the
3080 * outer loop:
3081 *
3082 * For normal cases, we return in the inner loop.
3083 *
3084 * If we fail to return, we have inconsistency, i.e.
3085 * <prev>::locks_after contains <next> while
3086 * <next>::locks_before doesn't contain <prev>. In
3087 * that case, we return after the inner and indicate
3088 * something is wrong.
3089 */
3090 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3091 if (entry->class == hlock_class(prev)) {
3092 if (distance == 1)
3093 entry->distance = 1;
3094 entry->dep |= calc_depb(prev, next);
3095 return 1;
3096 }
3097 }
3098
3099 /* <prev> is not found in <next>::locks_before */
3100 return 0;
3101 }
3102 }
3103
3104 /*
3105 * Is the <prev> -> <next> link redundant?
3106 */
3107 ret = check_redundant(prev, next);
3108 if (bfs_error(ret))
3109 return 0;
3110 else if (ret == BFS_RMATCH)
3111 return 2;
3112
3113 if (!*trace) {
3114 *trace = save_trace();
3115 if (!*trace)
3116 return 0;
3117 }
3118
3119 /*
3120 * Ok, all validations passed, add the new lock
3121 * to the previous lock's dependency list:
3122 */
3123 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3124 &hlock_class(prev)->locks_after, distance,
3125 calc_dep(prev, next), *trace);
3126
3127 if (!ret)
3128 return 0;
3129
3130 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131 &hlock_class(next)->locks_before, distance,
3132 calc_depb(prev, next), *trace);
3133 if (!ret)
3134 return 0;
3135
3136 return 2;
3137 }
3138
3139 /*
3140 * Add the dependency to all directly-previous locks that are 'relevant'.
3141 * The ones that are relevant are (in increasing distance from curr):
3142 * all consecutive trylock entries and the final non-trylock entry - or
3143 * the end of this context's lock-chain - whichever comes first.
3144 */
3145 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3146 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3147 {
3148 struct lock_trace *trace = NULL;
3149 int depth = curr->lockdep_depth;
3150 struct held_lock *hlock;
3151
3152 /*
3153 * Debugging checks.
3154 *
3155 * Depth must not be zero for a non-head lock:
3156 */
3157 if (!depth)
3158 goto out_bug;
3159 /*
3160 * At least two relevant locks must exist for this
3161 * to be a head:
3162 */
3163 if (curr->held_locks[depth].irq_context !=
3164 curr->held_locks[depth-1].irq_context)
3165 goto out_bug;
3166
3167 for (;;) {
3168 u16 distance = curr->lockdep_depth - depth + 1;
3169 hlock = curr->held_locks + depth - 1;
3170
3171 if (hlock->check) {
3172 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3173 if (!ret)
3174 return 0;
3175
3176 /*
3177 * Stop after the first non-trylock entry,
3178 * as non-trylock entries have added their
3179 * own direct dependencies already, so this
3180 * lock is connected to them indirectly:
3181 */
3182 if (!hlock->trylock)
3183 break;
3184 }
3185
3186 depth--;
3187 /*
3188 * End of lock-stack?
3189 */
3190 if (!depth)
3191 break;
3192 /*
3193 * Stop the search if we cross into another context:
3194 */
3195 if (curr->held_locks[depth].irq_context !=
3196 curr->held_locks[depth-1].irq_context)
3197 break;
3198 }
3199 return 1;
3200 out_bug:
3201 if (!debug_locks_off_graph_unlock())
3202 return 0;
3203
3204 /*
3205 * Clearly we all shouldn't be here, but since we made it we
3206 * can reliable say we messed up our state. See the above two
3207 * gotos for reasons why we could possibly end up here.
3208 */
3209 WARN_ON(1);
3210
3211 return 0;
3212 }
3213
3214 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3215 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3216 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3217 unsigned long nr_zapped_lock_chains;
3218 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3219 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3220 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3221
3222 /*
3223 * The first 2 chain_hlocks entries in the chain block in the bucket
3224 * list contains the following meta data:
3225 *
3226 * entry[0]:
3227 * Bit 15 - always set to 1 (it is not a class index)
3228 * Bits 0-14 - upper 15 bits of the next block index
3229 * entry[1] - lower 16 bits of next block index
3230 *
3231 * A next block index of all 1 bits means it is the end of the list.
3232 *
3233 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3234 * the chain block size:
3235 *
3236 * entry[2] - upper 16 bits of the chain block size
3237 * entry[3] - lower 16 bits of the chain block size
3238 */
3239 #define MAX_CHAIN_BUCKETS 16
3240 #define CHAIN_BLK_FLAG (1U << 15)
3241 #define CHAIN_BLK_LIST_END 0xFFFFU
3242
3243 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3244
size_to_bucket(int size)3245 static inline int size_to_bucket(int size)
3246 {
3247 if (size > MAX_CHAIN_BUCKETS)
3248 return 0;
3249
3250 return size - 1;
3251 }
3252
3253 /*
3254 * Iterate all the chain blocks in a bucket.
3255 */
3256 #define for_each_chain_block(bucket, prev, curr) \
3257 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3258 (curr) >= 0; \
3259 (prev) = (curr), (curr) = chain_block_next(curr))
3260
3261 /*
3262 * next block or -1
3263 */
chain_block_next(int offset)3264 static inline int chain_block_next(int offset)
3265 {
3266 int next = chain_hlocks[offset];
3267
3268 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3269
3270 if (next == CHAIN_BLK_LIST_END)
3271 return -1;
3272
3273 next &= ~CHAIN_BLK_FLAG;
3274 next <<= 16;
3275 next |= chain_hlocks[offset + 1];
3276
3277 return next;
3278 }
3279
3280 /*
3281 * bucket-0 only
3282 */
chain_block_size(int offset)3283 static inline int chain_block_size(int offset)
3284 {
3285 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3286 }
3287
init_chain_block(int offset,int next,int bucket,int size)3288 static inline void init_chain_block(int offset, int next, int bucket, int size)
3289 {
3290 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3291 chain_hlocks[offset + 1] = (u16)next;
3292
3293 if (size && !bucket) {
3294 chain_hlocks[offset + 2] = size >> 16;
3295 chain_hlocks[offset + 3] = (u16)size;
3296 }
3297 }
3298
add_chain_block(int offset,int size)3299 static inline void add_chain_block(int offset, int size)
3300 {
3301 int bucket = size_to_bucket(size);
3302 int next = chain_block_buckets[bucket];
3303 int prev, curr;
3304
3305 if (unlikely(size < 2)) {
3306 /*
3307 * We can't store single entries on the freelist. Leak them.
3308 *
3309 * One possible way out would be to uniquely mark them, other
3310 * than with CHAIN_BLK_FLAG, such that we can recover them when
3311 * the block before it is re-added.
3312 */
3313 if (size)
3314 nr_lost_chain_hlocks++;
3315 return;
3316 }
3317
3318 nr_free_chain_hlocks += size;
3319 if (!bucket) {
3320 nr_large_chain_blocks++;
3321
3322 /*
3323 * Variable sized, sort large to small.
3324 */
3325 for_each_chain_block(0, prev, curr) {
3326 if (size >= chain_block_size(curr))
3327 break;
3328 }
3329 init_chain_block(offset, curr, 0, size);
3330 if (prev < 0)
3331 chain_block_buckets[0] = offset;
3332 else
3333 init_chain_block(prev, offset, 0, 0);
3334 return;
3335 }
3336 /*
3337 * Fixed size, add to head.
3338 */
3339 init_chain_block(offset, next, bucket, size);
3340 chain_block_buckets[bucket] = offset;
3341 }
3342
3343 /*
3344 * Only the first block in the list can be deleted.
3345 *
3346 * For the variable size bucket[0], the first block (the largest one) is
3347 * returned, broken up and put back into the pool. So if a chain block of
3348 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3349 * queued up after the primordial chain block and never be used until the
3350 * hlock entries in the primordial chain block is almost used up. That
3351 * causes fragmentation and reduce allocation efficiency. That can be
3352 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3353 */
del_chain_block(int bucket,int size,int next)3354 static inline void del_chain_block(int bucket, int size, int next)
3355 {
3356 nr_free_chain_hlocks -= size;
3357 chain_block_buckets[bucket] = next;
3358
3359 if (!bucket)
3360 nr_large_chain_blocks--;
3361 }
3362
init_chain_block_buckets(void)3363 static void init_chain_block_buckets(void)
3364 {
3365 int i;
3366
3367 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3368 chain_block_buckets[i] = -1;
3369
3370 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3371 }
3372
3373 /*
3374 * Return offset of a chain block of the right size or -1 if not found.
3375 *
3376 * Fairly simple worst-fit allocator with the addition of a number of size
3377 * specific free lists.
3378 */
alloc_chain_hlocks(int req)3379 static int alloc_chain_hlocks(int req)
3380 {
3381 int bucket, curr, size;
3382
3383 /*
3384 * We rely on the MSB to act as an escape bit to denote freelist
3385 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3386 */
3387 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3388
3389 init_data_structures_once();
3390
3391 if (nr_free_chain_hlocks < req)
3392 return -1;
3393
3394 /*
3395 * We require a minimum of 2 (u16) entries to encode a freelist
3396 * 'pointer'.
3397 */
3398 req = max(req, 2);
3399 bucket = size_to_bucket(req);
3400 curr = chain_block_buckets[bucket];
3401
3402 if (bucket) {
3403 if (curr >= 0) {
3404 del_chain_block(bucket, req, chain_block_next(curr));
3405 return curr;
3406 }
3407 /* Try bucket 0 */
3408 curr = chain_block_buckets[0];
3409 }
3410
3411 /*
3412 * The variable sized freelist is sorted by size; the first entry is
3413 * the largest. Use it if it fits.
3414 */
3415 if (curr >= 0) {
3416 size = chain_block_size(curr);
3417 if (likely(size >= req)) {
3418 del_chain_block(0, size, chain_block_next(curr));
3419 if (size > req)
3420 add_chain_block(curr + req, size - req);
3421 return curr;
3422 }
3423 }
3424
3425 /*
3426 * Last resort, split a block in a larger sized bucket.
3427 */
3428 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3429 bucket = size_to_bucket(size);
3430 curr = chain_block_buckets[bucket];
3431 if (curr < 0)
3432 continue;
3433
3434 del_chain_block(bucket, size, chain_block_next(curr));
3435 add_chain_block(curr + req, size - req);
3436 return curr;
3437 }
3438
3439 return -1;
3440 }
3441
free_chain_hlocks(int base,int size)3442 static inline void free_chain_hlocks(int base, int size)
3443 {
3444 add_chain_block(base, max(size, 2));
3445 }
3446
lock_chain_get_class(struct lock_chain * chain,int i)3447 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3448 {
3449 u16 chain_hlock = chain_hlocks[chain->base + i];
3450 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3451
3452 return lock_classes + class_idx;
3453 }
3454
3455 /*
3456 * Returns the index of the first held_lock of the current chain
3457 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3458 static inline int get_first_held_lock(struct task_struct *curr,
3459 struct held_lock *hlock)
3460 {
3461 int i;
3462 struct held_lock *hlock_curr;
3463
3464 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3465 hlock_curr = curr->held_locks + i;
3466 if (hlock_curr->irq_context != hlock->irq_context)
3467 break;
3468
3469 }
3470
3471 return ++i;
3472 }
3473
3474 #ifdef CONFIG_DEBUG_LOCKDEP
3475 /*
3476 * Returns the next chain_key iteration
3477 */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3478 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3479 {
3480 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3481
3482 printk(" hlock_id:%d -> chain_key:%016Lx",
3483 (unsigned int)hlock_id,
3484 (unsigned long long)new_chain_key);
3485 return new_chain_key;
3486 }
3487
3488 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3489 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3490 {
3491 struct held_lock *hlock;
3492 u64 chain_key = INITIAL_CHAIN_KEY;
3493 int depth = curr->lockdep_depth;
3494 int i = get_first_held_lock(curr, hlock_next);
3495
3496 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3497 hlock_next->irq_context);
3498 for (; i < depth; i++) {
3499 hlock = curr->held_locks + i;
3500 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3501
3502 print_lock(hlock);
3503 }
3504
3505 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3506 print_lock(hlock_next);
3507 }
3508
print_chain_keys_chain(struct lock_chain * chain)3509 static void print_chain_keys_chain(struct lock_chain *chain)
3510 {
3511 int i;
3512 u64 chain_key = INITIAL_CHAIN_KEY;
3513 u16 hlock_id;
3514
3515 printk("depth: %u\n", chain->depth);
3516 for (i = 0; i < chain->depth; i++) {
3517 hlock_id = chain_hlocks[chain->base + i];
3518 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3519
3520 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3521 printk("\n");
3522 }
3523 }
3524
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3525 static void print_collision(struct task_struct *curr,
3526 struct held_lock *hlock_next,
3527 struct lock_chain *chain)
3528 {
3529 pr_warn("\n");
3530 pr_warn("============================\n");
3531 pr_warn("WARNING: chain_key collision\n");
3532 print_kernel_ident();
3533 pr_warn("----------------------------\n");
3534 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3535 pr_warn("Hash chain already cached but the contents don't match!\n");
3536
3537 pr_warn("Held locks:");
3538 print_chain_keys_held_locks(curr, hlock_next);
3539
3540 pr_warn("Locks in cached chain:");
3541 print_chain_keys_chain(chain);
3542
3543 pr_warn("\nstack backtrace:\n");
3544 dump_stack();
3545 }
3546 #endif
3547
3548 /*
3549 * Checks whether the chain and the current held locks are consistent
3550 * in depth and also in content. If they are not it most likely means
3551 * that there was a collision during the calculation of the chain_key.
3552 * Returns: 0 not passed, 1 passed
3553 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3554 static int check_no_collision(struct task_struct *curr,
3555 struct held_lock *hlock,
3556 struct lock_chain *chain)
3557 {
3558 #ifdef CONFIG_DEBUG_LOCKDEP
3559 int i, j, id;
3560
3561 i = get_first_held_lock(curr, hlock);
3562
3563 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3564 print_collision(curr, hlock, chain);
3565 return 0;
3566 }
3567
3568 for (j = 0; j < chain->depth - 1; j++, i++) {
3569 id = hlock_id(&curr->held_locks[i]);
3570
3571 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3572 print_collision(curr, hlock, chain);
3573 return 0;
3574 }
3575 }
3576 #endif
3577 return 1;
3578 }
3579
3580 /*
3581 * Given an index that is >= -1, return the index of the next lock chain.
3582 * Return -2 if there is no next lock chain.
3583 */
lockdep_next_lockchain(long i)3584 long lockdep_next_lockchain(long i)
3585 {
3586 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3587 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3588 }
3589
lock_chain_count(void)3590 unsigned long lock_chain_count(void)
3591 {
3592 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3593 }
3594
3595 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3596 static struct lock_chain *alloc_lock_chain(void)
3597 {
3598 int idx = find_first_zero_bit(lock_chains_in_use,
3599 ARRAY_SIZE(lock_chains));
3600
3601 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3602 return NULL;
3603 __set_bit(idx, lock_chains_in_use);
3604 return lock_chains + idx;
3605 }
3606
3607 /*
3608 * Adds a dependency chain into chain hashtable. And must be called with
3609 * graph_lock held.
3610 *
3611 * Return 0 if fail, and graph_lock is released.
3612 * Return 1 if succeed, with graph_lock held.
3613 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3614 static inline int add_chain_cache(struct task_struct *curr,
3615 struct held_lock *hlock,
3616 u64 chain_key)
3617 {
3618 struct hlist_head *hash_head = chainhashentry(chain_key);
3619 struct lock_chain *chain;
3620 int i, j;
3621
3622 /*
3623 * The caller must hold the graph lock, ensure we've got IRQs
3624 * disabled to make this an IRQ-safe lock.. for recursion reasons
3625 * lockdep won't complain about its own locking errors.
3626 */
3627 if (lockdep_assert_locked())
3628 return 0;
3629
3630 chain = alloc_lock_chain();
3631 if (!chain) {
3632 if (!debug_locks_off_graph_unlock())
3633 return 0;
3634
3635 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3636 dump_stack();
3637 return 0;
3638 }
3639 chain->chain_key = chain_key;
3640 chain->irq_context = hlock->irq_context;
3641 i = get_first_held_lock(curr, hlock);
3642 chain->depth = curr->lockdep_depth + 1 - i;
3643
3644 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3645 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3646 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3647
3648 j = alloc_chain_hlocks(chain->depth);
3649 if (j < 0) {
3650 if (!debug_locks_off_graph_unlock())
3651 return 0;
3652
3653 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3654 dump_stack();
3655 return 0;
3656 }
3657
3658 chain->base = j;
3659 for (j = 0; j < chain->depth - 1; j++, i++) {
3660 int lock_id = hlock_id(curr->held_locks + i);
3661
3662 chain_hlocks[chain->base + j] = lock_id;
3663 }
3664 chain_hlocks[chain->base + j] = hlock_id(hlock);
3665 hlist_add_head_rcu(&chain->entry, hash_head);
3666 debug_atomic_inc(chain_lookup_misses);
3667 inc_chains(chain->irq_context);
3668
3669 return 1;
3670 }
3671
3672 /*
3673 * Look up a dependency chain. Must be called with either the graph lock or
3674 * the RCU read lock held.
3675 */
lookup_chain_cache(u64 chain_key)3676 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3677 {
3678 struct hlist_head *hash_head = chainhashentry(chain_key);
3679 struct lock_chain *chain;
3680
3681 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3682 if (READ_ONCE(chain->chain_key) == chain_key) {
3683 debug_atomic_inc(chain_lookup_hits);
3684 return chain;
3685 }
3686 }
3687 return NULL;
3688 }
3689
3690 /*
3691 * If the key is not present yet in dependency chain cache then
3692 * add it and return 1 - in this case the new dependency chain is
3693 * validated. If the key is already hashed, return 0.
3694 * (On return with 1 graph_lock is held.)
3695 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3696 static inline int lookup_chain_cache_add(struct task_struct *curr,
3697 struct held_lock *hlock,
3698 u64 chain_key)
3699 {
3700 struct lock_class *class = hlock_class(hlock);
3701 struct lock_chain *chain = lookup_chain_cache(chain_key);
3702
3703 if (chain) {
3704 cache_hit:
3705 if (!check_no_collision(curr, hlock, chain))
3706 return 0;
3707
3708 if (very_verbose(class)) {
3709 printk("\nhash chain already cached, key: "
3710 "%016Lx tail class: [%px] %s\n",
3711 (unsigned long long)chain_key,
3712 class->key, class->name);
3713 }
3714
3715 return 0;
3716 }
3717
3718 if (very_verbose(class)) {
3719 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3720 (unsigned long long)chain_key, class->key, class->name);
3721 }
3722
3723 if (!graph_lock())
3724 return 0;
3725
3726 /*
3727 * We have to walk the chain again locked - to avoid duplicates:
3728 */
3729 chain = lookup_chain_cache(chain_key);
3730 if (chain) {
3731 graph_unlock();
3732 goto cache_hit;
3733 }
3734
3735 if (!add_chain_cache(curr, hlock, chain_key))
3736 return 0;
3737
3738 return 1;
3739 }
3740
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3741 static int validate_chain(struct task_struct *curr,
3742 struct held_lock *hlock,
3743 int chain_head, u64 chain_key)
3744 {
3745 /*
3746 * Trylock needs to maintain the stack of held locks, but it
3747 * does not add new dependencies, because trylock can be done
3748 * in any order.
3749 *
3750 * We look up the chain_key and do the O(N^2) check and update of
3751 * the dependencies only if this is a new dependency chain.
3752 * (If lookup_chain_cache_add() return with 1 it acquires
3753 * graph_lock for us)
3754 */
3755 if (!hlock->trylock && hlock->check &&
3756 lookup_chain_cache_add(curr, hlock, chain_key)) {
3757 /*
3758 * Check whether last held lock:
3759 *
3760 * - is irq-safe, if this lock is irq-unsafe
3761 * - is softirq-safe, if this lock is hardirq-unsafe
3762 *
3763 * And check whether the new lock's dependency graph
3764 * could lead back to the previous lock:
3765 *
3766 * - within the current held-lock stack
3767 * - across our accumulated lock dependency records
3768 *
3769 * any of these scenarios could lead to a deadlock.
3770 */
3771 /*
3772 * The simple case: does the current hold the same lock
3773 * already?
3774 */
3775 int ret = check_deadlock(curr, hlock);
3776
3777 if (!ret)
3778 return 0;
3779 /*
3780 * Add dependency only if this lock is not the head
3781 * of the chain, and if the new lock introduces no more
3782 * lock dependency (because we already hold a lock with the
3783 * same lock class) nor deadlock (because the nest_lock
3784 * serializes nesting locks), see the comments for
3785 * check_deadlock().
3786 */
3787 if (!chain_head && ret != 2) {
3788 if (!check_prevs_add(curr, hlock))
3789 return 0;
3790 }
3791
3792 graph_unlock();
3793 } else {
3794 /* after lookup_chain_cache_add(): */
3795 if (unlikely(!debug_locks))
3796 return 0;
3797 }
3798
3799 return 1;
3800 }
3801 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3802 static inline int validate_chain(struct task_struct *curr,
3803 struct held_lock *hlock,
3804 int chain_head, u64 chain_key)
3805 {
3806 return 1;
3807 }
3808
init_chain_block_buckets(void)3809 static void init_chain_block_buckets(void) { }
3810 #endif /* CONFIG_PROVE_LOCKING */
3811
3812 /*
3813 * We are building curr_chain_key incrementally, so double-check
3814 * it from scratch, to make sure that it's done correctly:
3815 */
check_chain_key(struct task_struct * curr)3816 static void check_chain_key(struct task_struct *curr)
3817 {
3818 #ifdef CONFIG_DEBUG_LOCKDEP
3819 struct held_lock *hlock, *prev_hlock = NULL;
3820 unsigned int i;
3821 u64 chain_key = INITIAL_CHAIN_KEY;
3822
3823 for (i = 0; i < curr->lockdep_depth; i++) {
3824 hlock = curr->held_locks + i;
3825 if (chain_key != hlock->prev_chain_key) {
3826 debug_locks_off();
3827 /*
3828 * We got mighty confused, our chain keys don't match
3829 * with what we expect, someone trample on our task state?
3830 */
3831 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3832 curr->lockdep_depth, i,
3833 (unsigned long long)chain_key,
3834 (unsigned long long)hlock->prev_chain_key);
3835 return;
3836 }
3837
3838 /*
3839 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3840 * it registered lock class index?
3841 */
3842 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3843 return;
3844
3845 if (prev_hlock && (prev_hlock->irq_context !=
3846 hlock->irq_context))
3847 chain_key = INITIAL_CHAIN_KEY;
3848 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3849 prev_hlock = hlock;
3850 }
3851 if (chain_key != curr->curr_chain_key) {
3852 debug_locks_off();
3853 /*
3854 * More smoking hash instead of calculating it, damn see these
3855 * numbers float.. I bet that a pink elephant stepped on my memory.
3856 */
3857 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3858 curr->lockdep_depth, i,
3859 (unsigned long long)chain_key,
3860 (unsigned long long)curr->curr_chain_key);
3861 }
3862 #endif
3863 }
3864
3865 #ifdef CONFIG_PROVE_LOCKING
3866 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3867 enum lock_usage_bit new_bit);
3868
print_usage_bug_scenario(struct held_lock * lock)3869 static void print_usage_bug_scenario(struct held_lock *lock)
3870 {
3871 struct lock_class *class = hlock_class(lock);
3872
3873 printk(" Possible unsafe locking scenario:\n\n");
3874 printk(" CPU0\n");
3875 printk(" ----\n");
3876 printk(" lock(");
3877 __print_lock_name(class);
3878 printk(KERN_CONT ");\n");
3879 printk(" <Interrupt>\n");
3880 printk(" lock(");
3881 __print_lock_name(class);
3882 printk(KERN_CONT ");\n");
3883 printk("\n *** DEADLOCK ***\n\n");
3884 }
3885
3886 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3887 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3888 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3889 {
3890 if (!debug_locks_off() || debug_locks_silent)
3891 return;
3892
3893 pr_warn("\n");
3894 pr_warn("================================\n");
3895 pr_warn("WARNING: inconsistent lock state\n");
3896 print_kernel_ident();
3897 pr_warn("--------------------------------\n");
3898
3899 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3900 usage_str[prev_bit], usage_str[new_bit]);
3901
3902 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3903 curr->comm, task_pid_nr(curr),
3904 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3905 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3906 lockdep_hardirqs_enabled(),
3907 lockdep_softirqs_enabled(curr));
3908 print_lock(this);
3909
3910 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3911 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3912
3913 print_irqtrace_events(curr);
3914 pr_warn("\nother info that might help us debug this:\n");
3915 print_usage_bug_scenario(this);
3916
3917 lockdep_print_held_locks(curr);
3918
3919 pr_warn("\nstack backtrace:\n");
3920 dump_stack();
3921 }
3922
3923 /*
3924 * Print out an error if an invalid bit is set:
3925 */
3926 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3927 valid_state(struct task_struct *curr, struct held_lock *this,
3928 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3929 {
3930 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3931 graph_unlock();
3932 print_usage_bug(curr, this, bad_bit, new_bit);
3933 return 0;
3934 }
3935 return 1;
3936 }
3937
3938
3939 /*
3940 * print irq inversion bug:
3941 */
3942 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3943 print_irq_inversion_bug(struct task_struct *curr,
3944 struct lock_list *root, struct lock_list *other,
3945 struct held_lock *this, int forwards,
3946 const char *irqclass)
3947 {
3948 struct lock_list *entry = other;
3949 struct lock_list *middle = NULL;
3950 int depth;
3951
3952 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3953 return;
3954
3955 pr_warn("\n");
3956 pr_warn("========================================================\n");
3957 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3958 print_kernel_ident();
3959 pr_warn("--------------------------------------------------------\n");
3960 pr_warn("%s/%d just changed the state of lock:\n",
3961 curr->comm, task_pid_nr(curr));
3962 print_lock(this);
3963 if (forwards)
3964 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3965 else
3966 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3967 print_lock_name(other->class);
3968 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3969
3970 pr_warn("\nother info that might help us debug this:\n");
3971
3972 /* Find a middle lock (if one exists) */
3973 depth = get_lock_depth(other);
3974 do {
3975 if (depth == 0 && (entry != root)) {
3976 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3977 break;
3978 }
3979 middle = entry;
3980 entry = get_lock_parent(entry);
3981 depth--;
3982 } while (entry && entry != root && (depth >= 0));
3983 if (forwards)
3984 print_irq_lock_scenario(root, other,
3985 middle ? middle->class : root->class, other->class);
3986 else
3987 print_irq_lock_scenario(other, root,
3988 middle ? middle->class : other->class, root->class);
3989
3990 lockdep_print_held_locks(curr);
3991
3992 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3993 root->trace = save_trace();
3994 if (!root->trace)
3995 return;
3996 print_shortest_lock_dependencies(other, root);
3997
3998 pr_warn("\nstack backtrace:\n");
3999 dump_stack();
4000 }
4001
4002 /*
4003 * Prove that in the forwards-direction subgraph starting at <this>
4004 * there is no lock matching <mask>:
4005 */
4006 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4007 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4008 enum lock_usage_bit bit)
4009 {
4010 enum bfs_result ret;
4011 struct lock_list root;
4012 struct lock_list *target_entry;
4013 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4014 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4015
4016 bfs_init_root(&root, this);
4017 ret = find_usage_forwards(&root, usage_mask, &target_entry);
4018 if (bfs_error(ret)) {
4019 print_bfs_bug(ret);
4020 return 0;
4021 }
4022 if (ret == BFS_RNOMATCH)
4023 return 1;
4024
4025 /* Check whether write or read usage is the match */
4026 if (target_entry->class->usage_mask & lock_flag(bit)) {
4027 print_irq_inversion_bug(curr, &root, target_entry,
4028 this, 1, state_name(bit));
4029 } else {
4030 print_irq_inversion_bug(curr, &root, target_entry,
4031 this, 1, state_name(read_bit));
4032 }
4033
4034 return 0;
4035 }
4036
4037 /*
4038 * Prove that in the backwards-direction subgraph starting at <this>
4039 * there is no lock matching <mask>:
4040 */
4041 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4042 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4043 enum lock_usage_bit bit)
4044 {
4045 enum bfs_result ret;
4046 struct lock_list root;
4047 struct lock_list *target_entry;
4048 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4049 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4050
4051 bfs_init_rootb(&root, this);
4052 ret = find_usage_backwards(&root, usage_mask, &target_entry);
4053 if (bfs_error(ret)) {
4054 print_bfs_bug(ret);
4055 return 0;
4056 }
4057 if (ret == BFS_RNOMATCH)
4058 return 1;
4059
4060 /* Check whether write or read usage is the match */
4061 if (target_entry->class->usage_mask & lock_flag(bit)) {
4062 print_irq_inversion_bug(curr, &root, target_entry,
4063 this, 0, state_name(bit));
4064 } else {
4065 print_irq_inversion_bug(curr, &root, target_entry,
4066 this, 0, state_name(read_bit));
4067 }
4068
4069 return 0;
4070 }
4071
print_irqtrace_events(struct task_struct * curr)4072 void print_irqtrace_events(struct task_struct *curr)
4073 {
4074 const struct irqtrace_events *trace = &curr->irqtrace;
4075
4076 printk("irq event stamp: %u\n", trace->irq_events);
4077 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4078 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4079 (void *)trace->hardirq_enable_ip);
4080 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4081 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4082 (void *)trace->hardirq_disable_ip);
4083 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4084 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4085 (void *)trace->softirq_enable_ip);
4086 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4087 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4088 (void *)trace->softirq_disable_ip);
4089 }
4090
HARDIRQ_verbose(struct lock_class * class)4091 static int HARDIRQ_verbose(struct lock_class *class)
4092 {
4093 #if HARDIRQ_VERBOSE
4094 return class_filter(class);
4095 #endif
4096 return 0;
4097 }
4098
SOFTIRQ_verbose(struct lock_class * class)4099 static int SOFTIRQ_verbose(struct lock_class *class)
4100 {
4101 #if SOFTIRQ_VERBOSE
4102 return class_filter(class);
4103 #endif
4104 return 0;
4105 }
4106
4107 static int (*state_verbose_f[])(struct lock_class *class) = {
4108 #define LOCKDEP_STATE(__STATE) \
4109 __STATE##_verbose,
4110 #include "lockdep_states.h"
4111 #undef LOCKDEP_STATE
4112 };
4113
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4114 static inline int state_verbose(enum lock_usage_bit bit,
4115 struct lock_class *class)
4116 {
4117 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4118 }
4119
4120 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4121 enum lock_usage_bit bit, const char *name);
4122
4123 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4124 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4125 enum lock_usage_bit new_bit)
4126 {
4127 int excl_bit = exclusive_bit(new_bit);
4128 int read = new_bit & LOCK_USAGE_READ_MASK;
4129 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4130
4131 /*
4132 * Validate that this particular lock does not have conflicting
4133 * usage states.
4134 */
4135 if (!valid_state(curr, this, new_bit, excl_bit))
4136 return 0;
4137
4138 /*
4139 * Check for read in write conflicts
4140 */
4141 if (!read && !valid_state(curr, this, new_bit,
4142 excl_bit + LOCK_USAGE_READ_MASK))
4143 return 0;
4144
4145
4146 /*
4147 * Validate that the lock dependencies don't have conflicting usage
4148 * states.
4149 */
4150 if (dir) {
4151 /*
4152 * mark ENABLED has to look backwards -- to ensure no dependee
4153 * has USED_IN state, which, again, would allow recursion deadlocks.
4154 */
4155 if (!check_usage_backwards(curr, this, excl_bit))
4156 return 0;
4157 } else {
4158 /*
4159 * mark USED_IN has to look forwards -- to ensure no dependency
4160 * has ENABLED state, which would allow recursion deadlocks.
4161 */
4162 if (!check_usage_forwards(curr, this, excl_bit))
4163 return 0;
4164 }
4165
4166 if (state_verbose(new_bit, hlock_class(this)))
4167 return 2;
4168
4169 return 1;
4170 }
4171
4172 /*
4173 * Mark all held locks with a usage bit:
4174 */
4175 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4176 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4177 {
4178 struct held_lock *hlock;
4179 int i;
4180
4181 for (i = 0; i < curr->lockdep_depth; i++) {
4182 enum lock_usage_bit hlock_bit = base_bit;
4183 hlock = curr->held_locks + i;
4184
4185 if (hlock->read)
4186 hlock_bit += LOCK_USAGE_READ_MASK;
4187
4188 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4189
4190 if (!hlock->check)
4191 continue;
4192
4193 if (!mark_lock(curr, hlock, hlock_bit))
4194 return 0;
4195 }
4196
4197 return 1;
4198 }
4199
4200 /*
4201 * Hardirqs will be enabled:
4202 */
__trace_hardirqs_on_caller(void)4203 static void __trace_hardirqs_on_caller(void)
4204 {
4205 struct task_struct *curr = current;
4206
4207 /*
4208 * We are going to turn hardirqs on, so set the
4209 * usage bit for all held locks:
4210 */
4211 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4212 return;
4213 /*
4214 * If we have softirqs enabled, then set the usage
4215 * bit for all held locks. (disabled hardirqs prevented
4216 * this bit from being set before)
4217 */
4218 if (curr->softirqs_enabled)
4219 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4220 }
4221
4222 /**
4223 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4224 *
4225 * Invoked before a possible transition to RCU idle from exit to user or
4226 * guest mode. This ensures that all RCU operations are done before RCU
4227 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4228 * invoked to set the final state.
4229 */
lockdep_hardirqs_on_prepare(void)4230 void lockdep_hardirqs_on_prepare(void)
4231 {
4232 if (unlikely(!debug_locks))
4233 return;
4234
4235 /*
4236 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4237 */
4238 if (unlikely(in_nmi()))
4239 return;
4240
4241 if (unlikely(this_cpu_read(lockdep_recursion)))
4242 return;
4243
4244 if (unlikely(lockdep_hardirqs_enabled())) {
4245 /*
4246 * Neither irq nor preemption are disabled here
4247 * so this is racy by nature but losing one hit
4248 * in a stat is not a big deal.
4249 */
4250 __debug_atomic_inc(redundant_hardirqs_on);
4251 return;
4252 }
4253
4254 /*
4255 * We're enabling irqs and according to our state above irqs weren't
4256 * already enabled, yet we find the hardware thinks they are in fact
4257 * enabled.. someone messed up their IRQ state tracing.
4258 */
4259 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4260 return;
4261
4262 /*
4263 * See the fine text that goes along with this variable definition.
4264 */
4265 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4266 return;
4267
4268 /*
4269 * Can't allow enabling interrupts while in an interrupt handler,
4270 * that's general bad form and such. Recursion, limited stack etc..
4271 */
4272 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4273 return;
4274
4275 current->hardirq_chain_key = current->curr_chain_key;
4276
4277 lockdep_recursion_inc();
4278 __trace_hardirqs_on_caller();
4279 lockdep_recursion_finish();
4280 }
4281 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4282
lockdep_hardirqs_on(unsigned long ip)4283 void noinstr lockdep_hardirqs_on(unsigned long ip)
4284 {
4285 struct irqtrace_events *trace = ¤t->irqtrace;
4286
4287 if (unlikely(!debug_locks))
4288 return;
4289
4290 /*
4291 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4292 * tracking state and hardware state are out of sync.
4293 *
4294 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4295 * and not rely on hardware state like normal interrupts.
4296 */
4297 if (unlikely(in_nmi())) {
4298 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4299 return;
4300
4301 /*
4302 * Skip:
4303 * - recursion check, because NMI can hit lockdep;
4304 * - hardware state check, because above;
4305 * - chain_key check, see lockdep_hardirqs_on_prepare().
4306 */
4307 goto skip_checks;
4308 }
4309
4310 if (unlikely(this_cpu_read(lockdep_recursion)))
4311 return;
4312
4313 if (lockdep_hardirqs_enabled()) {
4314 /*
4315 * Neither irq nor preemption are disabled here
4316 * so this is racy by nature but losing one hit
4317 * in a stat is not a big deal.
4318 */
4319 __debug_atomic_inc(redundant_hardirqs_on);
4320 return;
4321 }
4322
4323 /*
4324 * We're enabling irqs and according to our state above irqs weren't
4325 * already enabled, yet we find the hardware thinks they are in fact
4326 * enabled.. someone messed up their IRQ state tracing.
4327 */
4328 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4329 return;
4330
4331 /*
4332 * Ensure the lock stack remained unchanged between
4333 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4334 */
4335 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4336 current->curr_chain_key);
4337
4338 skip_checks:
4339 /* we'll do an OFF -> ON transition: */
4340 __this_cpu_write(hardirqs_enabled, 1);
4341 trace->hardirq_enable_ip = ip;
4342 trace->hardirq_enable_event = ++trace->irq_events;
4343 debug_atomic_inc(hardirqs_on_events);
4344 }
4345 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4346
4347 /*
4348 * Hardirqs were disabled:
4349 */
lockdep_hardirqs_off(unsigned long ip)4350 void noinstr lockdep_hardirqs_off(unsigned long ip)
4351 {
4352 if (unlikely(!debug_locks))
4353 return;
4354
4355 /*
4356 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4357 * they will restore the software state. This ensures the software
4358 * state is consistent inside NMIs as well.
4359 */
4360 if (in_nmi()) {
4361 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4362 return;
4363 } else if (__this_cpu_read(lockdep_recursion))
4364 return;
4365
4366 /*
4367 * So we're supposed to get called after you mask local IRQs, but for
4368 * some reason the hardware doesn't quite think you did a proper job.
4369 */
4370 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4371 return;
4372
4373 if (lockdep_hardirqs_enabled()) {
4374 struct irqtrace_events *trace = ¤t->irqtrace;
4375
4376 /*
4377 * We have done an ON -> OFF transition:
4378 */
4379 __this_cpu_write(hardirqs_enabled, 0);
4380 trace->hardirq_disable_ip = ip;
4381 trace->hardirq_disable_event = ++trace->irq_events;
4382 debug_atomic_inc(hardirqs_off_events);
4383 } else {
4384 debug_atomic_inc(redundant_hardirqs_off);
4385 }
4386 }
4387 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4388
4389 /*
4390 * Softirqs will be enabled:
4391 */
lockdep_softirqs_on(unsigned long ip)4392 void lockdep_softirqs_on(unsigned long ip)
4393 {
4394 struct irqtrace_events *trace = ¤t->irqtrace;
4395
4396 if (unlikely(!lockdep_enabled()))
4397 return;
4398
4399 /*
4400 * We fancy IRQs being disabled here, see softirq.c, avoids
4401 * funny state and nesting things.
4402 */
4403 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4404 return;
4405
4406 if (current->softirqs_enabled) {
4407 debug_atomic_inc(redundant_softirqs_on);
4408 return;
4409 }
4410
4411 lockdep_recursion_inc();
4412 /*
4413 * We'll do an OFF -> ON transition:
4414 */
4415 current->softirqs_enabled = 1;
4416 trace->softirq_enable_ip = ip;
4417 trace->softirq_enable_event = ++trace->irq_events;
4418 debug_atomic_inc(softirqs_on_events);
4419 /*
4420 * We are going to turn softirqs on, so set the
4421 * usage bit for all held locks, if hardirqs are
4422 * enabled too:
4423 */
4424 if (lockdep_hardirqs_enabled())
4425 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4426 lockdep_recursion_finish();
4427 }
4428
4429 /*
4430 * Softirqs were disabled:
4431 */
lockdep_softirqs_off(unsigned long ip)4432 void lockdep_softirqs_off(unsigned long ip)
4433 {
4434 if (unlikely(!lockdep_enabled()))
4435 return;
4436
4437 /*
4438 * We fancy IRQs being disabled here, see softirq.c
4439 */
4440 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4441 return;
4442
4443 if (current->softirqs_enabled) {
4444 struct irqtrace_events *trace = ¤t->irqtrace;
4445
4446 /*
4447 * We have done an ON -> OFF transition:
4448 */
4449 current->softirqs_enabled = 0;
4450 trace->softirq_disable_ip = ip;
4451 trace->softirq_disable_event = ++trace->irq_events;
4452 debug_atomic_inc(softirqs_off_events);
4453 /*
4454 * Whoops, we wanted softirqs off, so why aren't they?
4455 */
4456 DEBUG_LOCKS_WARN_ON(!softirq_count());
4457 } else
4458 debug_atomic_inc(redundant_softirqs_off);
4459 }
4460
4461 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4462 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4463 {
4464 if (!check)
4465 goto lock_used;
4466
4467 /*
4468 * If non-trylock use in a hardirq or softirq context, then
4469 * mark the lock as used in these contexts:
4470 */
4471 if (!hlock->trylock) {
4472 if (hlock->read) {
4473 if (lockdep_hardirq_context())
4474 if (!mark_lock(curr, hlock,
4475 LOCK_USED_IN_HARDIRQ_READ))
4476 return 0;
4477 if (curr->softirq_context)
4478 if (!mark_lock(curr, hlock,
4479 LOCK_USED_IN_SOFTIRQ_READ))
4480 return 0;
4481 } else {
4482 if (lockdep_hardirq_context())
4483 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4484 return 0;
4485 if (curr->softirq_context)
4486 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4487 return 0;
4488 }
4489 }
4490 if (!hlock->hardirqs_off) {
4491 if (hlock->read) {
4492 if (!mark_lock(curr, hlock,
4493 LOCK_ENABLED_HARDIRQ_READ))
4494 return 0;
4495 if (curr->softirqs_enabled)
4496 if (!mark_lock(curr, hlock,
4497 LOCK_ENABLED_SOFTIRQ_READ))
4498 return 0;
4499 } else {
4500 if (!mark_lock(curr, hlock,
4501 LOCK_ENABLED_HARDIRQ))
4502 return 0;
4503 if (curr->softirqs_enabled)
4504 if (!mark_lock(curr, hlock,
4505 LOCK_ENABLED_SOFTIRQ))
4506 return 0;
4507 }
4508 }
4509
4510 lock_used:
4511 /* mark it as used: */
4512 if (!mark_lock(curr, hlock, LOCK_USED))
4513 return 0;
4514
4515 return 1;
4516 }
4517
task_irq_context(struct task_struct * task)4518 static inline unsigned int task_irq_context(struct task_struct *task)
4519 {
4520 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4521 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4522 }
4523
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4524 static int separate_irq_context(struct task_struct *curr,
4525 struct held_lock *hlock)
4526 {
4527 unsigned int depth = curr->lockdep_depth;
4528
4529 /*
4530 * Keep track of points where we cross into an interrupt context:
4531 */
4532 if (depth) {
4533 struct held_lock *prev_hlock;
4534
4535 prev_hlock = curr->held_locks + depth-1;
4536 /*
4537 * If we cross into another context, reset the
4538 * hash key (this also prevents the checking and the
4539 * adding of the dependency to 'prev'):
4540 */
4541 if (prev_hlock->irq_context != hlock->irq_context)
4542 return 1;
4543 }
4544 return 0;
4545 }
4546
4547 /*
4548 * Mark a lock with a usage bit, and validate the state transition:
4549 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4550 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4551 enum lock_usage_bit new_bit)
4552 {
4553 unsigned int new_mask, ret = 1;
4554
4555 if (new_bit >= LOCK_USAGE_STATES) {
4556 DEBUG_LOCKS_WARN_ON(1);
4557 return 0;
4558 }
4559
4560 if (new_bit == LOCK_USED && this->read)
4561 new_bit = LOCK_USED_READ;
4562
4563 new_mask = 1 << new_bit;
4564
4565 /*
4566 * If already set then do not dirty the cacheline,
4567 * nor do any checks:
4568 */
4569 if (likely(hlock_class(this)->usage_mask & new_mask))
4570 return 1;
4571
4572 if (!graph_lock())
4573 return 0;
4574 /*
4575 * Make sure we didn't race:
4576 */
4577 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4578 goto unlock;
4579
4580 if (!hlock_class(this)->usage_mask)
4581 debug_atomic_dec(nr_unused_locks);
4582
4583 hlock_class(this)->usage_mask |= new_mask;
4584
4585 if (new_bit < LOCK_TRACE_STATES) {
4586 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4587 return 0;
4588 }
4589
4590 if (new_bit < LOCK_USED) {
4591 ret = mark_lock_irq(curr, this, new_bit);
4592 if (!ret)
4593 return 0;
4594 }
4595
4596 unlock:
4597 graph_unlock();
4598
4599 /*
4600 * We must printk outside of the graph_lock:
4601 */
4602 if (ret == 2) {
4603 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4604 print_lock(this);
4605 print_irqtrace_events(curr);
4606 dump_stack();
4607 }
4608
4609 return ret;
4610 }
4611
task_wait_context(struct task_struct * curr)4612 static inline short task_wait_context(struct task_struct *curr)
4613 {
4614 /*
4615 * Set appropriate wait type for the context; for IRQs we have to take
4616 * into account force_irqthread as that is implied by PREEMPT_RT.
4617 */
4618 if (lockdep_hardirq_context()) {
4619 /*
4620 * Check if force_irqthreads will run us threaded.
4621 */
4622 if (curr->hardirq_threaded || curr->irq_config)
4623 return LD_WAIT_CONFIG;
4624
4625 return LD_WAIT_SPIN;
4626 } else if (curr->softirq_context) {
4627 /*
4628 * Softirqs are always threaded.
4629 */
4630 return LD_WAIT_CONFIG;
4631 }
4632
4633 return LD_WAIT_MAX;
4634 }
4635
4636 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4637 print_lock_invalid_wait_context(struct task_struct *curr,
4638 struct held_lock *hlock)
4639 {
4640 short curr_inner;
4641
4642 if (!debug_locks_off())
4643 return 0;
4644 if (debug_locks_silent)
4645 return 0;
4646
4647 pr_warn("\n");
4648 pr_warn("=============================\n");
4649 pr_warn("[ BUG: Invalid wait context ]\n");
4650 print_kernel_ident();
4651 pr_warn("-----------------------------\n");
4652
4653 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4654 print_lock(hlock);
4655
4656 pr_warn("other info that might help us debug this:\n");
4657
4658 curr_inner = task_wait_context(curr);
4659 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4660
4661 lockdep_print_held_locks(curr);
4662
4663 pr_warn("stack backtrace:\n");
4664 dump_stack();
4665
4666 return 0;
4667 }
4668
4669 /*
4670 * Verify the wait_type context.
4671 *
4672 * This check validates we takes locks in the right wait-type order; that is it
4673 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4674 * acquire spinlocks inside raw_spinlocks and the sort.
4675 *
4676 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4677 * can be taken from (pretty much) any context but also has constraints.
4678 * However when taken in a stricter environment the RCU lock does not loosen
4679 * the constraints.
4680 *
4681 * Therefore we must look for the strictest environment in the lock stack and
4682 * compare that to the lock we're trying to acquire.
4683 */
check_wait_context(struct task_struct * curr,struct held_lock * next)4684 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4685 {
4686 u8 next_inner = hlock_class(next)->wait_type_inner;
4687 u8 next_outer = hlock_class(next)->wait_type_outer;
4688 u8 curr_inner;
4689 int depth;
4690
4691 if (!next_inner || next->trylock)
4692 return 0;
4693
4694 if (!next_outer)
4695 next_outer = next_inner;
4696
4697 /*
4698 * Find start of current irq_context..
4699 */
4700 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4701 struct held_lock *prev = curr->held_locks + depth;
4702 if (prev->irq_context != next->irq_context)
4703 break;
4704 }
4705 depth++;
4706
4707 curr_inner = task_wait_context(curr);
4708
4709 for (; depth < curr->lockdep_depth; depth++) {
4710 struct held_lock *prev = curr->held_locks + depth;
4711 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4712
4713 if (prev_inner) {
4714 /*
4715 * We can have a bigger inner than a previous one
4716 * when outer is smaller than inner, as with RCU.
4717 *
4718 * Also due to trylocks.
4719 */
4720 curr_inner = min(curr_inner, prev_inner);
4721 }
4722 }
4723
4724 if (next_outer > curr_inner)
4725 return print_lock_invalid_wait_context(curr, next);
4726
4727 return 0;
4728 }
4729
4730 #else /* CONFIG_PROVE_LOCKING */
4731
4732 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4733 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4734 {
4735 return 1;
4736 }
4737
task_irq_context(struct task_struct * task)4738 static inline unsigned int task_irq_context(struct task_struct *task)
4739 {
4740 return 0;
4741 }
4742
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4743 static inline int separate_irq_context(struct task_struct *curr,
4744 struct held_lock *hlock)
4745 {
4746 return 0;
4747 }
4748
check_wait_context(struct task_struct * curr,struct held_lock * next)4749 static inline int check_wait_context(struct task_struct *curr,
4750 struct held_lock *next)
4751 {
4752 return 0;
4753 }
4754
4755 #endif /* CONFIG_PROVE_LOCKING */
4756
4757 /*
4758 * Initialize a lock instance's lock-class mapping info:
4759 */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4760 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4761 struct lock_class_key *key, int subclass,
4762 u8 inner, u8 outer, u8 lock_type)
4763 {
4764 int i;
4765
4766 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4767 lock->class_cache[i] = NULL;
4768
4769 #ifdef CONFIG_LOCK_STAT
4770 lock->cpu = raw_smp_processor_id();
4771 #endif
4772
4773 /*
4774 * Can't be having no nameless bastards around this place!
4775 */
4776 if (DEBUG_LOCKS_WARN_ON(!name)) {
4777 lock->name = "NULL";
4778 return;
4779 }
4780
4781 lock->name = name;
4782
4783 lock->wait_type_outer = outer;
4784 lock->wait_type_inner = inner;
4785 lock->lock_type = lock_type;
4786
4787 /*
4788 * No key, no joy, we need to hash something.
4789 */
4790 if (DEBUG_LOCKS_WARN_ON(!key))
4791 return;
4792 /*
4793 * Sanity check, the lock-class key must either have been allocated
4794 * statically or must have been registered as a dynamic key.
4795 */
4796 if (!static_obj(key) && !is_dynamic_key(key)) {
4797 if (debug_locks)
4798 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4799 DEBUG_LOCKS_WARN_ON(1);
4800 return;
4801 }
4802 lock->key = key;
4803
4804 if (unlikely(!debug_locks))
4805 return;
4806
4807 if (subclass) {
4808 unsigned long flags;
4809
4810 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4811 return;
4812
4813 raw_local_irq_save(flags);
4814 lockdep_recursion_inc();
4815 register_lock_class(lock, subclass, 1);
4816 lockdep_recursion_finish();
4817 raw_local_irq_restore(flags);
4818 }
4819 }
4820 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4821
4822 struct lock_class_key __lockdep_no_validate__;
4823 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4824
4825 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)4826 print_lock_nested_lock_not_held(struct task_struct *curr,
4827 struct held_lock *hlock)
4828 {
4829 if (!debug_locks_off())
4830 return;
4831 if (debug_locks_silent)
4832 return;
4833
4834 pr_warn("\n");
4835 pr_warn("==================================\n");
4836 pr_warn("WARNING: Nested lock was not taken\n");
4837 print_kernel_ident();
4838 pr_warn("----------------------------------\n");
4839
4840 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4841 print_lock(hlock);
4842
4843 pr_warn("\nbut this task is not holding:\n");
4844 pr_warn("%s\n", hlock->nest_lock->name);
4845
4846 pr_warn("\nstack backtrace:\n");
4847 dump_stack();
4848
4849 pr_warn("\nother info that might help us debug this:\n");
4850 lockdep_print_held_locks(curr);
4851
4852 pr_warn("\nstack backtrace:\n");
4853 dump_stack();
4854 }
4855
4856 static int __lock_is_held(const struct lockdep_map *lock, int read);
4857
4858 /*
4859 * This gets called for every mutex_lock*()/spin_lock*() operation.
4860 * We maintain the dependency maps and validate the locking attempt:
4861 *
4862 * The callers must make sure that IRQs are disabled before calling it,
4863 * otherwise we could get an interrupt which would want to take locks,
4864 * which would end up in lockdep again.
4865 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4866 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4867 int trylock, int read, int check, int hardirqs_off,
4868 struct lockdep_map *nest_lock, unsigned long ip,
4869 int references, int pin_count)
4870 {
4871 struct task_struct *curr = current;
4872 struct lock_class *class = NULL;
4873 struct held_lock *hlock;
4874 unsigned int depth;
4875 int chain_head = 0;
4876 int class_idx;
4877 u64 chain_key;
4878
4879 if (unlikely(!debug_locks))
4880 return 0;
4881
4882 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4883 check = 0;
4884
4885 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4886 class = lock->class_cache[subclass];
4887 /*
4888 * Not cached?
4889 */
4890 if (unlikely(!class)) {
4891 class = register_lock_class(lock, subclass, 0);
4892 if (!class)
4893 return 0;
4894 }
4895
4896 debug_class_ops_inc(class);
4897
4898 if (very_verbose(class)) {
4899 printk("\nacquire class [%px] %s", class->key, class->name);
4900 if (class->name_version > 1)
4901 printk(KERN_CONT "#%d", class->name_version);
4902 printk(KERN_CONT "\n");
4903 dump_stack();
4904 }
4905
4906 /*
4907 * Add the lock to the list of currently held locks.
4908 * (we dont increase the depth just yet, up until the
4909 * dependency checks are done)
4910 */
4911 depth = curr->lockdep_depth;
4912 /*
4913 * Ran out of static storage for our per-task lock stack again have we?
4914 */
4915 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4916 return 0;
4917
4918 class_idx = class - lock_classes;
4919
4920 if (depth) { /* we're holding locks */
4921 hlock = curr->held_locks + depth - 1;
4922 if (hlock->class_idx == class_idx && nest_lock) {
4923 if (!references)
4924 references++;
4925
4926 if (!hlock->references)
4927 hlock->references++;
4928
4929 hlock->references += references;
4930
4931 /* Overflow */
4932 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4933 return 0;
4934
4935 return 2;
4936 }
4937 }
4938
4939 hlock = curr->held_locks + depth;
4940 /*
4941 * Plain impossible, we just registered it and checked it weren't no
4942 * NULL like.. I bet this mushroom I ate was good!
4943 */
4944 if (DEBUG_LOCKS_WARN_ON(!class))
4945 return 0;
4946 hlock->class_idx = class_idx;
4947 hlock->acquire_ip = ip;
4948 hlock->instance = lock;
4949 hlock->nest_lock = nest_lock;
4950 hlock->irq_context = task_irq_context(curr);
4951 hlock->trylock = trylock;
4952 hlock->read = read;
4953 hlock->check = check;
4954 hlock->hardirqs_off = !!hardirqs_off;
4955 hlock->references = references;
4956 #ifdef CONFIG_LOCK_STAT
4957 hlock->waittime_stamp = 0;
4958 hlock->holdtime_stamp = lockstat_clock();
4959 #endif
4960 hlock->pin_count = pin_count;
4961
4962 if (check_wait_context(curr, hlock))
4963 return 0;
4964
4965 /* Initialize the lock usage bit */
4966 if (!mark_usage(curr, hlock, check))
4967 return 0;
4968
4969 /*
4970 * Calculate the chain hash: it's the combined hash of all the
4971 * lock keys along the dependency chain. We save the hash value
4972 * at every step so that we can get the current hash easily
4973 * after unlock. The chain hash is then used to cache dependency
4974 * results.
4975 *
4976 * The 'key ID' is what is the most compact key value to drive
4977 * the hash, not class->key.
4978 */
4979 /*
4980 * Whoops, we did it again.. class_idx is invalid.
4981 */
4982 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4983 return 0;
4984
4985 chain_key = curr->curr_chain_key;
4986 if (!depth) {
4987 /*
4988 * How can we have a chain hash when we ain't got no keys?!
4989 */
4990 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4991 return 0;
4992 chain_head = 1;
4993 }
4994
4995 hlock->prev_chain_key = chain_key;
4996 if (separate_irq_context(curr, hlock)) {
4997 chain_key = INITIAL_CHAIN_KEY;
4998 chain_head = 1;
4999 }
5000 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5001
5002 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5003 print_lock_nested_lock_not_held(curr, hlock);
5004 return 0;
5005 }
5006
5007 if (!debug_locks_silent) {
5008 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5009 WARN_ON_ONCE(!hlock_class(hlock)->key);
5010 }
5011
5012 if (!validate_chain(curr, hlock, chain_head, chain_key))
5013 return 0;
5014
5015 curr->curr_chain_key = chain_key;
5016 curr->lockdep_depth++;
5017 check_chain_key(curr);
5018 #ifdef CONFIG_DEBUG_LOCKDEP
5019 if (unlikely(!debug_locks))
5020 return 0;
5021 #endif
5022 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5023 debug_locks_off();
5024 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5025 printk(KERN_DEBUG "depth: %i max: %lu!\n",
5026 curr->lockdep_depth, MAX_LOCK_DEPTH);
5027
5028 lockdep_print_held_locks(current);
5029 debug_show_all_locks();
5030 dump_stack();
5031
5032 return 0;
5033 }
5034
5035 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5036 max_lockdep_depth = curr->lockdep_depth;
5037
5038 return 1;
5039 }
5040
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5041 static void print_unlock_imbalance_bug(struct task_struct *curr,
5042 struct lockdep_map *lock,
5043 unsigned long ip)
5044 {
5045 if (!debug_locks_off())
5046 return;
5047 if (debug_locks_silent)
5048 return;
5049
5050 pr_warn("\n");
5051 pr_warn("=====================================\n");
5052 pr_warn("WARNING: bad unlock balance detected!\n");
5053 print_kernel_ident();
5054 pr_warn("-------------------------------------\n");
5055 pr_warn("%s/%d is trying to release lock (",
5056 curr->comm, task_pid_nr(curr));
5057 print_lockdep_cache(lock);
5058 pr_cont(") at:\n");
5059 print_ip_sym(KERN_WARNING, ip);
5060 pr_warn("but there are no more locks to release!\n");
5061 pr_warn("\nother info that might help us debug this:\n");
5062 lockdep_print_held_locks(curr);
5063
5064 pr_warn("\nstack backtrace:\n");
5065 dump_stack();
5066 }
5067
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5068 static noinstr int match_held_lock(const struct held_lock *hlock,
5069 const struct lockdep_map *lock)
5070 {
5071 if (hlock->instance == lock)
5072 return 1;
5073
5074 if (hlock->references) {
5075 const struct lock_class *class = lock->class_cache[0];
5076
5077 if (!class)
5078 class = look_up_lock_class(lock, 0);
5079
5080 /*
5081 * If look_up_lock_class() failed to find a class, we're trying
5082 * to test if we hold a lock that has never yet been acquired.
5083 * Clearly if the lock hasn't been acquired _ever_, we're not
5084 * holding it either, so report failure.
5085 */
5086 if (!class)
5087 return 0;
5088
5089 /*
5090 * References, but not a lock we're actually ref-counting?
5091 * State got messed up, follow the sites that change ->references
5092 * and try to make sense of it.
5093 */
5094 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5095 return 0;
5096
5097 if (hlock->class_idx == class - lock_classes)
5098 return 1;
5099 }
5100
5101 return 0;
5102 }
5103
5104 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5105 static struct held_lock *find_held_lock(struct task_struct *curr,
5106 struct lockdep_map *lock,
5107 unsigned int depth, int *idx)
5108 {
5109 struct held_lock *ret, *hlock, *prev_hlock;
5110 int i;
5111
5112 i = depth - 1;
5113 hlock = curr->held_locks + i;
5114 ret = hlock;
5115 if (match_held_lock(hlock, lock))
5116 goto out;
5117
5118 ret = NULL;
5119 for (i--, prev_hlock = hlock--;
5120 i >= 0;
5121 i--, prev_hlock = hlock--) {
5122 /*
5123 * We must not cross into another context:
5124 */
5125 if (prev_hlock->irq_context != hlock->irq_context) {
5126 ret = NULL;
5127 break;
5128 }
5129 if (match_held_lock(hlock, lock)) {
5130 ret = hlock;
5131 break;
5132 }
5133 }
5134
5135 out:
5136 *idx = i;
5137 return ret;
5138 }
5139
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5140 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5141 int idx, unsigned int *merged)
5142 {
5143 struct held_lock *hlock;
5144 int first_idx = idx;
5145
5146 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5147 return 0;
5148
5149 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5150 switch (__lock_acquire(hlock->instance,
5151 hlock_class(hlock)->subclass,
5152 hlock->trylock,
5153 hlock->read, hlock->check,
5154 hlock->hardirqs_off,
5155 hlock->nest_lock, hlock->acquire_ip,
5156 hlock->references, hlock->pin_count)) {
5157 case 0:
5158 return 1;
5159 case 1:
5160 break;
5161 case 2:
5162 *merged += (idx == first_idx);
5163 break;
5164 default:
5165 WARN_ON(1);
5166 return 0;
5167 }
5168 }
5169 return 0;
5170 }
5171
5172 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5173 __lock_set_class(struct lockdep_map *lock, const char *name,
5174 struct lock_class_key *key, unsigned int subclass,
5175 unsigned long ip)
5176 {
5177 struct task_struct *curr = current;
5178 unsigned int depth, merged = 0;
5179 struct held_lock *hlock;
5180 struct lock_class *class;
5181 int i;
5182
5183 if (unlikely(!debug_locks))
5184 return 0;
5185
5186 depth = curr->lockdep_depth;
5187 /*
5188 * This function is about (re)setting the class of a held lock,
5189 * yet we're not actually holding any locks. Naughty user!
5190 */
5191 if (DEBUG_LOCKS_WARN_ON(!depth))
5192 return 0;
5193
5194 hlock = find_held_lock(curr, lock, depth, &i);
5195 if (!hlock) {
5196 print_unlock_imbalance_bug(curr, lock, ip);
5197 return 0;
5198 }
5199
5200 lockdep_init_map_type(lock, name, key, 0,
5201 lock->wait_type_inner,
5202 lock->wait_type_outer,
5203 lock->lock_type);
5204 class = register_lock_class(lock, subclass, 0);
5205 hlock->class_idx = class - lock_classes;
5206
5207 curr->lockdep_depth = i;
5208 curr->curr_chain_key = hlock->prev_chain_key;
5209
5210 if (reacquire_held_locks(curr, depth, i, &merged))
5211 return 0;
5212
5213 /*
5214 * I took it apart and put it back together again, except now I have
5215 * these 'spare' parts.. where shall I put them.
5216 */
5217 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5218 return 0;
5219 return 1;
5220 }
5221
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5222 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5223 {
5224 struct task_struct *curr = current;
5225 unsigned int depth, merged = 0;
5226 struct held_lock *hlock;
5227 int i;
5228
5229 if (unlikely(!debug_locks))
5230 return 0;
5231
5232 depth = curr->lockdep_depth;
5233 /*
5234 * This function is about (re)setting the class of a held lock,
5235 * yet we're not actually holding any locks. Naughty user!
5236 */
5237 if (DEBUG_LOCKS_WARN_ON(!depth))
5238 return 0;
5239
5240 hlock = find_held_lock(curr, lock, depth, &i);
5241 if (!hlock) {
5242 print_unlock_imbalance_bug(curr, lock, ip);
5243 return 0;
5244 }
5245
5246 curr->lockdep_depth = i;
5247 curr->curr_chain_key = hlock->prev_chain_key;
5248
5249 WARN(hlock->read, "downgrading a read lock");
5250 hlock->read = 1;
5251 hlock->acquire_ip = ip;
5252
5253 if (reacquire_held_locks(curr, depth, i, &merged))
5254 return 0;
5255
5256 /* Merging can't happen with unchanged classes.. */
5257 if (DEBUG_LOCKS_WARN_ON(merged))
5258 return 0;
5259
5260 /*
5261 * I took it apart and put it back together again, except now I have
5262 * these 'spare' parts.. where shall I put them.
5263 */
5264 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5265 return 0;
5266
5267 return 1;
5268 }
5269
5270 /*
5271 * Remove the lock from the list of currently held locks - this gets
5272 * called on mutex_unlock()/spin_unlock*() (or on a failed
5273 * mutex_lock_interruptible()).
5274 */
5275 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5276 __lock_release(struct lockdep_map *lock, unsigned long ip)
5277 {
5278 struct task_struct *curr = current;
5279 unsigned int depth, merged = 1;
5280 struct held_lock *hlock;
5281 int i;
5282
5283 if (unlikely(!debug_locks))
5284 return 0;
5285
5286 depth = curr->lockdep_depth;
5287 /*
5288 * So we're all set to release this lock.. wait what lock? We don't
5289 * own any locks, you've been drinking again?
5290 */
5291 if (depth <= 0) {
5292 print_unlock_imbalance_bug(curr, lock, ip);
5293 return 0;
5294 }
5295
5296 /*
5297 * Check whether the lock exists in the current stack
5298 * of held locks:
5299 */
5300 hlock = find_held_lock(curr, lock, depth, &i);
5301 if (!hlock) {
5302 print_unlock_imbalance_bug(curr, lock, ip);
5303 return 0;
5304 }
5305
5306 if (hlock->instance == lock)
5307 lock_release_holdtime(hlock);
5308
5309 WARN(hlock->pin_count, "releasing a pinned lock\n");
5310
5311 if (hlock->references) {
5312 hlock->references--;
5313 if (hlock->references) {
5314 /*
5315 * We had, and after removing one, still have
5316 * references, the current lock stack is still
5317 * valid. We're done!
5318 */
5319 return 1;
5320 }
5321 }
5322
5323 /*
5324 * We have the right lock to unlock, 'hlock' points to it.
5325 * Now we remove it from the stack, and add back the other
5326 * entries (if any), recalculating the hash along the way:
5327 */
5328
5329 curr->lockdep_depth = i;
5330 curr->curr_chain_key = hlock->prev_chain_key;
5331
5332 /*
5333 * The most likely case is when the unlock is on the innermost
5334 * lock. In this case, we are done!
5335 */
5336 if (i == depth-1)
5337 return 1;
5338
5339 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5340 return 0;
5341
5342 /*
5343 * We had N bottles of beer on the wall, we drank one, but now
5344 * there's not N-1 bottles of beer left on the wall...
5345 * Pouring two of the bottles together is acceptable.
5346 */
5347 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5348
5349 /*
5350 * Since reacquire_held_locks() would have called check_chain_key()
5351 * indirectly via __lock_acquire(), we don't need to do it again
5352 * on return.
5353 */
5354 return 0;
5355 }
5356
5357 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5358 int __lock_is_held(const struct lockdep_map *lock, int read)
5359 {
5360 struct task_struct *curr = current;
5361 int i;
5362
5363 for (i = 0; i < curr->lockdep_depth; i++) {
5364 struct held_lock *hlock = curr->held_locks + i;
5365
5366 if (match_held_lock(hlock, lock)) {
5367 if (read == -1 || !!hlock->read == read)
5368 return LOCK_STATE_HELD;
5369
5370 return LOCK_STATE_NOT_HELD;
5371 }
5372 }
5373
5374 return LOCK_STATE_NOT_HELD;
5375 }
5376
__lock_pin_lock(struct lockdep_map * lock)5377 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5378 {
5379 struct pin_cookie cookie = NIL_COOKIE;
5380 struct task_struct *curr = current;
5381 int i;
5382
5383 if (unlikely(!debug_locks))
5384 return cookie;
5385
5386 for (i = 0; i < curr->lockdep_depth; i++) {
5387 struct held_lock *hlock = curr->held_locks + i;
5388
5389 if (match_held_lock(hlock, lock)) {
5390 /*
5391 * Grab 16bits of randomness; this is sufficient to not
5392 * be guessable and still allows some pin nesting in
5393 * our u32 pin_count.
5394 */
5395 cookie.val = 1 + (prandom_u32() >> 16);
5396 hlock->pin_count += cookie.val;
5397 return cookie;
5398 }
5399 }
5400
5401 WARN(1, "pinning an unheld lock\n");
5402 return cookie;
5403 }
5404
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5405 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5406 {
5407 struct task_struct *curr = current;
5408 int i;
5409
5410 if (unlikely(!debug_locks))
5411 return;
5412
5413 for (i = 0; i < curr->lockdep_depth; i++) {
5414 struct held_lock *hlock = curr->held_locks + i;
5415
5416 if (match_held_lock(hlock, lock)) {
5417 hlock->pin_count += cookie.val;
5418 return;
5419 }
5420 }
5421
5422 WARN(1, "pinning an unheld lock\n");
5423 }
5424
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5425 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5426 {
5427 struct task_struct *curr = current;
5428 int i;
5429
5430 if (unlikely(!debug_locks))
5431 return;
5432
5433 for (i = 0; i < curr->lockdep_depth; i++) {
5434 struct held_lock *hlock = curr->held_locks + i;
5435
5436 if (match_held_lock(hlock, lock)) {
5437 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5438 return;
5439
5440 hlock->pin_count -= cookie.val;
5441
5442 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5443 hlock->pin_count = 0;
5444
5445 return;
5446 }
5447 }
5448
5449 WARN(1, "unpinning an unheld lock\n");
5450 }
5451
5452 /*
5453 * Check whether we follow the irq-flags state precisely:
5454 */
check_flags(unsigned long flags)5455 static noinstr void check_flags(unsigned long flags)
5456 {
5457 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5458 if (!debug_locks)
5459 return;
5460
5461 /* Get the warning out.. */
5462 instrumentation_begin();
5463
5464 if (irqs_disabled_flags(flags)) {
5465 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5466 printk("possible reason: unannotated irqs-off.\n");
5467 }
5468 } else {
5469 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5470 printk("possible reason: unannotated irqs-on.\n");
5471 }
5472 }
5473
5474 /*
5475 * We dont accurately track softirq state in e.g.
5476 * hardirq contexts (such as on 4KSTACKS), so only
5477 * check if not in hardirq contexts:
5478 */
5479 if (!hardirq_count()) {
5480 if (softirq_count()) {
5481 /* like the above, but with softirqs */
5482 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5483 } else {
5484 /* lick the above, does it taste good? */
5485 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5486 }
5487 }
5488
5489 if (!debug_locks)
5490 print_irqtrace_events(current);
5491
5492 instrumentation_end();
5493 #endif
5494 }
5495
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5496 void lock_set_class(struct lockdep_map *lock, const char *name,
5497 struct lock_class_key *key, unsigned int subclass,
5498 unsigned long ip)
5499 {
5500 unsigned long flags;
5501
5502 if (unlikely(!lockdep_enabled()))
5503 return;
5504
5505 raw_local_irq_save(flags);
5506 lockdep_recursion_inc();
5507 check_flags(flags);
5508 if (__lock_set_class(lock, name, key, subclass, ip))
5509 check_chain_key(current);
5510 lockdep_recursion_finish();
5511 raw_local_irq_restore(flags);
5512 }
5513 EXPORT_SYMBOL_GPL(lock_set_class);
5514
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5515 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5516 {
5517 unsigned long flags;
5518
5519 if (unlikely(!lockdep_enabled()))
5520 return;
5521
5522 raw_local_irq_save(flags);
5523 lockdep_recursion_inc();
5524 check_flags(flags);
5525 if (__lock_downgrade(lock, ip))
5526 check_chain_key(current);
5527 lockdep_recursion_finish();
5528 raw_local_irq_restore(flags);
5529 }
5530 EXPORT_SYMBOL_GPL(lock_downgrade);
5531
5532 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5533 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5534 {
5535 #ifdef CONFIG_PROVE_LOCKING
5536 struct lock_class *class = look_up_lock_class(lock, subclass);
5537 unsigned long mask = LOCKF_USED;
5538
5539 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5540 if (!class)
5541 return;
5542
5543 /*
5544 * READ locks only conflict with USED, such that if we only ever use
5545 * READ locks, there is no deadlock possible -- RCU.
5546 */
5547 if (!hlock->read)
5548 mask |= LOCKF_USED_READ;
5549
5550 if (!(class->usage_mask & mask))
5551 return;
5552
5553 hlock->class_idx = class - lock_classes;
5554
5555 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5556 #endif
5557 }
5558
lockdep_nmi(void)5559 static bool lockdep_nmi(void)
5560 {
5561 if (raw_cpu_read(lockdep_recursion))
5562 return false;
5563
5564 if (!in_nmi())
5565 return false;
5566
5567 return true;
5568 }
5569
5570 /*
5571 * read_lock() is recursive if:
5572 * 1. We force lockdep think this way in selftests or
5573 * 2. The implementation is not queued read/write lock or
5574 * 3. The locker is at an in_interrupt() context.
5575 */
read_lock_is_recursive(void)5576 bool read_lock_is_recursive(void)
5577 {
5578 return force_read_lock_recursive ||
5579 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5580 in_interrupt();
5581 }
5582 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5583
5584 /*
5585 * We are not always called with irqs disabled - do that here,
5586 * and also avoid lockdep recursion:
5587 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5588 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5589 int trylock, int read, int check,
5590 struct lockdep_map *nest_lock, unsigned long ip)
5591 {
5592 unsigned long flags;
5593
5594 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5595
5596 if (!debug_locks)
5597 return;
5598
5599 if (unlikely(!lockdep_enabled())) {
5600 /* XXX allow trylock from NMI ?!? */
5601 if (lockdep_nmi() && !trylock) {
5602 struct held_lock hlock;
5603
5604 hlock.acquire_ip = ip;
5605 hlock.instance = lock;
5606 hlock.nest_lock = nest_lock;
5607 hlock.irq_context = 2; // XXX
5608 hlock.trylock = trylock;
5609 hlock.read = read;
5610 hlock.check = check;
5611 hlock.hardirqs_off = true;
5612 hlock.references = 0;
5613
5614 verify_lock_unused(lock, &hlock, subclass);
5615 }
5616 return;
5617 }
5618
5619 raw_local_irq_save(flags);
5620 check_flags(flags);
5621
5622 lockdep_recursion_inc();
5623 __lock_acquire(lock, subclass, trylock, read, check,
5624 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5625 lockdep_recursion_finish();
5626 raw_local_irq_restore(flags);
5627 }
5628 EXPORT_SYMBOL_GPL(lock_acquire);
5629
lock_release(struct lockdep_map * lock,unsigned long ip)5630 void lock_release(struct lockdep_map *lock, unsigned long ip)
5631 {
5632 unsigned long flags;
5633
5634 trace_lock_release(lock, ip);
5635
5636 if (unlikely(!lockdep_enabled()))
5637 return;
5638
5639 raw_local_irq_save(flags);
5640 check_flags(flags);
5641
5642 lockdep_recursion_inc();
5643 if (__lock_release(lock, ip))
5644 check_chain_key(current);
5645 lockdep_recursion_finish();
5646 raw_local_irq_restore(flags);
5647 }
5648 EXPORT_SYMBOL_GPL(lock_release);
5649
lock_is_held_type(const struct lockdep_map * lock,int read)5650 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5651 {
5652 unsigned long flags;
5653 int ret = LOCK_STATE_NOT_HELD;
5654
5655 /*
5656 * Avoid false negative lockdep_assert_held() and
5657 * lockdep_assert_not_held().
5658 */
5659 if (unlikely(!lockdep_enabled()))
5660 return LOCK_STATE_UNKNOWN;
5661
5662 raw_local_irq_save(flags);
5663 check_flags(flags);
5664
5665 lockdep_recursion_inc();
5666 ret = __lock_is_held(lock, read);
5667 lockdep_recursion_finish();
5668 raw_local_irq_restore(flags);
5669
5670 return ret;
5671 }
5672 EXPORT_SYMBOL_GPL(lock_is_held_type);
5673 NOKPROBE_SYMBOL(lock_is_held_type);
5674
lock_pin_lock(struct lockdep_map * lock)5675 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5676 {
5677 struct pin_cookie cookie = NIL_COOKIE;
5678 unsigned long flags;
5679
5680 if (unlikely(!lockdep_enabled()))
5681 return cookie;
5682
5683 raw_local_irq_save(flags);
5684 check_flags(flags);
5685
5686 lockdep_recursion_inc();
5687 cookie = __lock_pin_lock(lock);
5688 lockdep_recursion_finish();
5689 raw_local_irq_restore(flags);
5690
5691 return cookie;
5692 }
5693 EXPORT_SYMBOL_GPL(lock_pin_lock);
5694
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5695 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5696 {
5697 unsigned long flags;
5698
5699 if (unlikely(!lockdep_enabled()))
5700 return;
5701
5702 raw_local_irq_save(flags);
5703 check_flags(flags);
5704
5705 lockdep_recursion_inc();
5706 __lock_repin_lock(lock, cookie);
5707 lockdep_recursion_finish();
5708 raw_local_irq_restore(flags);
5709 }
5710 EXPORT_SYMBOL_GPL(lock_repin_lock);
5711
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5712 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5713 {
5714 unsigned long flags;
5715
5716 if (unlikely(!lockdep_enabled()))
5717 return;
5718
5719 raw_local_irq_save(flags);
5720 check_flags(flags);
5721
5722 lockdep_recursion_inc();
5723 __lock_unpin_lock(lock, cookie);
5724 lockdep_recursion_finish();
5725 raw_local_irq_restore(flags);
5726 }
5727 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5728
5729 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5730 static void print_lock_contention_bug(struct task_struct *curr,
5731 struct lockdep_map *lock,
5732 unsigned long ip)
5733 {
5734 if (!debug_locks_off())
5735 return;
5736 if (debug_locks_silent)
5737 return;
5738
5739 pr_warn("\n");
5740 pr_warn("=================================\n");
5741 pr_warn("WARNING: bad contention detected!\n");
5742 print_kernel_ident();
5743 pr_warn("---------------------------------\n");
5744 pr_warn("%s/%d is trying to contend lock (",
5745 curr->comm, task_pid_nr(curr));
5746 print_lockdep_cache(lock);
5747 pr_cont(") at:\n");
5748 print_ip_sym(KERN_WARNING, ip);
5749 pr_warn("but there are no locks held!\n");
5750 pr_warn("\nother info that might help us debug this:\n");
5751 lockdep_print_held_locks(curr);
5752
5753 pr_warn("\nstack backtrace:\n");
5754 dump_stack();
5755 }
5756
5757 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5758 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5759 {
5760 struct task_struct *curr = current;
5761 struct held_lock *hlock;
5762 struct lock_class_stats *stats;
5763 unsigned int depth;
5764 int i, contention_point, contending_point;
5765
5766 depth = curr->lockdep_depth;
5767 /*
5768 * Whee, we contended on this lock, except it seems we're not
5769 * actually trying to acquire anything much at all..
5770 */
5771 if (DEBUG_LOCKS_WARN_ON(!depth))
5772 return;
5773
5774 hlock = find_held_lock(curr, lock, depth, &i);
5775 if (!hlock) {
5776 print_lock_contention_bug(curr, lock, ip);
5777 return;
5778 }
5779
5780 if (hlock->instance != lock)
5781 return;
5782
5783 hlock->waittime_stamp = lockstat_clock();
5784
5785 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5786 contending_point = lock_point(hlock_class(hlock)->contending_point,
5787 lock->ip);
5788
5789 stats = get_lock_stats(hlock_class(hlock));
5790 if (contention_point < LOCKSTAT_POINTS)
5791 stats->contention_point[contention_point]++;
5792 if (contending_point < LOCKSTAT_POINTS)
5793 stats->contending_point[contending_point]++;
5794 if (lock->cpu != smp_processor_id())
5795 stats->bounces[bounce_contended + !!hlock->read]++;
5796 }
5797
5798 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5799 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5800 {
5801 struct task_struct *curr = current;
5802 struct held_lock *hlock;
5803 struct lock_class_stats *stats;
5804 unsigned int depth;
5805 u64 now, waittime = 0;
5806 int i, cpu;
5807
5808 depth = curr->lockdep_depth;
5809 /*
5810 * Yay, we acquired ownership of this lock we didn't try to
5811 * acquire, how the heck did that happen?
5812 */
5813 if (DEBUG_LOCKS_WARN_ON(!depth))
5814 return;
5815
5816 hlock = find_held_lock(curr, lock, depth, &i);
5817 if (!hlock) {
5818 print_lock_contention_bug(curr, lock, _RET_IP_);
5819 return;
5820 }
5821
5822 if (hlock->instance != lock)
5823 return;
5824
5825 cpu = smp_processor_id();
5826 if (hlock->waittime_stamp) {
5827 now = lockstat_clock();
5828 waittime = now - hlock->waittime_stamp;
5829 hlock->holdtime_stamp = now;
5830 }
5831
5832 stats = get_lock_stats(hlock_class(hlock));
5833 if (waittime) {
5834 if (hlock->read)
5835 lock_time_inc(&stats->read_waittime, waittime);
5836 else
5837 lock_time_inc(&stats->write_waittime, waittime);
5838 }
5839 if (lock->cpu != cpu)
5840 stats->bounces[bounce_acquired + !!hlock->read]++;
5841
5842 lock->cpu = cpu;
5843 lock->ip = ip;
5844 }
5845
lock_contended(struct lockdep_map * lock,unsigned long ip)5846 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5847 {
5848 unsigned long flags;
5849
5850 trace_lock_contended(lock, ip);
5851
5852 if (unlikely(!lock_stat || !lockdep_enabled()))
5853 return;
5854
5855 raw_local_irq_save(flags);
5856 check_flags(flags);
5857 lockdep_recursion_inc();
5858 __lock_contended(lock, ip);
5859 lockdep_recursion_finish();
5860 raw_local_irq_restore(flags);
5861 }
5862 EXPORT_SYMBOL_GPL(lock_contended);
5863
lock_acquired(struct lockdep_map * lock,unsigned long ip)5864 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5865 {
5866 unsigned long flags;
5867
5868 trace_lock_acquired(lock, ip);
5869
5870 if (unlikely(!lock_stat || !lockdep_enabled()))
5871 return;
5872
5873 raw_local_irq_save(flags);
5874 check_flags(flags);
5875 lockdep_recursion_inc();
5876 __lock_acquired(lock, ip);
5877 lockdep_recursion_finish();
5878 raw_local_irq_restore(flags);
5879 }
5880 EXPORT_SYMBOL_GPL(lock_acquired);
5881 #endif
5882
5883 /*
5884 * Used by the testsuite, sanitize the validator state
5885 * after a simulated failure:
5886 */
5887
lockdep_reset(void)5888 void lockdep_reset(void)
5889 {
5890 unsigned long flags;
5891 int i;
5892
5893 raw_local_irq_save(flags);
5894 lockdep_init_task(current);
5895 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5896 nr_hardirq_chains = 0;
5897 nr_softirq_chains = 0;
5898 nr_process_chains = 0;
5899 debug_locks = 1;
5900 for (i = 0; i < CHAINHASH_SIZE; i++)
5901 INIT_HLIST_HEAD(chainhash_table + i);
5902 raw_local_irq_restore(flags);
5903 }
5904
5905 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5906 static void remove_class_from_lock_chain(struct pending_free *pf,
5907 struct lock_chain *chain,
5908 struct lock_class *class)
5909 {
5910 #ifdef CONFIG_PROVE_LOCKING
5911 int i;
5912
5913 for (i = chain->base; i < chain->base + chain->depth; i++) {
5914 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5915 continue;
5916 /*
5917 * Each lock class occurs at most once in a lock chain so once
5918 * we found a match we can break out of this loop.
5919 */
5920 goto free_lock_chain;
5921 }
5922 /* Since the chain has not been modified, return. */
5923 return;
5924
5925 free_lock_chain:
5926 free_chain_hlocks(chain->base, chain->depth);
5927 /* Overwrite the chain key for concurrent RCU readers. */
5928 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5929 dec_chains(chain->irq_context);
5930
5931 /*
5932 * Note: calling hlist_del_rcu() from inside a
5933 * hlist_for_each_entry_rcu() loop is safe.
5934 */
5935 hlist_del_rcu(&chain->entry);
5936 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5937 nr_zapped_lock_chains++;
5938 #endif
5939 }
5940
5941 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5942 static void remove_class_from_lock_chains(struct pending_free *pf,
5943 struct lock_class *class)
5944 {
5945 struct lock_chain *chain;
5946 struct hlist_head *head;
5947 int i;
5948
5949 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5950 head = chainhash_table + i;
5951 hlist_for_each_entry_rcu(chain, head, entry) {
5952 remove_class_from_lock_chain(pf, chain, class);
5953 }
5954 }
5955 }
5956
5957 /*
5958 * Remove all references to a lock class. The caller must hold the graph lock.
5959 */
zap_class(struct pending_free * pf,struct lock_class * class)5960 static void zap_class(struct pending_free *pf, struct lock_class *class)
5961 {
5962 struct lock_list *entry;
5963 int i;
5964
5965 WARN_ON_ONCE(!class->key);
5966
5967 /*
5968 * Remove all dependencies this lock is
5969 * involved in:
5970 */
5971 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5972 entry = list_entries + i;
5973 if (entry->class != class && entry->links_to != class)
5974 continue;
5975 __clear_bit(i, list_entries_in_use);
5976 nr_list_entries--;
5977 list_del_rcu(&entry->entry);
5978 }
5979 if (list_empty(&class->locks_after) &&
5980 list_empty(&class->locks_before)) {
5981 list_move_tail(&class->lock_entry, &pf->zapped);
5982 hlist_del_rcu(&class->hash_entry);
5983 WRITE_ONCE(class->key, NULL);
5984 WRITE_ONCE(class->name, NULL);
5985 nr_lock_classes--;
5986 __clear_bit(class - lock_classes, lock_classes_in_use);
5987 if (class - lock_classes == max_lock_class_idx)
5988 max_lock_class_idx--;
5989 } else {
5990 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991 class->name);
5992 }
5993
5994 remove_class_from_lock_chains(pf, class);
5995 nr_zapped_classes++;
5996 }
5997
reinit_class(struct lock_class * class)5998 static void reinit_class(struct lock_class *class)
5999 {
6000 void *const p = class;
6001 const unsigned int offset = offsetof(struct lock_class, key);
6002
6003 WARN_ON_ONCE(!class->lock_entry.next);
6004 WARN_ON_ONCE(!list_empty(&class->locks_after));
6005 WARN_ON_ONCE(!list_empty(&class->locks_before));
6006 memset(p + offset, 0, sizeof(*class) - offset);
6007 WARN_ON_ONCE(!class->lock_entry.next);
6008 WARN_ON_ONCE(!list_empty(&class->locks_after));
6009 WARN_ON_ONCE(!list_empty(&class->locks_before));
6010 }
6011
within(const void * addr,void * start,unsigned long size)6012 static inline int within(const void *addr, void *start, unsigned long size)
6013 {
6014 return addr >= start && addr < start + size;
6015 }
6016
inside_selftest(void)6017 static bool inside_selftest(void)
6018 {
6019 return current == lockdep_selftest_task_struct;
6020 }
6021
6022 /* The caller must hold the graph lock. */
get_pending_free(void)6023 static struct pending_free *get_pending_free(void)
6024 {
6025 return delayed_free.pf + delayed_free.index;
6026 }
6027
6028 static void free_zapped_rcu(struct rcu_head *cb);
6029
6030 /*
6031 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032 * the graph lock held.
6033 */
call_rcu_zapped(struct pending_free * pf)6034 static void call_rcu_zapped(struct pending_free *pf)
6035 {
6036 WARN_ON_ONCE(inside_selftest());
6037
6038 if (list_empty(&pf->zapped))
6039 return;
6040
6041 if (delayed_free.scheduled)
6042 return;
6043
6044 delayed_free.scheduled = true;
6045
6046 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047 delayed_free.index ^= 1;
6048
6049 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050 }
6051
6052 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6053 static void __free_zapped_classes(struct pending_free *pf)
6054 {
6055 struct lock_class *class;
6056
6057 check_data_structures();
6058
6059 list_for_each_entry(class, &pf->zapped, lock_entry)
6060 reinit_class(class);
6061
6062 list_splice_init(&pf->zapped, &free_lock_classes);
6063
6064 #ifdef CONFIG_PROVE_LOCKING
6065 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068 #endif
6069 }
6070
free_zapped_rcu(struct rcu_head * ch)6071 static void free_zapped_rcu(struct rcu_head *ch)
6072 {
6073 struct pending_free *pf;
6074 unsigned long flags;
6075
6076 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077 return;
6078
6079 raw_local_irq_save(flags);
6080 lockdep_lock();
6081
6082 /* closed head */
6083 pf = delayed_free.pf + (delayed_free.index ^ 1);
6084 __free_zapped_classes(pf);
6085 delayed_free.scheduled = false;
6086
6087 /*
6088 * If there's anything on the open list, close and start a new callback.
6089 */
6090 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091
6092 lockdep_unlock();
6093 raw_local_irq_restore(flags);
6094 }
6095
6096 /*
6097 * Remove all lock classes from the class hash table and from the
6098 * all_lock_classes list whose key or name is in the address range [start,
6099 * start + size). Move these lock classes to the zapped_classes list. Must
6100 * be called with the graph lock held.
6101 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6102 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103 unsigned long size)
6104 {
6105 struct lock_class *class;
6106 struct hlist_head *head;
6107 int i;
6108
6109 /* Unhash all classes that were created by a module. */
6110 for (i = 0; i < CLASSHASH_SIZE; i++) {
6111 head = classhash_table + i;
6112 hlist_for_each_entry_rcu(class, head, hash_entry) {
6113 if (!within(class->key, start, size) &&
6114 !within(class->name, start, size))
6115 continue;
6116 zap_class(pf, class);
6117 }
6118 }
6119 }
6120
6121 /*
6122 * Used in module.c to remove lock classes from memory that is going to be
6123 * freed; and possibly re-used by other modules.
6124 *
6125 * We will have had one synchronize_rcu() before getting here, so we're
6126 * guaranteed nobody will look up these exact classes -- they're properly dead
6127 * but still allocated.
6128 */
lockdep_free_key_range_reg(void * start,unsigned long size)6129 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130 {
6131 struct pending_free *pf;
6132 unsigned long flags;
6133
6134 init_data_structures_once();
6135
6136 raw_local_irq_save(flags);
6137 lockdep_lock();
6138 pf = get_pending_free();
6139 __lockdep_free_key_range(pf, start, size);
6140 call_rcu_zapped(pf);
6141 lockdep_unlock();
6142 raw_local_irq_restore(flags);
6143
6144 /*
6145 * Wait for any possible iterators from look_up_lock_class() to pass
6146 * before continuing to free the memory they refer to.
6147 */
6148 synchronize_rcu();
6149 }
6150
6151 /*
6152 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153 * Ignores debug_locks. Must only be used by the lockdep selftests.
6154 */
lockdep_free_key_range_imm(void * start,unsigned long size)6155 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156 {
6157 struct pending_free *pf = delayed_free.pf;
6158 unsigned long flags;
6159
6160 init_data_structures_once();
6161
6162 raw_local_irq_save(flags);
6163 lockdep_lock();
6164 __lockdep_free_key_range(pf, start, size);
6165 __free_zapped_classes(pf);
6166 lockdep_unlock();
6167 raw_local_irq_restore(flags);
6168 }
6169
lockdep_free_key_range(void * start,unsigned long size)6170 void lockdep_free_key_range(void *start, unsigned long size)
6171 {
6172 init_data_structures_once();
6173
6174 if (inside_selftest())
6175 lockdep_free_key_range_imm(start, size);
6176 else
6177 lockdep_free_key_range_reg(start, size);
6178 }
6179
6180 /*
6181 * Check whether any element of the @lock->class_cache[] array refers to a
6182 * registered lock class. The caller must hold either the graph lock or the
6183 * RCU read lock.
6184 */
lock_class_cache_is_registered(struct lockdep_map * lock)6185 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186 {
6187 struct lock_class *class;
6188 struct hlist_head *head;
6189 int i, j;
6190
6191 for (i = 0; i < CLASSHASH_SIZE; i++) {
6192 head = classhash_table + i;
6193 hlist_for_each_entry_rcu(class, head, hash_entry) {
6194 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195 if (lock->class_cache[j] == class)
6196 return true;
6197 }
6198 }
6199 return false;
6200 }
6201
6202 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6203 static void __lockdep_reset_lock(struct pending_free *pf,
6204 struct lockdep_map *lock)
6205 {
6206 struct lock_class *class;
6207 int j;
6208
6209 /*
6210 * Remove all classes this lock might have:
6211 */
6212 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213 /*
6214 * If the class exists we look it up and zap it:
6215 */
6216 class = look_up_lock_class(lock, j);
6217 if (class)
6218 zap_class(pf, class);
6219 }
6220 /*
6221 * Debug check: in the end all mapped classes should
6222 * be gone.
6223 */
6224 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225 debug_locks_off();
6226 }
6227
6228 /*
6229 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230 * released data structures from RCU context.
6231 */
lockdep_reset_lock_reg(struct lockdep_map * lock)6232 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233 {
6234 struct pending_free *pf;
6235 unsigned long flags;
6236 int locked;
6237
6238 raw_local_irq_save(flags);
6239 locked = graph_lock();
6240 if (!locked)
6241 goto out_irq;
6242
6243 pf = get_pending_free();
6244 __lockdep_reset_lock(pf, lock);
6245 call_rcu_zapped(pf);
6246
6247 graph_unlock();
6248 out_irq:
6249 raw_local_irq_restore(flags);
6250 }
6251
6252 /*
6253 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254 * lockdep selftests.
6255 */
lockdep_reset_lock_imm(struct lockdep_map * lock)6256 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257 {
6258 struct pending_free *pf = delayed_free.pf;
6259 unsigned long flags;
6260
6261 raw_local_irq_save(flags);
6262 lockdep_lock();
6263 __lockdep_reset_lock(pf, lock);
6264 __free_zapped_classes(pf);
6265 lockdep_unlock();
6266 raw_local_irq_restore(flags);
6267 }
6268
lockdep_reset_lock(struct lockdep_map * lock)6269 void lockdep_reset_lock(struct lockdep_map *lock)
6270 {
6271 init_data_structures_once();
6272
6273 if (inside_selftest())
6274 lockdep_reset_lock_imm(lock);
6275 else
6276 lockdep_reset_lock_reg(lock);
6277 }
6278
6279 /*
6280 * Unregister a dynamically allocated key.
6281 *
6282 * Unlike lockdep_register_key(), a search is always done to find a matching
6283 * key irrespective of debug_locks to avoid potential invalid access to freed
6284 * memory in lock_class entry.
6285 */
lockdep_unregister_key(struct lock_class_key * key)6286 void lockdep_unregister_key(struct lock_class_key *key)
6287 {
6288 struct hlist_head *hash_head = keyhashentry(key);
6289 struct lock_class_key *k;
6290 struct pending_free *pf;
6291 unsigned long flags;
6292 bool found = false;
6293
6294 might_sleep();
6295
6296 if (WARN_ON_ONCE(static_obj(key)))
6297 return;
6298
6299 raw_local_irq_save(flags);
6300 lockdep_lock();
6301
6302 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6303 if (k == key) {
6304 hlist_del_rcu(&k->hash_entry);
6305 found = true;
6306 break;
6307 }
6308 }
6309 WARN_ON_ONCE(!found && debug_locks);
6310 if (found) {
6311 pf = get_pending_free();
6312 __lockdep_free_key_range(pf, key, 1);
6313 call_rcu_zapped(pf);
6314 }
6315 lockdep_unlock();
6316 raw_local_irq_restore(flags);
6317
6318 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6319 synchronize_rcu();
6320 }
6321 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6322
lockdep_init(void)6323 void __init lockdep_init(void)
6324 {
6325 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6326
6327 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6328 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6329 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6330 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6331 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6332 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6333 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6334
6335 printk(" memory used by lock dependency info: %zu kB\n",
6336 (sizeof(lock_classes) +
6337 sizeof(lock_classes_in_use) +
6338 sizeof(classhash_table) +
6339 sizeof(list_entries) +
6340 sizeof(list_entries_in_use) +
6341 sizeof(chainhash_table) +
6342 sizeof(delayed_free)
6343 #ifdef CONFIG_PROVE_LOCKING
6344 + sizeof(lock_cq)
6345 + sizeof(lock_chains)
6346 + sizeof(lock_chains_in_use)
6347 + sizeof(chain_hlocks)
6348 #endif
6349 ) / 1024
6350 );
6351
6352 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6353 printk(" memory used for stack traces: %zu kB\n",
6354 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6355 );
6356 #endif
6357
6358 printk(" per task-struct memory footprint: %zu bytes\n",
6359 sizeof(((struct task_struct *)NULL)->held_locks));
6360 }
6361
6362 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6363 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6364 const void *mem_to, struct held_lock *hlock)
6365 {
6366 if (!debug_locks_off())
6367 return;
6368 if (debug_locks_silent)
6369 return;
6370
6371 pr_warn("\n");
6372 pr_warn("=========================\n");
6373 pr_warn("WARNING: held lock freed!\n");
6374 print_kernel_ident();
6375 pr_warn("-------------------------\n");
6376 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6377 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6378 print_lock(hlock);
6379 lockdep_print_held_locks(curr);
6380
6381 pr_warn("\nstack backtrace:\n");
6382 dump_stack();
6383 }
6384
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6385 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6386 const void* lock_from, unsigned long lock_len)
6387 {
6388 return lock_from + lock_len <= mem_from ||
6389 mem_from + mem_len <= lock_from;
6390 }
6391
6392 /*
6393 * Called when kernel memory is freed (or unmapped), or if a lock
6394 * is destroyed or reinitialized - this code checks whether there is
6395 * any held lock in the memory range of <from> to <to>:
6396 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6397 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6398 {
6399 struct task_struct *curr = current;
6400 struct held_lock *hlock;
6401 unsigned long flags;
6402 int i;
6403
6404 if (unlikely(!debug_locks))
6405 return;
6406
6407 raw_local_irq_save(flags);
6408 for (i = 0; i < curr->lockdep_depth; i++) {
6409 hlock = curr->held_locks + i;
6410
6411 if (not_in_range(mem_from, mem_len, hlock->instance,
6412 sizeof(*hlock->instance)))
6413 continue;
6414
6415 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6416 break;
6417 }
6418 raw_local_irq_restore(flags);
6419 }
6420 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6421
print_held_locks_bug(void)6422 static void print_held_locks_bug(void)
6423 {
6424 if (!debug_locks_off())
6425 return;
6426 if (debug_locks_silent)
6427 return;
6428
6429 pr_warn("\n");
6430 pr_warn("====================================\n");
6431 pr_warn("WARNING: %s/%d still has locks held!\n",
6432 current->comm, task_pid_nr(current));
6433 print_kernel_ident();
6434 pr_warn("------------------------------------\n");
6435 lockdep_print_held_locks(current);
6436 pr_warn("\nstack backtrace:\n");
6437 dump_stack();
6438 }
6439
debug_check_no_locks_held(void)6440 void debug_check_no_locks_held(void)
6441 {
6442 if (unlikely(current->lockdep_depth > 0))
6443 print_held_locks_bug();
6444 }
6445 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6446
6447 #ifdef __KERNEL__
debug_show_all_locks(void)6448 void debug_show_all_locks(void)
6449 {
6450 struct task_struct *g, *p;
6451
6452 if (unlikely(!debug_locks)) {
6453 pr_warn("INFO: lockdep is turned off.\n");
6454 return;
6455 }
6456 pr_warn("\nShowing all locks held in the system:\n");
6457
6458 rcu_read_lock();
6459 for_each_process_thread(g, p) {
6460 if (!p->lockdep_depth)
6461 continue;
6462 lockdep_print_held_locks(p);
6463 touch_nmi_watchdog();
6464 touch_all_softlockup_watchdogs();
6465 }
6466 rcu_read_unlock();
6467
6468 pr_warn("\n");
6469 pr_warn("=============================================\n\n");
6470 }
6471 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6472 #endif
6473
6474 /*
6475 * Careful: only use this function if you are sure that
6476 * the task cannot run in parallel!
6477 */
debug_show_held_locks(struct task_struct * task)6478 void debug_show_held_locks(struct task_struct *task)
6479 {
6480 if (unlikely(!debug_locks)) {
6481 printk("INFO: lockdep is turned off.\n");
6482 return;
6483 }
6484 lockdep_print_held_locks(task);
6485 }
6486 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6487
lockdep_sys_exit(void)6488 asmlinkage __visible void lockdep_sys_exit(void)
6489 {
6490 struct task_struct *curr = current;
6491
6492 if (unlikely(curr->lockdep_depth)) {
6493 if (!debug_locks_off())
6494 return;
6495 pr_warn("\n");
6496 pr_warn("================================================\n");
6497 pr_warn("WARNING: lock held when returning to user space!\n");
6498 print_kernel_ident();
6499 pr_warn("------------------------------------------------\n");
6500 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6501 curr->comm, curr->pid);
6502 lockdep_print_held_locks(curr);
6503 }
6504
6505 /*
6506 * The lock history for each syscall should be independent. So wipe the
6507 * slate clean on return to userspace.
6508 */
6509 lockdep_invariant_state(false);
6510 }
6511
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6512 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6513 {
6514 struct task_struct *curr = current;
6515 int dl = READ_ONCE(debug_locks);
6516
6517 /* Note: the following can be executed concurrently, so be careful. */
6518 pr_warn("\n");
6519 pr_warn("=============================\n");
6520 pr_warn("WARNING: suspicious RCU usage\n");
6521 print_kernel_ident();
6522 pr_warn("-----------------------------\n");
6523 pr_warn("%s:%d %s!\n", file, line, s);
6524 pr_warn("\nother info that might help us debug this:\n\n");
6525 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6526 !rcu_lockdep_current_cpu_online()
6527 ? "RCU used illegally from offline CPU!\n"
6528 : "",
6529 rcu_scheduler_active, dl,
6530 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6531
6532 /*
6533 * If a CPU is in the RCU-free window in idle (ie: in the section
6534 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6535 * considers that CPU to be in an "extended quiescent state",
6536 * which means that RCU will be completely ignoring that CPU.
6537 * Therefore, rcu_read_lock() and friends have absolutely no
6538 * effect on a CPU running in that state. In other words, even if
6539 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6540 * delete data structures out from under it. RCU really has no
6541 * choice here: we need to keep an RCU-free window in idle where
6542 * the CPU may possibly enter into low power mode. This way we can
6543 * notice an extended quiescent state to other CPUs that started a grace
6544 * period. Otherwise we would delay any grace period as long as we run
6545 * in the idle task.
6546 *
6547 * So complain bitterly if someone does call rcu_read_lock(),
6548 * rcu_read_lock_bh() and so on from extended quiescent states.
6549 */
6550 if (!rcu_is_watching())
6551 pr_warn("RCU used illegally from extended quiescent state!\n");
6552
6553 lockdep_print_held_locks(curr);
6554 pr_warn("\nstack backtrace:\n");
6555 dump_stack();
6556 }
6557 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6558