1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010, 2011, 2012, Lemote, Inc.
4 * Author: Chen Huacai, chenhc@lemote.com
5 */
6
7 #include <irq.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/sched.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/smp.h>
14 #include <linux/cpufreq.h>
15 #include <linux/kexec.h>
16 #include <asm/processor.h>
17 #include <asm/time.h>
18 #include <asm/tlbflush.h>
19 #include <asm/cacheflush.h>
20 #include <loongson.h>
21 #include <loongson_regs.h>
22 #include <workarounds.h>
23
24 #include "smp.h"
25
26 DEFINE_PER_CPU(int, cpu_state);
27
28 #define LS_IPI_IRQ (MIPS_CPU_IRQ_BASE + 6)
29
30 static void *ipi_set0_regs[16];
31 static void *ipi_clear0_regs[16];
32 static void *ipi_status0_regs[16];
33 static void *ipi_en0_regs[16];
34 static void *ipi_mailbox_buf[16];
35 static uint32_t core0_c0count[NR_CPUS];
36
37 /* read a 32bit value from ipi register */
38 #define loongson3_ipi_read32(addr) readl(addr)
39 /* read a 64bit value from ipi register */
40 #define loongson3_ipi_read64(addr) readq(addr)
41 /* write a 32bit value to ipi register */
42 #define loongson3_ipi_write32(action, addr) \
43 do { \
44 writel(action, addr); \
45 __wbflush(); \
46 } while (0)
47 /* write a 64bit value to ipi register */
48 #define loongson3_ipi_write64(action, addr) \
49 do { \
50 writeq(action, addr); \
51 __wbflush(); \
52 } while (0)
53
54 static u32 (*ipi_read_clear)(int cpu);
55 static void (*ipi_write_action)(int cpu, u32 action);
56 static void (*ipi_write_enable)(int cpu);
57 static void (*ipi_clear_buf)(int cpu);
58 static void (*ipi_write_buf)(int cpu, struct task_struct *idle);
59
60 /* send mail via Mail_Send register for 3A4000+ CPU */
csr_mail_send(uint64_t data,int cpu,int mailbox)61 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
62 {
63 uint64_t val;
64
65 /* send high 32 bits */
66 val = CSR_MAIL_SEND_BLOCK;
67 val |= (CSR_MAIL_SEND_BOX_HIGH(mailbox) << CSR_MAIL_SEND_BOX_SHIFT);
68 val |= (cpu << CSR_MAIL_SEND_CPU_SHIFT);
69 val |= (data & CSR_MAIL_SEND_H32_MASK);
70 csr_writeq(val, LOONGSON_CSR_MAIL_SEND);
71
72 /* send low 32 bits */
73 val = CSR_MAIL_SEND_BLOCK;
74 val |= (CSR_MAIL_SEND_BOX_LOW(mailbox) << CSR_MAIL_SEND_BOX_SHIFT);
75 val |= (cpu << CSR_MAIL_SEND_CPU_SHIFT);
76 val |= (data << CSR_MAIL_SEND_BUF_SHIFT);
77 csr_writeq(val, LOONGSON_CSR_MAIL_SEND);
78 };
79
csr_ipi_read_clear(int cpu)80 static u32 csr_ipi_read_clear(int cpu)
81 {
82 u32 action;
83
84 /* Load the ipi register to figure out what we're supposed to do */
85 action = csr_readl(LOONGSON_CSR_IPI_STATUS);
86 /* Clear the ipi register to clear the interrupt */
87 csr_writel(action, LOONGSON_CSR_IPI_CLEAR);
88
89 return action;
90 }
91
csr_ipi_write_action(int cpu,u32 action)92 static void csr_ipi_write_action(int cpu, u32 action)
93 {
94 unsigned int irq = 0;
95
96 while ((irq = ffs(action))) {
97 uint32_t val = CSR_IPI_SEND_BLOCK;
98 val |= (irq - 1);
99 val |= (cpu << CSR_IPI_SEND_CPU_SHIFT);
100 csr_writel(val, LOONGSON_CSR_IPI_SEND);
101 action &= ~BIT(irq - 1);
102 }
103 }
104
csr_ipi_write_enable(int cpu)105 static void csr_ipi_write_enable(int cpu)
106 {
107 csr_writel(0xffffffff, LOONGSON_CSR_IPI_EN);
108 }
109
csr_ipi_clear_buf(int cpu)110 static void csr_ipi_clear_buf(int cpu)
111 {
112 csr_writeq(0, LOONGSON_CSR_MAIL_BUF0);
113 }
114
csr_ipi_write_buf(int cpu,struct task_struct * idle)115 static void csr_ipi_write_buf(int cpu, struct task_struct *idle)
116 {
117 unsigned long startargs[4];
118
119 /* startargs[] are initial PC, SP and GP for secondary CPU */
120 startargs[0] = (unsigned long)&smp_bootstrap;
121 startargs[1] = (unsigned long)__KSTK_TOS(idle);
122 startargs[2] = (unsigned long)task_thread_info(idle);
123 startargs[3] = 0;
124
125 pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n",
126 cpu, startargs[0], startargs[1], startargs[2]);
127
128 csr_mail_send(startargs[3], cpu_logical_map(cpu), 3);
129 csr_mail_send(startargs[2], cpu_logical_map(cpu), 2);
130 csr_mail_send(startargs[1], cpu_logical_map(cpu), 1);
131 csr_mail_send(startargs[0], cpu_logical_map(cpu), 0);
132 }
133
legacy_ipi_read_clear(int cpu)134 static u32 legacy_ipi_read_clear(int cpu)
135 {
136 u32 action;
137
138 /* Load the ipi register to figure out what we're supposed to do */
139 action = loongson3_ipi_read32(ipi_status0_regs[cpu_logical_map(cpu)]);
140 /* Clear the ipi register to clear the interrupt */
141 loongson3_ipi_write32(action, ipi_clear0_regs[cpu_logical_map(cpu)]);
142
143 return action;
144 }
145
legacy_ipi_write_action(int cpu,u32 action)146 static void legacy_ipi_write_action(int cpu, u32 action)
147 {
148 loongson3_ipi_write32((u32)action, ipi_set0_regs[cpu]);
149 }
150
legacy_ipi_write_enable(int cpu)151 static void legacy_ipi_write_enable(int cpu)
152 {
153 loongson3_ipi_write32(0xffffffff, ipi_en0_regs[cpu_logical_map(cpu)]);
154 }
155
legacy_ipi_clear_buf(int cpu)156 static void legacy_ipi_clear_buf(int cpu)
157 {
158 loongson3_ipi_write64(0, ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0);
159 }
160
legacy_ipi_write_buf(int cpu,struct task_struct * idle)161 static void legacy_ipi_write_buf(int cpu, struct task_struct *idle)
162 {
163 unsigned long startargs[4];
164
165 /* startargs[] are initial PC, SP and GP for secondary CPU */
166 startargs[0] = (unsigned long)&smp_bootstrap;
167 startargs[1] = (unsigned long)__KSTK_TOS(idle);
168 startargs[2] = (unsigned long)task_thread_info(idle);
169 startargs[3] = 0;
170
171 pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n",
172 cpu, startargs[0], startargs[1], startargs[2]);
173
174 loongson3_ipi_write64(startargs[3],
175 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x18);
176 loongson3_ipi_write64(startargs[2],
177 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x10);
178 loongson3_ipi_write64(startargs[1],
179 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x8);
180 loongson3_ipi_write64(startargs[0],
181 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0);
182 }
183
csr_ipi_probe(void)184 static void csr_ipi_probe(void)
185 {
186 if (cpu_has_csr() && csr_readl(LOONGSON_CSR_FEATURES) & LOONGSON_CSRF_IPI) {
187 ipi_read_clear = csr_ipi_read_clear;
188 ipi_write_action = csr_ipi_write_action;
189 ipi_write_enable = csr_ipi_write_enable;
190 ipi_clear_buf = csr_ipi_clear_buf;
191 ipi_write_buf = csr_ipi_write_buf;
192 } else {
193 ipi_read_clear = legacy_ipi_read_clear;
194 ipi_write_action = legacy_ipi_write_action;
195 ipi_write_enable = legacy_ipi_write_enable;
196 ipi_clear_buf = legacy_ipi_clear_buf;
197 ipi_write_buf = legacy_ipi_write_buf;
198 }
199 }
200
ipi_set0_regs_init(void)201 static void ipi_set0_regs_init(void)
202 {
203 ipi_set0_regs[0] = (void *)
204 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + SET0);
205 ipi_set0_regs[1] = (void *)
206 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + SET0);
207 ipi_set0_regs[2] = (void *)
208 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + SET0);
209 ipi_set0_regs[3] = (void *)
210 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + SET0);
211 ipi_set0_regs[4] = (void *)
212 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + SET0);
213 ipi_set0_regs[5] = (void *)
214 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + SET0);
215 ipi_set0_regs[6] = (void *)
216 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + SET0);
217 ipi_set0_regs[7] = (void *)
218 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + SET0);
219 ipi_set0_regs[8] = (void *)
220 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + SET0);
221 ipi_set0_regs[9] = (void *)
222 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + SET0);
223 ipi_set0_regs[10] = (void *)
224 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + SET0);
225 ipi_set0_regs[11] = (void *)
226 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + SET0);
227 ipi_set0_regs[12] = (void *)
228 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + SET0);
229 ipi_set0_regs[13] = (void *)
230 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + SET0);
231 ipi_set0_regs[14] = (void *)
232 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + SET0);
233 ipi_set0_regs[15] = (void *)
234 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + SET0);
235 }
236
ipi_clear0_regs_init(void)237 static void ipi_clear0_regs_init(void)
238 {
239 ipi_clear0_regs[0] = (void *)
240 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + CLEAR0);
241 ipi_clear0_regs[1] = (void *)
242 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + CLEAR0);
243 ipi_clear0_regs[2] = (void *)
244 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + CLEAR0);
245 ipi_clear0_regs[3] = (void *)
246 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + CLEAR0);
247 ipi_clear0_regs[4] = (void *)
248 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + CLEAR0);
249 ipi_clear0_regs[5] = (void *)
250 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + CLEAR0);
251 ipi_clear0_regs[6] = (void *)
252 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + CLEAR0);
253 ipi_clear0_regs[7] = (void *)
254 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + CLEAR0);
255 ipi_clear0_regs[8] = (void *)
256 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + CLEAR0);
257 ipi_clear0_regs[9] = (void *)
258 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + CLEAR0);
259 ipi_clear0_regs[10] = (void *)
260 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + CLEAR0);
261 ipi_clear0_regs[11] = (void *)
262 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + CLEAR0);
263 ipi_clear0_regs[12] = (void *)
264 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + CLEAR0);
265 ipi_clear0_regs[13] = (void *)
266 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + CLEAR0);
267 ipi_clear0_regs[14] = (void *)
268 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + CLEAR0);
269 ipi_clear0_regs[15] = (void *)
270 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + CLEAR0);
271 }
272
ipi_status0_regs_init(void)273 static void ipi_status0_regs_init(void)
274 {
275 ipi_status0_regs[0] = (void *)
276 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + STATUS0);
277 ipi_status0_regs[1] = (void *)
278 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + STATUS0);
279 ipi_status0_regs[2] = (void *)
280 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + STATUS0);
281 ipi_status0_regs[3] = (void *)
282 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + STATUS0);
283 ipi_status0_regs[4] = (void *)
284 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + STATUS0);
285 ipi_status0_regs[5] = (void *)
286 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + STATUS0);
287 ipi_status0_regs[6] = (void *)
288 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + STATUS0);
289 ipi_status0_regs[7] = (void *)
290 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + STATUS0);
291 ipi_status0_regs[8] = (void *)
292 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + STATUS0);
293 ipi_status0_regs[9] = (void *)
294 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + STATUS0);
295 ipi_status0_regs[10] = (void *)
296 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + STATUS0);
297 ipi_status0_regs[11] = (void *)
298 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + STATUS0);
299 ipi_status0_regs[12] = (void *)
300 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + STATUS0);
301 ipi_status0_regs[13] = (void *)
302 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + STATUS0);
303 ipi_status0_regs[14] = (void *)
304 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + STATUS0);
305 ipi_status0_regs[15] = (void *)
306 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + STATUS0);
307 }
308
ipi_en0_regs_init(void)309 static void ipi_en0_regs_init(void)
310 {
311 ipi_en0_regs[0] = (void *)
312 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + EN0);
313 ipi_en0_regs[1] = (void *)
314 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + EN0);
315 ipi_en0_regs[2] = (void *)
316 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + EN0);
317 ipi_en0_regs[3] = (void *)
318 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + EN0);
319 ipi_en0_regs[4] = (void *)
320 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + EN0);
321 ipi_en0_regs[5] = (void *)
322 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + EN0);
323 ipi_en0_regs[6] = (void *)
324 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + EN0);
325 ipi_en0_regs[7] = (void *)
326 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + EN0);
327 ipi_en0_regs[8] = (void *)
328 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + EN0);
329 ipi_en0_regs[9] = (void *)
330 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + EN0);
331 ipi_en0_regs[10] = (void *)
332 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + EN0);
333 ipi_en0_regs[11] = (void *)
334 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + EN0);
335 ipi_en0_regs[12] = (void *)
336 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + EN0);
337 ipi_en0_regs[13] = (void *)
338 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + EN0);
339 ipi_en0_regs[14] = (void *)
340 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + EN0);
341 ipi_en0_regs[15] = (void *)
342 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + EN0);
343 }
344
ipi_mailbox_buf_init(void)345 static void ipi_mailbox_buf_init(void)
346 {
347 ipi_mailbox_buf[0] = (void *)
348 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + BUF);
349 ipi_mailbox_buf[1] = (void *)
350 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + BUF);
351 ipi_mailbox_buf[2] = (void *)
352 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + BUF);
353 ipi_mailbox_buf[3] = (void *)
354 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + BUF);
355 ipi_mailbox_buf[4] = (void *)
356 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + BUF);
357 ipi_mailbox_buf[5] = (void *)
358 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + BUF);
359 ipi_mailbox_buf[6] = (void *)
360 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + BUF);
361 ipi_mailbox_buf[7] = (void *)
362 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + BUF);
363 ipi_mailbox_buf[8] = (void *)
364 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + BUF);
365 ipi_mailbox_buf[9] = (void *)
366 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + BUF);
367 ipi_mailbox_buf[10] = (void *)
368 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + BUF);
369 ipi_mailbox_buf[11] = (void *)
370 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + BUF);
371 ipi_mailbox_buf[12] = (void *)
372 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + BUF);
373 ipi_mailbox_buf[13] = (void *)
374 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + BUF);
375 ipi_mailbox_buf[14] = (void *)
376 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + BUF);
377 ipi_mailbox_buf[15] = (void *)
378 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + BUF);
379 }
380
381 /*
382 * Simple enough, just poke the appropriate ipi register
383 */
loongson3_send_ipi_single(int cpu,unsigned int action)384 static void loongson3_send_ipi_single(int cpu, unsigned int action)
385 {
386 ipi_write_action(cpu_logical_map(cpu), (u32)action);
387 }
388
389 static void
loongson3_send_ipi_mask(const struct cpumask * mask,unsigned int action)390 loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action)
391 {
392 unsigned int i;
393
394 for_each_cpu(i, mask)
395 ipi_write_action(cpu_logical_map(i), (u32)action);
396 }
397
398
loongson3_ipi_interrupt(int irq,void * dev_id)399 static irqreturn_t loongson3_ipi_interrupt(int irq, void *dev_id)
400 {
401 int i, cpu = smp_processor_id();
402 unsigned int action, c0count;
403
404 action = ipi_read_clear(cpu);
405
406 if (action & SMP_RESCHEDULE_YOURSELF)
407 scheduler_ipi();
408
409 if (action & SMP_CALL_FUNCTION) {
410 irq_enter();
411 generic_smp_call_function_interrupt();
412 irq_exit();
413 }
414
415 if (action & SMP_ASK_C0COUNT) {
416 BUG_ON(cpu != 0);
417 c0count = read_c0_count();
418 c0count = c0count ? c0count : 1;
419 for (i = 1; i < nr_cpu_ids; i++)
420 core0_c0count[i] = c0count;
421 __wbflush(); /* Let others see the result ASAP */
422 }
423
424 return IRQ_HANDLED;
425 }
426
427 #define MAX_LOOPS 800
428 /*
429 * SMP init and finish on secondary CPUs
430 */
loongson3_init_secondary(void)431 static void loongson3_init_secondary(void)
432 {
433 int i;
434 uint32_t initcount;
435 unsigned int cpu = smp_processor_id();
436 unsigned int imask = STATUSF_IP7 | STATUSF_IP6 |
437 STATUSF_IP3 | STATUSF_IP2;
438
439 /* Set interrupt mask, but don't enable */
440 change_c0_status(ST0_IM, imask);
441 ipi_write_enable(cpu);
442
443 per_cpu(cpu_state, cpu) = CPU_ONLINE;
444 cpu_set_core(&cpu_data[cpu],
445 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package);
446 cpu_data[cpu].package =
447 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
448
449 i = 0;
450 core0_c0count[cpu] = 0;
451 loongson3_send_ipi_single(0, SMP_ASK_C0COUNT);
452 while (!core0_c0count[cpu]) {
453 i++;
454 cpu_relax();
455 }
456
457 if (i > MAX_LOOPS)
458 i = MAX_LOOPS;
459 if (cpu_data[cpu].package)
460 initcount = core0_c0count[cpu] + i;
461 else /* Local access is faster for loops */
462 initcount = core0_c0count[cpu] + i/2;
463
464 write_c0_count(initcount);
465 }
466
loongson3_smp_finish(void)467 static void loongson3_smp_finish(void)
468 {
469 int cpu = smp_processor_id();
470
471 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
472 local_irq_enable();
473 ipi_clear_buf(cpu);
474
475 pr_info("CPU#%d finished, CP0_ST=%x\n",
476 smp_processor_id(), read_c0_status());
477 }
478
loongson3_smp_setup(void)479 static void __init loongson3_smp_setup(void)
480 {
481 int i = 0, num = 0; /* i: physical id, num: logical id */
482
483 init_cpu_possible(cpu_none_mask);
484
485 /* For unified kernel, NR_CPUS is the maximum possible value,
486 * loongson_sysconf.nr_cpus is the really present value
487 */
488 while (i < loongson_sysconf.nr_cpus) {
489 if (loongson_sysconf.reserved_cpus_mask & (1<<i)) {
490 /* Reserved physical CPU cores */
491 __cpu_number_map[i] = -1;
492 } else {
493 __cpu_number_map[i] = num;
494 __cpu_logical_map[num] = i;
495 set_cpu_possible(num, true);
496 /* Loongson processors are always grouped by 4 */
497 cpu_set_cluster(&cpu_data[num], i / 4);
498 num++;
499 }
500 i++;
501 }
502 pr_info("Detected %i available CPU(s)\n", num);
503
504 while (num < loongson_sysconf.nr_cpus) {
505 __cpu_logical_map[num] = -1;
506 num++;
507 }
508
509 csr_ipi_probe();
510 ipi_set0_regs_init();
511 ipi_clear0_regs_init();
512 ipi_status0_regs_init();
513 ipi_en0_regs_init();
514 ipi_mailbox_buf_init();
515 ipi_write_enable(0);
516
517 cpu_set_core(&cpu_data[0],
518 cpu_logical_map(0) % loongson_sysconf.cores_per_package);
519 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
520 }
521
loongson3_prepare_cpus(unsigned int max_cpus)522 static void __init loongson3_prepare_cpus(unsigned int max_cpus)
523 {
524 if (request_irq(LS_IPI_IRQ, loongson3_ipi_interrupt,
525 IRQF_PERCPU | IRQF_NO_SUSPEND, "SMP_IPI", NULL))
526 pr_err("Failed to request IPI IRQ\n");
527 init_cpu_present(cpu_possible_mask);
528 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
529 }
530
531 /*
532 * Setup the PC, SP, and GP of a secondary processor and start it runing!
533 */
loongson3_boot_secondary(int cpu,struct task_struct * idle)534 static int loongson3_boot_secondary(int cpu, struct task_struct *idle)
535 {
536 pr_info("Booting CPU#%d...\n", cpu);
537
538 ipi_write_buf(cpu, idle);
539
540 return 0;
541 }
542
543 #ifdef CONFIG_HOTPLUG_CPU
544
loongson3_cpu_disable(void)545 static int loongson3_cpu_disable(void)
546 {
547 unsigned long flags;
548 unsigned int cpu = smp_processor_id();
549
550 set_cpu_online(cpu, false);
551 calculate_cpu_foreign_map();
552 local_irq_save(flags);
553 irq_cpu_offline();
554 clear_c0_status(ST0_IM);
555 local_irq_restore(flags);
556 local_flush_tlb_all();
557
558 return 0;
559 }
560
561
loongson3_cpu_die(unsigned int cpu)562 static void loongson3_cpu_die(unsigned int cpu)
563 {
564 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
565 cpu_relax();
566
567 mb();
568 }
569
570 /* To shutdown a core in Loongson 3, the target core should go to CKSEG1 and
571 * flush all L1 entries at first. Then, another core (usually Core 0) can
572 * safely disable the clock of the target core. loongson3_play_dead() is
573 * called via CKSEG1 (uncached and unmmaped)
574 */
loongson3_type1_play_dead(int * state_addr)575 static void loongson3_type1_play_dead(int *state_addr)
576 {
577 register int val;
578 register long cpuid, core, node, count;
579 register void *addr, *base, *initfunc;
580
581 __asm__ __volatile__(
582 " .set push \n"
583 " .set noreorder \n"
584 " li %[addr], 0x80000000 \n" /* KSEG0 */
585 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
586 " cache 0, 1(%[addr]) \n"
587 " cache 0, 2(%[addr]) \n"
588 " cache 0, 3(%[addr]) \n"
589 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
590 " cache 1, 1(%[addr]) \n"
591 " cache 1, 2(%[addr]) \n"
592 " cache 1, 3(%[addr]) \n"
593 " addiu %[sets], %[sets], -1 \n"
594 " bnez %[sets], 1b \n"
595 " addiu %[addr], %[addr], 0x20 \n"
596 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
597 " sw %[val], (%[state_addr]) \n"
598 " sync \n"
599 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
600 " .set pop \n"
601 : [addr] "=&r" (addr), [val] "=&r" (val)
602 : [state_addr] "r" (state_addr),
603 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
604
605 __asm__ __volatile__(
606 " .set push \n"
607 " .set noreorder \n"
608 " .set mips64 \n"
609 " mfc0 %[cpuid], $15, 1 \n"
610 " andi %[cpuid], 0x3ff \n"
611 " dli %[base], 0x900000003ff01000 \n"
612 " andi %[core], %[cpuid], 0x3 \n"
613 " sll %[core], 8 \n" /* get core id */
614 " or %[base], %[base], %[core] \n"
615 " andi %[node], %[cpuid], 0xc \n"
616 " dsll %[node], 42 \n" /* get node id */
617 " or %[base], %[base], %[node] \n"
618 "1: li %[count], 0x100 \n" /* wait for init loop */
619 "2: bnez %[count], 2b \n" /* limit mailbox access */
620 " addiu %[count], -1 \n"
621 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
622 " beqz %[initfunc], 1b \n"
623 " nop \n"
624 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
625 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
626 " ld $a1, 0x38(%[base]) \n"
627 " jr %[initfunc] \n" /* jump to initial PC */
628 " nop \n"
629 " .set pop \n"
630 : [core] "=&r" (core), [node] "=&r" (node),
631 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
632 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
633 : /* No Input */
634 : "a1");
635 }
636
loongson3_type2_play_dead(int * state_addr)637 static void loongson3_type2_play_dead(int *state_addr)
638 {
639 register int val;
640 register long cpuid, core, node, count;
641 register void *addr, *base, *initfunc;
642
643 __asm__ __volatile__(
644 " .set push \n"
645 " .set noreorder \n"
646 " li %[addr], 0x80000000 \n" /* KSEG0 */
647 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
648 " cache 0, 1(%[addr]) \n"
649 " cache 0, 2(%[addr]) \n"
650 " cache 0, 3(%[addr]) \n"
651 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
652 " cache 1, 1(%[addr]) \n"
653 " cache 1, 2(%[addr]) \n"
654 " cache 1, 3(%[addr]) \n"
655 " addiu %[sets], %[sets], -1 \n"
656 " bnez %[sets], 1b \n"
657 " addiu %[addr], %[addr], 0x20 \n"
658 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
659 " sw %[val], (%[state_addr]) \n"
660 " sync \n"
661 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
662 " .set pop \n"
663 : [addr] "=&r" (addr), [val] "=&r" (val)
664 : [state_addr] "r" (state_addr),
665 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
666
667 __asm__ __volatile__(
668 " .set push \n"
669 " .set noreorder \n"
670 " .set mips64 \n"
671 " mfc0 %[cpuid], $15, 1 \n"
672 " andi %[cpuid], 0x3ff \n"
673 " dli %[base], 0x900000003ff01000 \n"
674 " andi %[core], %[cpuid], 0x3 \n"
675 " sll %[core], 8 \n" /* get core id */
676 " or %[base], %[base], %[core] \n"
677 " andi %[node], %[cpuid], 0xc \n"
678 " dsll %[node], 42 \n" /* get node id */
679 " or %[base], %[base], %[node] \n"
680 " dsrl %[node], 30 \n" /* 15:14 */
681 " or %[base], %[base], %[node] \n"
682 "1: li %[count], 0x100 \n" /* wait for init loop */
683 "2: bnez %[count], 2b \n" /* limit mailbox access */
684 " addiu %[count], -1 \n"
685 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
686 " beqz %[initfunc], 1b \n"
687 " nop \n"
688 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
689 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
690 " ld $a1, 0x38(%[base]) \n"
691 " jr %[initfunc] \n" /* jump to initial PC */
692 " nop \n"
693 " .set pop \n"
694 : [core] "=&r" (core), [node] "=&r" (node),
695 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
696 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
697 : /* No Input */
698 : "a1");
699 }
700
loongson3_type3_play_dead(int * state_addr)701 static void loongson3_type3_play_dead(int *state_addr)
702 {
703 register int val;
704 register long cpuid, core, node, count;
705 register void *addr, *base, *initfunc;
706
707 __asm__ __volatile__(
708 " .set push \n"
709 " .set noreorder \n"
710 " li %[addr], 0x80000000 \n" /* KSEG0 */
711 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
712 " cache 0, 1(%[addr]) \n"
713 " cache 0, 2(%[addr]) \n"
714 " cache 0, 3(%[addr]) \n"
715 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
716 " cache 1, 1(%[addr]) \n"
717 " cache 1, 2(%[addr]) \n"
718 " cache 1, 3(%[addr]) \n"
719 " addiu %[sets], %[sets], -1 \n"
720 " bnez %[sets], 1b \n"
721 " addiu %[addr], %[addr], 0x40 \n"
722 " li %[addr], 0x80000000 \n" /* KSEG0 */
723 "2: cache 2, 0(%[addr]) \n" /* flush L1 VCache */
724 " cache 2, 1(%[addr]) \n"
725 " cache 2, 2(%[addr]) \n"
726 " cache 2, 3(%[addr]) \n"
727 " cache 2, 4(%[addr]) \n"
728 " cache 2, 5(%[addr]) \n"
729 " cache 2, 6(%[addr]) \n"
730 " cache 2, 7(%[addr]) \n"
731 " cache 2, 8(%[addr]) \n"
732 " cache 2, 9(%[addr]) \n"
733 " cache 2, 10(%[addr]) \n"
734 " cache 2, 11(%[addr]) \n"
735 " cache 2, 12(%[addr]) \n"
736 " cache 2, 13(%[addr]) \n"
737 " cache 2, 14(%[addr]) \n"
738 " cache 2, 15(%[addr]) \n"
739 " addiu %[vsets], %[vsets], -1 \n"
740 " bnez %[vsets], 2b \n"
741 " addiu %[addr], %[addr], 0x40 \n"
742 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
743 " sw %[val], (%[state_addr]) \n"
744 " sync \n"
745 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
746 " .set pop \n"
747 : [addr] "=&r" (addr), [val] "=&r" (val)
748 : [state_addr] "r" (state_addr),
749 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets),
750 [vsets] "r" (cpu_data[smp_processor_id()].vcache.sets));
751
752 __asm__ __volatile__(
753 " .set push \n"
754 " .set noreorder \n"
755 " .set mips64 \n"
756 " mfc0 %[cpuid], $15, 1 \n"
757 " andi %[cpuid], 0x3ff \n"
758 " dli %[base], 0x900000003ff01000 \n"
759 " andi %[core], %[cpuid], 0x3 \n"
760 " sll %[core], 8 \n" /* get core id */
761 " or %[base], %[base], %[core] \n"
762 " andi %[node], %[cpuid], 0xc \n"
763 " dsll %[node], 42 \n" /* get node id */
764 " or %[base], %[base], %[node] \n"
765 "1: li %[count], 0x100 \n" /* wait for init loop */
766 "2: bnez %[count], 2b \n" /* limit mailbox access */
767 " addiu %[count], -1 \n"
768 " lw %[initfunc], 0x20(%[base]) \n" /* check lower 32-bit as jump indicator */
769 " beqz %[initfunc], 1b \n"
770 " nop \n"
771 " ld %[initfunc], 0x20(%[base]) \n" /* get PC (whole 64-bit) via mailbox */
772 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
773 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
774 " ld $a1, 0x38(%[base]) \n"
775 " jr %[initfunc] \n" /* jump to initial PC */
776 " nop \n"
777 " .set pop \n"
778 : [core] "=&r" (core), [node] "=&r" (node),
779 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
780 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
781 : /* No Input */
782 : "a1");
783 }
784
play_dead(void)785 void play_dead(void)
786 {
787 int prid_imp, prid_rev, *state_addr;
788 unsigned int cpu = smp_processor_id();
789 void (*play_dead_at_ckseg1)(int *);
790
791 idle_task_exit();
792
793 prid_imp = read_c0_prid() & PRID_IMP_MASK;
794 prid_rev = read_c0_prid() & PRID_REV_MASK;
795
796 if (prid_imp == PRID_IMP_LOONGSON_64G) {
797 play_dead_at_ckseg1 =
798 (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead);
799 goto out;
800 }
801
802 switch (prid_rev) {
803 case PRID_REV_LOONGSON3A_R1:
804 default:
805 play_dead_at_ckseg1 =
806 (void *)CKSEG1ADDR((unsigned long)loongson3_type1_play_dead);
807 break;
808 case PRID_REV_LOONGSON3B_R1:
809 case PRID_REV_LOONGSON3B_R2:
810 play_dead_at_ckseg1 =
811 (void *)CKSEG1ADDR((unsigned long)loongson3_type2_play_dead);
812 break;
813 case PRID_REV_LOONGSON3A_R2_0:
814 case PRID_REV_LOONGSON3A_R2_1:
815 case PRID_REV_LOONGSON3A_R3_0:
816 case PRID_REV_LOONGSON3A_R3_1:
817 play_dead_at_ckseg1 =
818 (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead);
819 break;
820 }
821
822 out:
823 state_addr = &per_cpu(cpu_state, cpu);
824 mb();
825 play_dead_at_ckseg1(state_addr);
826 }
827
loongson3_disable_clock(unsigned int cpu)828 static int loongson3_disable_clock(unsigned int cpu)
829 {
830 uint64_t core_id = cpu_core(&cpu_data[cpu]);
831 uint64_t package_id = cpu_data[cpu].package;
832
833 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
834 LOONGSON_CHIPCFG(package_id) &= ~(1 << (12 + core_id));
835 } else {
836 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
837 LOONGSON_FREQCTRL(package_id) &= ~(1 << (core_id * 4 + 3));
838 }
839 return 0;
840 }
841
loongson3_enable_clock(unsigned int cpu)842 static int loongson3_enable_clock(unsigned int cpu)
843 {
844 uint64_t core_id = cpu_core(&cpu_data[cpu]);
845 uint64_t package_id = cpu_data[cpu].package;
846
847 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
848 LOONGSON_CHIPCFG(package_id) |= 1 << (12 + core_id);
849 } else {
850 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
851 LOONGSON_FREQCTRL(package_id) |= 1 << (core_id * 4 + 3);
852 }
853 return 0;
854 }
855
register_loongson3_notifier(void)856 static int register_loongson3_notifier(void)
857 {
858 return cpuhp_setup_state_nocalls(CPUHP_MIPS_SOC_PREPARE,
859 "mips/loongson:prepare",
860 loongson3_enable_clock,
861 loongson3_disable_clock);
862 }
863 early_initcall(register_loongson3_notifier);
864
865 #endif
866
867 const struct plat_smp_ops loongson3_smp_ops = {
868 .send_ipi_single = loongson3_send_ipi_single,
869 .send_ipi_mask = loongson3_send_ipi_mask,
870 .init_secondary = loongson3_init_secondary,
871 .smp_finish = loongson3_smp_finish,
872 .boot_secondary = loongson3_boot_secondary,
873 .smp_setup = loongson3_smp_setup,
874 .prepare_cpus = loongson3_prepare_cpus,
875 #ifdef CONFIG_HOTPLUG_CPU
876 .cpu_disable = loongson3_cpu_disable,
877 .cpu_die = loongson3_cpu_die,
878 #endif
879 #ifdef CONFIG_KEXEC
880 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
881 #endif
882 };
883