1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97
98 static struct scsi_transport_template *lpfc_transport_template = NULL;
99 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
100 static DEFINE_IDR(lpfc_hba_index);
101 #define LPFC_NVMET_BUF_POST 254
102 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
103
104 /**
105 * lpfc_config_port_prep - Perform lpfc initialization prior to config port
106 * @phba: pointer to lpfc hba data structure.
107 *
108 * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
109 * mailbox command. It retrieves the revision information from the HBA and
110 * collects the Vital Product Data (VPD) about the HBA for preparing the
111 * configuration of the HBA.
112 *
113 * Return codes:
114 * 0 - success.
115 * -ERESTART - requests the SLI layer to reset the HBA and try again.
116 * Any other value - indicates an error.
117 **/
118 int
lpfc_config_port_prep(struct lpfc_hba * phba)119 lpfc_config_port_prep(struct lpfc_hba *phba)
120 {
121 lpfc_vpd_t *vp = &phba->vpd;
122 int i = 0, rc;
123 LPFC_MBOXQ_t *pmb;
124 MAILBOX_t *mb;
125 char *lpfc_vpd_data = NULL;
126 uint16_t offset = 0;
127 static char licensed[56] =
128 "key unlock for use with gnu public licensed code only\0";
129 static int init_key = 1;
130
131 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
132 if (!pmb) {
133 phba->link_state = LPFC_HBA_ERROR;
134 return -ENOMEM;
135 }
136
137 mb = &pmb->u.mb;
138 phba->link_state = LPFC_INIT_MBX_CMDS;
139
140 if (lpfc_is_LC_HBA(phba->pcidev->device)) {
141 if (init_key) {
142 uint32_t *ptext = (uint32_t *) licensed;
143
144 for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
145 *ptext = cpu_to_be32(*ptext);
146 init_key = 0;
147 }
148
149 lpfc_read_nv(phba, pmb);
150 memset((char*)mb->un.varRDnvp.rsvd3, 0,
151 sizeof (mb->un.varRDnvp.rsvd3));
152 memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
153 sizeof (licensed));
154
155 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
156
157 if (rc != MBX_SUCCESS) {
158 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
159 "0324 Config Port initialization "
160 "error, mbxCmd x%x READ_NVPARM, "
161 "mbxStatus x%x\n",
162 mb->mbxCommand, mb->mbxStatus);
163 mempool_free(pmb, phba->mbox_mem_pool);
164 return -ERESTART;
165 }
166 memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
167 sizeof(phba->wwnn));
168 memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
169 sizeof(phba->wwpn));
170 }
171
172 /*
173 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
174 * which was already set in lpfc_get_cfgparam()
175 */
176 phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
177
178 /* Setup and issue mailbox READ REV command */
179 lpfc_read_rev(phba, pmb);
180 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
181 if (rc != MBX_SUCCESS) {
182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
183 "0439 Adapter failed to init, mbxCmd x%x "
184 "READ_REV, mbxStatus x%x\n",
185 mb->mbxCommand, mb->mbxStatus);
186 mempool_free( pmb, phba->mbox_mem_pool);
187 return -ERESTART;
188 }
189
190
191 /*
192 * The value of rr must be 1 since the driver set the cv field to 1.
193 * This setting requires the FW to set all revision fields.
194 */
195 if (mb->un.varRdRev.rr == 0) {
196 vp->rev.rBit = 0;
197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
198 "0440 Adapter failed to init, READ_REV has "
199 "missing revision information.\n");
200 mempool_free(pmb, phba->mbox_mem_pool);
201 return -ERESTART;
202 }
203
204 if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
205 mempool_free(pmb, phba->mbox_mem_pool);
206 return -EINVAL;
207 }
208
209 /* Save information as VPD data */
210 vp->rev.rBit = 1;
211 memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
212 vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
213 memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
214 vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
215 memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
216 vp->rev.biuRev = mb->un.varRdRev.biuRev;
217 vp->rev.smRev = mb->un.varRdRev.smRev;
218 vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
219 vp->rev.endecRev = mb->un.varRdRev.endecRev;
220 vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
221 vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
222 vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
223 vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
224 vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
225 vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
226
227 /* If the sli feature level is less then 9, we must
228 * tear down all RPIs and VPIs on link down if NPIV
229 * is enabled.
230 */
231 if (vp->rev.feaLevelHigh < 9)
232 phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
233
234 if (lpfc_is_LC_HBA(phba->pcidev->device))
235 memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
236 sizeof (phba->RandomData));
237
238 /* Get adapter VPD information */
239 lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
240 if (!lpfc_vpd_data)
241 goto out_free_mbox;
242 do {
243 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
244 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
245
246 if (rc != MBX_SUCCESS) {
247 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
248 "0441 VPD not present on adapter, "
249 "mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
250 mb->mbxCommand, mb->mbxStatus);
251 mb->un.varDmp.word_cnt = 0;
252 }
253 /* dump mem may return a zero when finished or we got a
254 * mailbox error, either way we are done.
255 */
256 if (mb->un.varDmp.word_cnt == 0)
257 break;
258
259 if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
260 mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
261 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
262 lpfc_vpd_data + offset,
263 mb->un.varDmp.word_cnt);
264 offset += mb->un.varDmp.word_cnt;
265 } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
266
267 lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
268
269 kfree(lpfc_vpd_data);
270 out_free_mbox:
271 mempool_free(pmb, phba->mbox_mem_pool);
272 return 0;
273 }
274
275 /**
276 * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
277 * @phba: pointer to lpfc hba data structure.
278 * @pmboxq: pointer to the driver internal queue element for mailbox command.
279 *
280 * This is the completion handler for driver's configuring asynchronous event
281 * mailbox command to the device. If the mailbox command returns successfully,
282 * it will set internal async event support flag to 1; otherwise, it will
283 * set internal async event support flag to 0.
284 **/
285 static void
lpfc_config_async_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)286 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
287 {
288 if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
289 phba->temp_sensor_support = 1;
290 else
291 phba->temp_sensor_support = 0;
292 mempool_free(pmboxq, phba->mbox_mem_pool);
293 return;
294 }
295
296 /**
297 * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
298 * @phba: pointer to lpfc hba data structure.
299 * @pmboxq: pointer to the driver internal queue element for mailbox command.
300 *
301 * This is the completion handler for dump mailbox command for getting
302 * wake up parameters. When this command complete, the response contain
303 * Option rom version of the HBA. This function translate the version number
304 * into a human readable string and store it in OptionROMVersion.
305 **/
306 static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)307 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
308 {
309 struct prog_id *prg;
310 uint32_t prog_id_word;
311 char dist = ' ';
312 /* character array used for decoding dist type. */
313 char dist_char[] = "nabx";
314
315 if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
316 mempool_free(pmboxq, phba->mbox_mem_pool);
317 return;
318 }
319
320 prg = (struct prog_id *) &prog_id_word;
321
322 /* word 7 contain option rom version */
323 prog_id_word = pmboxq->u.mb.un.varWords[7];
324
325 /* Decode the Option rom version word to a readable string */
326 if (prg->dist < 4)
327 dist = dist_char[prg->dist];
328
329 if ((prg->dist == 3) && (prg->num == 0))
330 snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
331 prg->ver, prg->rev, prg->lev);
332 else
333 snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
334 prg->ver, prg->rev, prg->lev,
335 dist, prg->num);
336 mempool_free(pmboxq, phba->mbox_mem_pool);
337 return;
338 }
339
340 /**
341 * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
342 * cfg_soft_wwnn, cfg_soft_wwpn
343 * @vport: pointer to lpfc vport data structure.
344 *
345 *
346 * Return codes
347 * None.
348 **/
349 void
lpfc_update_vport_wwn(struct lpfc_vport * vport)350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
353 u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
354
355 /* If the soft name exists then update it using the service params */
356 if (vport->phba->cfg_soft_wwnn)
357 u64_to_wwn(vport->phba->cfg_soft_wwnn,
358 vport->fc_sparam.nodeName.u.wwn);
359 if (vport->phba->cfg_soft_wwpn)
360 u64_to_wwn(vport->phba->cfg_soft_wwpn,
361 vport->fc_sparam.portName.u.wwn);
362
363 /*
364 * If the name is empty or there exists a soft name
365 * then copy the service params name, otherwise use the fc name
366 */
367 if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
368 memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
369 sizeof(struct lpfc_name));
370 else
371 memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
372 sizeof(struct lpfc_name));
373
374 /*
375 * If the port name has changed, then set the Param changes flag
376 * to unreg the login
377 */
378 if (vport->fc_portname.u.wwn[0] != 0 &&
379 memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
380 sizeof(struct lpfc_name)))
381 vport->vport_flag |= FAWWPN_PARAM_CHG;
382
383 if (vport->fc_portname.u.wwn[0] == 0 ||
384 vport->phba->cfg_soft_wwpn ||
385 (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
386 vport->vport_flag & FAWWPN_SET) {
387 memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
388 sizeof(struct lpfc_name));
389 vport->vport_flag &= ~FAWWPN_SET;
390 if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
391 vport->vport_flag |= FAWWPN_SET;
392 }
393 else
394 memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
395 sizeof(struct lpfc_name));
396 }
397
398 /**
399 * lpfc_config_port_post - Perform lpfc initialization after config port
400 * @phba: pointer to lpfc hba data structure.
401 *
402 * This routine will do LPFC initialization after the CONFIG_PORT mailbox
403 * command call. It performs all internal resource and state setups on the
404 * port: post IOCB buffers, enable appropriate host interrupt attentions,
405 * ELS ring timers, etc.
406 *
407 * Return codes
408 * 0 - success.
409 * Any other value - error.
410 **/
411 int
lpfc_config_port_post(struct lpfc_hba * phba)412 lpfc_config_port_post(struct lpfc_hba *phba)
413 {
414 struct lpfc_vport *vport = phba->pport;
415 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
416 LPFC_MBOXQ_t *pmb;
417 MAILBOX_t *mb;
418 struct lpfc_dmabuf *mp;
419 struct lpfc_sli *psli = &phba->sli;
420 uint32_t status, timeout;
421 int i, j;
422 int rc;
423
424 spin_lock_irq(&phba->hbalock);
425 /*
426 * If the Config port completed correctly the HBA is not
427 * over heated any more.
428 */
429 if (phba->over_temp_state == HBA_OVER_TEMP)
430 phba->over_temp_state = HBA_NORMAL_TEMP;
431 spin_unlock_irq(&phba->hbalock);
432
433 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
434 if (!pmb) {
435 phba->link_state = LPFC_HBA_ERROR;
436 return -ENOMEM;
437 }
438 mb = &pmb->u.mb;
439
440 /* Get login parameters for NID. */
441 rc = lpfc_read_sparam(phba, pmb, 0);
442 if (rc) {
443 mempool_free(pmb, phba->mbox_mem_pool);
444 return -ENOMEM;
445 }
446
447 pmb->vport = vport;
448 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
450 "0448 Adapter failed init, mbxCmd x%x "
451 "READ_SPARM mbxStatus x%x\n",
452 mb->mbxCommand, mb->mbxStatus);
453 phba->link_state = LPFC_HBA_ERROR;
454 mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
455 mempool_free(pmb, phba->mbox_mem_pool);
456 lpfc_mbuf_free(phba, mp->virt, mp->phys);
457 kfree(mp);
458 return -EIO;
459 }
460
461 mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
462
463 memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
464 lpfc_mbuf_free(phba, mp->virt, mp->phys);
465 kfree(mp);
466 pmb->ctx_buf = NULL;
467 lpfc_update_vport_wwn(vport);
468
469 /* Update the fc_host data structures with new wwn. */
470 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
471 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
472 fc_host_max_npiv_vports(shost) = phba->max_vpi;
473
474 /* If no serial number in VPD data, use low 6 bytes of WWNN */
475 /* This should be consolidated into parse_vpd ? - mr */
476 if (phba->SerialNumber[0] == 0) {
477 uint8_t *outptr;
478
479 outptr = &vport->fc_nodename.u.s.IEEE[0];
480 for (i = 0; i < 12; i++) {
481 status = *outptr++;
482 j = ((status & 0xf0) >> 4);
483 if (j <= 9)
484 phba->SerialNumber[i] =
485 (char)((uint8_t) 0x30 + (uint8_t) j);
486 else
487 phba->SerialNumber[i] =
488 (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
489 i++;
490 j = (status & 0xf);
491 if (j <= 9)
492 phba->SerialNumber[i] =
493 (char)((uint8_t) 0x30 + (uint8_t) j);
494 else
495 phba->SerialNumber[i] =
496 (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
497 }
498 }
499
500 lpfc_read_config(phba, pmb);
501 pmb->vport = vport;
502 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
504 "0453 Adapter failed to init, mbxCmd x%x "
505 "READ_CONFIG, mbxStatus x%x\n",
506 mb->mbxCommand, mb->mbxStatus);
507 phba->link_state = LPFC_HBA_ERROR;
508 mempool_free( pmb, phba->mbox_mem_pool);
509 return -EIO;
510 }
511
512 /* Check if the port is disabled */
513 lpfc_sli_read_link_ste(phba);
514
515 /* Reset the DFT_HBA_Q_DEPTH to the max xri */
516 if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
517 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
518 "3359 HBA queue depth changed from %d to %d\n",
519 phba->cfg_hba_queue_depth,
520 mb->un.varRdConfig.max_xri);
521 phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
522 }
523
524 phba->lmt = mb->un.varRdConfig.lmt;
525
526 /* Get the default values for Model Name and Description */
527 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
528
529 phba->link_state = LPFC_LINK_DOWN;
530
531 /* Only process IOCBs on ELS ring till hba_state is READY */
532 if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
533 psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
534 if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
535 psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
536
537 /* Post receive buffers for desired rings */
538 if (phba->sli_rev != 3)
539 lpfc_post_rcv_buf(phba);
540
541 /*
542 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
543 */
544 if (phba->intr_type == MSIX) {
545 rc = lpfc_config_msi(phba, pmb);
546 if (rc) {
547 mempool_free(pmb, phba->mbox_mem_pool);
548 return -EIO;
549 }
550 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
551 if (rc != MBX_SUCCESS) {
552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
553 "0352 Config MSI mailbox command "
554 "failed, mbxCmd x%x, mbxStatus x%x\n",
555 pmb->u.mb.mbxCommand,
556 pmb->u.mb.mbxStatus);
557 mempool_free(pmb, phba->mbox_mem_pool);
558 return -EIO;
559 }
560 }
561
562 spin_lock_irq(&phba->hbalock);
563 /* Initialize ERATT handling flag */
564 phba->hba_flag &= ~HBA_ERATT_HANDLED;
565
566 /* Enable appropriate host interrupts */
567 if (lpfc_readl(phba->HCregaddr, &status)) {
568 spin_unlock_irq(&phba->hbalock);
569 return -EIO;
570 }
571 status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
572 if (psli->num_rings > 0)
573 status |= HC_R0INT_ENA;
574 if (psli->num_rings > 1)
575 status |= HC_R1INT_ENA;
576 if (psli->num_rings > 2)
577 status |= HC_R2INT_ENA;
578 if (psli->num_rings > 3)
579 status |= HC_R3INT_ENA;
580
581 if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
582 (phba->cfg_poll & DISABLE_FCP_RING_INT))
583 status &= ~(HC_R0INT_ENA);
584
585 writel(status, phba->HCregaddr);
586 readl(phba->HCregaddr); /* flush */
587 spin_unlock_irq(&phba->hbalock);
588
589 /* Set up ring-0 (ELS) timer */
590 timeout = phba->fc_ratov * 2;
591 mod_timer(&vport->els_tmofunc,
592 jiffies + msecs_to_jiffies(1000 * timeout));
593 /* Set up heart beat (HB) timer */
594 mod_timer(&phba->hb_tmofunc,
595 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
596 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
597 phba->last_completion_time = jiffies;
598 /* Set up error attention (ERATT) polling timer */
599 mod_timer(&phba->eratt_poll,
600 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
601
602 if (phba->hba_flag & LINK_DISABLED) {
603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
604 "2598 Adapter Link is disabled.\n");
605 lpfc_down_link(phba, pmb);
606 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
607 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
608 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
609 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
610 "2599 Adapter failed to issue DOWN_LINK"
611 " mbox command rc 0x%x\n", rc);
612
613 mempool_free(pmb, phba->mbox_mem_pool);
614 return -EIO;
615 }
616 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
617 mempool_free(pmb, phba->mbox_mem_pool);
618 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
619 if (rc)
620 return rc;
621 }
622 /* MBOX buffer will be freed in mbox compl */
623 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
624 if (!pmb) {
625 phba->link_state = LPFC_HBA_ERROR;
626 return -ENOMEM;
627 }
628
629 lpfc_config_async(phba, pmb, LPFC_ELS_RING);
630 pmb->mbox_cmpl = lpfc_config_async_cmpl;
631 pmb->vport = phba->pport;
632 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
633
634 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
635 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
636 "0456 Adapter failed to issue "
637 "ASYNCEVT_ENABLE mbox status x%x\n",
638 rc);
639 mempool_free(pmb, phba->mbox_mem_pool);
640 }
641
642 /* Get Option rom version */
643 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
644 if (!pmb) {
645 phba->link_state = LPFC_HBA_ERROR;
646 return -ENOMEM;
647 }
648
649 lpfc_dump_wakeup_param(phba, pmb);
650 pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
651 pmb->vport = phba->pport;
652 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
653
654 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
656 "0435 Adapter failed "
657 "to get Option ROM version status x%x\n", rc);
658 mempool_free(pmb, phba->mbox_mem_pool);
659 }
660
661 return 0;
662 }
663
664 /**
665 * lpfc_hba_init_link - Initialize the FC link
666 * @phba: pointer to lpfc hba data structure.
667 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
668 *
669 * This routine will issue the INIT_LINK mailbox command call.
670 * It is available to other drivers through the lpfc_hba data
671 * structure for use as a delayed link up mechanism with the
672 * module parameter lpfc_suppress_link_up.
673 *
674 * Return code
675 * 0 - success
676 * Any other value - error
677 **/
678 static int
lpfc_hba_init_link(struct lpfc_hba * phba,uint32_t flag)679 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
680 {
681 return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
682 }
683
684 /**
685 * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
686 * @phba: pointer to lpfc hba data structure.
687 * @fc_topology: desired fc topology.
688 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
689 *
690 * This routine will issue the INIT_LINK mailbox command call.
691 * It is available to other drivers through the lpfc_hba data
692 * structure for use as a delayed link up mechanism with the
693 * module parameter lpfc_suppress_link_up.
694 *
695 * Return code
696 * 0 - success
697 * Any other value - error
698 **/
699 int
lpfc_hba_init_link_fc_topology(struct lpfc_hba * phba,uint32_t fc_topology,uint32_t flag)700 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
701 uint32_t flag)
702 {
703 struct lpfc_vport *vport = phba->pport;
704 LPFC_MBOXQ_t *pmb;
705 MAILBOX_t *mb;
706 int rc;
707
708 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
709 if (!pmb) {
710 phba->link_state = LPFC_HBA_ERROR;
711 return -ENOMEM;
712 }
713 mb = &pmb->u.mb;
714 pmb->vport = vport;
715
716 if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
717 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
718 !(phba->lmt & LMT_1Gb)) ||
719 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
720 !(phba->lmt & LMT_2Gb)) ||
721 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
722 !(phba->lmt & LMT_4Gb)) ||
723 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
724 !(phba->lmt & LMT_8Gb)) ||
725 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
726 !(phba->lmt & LMT_10Gb)) ||
727 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
728 !(phba->lmt & LMT_16Gb)) ||
729 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
730 !(phba->lmt & LMT_32Gb)) ||
731 ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
732 !(phba->lmt & LMT_64Gb))) {
733 /* Reset link speed to auto */
734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
735 "1302 Invalid speed for this board:%d "
736 "Reset link speed to auto.\n",
737 phba->cfg_link_speed);
738 phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
739 }
740 lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
741 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
742 if (phba->sli_rev < LPFC_SLI_REV4)
743 lpfc_set_loopback_flag(phba);
744 rc = lpfc_sli_issue_mbox(phba, pmb, flag);
745 if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
747 "0498 Adapter failed to init, mbxCmd x%x "
748 "INIT_LINK, mbxStatus x%x\n",
749 mb->mbxCommand, mb->mbxStatus);
750 if (phba->sli_rev <= LPFC_SLI_REV3) {
751 /* Clear all interrupt enable conditions */
752 writel(0, phba->HCregaddr);
753 readl(phba->HCregaddr); /* flush */
754 /* Clear all pending interrupts */
755 writel(0xffffffff, phba->HAregaddr);
756 readl(phba->HAregaddr); /* flush */
757 }
758 phba->link_state = LPFC_HBA_ERROR;
759 if (rc != MBX_BUSY || flag == MBX_POLL)
760 mempool_free(pmb, phba->mbox_mem_pool);
761 return -EIO;
762 }
763 phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
764 if (flag == MBX_POLL)
765 mempool_free(pmb, phba->mbox_mem_pool);
766
767 return 0;
768 }
769
770 /**
771 * lpfc_hba_down_link - this routine downs the FC link
772 * @phba: pointer to lpfc hba data structure.
773 * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
774 *
775 * This routine will issue the DOWN_LINK mailbox command call.
776 * It is available to other drivers through the lpfc_hba data
777 * structure for use to stop the link.
778 *
779 * Return code
780 * 0 - success
781 * Any other value - error
782 **/
783 static int
lpfc_hba_down_link(struct lpfc_hba * phba,uint32_t flag)784 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
785 {
786 LPFC_MBOXQ_t *pmb;
787 int rc;
788
789 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
790 if (!pmb) {
791 phba->link_state = LPFC_HBA_ERROR;
792 return -ENOMEM;
793 }
794
795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
796 "0491 Adapter Link is disabled.\n");
797 lpfc_down_link(phba, pmb);
798 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
799 rc = lpfc_sli_issue_mbox(phba, pmb, flag);
800 if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
802 "2522 Adapter failed to issue DOWN_LINK"
803 " mbox command rc 0x%x\n", rc);
804
805 mempool_free(pmb, phba->mbox_mem_pool);
806 return -EIO;
807 }
808 if (flag == MBX_POLL)
809 mempool_free(pmb, phba->mbox_mem_pool);
810
811 return 0;
812 }
813
814 /**
815 * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
816 * @phba: pointer to lpfc HBA data structure.
817 *
818 * This routine will do LPFC uninitialization before the HBA is reset when
819 * bringing down the SLI Layer.
820 *
821 * Return codes
822 * 0 - success.
823 * Any other value - error.
824 **/
825 int
lpfc_hba_down_prep(struct lpfc_hba * phba)826 lpfc_hba_down_prep(struct lpfc_hba *phba)
827 {
828 struct lpfc_vport **vports;
829 int i;
830
831 if (phba->sli_rev <= LPFC_SLI_REV3) {
832 /* Disable interrupts */
833 writel(0, phba->HCregaddr);
834 readl(phba->HCregaddr); /* flush */
835 }
836
837 if (phba->pport->load_flag & FC_UNLOADING)
838 lpfc_cleanup_discovery_resources(phba->pport);
839 else {
840 vports = lpfc_create_vport_work_array(phba);
841 if (vports != NULL)
842 for (i = 0; i <= phba->max_vports &&
843 vports[i] != NULL; i++)
844 lpfc_cleanup_discovery_resources(vports[i]);
845 lpfc_destroy_vport_work_array(phba, vports);
846 }
847 return 0;
848 }
849
850 /**
851 * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
852 * rspiocb which got deferred
853 *
854 * @phba: pointer to lpfc HBA data structure.
855 *
856 * This routine will cleanup completed slow path events after HBA is reset
857 * when bringing down the SLI Layer.
858 *
859 *
860 * Return codes
861 * void.
862 **/
863 static void
lpfc_sli4_free_sp_events(struct lpfc_hba * phba)864 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
865 {
866 struct lpfc_iocbq *rspiocbq;
867 struct hbq_dmabuf *dmabuf;
868 struct lpfc_cq_event *cq_event;
869
870 spin_lock_irq(&phba->hbalock);
871 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
872 spin_unlock_irq(&phba->hbalock);
873
874 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
875 /* Get the response iocb from the head of work queue */
876 spin_lock_irq(&phba->hbalock);
877 list_remove_head(&phba->sli4_hba.sp_queue_event,
878 cq_event, struct lpfc_cq_event, list);
879 spin_unlock_irq(&phba->hbalock);
880
881 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
882 case CQE_CODE_COMPL_WQE:
883 rspiocbq = container_of(cq_event, struct lpfc_iocbq,
884 cq_event);
885 lpfc_sli_release_iocbq(phba, rspiocbq);
886 break;
887 case CQE_CODE_RECEIVE:
888 case CQE_CODE_RECEIVE_V1:
889 dmabuf = container_of(cq_event, struct hbq_dmabuf,
890 cq_event);
891 lpfc_in_buf_free(phba, &dmabuf->dbuf);
892 }
893 }
894 }
895
896 /**
897 * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
898 * @phba: pointer to lpfc HBA data structure.
899 *
900 * This routine will cleanup posted ELS buffers after the HBA is reset
901 * when bringing down the SLI Layer.
902 *
903 *
904 * Return codes
905 * void.
906 **/
907 static void
lpfc_hba_free_post_buf(struct lpfc_hba * phba)908 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
909 {
910 struct lpfc_sli *psli = &phba->sli;
911 struct lpfc_sli_ring *pring;
912 struct lpfc_dmabuf *mp, *next_mp;
913 LIST_HEAD(buflist);
914 int count;
915
916 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
917 lpfc_sli_hbqbuf_free_all(phba);
918 else {
919 /* Cleanup preposted buffers on the ELS ring */
920 pring = &psli->sli3_ring[LPFC_ELS_RING];
921 spin_lock_irq(&phba->hbalock);
922 list_splice_init(&pring->postbufq, &buflist);
923 spin_unlock_irq(&phba->hbalock);
924
925 count = 0;
926 list_for_each_entry_safe(mp, next_mp, &buflist, list) {
927 list_del(&mp->list);
928 count++;
929 lpfc_mbuf_free(phba, mp->virt, mp->phys);
930 kfree(mp);
931 }
932
933 spin_lock_irq(&phba->hbalock);
934 pring->postbufq_cnt -= count;
935 spin_unlock_irq(&phba->hbalock);
936 }
937 }
938
939 /**
940 * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
941 * @phba: pointer to lpfc HBA data structure.
942 *
943 * This routine will cleanup the txcmplq after the HBA is reset when bringing
944 * down the SLI Layer.
945 *
946 * Return codes
947 * void
948 **/
949 static void
lpfc_hba_clean_txcmplq(struct lpfc_hba * phba)950 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
951 {
952 struct lpfc_sli *psli = &phba->sli;
953 struct lpfc_queue *qp = NULL;
954 struct lpfc_sli_ring *pring;
955 LIST_HEAD(completions);
956 int i;
957 struct lpfc_iocbq *piocb, *next_iocb;
958
959 if (phba->sli_rev != LPFC_SLI_REV4) {
960 for (i = 0; i < psli->num_rings; i++) {
961 pring = &psli->sli3_ring[i];
962 spin_lock_irq(&phba->hbalock);
963 /* At this point in time the HBA is either reset or DOA
964 * Nothing should be on txcmplq as it will
965 * NEVER complete.
966 */
967 list_splice_init(&pring->txcmplq, &completions);
968 pring->txcmplq_cnt = 0;
969 spin_unlock_irq(&phba->hbalock);
970
971 lpfc_sli_abort_iocb_ring(phba, pring);
972 }
973 /* Cancel all the IOCBs from the completions list */
974 lpfc_sli_cancel_iocbs(phba, &completions,
975 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
976 return;
977 }
978 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
979 pring = qp->pring;
980 if (!pring)
981 continue;
982 spin_lock_irq(&pring->ring_lock);
983 list_for_each_entry_safe(piocb, next_iocb,
984 &pring->txcmplq, list)
985 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
986 list_splice_init(&pring->txcmplq, &completions);
987 pring->txcmplq_cnt = 0;
988 spin_unlock_irq(&pring->ring_lock);
989 lpfc_sli_abort_iocb_ring(phba, pring);
990 }
991 /* Cancel all the IOCBs from the completions list */
992 lpfc_sli_cancel_iocbs(phba, &completions,
993 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
994 }
995
996 /**
997 * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
998 * @phba: pointer to lpfc HBA data structure.
999 *
1000 * This routine will do uninitialization after the HBA is reset when bring
1001 * down the SLI Layer.
1002 *
1003 * Return codes
1004 * 0 - success.
1005 * Any other value - error.
1006 **/
1007 static int
lpfc_hba_down_post_s3(struct lpfc_hba * phba)1008 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1009 {
1010 lpfc_hba_free_post_buf(phba);
1011 lpfc_hba_clean_txcmplq(phba);
1012 return 0;
1013 }
1014
1015 /**
1016 * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1017 * @phba: pointer to lpfc HBA data structure.
1018 *
1019 * This routine will do uninitialization after the HBA is reset when bring
1020 * down the SLI Layer.
1021 *
1022 * Return codes
1023 * 0 - success.
1024 * Any other value - error.
1025 **/
1026 static int
lpfc_hba_down_post_s4(struct lpfc_hba * phba)1027 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1028 {
1029 struct lpfc_io_buf *psb, *psb_next;
1030 struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1031 struct lpfc_sli4_hdw_queue *qp;
1032 LIST_HEAD(aborts);
1033 LIST_HEAD(nvme_aborts);
1034 LIST_HEAD(nvmet_aborts);
1035 struct lpfc_sglq *sglq_entry = NULL;
1036 int cnt, idx;
1037
1038
1039 lpfc_sli_hbqbuf_free_all(phba);
1040 lpfc_hba_clean_txcmplq(phba);
1041
1042 /* At this point in time the HBA is either reset or DOA. Either
1043 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1044 * on the lpfc_els_sgl_list so that it can either be freed if the
1045 * driver is unloading or reposted if the driver is restarting
1046 * the port.
1047 */
1048
1049 /* sgl_list_lock required because worker thread uses this
1050 * list.
1051 */
1052 spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1053 list_for_each_entry(sglq_entry,
1054 &phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1055 sglq_entry->state = SGL_FREED;
1056
1057 list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1058 &phba->sli4_hba.lpfc_els_sgl_list);
1059
1060
1061 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1062
1063 /* abts_xxxx_buf_list_lock required because worker thread uses this
1064 * list.
1065 */
1066 spin_lock_irq(&phba->hbalock);
1067 cnt = 0;
1068 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1069 qp = &phba->sli4_hba.hdwq[idx];
1070
1071 spin_lock(&qp->abts_io_buf_list_lock);
1072 list_splice_init(&qp->lpfc_abts_io_buf_list,
1073 &aborts);
1074
1075 list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1076 psb->pCmd = NULL;
1077 psb->status = IOSTAT_SUCCESS;
1078 cnt++;
1079 }
1080 spin_lock(&qp->io_buf_list_put_lock);
1081 list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1082 qp->put_io_bufs += qp->abts_scsi_io_bufs;
1083 qp->put_io_bufs += qp->abts_nvme_io_bufs;
1084 qp->abts_scsi_io_bufs = 0;
1085 qp->abts_nvme_io_bufs = 0;
1086 spin_unlock(&qp->io_buf_list_put_lock);
1087 spin_unlock(&qp->abts_io_buf_list_lock);
1088 }
1089 spin_unlock_irq(&phba->hbalock);
1090
1091 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1092 spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1093 list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1094 &nvmet_aborts);
1095 spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1096 list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1097 ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1098 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1099 }
1100 }
1101
1102 lpfc_sli4_free_sp_events(phba);
1103 return cnt;
1104 }
1105
1106 /**
1107 * lpfc_hba_down_post - Wrapper func for hba down post routine
1108 * @phba: pointer to lpfc HBA data structure.
1109 *
1110 * This routine wraps the actual SLI3 or SLI4 routine for performing
1111 * uninitialization after the HBA is reset when bring down the SLI Layer.
1112 *
1113 * Return codes
1114 * 0 - success.
1115 * Any other value - error.
1116 **/
1117 int
lpfc_hba_down_post(struct lpfc_hba * phba)1118 lpfc_hba_down_post(struct lpfc_hba *phba)
1119 {
1120 return (*phba->lpfc_hba_down_post)(phba);
1121 }
1122
1123 /**
1124 * lpfc_hb_timeout - The HBA-timer timeout handler
1125 * @t: timer context used to obtain the pointer to lpfc hba data structure.
1126 *
1127 * This is the HBA-timer timeout handler registered to the lpfc driver. When
1128 * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1129 * work-port-events bitmap and the worker thread is notified. This timeout
1130 * event will be used by the worker thread to invoke the actual timeout
1131 * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1132 * be performed in the timeout handler and the HBA timeout event bit shall
1133 * be cleared by the worker thread after it has taken the event bitmap out.
1134 **/
1135 static void
lpfc_hb_timeout(struct timer_list * t)1136 lpfc_hb_timeout(struct timer_list *t)
1137 {
1138 struct lpfc_hba *phba;
1139 uint32_t tmo_posted;
1140 unsigned long iflag;
1141
1142 phba = from_timer(phba, t, hb_tmofunc);
1143
1144 /* Check for heart beat timeout conditions */
1145 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1146 tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1147 if (!tmo_posted)
1148 phba->pport->work_port_events |= WORKER_HB_TMO;
1149 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1150
1151 /* Tell the worker thread there is work to do */
1152 if (!tmo_posted)
1153 lpfc_worker_wake_up(phba);
1154 return;
1155 }
1156
1157 /**
1158 * lpfc_rrq_timeout - The RRQ-timer timeout handler
1159 * @t: timer context used to obtain the pointer to lpfc hba data structure.
1160 *
1161 * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1162 * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1163 * work-port-events bitmap and the worker thread is notified. This timeout
1164 * event will be used by the worker thread to invoke the actual timeout
1165 * handler routine, lpfc_rrq_handler. Any periodical operations will
1166 * be performed in the timeout handler and the RRQ timeout event bit shall
1167 * be cleared by the worker thread after it has taken the event bitmap out.
1168 **/
1169 static void
lpfc_rrq_timeout(struct timer_list * t)1170 lpfc_rrq_timeout(struct timer_list *t)
1171 {
1172 struct lpfc_hba *phba;
1173 unsigned long iflag;
1174
1175 phba = from_timer(phba, t, rrq_tmr);
1176 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1177 if (!(phba->pport->load_flag & FC_UNLOADING))
1178 phba->hba_flag |= HBA_RRQ_ACTIVE;
1179 else
1180 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1181 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1182
1183 if (!(phba->pport->load_flag & FC_UNLOADING))
1184 lpfc_worker_wake_up(phba);
1185 }
1186
1187 /**
1188 * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1189 * @phba: pointer to lpfc hba data structure.
1190 * @pmboxq: pointer to the driver internal queue element for mailbox command.
1191 *
1192 * This is the callback function to the lpfc heart-beat mailbox command.
1193 * If configured, the lpfc driver issues the heart-beat mailbox command to
1194 * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1195 * heart-beat mailbox command is issued, the driver shall set up heart-beat
1196 * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1197 * heart-beat outstanding state. Once the mailbox command comes back and
1198 * no error conditions detected, the heart-beat mailbox command timer is
1199 * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1200 * state is cleared for the next heart-beat. If the timer expired with the
1201 * heart-beat outstanding state set, the driver will put the HBA offline.
1202 **/
1203 static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)1204 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1205 {
1206 unsigned long drvr_flag;
1207
1208 spin_lock_irqsave(&phba->hbalock, drvr_flag);
1209 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1210 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1211
1212 /* Check and reset heart-beat timer if necessary */
1213 mempool_free(pmboxq, phba->mbox_mem_pool);
1214 if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1215 !(phba->link_state == LPFC_HBA_ERROR) &&
1216 !(phba->pport->load_flag & FC_UNLOADING))
1217 mod_timer(&phba->hb_tmofunc,
1218 jiffies +
1219 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1220 return;
1221 }
1222
1223 /*
1224 * lpfc_idle_stat_delay_work - idle_stat tracking
1225 *
1226 * This routine tracks per-cq idle_stat and determines polling decisions.
1227 *
1228 * Return codes:
1229 * None
1230 **/
1231 static void
lpfc_idle_stat_delay_work(struct work_struct * work)1232 lpfc_idle_stat_delay_work(struct work_struct *work)
1233 {
1234 struct lpfc_hba *phba = container_of(to_delayed_work(work),
1235 struct lpfc_hba,
1236 idle_stat_delay_work);
1237 struct lpfc_queue *cq;
1238 struct lpfc_sli4_hdw_queue *hdwq;
1239 struct lpfc_idle_stat *idle_stat;
1240 u32 i, idle_percent;
1241 u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1242
1243 if (phba->pport->load_flag & FC_UNLOADING)
1244 return;
1245
1246 if (phba->link_state == LPFC_HBA_ERROR ||
1247 phba->pport->fc_flag & FC_OFFLINE_MODE ||
1248 phba->cmf_active_mode != LPFC_CFG_OFF)
1249 goto requeue;
1250
1251 for_each_present_cpu(i) {
1252 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1253 cq = hdwq->io_cq;
1254
1255 /* Skip if we've already handled this cq's primary CPU */
1256 if (cq->chann != i)
1257 continue;
1258
1259 idle_stat = &phba->sli4_hba.idle_stat[i];
1260
1261 /* get_cpu_idle_time returns values as running counters. Thus,
1262 * to know the amount for this period, the prior counter values
1263 * need to be subtracted from the current counter values.
1264 * From there, the idle time stat can be calculated as a
1265 * percentage of 100 - the sum of the other consumption times.
1266 */
1267 wall_idle = get_cpu_idle_time(i, &wall, 1);
1268 diff_idle = wall_idle - idle_stat->prev_idle;
1269 diff_wall = wall - idle_stat->prev_wall;
1270
1271 if (diff_wall <= diff_idle)
1272 busy_time = 0;
1273 else
1274 busy_time = diff_wall - diff_idle;
1275
1276 idle_percent = div64_u64(100 * busy_time, diff_wall);
1277 idle_percent = 100 - idle_percent;
1278
1279 if (idle_percent < 15)
1280 cq->poll_mode = LPFC_QUEUE_WORK;
1281 else
1282 cq->poll_mode = LPFC_IRQ_POLL;
1283
1284 idle_stat->prev_idle = wall_idle;
1285 idle_stat->prev_wall = wall;
1286 }
1287
1288 requeue:
1289 schedule_delayed_work(&phba->idle_stat_delay_work,
1290 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1291 }
1292
1293 static void
lpfc_hb_eq_delay_work(struct work_struct * work)1294 lpfc_hb_eq_delay_work(struct work_struct *work)
1295 {
1296 struct lpfc_hba *phba = container_of(to_delayed_work(work),
1297 struct lpfc_hba, eq_delay_work);
1298 struct lpfc_eq_intr_info *eqi, *eqi_new;
1299 struct lpfc_queue *eq, *eq_next;
1300 unsigned char *ena_delay = NULL;
1301 uint32_t usdelay;
1302 int i;
1303
1304 if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1305 return;
1306
1307 if (phba->link_state == LPFC_HBA_ERROR ||
1308 phba->pport->fc_flag & FC_OFFLINE_MODE)
1309 goto requeue;
1310
1311 ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1312 GFP_KERNEL);
1313 if (!ena_delay)
1314 goto requeue;
1315
1316 for (i = 0; i < phba->cfg_irq_chann; i++) {
1317 /* Get the EQ corresponding to the IRQ vector */
1318 eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1319 if (!eq)
1320 continue;
1321 if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1322 eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1323 ena_delay[eq->last_cpu] = 1;
1324 }
1325 }
1326
1327 for_each_present_cpu(i) {
1328 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1329 if (ena_delay[i]) {
1330 usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1331 if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1332 usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1333 } else {
1334 usdelay = 0;
1335 }
1336
1337 eqi->icnt = 0;
1338
1339 list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1340 if (unlikely(eq->last_cpu != i)) {
1341 eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1342 eq->last_cpu);
1343 list_move_tail(&eq->cpu_list, &eqi_new->list);
1344 continue;
1345 }
1346 if (usdelay != eq->q_mode)
1347 lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1348 usdelay);
1349 }
1350 }
1351
1352 kfree(ena_delay);
1353
1354 requeue:
1355 queue_delayed_work(phba->wq, &phba->eq_delay_work,
1356 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1357 }
1358
1359 /**
1360 * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1361 * @phba: pointer to lpfc hba data structure.
1362 *
1363 * For each heartbeat, this routine does some heuristic methods to adjust
1364 * XRI distribution. The goal is to fully utilize free XRIs.
1365 **/
lpfc_hb_mxp_handler(struct lpfc_hba * phba)1366 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1367 {
1368 u32 i;
1369 u32 hwq_count;
1370
1371 hwq_count = phba->cfg_hdw_queue;
1372 for (i = 0; i < hwq_count; i++) {
1373 /* Adjust XRIs in private pool */
1374 lpfc_adjust_pvt_pool_count(phba, i);
1375
1376 /* Adjust high watermark */
1377 lpfc_adjust_high_watermark(phba, i);
1378
1379 #ifdef LPFC_MXP_STAT
1380 /* Snapshot pbl, pvt and busy count */
1381 lpfc_snapshot_mxp(phba, i);
1382 #endif
1383 }
1384 }
1385
1386 /**
1387 * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1388 * @phba: pointer to lpfc hba data structure.
1389 *
1390 * If a HB mbox is not already in progrees, this routine will allocate
1391 * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1392 * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1393 **/
1394 int
lpfc_issue_hb_mbox(struct lpfc_hba * phba)1395 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1396 {
1397 LPFC_MBOXQ_t *pmboxq;
1398 int retval;
1399
1400 /* Is a Heartbeat mbox already in progress */
1401 if (phba->hba_flag & HBA_HBEAT_INP)
1402 return 0;
1403
1404 pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1405 if (!pmboxq)
1406 return -ENOMEM;
1407
1408 lpfc_heart_beat(phba, pmboxq);
1409 pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1410 pmboxq->vport = phba->pport;
1411 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1412
1413 if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1414 mempool_free(pmboxq, phba->mbox_mem_pool);
1415 return -ENXIO;
1416 }
1417 phba->hba_flag |= HBA_HBEAT_INP;
1418
1419 return 0;
1420 }
1421
1422 /**
1423 * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1424 * @phba: pointer to lpfc hba data structure.
1425 *
1426 * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1427 * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1428 * of the value of lpfc_enable_hba_heartbeat.
1429 * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1430 * try to issue a MBX_HEARTBEAT mbox command.
1431 **/
1432 void
lpfc_issue_hb_tmo(struct lpfc_hba * phba)1433 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1434 {
1435 if (phba->cfg_enable_hba_heartbeat)
1436 return;
1437 phba->hba_flag |= HBA_HBEAT_TMO;
1438 }
1439
1440 /**
1441 * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1442 * @phba: pointer to lpfc hba data structure.
1443 *
1444 * This is the actual HBA-timer timeout handler to be invoked by the worker
1445 * thread whenever the HBA timer fired and HBA-timeout event posted. This
1446 * handler performs any periodic operations needed for the device. If such
1447 * periodic event has already been attended to either in the interrupt handler
1448 * or by processing slow-ring or fast-ring events within the HBA-timer
1449 * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1450 * the timer for the next timeout period. If lpfc heart-beat mailbox command
1451 * is configured and there is no heart-beat mailbox command outstanding, a
1452 * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1453 * has been a heart-beat mailbox command outstanding, the HBA shall be put
1454 * to offline.
1455 **/
1456 void
lpfc_hb_timeout_handler(struct lpfc_hba * phba)1457 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1458 {
1459 struct lpfc_vport **vports;
1460 struct lpfc_dmabuf *buf_ptr;
1461 int retval = 0;
1462 int i, tmo;
1463 struct lpfc_sli *psli = &phba->sli;
1464 LIST_HEAD(completions);
1465
1466 if (phba->cfg_xri_rebalancing) {
1467 /* Multi-XRI pools handler */
1468 lpfc_hb_mxp_handler(phba);
1469 }
1470
1471 vports = lpfc_create_vport_work_array(phba);
1472 if (vports != NULL)
1473 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1474 lpfc_rcv_seq_check_edtov(vports[i]);
1475 lpfc_fdmi_change_check(vports[i]);
1476 }
1477 lpfc_destroy_vport_work_array(phba, vports);
1478
1479 if ((phba->link_state == LPFC_HBA_ERROR) ||
1480 (phba->pport->load_flag & FC_UNLOADING) ||
1481 (phba->pport->fc_flag & FC_OFFLINE_MODE))
1482 return;
1483
1484 if (phba->elsbuf_cnt &&
1485 (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1486 spin_lock_irq(&phba->hbalock);
1487 list_splice_init(&phba->elsbuf, &completions);
1488 phba->elsbuf_cnt = 0;
1489 phba->elsbuf_prev_cnt = 0;
1490 spin_unlock_irq(&phba->hbalock);
1491
1492 while (!list_empty(&completions)) {
1493 list_remove_head(&completions, buf_ptr,
1494 struct lpfc_dmabuf, list);
1495 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1496 kfree(buf_ptr);
1497 }
1498 }
1499 phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1500
1501 /* If there is no heart beat outstanding, issue a heartbeat command */
1502 if (phba->cfg_enable_hba_heartbeat) {
1503 /* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1504 spin_lock_irq(&phba->pport->work_port_lock);
1505 if (time_after(phba->last_completion_time +
1506 msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1507 jiffies)) {
1508 spin_unlock_irq(&phba->pport->work_port_lock);
1509 if (phba->hba_flag & HBA_HBEAT_INP)
1510 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1511 else
1512 tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1513 goto out;
1514 }
1515 spin_unlock_irq(&phba->pport->work_port_lock);
1516
1517 /* Check if a MBX_HEARTBEAT is already in progress */
1518 if (phba->hba_flag & HBA_HBEAT_INP) {
1519 /*
1520 * If heart beat timeout called with HBA_HBEAT_INP set
1521 * we need to give the hb mailbox cmd a chance to
1522 * complete or TMO.
1523 */
1524 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1525 "0459 Adapter heartbeat still outstanding: "
1526 "last compl time was %d ms.\n",
1527 jiffies_to_msecs(jiffies
1528 - phba->last_completion_time));
1529 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1530 } else {
1531 if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1532 (list_empty(&psli->mboxq))) {
1533
1534 retval = lpfc_issue_hb_mbox(phba);
1535 if (retval) {
1536 tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1537 goto out;
1538 }
1539 phba->skipped_hb = 0;
1540 } else if (time_before_eq(phba->last_completion_time,
1541 phba->skipped_hb)) {
1542 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1543 "2857 Last completion time not "
1544 " updated in %d ms\n",
1545 jiffies_to_msecs(jiffies
1546 - phba->last_completion_time));
1547 } else
1548 phba->skipped_hb = jiffies;
1549
1550 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1551 goto out;
1552 }
1553 } else {
1554 /* Check to see if we want to force a MBX_HEARTBEAT */
1555 if (phba->hba_flag & HBA_HBEAT_TMO) {
1556 retval = lpfc_issue_hb_mbox(phba);
1557 if (retval)
1558 tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1559 else
1560 tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1561 goto out;
1562 }
1563 tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1564 }
1565 out:
1566 mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1567 }
1568
1569 /**
1570 * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1571 * @phba: pointer to lpfc hba data structure.
1572 *
1573 * This routine is called to bring the HBA offline when HBA hardware error
1574 * other than Port Error 6 has been detected.
1575 **/
1576 static void
lpfc_offline_eratt(struct lpfc_hba * phba)1577 lpfc_offline_eratt(struct lpfc_hba *phba)
1578 {
1579 struct lpfc_sli *psli = &phba->sli;
1580
1581 spin_lock_irq(&phba->hbalock);
1582 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1583 spin_unlock_irq(&phba->hbalock);
1584 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1585
1586 lpfc_offline(phba);
1587 lpfc_reset_barrier(phba);
1588 spin_lock_irq(&phba->hbalock);
1589 lpfc_sli_brdreset(phba);
1590 spin_unlock_irq(&phba->hbalock);
1591 lpfc_hba_down_post(phba);
1592 lpfc_sli_brdready(phba, HS_MBRDY);
1593 lpfc_unblock_mgmt_io(phba);
1594 phba->link_state = LPFC_HBA_ERROR;
1595 return;
1596 }
1597
1598 /**
1599 * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1600 * @phba: pointer to lpfc hba data structure.
1601 *
1602 * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1603 * other than Port Error 6 has been detected.
1604 **/
1605 void
lpfc_sli4_offline_eratt(struct lpfc_hba * phba)1606 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1607 {
1608 spin_lock_irq(&phba->hbalock);
1609 if (phba->link_state == LPFC_HBA_ERROR &&
1610 phba->hba_flag & HBA_PCI_ERR) {
1611 spin_unlock_irq(&phba->hbalock);
1612 return;
1613 }
1614 phba->link_state = LPFC_HBA_ERROR;
1615 spin_unlock_irq(&phba->hbalock);
1616
1617 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1618 lpfc_sli_flush_io_rings(phba);
1619 lpfc_offline(phba);
1620 lpfc_hba_down_post(phba);
1621 lpfc_unblock_mgmt_io(phba);
1622 }
1623
1624 /**
1625 * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1626 * @phba: pointer to lpfc hba data structure.
1627 *
1628 * This routine is invoked to handle the deferred HBA hardware error
1629 * conditions. This type of error is indicated by HBA by setting ER1
1630 * and another ER bit in the host status register. The driver will
1631 * wait until the ER1 bit clears before handling the error condition.
1632 **/
1633 static void
lpfc_handle_deferred_eratt(struct lpfc_hba * phba)1634 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1635 {
1636 uint32_t old_host_status = phba->work_hs;
1637 struct lpfc_sli *psli = &phba->sli;
1638
1639 /* If the pci channel is offline, ignore possible errors,
1640 * since we cannot communicate with the pci card anyway.
1641 */
1642 if (pci_channel_offline(phba->pcidev)) {
1643 spin_lock_irq(&phba->hbalock);
1644 phba->hba_flag &= ~DEFER_ERATT;
1645 spin_unlock_irq(&phba->hbalock);
1646 return;
1647 }
1648
1649 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1650 "0479 Deferred Adapter Hardware Error "
1651 "Data: x%x x%x x%x\n",
1652 phba->work_hs, phba->work_status[0],
1653 phba->work_status[1]);
1654
1655 spin_lock_irq(&phba->hbalock);
1656 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1657 spin_unlock_irq(&phba->hbalock);
1658
1659
1660 /*
1661 * Firmware stops when it triggred erratt. That could cause the I/Os
1662 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1663 * SCSI layer retry it after re-establishing link.
1664 */
1665 lpfc_sli_abort_fcp_rings(phba);
1666
1667 /*
1668 * There was a firmware error. Take the hba offline and then
1669 * attempt to restart it.
1670 */
1671 lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1672 lpfc_offline(phba);
1673
1674 /* Wait for the ER1 bit to clear.*/
1675 while (phba->work_hs & HS_FFER1) {
1676 msleep(100);
1677 if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1678 phba->work_hs = UNPLUG_ERR ;
1679 break;
1680 }
1681 /* If driver is unloading let the worker thread continue */
1682 if (phba->pport->load_flag & FC_UNLOADING) {
1683 phba->work_hs = 0;
1684 break;
1685 }
1686 }
1687
1688 /*
1689 * This is to ptrotect against a race condition in which
1690 * first write to the host attention register clear the
1691 * host status register.
1692 */
1693 if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1694 phba->work_hs = old_host_status & ~HS_FFER1;
1695
1696 spin_lock_irq(&phba->hbalock);
1697 phba->hba_flag &= ~DEFER_ERATT;
1698 spin_unlock_irq(&phba->hbalock);
1699 phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1700 phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1701 }
1702
1703 static void
lpfc_board_errevt_to_mgmt(struct lpfc_hba * phba)1704 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1705 {
1706 struct lpfc_board_event_header board_event;
1707 struct Scsi_Host *shost;
1708
1709 board_event.event_type = FC_REG_BOARD_EVENT;
1710 board_event.subcategory = LPFC_EVENT_PORTINTERR;
1711 shost = lpfc_shost_from_vport(phba->pport);
1712 fc_host_post_vendor_event(shost, fc_get_event_number(),
1713 sizeof(board_event),
1714 (char *) &board_event,
1715 LPFC_NL_VENDOR_ID);
1716 }
1717
1718 /**
1719 * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1720 * @phba: pointer to lpfc hba data structure.
1721 *
1722 * This routine is invoked to handle the following HBA hardware error
1723 * conditions:
1724 * 1 - HBA error attention interrupt
1725 * 2 - DMA ring index out of range
1726 * 3 - Mailbox command came back as unknown
1727 **/
1728 static void
lpfc_handle_eratt_s3(struct lpfc_hba * phba)1729 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1730 {
1731 struct lpfc_vport *vport = phba->pport;
1732 struct lpfc_sli *psli = &phba->sli;
1733 uint32_t event_data;
1734 unsigned long temperature;
1735 struct temp_event temp_event_data;
1736 struct Scsi_Host *shost;
1737
1738 /* If the pci channel is offline, ignore possible errors,
1739 * since we cannot communicate with the pci card anyway.
1740 */
1741 if (pci_channel_offline(phba->pcidev)) {
1742 spin_lock_irq(&phba->hbalock);
1743 phba->hba_flag &= ~DEFER_ERATT;
1744 spin_unlock_irq(&phba->hbalock);
1745 return;
1746 }
1747
1748 /* If resets are disabled then leave the HBA alone and return */
1749 if (!phba->cfg_enable_hba_reset)
1750 return;
1751
1752 /* Send an internal error event to mgmt application */
1753 lpfc_board_errevt_to_mgmt(phba);
1754
1755 if (phba->hba_flag & DEFER_ERATT)
1756 lpfc_handle_deferred_eratt(phba);
1757
1758 if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1759 if (phba->work_hs & HS_FFER6)
1760 /* Re-establishing Link */
1761 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1762 "1301 Re-establishing Link "
1763 "Data: x%x x%x x%x\n",
1764 phba->work_hs, phba->work_status[0],
1765 phba->work_status[1]);
1766 if (phba->work_hs & HS_FFER8)
1767 /* Device Zeroization */
1768 lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1769 "2861 Host Authentication device "
1770 "zeroization Data:x%x x%x x%x\n",
1771 phba->work_hs, phba->work_status[0],
1772 phba->work_status[1]);
1773
1774 spin_lock_irq(&phba->hbalock);
1775 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1776 spin_unlock_irq(&phba->hbalock);
1777
1778 /*
1779 * Firmware stops when it triggled erratt with HS_FFER6.
1780 * That could cause the I/Os dropped by the firmware.
1781 * Error iocb (I/O) on txcmplq and let the SCSI layer
1782 * retry it after re-establishing link.
1783 */
1784 lpfc_sli_abort_fcp_rings(phba);
1785
1786 /*
1787 * There was a firmware error. Take the hba offline and then
1788 * attempt to restart it.
1789 */
1790 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1791 lpfc_offline(phba);
1792 lpfc_sli_brdrestart(phba);
1793 if (lpfc_online(phba) == 0) { /* Initialize the HBA */
1794 lpfc_unblock_mgmt_io(phba);
1795 return;
1796 }
1797 lpfc_unblock_mgmt_io(phba);
1798 } else if (phba->work_hs & HS_CRIT_TEMP) {
1799 temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1800 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1801 temp_event_data.event_code = LPFC_CRIT_TEMP;
1802 temp_event_data.data = (uint32_t)temperature;
1803
1804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1805 "0406 Adapter maximum temperature exceeded "
1806 "(%ld), taking this port offline "
1807 "Data: x%x x%x x%x\n",
1808 temperature, phba->work_hs,
1809 phba->work_status[0], phba->work_status[1]);
1810
1811 shost = lpfc_shost_from_vport(phba->pport);
1812 fc_host_post_vendor_event(shost, fc_get_event_number(),
1813 sizeof(temp_event_data),
1814 (char *) &temp_event_data,
1815 SCSI_NL_VID_TYPE_PCI
1816 | PCI_VENDOR_ID_EMULEX);
1817
1818 spin_lock_irq(&phba->hbalock);
1819 phba->over_temp_state = HBA_OVER_TEMP;
1820 spin_unlock_irq(&phba->hbalock);
1821 lpfc_offline_eratt(phba);
1822
1823 } else {
1824 /* The if clause above forces this code path when the status
1825 * failure is a value other than FFER6. Do not call the offline
1826 * twice. This is the adapter hardware error path.
1827 */
1828 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1829 "0457 Adapter Hardware Error "
1830 "Data: x%x x%x x%x\n",
1831 phba->work_hs,
1832 phba->work_status[0], phba->work_status[1]);
1833
1834 event_data = FC_REG_DUMP_EVENT;
1835 shost = lpfc_shost_from_vport(vport);
1836 fc_host_post_vendor_event(shost, fc_get_event_number(),
1837 sizeof(event_data), (char *) &event_data,
1838 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1839
1840 lpfc_offline_eratt(phba);
1841 }
1842 return;
1843 }
1844
1845 /**
1846 * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1847 * @phba: pointer to lpfc hba data structure.
1848 * @mbx_action: flag for mailbox shutdown action.
1849 * @en_rn_msg: send reset/port recovery message.
1850 * This routine is invoked to perform an SLI4 port PCI function reset in
1851 * response to port status register polling attention. It waits for port
1852 * status register (ERR, RDY, RN) bits before proceeding with function reset.
1853 * During this process, interrupt vectors are freed and later requested
1854 * for handling possible port resource change.
1855 **/
1856 static int
lpfc_sli4_port_sta_fn_reset(struct lpfc_hba * phba,int mbx_action,bool en_rn_msg)1857 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1858 bool en_rn_msg)
1859 {
1860 int rc;
1861 uint32_t intr_mode;
1862 LPFC_MBOXQ_t *mboxq;
1863
1864 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1865 LPFC_SLI_INTF_IF_TYPE_2) {
1866 /*
1867 * On error status condition, driver need to wait for port
1868 * ready before performing reset.
1869 */
1870 rc = lpfc_sli4_pdev_status_reg_wait(phba);
1871 if (rc)
1872 return rc;
1873 }
1874
1875 /* need reset: attempt for port recovery */
1876 if (en_rn_msg)
1877 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1878 "2887 Reset Needed: Attempting Port "
1879 "Recovery...\n");
1880
1881 /* If we are no wait, the HBA has been reset and is not
1882 * functional, thus we should clear
1883 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1884 */
1885 if (mbx_action == LPFC_MBX_NO_WAIT) {
1886 spin_lock_irq(&phba->hbalock);
1887 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1888 if (phba->sli.mbox_active) {
1889 mboxq = phba->sli.mbox_active;
1890 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1891 __lpfc_mbox_cmpl_put(phba, mboxq);
1892 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1893 phba->sli.mbox_active = NULL;
1894 }
1895 spin_unlock_irq(&phba->hbalock);
1896 }
1897
1898 lpfc_offline_prep(phba, mbx_action);
1899 lpfc_sli_flush_io_rings(phba);
1900 lpfc_offline(phba);
1901 /* release interrupt for possible resource change */
1902 lpfc_sli4_disable_intr(phba);
1903 rc = lpfc_sli_brdrestart(phba);
1904 if (rc) {
1905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1906 "6309 Failed to restart board\n");
1907 return rc;
1908 }
1909 /* request and enable interrupt */
1910 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1911 if (intr_mode == LPFC_INTR_ERROR) {
1912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1913 "3175 Failed to enable interrupt\n");
1914 return -EIO;
1915 }
1916 phba->intr_mode = intr_mode;
1917 rc = lpfc_online(phba);
1918 if (rc == 0)
1919 lpfc_unblock_mgmt_io(phba);
1920
1921 return rc;
1922 }
1923
1924 /**
1925 * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1926 * @phba: pointer to lpfc hba data structure.
1927 *
1928 * This routine is invoked to handle the SLI4 HBA hardware error attention
1929 * conditions.
1930 **/
1931 static void
lpfc_handle_eratt_s4(struct lpfc_hba * phba)1932 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1933 {
1934 struct lpfc_vport *vport = phba->pport;
1935 uint32_t event_data;
1936 struct Scsi_Host *shost;
1937 uint32_t if_type;
1938 struct lpfc_register portstat_reg = {0};
1939 uint32_t reg_err1, reg_err2;
1940 uint32_t uerrlo_reg, uemasklo_reg;
1941 uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1942 bool en_rn_msg = true;
1943 struct temp_event temp_event_data;
1944 struct lpfc_register portsmphr_reg;
1945 int rc, i;
1946
1947 /* If the pci channel is offline, ignore possible errors, since
1948 * we cannot communicate with the pci card anyway.
1949 */
1950 if (pci_channel_offline(phba->pcidev)) {
1951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1952 "3166 pci channel is offline\n");
1953 return;
1954 }
1955
1956 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
1957 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
1958 switch (if_type) {
1959 case LPFC_SLI_INTF_IF_TYPE_0:
1960 pci_rd_rc1 = lpfc_readl(
1961 phba->sli4_hba.u.if_type0.UERRLOregaddr,
1962 &uerrlo_reg);
1963 pci_rd_rc2 = lpfc_readl(
1964 phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
1965 &uemasklo_reg);
1966 /* consider PCI bus read error as pci_channel_offline */
1967 if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
1968 return;
1969 if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
1970 lpfc_sli4_offline_eratt(phba);
1971 return;
1972 }
1973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1974 "7623 Checking UE recoverable");
1975
1976 for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
1977 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
1978 &portsmphr_reg.word0))
1979 continue;
1980
1981 smphr_port_status = bf_get(lpfc_port_smphr_port_status,
1982 &portsmphr_reg);
1983 if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
1984 LPFC_PORT_SEM_UE_RECOVERABLE)
1985 break;
1986 /*Sleep for 1Sec, before checking SEMAPHORE */
1987 msleep(1000);
1988 }
1989
1990 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1991 "4827 smphr_port_status x%x : Waited %dSec",
1992 smphr_port_status, i);
1993
1994 /* Recoverable UE, reset the HBA device */
1995 if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
1996 LPFC_PORT_SEM_UE_RECOVERABLE) {
1997 for (i = 0; i < 20; i++) {
1998 msleep(1000);
1999 if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2000 &portsmphr_reg.word0) &&
2001 (LPFC_POST_STAGE_PORT_READY ==
2002 bf_get(lpfc_port_smphr_port_status,
2003 &portsmphr_reg))) {
2004 rc = lpfc_sli4_port_sta_fn_reset(phba,
2005 LPFC_MBX_NO_WAIT, en_rn_msg);
2006 if (rc == 0)
2007 return;
2008 lpfc_printf_log(phba, KERN_ERR,
2009 LOG_TRACE_EVENT,
2010 "4215 Failed to recover UE");
2011 break;
2012 }
2013 }
2014 }
2015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2016 "7624 Firmware not ready: Failing UE recovery,"
2017 " waited %dSec", i);
2018 phba->link_state = LPFC_HBA_ERROR;
2019 break;
2020
2021 case LPFC_SLI_INTF_IF_TYPE_2:
2022 case LPFC_SLI_INTF_IF_TYPE_6:
2023 pci_rd_rc1 = lpfc_readl(
2024 phba->sli4_hba.u.if_type2.STATUSregaddr,
2025 &portstat_reg.word0);
2026 /* consider PCI bus read error as pci_channel_offline */
2027 if (pci_rd_rc1 == -EIO) {
2028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2029 "3151 PCI bus read access failure: x%x\n",
2030 readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2031 lpfc_sli4_offline_eratt(phba);
2032 return;
2033 }
2034 reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2035 reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2036 if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2038 "2889 Port Overtemperature event, "
2039 "taking port offline Data: x%x x%x\n",
2040 reg_err1, reg_err2);
2041
2042 phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2043 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2044 temp_event_data.event_code = LPFC_CRIT_TEMP;
2045 temp_event_data.data = 0xFFFFFFFF;
2046
2047 shost = lpfc_shost_from_vport(phba->pport);
2048 fc_host_post_vendor_event(shost, fc_get_event_number(),
2049 sizeof(temp_event_data),
2050 (char *)&temp_event_data,
2051 SCSI_NL_VID_TYPE_PCI
2052 | PCI_VENDOR_ID_EMULEX);
2053
2054 spin_lock_irq(&phba->hbalock);
2055 phba->over_temp_state = HBA_OVER_TEMP;
2056 spin_unlock_irq(&phba->hbalock);
2057 lpfc_sli4_offline_eratt(phba);
2058 return;
2059 }
2060 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2061 reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2062 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2063 "3143 Port Down: Firmware Update "
2064 "Detected\n");
2065 en_rn_msg = false;
2066 } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2067 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2069 "3144 Port Down: Debug Dump\n");
2070 else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2071 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 "3145 Port Down: Provisioning\n");
2074
2075 /* If resets are disabled then leave the HBA alone and return */
2076 if (!phba->cfg_enable_hba_reset)
2077 return;
2078
2079 /* Check port status register for function reset */
2080 rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2081 en_rn_msg);
2082 if (rc == 0) {
2083 /* don't report event on forced debug dump */
2084 if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2085 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2086 return;
2087 else
2088 break;
2089 }
2090 /* fall through for not able to recover */
2091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2092 "3152 Unrecoverable error\n");
2093 phba->link_state = LPFC_HBA_ERROR;
2094 break;
2095 case LPFC_SLI_INTF_IF_TYPE_1:
2096 default:
2097 break;
2098 }
2099 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2100 "3123 Report dump event to upper layer\n");
2101 /* Send an internal error event to mgmt application */
2102 lpfc_board_errevt_to_mgmt(phba);
2103
2104 event_data = FC_REG_DUMP_EVENT;
2105 shost = lpfc_shost_from_vport(vport);
2106 fc_host_post_vendor_event(shost, fc_get_event_number(),
2107 sizeof(event_data), (char *) &event_data,
2108 SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2109 }
2110
2111 /**
2112 * lpfc_handle_eratt - Wrapper func for handling hba error attention
2113 * @phba: pointer to lpfc HBA data structure.
2114 *
2115 * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2116 * routine from the API jump table function pointer from the lpfc_hba struct.
2117 *
2118 * Return codes
2119 * 0 - success.
2120 * Any other value - error.
2121 **/
2122 void
lpfc_handle_eratt(struct lpfc_hba * phba)2123 lpfc_handle_eratt(struct lpfc_hba *phba)
2124 {
2125 (*phba->lpfc_handle_eratt)(phba);
2126 }
2127
2128 /**
2129 * lpfc_handle_latt - The HBA link event handler
2130 * @phba: pointer to lpfc hba data structure.
2131 *
2132 * This routine is invoked from the worker thread to handle a HBA host
2133 * attention link event. SLI3 only.
2134 **/
2135 void
lpfc_handle_latt(struct lpfc_hba * phba)2136 lpfc_handle_latt(struct lpfc_hba *phba)
2137 {
2138 struct lpfc_vport *vport = phba->pport;
2139 struct lpfc_sli *psli = &phba->sli;
2140 LPFC_MBOXQ_t *pmb;
2141 volatile uint32_t control;
2142 struct lpfc_dmabuf *mp;
2143 int rc = 0;
2144
2145 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2146 if (!pmb) {
2147 rc = 1;
2148 goto lpfc_handle_latt_err_exit;
2149 }
2150
2151 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
2152 if (!mp) {
2153 rc = 2;
2154 goto lpfc_handle_latt_free_pmb;
2155 }
2156
2157 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
2158 if (!mp->virt) {
2159 rc = 3;
2160 goto lpfc_handle_latt_free_mp;
2161 }
2162
2163 /* Cleanup any outstanding ELS commands */
2164 lpfc_els_flush_all_cmd(phba);
2165
2166 psli->slistat.link_event++;
2167 lpfc_read_topology(phba, pmb, mp);
2168 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2169 pmb->vport = vport;
2170 /* Block ELS IOCBs until we have processed this mbox command */
2171 phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2172 rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2173 if (rc == MBX_NOT_FINISHED) {
2174 rc = 4;
2175 goto lpfc_handle_latt_free_mbuf;
2176 }
2177
2178 /* Clear Link Attention in HA REG */
2179 spin_lock_irq(&phba->hbalock);
2180 writel(HA_LATT, phba->HAregaddr);
2181 readl(phba->HAregaddr); /* flush */
2182 spin_unlock_irq(&phba->hbalock);
2183
2184 return;
2185
2186 lpfc_handle_latt_free_mbuf:
2187 phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2188 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2189 lpfc_handle_latt_free_mp:
2190 kfree(mp);
2191 lpfc_handle_latt_free_pmb:
2192 mempool_free(pmb, phba->mbox_mem_pool);
2193 lpfc_handle_latt_err_exit:
2194 /* Enable Link attention interrupts */
2195 spin_lock_irq(&phba->hbalock);
2196 psli->sli_flag |= LPFC_PROCESS_LA;
2197 control = readl(phba->HCregaddr);
2198 control |= HC_LAINT_ENA;
2199 writel(control, phba->HCregaddr);
2200 readl(phba->HCregaddr); /* flush */
2201
2202 /* Clear Link Attention in HA REG */
2203 writel(HA_LATT, phba->HAregaddr);
2204 readl(phba->HAregaddr); /* flush */
2205 spin_unlock_irq(&phba->hbalock);
2206 lpfc_linkdown(phba);
2207 phba->link_state = LPFC_HBA_ERROR;
2208
2209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2210 "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2211
2212 return;
2213 }
2214
2215 /**
2216 * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2217 * @phba: pointer to lpfc hba data structure.
2218 * @vpd: pointer to the vital product data.
2219 * @len: length of the vital product data in bytes.
2220 *
2221 * This routine parses the Vital Product Data (VPD). The VPD is treated as
2222 * an array of characters. In this routine, the ModelName, ProgramType, and
2223 * ModelDesc, etc. fields of the phba data structure will be populated.
2224 *
2225 * Return codes
2226 * 0 - pointer to the VPD passed in is NULL
2227 * 1 - success
2228 **/
2229 int
lpfc_parse_vpd(struct lpfc_hba * phba,uint8_t * vpd,int len)2230 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2231 {
2232 uint8_t lenlo, lenhi;
2233 int Length;
2234 int i, j;
2235 int finished = 0;
2236 int index = 0;
2237
2238 if (!vpd)
2239 return 0;
2240
2241 /* Vital Product */
2242 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2243 "0455 Vital Product Data: x%x x%x x%x x%x\n",
2244 (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2245 (uint32_t) vpd[3]);
2246 while (!finished && (index < (len - 4))) {
2247 switch (vpd[index]) {
2248 case 0x82:
2249 case 0x91:
2250 index += 1;
2251 lenlo = vpd[index];
2252 index += 1;
2253 lenhi = vpd[index];
2254 index += 1;
2255 i = ((((unsigned short)lenhi) << 8) + lenlo);
2256 index += i;
2257 break;
2258 case 0x90:
2259 index += 1;
2260 lenlo = vpd[index];
2261 index += 1;
2262 lenhi = vpd[index];
2263 index += 1;
2264 Length = ((((unsigned short)lenhi) << 8) + lenlo);
2265 if (Length > len - index)
2266 Length = len - index;
2267 while (Length > 0) {
2268 /* Look for Serial Number */
2269 if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2270 index += 2;
2271 i = vpd[index];
2272 index += 1;
2273 j = 0;
2274 Length -= (3+i);
2275 while(i--) {
2276 phba->SerialNumber[j++] = vpd[index++];
2277 if (j == 31)
2278 break;
2279 }
2280 phba->SerialNumber[j] = 0;
2281 continue;
2282 }
2283 else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2284 phba->vpd_flag |= VPD_MODEL_DESC;
2285 index += 2;
2286 i = vpd[index];
2287 index += 1;
2288 j = 0;
2289 Length -= (3+i);
2290 while(i--) {
2291 phba->ModelDesc[j++] = vpd[index++];
2292 if (j == 255)
2293 break;
2294 }
2295 phba->ModelDesc[j] = 0;
2296 continue;
2297 }
2298 else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2299 phba->vpd_flag |= VPD_MODEL_NAME;
2300 index += 2;
2301 i = vpd[index];
2302 index += 1;
2303 j = 0;
2304 Length -= (3+i);
2305 while(i--) {
2306 phba->ModelName[j++] = vpd[index++];
2307 if (j == 79)
2308 break;
2309 }
2310 phba->ModelName[j] = 0;
2311 continue;
2312 }
2313 else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2314 phba->vpd_flag |= VPD_PROGRAM_TYPE;
2315 index += 2;
2316 i = vpd[index];
2317 index += 1;
2318 j = 0;
2319 Length -= (3+i);
2320 while(i--) {
2321 phba->ProgramType[j++] = vpd[index++];
2322 if (j == 255)
2323 break;
2324 }
2325 phba->ProgramType[j] = 0;
2326 continue;
2327 }
2328 else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2329 phba->vpd_flag |= VPD_PORT;
2330 index += 2;
2331 i = vpd[index];
2332 index += 1;
2333 j = 0;
2334 Length -= (3+i);
2335 while(i--) {
2336 if ((phba->sli_rev == LPFC_SLI_REV4) &&
2337 (phba->sli4_hba.pport_name_sta ==
2338 LPFC_SLI4_PPNAME_GET)) {
2339 j++;
2340 index++;
2341 } else
2342 phba->Port[j++] = vpd[index++];
2343 if (j == 19)
2344 break;
2345 }
2346 if ((phba->sli_rev != LPFC_SLI_REV4) ||
2347 (phba->sli4_hba.pport_name_sta ==
2348 LPFC_SLI4_PPNAME_NON))
2349 phba->Port[j] = 0;
2350 continue;
2351 }
2352 else {
2353 index += 2;
2354 i = vpd[index];
2355 index += 1;
2356 index += i;
2357 Length -= (3 + i);
2358 }
2359 }
2360 finished = 0;
2361 break;
2362 case 0x78:
2363 finished = 1;
2364 break;
2365 default:
2366 index ++;
2367 break;
2368 }
2369 }
2370
2371 return(1);
2372 }
2373
2374 /**
2375 * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2376 * @phba: pointer to lpfc hba data structure.
2377 * @mdp: pointer to the data structure to hold the derived model name.
2378 * @descp: pointer to the data structure to hold the derived description.
2379 *
2380 * This routine retrieves HBA's description based on its registered PCI device
2381 * ID. The @descp passed into this function points to an array of 256 chars. It
2382 * shall be returned with the model name, maximum speed, and the host bus type.
2383 * The @mdp passed into this function points to an array of 80 chars. When the
2384 * function returns, the @mdp will be filled with the model name.
2385 **/
2386 static void
lpfc_get_hba_model_desc(struct lpfc_hba * phba,uint8_t * mdp,uint8_t * descp)2387 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2388 {
2389 lpfc_vpd_t *vp;
2390 uint16_t dev_id = phba->pcidev->device;
2391 int max_speed;
2392 int GE = 0;
2393 int oneConnect = 0; /* default is not a oneConnect */
2394 struct {
2395 char *name;
2396 char *bus;
2397 char *function;
2398 } m = {"<Unknown>", "", ""};
2399
2400 if (mdp && mdp[0] != '\0'
2401 && descp && descp[0] != '\0')
2402 return;
2403
2404 if (phba->lmt & LMT_64Gb)
2405 max_speed = 64;
2406 else if (phba->lmt & LMT_32Gb)
2407 max_speed = 32;
2408 else if (phba->lmt & LMT_16Gb)
2409 max_speed = 16;
2410 else if (phba->lmt & LMT_10Gb)
2411 max_speed = 10;
2412 else if (phba->lmt & LMT_8Gb)
2413 max_speed = 8;
2414 else if (phba->lmt & LMT_4Gb)
2415 max_speed = 4;
2416 else if (phba->lmt & LMT_2Gb)
2417 max_speed = 2;
2418 else if (phba->lmt & LMT_1Gb)
2419 max_speed = 1;
2420 else
2421 max_speed = 0;
2422
2423 vp = &phba->vpd;
2424
2425 switch (dev_id) {
2426 case PCI_DEVICE_ID_FIREFLY:
2427 m = (typeof(m)){"LP6000", "PCI",
2428 "Obsolete, Unsupported Fibre Channel Adapter"};
2429 break;
2430 case PCI_DEVICE_ID_SUPERFLY:
2431 if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2432 m = (typeof(m)){"LP7000", "PCI", ""};
2433 else
2434 m = (typeof(m)){"LP7000E", "PCI", ""};
2435 m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2436 break;
2437 case PCI_DEVICE_ID_DRAGONFLY:
2438 m = (typeof(m)){"LP8000", "PCI",
2439 "Obsolete, Unsupported Fibre Channel Adapter"};
2440 break;
2441 case PCI_DEVICE_ID_CENTAUR:
2442 if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2443 m = (typeof(m)){"LP9002", "PCI", ""};
2444 else
2445 m = (typeof(m)){"LP9000", "PCI", ""};
2446 m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2447 break;
2448 case PCI_DEVICE_ID_RFLY:
2449 m = (typeof(m)){"LP952", "PCI",
2450 "Obsolete, Unsupported Fibre Channel Adapter"};
2451 break;
2452 case PCI_DEVICE_ID_PEGASUS:
2453 m = (typeof(m)){"LP9802", "PCI-X",
2454 "Obsolete, Unsupported Fibre Channel Adapter"};
2455 break;
2456 case PCI_DEVICE_ID_THOR:
2457 m = (typeof(m)){"LP10000", "PCI-X",
2458 "Obsolete, Unsupported Fibre Channel Adapter"};
2459 break;
2460 case PCI_DEVICE_ID_VIPER:
2461 m = (typeof(m)){"LPX1000", "PCI-X",
2462 "Obsolete, Unsupported Fibre Channel Adapter"};
2463 break;
2464 case PCI_DEVICE_ID_PFLY:
2465 m = (typeof(m)){"LP982", "PCI-X",
2466 "Obsolete, Unsupported Fibre Channel Adapter"};
2467 break;
2468 case PCI_DEVICE_ID_TFLY:
2469 m = (typeof(m)){"LP1050", "PCI-X",
2470 "Obsolete, Unsupported Fibre Channel Adapter"};
2471 break;
2472 case PCI_DEVICE_ID_HELIOS:
2473 m = (typeof(m)){"LP11000", "PCI-X2",
2474 "Obsolete, Unsupported Fibre Channel Adapter"};
2475 break;
2476 case PCI_DEVICE_ID_HELIOS_SCSP:
2477 m = (typeof(m)){"LP11000-SP", "PCI-X2",
2478 "Obsolete, Unsupported Fibre Channel Adapter"};
2479 break;
2480 case PCI_DEVICE_ID_HELIOS_DCSP:
2481 m = (typeof(m)){"LP11002-SP", "PCI-X2",
2482 "Obsolete, Unsupported Fibre Channel Adapter"};
2483 break;
2484 case PCI_DEVICE_ID_NEPTUNE:
2485 m = (typeof(m)){"LPe1000", "PCIe",
2486 "Obsolete, Unsupported Fibre Channel Adapter"};
2487 break;
2488 case PCI_DEVICE_ID_NEPTUNE_SCSP:
2489 m = (typeof(m)){"LPe1000-SP", "PCIe",
2490 "Obsolete, Unsupported Fibre Channel Adapter"};
2491 break;
2492 case PCI_DEVICE_ID_NEPTUNE_DCSP:
2493 m = (typeof(m)){"LPe1002-SP", "PCIe",
2494 "Obsolete, Unsupported Fibre Channel Adapter"};
2495 break;
2496 case PCI_DEVICE_ID_BMID:
2497 m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2498 break;
2499 case PCI_DEVICE_ID_BSMB:
2500 m = (typeof(m)){"LP111", "PCI-X2",
2501 "Obsolete, Unsupported Fibre Channel Adapter"};
2502 break;
2503 case PCI_DEVICE_ID_ZEPHYR:
2504 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2505 break;
2506 case PCI_DEVICE_ID_ZEPHYR_SCSP:
2507 m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2508 break;
2509 case PCI_DEVICE_ID_ZEPHYR_DCSP:
2510 m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2511 GE = 1;
2512 break;
2513 case PCI_DEVICE_ID_ZMID:
2514 m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2515 break;
2516 case PCI_DEVICE_ID_ZSMB:
2517 m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2518 break;
2519 case PCI_DEVICE_ID_LP101:
2520 m = (typeof(m)){"LP101", "PCI-X",
2521 "Obsolete, Unsupported Fibre Channel Adapter"};
2522 break;
2523 case PCI_DEVICE_ID_LP10000S:
2524 m = (typeof(m)){"LP10000-S", "PCI",
2525 "Obsolete, Unsupported Fibre Channel Adapter"};
2526 break;
2527 case PCI_DEVICE_ID_LP11000S:
2528 m = (typeof(m)){"LP11000-S", "PCI-X2",
2529 "Obsolete, Unsupported Fibre Channel Adapter"};
2530 break;
2531 case PCI_DEVICE_ID_LPE11000S:
2532 m = (typeof(m)){"LPe11000-S", "PCIe",
2533 "Obsolete, Unsupported Fibre Channel Adapter"};
2534 break;
2535 case PCI_DEVICE_ID_SAT:
2536 m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2537 break;
2538 case PCI_DEVICE_ID_SAT_MID:
2539 m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2540 break;
2541 case PCI_DEVICE_ID_SAT_SMB:
2542 m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2543 break;
2544 case PCI_DEVICE_ID_SAT_DCSP:
2545 m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2546 break;
2547 case PCI_DEVICE_ID_SAT_SCSP:
2548 m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2549 break;
2550 case PCI_DEVICE_ID_SAT_S:
2551 m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2552 break;
2553 case PCI_DEVICE_ID_HORNET:
2554 m = (typeof(m)){"LP21000", "PCIe",
2555 "Obsolete, Unsupported FCoE Adapter"};
2556 GE = 1;
2557 break;
2558 case PCI_DEVICE_ID_PROTEUS_VF:
2559 m = (typeof(m)){"LPev12000", "PCIe IOV",
2560 "Obsolete, Unsupported Fibre Channel Adapter"};
2561 break;
2562 case PCI_DEVICE_ID_PROTEUS_PF:
2563 m = (typeof(m)){"LPev12000", "PCIe IOV",
2564 "Obsolete, Unsupported Fibre Channel Adapter"};
2565 break;
2566 case PCI_DEVICE_ID_PROTEUS_S:
2567 m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2568 "Obsolete, Unsupported Fibre Channel Adapter"};
2569 break;
2570 case PCI_DEVICE_ID_TIGERSHARK:
2571 oneConnect = 1;
2572 m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2573 break;
2574 case PCI_DEVICE_ID_TOMCAT:
2575 oneConnect = 1;
2576 m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2577 break;
2578 case PCI_DEVICE_ID_FALCON:
2579 m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2580 "EmulexSecure Fibre"};
2581 break;
2582 case PCI_DEVICE_ID_BALIUS:
2583 m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2584 "Obsolete, Unsupported Fibre Channel Adapter"};
2585 break;
2586 case PCI_DEVICE_ID_LANCER_FC:
2587 m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2588 break;
2589 case PCI_DEVICE_ID_LANCER_FC_VF:
2590 m = (typeof(m)){"LPe16000", "PCIe",
2591 "Obsolete, Unsupported Fibre Channel Adapter"};
2592 break;
2593 case PCI_DEVICE_ID_LANCER_FCOE:
2594 oneConnect = 1;
2595 m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2596 break;
2597 case PCI_DEVICE_ID_LANCER_FCOE_VF:
2598 oneConnect = 1;
2599 m = (typeof(m)){"OCe15100", "PCIe",
2600 "Obsolete, Unsupported FCoE"};
2601 break;
2602 case PCI_DEVICE_ID_LANCER_G6_FC:
2603 m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2604 break;
2605 case PCI_DEVICE_ID_LANCER_G7_FC:
2606 m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2607 break;
2608 case PCI_DEVICE_ID_LANCER_G7P_FC:
2609 m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2610 break;
2611 case PCI_DEVICE_ID_SKYHAWK:
2612 case PCI_DEVICE_ID_SKYHAWK_VF:
2613 oneConnect = 1;
2614 m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2615 break;
2616 default:
2617 m = (typeof(m)){"Unknown", "", ""};
2618 break;
2619 }
2620
2621 if (mdp && mdp[0] == '\0')
2622 snprintf(mdp, 79,"%s", m.name);
2623 /*
2624 * oneConnect hba requires special processing, they are all initiators
2625 * and we put the port number on the end
2626 */
2627 if (descp && descp[0] == '\0') {
2628 if (oneConnect)
2629 snprintf(descp, 255,
2630 "Emulex OneConnect %s, %s Initiator %s",
2631 m.name, m.function,
2632 phba->Port);
2633 else if (max_speed == 0)
2634 snprintf(descp, 255,
2635 "Emulex %s %s %s",
2636 m.name, m.bus, m.function);
2637 else
2638 snprintf(descp, 255,
2639 "Emulex %s %d%s %s %s",
2640 m.name, max_speed, (GE) ? "GE" : "Gb",
2641 m.bus, m.function);
2642 }
2643 }
2644
2645 /**
2646 * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2647 * @phba: pointer to lpfc hba data structure.
2648 * @pring: pointer to a IOCB ring.
2649 * @cnt: the number of IOCBs to be posted to the IOCB ring.
2650 *
2651 * This routine posts a given number of IOCBs with the associated DMA buffer
2652 * descriptors specified by the cnt argument to the given IOCB ring.
2653 *
2654 * Return codes
2655 * The number of IOCBs NOT able to be posted to the IOCB ring.
2656 **/
2657 int
lpfc_post_buffer(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,int cnt)2658 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2659 {
2660 IOCB_t *icmd;
2661 struct lpfc_iocbq *iocb;
2662 struct lpfc_dmabuf *mp1, *mp2;
2663
2664 cnt += pring->missbufcnt;
2665
2666 /* While there are buffers to post */
2667 while (cnt > 0) {
2668 /* Allocate buffer for command iocb */
2669 iocb = lpfc_sli_get_iocbq(phba);
2670 if (iocb == NULL) {
2671 pring->missbufcnt = cnt;
2672 return cnt;
2673 }
2674 icmd = &iocb->iocb;
2675
2676 /* 2 buffers can be posted per command */
2677 /* Allocate buffer to post */
2678 mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2679 if (mp1)
2680 mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2681 if (!mp1 || !mp1->virt) {
2682 kfree(mp1);
2683 lpfc_sli_release_iocbq(phba, iocb);
2684 pring->missbufcnt = cnt;
2685 return cnt;
2686 }
2687
2688 INIT_LIST_HEAD(&mp1->list);
2689 /* Allocate buffer to post */
2690 if (cnt > 1) {
2691 mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2692 if (mp2)
2693 mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2694 &mp2->phys);
2695 if (!mp2 || !mp2->virt) {
2696 kfree(mp2);
2697 lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2698 kfree(mp1);
2699 lpfc_sli_release_iocbq(phba, iocb);
2700 pring->missbufcnt = cnt;
2701 return cnt;
2702 }
2703
2704 INIT_LIST_HEAD(&mp2->list);
2705 } else {
2706 mp2 = NULL;
2707 }
2708
2709 icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2710 icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2711 icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2712 icmd->ulpBdeCount = 1;
2713 cnt--;
2714 if (mp2) {
2715 icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2716 icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2717 icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2718 cnt--;
2719 icmd->ulpBdeCount = 2;
2720 }
2721
2722 icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2723 icmd->ulpLe = 1;
2724
2725 if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2726 IOCB_ERROR) {
2727 lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2728 kfree(mp1);
2729 cnt++;
2730 if (mp2) {
2731 lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2732 kfree(mp2);
2733 cnt++;
2734 }
2735 lpfc_sli_release_iocbq(phba, iocb);
2736 pring->missbufcnt = cnt;
2737 return cnt;
2738 }
2739 lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2740 if (mp2)
2741 lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2742 }
2743 pring->missbufcnt = 0;
2744 return 0;
2745 }
2746
2747 /**
2748 * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2749 * @phba: pointer to lpfc hba data structure.
2750 *
2751 * This routine posts initial receive IOCB buffers to the ELS ring. The
2752 * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2753 * set to 64 IOCBs. SLI3 only.
2754 *
2755 * Return codes
2756 * 0 - success (currently always success)
2757 **/
2758 static int
lpfc_post_rcv_buf(struct lpfc_hba * phba)2759 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2760 {
2761 struct lpfc_sli *psli = &phba->sli;
2762
2763 /* Ring 0, ELS / CT buffers */
2764 lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2765 /* Ring 2 - FCP no buffers needed */
2766
2767 return 0;
2768 }
2769
2770 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2771
2772 /**
2773 * lpfc_sha_init - Set up initial array of hash table entries
2774 * @HashResultPointer: pointer to an array as hash table.
2775 *
2776 * This routine sets up the initial values to the array of hash table entries
2777 * for the LC HBAs.
2778 **/
2779 static void
lpfc_sha_init(uint32_t * HashResultPointer)2780 lpfc_sha_init(uint32_t * HashResultPointer)
2781 {
2782 HashResultPointer[0] = 0x67452301;
2783 HashResultPointer[1] = 0xEFCDAB89;
2784 HashResultPointer[2] = 0x98BADCFE;
2785 HashResultPointer[3] = 0x10325476;
2786 HashResultPointer[4] = 0xC3D2E1F0;
2787 }
2788
2789 /**
2790 * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2791 * @HashResultPointer: pointer to an initial/result hash table.
2792 * @HashWorkingPointer: pointer to an working hash table.
2793 *
2794 * This routine iterates an initial hash table pointed by @HashResultPointer
2795 * with the values from the working hash table pointeed by @HashWorkingPointer.
2796 * The results are putting back to the initial hash table, returned through
2797 * the @HashResultPointer as the result hash table.
2798 **/
2799 static void
lpfc_sha_iterate(uint32_t * HashResultPointer,uint32_t * HashWorkingPointer)2800 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2801 {
2802 int t;
2803 uint32_t TEMP;
2804 uint32_t A, B, C, D, E;
2805 t = 16;
2806 do {
2807 HashWorkingPointer[t] =
2808 S(1,
2809 HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2810 8] ^
2811 HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2812 } while (++t <= 79);
2813 t = 0;
2814 A = HashResultPointer[0];
2815 B = HashResultPointer[1];
2816 C = HashResultPointer[2];
2817 D = HashResultPointer[3];
2818 E = HashResultPointer[4];
2819
2820 do {
2821 if (t < 20) {
2822 TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2823 } else if (t < 40) {
2824 TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2825 } else if (t < 60) {
2826 TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2827 } else {
2828 TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2829 }
2830 TEMP += S(5, A) + E + HashWorkingPointer[t];
2831 E = D;
2832 D = C;
2833 C = S(30, B);
2834 B = A;
2835 A = TEMP;
2836 } while (++t <= 79);
2837
2838 HashResultPointer[0] += A;
2839 HashResultPointer[1] += B;
2840 HashResultPointer[2] += C;
2841 HashResultPointer[3] += D;
2842 HashResultPointer[4] += E;
2843
2844 }
2845
2846 /**
2847 * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2848 * @RandomChallenge: pointer to the entry of host challenge random number array.
2849 * @HashWorking: pointer to the entry of the working hash array.
2850 *
2851 * This routine calculates the working hash array referred by @HashWorking
2852 * from the challenge random numbers associated with the host, referred by
2853 * @RandomChallenge. The result is put into the entry of the working hash
2854 * array and returned by reference through @HashWorking.
2855 **/
2856 static void
lpfc_challenge_key(uint32_t * RandomChallenge,uint32_t * HashWorking)2857 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2858 {
2859 *HashWorking = (*RandomChallenge ^ *HashWorking);
2860 }
2861
2862 /**
2863 * lpfc_hba_init - Perform special handling for LC HBA initialization
2864 * @phba: pointer to lpfc hba data structure.
2865 * @hbainit: pointer to an array of unsigned 32-bit integers.
2866 *
2867 * This routine performs the special handling for LC HBA initialization.
2868 **/
2869 void
lpfc_hba_init(struct lpfc_hba * phba,uint32_t * hbainit)2870 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2871 {
2872 int t;
2873 uint32_t *HashWorking;
2874 uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2875
2876 HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
2877 if (!HashWorking)
2878 return;
2879
2880 HashWorking[0] = HashWorking[78] = *pwwnn++;
2881 HashWorking[1] = HashWorking[79] = *pwwnn;
2882
2883 for (t = 0; t < 7; t++)
2884 lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
2885
2886 lpfc_sha_init(hbainit);
2887 lpfc_sha_iterate(hbainit, HashWorking);
2888 kfree(HashWorking);
2889 }
2890
2891 /**
2892 * lpfc_cleanup - Performs vport cleanups before deleting a vport
2893 * @vport: pointer to a virtual N_Port data structure.
2894 *
2895 * This routine performs the necessary cleanups before deleting the @vport.
2896 * It invokes the discovery state machine to perform necessary state
2897 * transitions and to release the ndlps associated with the @vport. Note,
2898 * the physical port is treated as @vport 0.
2899 **/
2900 void
lpfc_cleanup(struct lpfc_vport * vport)2901 lpfc_cleanup(struct lpfc_vport *vport)
2902 {
2903 struct lpfc_hba *phba = vport->phba;
2904 struct lpfc_nodelist *ndlp, *next_ndlp;
2905 int i = 0;
2906
2907 if (phba->link_state > LPFC_LINK_DOWN)
2908 lpfc_port_link_failure(vport);
2909
2910 /* Clean up VMID resources */
2911 if (lpfc_is_vmid_enabled(phba))
2912 lpfc_vmid_vport_cleanup(vport);
2913
2914 list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
2915 if (vport->port_type != LPFC_PHYSICAL_PORT &&
2916 ndlp->nlp_DID == Fabric_DID) {
2917 /* Just free up ndlp with Fabric_DID for vports */
2918 lpfc_nlp_put(ndlp);
2919 continue;
2920 }
2921
2922 if (ndlp->nlp_DID == Fabric_Cntl_DID &&
2923 ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
2924 lpfc_nlp_put(ndlp);
2925 continue;
2926 }
2927
2928 /* Fabric Ports not in UNMAPPED state are cleaned up in the
2929 * DEVICE_RM event.
2930 */
2931 if (ndlp->nlp_type & NLP_FABRIC &&
2932 ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
2933 lpfc_disc_state_machine(vport, ndlp, NULL,
2934 NLP_EVT_DEVICE_RECOVERY);
2935
2936 if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
2937 lpfc_disc_state_machine(vport, ndlp, NULL,
2938 NLP_EVT_DEVICE_RM);
2939 }
2940
2941 /* At this point, ALL ndlp's should be gone
2942 * because of the previous NLP_EVT_DEVICE_RM.
2943 * Lets wait for this to happen, if needed.
2944 */
2945 while (!list_empty(&vport->fc_nodes)) {
2946 if (i++ > 3000) {
2947 lpfc_printf_vlog(vport, KERN_ERR,
2948 LOG_TRACE_EVENT,
2949 "0233 Nodelist not empty\n");
2950 list_for_each_entry_safe(ndlp, next_ndlp,
2951 &vport->fc_nodes, nlp_listp) {
2952 lpfc_printf_vlog(ndlp->vport, KERN_ERR,
2953 LOG_TRACE_EVENT,
2954 "0282 did:x%x ndlp:x%px "
2955 "refcnt:%d xflags x%x nflag x%x\n",
2956 ndlp->nlp_DID, (void *)ndlp,
2957 kref_read(&ndlp->kref),
2958 ndlp->fc4_xpt_flags,
2959 ndlp->nlp_flag);
2960 }
2961 break;
2962 }
2963
2964 /* Wait for any activity on ndlps to settle */
2965 msleep(10);
2966 }
2967 lpfc_cleanup_vports_rrqs(vport, NULL);
2968 }
2969
2970 /**
2971 * lpfc_stop_vport_timers - Stop all the timers associated with a vport
2972 * @vport: pointer to a virtual N_Port data structure.
2973 *
2974 * This routine stops all the timers associated with a @vport. This function
2975 * is invoked before disabling or deleting a @vport. Note that the physical
2976 * port is treated as @vport 0.
2977 **/
2978 void
lpfc_stop_vport_timers(struct lpfc_vport * vport)2979 lpfc_stop_vport_timers(struct lpfc_vport *vport)
2980 {
2981 del_timer_sync(&vport->els_tmofunc);
2982 del_timer_sync(&vport->delayed_disc_tmo);
2983 lpfc_can_disctmo(vport);
2984 return;
2985 }
2986
2987 /**
2988 * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
2989 * @phba: pointer to lpfc hba data structure.
2990 *
2991 * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
2992 * caller of this routine should already hold the host lock.
2993 **/
2994 void
__lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)2995 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
2996 {
2997 /* Clear pending FCF rediscovery wait flag */
2998 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
2999
3000 /* Now, try to stop the timer */
3001 del_timer(&phba->fcf.redisc_wait);
3002 }
3003
3004 /**
3005 * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3006 * @phba: pointer to lpfc hba data structure.
3007 *
3008 * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3009 * checks whether the FCF rediscovery wait timer is pending with the host
3010 * lock held before proceeding with disabling the timer and clearing the
3011 * wait timer pendig flag.
3012 **/
3013 void
lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)3014 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3015 {
3016 spin_lock_irq(&phba->hbalock);
3017 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3018 /* FCF rediscovery timer already fired or stopped */
3019 spin_unlock_irq(&phba->hbalock);
3020 return;
3021 }
3022 __lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3023 /* Clear failover in progress flags */
3024 phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3025 spin_unlock_irq(&phba->hbalock);
3026 }
3027
3028 /**
3029 * lpfc_cmf_stop - Stop CMF processing
3030 * @phba: pointer to lpfc hba data structure.
3031 *
3032 * This is called when the link goes down or if CMF mode is turned OFF.
3033 * It is also called when going offline or unloaded just before the
3034 * congestion info buffer is unregistered.
3035 **/
3036 void
lpfc_cmf_stop(struct lpfc_hba * phba)3037 lpfc_cmf_stop(struct lpfc_hba *phba)
3038 {
3039 int cpu;
3040 struct lpfc_cgn_stat *cgs;
3041
3042 /* We only do something if CMF is enabled */
3043 if (!phba->sli4_hba.pc_sli4_params.cmf)
3044 return;
3045
3046 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3047 "6221 Stop CMF / Cancel Timer\n");
3048
3049 /* Cancel the CMF timer */
3050 hrtimer_cancel(&phba->cmf_timer);
3051
3052 /* Zero CMF counters */
3053 atomic_set(&phba->cmf_busy, 0);
3054 for_each_present_cpu(cpu) {
3055 cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3056 atomic64_set(&cgs->total_bytes, 0);
3057 atomic64_set(&cgs->rcv_bytes, 0);
3058 atomic_set(&cgs->rx_io_cnt, 0);
3059 atomic64_set(&cgs->rx_latency, 0);
3060 }
3061 atomic_set(&phba->cmf_bw_wait, 0);
3062
3063 /* Resume any blocked IO - Queue unblock on workqueue */
3064 queue_work(phba->wq, &phba->unblock_request_work);
3065 }
3066
3067 static inline uint64_t
lpfc_get_max_line_rate(struct lpfc_hba * phba)3068 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3069 {
3070 uint64_t rate = lpfc_sli_port_speed_get(phba);
3071
3072 return ((((unsigned long)rate) * 1024 * 1024) / 10);
3073 }
3074
3075 void
lpfc_cmf_signal_init(struct lpfc_hba * phba)3076 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3077 {
3078 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3079 "6223 Signal CMF init\n");
3080
3081 /* Use the new fc_linkspeed to recalculate */
3082 phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3083 phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3084 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3085 phba->cmf_interval_rate, 1000);
3086 phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3087
3088 /* This is a signal to firmware to sync up CMF BW with link speed */
3089 lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3090 }
3091
3092 /**
3093 * lpfc_cmf_start - Start CMF processing
3094 * @phba: pointer to lpfc hba data structure.
3095 *
3096 * This is called when the link comes up or if CMF mode is turned OFF
3097 * to Monitor or Managed.
3098 **/
3099 void
lpfc_cmf_start(struct lpfc_hba * phba)3100 lpfc_cmf_start(struct lpfc_hba *phba)
3101 {
3102 struct lpfc_cgn_stat *cgs;
3103 int cpu;
3104
3105 /* We only do something if CMF is enabled */
3106 if (!phba->sli4_hba.pc_sli4_params.cmf ||
3107 phba->cmf_active_mode == LPFC_CFG_OFF)
3108 return;
3109
3110 /* Reinitialize congestion buffer info */
3111 lpfc_init_congestion_buf(phba);
3112
3113 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3114 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3115 atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3116 atomic_set(&phba->cgn_sync_warn_cnt, 0);
3117
3118 atomic_set(&phba->cmf_busy, 0);
3119 for_each_present_cpu(cpu) {
3120 cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3121 atomic64_set(&cgs->total_bytes, 0);
3122 atomic64_set(&cgs->rcv_bytes, 0);
3123 atomic_set(&cgs->rx_io_cnt, 0);
3124 atomic64_set(&cgs->rx_latency, 0);
3125 }
3126 phba->cmf_latency.tv_sec = 0;
3127 phba->cmf_latency.tv_nsec = 0;
3128
3129 lpfc_cmf_signal_init(phba);
3130
3131 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3132 "6222 Start CMF / Timer\n");
3133
3134 phba->cmf_timer_cnt = 0;
3135 hrtimer_start(&phba->cmf_timer,
3136 ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3137 HRTIMER_MODE_REL);
3138 /* Setup for latency check in IO cmpl routines */
3139 ktime_get_real_ts64(&phba->cmf_latency);
3140
3141 atomic_set(&phba->cmf_bw_wait, 0);
3142 atomic_set(&phba->cmf_stop_io, 0);
3143 }
3144
3145 /**
3146 * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3147 * @phba: pointer to lpfc hba data structure.
3148 *
3149 * This routine stops all the timers associated with a HBA. This function is
3150 * invoked before either putting a HBA offline or unloading the driver.
3151 **/
3152 void
lpfc_stop_hba_timers(struct lpfc_hba * phba)3153 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3154 {
3155 if (phba->pport)
3156 lpfc_stop_vport_timers(phba->pport);
3157 cancel_delayed_work_sync(&phba->eq_delay_work);
3158 cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3159 del_timer_sync(&phba->sli.mbox_tmo);
3160 del_timer_sync(&phba->fabric_block_timer);
3161 del_timer_sync(&phba->eratt_poll);
3162 del_timer_sync(&phba->hb_tmofunc);
3163 if (phba->sli_rev == LPFC_SLI_REV4) {
3164 del_timer_sync(&phba->rrq_tmr);
3165 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3166 }
3167 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3168
3169 switch (phba->pci_dev_grp) {
3170 case LPFC_PCI_DEV_LP:
3171 /* Stop any LightPulse device specific driver timers */
3172 del_timer_sync(&phba->fcp_poll_timer);
3173 break;
3174 case LPFC_PCI_DEV_OC:
3175 /* Stop any OneConnect device specific driver timers */
3176 lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3177 break;
3178 default:
3179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3180 "0297 Invalid device group (x%x)\n",
3181 phba->pci_dev_grp);
3182 break;
3183 }
3184 return;
3185 }
3186
3187 /**
3188 * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3189 * @phba: pointer to lpfc hba data structure.
3190 * @mbx_action: flag for mailbox no wait action.
3191 *
3192 * This routine marks a HBA's management interface as blocked. Once the HBA's
3193 * management interface is marked as blocked, all the user space access to
3194 * the HBA, whether they are from sysfs interface or libdfc interface will
3195 * all be blocked. The HBA is set to block the management interface when the
3196 * driver prepares the HBA interface for online or offline.
3197 **/
3198 static void
lpfc_block_mgmt_io(struct lpfc_hba * phba,int mbx_action)3199 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3200 {
3201 unsigned long iflag;
3202 uint8_t actcmd = MBX_HEARTBEAT;
3203 unsigned long timeout;
3204
3205 spin_lock_irqsave(&phba->hbalock, iflag);
3206 phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3207 spin_unlock_irqrestore(&phba->hbalock, iflag);
3208 if (mbx_action == LPFC_MBX_NO_WAIT)
3209 return;
3210 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3211 spin_lock_irqsave(&phba->hbalock, iflag);
3212 if (phba->sli.mbox_active) {
3213 actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3214 /* Determine how long we might wait for the active mailbox
3215 * command to be gracefully completed by firmware.
3216 */
3217 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3218 phba->sli.mbox_active) * 1000) + jiffies;
3219 }
3220 spin_unlock_irqrestore(&phba->hbalock, iflag);
3221
3222 /* Wait for the outstnading mailbox command to complete */
3223 while (phba->sli.mbox_active) {
3224 /* Check active mailbox complete status every 2ms */
3225 msleep(2);
3226 if (time_after(jiffies, timeout)) {
3227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3228 "2813 Mgmt IO is Blocked %x "
3229 "- mbox cmd %x still active\n",
3230 phba->sli.sli_flag, actcmd);
3231 break;
3232 }
3233 }
3234 }
3235
3236 /**
3237 * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3238 * @phba: pointer to lpfc hba data structure.
3239 *
3240 * Allocate RPIs for all active remote nodes. This is needed whenever
3241 * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3242 * is to fixup the temporary rpi assignments.
3243 **/
3244 void
lpfc_sli4_node_prep(struct lpfc_hba * phba)3245 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3246 {
3247 struct lpfc_nodelist *ndlp, *next_ndlp;
3248 struct lpfc_vport **vports;
3249 int i, rpi;
3250
3251 if (phba->sli_rev != LPFC_SLI_REV4)
3252 return;
3253
3254 vports = lpfc_create_vport_work_array(phba);
3255 if (vports == NULL)
3256 return;
3257
3258 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3259 if (vports[i]->load_flag & FC_UNLOADING)
3260 continue;
3261
3262 list_for_each_entry_safe(ndlp, next_ndlp,
3263 &vports[i]->fc_nodes,
3264 nlp_listp) {
3265 rpi = lpfc_sli4_alloc_rpi(phba);
3266 if (rpi == LPFC_RPI_ALLOC_ERROR) {
3267 /* TODO print log? */
3268 continue;
3269 }
3270 ndlp->nlp_rpi = rpi;
3271 lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3272 LOG_NODE | LOG_DISCOVERY,
3273 "0009 Assign RPI x%x to ndlp x%px "
3274 "DID:x%06x flg:x%x\n",
3275 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3276 ndlp->nlp_flag);
3277 }
3278 }
3279 lpfc_destroy_vport_work_array(phba, vports);
3280 }
3281
3282 /**
3283 * lpfc_create_expedite_pool - create expedite pool
3284 * @phba: pointer to lpfc hba data structure.
3285 *
3286 * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3287 * to expedite pool. Mark them as expedite.
3288 **/
lpfc_create_expedite_pool(struct lpfc_hba * phba)3289 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3290 {
3291 struct lpfc_sli4_hdw_queue *qp;
3292 struct lpfc_io_buf *lpfc_ncmd;
3293 struct lpfc_io_buf *lpfc_ncmd_next;
3294 struct lpfc_epd_pool *epd_pool;
3295 unsigned long iflag;
3296
3297 epd_pool = &phba->epd_pool;
3298 qp = &phba->sli4_hba.hdwq[0];
3299
3300 spin_lock_init(&epd_pool->lock);
3301 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3302 spin_lock(&epd_pool->lock);
3303 INIT_LIST_HEAD(&epd_pool->list);
3304 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3305 &qp->lpfc_io_buf_list_put, list) {
3306 list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3307 lpfc_ncmd->expedite = true;
3308 qp->put_io_bufs--;
3309 epd_pool->count++;
3310 if (epd_pool->count >= XRI_BATCH)
3311 break;
3312 }
3313 spin_unlock(&epd_pool->lock);
3314 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3315 }
3316
3317 /**
3318 * lpfc_destroy_expedite_pool - destroy expedite pool
3319 * @phba: pointer to lpfc hba data structure.
3320 *
3321 * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3322 * of HWQ 0. Clear the mark.
3323 **/
lpfc_destroy_expedite_pool(struct lpfc_hba * phba)3324 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3325 {
3326 struct lpfc_sli4_hdw_queue *qp;
3327 struct lpfc_io_buf *lpfc_ncmd;
3328 struct lpfc_io_buf *lpfc_ncmd_next;
3329 struct lpfc_epd_pool *epd_pool;
3330 unsigned long iflag;
3331
3332 epd_pool = &phba->epd_pool;
3333 qp = &phba->sli4_hba.hdwq[0];
3334
3335 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3336 spin_lock(&epd_pool->lock);
3337 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3338 &epd_pool->list, list) {
3339 list_move_tail(&lpfc_ncmd->list,
3340 &qp->lpfc_io_buf_list_put);
3341 lpfc_ncmd->flags = false;
3342 qp->put_io_bufs++;
3343 epd_pool->count--;
3344 }
3345 spin_unlock(&epd_pool->lock);
3346 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3347 }
3348
3349 /**
3350 * lpfc_create_multixri_pools - create multi-XRI pools
3351 * @phba: pointer to lpfc hba data structure.
3352 *
3353 * This routine initialize public, private per HWQ. Then, move XRIs from
3354 * lpfc_io_buf_list_put to public pool. High and low watermark are also
3355 * Initialized.
3356 **/
lpfc_create_multixri_pools(struct lpfc_hba * phba)3357 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3358 {
3359 u32 i, j;
3360 u32 hwq_count;
3361 u32 count_per_hwq;
3362 struct lpfc_io_buf *lpfc_ncmd;
3363 struct lpfc_io_buf *lpfc_ncmd_next;
3364 unsigned long iflag;
3365 struct lpfc_sli4_hdw_queue *qp;
3366 struct lpfc_multixri_pool *multixri_pool;
3367 struct lpfc_pbl_pool *pbl_pool;
3368 struct lpfc_pvt_pool *pvt_pool;
3369
3370 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3371 "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3372 phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3373 phba->sli4_hba.io_xri_cnt);
3374
3375 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3376 lpfc_create_expedite_pool(phba);
3377
3378 hwq_count = phba->cfg_hdw_queue;
3379 count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3380
3381 for (i = 0; i < hwq_count; i++) {
3382 multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3383
3384 if (!multixri_pool) {
3385 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3386 "1238 Failed to allocate memory for "
3387 "multixri_pool\n");
3388
3389 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3390 lpfc_destroy_expedite_pool(phba);
3391
3392 j = 0;
3393 while (j < i) {
3394 qp = &phba->sli4_hba.hdwq[j];
3395 kfree(qp->p_multixri_pool);
3396 j++;
3397 }
3398 phba->cfg_xri_rebalancing = 0;
3399 return;
3400 }
3401
3402 qp = &phba->sli4_hba.hdwq[i];
3403 qp->p_multixri_pool = multixri_pool;
3404
3405 multixri_pool->xri_limit = count_per_hwq;
3406 multixri_pool->rrb_next_hwqid = i;
3407
3408 /* Deal with public free xri pool */
3409 pbl_pool = &multixri_pool->pbl_pool;
3410 spin_lock_init(&pbl_pool->lock);
3411 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3412 spin_lock(&pbl_pool->lock);
3413 INIT_LIST_HEAD(&pbl_pool->list);
3414 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3415 &qp->lpfc_io_buf_list_put, list) {
3416 list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3417 qp->put_io_bufs--;
3418 pbl_pool->count++;
3419 }
3420 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3421 "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3422 pbl_pool->count, i);
3423 spin_unlock(&pbl_pool->lock);
3424 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3425
3426 /* Deal with private free xri pool */
3427 pvt_pool = &multixri_pool->pvt_pool;
3428 pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3429 pvt_pool->low_watermark = XRI_BATCH;
3430 spin_lock_init(&pvt_pool->lock);
3431 spin_lock_irqsave(&pvt_pool->lock, iflag);
3432 INIT_LIST_HEAD(&pvt_pool->list);
3433 pvt_pool->count = 0;
3434 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3435 }
3436 }
3437
3438 /**
3439 * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3440 * @phba: pointer to lpfc hba data structure.
3441 *
3442 * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3443 **/
lpfc_destroy_multixri_pools(struct lpfc_hba * phba)3444 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3445 {
3446 u32 i;
3447 u32 hwq_count;
3448 struct lpfc_io_buf *lpfc_ncmd;
3449 struct lpfc_io_buf *lpfc_ncmd_next;
3450 unsigned long iflag;
3451 struct lpfc_sli4_hdw_queue *qp;
3452 struct lpfc_multixri_pool *multixri_pool;
3453 struct lpfc_pbl_pool *pbl_pool;
3454 struct lpfc_pvt_pool *pvt_pool;
3455
3456 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3457 lpfc_destroy_expedite_pool(phba);
3458
3459 if (!(phba->pport->load_flag & FC_UNLOADING))
3460 lpfc_sli_flush_io_rings(phba);
3461
3462 hwq_count = phba->cfg_hdw_queue;
3463
3464 for (i = 0; i < hwq_count; i++) {
3465 qp = &phba->sli4_hba.hdwq[i];
3466 multixri_pool = qp->p_multixri_pool;
3467 if (!multixri_pool)
3468 continue;
3469
3470 qp->p_multixri_pool = NULL;
3471
3472 spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3473
3474 /* Deal with public free xri pool */
3475 pbl_pool = &multixri_pool->pbl_pool;
3476 spin_lock(&pbl_pool->lock);
3477
3478 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3479 "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3480 pbl_pool->count, i);
3481
3482 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3483 &pbl_pool->list, list) {
3484 list_move_tail(&lpfc_ncmd->list,
3485 &qp->lpfc_io_buf_list_put);
3486 qp->put_io_bufs++;
3487 pbl_pool->count--;
3488 }
3489
3490 INIT_LIST_HEAD(&pbl_pool->list);
3491 pbl_pool->count = 0;
3492
3493 spin_unlock(&pbl_pool->lock);
3494
3495 /* Deal with private free xri pool */
3496 pvt_pool = &multixri_pool->pvt_pool;
3497 spin_lock(&pvt_pool->lock);
3498
3499 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3500 "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3501 pvt_pool->count, i);
3502
3503 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3504 &pvt_pool->list, list) {
3505 list_move_tail(&lpfc_ncmd->list,
3506 &qp->lpfc_io_buf_list_put);
3507 qp->put_io_bufs++;
3508 pvt_pool->count--;
3509 }
3510
3511 INIT_LIST_HEAD(&pvt_pool->list);
3512 pvt_pool->count = 0;
3513
3514 spin_unlock(&pvt_pool->lock);
3515 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3516
3517 kfree(multixri_pool);
3518 }
3519 }
3520
3521 /**
3522 * lpfc_online - Initialize and bring a HBA online
3523 * @phba: pointer to lpfc hba data structure.
3524 *
3525 * This routine initializes the HBA and brings a HBA online. During this
3526 * process, the management interface is blocked to prevent user space access
3527 * to the HBA interfering with the driver initialization.
3528 *
3529 * Return codes
3530 * 0 - successful
3531 * 1 - failed
3532 **/
3533 int
lpfc_online(struct lpfc_hba * phba)3534 lpfc_online(struct lpfc_hba *phba)
3535 {
3536 struct lpfc_vport *vport;
3537 struct lpfc_vport **vports;
3538 int i, error = 0;
3539 bool vpis_cleared = false;
3540
3541 if (!phba)
3542 return 0;
3543 vport = phba->pport;
3544
3545 if (!(vport->fc_flag & FC_OFFLINE_MODE))
3546 return 0;
3547
3548 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3549 "0458 Bring Adapter online\n");
3550
3551 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3552
3553 if (phba->sli_rev == LPFC_SLI_REV4) {
3554 if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3555 lpfc_unblock_mgmt_io(phba);
3556 return 1;
3557 }
3558 spin_lock_irq(&phba->hbalock);
3559 if (!phba->sli4_hba.max_cfg_param.vpi_used)
3560 vpis_cleared = true;
3561 spin_unlock_irq(&phba->hbalock);
3562
3563 /* Reestablish the local initiator port.
3564 * The offline process destroyed the previous lport.
3565 */
3566 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3567 !phba->nvmet_support) {
3568 error = lpfc_nvme_create_localport(phba->pport);
3569 if (error)
3570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3571 "6132 NVME restore reg failed "
3572 "on nvmei error x%x\n", error);
3573 }
3574 } else {
3575 lpfc_sli_queue_init(phba);
3576 if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */
3577 lpfc_unblock_mgmt_io(phba);
3578 return 1;
3579 }
3580 }
3581
3582 vports = lpfc_create_vport_work_array(phba);
3583 if (vports != NULL) {
3584 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3585 struct Scsi_Host *shost;
3586 shost = lpfc_shost_from_vport(vports[i]);
3587 spin_lock_irq(shost->host_lock);
3588 vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3589 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3590 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3591 if (phba->sli_rev == LPFC_SLI_REV4) {
3592 vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3593 if ((vpis_cleared) &&
3594 (vports[i]->port_type !=
3595 LPFC_PHYSICAL_PORT))
3596 vports[i]->vpi = 0;
3597 }
3598 spin_unlock_irq(shost->host_lock);
3599 }
3600 }
3601 lpfc_destroy_vport_work_array(phba, vports);
3602
3603 if (phba->cfg_xri_rebalancing)
3604 lpfc_create_multixri_pools(phba);
3605
3606 lpfc_cpuhp_add(phba);
3607
3608 lpfc_unblock_mgmt_io(phba);
3609 return 0;
3610 }
3611
3612 /**
3613 * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3614 * @phba: pointer to lpfc hba data structure.
3615 *
3616 * This routine marks a HBA's management interface as not blocked. Once the
3617 * HBA's management interface is marked as not blocked, all the user space
3618 * access to the HBA, whether they are from sysfs interface or libdfc
3619 * interface will be allowed. The HBA is set to block the management interface
3620 * when the driver prepares the HBA interface for online or offline and then
3621 * set to unblock the management interface afterwards.
3622 **/
3623 void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)3624 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3625 {
3626 unsigned long iflag;
3627
3628 spin_lock_irqsave(&phba->hbalock, iflag);
3629 phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3630 spin_unlock_irqrestore(&phba->hbalock, iflag);
3631 }
3632
3633 /**
3634 * lpfc_offline_prep - Prepare a HBA to be brought offline
3635 * @phba: pointer to lpfc hba data structure.
3636 * @mbx_action: flag for mailbox shutdown action.
3637 *
3638 * This routine is invoked to prepare a HBA to be brought offline. It performs
3639 * unregistration login to all the nodes on all vports and flushes the mailbox
3640 * queue to make it ready to be brought offline.
3641 **/
3642 void
lpfc_offline_prep(struct lpfc_hba * phba,int mbx_action)3643 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3644 {
3645 struct lpfc_vport *vport = phba->pport;
3646 struct lpfc_nodelist *ndlp, *next_ndlp;
3647 struct lpfc_vport **vports;
3648 struct Scsi_Host *shost;
3649 int i;
3650 int offline = 0;
3651
3652 if (vport->fc_flag & FC_OFFLINE_MODE)
3653 return;
3654
3655 lpfc_block_mgmt_io(phba, mbx_action);
3656
3657 lpfc_linkdown(phba);
3658
3659 offline = pci_channel_offline(phba->pcidev);
3660
3661 /* Issue an unreg_login to all nodes on all vports */
3662 vports = lpfc_create_vport_work_array(phba);
3663 if (vports != NULL) {
3664 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3665 if (vports[i]->load_flag & FC_UNLOADING)
3666 continue;
3667 shost = lpfc_shost_from_vport(vports[i]);
3668 spin_lock_irq(shost->host_lock);
3669 vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3670 vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3671 vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3672 spin_unlock_irq(shost->host_lock);
3673
3674 shost = lpfc_shost_from_vport(vports[i]);
3675 list_for_each_entry_safe(ndlp, next_ndlp,
3676 &vports[i]->fc_nodes,
3677 nlp_listp) {
3678
3679 spin_lock_irq(&ndlp->lock);
3680 ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3681 spin_unlock_irq(&ndlp->lock);
3682
3683 if (offline) {
3684 spin_lock_irq(&ndlp->lock);
3685 ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3686 NLP_RPI_REGISTERED);
3687 spin_unlock_irq(&ndlp->lock);
3688 } else {
3689 lpfc_unreg_rpi(vports[i], ndlp);
3690 }
3691 /*
3692 * Whenever an SLI4 port goes offline, free the
3693 * RPI. Get a new RPI when the adapter port
3694 * comes back online.
3695 */
3696 if (phba->sli_rev == LPFC_SLI_REV4) {
3697 lpfc_printf_vlog(vports[i], KERN_INFO,
3698 LOG_NODE | LOG_DISCOVERY,
3699 "0011 Free RPI x%x on "
3700 "ndlp: x%px did x%x\n",
3701 ndlp->nlp_rpi, ndlp,
3702 ndlp->nlp_DID);
3703 lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3704 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3705 }
3706
3707 if (ndlp->nlp_type & NLP_FABRIC) {
3708 lpfc_disc_state_machine(vports[i], ndlp,
3709 NULL, NLP_EVT_DEVICE_RECOVERY);
3710
3711 /* Don't remove the node unless the node
3712 * has been unregistered with the
3713 * transport, and we're not in recovery
3714 * before dev_loss_tmo triggered.
3715 * Otherwise, let dev_loss take care of
3716 * the node.
3717 */
3718 if (!(ndlp->save_flags &
3719 NLP_IN_RECOV_POST_DEV_LOSS) &&
3720 !(ndlp->fc4_xpt_flags &
3721 (NVME_XPT_REGD | SCSI_XPT_REGD)))
3722 lpfc_disc_state_machine
3723 (vports[i], ndlp,
3724 NULL,
3725 NLP_EVT_DEVICE_RM);
3726 }
3727 }
3728 }
3729 }
3730 lpfc_destroy_vport_work_array(phba, vports);
3731
3732 lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3733
3734 if (phba->wq)
3735 flush_workqueue(phba->wq);
3736 }
3737
3738 /**
3739 * lpfc_offline - Bring a HBA offline
3740 * @phba: pointer to lpfc hba data structure.
3741 *
3742 * This routine actually brings a HBA offline. It stops all the timers
3743 * associated with the HBA, brings down the SLI layer, and eventually
3744 * marks the HBA as in offline state for the upper layer protocol.
3745 **/
3746 void
lpfc_offline(struct lpfc_hba * phba)3747 lpfc_offline(struct lpfc_hba *phba)
3748 {
3749 struct Scsi_Host *shost;
3750 struct lpfc_vport **vports;
3751 int i;
3752
3753 if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3754 return;
3755
3756 /* stop port and all timers associated with this hba */
3757 lpfc_stop_port(phba);
3758
3759 /* Tear down the local and target port registrations. The
3760 * nvme transports need to cleanup.
3761 */
3762 lpfc_nvmet_destroy_targetport(phba);
3763 lpfc_nvme_destroy_localport(phba->pport);
3764
3765 vports = lpfc_create_vport_work_array(phba);
3766 if (vports != NULL)
3767 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3768 lpfc_stop_vport_timers(vports[i]);
3769 lpfc_destroy_vport_work_array(phba, vports);
3770 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3771 "0460 Bring Adapter offline\n");
3772 /* Bring down the SLI Layer and cleanup. The HBA is offline
3773 now. */
3774 lpfc_sli_hba_down(phba);
3775 spin_lock_irq(&phba->hbalock);
3776 phba->work_ha = 0;
3777 spin_unlock_irq(&phba->hbalock);
3778 vports = lpfc_create_vport_work_array(phba);
3779 if (vports != NULL)
3780 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3781 shost = lpfc_shost_from_vport(vports[i]);
3782 spin_lock_irq(shost->host_lock);
3783 vports[i]->work_port_events = 0;
3784 vports[i]->fc_flag |= FC_OFFLINE_MODE;
3785 spin_unlock_irq(shost->host_lock);
3786 }
3787 lpfc_destroy_vport_work_array(phba, vports);
3788 /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3789 * in hba_unset
3790 */
3791 if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3792 __lpfc_cpuhp_remove(phba);
3793
3794 if (phba->cfg_xri_rebalancing)
3795 lpfc_destroy_multixri_pools(phba);
3796 }
3797
3798 /**
3799 * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3800 * @phba: pointer to lpfc hba data structure.
3801 *
3802 * This routine is to free all the SCSI buffers and IOCBs from the driver
3803 * list back to kernel. It is called from lpfc_pci_remove_one to free
3804 * the internal resources before the device is removed from the system.
3805 **/
3806 static void
lpfc_scsi_free(struct lpfc_hba * phba)3807 lpfc_scsi_free(struct lpfc_hba *phba)
3808 {
3809 struct lpfc_io_buf *sb, *sb_next;
3810
3811 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3812 return;
3813
3814 spin_lock_irq(&phba->hbalock);
3815
3816 /* Release all the lpfc_scsi_bufs maintained by this host. */
3817
3818 spin_lock(&phba->scsi_buf_list_put_lock);
3819 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3820 list) {
3821 list_del(&sb->list);
3822 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3823 sb->dma_handle);
3824 kfree(sb);
3825 phba->total_scsi_bufs--;
3826 }
3827 spin_unlock(&phba->scsi_buf_list_put_lock);
3828
3829 spin_lock(&phba->scsi_buf_list_get_lock);
3830 list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3831 list) {
3832 list_del(&sb->list);
3833 dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3834 sb->dma_handle);
3835 kfree(sb);
3836 phba->total_scsi_bufs--;
3837 }
3838 spin_unlock(&phba->scsi_buf_list_get_lock);
3839 spin_unlock_irq(&phba->hbalock);
3840 }
3841
3842 /**
3843 * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3844 * @phba: pointer to lpfc hba data structure.
3845 *
3846 * This routine is to free all the IO buffers and IOCBs from the driver
3847 * list back to kernel. It is called from lpfc_pci_remove_one to free
3848 * the internal resources before the device is removed from the system.
3849 **/
3850 void
lpfc_io_free(struct lpfc_hba * phba)3851 lpfc_io_free(struct lpfc_hba *phba)
3852 {
3853 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3854 struct lpfc_sli4_hdw_queue *qp;
3855 int idx;
3856
3857 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3858 qp = &phba->sli4_hba.hdwq[idx];
3859 /* Release all the lpfc_nvme_bufs maintained by this host. */
3860 spin_lock(&qp->io_buf_list_put_lock);
3861 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3862 &qp->lpfc_io_buf_list_put,
3863 list) {
3864 list_del(&lpfc_ncmd->list);
3865 qp->put_io_bufs--;
3866 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3867 lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3868 if (phba->cfg_xpsgl && !phba->nvmet_support)
3869 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3870 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3871 kfree(lpfc_ncmd);
3872 qp->total_io_bufs--;
3873 }
3874 spin_unlock(&qp->io_buf_list_put_lock);
3875
3876 spin_lock(&qp->io_buf_list_get_lock);
3877 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3878 &qp->lpfc_io_buf_list_get,
3879 list) {
3880 list_del(&lpfc_ncmd->list);
3881 qp->get_io_bufs--;
3882 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3883 lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3884 if (phba->cfg_xpsgl && !phba->nvmet_support)
3885 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3886 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3887 kfree(lpfc_ncmd);
3888 qp->total_io_bufs--;
3889 }
3890 spin_unlock(&qp->io_buf_list_get_lock);
3891 }
3892 }
3893
3894 /**
3895 * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
3896 * @phba: pointer to lpfc hba data structure.
3897 *
3898 * This routine first calculates the sizes of the current els and allocated
3899 * scsi sgl lists, and then goes through all sgls to updates the physical
3900 * XRIs assigned due to port function reset. During port initialization, the
3901 * current els and allocated scsi sgl lists are 0s.
3902 *
3903 * Return codes
3904 * 0 - successful (for now, it always returns 0)
3905 **/
3906 int
lpfc_sli4_els_sgl_update(struct lpfc_hba * phba)3907 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
3908 {
3909 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
3910 uint16_t i, lxri, xri_cnt, els_xri_cnt;
3911 LIST_HEAD(els_sgl_list);
3912 int rc;
3913
3914 /*
3915 * update on pci function's els xri-sgl list
3916 */
3917 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
3918
3919 if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
3920 /* els xri-sgl expanded */
3921 xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
3922 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3923 "3157 ELS xri-sgl count increased from "
3924 "%d to %d\n", phba->sli4_hba.els_xri_cnt,
3925 els_xri_cnt);
3926 /* allocate the additional els sgls */
3927 for (i = 0; i < xri_cnt; i++) {
3928 sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
3929 GFP_KERNEL);
3930 if (sglq_entry == NULL) {
3931 lpfc_printf_log(phba, KERN_ERR,
3932 LOG_TRACE_EVENT,
3933 "2562 Failure to allocate an "
3934 "ELS sgl entry:%d\n", i);
3935 rc = -ENOMEM;
3936 goto out_free_mem;
3937 }
3938 sglq_entry->buff_type = GEN_BUFF_TYPE;
3939 sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
3940 &sglq_entry->phys);
3941 if (sglq_entry->virt == NULL) {
3942 kfree(sglq_entry);
3943 lpfc_printf_log(phba, KERN_ERR,
3944 LOG_TRACE_EVENT,
3945 "2563 Failure to allocate an "
3946 "ELS mbuf:%d\n", i);
3947 rc = -ENOMEM;
3948 goto out_free_mem;
3949 }
3950 sglq_entry->sgl = sglq_entry->virt;
3951 memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
3952 sglq_entry->state = SGL_FREED;
3953 list_add_tail(&sglq_entry->list, &els_sgl_list);
3954 }
3955 spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3956 list_splice_init(&els_sgl_list,
3957 &phba->sli4_hba.lpfc_els_sgl_list);
3958 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3959 } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
3960 /* els xri-sgl shrinked */
3961 xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
3962 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3963 "3158 ELS xri-sgl count decreased from "
3964 "%d to %d\n", phba->sli4_hba.els_xri_cnt,
3965 els_xri_cnt);
3966 spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3967 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
3968 &els_sgl_list);
3969 /* release extra els sgls from list */
3970 for (i = 0; i < xri_cnt; i++) {
3971 list_remove_head(&els_sgl_list,
3972 sglq_entry, struct lpfc_sglq, list);
3973 if (sglq_entry) {
3974 __lpfc_mbuf_free(phba, sglq_entry->virt,
3975 sglq_entry->phys);
3976 kfree(sglq_entry);
3977 }
3978 }
3979 list_splice_init(&els_sgl_list,
3980 &phba->sli4_hba.lpfc_els_sgl_list);
3981 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3982 } else
3983 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3984 "3163 ELS xri-sgl count unchanged: %d\n",
3985 els_xri_cnt);
3986 phba->sli4_hba.els_xri_cnt = els_xri_cnt;
3987
3988 /* update xris to els sgls on the list */
3989 sglq_entry = NULL;
3990 sglq_entry_next = NULL;
3991 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
3992 &phba->sli4_hba.lpfc_els_sgl_list, list) {
3993 lxri = lpfc_sli4_next_xritag(phba);
3994 if (lxri == NO_XRI) {
3995 lpfc_printf_log(phba, KERN_ERR,
3996 LOG_TRACE_EVENT,
3997 "2400 Failed to allocate xri for "
3998 "ELS sgl\n");
3999 rc = -ENOMEM;
4000 goto out_free_mem;
4001 }
4002 sglq_entry->sli4_lxritag = lxri;
4003 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4004 }
4005 return 0;
4006
4007 out_free_mem:
4008 lpfc_free_els_sgl_list(phba);
4009 return rc;
4010 }
4011
4012 /**
4013 * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4014 * @phba: pointer to lpfc hba data structure.
4015 *
4016 * This routine first calculates the sizes of the current els and allocated
4017 * scsi sgl lists, and then goes through all sgls to updates the physical
4018 * XRIs assigned due to port function reset. During port initialization, the
4019 * current els and allocated scsi sgl lists are 0s.
4020 *
4021 * Return codes
4022 * 0 - successful (for now, it always returns 0)
4023 **/
4024 int
lpfc_sli4_nvmet_sgl_update(struct lpfc_hba * phba)4025 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4026 {
4027 struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4028 uint16_t i, lxri, xri_cnt, els_xri_cnt;
4029 uint16_t nvmet_xri_cnt;
4030 LIST_HEAD(nvmet_sgl_list);
4031 int rc;
4032
4033 /*
4034 * update on pci function's nvmet xri-sgl list
4035 */
4036 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4037
4038 /* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4039 nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4040 if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4041 /* els xri-sgl expanded */
4042 xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4043 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4044 "6302 NVMET xri-sgl cnt grew from %d to %d\n",
4045 phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4046 /* allocate the additional nvmet sgls */
4047 for (i = 0; i < xri_cnt; i++) {
4048 sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4049 GFP_KERNEL);
4050 if (sglq_entry == NULL) {
4051 lpfc_printf_log(phba, KERN_ERR,
4052 LOG_TRACE_EVENT,
4053 "6303 Failure to allocate an "
4054 "NVMET sgl entry:%d\n", i);
4055 rc = -ENOMEM;
4056 goto out_free_mem;
4057 }
4058 sglq_entry->buff_type = NVMET_BUFF_TYPE;
4059 sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4060 &sglq_entry->phys);
4061 if (sglq_entry->virt == NULL) {
4062 kfree(sglq_entry);
4063 lpfc_printf_log(phba, KERN_ERR,
4064 LOG_TRACE_EVENT,
4065 "6304 Failure to allocate an "
4066 "NVMET buf:%d\n", i);
4067 rc = -ENOMEM;
4068 goto out_free_mem;
4069 }
4070 sglq_entry->sgl = sglq_entry->virt;
4071 memset(sglq_entry->sgl, 0,
4072 phba->cfg_sg_dma_buf_size);
4073 sglq_entry->state = SGL_FREED;
4074 list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4075 }
4076 spin_lock_irq(&phba->hbalock);
4077 spin_lock(&phba->sli4_hba.sgl_list_lock);
4078 list_splice_init(&nvmet_sgl_list,
4079 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4080 spin_unlock(&phba->sli4_hba.sgl_list_lock);
4081 spin_unlock_irq(&phba->hbalock);
4082 } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4083 /* nvmet xri-sgl shrunk */
4084 xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4085 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4086 "6305 NVMET xri-sgl count decreased from "
4087 "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4088 nvmet_xri_cnt);
4089 spin_lock_irq(&phba->hbalock);
4090 spin_lock(&phba->sli4_hba.sgl_list_lock);
4091 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4092 &nvmet_sgl_list);
4093 /* release extra nvmet sgls from list */
4094 for (i = 0; i < xri_cnt; i++) {
4095 list_remove_head(&nvmet_sgl_list,
4096 sglq_entry, struct lpfc_sglq, list);
4097 if (sglq_entry) {
4098 lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4099 sglq_entry->phys);
4100 kfree(sglq_entry);
4101 }
4102 }
4103 list_splice_init(&nvmet_sgl_list,
4104 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4105 spin_unlock(&phba->sli4_hba.sgl_list_lock);
4106 spin_unlock_irq(&phba->hbalock);
4107 } else
4108 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4109 "6306 NVMET xri-sgl count unchanged: %d\n",
4110 nvmet_xri_cnt);
4111 phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4112
4113 /* update xris to nvmet sgls on the list */
4114 sglq_entry = NULL;
4115 sglq_entry_next = NULL;
4116 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4117 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4118 lxri = lpfc_sli4_next_xritag(phba);
4119 if (lxri == NO_XRI) {
4120 lpfc_printf_log(phba, KERN_ERR,
4121 LOG_TRACE_EVENT,
4122 "6307 Failed to allocate xri for "
4123 "NVMET sgl\n");
4124 rc = -ENOMEM;
4125 goto out_free_mem;
4126 }
4127 sglq_entry->sli4_lxritag = lxri;
4128 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4129 }
4130 return 0;
4131
4132 out_free_mem:
4133 lpfc_free_nvmet_sgl_list(phba);
4134 return rc;
4135 }
4136
4137 int
lpfc_io_buf_flush(struct lpfc_hba * phba,struct list_head * cbuf)4138 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4139 {
4140 LIST_HEAD(blist);
4141 struct lpfc_sli4_hdw_queue *qp;
4142 struct lpfc_io_buf *lpfc_cmd;
4143 struct lpfc_io_buf *iobufp, *prev_iobufp;
4144 int idx, cnt, xri, inserted;
4145
4146 cnt = 0;
4147 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4148 qp = &phba->sli4_hba.hdwq[idx];
4149 spin_lock_irq(&qp->io_buf_list_get_lock);
4150 spin_lock(&qp->io_buf_list_put_lock);
4151
4152 /* Take everything off the get and put lists */
4153 list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4154 list_splice(&qp->lpfc_io_buf_list_put, &blist);
4155 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4156 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4157 cnt += qp->get_io_bufs + qp->put_io_bufs;
4158 qp->get_io_bufs = 0;
4159 qp->put_io_bufs = 0;
4160 qp->total_io_bufs = 0;
4161 spin_unlock(&qp->io_buf_list_put_lock);
4162 spin_unlock_irq(&qp->io_buf_list_get_lock);
4163 }
4164
4165 /*
4166 * Take IO buffers off blist and put on cbuf sorted by XRI.
4167 * This is because POST_SGL takes a sequential range of XRIs
4168 * to post to the firmware.
4169 */
4170 for (idx = 0; idx < cnt; idx++) {
4171 list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4172 if (!lpfc_cmd)
4173 return cnt;
4174 if (idx == 0) {
4175 list_add_tail(&lpfc_cmd->list, cbuf);
4176 continue;
4177 }
4178 xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4179 inserted = 0;
4180 prev_iobufp = NULL;
4181 list_for_each_entry(iobufp, cbuf, list) {
4182 if (xri < iobufp->cur_iocbq.sli4_xritag) {
4183 if (prev_iobufp)
4184 list_add(&lpfc_cmd->list,
4185 &prev_iobufp->list);
4186 else
4187 list_add(&lpfc_cmd->list, cbuf);
4188 inserted = 1;
4189 break;
4190 }
4191 prev_iobufp = iobufp;
4192 }
4193 if (!inserted)
4194 list_add_tail(&lpfc_cmd->list, cbuf);
4195 }
4196 return cnt;
4197 }
4198
4199 int
lpfc_io_buf_replenish(struct lpfc_hba * phba,struct list_head * cbuf)4200 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4201 {
4202 struct lpfc_sli4_hdw_queue *qp;
4203 struct lpfc_io_buf *lpfc_cmd;
4204 int idx, cnt;
4205
4206 qp = phba->sli4_hba.hdwq;
4207 cnt = 0;
4208 while (!list_empty(cbuf)) {
4209 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4210 list_remove_head(cbuf, lpfc_cmd,
4211 struct lpfc_io_buf, list);
4212 if (!lpfc_cmd)
4213 return cnt;
4214 cnt++;
4215 qp = &phba->sli4_hba.hdwq[idx];
4216 lpfc_cmd->hdwq_no = idx;
4217 lpfc_cmd->hdwq = qp;
4218 lpfc_cmd->cur_iocbq.wqe_cmpl = NULL;
4219 lpfc_cmd->cur_iocbq.iocb_cmpl = NULL;
4220 spin_lock(&qp->io_buf_list_put_lock);
4221 list_add_tail(&lpfc_cmd->list,
4222 &qp->lpfc_io_buf_list_put);
4223 qp->put_io_bufs++;
4224 qp->total_io_bufs++;
4225 spin_unlock(&qp->io_buf_list_put_lock);
4226 }
4227 }
4228 return cnt;
4229 }
4230
4231 /**
4232 * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4233 * @phba: pointer to lpfc hba data structure.
4234 *
4235 * This routine first calculates the sizes of the current els and allocated
4236 * scsi sgl lists, and then goes through all sgls to updates the physical
4237 * XRIs assigned due to port function reset. During port initialization, the
4238 * current els and allocated scsi sgl lists are 0s.
4239 *
4240 * Return codes
4241 * 0 - successful (for now, it always returns 0)
4242 **/
4243 int
lpfc_sli4_io_sgl_update(struct lpfc_hba * phba)4244 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4245 {
4246 struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4247 uint16_t i, lxri, els_xri_cnt;
4248 uint16_t io_xri_cnt, io_xri_max;
4249 LIST_HEAD(io_sgl_list);
4250 int rc, cnt;
4251
4252 /*
4253 * update on pci function's allocated nvme xri-sgl list
4254 */
4255
4256 /* maximum number of xris available for nvme buffers */
4257 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4258 io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4259 phba->sli4_hba.io_xri_max = io_xri_max;
4260
4261 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4262 "6074 Current allocated XRI sgl count:%d, "
4263 "maximum XRI count:%d\n",
4264 phba->sli4_hba.io_xri_cnt,
4265 phba->sli4_hba.io_xri_max);
4266
4267 cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4268
4269 if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4270 /* max nvme xri shrunk below the allocated nvme buffers */
4271 io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4272 phba->sli4_hba.io_xri_max;
4273 /* release the extra allocated nvme buffers */
4274 for (i = 0; i < io_xri_cnt; i++) {
4275 list_remove_head(&io_sgl_list, lpfc_ncmd,
4276 struct lpfc_io_buf, list);
4277 if (lpfc_ncmd) {
4278 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4279 lpfc_ncmd->data,
4280 lpfc_ncmd->dma_handle);
4281 kfree(lpfc_ncmd);
4282 }
4283 }
4284 phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4285 }
4286
4287 /* update xris associated to remaining allocated nvme buffers */
4288 lpfc_ncmd = NULL;
4289 lpfc_ncmd_next = NULL;
4290 phba->sli4_hba.io_xri_cnt = cnt;
4291 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4292 &io_sgl_list, list) {
4293 lxri = lpfc_sli4_next_xritag(phba);
4294 if (lxri == NO_XRI) {
4295 lpfc_printf_log(phba, KERN_ERR,
4296 LOG_TRACE_EVENT,
4297 "6075 Failed to allocate xri for "
4298 "nvme buffer\n");
4299 rc = -ENOMEM;
4300 goto out_free_mem;
4301 }
4302 lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4303 lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4304 }
4305 cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4306 return 0;
4307
4308 out_free_mem:
4309 lpfc_io_free(phba);
4310 return rc;
4311 }
4312
4313 /**
4314 * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4315 * @phba: Pointer to lpfc hba data structure.
4316 * @num_to_alloc: The requested number of buffers to allocate.
4317 *
4318 * This routine allocates nvme buffers for device with SLI-4 interface spec,
4319 * the nvme buffer contains all the necessary information needed to initiate
4320 * an I/O. After allocating up to @num_to_allocate IO buffers and put
4321 * them on a list, it post them to the port by using SGL block post.
4322 *
4323 * Return codes:
4324 * int - number of IO buffers that were allocated and posted.
4325 * 0 = failure, less than num_to_alloc is a partial failure.
4326 **/
4327 int
lpfc_new_io_buf(struct lpfc_hba * phba,int num_to_alloc)4328 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4329 {
4330 struct lpfc_io_buf *lpfc_ncmd;
4331 struct lpfc_iocbq *pwqeq;
4332 uint16_t iotag, lxri = 0;
4333 int bcnt, num_posted;
4334 LIST_HEAD(prep_nblist);
4335 LIST_HEAD(post_nblist);
4336 LIST_HEAD(nvme_nblist);
4337
4338 phba->sli4_hba.io_xri_cnt = 0;
4339 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4340 lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4341 if (!lpfc_ncmd)
4342 break;
4343 /*
4344 * Get memory from the pci pool to map the virt space to
4345 * pci bus space for an I/O. The DMA buffer includes the
4346 * number of SGE's necessary to support the sg_tablesize.
4347 */
4348 lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4349 GFP_KERNEL,
4350 &lpfc_ncmd->dma_handle);
4351 if (!lpfc_ncmd->data) {
4352 kfree(lpfc_ncmd);
4353 break;
4354 }
4355
4356 if (phba->cfg_xpsgl && !phba->nvmet_support) {
4357 INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4358 } else {
4359 /*
4360 * 4K Page alignment is CRITICAL to BlockGuard, double
4361 * check to be sure.
4362 */
4363 if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4364 (((unsigned long)(lpfc_ncmd->data) &
4365 (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4366 lpfc_printf_log(phba, KERN_ERR,
4367 LOG_TRACE_EVENT,
4368 "3369 Memory alignment err: "
4369 "addr=%lx\n",
4370 (unsigned long)lpfc_ncmd->data);
4371 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4372 lpfc_ncmd->data,
4373 lpfc_ncmd->dma_handle);
4374 kfree(lpfc_ncmd);
4375 break;
4376 }
4377 }
4378
4379 INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4380
4381 lxri = lpfc_sli4_next_xritag(phba);
4382 if (lxri == NO_XRI) {
4383 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4384 lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4385 kfree(lpfc_ncmd);
4386 break;
4387 }
4388 pwqeq = &lpfc_ncmd->cur_iocbq;
4389
4390 /* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4391 iotag = lpfc_sli_next_iotag(phba, pwqeq);
4392 if (iotag == 0) {
4393 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4394 lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4395 kfree(lpfc_ncmd);
4396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4397 "6121 Failed to allocate IOTAG for"
4398 " XRI:0x%x\n", lxri);
4399 lpfc_sli4_free_xri(phba, lxri);
4400 break;
4401 }
4402 pwqeq->sli4_lxritag = lxri;
4403 pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4404 pwqeq->context1 = lpfc_ncmd;
4405
4406 /* Initialize local short-hand pointers. */
4407 lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4408 lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4409 lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
4410 spin_lock_init(&lpfc_ncmd->buf_lock);
4411
4412 /* add the nvme buffer to a post list */
4413 list_add_tail(&lpfc_ncmd->list, &post_nblist);
4414 phba->sli4_hba.io_xri_cnt++;
4415 }
4416 lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4417 "6114 Allocate %d out of %d requested new NVME "
4418 "buffers\n", bcnt, num_to_alloc);
4419
4420 /* post the list of nvme buffer sgls to port if available */
4421 if (!list_empty(&post_nblist))
4422 num_posted = lpfc_sli4_post_io_sgl_list(
4423 phba, &post_nblist, bcnt);
4424 else
4425 num_posted = 0;
4426
4427 return num_posted;
4428 }
4429
4430 static uint64_t
lpfc_get_wwpn(struct lpfc_hba * phba)4431 lpfc_get_wwpn(struct lpfc_hba *phba)
4432 {
4433 uint64_t wwn;
4434 int rc;
4435 LPFC_MBOXQ_t *mboxq;
4436 MAILBOX_t *mb;
4437
4438 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4439 GFP_KERNEL);
4440 if (!mboxq)
4441 return (uint64_t)-1;
4442
4443 /* First get WWN of HBA instance */
4444 lpfc_read_nv(phba, mboxq);
4445 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4446 if (rc != MBX_SUCCESS) {
4447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4448 "6019 Mailbox failed , mbxCmd x%x "
4449 "READ_NV, mbxStatus x%x\n",
4450 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4451 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4452 mempool_free(mboxq, phba->mbox_mem_pool);
4453 return (uint64_t) -1;
4454 }
4455 mb = &mboxq->u.mb;
4456 memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4457 /* wwn is WWPN of HBA instance */
4458 mempool_free(mboxq, phba->mbox_mem_pool);
4459 if (phba->sli_rev == LPFC_SLI_REV4)
4460 return be64_to_cpu(wwn);
4461 else
4462 return rol64(wwn, 32);
4463 }
4464
4465 /**
4466 * lpfc_vmid_res_alloc - Allocates resources for VMID
4467 * @phba: pointer to lpfc hba data structure.
4468 * @vport: pointer to vport data structure
4469 *
4470 * This routine allocated the resources needed for the VMID.
4471 *
4472 * Return codes
4473 * 0 on Success
4474 * Non-0 on Failure
4475 */
4476 static int
lpfc_vmid_res_alloc(struct lpfc_hba * phba,struct lpfc_vport * vport)4477 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4478 {
4479 /* VMID feature is supported only on SLI4 */
4480 if (phba->sli_rev == LPFC_SLI_REV3) {
4481 phba->cfg_vmid_app_header = 0;
4482 phba->cfg_vmid_priority_tagging = 0;
4483 }
4484
4485 if (lpfc_is_vmid_enabled(phba)) {
4486 vport->vmid =
4487 kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4488 GFP_KERNEL);
4489 if (!vport->vmid)
4490 return -ENOMEM;
4491
4492 rwlock_init(&vport->vmid_lock);
4493
4494 /* Set the VMID parameters for the vport */
4495 vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4496 vport->vmid_inactivity_timeout =
4497 phba->cfg_vmid_inactivity_timeout;
4498 vport->max_vmid = phba->cfg_max_vmid;
4499 vport->cur_vmid_cnt = 0;
4500
4501 vport->vmid_priority_range = bitmap_zalloc
4502 (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4503
4504 if (!vport->vmid_priority_range) {
4505 kfree(vport->vmid);
4506 return -ENOMEM;
4507 }
4508
4509 hash_init(vport->hash_table);
4510 }
4511 return 0;
4512 }
4513
4514 /**
4515 * lpfc_create_port - Create an FC port
4516 * @phba: pointer to lpfc hba data structure.
4517 * @instance: a unique integer ID to this FC port.
4518 * @dev: pointer to the device data structure.
4519 *
4520 * This routine creates a FC port for the upper layer protocol. The FC port
4521 * can be created on top of either a physical port or a virtual port provided
4522 * by the HBA. This routine also allocates a SCSI host data structure (shost)
4523 * and associates the FC port created before adding the shost into the SCSI
4524 * layer.
4525 *
4526 * Return codes
4527 * @vport - pointer to the virtual N_Port data structure.
4528 * NULL - port create failed.
4529 **/
4530 struct lpfc_vport *
lpfc_create_port(struct lpfc_hba * phba,int instance,struct device * dev)4531 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4532 {
4533 struct lpfc_vport *vport;
4534 struct Scsi_Host *shost = NULL;
4535 struct scsi_host_template *template;
4536 int error = 0;
4537 int i;
4538 uint64_t wwn;
4539 bool use_no_reset_hba = false;
4540 int rc;
4541
4542 if (lpfc_no_hba_reset_cnt) {
4543 if (phba->sli_rev < LPFC_SLI_REV4 &&
4544 dev == &phba->pcidev->dev) {
4545 /* Reset the port first */
4546 lpfc_sli_brdrestart(phba);
4547 rc = lpfc_sli_chipset_init(phba);
4548 if (rc)
4549 return NULL;
4550 }
4551 wwn = lpfc_get_wwpn(phba);
4552 }
4553
4554 for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4555 if (wwn == lpfc_no_hba_reset[i]) {
4556 lpfc_printf_log(phba, KERN_ERR,
4557 LOG_TRACE_EVENT,
4558 "6020 Setting use_no_reset port=%llx\n",
4559 wwn);
4560 use_no_reset_hba = true;
4561 break;
4562 }
4563 }
4564
4565 /* Seed template for SCSI host registration */
4566 if (dev == &phba->pcidev->dev) {
4567 template = &phba->port_template;
4568
4569 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4570 /* Seed physical port template */
4571 memcpy(template, &lpfc_template, sizeof(*template));
4572
4573 if (use_no_reset_hba)
4574 /* template is for a no reset SCSI Host */
4575 template->eh_host_reset_handler = NULL;
4576
4577 /* Template for all vports this physical port creates */
4578 memcpy(&phba->vport_template, &lpfc_template,
4579 sizeof(*template));
4580 phba->vport_template.shost_attrs = lpfc_vport_attrs;
4581 phba->vport_template.eh_bus_reset_handler = NULL;
4582 phba->vport_template.eh_host_reset_handler = NULL;
4583 phba->vport_template.vendor_id = 0;
4584
4585 /* Initialize the host templates with updated value */
4586 if (phba->sli_rev == LPFC_SLI_REV4) {
4587 template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4588 phba->vport_template.sg_tablesize =
4589 phba->cfg_scsi_seg_cnt;
4590 } else {
4591 template->sg_tablesize = phba->cfg_sg_seg_cnt;
4592 phba->vport_template.sg_tablesize =
4593 phba->cfg_sg_seg_cnt;
4594 }
4595
4596 } else {
4597 /* NVMET is for physical port only */
4598 memcpy(template, &lpfc_template_nvme,
4599 sizeof(*template));
4600 }
4601 } else {
4602 template = &phba->vport_template;
4603 }
4604
4605 shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4606 if (!shost)
4607 goto out;
4608
4609 vport = (struct lpfc_vport *) shost->hostdata;
4610 vport->phba = phba;
4611 vport->load_flag |= FC_LOADING;
4612 vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4613 vport->fc_rscn_flush = 0;
4614 lpfc_get_vport_cfgparam(vport);
4615
4616 /* Adjust value in vport */
4617 vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4618
4619 shost->unique_id = instance;
4620 shost->max_id = LPFC_MAX_TARGET;
4621 shost->max_lun = vport->cfg_max_luns;
4622 shost->this_id = -1;
4623 shost->max_cmd_len = 16;
4624
4625 if (phba->sli_rev == LPFC_SLI_REV4) {
4626 if (!phba->cfg_fcp_mq_threshold ||
4627 phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4628 phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4629
4630 shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4631 phba->cfg_fcp_mq_threshold);
4632
4633 shost->dma_boundary =
4634 phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4635
4636 if (phba->cfg_xpsgl && !phba->nvmet_support)
4637 shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4638 else
4639 shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4640 } else
4641 /* SLI-3 has a limited number of hardware queues (3),
4642 * thus there is only one for FCP processing.
4643 */
4644 shost->nr_hw_queues = 1;
4645
4646 /*
4647 * Set initial can_queue value since 0 is no longer supported and
4648 * scsi_add_host will fail. This will be adjusted later based on the
4649 * max xri value determined in hba setup.
4650 */
4651 shost->can_queue = phba->cfg_hba_queue_depth - 10;
4652 if (dev != &phba->pcidev->dev) {
4653 shost->transportt = lpfc_vport_transport_template;
4654 vport->port_type = LPFC_NPIV_PORT;
4655 } else {
4656 shost->transportt = lpfc_transport_template;
4657 vport->port_type = LPFC_PHYSICAL_PORT;
4658 }
4659
4660 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4661 "9081 CreatePort TMPLATE type %x TBLsize %d "
4662 "SEGcnt %d/%d\n",
4663 vport->port_type, shost->sg_tablesize,
4664 phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4665
4666 /* Allocate the resources for VMID */
4667 rc = lpfc_vmid_res_alloc(phba, vport);
4668
4669 if (rc)
4670 goto out_put_shost;
4671
4672 /* Initialize all internally managed lists. */
4673 INIT_LIST_HEAD(&vport->fc_nodes);
4674 INIT_LIST_HEAD(&vport->rcv_buffer_list);
4675 spin_lock_init(&vport->work_port_lock);
4676
4677 timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4678
4679 timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4680
4681 timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4682
4683 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4684 lpfc_setup_bg(phba, shost);
4685
4686 error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4687 if (error)
4688 goto out_free_vmid;
4689
4690 spin_lock_irq(&phba->port_list_lock);
4691 list_add_tail(&vport->listentry, &phba->port_list);
4692 spin_unlock_irq(&phba->port_list_lock);
4693 return vport;
4694
4695 out_free_vmid:
4696 kfree(vport->vmid);
4697 bitmap_free(vport->vmid_priority_range);
4698 out_put_shost:
4699 scsi_host_put(shost);
4700 out:
4701 return NULL;
4702 }
4703
4704 /**
4705 * destroy_port - destroy an FC port
4706 * @vport: pointer to an lpfc virtual N_Port data structure.
4707 *
4708 * This routine destroys a FC port from the upper layer protocol. All the
4709 * resources associated with the port are released.
4710 **/
4711 void
destroy_port(struct lpfc_vport * vport)4712 destroy_port(struct lpfc_vport *vport)
4713 {
4714 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4715 struct lpfc_hba *phba = vport->phba;
4716
4717 lpfc_debugfs_terminate(vport);
4718 fc_remove_host(shost);
4719 scsi_remove_host(shost);
4720
4721 spin_lock_irq(&phba->port_list_lock);
4722 list_del_init(&vport->listentry);
4723 spin_unlock_irq(&phba->port_list_lock);
4724
4725 lpfc_cleanup(vport);
4726 return;
4727 }
4728
4729 /**
4730 * lpfc_get_instance - Get a unique integer ID
4731 *
4732 * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4733 * uses the kernel idr facility to perform the task.
4734 *
4735 * Return codes:
4736 * instance - a unique integer ID allocated as the new instance.
4737 * -1 - lpfc get instance failed.
4738 **/
4739 int
lpfc_get_instance(void)4740 lpfc_get_instance(void)
4741 {
4742 int ret;
4743
4744 ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4745 return ret < 0 ? -1 : ret;
4746 }
4747
4748 /**
4749 * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4750 * @shost: pointer to SCSI host data structure.
4751 * @time: elapsed time of the scan in jiffies.
4752 *
4753 * This routine is called by the SCSI layer with a SCSI host to determine
4754 * whether the scan host is finished.
4755 *
4756 * Note: there is no scan_start function as adapter initialization will have
4757 * asynchronously kicked off the link initialization.
4758 *
4759 * Return codes
4760 * 0 - SCSI host scan is not over yet.
4761 * 1 - SCSI host scan is over.
4762 **/
lpfc_scan_finished(struct Scsi_Host * shost,unsigned long time)4763 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4764 {
4765 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4766 struct lpfc_hba *phba = vport->phba;
4767 int stat = 0;
4768
4769 spin_lock_irq(shost->host_lock);
4770
4771 if (vport->load_flag & FC_UNLOADING) {
4772 stat = 1;
4773 goto finished;
4774 }
4775 if (time >= msecs_to_jiffies(30 * 1000)) {
4776 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4777 "0461 Scanning longer than 30 "
4778 "seconds. Continuing initialization\n");
4779 stat = 1;
4780 goto finished;
4781 }
4782 if (time >= msecs_to_jiffies(15 * 1000) &&
4783 phba->link_state <= LPFC_LINK_DOWN) {
4784 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4785 "0465 Link down longer than 15 "
4786 "seconds. Continuing initialization\n");
4787 stat = 1;
4788 goto finished;
4789 }
4790
4791 if (vport->port_state != LPFC_VPORT_READY)
4792 goto finished;
4793 if (vport->num_disc_nodes || vport->fc_prli_sent)
4794 goto finished;
4795 if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4796 goto finished;
4797 if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4798 goto finished;
4799
4800 stat = 1;
4801
4802 finished:
4803 spin_unlock_irq(shost->host_lock);
4804 return stat;
4805 }
4806
lpfc_host_supported_speeds_set(struct Scsi_Host * shost)4807 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4808 {
4809 struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4810 struct lpfc_hba *phba = vport->phba;
4811
4812 fc_host_supported_speeds(shost) = 0;
4813 /*
4814 * Avoid reporting supported link speed for FCoE as it can't be
4815 * controlled via FCoE.
4816 */
4817 if (phba->hba_flag & HBA_FCOE_MODE)
4818 return;
4819
4820 if (phba->lmt & LMT_256Gb)
4821 fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4822 if (phba->lmt & LMT_128Gb)
4823 fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4824 if (phba->lmt & LMT_64Gb)
4825 fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4826 if (phba->lmt & LMT_32Gb)
4827 fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4828 if (phba->lmt & LMT_16Gb)
4829 fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4830 if (phba->lmt & LMT_10Gb)
4831 fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4832 if (phba->lmt & LMT_8Gb)
4833 fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4834 if (phba->lmt & LMT_4Gb)
4835 fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4836 if (phba->lmt & LMT_2Gb)
4837 fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4838 if (phba->lmt & LMT_1Gb)
4839 fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4840 }
4841
4842 /**
4843 * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4844 * @shost: pointer to SCSI host data structure.
4845 *
4846 * This routine initializes a given SCSI host attributes on a FC port. The
4847 * SCSI host can be either on top of a physical port or a virtual port.
4848 **/
lpfc_host_attrib_init(struct Scsi_Host * shost)4849 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4850 {
4851 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4852 struct lpfc_hba *phba = vport->phba;
4853 /*
4854 * Set fixed host attributes. Must done after lpfc_sli_hba_setup().
4855 */
4856
4857 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4858 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4859 fc_host_supported_classes(shost) = FC_COS_CLASS3;
4860
4861 memset(fc_host_supported_fc4s(shost), 0,
4862 sizeof(fc_host_supported_fc4s(shost)));
4863 fc_host_supported_fc4s(shost)[2] = 1;
4864 fc_host_supported_fc4s(shost)[7] = 1;
4865
4866 lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
4867 sizeof fc_host_symbolic_name(shost));
4868
4869 lpfc_host_supported_speeds_set(shost);
4870
4871 fc_host_maxframe_size(shost) =
4872 (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
4873 (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
4874
4875 fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
4876
4877 /* This value is also unchanging */
4878 memset(fc_host_active_fc4s(shost), 0,
4879 sizeof(fc_host_active_fc4s(shost)));
4880 fc_host_active_fc4s(shost)[2] = 1;
4881 fc_host_active_fc4s(shost)[7] = 1;
4882
4883 fc_host_max_npiv_vports(shost) = phba->max_vpi;
4884 spin_lock_irq(shost->host_lock);
4885 vport->load_flag &= ~FC_LOADING;
4886 spin_unlock_irq(shost->host_lock);
4887 }
4888
4889 /**
4890 * lpfc_stop_port_s3 - Stop SLI3 device port
4891 * @phba: pointer to lpfc hba data structure.
4892 *
4893 * This routine is invoked to stop an SLI3 device port, it stops the device
4894 * from generating interrupts and stops the device driver's timers for the
4895 * device.
4896 **/
4897 static void
lpfc_stop_port_s3(struct lpfc_hba * phba)4898 lpfc_stop_port_s3(struct lpfc_hba *phba)
4899 {
4900 /* Clear all interrupt enable conditions */
4901 writel(0, phba->HCregaddr);
4902 readl(phba->HCregaddr); /* flush */
4903 /* Clear all pending interrupts */
4904 writel(0xffffffff, phba->HAregaddr);
4905 readl(phba->HAregaddr); /* flush */
4906
4907 /* Reset some HBA SLI setup states */
4908 lpfc_stop_hba_timers(phba);
4909 phba->pport->work_port_events = 0;
4910 }
4911
4912 /**
4913 * lpfc_stop_port_s4 - Stop SLI4 device port
4914 * @phba: pointer to lpfc hba data structure.
4915 *
4916 * This routine is invoked to stop an SLI4 device port, it stops the device
4917 * from generating interrupts and stops the device driver's timers for the
4918 * device.
4919 **/
4920 static void
lpfc_stop_port_s4(struct lpfc_hba * phba)4921 lpfc_stop_port_s4(struct lpfc_hba *phba)
4922 {
4923 /* Reset some HBA SLI4 setup states */
4924 lpfc_stop_hba_timers(phba);
4925 if (phba->pport)
4926 phba->pport->work_port_events = 0;
4927 phba->sli4_hba.intr_enable = 0;
4928 }
4929
4930 /**
4931 * lpfc_stop_port - Wrapper function for stopping hba port
4932 * @phba: Pointer to HBA context object.
4933 *
4934 * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
4935 * the API jump table function pointer from the lpfc_hba struct.
4936 **/
4937 void
lpfc_stop_port(struct lpfc_hba * phba)4938 lpfc_stop_port(struct lpfc_hba *phba)
4939 {
4940 phba->lpfc_stop_port(phba);
4941
4942 if (phba->wq)
4943 flush_workqueue(phba->wq);
4944 }
4945
4946 /**
4947 * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
4948 * @phba: Pointer to hba for which this call is being executed.
4949 *
4950 * This routine starts the timer waiting for the FCF rediscovery to complete.
4951 **/
4952 void
lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba * phba)4953 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
4954 {
4955 unsigned long fcf_redisc_wait_tmo =
4956 (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
4957 /* Start fcf rediscovery wait period timer */
4958 mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
4959 spin_lock_irq(&phba->hbalock);
4960 /* Allow action to new fcf asynchronous event */
4961 phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
4962 /* Mark the FCF rediscovery pending state */
4963 phba->fcf.fcf_flag |= FCF_REDISC_PEND;
4964 spin_unlock_irq(&phba->hbalock);
4965 }
4966
4967 /**
4968 * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
4969 * @t: Timer context used to obtain the pointer to lpfc hba data structure.
4970 *
4971 * This routine is invoked when waiting for FCF table rediscover has been
4972 * timed out. If new FCF record(s) has (have) been discovered during the
4973 * wait period, a new FCF event shall be added to the FCOE async event
4974 * list, and then worker thread shall be waked up for processing from the
4975 * worker thread context.
4976 **/
4977 static void
lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list * t)4978 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
4979 {
4980 struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
4981
4982 /* Don't send FCF rediscovery event if timer cancelled */
4983 spin_lock_irq(&phba->hbalock);
4984 if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
4985 spin_unlock_irq(&phba->hbalock);
4986 return;
4987 }
4988 /* Clear FCF rediscovery timer pending flag */
4989 phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
4990 /* FCF rediscovery event to worker thread */
4991 phba->fcf.fcf_flag |= FCF_REDISC_EVT;
4992 spin_unlock_irq(&phba->hbalock);
4993 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
4994 "2776 FCF rediscover quiescent timer expired\n");
4995 /* wake up worker thread */
4996 lpfc_worker_wake_up(phba);
4997 }
4998
4999 /**
5000 * lpfc_vmid_poll - VMID timeout detection
5001 * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5002 *
5003 * This routine is invoked when there is no I/O on by a VM for the specified
5004 * amount of time. When this situation is detected, the VMID has to be
5005 * deregistered from the switch and all the local resources freed. The VMID
5006 * will be reassigned to the VM once the I/O begins.
5007 **/
5008 static void
lpfc_vmid_poll(struct timer_list * t)5009 lpfc_vmid_poll(struct timer_list *t)
5010 {
5011 struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5012 u32 wake_up = 0;
5013
5014 /* check if there is a need to issue QFPA */
5015 if (phba->pport->vmid_priority_tagging) {
5016 wake_up = 1;
5017 phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5018 }
5019
5020 /* Is the vmid inactivity timer enabled */
5021 if (phba->pport->vmid_inactivity_timeout ||
5022 phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5023 wake_up = 1;
5024 phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5025 }
5026
5027 if (wake_up)
5028 lpfc_worker_wake_up(phba);
5029
5030 /* restart the timer for the next iteration */
5031 mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5032 LPFC_VMID_TIMER));
5033 }
5034
5035 /**
5036 * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5037 * @phba: pointer to lpfc hba data structure.
5038 * @acqe_link: pointer to the async link completion queue entry.
5039 *
5040 * This routine is to parse the SLI4 link-attention link fault code.
5041 **/
5042 static void
lpfc_sli4_parse_latt_fault(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5043 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5044 struct lpfc_acqe_link *acqe_link)
5045 {
5046 switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5047 case LPFC_ASYNC_LINK_FAULT_NONE:
5048 case LPFC_ASYNC_LINK_FAULT_LOCAL:
5049 case LPFC_ASYNC_LINK_FAULT_REMOTE:
5050 case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5051 break;
5052 default:
5053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5054 "0398 Unknown link fault code: x%x\n",
5055 bf_get(lpfc_acqe_link_fault, acqe_link));
5056 break;
5057 }
5058 }
5059
5060 /**
5061 * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5062 * @phba: pointer to lpfc hba data structure.
5063 * @acqe_link: pointer to the async link completion queue entry.
5064 *
5065 * This routine is to parse the SLI4 link attention type and translate it
5066 * into the base driver's link attention type coding.
5067 *
5068 * Return: Link attention type in terms of base driver's coding.
5069 **/
5070 static uint8_t
lpfc_sli4_parse_latt_type(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5071 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5072 struct lpfc_acqe_link *acqe_link)
5073 {
5074 uint8_t att_type;
5075
5076 switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5077 case LPFC_ASYNC_LINK_STATUS_DOWN:
5078 case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5079 att_type = LPFC_ATT_LINK_DOWN;
5080 break;
5081 case LPFC_ASYNC_LINK_STATUS_UP:
5082 /* Ignore physical link up events - wait for logical link up */
5083 att_type = LPFC_ATT_RESERVED;
5084 break;
5085 case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5086 att_type = LPFC_ATT_LINK_UP;
5087 break;
5088 default:
5089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5090 "0399 Invalid link attention type: x%x\n",
5091 bf_get(lpfc_acqe_link_status, acqe_link));
5092 att_type = LPFC_ATT_RESERVED;
5093 break;
5094 }
5095 return att_type;
5096 }
5097
5098 /**
5099 * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5100 * @phba: pointer to lpfc hba data structure.
5101 *
5102 * This routine is to get an SLI3 FC port's link speed in Mbps.
5103 *
5104 * Return: link speed in terms of Mbps.
5105 **/
5106 uint32_t
lpfc_sli_port_speed_get(struct lpfc_hba * phba)5107 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5108 {
5109 uint32_t link_speed;
5110
5111 if (!lpfc_is_link_up(phba))
5112 return 0;
5113
5114 if (phba->sli_rev <= LPFC_SLI_REV3) {
5115 switch (phba->fc_linkspeed) {
5116 case LPFC_LINK_SPEED_1GHZ:
5117 link_speed = 1000;
5118 break;
5119 case LPFC_LINK_SPEED_2GHZ:
5120 link_speed = 2000;
5121 break;
5122 case LPFC_LINK_SPEED_4GHZ:
5123 link_speed = 4000;
5124 break;
5125 case LPFC_LINK_SPEED_8GHZ:
5126 link_speed = 8000;
5127 break;
5128 case LPFC_LINK_SPEED_10GHZ:
5129 link_speed = 10000;
5130 break;
5131 case LPFC_LINK_SPEED_16GHZ:
5132 link_speed = 16000;
5133 break;
5134 default:
5135 link_speed = 0;
5136 }
5137 } else {
5138 if (phba->sli4_hba.link_state.logical_speed)
5139 link_speed =
5140 phba->sli4_hba.link_state.logical_speed;
5141 else
5142 link_speed = phba->sli4_hba.link_state.speed;
5143 }
5144 return link_speed;
5145 }
5146
5147 /**
5148 * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5149 * @phba: pointer to lpfc hba data structure.
5150 * @evt_code: asynchronous event code.
5151 * @speed_code: asynchronous event link speed code.
5152 *
5153 * This routine is to parse the giving SLI4 async event link speed code into
5154 * value of Mbps for the link speed.
5155 *
5156 * Return: link speed in terms of Mbps.
5157 **/
5158 static uint32_t
lpfc_sli4_port_speed_parse(struct lpfc_hba * phba,uint32_t evt_code,uint8_t speed_code)5159 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5160 uint8_t speed_code)
5161 {
5162 uint32_t port_speed;
5163
5164 switch (evt_code) {
5165 case LPFC_TRAILER_CODE_LINK:
5166 switch (speed_code) {
5167 case LPFC_ASYNC_LINK_SPEED_ZERO:
5168 port_speed = 0;
5169 break;
5170 case LPFC_ASYNC_LINK_SPEED_10MBPS:
5171 port_speed = 10;
5172 break;
5173 case LPFC_ASYNC_LINK_SPEED_100MBPS:
5174 port_speed = 100;
5175 break;
5176 case LPFC_ASYNC_LINK_SPEED_1GBPS:
5177 port_speed = 1000;
5178 break;
5179 case LPFC_ASYNC_LINK_SPEED_10GBPS:
5180 port_speed = 10000;
5181 break;
5182 case LPFC_ASYNC_LINK_SPEED_20GBPS:
5183 port_speed = 20000;
5184 break;
5185 case LPFC_ASYNC_LINK_SPEED_25GBPS:
5186 port_speed = 25000;
5187 break;
5188 case LPFC_ASYNC_LINK_SPEED_40GBPS:
5189 port_speed = 40000;
5190 break;
5191 case LPFC_ASYNC_LINK_SPEED_100GBPS:
5192 port_speed = 100000;
5193 break;
5194 default:
5195 port_speed = 0;
5196 }
5197 break;
5198 case LPFC_TRAILER_CODE_FC:
5199 switch (speed_code) {
5200 case LPFC_FC_LA_SPEED_UNKNOWN:
5201 port_speed = 0;
5202 break;
5203 case LPFC_FC_LA_SPEED_1G:
5204 port_speed = 1000;
5205 break;
5206 case LPFC_FC_LA_SPEED_2G:
5207 port_speed = 2000;
5208 break;
5209 case LPFC_FC_LA_SPEED_4G:
5210 port_speed = 4000;
5211 break;
5212 case LPFC_FC_LA_SPEED_8G:
5213 port_speed = 8000;
5214 break;
5215 case LPFC_FC_LA_SPEED_10G:
5216 port_speed = 10000;
5217 break;
5218 case LPFC_FC_LA_SPEED_16G:
5219 port_speed = 16000;
5220 break;
5221 case LPFC_FC_LA_SPEED_32G:
5222 port_speed = 32000;
5223 break;
5224 case LPFC_FC_LA_SPEED_64G:
5225 port_speed = 64000;
5226 break;
5227 case LPFC_FC_LA_SPEED_128G:
5228 port_speed = 128000;
5229 break;
5230 case LPFC_FC_LA_SPEED_256G:
5231 port_speed = 256000;
5232 break;
5233 default:
5234 port_speed = 0;
5235 }
5236 break;
5237 default:
5238 port_speed = 0;
5239 }
5240 return port_speed;
5241 }
5242
5243 /**
5244 * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5245 * @phba: pointer to lpfc hba data structure.
5246 * @acqe_link: pointer to the async link completion queue entry.
5247 *
5248 * This routine is to handle the SLI4 asynchronous FCoE link event.
5249 **/
5250 static void
lpfc_sli4_async_link_evt(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5251 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5252 struct lpfc_acqe_link *acqe_link)
5253 {
5254 struct lpfc_dmabuf *mp;
5255 LPFC_MBOXQ_t *pmb;
5256 MAILBOX_t *mb;
5257 struct lpfc_mbx_read_top *la;
5258 uint8_t att_type;
5259 int rc;
5260
5261 att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5262 if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5263 return;
5264 phba->fcoe_eventtag = acqe_link->event_tag;
5265 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5266 if (!pmb) {
5267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5268 "0395 The mboxq allocation failed\n");
5269 return;
5270 }
5271 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5272 if (!mp) {
5273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5274 "0396 The lpfc_dmabuf allocation failed\n");
5275 goto out_free_pmb;
5276 }
5277 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
5278 if (!mp->virt) {
5279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5280 "0397 The mbuf allocation failed\n");
5281 goto out_free_dmabuf;
5282 }
5283
5284 /* Cleanup any outstanding ELS commands */
5285 lpfc_els_flush_all_cmd(phba);
5286
5287 /* Block ELS IOCBs until we have done process link event */
5288 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5289
5290 /* Update link event statistics */
5291 phba->sli.slistat.link_event++;
5292
5293 /* Create lpfc_handle_latt mailbox command from link ACQE */
5294 lpfc_read_topology(phba, pmb, mp);
5295 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5296 pmb->vport = phba->pport;
5297
5298 /* Keep the link status for extra SLI4 state machine reference */
5299 phba->sli4_hba.link_state.speed =
5300 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5301 bf_get(lpfc_acqe_link_speed, acqe_link));
5302 phba->sli4_hba.link_state.duplex =
5303 bf_get(lpfc_acqe_link_duplex, acqe_link);
5304 phba->sli4_hba.link_state.status =
5305 bf_get(lpfc_acqe_link_status, acqe_link);
5306 phba->sli4_hba.link_state.type =
5307 bf_get(lpfc_acqe_link_type, acqe_link);
5308 phba->sli4_hba.link_state.number =
5309 bf_get(lpfc_acqe_link_number, acqe_link);
5310 phba->sli4_hba.link_state.fault =
5311 bf_get(lpfc_acqe_link_fault, acqe_link);
5312 phba->sli4_hba.link_state.logical_speed =
5313 bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5314
5315 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5316 "2900 Async FC/FCoE Link event - Speed:%dGBit "
5317 "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5318 "Logical speed:%dMbps Fault:%d\n",
5319 phba->sli4_hba.link_state.speed,
5320 phba->sli4_hba.link_state.topology,
5321 phba->sli4_hba.link_state.status,
5322 phba->sli4_hba.link_state.type,
5323 phba->sli4_hba.link_state.number,
5324 phba->sli4_hba.link_state.logical_speed,
5325 phba->sli4_hba.link_state.fault);
5326 /*
5327 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5328 * topology info. Note: Optional for non FC-AL ports.
5329 */
5330 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5331 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5332 if (rc == MBX_NOT_FINISHED) {
5333 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5334 goto out_free_dmabuf;
5335 }
5336 return;
5337 }
5338 /*
5339 * For FCoE Mode: fill in all the topology information we need and call
5340 * the READ_TOPOLOGY completion routine to continue without actually
5341 * sending the READ_TOPOLOGY mailbox command to the port.
5342 */
5343 /* Initialize completion status */
5344 mb = &pmb->u.mb;
5345 mb->mbxStatus = MBX_SUCCESS;
5346
5347 /* Parse port fault information field */
5348 lpfc_sli4_parse_latt_fault(phba, acqe_link);
5349
5350 /* Parse and translate link attention fields */
5351 la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5352 la->eventTag = acqe_link->event_tag;
5353 bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5354 bf_set(lpfc_mbx_read_top_link_spd, la,
5355 (bf_get(lpfc_acqe_link_speed, acqe_link)));
5356
5357 /* Fake the the following irrelvant fields */
5358 bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5359 bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5360 bf_set(lpfc_mbx_read_top_il, la, 0);
5361 bf_set(lpfc_mbx_read_top_pb, la, 0);
5362 bf_set(lpfc_mbx_read_top_fa, la, 0);
5363 bf_set(lpfc_mbx_read_top_mm, la, 0);
5364
5365 /* Invoke the lpfc_handle_latt mailbox command callback function */
5366 lpfc_mbx_cmpl_read_topology(phba, pmb);
5367
5368 return;
5369
5370 out_free_dmabuf:
5371 kfree(mp);
5372 out_free_pmb:
5373 mempool_free(pmb, phba->mbox_mem_pool);
5374 }
5375
5376 /**
5377 * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5378 * topology.
5379 * @phba: pointer to lpfc hba data structure.
5380 * @speed_code: asynchronous event link speed code.
5381 *
5382 * This routine is to parse the giving SLI4 async event link speed code into
5383 * value of Read topology link speed.
5384 *
5385 * Return: link speed in terms of Read topology.
5386 **/
5387 static uint8_t
lpfc_async_link_speed_to_read_top(struct lpfc_hba * phba,uint8_t speed_code)5388 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5389 {
5390 uint8_t port_speed;
5391
5392 switch (speed_code) {
5393 case LPFC_FC_LA_SPEED_1G:
5394 port_speed = LPFC_LINK_SPEED_1GHZ;
5395 break;
5396 case LPFC_FC_LA_SPEED_2G:
5397 port_speed = LPFC_LINK_SPEED_2GHZ;
5398 break;
5399 case LPFC_FC_LA_SPEED_4G:
5400 port_speed = LPFC_LINK_SPEED_4GHZ;
5401 break;
5402 case LPFC_FC_LA_SPEED_8G:
5403 port_speed = LPFC_LINK_SPEED_8GHZ;
5404 break;
5405 case LPFC_FC_LA_SPEED_16G:
5406 port_speed = LPFC_LINK_SPEED_16GHZ;
5407 break;
5408 case LPFC_FC_LA_SPEED_32G:
5409 port_speed = LPFC_LINK_SPEED_32GHZ;
5410 break;
5411 case LPFC_FC_LA_SPEED_64G:
5412 port_speed = LPFC_LINK_SPEED_64GHZ;
5413 break;
5414 case LPFC_FC_LA_SPEED_128G:
5415 port_speed = LPFC_LINK_SPEED_128GHZ;
5416 break;
5417 case LPFC_FC_LA_SPEED_256G:
5418 port_speed = LPFC_LINK_SPEED_256GHZ;
5419 break;
5420 default:
5421 port_speed = 0;
5422 break;
5423 }
5424
5425 return port_speed;
5426 }
5427
5428 void
lpfc_cgn_dump_rxmonitor(struct lpfc_hba * phba)5429 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5430 {
5431 if (!phba->rx_monitor) {
5432 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5433 "4411 Rx Monitor Info is empty.\n");
5434 } else {
5435 lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5436 LPFC_MAX_RXMONITOR_DUMP);
5437 }
5438 }
5439
5440 /**
5441 * lpfc_cgn_update_stat - Save data into congestion stats buffer
5442 * @phba: pointer to lpfc hba data structure.
5443 * @dtag: FPIN descriptor received
5444 *
5445 * Increment the FPIN received counter/time when it happens.
5446 */
5447 void
lpfc_cgn_update_stat(struct lpfc_hba * phba,uint32_t dtag)5448 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5449 {
5450 struct lpfc_cgn_info *cp;
5451 struct tm broken;
5452 struct timespec64 cur_time;
5453 u32 cnt;
5454 u16 value;
5455
5456 /* Make sure we have a congestion info buffer */
5457 if (!phba->cgn_i)
5458 return;
5459 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5460 ktime_get_real_ts64(&cur_time);
5461 time64_to_tm(cur_time.tv_sec, 0, &broken);
5462
5463 /* Update congestion statistics */
5464 switch (dtag) {
5465 case ELS_DTAG_LNK_INTEGRITY:
5466 cnt = le32_to_cpu(cp->link_integ_notification);
5467 cnt++;
5468 cp->link_integ_notification = cpu_to_le32(cnt);
5469
5470 cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5471 cp->cgn_stat_lnk_day = broken.tm_mday;
5472 cp->cgn_stat_lnk_year = broken.tm_year - 100;
5473 cp->cgn_stat_lnk_hour = broken.tm_hour;
5474 cp->cgn_stat_lnk_min = broken.tm_min;
5475 cp->cgn_stat_lnk_sec = broken.tm_sec;
5476 break;
5477 case ELS_DTAG_DELIVERY:
5478 cnt = le32_to_cpu(cp->delivery_notification);
5479 cnt++;
5480 cp->delivery_notification = cpu_to_le32(cnt);
5481
5482 cp->cgn_stat_del_month = broken.tm_mon + 1;
5483 cp->cgn_stat_del_day = broken.tm_mday;
5484 cp->cgn_stat_del_year = broken.tm_year - 100;
5485 cp->cgn_stat_del_hour = broken.tm_hour;
5486 cp->cgn_stat_del_min = broken.tm_min;
5487 cp->cgn_stat_del_sec = broken.tm_sec;
5488 break;
5489 case ELS_DTAG_PEER_CONGEST:
5490 cnt = le32_to_cpu(cp->cgn_peer_notification);
5491 cnt++;
5492 cp->cgn_peer_notification = cpu_to_le32(cnt);
5493
5494 cp->cgn_stat_peer_month = broken.tm_mon + 1;
5495 cp->cgn_stat_peer_day = broken.tm_mday;
5496 cp->cgn_stat_peer_year = broken.tm_year - 100;
5497 cp->cgn_stat_peer_hour = broken.tm_hour;
5498 cp->cgn_stat_peer_min = broken.tm_min;
5499 cp->cgn_stat_peer_sec = broken.tm_sec;
5500 break;
5501 case ELS_DTAG_CONGESTION:
5502 cnt = le32_to_cpu(cp->cgn_notification);
5503 cnt++;
5504 cp->cgn_notification = cpu_to_le32(cnt);
5505
5506 cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5507 cp->cgn_stat_cgn_day = broken.tm_mday;
5508 cp->cgn_stat_cgn_year = broken.tm_year - 100;
5509 cp->cgn_stat_cgn_hour = broken.tm_hour;
5510 cp->cgn_stat_cgn_min = broken.tm_min;
5511 cp->cgn_stat_cgn_sec = broken.tm_sec;
5512 }
5513 if (phba->cgn_fpin_frequency &&
5514 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5515 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5516 cp->cgn_stat_npm = value;
5517 }
5518 value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5519 LPFC_CGN_CRC32_SEED);
5520 cp->cgn_info_crc = cpu_to_le32(value);
5521 }
5522
5523 /**
5524 * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5525 * @phba: pointer to lpfc hba data structure.
5526 *
5527 * Save the congestion event data every minute.
5528 * On the hour collapse all the minute data into hour data. Every day
5529 * collapse all the hour data into daily data. Separate driver
5530 * and fabrc congestion event counters that will be saved out
5531 * to the registered congestion buffer every minute.
5532 */
5533 static void
lpfc_cgn_save_evt_cnt(struct lpfc_hba * phba)5534 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5535 {
5536 struct lpfc_cgn_info *cp;
5537 struct tm broken;
5538 struct timespec64 cur_time;
5539 uint32_t i, index;
5540 uint16_t value, mvalue;
5541 uint64_t bps;
5542 uint32_t mbps;
5543 uint32_t dvalue, wvalue, lvalue, avalue;
5544 uint64_t latsum;
5545 __le16 *ptr;
5546 __le32 *lptr;
5547 __le16 *mptr;
5548
5549 /* Make sure we have a congestion info buffer */
5550 if (!phba->cgn_i)
5551 return;
5552 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5553
5554 if (time_before(jiffies, phba->cgn_evt_timestamp))
5555 return;
5556 phba->cgn_evt_timestamp = jiffies +
5557 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5558 phba->cgn_evt_minute++;
5559
5560 /* We should get to this point in the routine on 1 minute intervals */
5561
5562 ktime_get_real_ts64(&cur_time);
5563 time64_to_tm(cur_time.tv_sec, 0, &broken);
5564
5565 if (phba->cgn_fpin_frequency &&
5566 phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5567 value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5568 cp->cgn_stat_npm = value;
5569 }
5570
5571 /* Read and clear the latency counters for this minute */
5572 lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5573 latsum = atomic64_read(&phba->cgn_latency_evt);
5574 atomic_set(&phba->cgn_latency_evt_cnt, 0);
5575 atomic64_set(&phba->cgn_latency_evt, 0);
5576
5577 /* We need to store MB/sec bandwidth in the congestion information.
5578 * block_cnt is count of 512 byte blocks for the entire minute,
5579 * bps will get bytes per sec before finally converting to MB/sec.
5580 */
5581 bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5582 phba->rx_block_cnt = 0;
5583 mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5584
5585 /* Every minute */
5586 /* cgn parameters */
5587 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5588 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5589 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5590 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5591
5592 /* Fill in default LUN qdepth */
5593 value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5594 cp->cgn_lunq = cpu_to_le16(value);
5595
5596 /* Record congestion buffer info - every minute
5597 * cgn_driver_evt_cnt (Driver events)
5598 * cgn_fabric_warn_cnt (Congestion Warnings)
5599 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5600 * cgn_fabric_alarm_cnt (Congestion Alarms)
5601 */
5602 index = ++cp->cgn_index_minute;
5603 if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5604 cp->cgn_index_minute = 0;
5605 index = 0;
5606 }
5607
5608 /* Get the number of driver events in this sample and reset counter */
5609 dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5610 atomic_set(&phba->cgn_driver_evt_cnt, 0);
5611
5612 /* Get the number of warning events - FPIN and Signal for this minute */
5613 wvalue = 0;
5614 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5615 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5616 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5617 wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5618 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5619
5620 /* Get the number of alarm events - FPIN and Signal for this minute */
5621 avalue = 0;
5622 if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5623 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5624 avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5625 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5626
5627 /* Collect the driver, warning, alarm and latency counts for this
5628 * minute into the driver congestion buffer.
5629 */
5630 ptr = &cp->cgn_drvr_min[index];
5631 value = (uint16_t)dvalue;
5632 *ptr = cpu_to_le16(value);
5633
5634 ptr = &cp->cgn_warn_min[index];
5635 value = (uint16_t)wvalue;
5636 *ptr = cpu_to_le16(value);
5637
5638 ptr = &cp->cgn_alarm_min[index];
5639 value = (uint16_t)avalue;
5640 *ptr = cpu_to_le16(value);
5641
5642 lptr = &cp->cgn_latency_min[index];
5643 if (lvalue) {
5644 lvalue = (uint32_t)div_u64(latsum, lvalue);
5645 *lptr = cpu_to_le32(lvalue);
5646 } else {
5647 *lptr = 0;
5648 }
5649
5650 /* Collect the bandwidth value into the driver's congesion buffer. */
5651 mptr = &cp->cgn_bw_min[index];
5652 *mptr = cpu_to_le16(mvalue);
5653
5654 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5655 "2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5656 index, dvalue, wvalue, *lptr, mvalue, avalue);
5657
5658 /* Every hour */
5659 if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5660 /* Record congestion buffer info - every hour
5661 * Collapse all minutes into an hour
5662 */
5663 index = ++cp->cgn_index_hour;
5664 if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5665 cp->cgn_index_hour = 0;
5666 index = 0;
5667 }
5668
5669 dvalue = 0;
5670 wvalue = 0;
5671 lvalue = 0;
5672 avalue = 0;
5673 mvalue = 0;
5674 mbps = 0;
5675 for (i = 0; i < LPFC_MIN_HOUR; i++) {
5676 dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5677 wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5678 lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5679 mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5680 avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5681 }
5682 if (lvalue) /* Avg of latency averages */
5683 lvalue /= LPFC_MIN_HOUR;
5684 if (mbps) /* Avg of Bandwidth averages */
5685 mvalue = mbps / LPFC_MIN_HOUR;
5686
5687 lptr = &cp->cgn_drvr_hr[index];
5688 *lptr = cpu_to_le32(dvalue);
5689 lptr = &cp->cgn_warn_hr[index];
5690 *lptr = cpu_to_le32(wvalue);
5691 lptr = &cp->cgn_latency_hr[index];
5692 *lptr = cpu_to_le32(lvalue);
5693 mptr = &cp->cgn_bw_hr[index];
5694 *mptr = cpu_to_le16(mvalue);
5695 lptr = &cp->cgn_alarm_hr[index];
5696 *lptr = cpu_to_le32(avalue);
5697
5698 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5699 "2419 Congestion Info - hour "
5700 "(%d): %d %d %d %d %d\n",
5701 index, dvalue, wvalue, lvalue, mvalue, avalue);
5702 }
5703
5704 /* Every day */
5705 if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5706 /* Record congestion buffer info - every hour
5707 * Collapse all hours into a day. Rotate days
5708 * after LPFC_MAX_CGN_DAYS.
5709 */
5710 index = ++cp->cgn_index_day;
5711 if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5712 cp->cgn_index_day = 0;
5713 index = 0;
5714 }
5715
5716 /* Anytime we overwrite daily index 0, after we wrap,
5717 * we will be overwriting the oldest day, so we must
5718 * update the congestion data start time for that day.
5719 * That start time should have previously been saved after
5720 * we wrote the last days worth of data.
5721 */
5722 if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5723 time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5724
5725 cp->cgn_info_month = broken.tm_mon + 1;
5726 cp->cgn_info_day = broken.tm_mday;
5727 cp->cgn_info_year = broken.tm_year - 100;
5728 cp->cgn_info_hour = broken.tm_hour;
5729 cp->cgn_info_minute = broken.tm_min;
5730 cp->cgn_info_second = broken.tm_sec;
5731
5732 lpfc_printf_log
5733 (phba, KERN_INFO, LOG_CGN_MGMT,
5734 "2646 CGNInfo idx0 Start Time: "
5735 "%d/%d/%d %d:%d:%d\n",
5736 cp->cgn_info_day, cp->cgn_info_month,
5737 cp->cgn_info_year, cp->cgn_info_hour,
5738 cp->cgn_info_minute, cp->cgn_info_second);
5739 }
5740
5741 dvalue = 0;
5742 wvalue = 0;
5743 lvalue = 0;
5744 mvalue = 0;
5745 mbps = 0;
5746 avalue = 0;
5747 for (i = 0; i < LPFC_HOUR_DAY; i++) {
5748 dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5749 wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5750 lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5751 mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5752 avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5753 }
5754 if (lvalue) /* Avg of latency averages */
5755 lvalue /= LPFC_HOUR_DAY;
5756 if (mbps) /* Avg of Bandwidth averages */
5757 mvalue = mbps / LPFC_HOUR_DAY;
5758
5759 lptr = &cp->cgn_drvr_day[index];
5760 *lptr = cpu_to_le32(dvalue);
5761 lptr = &cp->cgn_warn_day[index];
5762 *lptr = cpu_to_le32(wvalue);
5763 lptr = &cp->cgn_latency_day[index];
5764 *lptr = cpu_to_le32(lvalue);
5765 mptr = &cp->cgn_bw_day[index];
5766 *mptr = cpu_to_le16(mvalue);
5767 lptr = &cp->cgn_alarm_day[index];
5768 *lptr = cpu_to_le32(avalue);
5769
5770 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5771 "2420 Congestion Info - daily (%d): "
5772 "%d %d %d %d %d\n",
5773 index, dvalue, wvalue, lvalue, mvalue, avalue);
5774
5775 /* We just wrote LPFC_MAX_CGN_DAYS of data,
5776 * so we are wrapped on any data after this.
5777 * Save this as the start time for the next day.
5778 */
5779 if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5780 phba->hba_flag |= HBA_CGN_DAY_WRAP;
5781 ktime_get_real_ts64(&phba->cgn_daily_ts);
5782 }
5783 }
5784
5785 /* Use the frequency found in the last rcv'ed FPIN */
5786 value = phba->cgn_fpin_frequency;
5787 cp->cgn_warn_freq = cpu_to_le16(value);
5788 cp->cgn_alarm_freq = cpu_to_le16(value);
5789
5790 lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5791 LPFC_CGN_CRC32_SEED);
5792 cp->cgn_info_crc = cpu_to_le32(lvalue);
5793 }
5794
5795 /**
5796 * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5797 * @phba: The Hba for which this call is being executed.
5798 *
5799 * The routine calculates the latency from the beginning of the CMF timer
5800 * interval to the current point in time. It is called from IO completion
5801 * when we exceed our Bandwidth limitation for the time interval.
5802 */
5803 uint32_t
lpfc_calc_cmf_latency(struct lpfc_hba * phba)5804 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5805 {
5806 struct timespec64 cmpl_time;
5807 uint32_t msec = 0;
5808
5809 ktime_get_real_ts64(&cmpl_time);
5810
5811 /* This routine works on a ms granularity so sec and usec are
5812 * converted accordingly.
5813 */
5814 if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5815 msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5816 NSEC_PER_MSEC;
5817 } else {
5818 if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5819 msec = (cmpl_time.tv_sec -
5820 phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5821 msec += ((cmpl_time.tv_nsec -
5822 phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5823 } else {
5824 msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5825 1) * MSEC_PER_SEC;
5826 msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5827 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5828 }
5829 }
5830 return msec;
5831 }
5832
5833 /**
5834 * lpfc_cmf_timer - This is the timer function for one congestion
5835 * rate interval.
5836 * @timer: Pointer to the high resolution timer that expired
5837 */
5838 static enum hrtimer_restart
lpfc_cmf_timer(struct hrtimer * timer)5839 lpfc_cmf_timer(struct hrtimer *timer)
5840 {
5841 struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5842 cmf_timer);
5843 struct rx_info_entry entry;
5844 uint32_t io_cnt;
5845 uint32_t busy, max_read;
5846 uint64_t total, rcv, lat, mbpi, extra, cnt;
5847 int timer_interval = LPFC_CMF_INTERVAL;
5848 uint32_t ms;
5849 struct lpfc_cgn_stat *cgs;
5850 int cpu;
5851
5852 /* Only restart the timer if congestion mgmt is on */
5853 if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5854 !phba->cmf_latency.tv_sec) {
5855 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5856 "6224 CMF timer exit: %d %lld\n",
5857 phba->cmf_active_mode,
5858 (uint64_t)phba->cmf_latency.tv_sec);
5859 return HRTIMER_NORESTART;
5860 }
5861
5862 /* If pport is not ready yet, just exit and wait for
5863 * the next timer cycle to hit.
5864 */
5865 if (!phba->pport)
5866 goto skip;
5867
5868 /* Do not block SCSI IO while in the timer routine since
5869 * total_bytes will be cleared
5870 */
5871 atomic_set(&phba->cmf_stop_io, 1);
5872
5873 /* First we need to calculate the actual ms between
5874 * the last timer interrupt and this one. We ask for
5875 * LPFC_CMF_INTERVAL, however the actual time may
5876 * vary depending on system overhead.
5877 */
5878 ms = lpfc_calc_cmf_latency(phba);
5879
5880
5881 /* Immediately after we calculate the time since the last
5882 * timer interrupt, set the start time for the next
5883 * interrupt
5884 */
5885 ktime_get_real_ts64(&phba->cmf_latency);
5886
5887 phba->cmf_link_byte_count =
5888 div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5889
5890 /* Collect all the stats from the prior timer interval */
5891 total = 0;
5892 io_cnt = 0;
5893 lat = 0;
5894 rcv = 0;
5895 for_each_present_cpu(cpu) {
5896 cgs = per_cpu_ptr(phba->cmf_stat, cpu);
5897 total += atomic64_xchg(&cgs->total_bytes, 0);
5898 io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
5899 lat += atomic64_xchg(&cgs->rx_latency, 0);
5900 rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
5901 }
5902
5903 /* Before we issue another CMF_SYNC_WQE, retrieve the BW
5904 * returned from the last CMF_SYNC_WQE issued, from
5905 * cmf_last_sync_bw. This will be the target BW for
5906 * this next timer interval.
5907 */
5908 if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
5909 phba->link_state != LPFC_LINK_DOWN &&
5910 phba->hba_flag & HBA_SETUP) {
5911 mbpi = phba->cmf_last_sync_bw;
5912 phba->cmf_last_sync_bw = 0;
5913 extra = 0;
5914
5915 /* Calculate any extra bytes needed to account for the
5916 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
5917 * calculate the adjustment needed for total to reflect
5918 * a full LPFC_CMF_INTERVAL.
5919 */
5920 if (ms && ms < LPFC_CMF_INTERVAL) {
5921 cnt = div_u64(total, ms); /* bytes per ms */
5922 cnt *= LPFC_CMF_INTERVAL; /* what total should be */
5923 if (cnt > mbpi)
5924 cnt = mbpi;
5925 extra = cnt - total;
5926 }
5927 lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
5928 } else {
5929 /* For Monitor mode or link down we want mbpi
5930 * to be the full link speed
5931 */
5932 mbpi = phba->cmf_link_byte_count;
5933 extra = 0;
5934 }
5935 phba->cmf_timer_cnt++;
5936
5937 if (io_cnt) {
5938 /* Update congestion info buffer latency in us */
5939 atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
5940 atomic64_add(lat, &phba->cgn_latency_evt);
5941 }
5942 busy = atomic_xchg(&phba->cmf_busy, 0);
5943 max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
5944
5945 /* Calculate MBPI for the next timer interval */
5946 if (mbpi) {
5947 if (mbpi > phba->cmf_link_byte_count ||
5948 phba->cmf_active_mode == LPFC_CFG_MONITOR)
5949 mbpi = phba->cmf_link_byte_count;
5950
5951 /* Change max_bytes_per_interval to what the prior
5952 * CMF_SYNC_WQE cmpl indicated.
5953 */
5954 if (mbpi != phba->cmf_max_bytes_per_interval)
5955 phba->cmf_max_bytes_per_interval = mbpi;
5956 }
5957
5958 /* Save rxmonitor information for debug */
5959 if (phba->rx_monitor) {
5960 entry.total_bytes = total;
5961 entry.cmf_bytes = total + extra;
5962 entry.rcv_bytes = rcv;
5963 entry.cmf_busy = busy;
5964 entry.cmf_info = phba->cmf_active_info;
5965 if (io_cnt) {
5966 entry.avg_io_latency = div_u64(lat, io_cnt);
5967 entry.avg_io_size = div_u64(rcv, io_cnt);
5968 } else {
5969 entry.avg_io_latency = 0;
5970 entry.avg_io_size = 0;
5971 }
5972 entry.max_read_cnt = max_read;
5973 entry.io_cnt = io_cnt;
5974 entry.max_bytes_per_interval = mbpi;
5975 if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
5976 entry.timer_utilization = phba->cmf_last_ts;
5977 else
5978 entry.timer_utilization = ms;
5979 entry.timer_interval = ms;
5980 phba->cmf_last_ts = 0;
5981
5982 lpfc_rx_monitor_record(phba->rx_monitor, &entry);
5983 }
5984
5985 if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
5986 /* If Monitor mode, check if we are oversubscribed
5987 * against the full line rate.
5988 */
5989 if (mbpi && total > mbpi)
5990 atomic_inc(&phba->cgn_driver_evt_cnt);
5991 }
5992 phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */
5993
5994 /* Each minute save Fabric and Driver congestion information */
5995 lpfc_cgn_save_evt_cnt(phba);
5996
5997 /* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
5998 * minute, adjust our next timer interval, if needed, to ensure a
5999 * 1 minute granularity when we get the next timer interrupt.
6000 */
6001 if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6002 phba->cgn_evt_timestamp)) {
6003 timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6004 jiffies);
6005 if (timer_interval <= 0)
6006 timer_interval = LPFC_CMF_INTERVAL;
6007
6008 /* If we adjust timer_interval, max_bytes_per_interval
6009 * needs to be adjusted as well.
6010 */
6011 phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6012 timer_interval, 1000);
6013 if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6014 phba->cmf_max_bytes_per_interval =
6015 phba->cmf_link_byte_count;
6016 }
6017
6018 /* Since total_bytes has already been zero'ed, its okay to unblock
6019 * after max_bytes_per_interval is setup.
6020 */
6021 if (atomic_xchg(&phba->cmf_bw_wait, 0))
6022 queue_work(phba->wq, &phba->unblock_request_work);
6023
6024 /* SCSI IO is now unblocked */
6025 atomic_set(&phba->cmf_stop_io, 0);
6026
6027 skip:
6028 hrtimer_forward_now(timer,
6029 ktime_set(0, timer_interval * NSEC_PER_MSEC));
6030 return HRTIMER_RESTART;
6031 }
6032
6033 #define trunk_link_status(__idx)\
6034 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6035 ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6036 "Link up" : "Link down") : "NA"
6037 /* Did port __idx reported an error */
6038 #define trunk_port_fault(__idx)\
6039 bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6040 (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6041
6042 static void
lpfc_update_trunk_link_status(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6043 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6044 struct lpfc_acqe_fc_la *acqe_fc)
6045 {
6046 uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6047 uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6048
6049 phba->sli4_hba.link_state.speed =
6050 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6051 bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6052
6053 phba->sli4_hba.link_state.logical_speed =
6054 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6055 /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6056 phba->fc_linkspeed =
6057 lpfc_async_link_speed_to_read_top(
6058 phba,
6059 bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6060
6061 if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6062 phba->trunk_link.link0.state =
6063 bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6064 ? LPFC_LINK_UP : LPFC_LINK_DOWN;
6065 phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6066 }
6067 if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6068 phba->trunk_link.link1.state =
6069 bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6070 ? LPFC_LINK_UP : LPFC_LINK_DOWN;
6071 phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6072 }
6073 if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6074 phba->trunk_link.link2.state =
6075 bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6076 ? LPFC_LINK_UP : LPFC_LINK_DOWN;
6077 phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6078 }
6079 if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6080 phba->trunk_link.link3.state =
6081 bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6082 ? LPFC_LINK_UP : LPFC_LINK_DOWN;
6083 phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6084 }
6085
6086 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6087 "2910 Async FC Trunking Event - Speed:%d\n"
6088 "\tLogical speed:%d "
6089 "port0: %s port1: %s port2: %s port3: %s\n",
6090 phba->sli4_hba.link_state.speed,
6091 phba->sli4_hba.link_state.logical_speed,
6092 trunk_link_status(0), trunk_link_status(1),
6093 trunk_link_status(2), trunk_link_status(3));
6094
6095 if (phba->cmf_active_mode != LPFC_CFG_OFF)
6096 lpfc_cmf_signal_init(phba);
6097
6098 if (port_fault)
6099 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6100 "3202 trunk error:0x%x (%s) seen on port0:%s "
6101 /*
6102 * SLI-4: We have only 0xA error codes
6103 * defined as of now. print an appropriate
6104 * message in case driver needs to be updated.
6105 */
6106 "port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6107 "UNDEFINED. update driver." : trunk_errmsg[err],
6108 trunk_port_fault(0), trunk_port_fault(1),
6109 trunk_port_fault(2), trunk_port_fault(3));
6110 }
6111
6112
6113 /**
6114 * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6115 * @phba: pointer to lpfc hba data structure.
6116 * @acqe_fc: pointer to the async fc completion queue entry.
6117 *
6118 * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6119 * that the event was received and then issue a read_topology mailbox command so
6120 * that the rest of the driver will treat it the same as SLI3.
6121 **/
6122 static void
lpfc_sli4_async_fc_evt(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6123 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6124 {
6125 struct lpfc_dmabuf *mp;
6126 LPFC_MBOXQ_t *pmb;
6127 MAILBOX_t *mb;
6128 struct lpfc_mbx_read_top *la;
6129 int rc;
6130
6131 if (bf_get(lpfc_trailer_type, acqe_fc) !=
6132 LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6134 "2895 Non FC link Event detected.(%d)\n",
6135 bf_get(lpfc_trailer_type, acqe_fc));
6136 return;
6137 }
6138
6139 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6140 LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6141 lpfc_update_trunk_link_status(phba, acqe_fc);
6142 return;
6143 }
6144
6145 /* Keep the link status for extra SLI4 state machine reference */
6146 phba->sli4_hba.link_state.speed =
6147 lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6148 bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6149 phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6150 phba->sli4_hba.link_state.topology =
6151 bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6152 phba->sli4_hba.link_state.status =
6153 bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6154 phba->sli4_hba.link_state.type =
6155 bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6156 phba->sli4_hba.link_state.number =
6157 bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6158 phba->sli4_hba.link_state.fault =
6159 bf_get(lpfc_acqe_link_fault, acqe_fc);
6160
6161 if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6162 LPFC_FC_LA_TYPE_LINK_DOWN)
6163 phba->sli4_hba.link_state.logical_speed = 0;
6164 else if (!phba->sli4_hba.conf_trunk)
6165 phba->sli4_hba.link_state.logical_speed =
6166 bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6167
6168 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6169 "2896 Async FC event - Speed:%dGBaud Topology:x%x "
6170 "LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6171 "%dMbps Fault:%d\n",
6172 phba->sli4_hba.link_state.speed,
6173 phba->sli4_hba.link_state.topology,
6174 phba->sli4_hba.link_state.status,
6175 phba->sli4_hba.link_state.type,
6176 phba->sli4_hba.link_state.number,
6177 phba->sli4_hba.link_state.logical_speed,
6178 phba->sli4_hba.link_state.fault);
6179 pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6180 if (!pmb) {
6181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6182 "2897 The mboxq allocation failed\n");
6183 return;
6184 }
6185 mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
6186 if (!mp) {
6187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6188 "2898 The lpfc_dmabuf allocation failed\n");
6189 goto out_free_pmb;
6190 }
6191 mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
6192 if (!mp->virt) {
6193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6194 "2899 The mbuf allocation failed\n");
6195 goto out_free_dmabuf;
6196 }
6197
6198 /* Cleanup any outstanding ELS commands */
6199 lpfc_els_flush_all_cmd(phba);
6200
6201 /* Block ELS IOCBs until we have done process link event */
6202 phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6203
6204 /* Update link event statistics */
6205 phba->sli.slistat.link_event++;
6206
6207 /* Create lpfc_handle_latt mailbox command from link ACQE */
6208 lpfc_read_topology(phba, pmb, mp);
6209 pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6210 pmb->vport = phba->pport;
6211
6212 if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6213 phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6214
6215 switch (phba->sli4_hba.link_state.status) {
6216 case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6217 phba->link_flag |= LS_MDS_LINK_DOWN;
6218 break;
6219 case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6220 phba->link_flag |= LS_MDS_LOOPBACK;
6221 break;
6222 default:
6223 break;
6224 }
6225
6226 /* Initialize completion status */
6227 mb = &pmb->u.mb;
6228 mb->mbxStatus = MBX_SUCCESS;
6229
6230 /* Parse port fault information field */
6231 lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6232
6233 /* Parse and translate link attention fields */
6234 la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6235 la->eventTag = acqe_fc->event_tag;
6236
6237 if (phba->sli4_hba.link_state.status ==
6238 LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6239 bf_set(lpfc_mbx_read_top_att_type, la,
6240 LPFC_FC_LA_TYPE_UNEXP_WWPN);
6241 } else {
6242 bf_set(lpfc_mbx_read_top_att_type, la,
6243 LPFC_FC_LA_TYPE_LINK_DOWN);
6244 }
6245 /* Invoke the mailbox command callback function */
6246 lpfc_mbx_cmpl_read_topology(phba, pmb);
6247
6248 return;
6249 }
6250
6251 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6252 if (rc == MBX_NOT_FINISHED) {
6253 lpfc_mbuf_free(phba, mp->virt, mp->phys);
6254 goto out_free_dmabuf;
6255 }
6256 return;
6257
6258 out_free_dmabuf:
6259 kfree(mp);
6260 out_free_pmb:
6261 mempool_free(pmb, phba->mbox_mem_pool);
6262 }
6263
6264 /**
6265 * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6266 * @phba: pointer to lpfc hba data structure.
6267 * @acqe_sli: pointer to the async SLI completion queue entry.
6268 *
6269 * This routine is to handle the SLI4 asynchronous SLI events.
6270 **/
6271 static void
lpfc_sli4_async_sli_evt(struct lpfc_hba * phba,struct lpfc_acqe_sli * acqe_sli)6272 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6273 {
6274 char port_name;
6275 char message[128];
6276 uint8_t status;
6277 uint8_t evt_type;
6278 uint8_t operational = 0;
6279 struct temp_event temp_event_data;
6280 struct lpfc_acqe_misconfigured_event *misconfigured;
6281 struct lpfc_acqe_cgn_signal *cgn_signal;
6282 struct Scsi_Host *shost;
6283 struct lpfc_vport **vports;
6284 int rc, i, cnt;
6285
6286 evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6287
6288 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6289 "2901 Async SLI event - Type:%d, Event Data: x%08x "
6290 "x%08x x%08x x%08x\n", evt_type,
6291 acqe_sli->event_data1, acqe_sli->event_data2,
6292 acqe_sli->reserved, acqe_sli->trailer);
6293
6294 port_name = phba->Port[0];
6295 if (port_name == 0x00)
6296 port_name = '?'; /* get port name is empty */
6297
6298 switch (evt_type) {
6299 case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6300 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6301 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6302 temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6303
6304 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6305 "3190 Over Temperature:%d Celsius- Port Name %c\n",
6306 acqe_sli->event_data1, port_name);
6307
6308 phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6309 shost = lpfc_shost_from_vport(phba->pport);
6310 fc_host_post_vendor_event(shost, fc_get_event_number(),
6311 sizeof(temp_event_data),
6312 (char *)&temp_event_data,
6313 SCSI_NL_VID_TYPE_PCI
6314 | PCI_VENDOR_ID_EMULEX);
6315 break;
6316 case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6317 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6318 temp_event_data.event_code = LPFC_NORMAL_TEMP;
6319 temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6320
6321 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6322 "3191 Normal Temperature:%d Celsius - Port Name %c\n",
6323 acqe_sli->event_data1, port_name);
6324
6325 shost = lpfc_shost_from_vport(phba->pport);
6326 fc_host_post_vendor_event(shost, fc_get_event_number(),
6327 sizeof(temp_event_data),
6328 (char *)&temp_event_data,
6329 SCSI_NL_VID_TYPE_PCI
6330 | PCI_VENDOR_ID_EMULEX);
6331 break;
6332 case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6333 misconfigured = (struct lpfc_acqe_misconfigured_event *)
6334 &acqe_sli->event_data1;
6335
6336 /* fetch the status for this port */
6337 switch (phba->sli4_hba.lnk_info.lnk_no) {
6338 case LPFC_LINK_NUMBER_0:
6339 status = bf_get(lpfc_sli_misconfigured_port0_state,
6340 &misconfigured->theEvent);
6341 operational = bf_get(lpfc_sli_misconfigured_port0_op,
6342 &misconfigured->theEvent);
6343 break;
6344 case LPFC_LINK_NUMBER_1:
6345 status = bf_get(lpfc_sli_misconfigured_port1_state,
6346 &misconfigured->theEvent);
6347 operational = bf_get(lpfc_sli_misconfigured_port1_op,
6348 &misconfigured->theEvent);
6349 break;
6350 case LPFC_LINK_NUMBER_2:
6351 status = bf_get(lpfc_sli_misconfigured_port2_state,
6352 &misconfigured->theEvent);
6353 operational = bf_get(lpfc_sli_misconfigured_port2_op,
6354 &misconfigured->theEvent);
6355 break;
6356 case LPFC_LINK_NUMBER_3:
6357 status = bf_get(lpfc_sli_misconfigured_port3_state,
6358 &misconfigured->theEvent);
6359 operational = bf_get(lpfc_sli_misconfigured_port3_op,
6360 &misconfigured->theEvent);
6361 break;
6362 default:
6363 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6364 "3296 "
6365 "LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6366 "event: Invalid link %d",
6367 phba->sli4_hba.lnk_info.lnk_no);
6368 return;
6369 }
6370
6371 /* Skip if optic state unchanged */
6372 if (phba->sli4_hba.lnk_info.optic_state == status)
6373 return;
6374
6375 switch (status) {
6376 case LPFC_SLI_EVENT_STATUS_VALID:
6377 sprintf(message, "Physical Link is functional");
6378 break;
6379 case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6380 sprintf(message, "Optics faulted/incorrectly "
6381 "installed/not installed - Reseat optics, "
6382 "if issue not resolved, replace.");
6383 break;
6384 case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6385 sprintf(message,
6386 "Optics of two types installed - Remove one "
6387 "optic or install matching pair of optics.");
6388 break;
6389 case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6390 sprintf(message, "Incompatible optics - Replace with "
6391 "compatible optics for card to function.");
6392 break;
6393 case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6394 sprintf(message, "Unqualified optics - Replace with "
6395 "Avago optics for Warranty and Technical "
6396 "Support - Link is%s operational",
6397 (operational) ? " not" : "");
6398 break;
6399 case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6400 sprintf(message, "Uncertified optics - Replace with "
6401 "Avago-certified optics to enable link "
6402 "operation - Link is%s operational",
6403 (operational) ? " not" : "");
6404 break;
6405 default:
6406 /* firmware is reporting a status we don't know about */
6407 sprintf(message, "Unknown event status x%02x", status);
6408 break;
6409 }
6410
6411 /* Issue READ_CONFIG mbox command to refresh supported speeds */
6412 rc = lpfc_sli4_read_config(phba);
6413 if (rc) {
6414 phba->lmt = 0;
6415 lpfc_printf_log(phba, KERN_ERR,
6416 LOG_TRACE_EVENT,
6417 "3194 Unable to retrieve supported "
6418 "speeds, rc = 0x%x\n", rc);
6419 }
6420 vports = lpfc_create_vport_work_array(phba);
6421 if (vports != NULL) {
6422 for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6423 i++) {
6424 shost = lpfc_shost_from_vport(vports[i]);
6425 lpfc_host_supported_speeds_set(shost);
6426 }
6427 }
6428 lpfc_destroy_vport_work_array(phba, vports);
6429
6430 phba->sli4_hba.lnk_info.optic_state = status;
6431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6432 "3176 Port Name %c %s\n", port_name, message);
6433 break;
6434 case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6435 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6436 "3192 Remote DPort Test Initiated - "
6437 "Event Data1:x%08x Event Data2: x%08x\n",
6438 acqe_sli->event_data1, acqe_sli->event_data2);
6439 break;
6440 case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6441 /* Call FW to obtain active parms */
6442 lpfc_sli4_cgn_parm_chg_evt(phba);
6443 break;
6444 case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6445 /* Misconfigured WWN. Reports that the SLI Port is configured
6446 * to use FA-WWN, but the attached device doesn’t support it.
6447 * No driver action is required.
6448 * Event Data1 - N.A, Event Data2 - N.A
6449 */
6450 lpfc_log_msg(phba, KERN_WARNING, LOG_SLI,
6451 "2699 Misconfigured FA-WWN - Attached device does "
6452 "not support FA-WWN\n");
6453 break;
6454 case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6455 /* EEPROM failure. No driver action is required */
6456 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6457 "2518 EEPROM failure - "
6458 "Event Data1: x%08x Event Data2: x%08x\n",
6459 acqe_sli->event_data1, acqe_sli->event_data2);
6460 break;
6461 case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6462 if (phba->cmf_active_mode == LPFC_CFG_OFF)
6463 break;
6464 cgn_signal = (struct lpfc_acqe_cgn_signal *)
6465 &acqe_sli->event_data1;
6466 phba->cgn_acqe_cnt++;
6467
6468 cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6469 atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6470 atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6471
6472 /* no threshold for CMF, even 1 signal will trigger an event */
6473
6474 /* Alarm overrides warning, so check that first */
6475 if (cgn_signal->alarm_cnt) {
6476 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6477 /* Keep track of alarm cnt for CMF_SYNC_WQE */
6478 atomic_add(cgn_signal->alarm_cnt,
6479 &phba->cgn_sync_alarm_cnt);
6480 }
6481 } else if (cnt) {
6482 /* signal action needs to be taken */
6483 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6484 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6485 /* Keep track of warning cnt for CMF_SYNC_WQE */
6486 atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6487 }
6488 }
6489 break;
6490 default:
6491 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6492 "3193 Unrecognized SLI event, type: 0x%x",
6493 evt_type);
6494 break;
6495 }
6496 }
6497
6498 /**
6499 * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6500 * @vport: pointer to vport data structure.
6501 *
6502 * This routine is to perform Clear Virtual Link (CVL) on a vport in
6503 * response to a CVL event.
6504 *
6505 * Return the pointer to the ndlp with the vport if successful, otherwise
6506 * return NULL.
6507 **/
6508 static struct lpfc_nodelist *
lpfc_sli4_perform_vport_cvl(struct lpfc_vport * vport)6509 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6510 {
6511 struct lpfc_nodelist *ndlp;
6512 struct Scsi_Host *shost;
6513 struct lpfc_hba *phba;
6514
6515 if (!vport)
6516 return NULL;
6517 phba = vport->phba;
6518 if (!phba)
6519 return NULL;
6520 ndlp = lpfc_findnode_did(vport, Fabric_DID);
6521 if (!ndlp) {
6522 /* Cannot find existing Fabric ndlp, so allocate a new one */
6523 ndlp = lpfc_nlp_init(vport, Fabric_DID);
6524 if (!ndlp)
6525 return 0;
6526 /* Set the node type */
6527 ndlp->nlp_type |= NLP_FABRIC;
6528 /* Put ndlp onto node list */
6529 lpfc_enqueue_node(vport, ndlp);
6530 }
6531 if ((phba->pport->port_state < LPFC_FLOGI) &&
6532 (phba->pport->port_state != LPFC_VPORT_FAILED))
6533 return NULL;
6534 /* If virtual link is not yet instantiated ignore CVL */
6535 if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6536 && (vport->port_state != LPFC_VPORT_FAILED))
6537 return NULL;
6538 shost = lpfc_shost_from_vport(vport);
6539 if (!shost)
6540 return NULL;
6541 lpfc_linkdown_port(vport);
6542 lpfc_cleanup_pending_mbox(vport);
6543 spin_lock_irq(shost->host_lock);
6544 vport->fc_flag |= FC_VPORT_CVL_RCVD;
6545 spin_unlock_irq(shost->host_lock);
6546
6547 return ndlp;
6548 }
6549
6550 /**
6551 * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6552 * @phba: pointer to lpfc hba data structure.
6553 *
6554 * This routine is to perform Clear Virtual Link (CVL) on all vports in
6555 * response to a FCF dead event.
6556 **/
6557 static void
lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba * phba)6558 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6559 {
6560 struct lpfc_vport **vports;
6561 int i;
6562
6563 vports = lpfc_create_vport_work_array(phba);
6564 if (vports)
6565 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6566 lpfc_sli4_perform_vport_cvl(vports[i]);
6567 lpfc_destroy_vport_work_array(phba, vports);
6568 }
6569
6570 /**
6571 * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6572 * @phba: pointer to lpfc hba data structure.
6573 * @acqe_fip: pointer to the async fcoe completion queue entry.
6574 *
6575 * This routine is to handle the SLI4 asynchronous fcoe event.
6576 **/
6577 static void
lpfc_sli4_async_fip_evt(struct lpfc_hba * phba,struct lpfc_acqe_fip * acqe_fip)6578 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6579 struct lpfc_acqe_fip *acqe_fip)
6580 {
6581 uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6582 int rc;
6583 struct lpfc_vport *vport;
6584 struct lpfc_nodelist *ndlp;
6585 int active_vlink_present;
6586 struct lpfc_vport **vports;
6587 int i;
6588
6589 phba->fc_eventTag = acqe_fip->event_tag;
6590 phba->fcoe_eventtag = acqe_fip->event_tag;
6591 switch (event_type) {
6592 case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6593 case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6594 if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6596 "2546 New FCF event, evt_tag:x%x, "
6597 "index:x%x\n",
6598 acqe_fip->event_tag,
6599 acqe_fip->index);
6600 else
6601 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6602 LOG_DISCOVERY,
6603 "2788 FCF param modified event, "
6604 "evt_tag:x%x, index:x%x\n",
6605 acqe_fip->event_tag,
6606 acqe_fip->index);
6607 if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6608 /*
6609 * During period of FCF discovery, read the FCF
6610 * table record indexed by the event to update
6611 * FCF roundrobin failover eligible FCF bmask.
6612 */
6613 lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6614 LOG_DISCOVERY,
6615 "2779 Read FCF (x%x) for updating "
6616 "roundrobin FCF failover bmask\n",
6617 acqe_fip->index);
6618 rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6619 }
6620
6621 /* If the FCF discovery is in progress, do nothing. */
6622 spin_lock_irq(&phba->hbalock);
6623 if (phba->hba_flag & FCF_TS_INPROG) {
6624 spin_unlock_irq(&phba->hbalock);
6625 break;
6626 }
6627 /* If fast FCF failover rescan event is pending, do nothing */
6628 if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6629 spin_unlock_irq(&phba->hbalock);
6630 break;
6631 }
6632
6633 /* If the FCF has been in discovered state, do nothing. */
6634 if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6635 spin_unlock_irq(&phba->hbalock);
6636 break;
6637 }
6638 spin_unlock_irq(&phba->hbalock);
6639
6640 /* Otherwise, scan the entire FCF table and re-discover SAN */
6641 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6642 "2770 Start FCF table scan per async FCF "
6643 "event, evt_tag:x%x, index:x%x\n",
6644 acqe_fip->event_tag, acqe_fip->index);
6645 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6646 LPFC_FCOE_FCF_GET_FIRST);
6647 if (rc)
6648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6649 "2547 Issue FCF scan read FCF mailbox "
6650 "command failed (x%x)\n", rc);
6651 break;
6652
6653 case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6654 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6655 "2548 FCF Table full count 0x%x tag 0x%x\n",
6656 bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6657 acqe_fip->event_tag);
6658 break;
6659
6660 case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6661 phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6662 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6663 "2549 FCF (x%x) disconnected from network, "
6664 "tag:x%x\n", acqe_fip->index,
6665 acqe_fip->event_tag);
6666 /*
6667 * If we are in the middle of FCF failover process, clear
6668 * the corresponding FCF bit in the roundrobin bitmap.
6669 */
6670 spin_lock_irq(&phba->hbalock);
6671 if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6672 (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6673 spin_unlock_irq(&phba->hbalock);
6674 /* Update FLOGI FCF failover eligible FCF bmask */
6675 lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6676 break;
6677 }
6678 spin_unlock_irq(&phba->hbalock);
6679
6680 /* If the event is not for currently used fcf do nothing */
6681 if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6682 break;
6683
6684 /*
6685 * Otherwise, request the port to rediscover the entire FCF
6686 * table for a fast recovery from case that the current FCF
6687 * is no longer valid as we are not in the middle of FCF
6688 * failover process already.
6689 */
6690 spin_lock_irq(&phba->hbalock);
6691 /* Mark the fast failover process in progress */
6692 phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6693 spin_unlock_irq(&phba->hbalock);
6694
6695 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6696 "2771 Start FCF fast failover process due to "
6697 "FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6698 "\n", acqe_fip->event_tag, acqe_fip->index);
6699 rc = lpfc_sli4_redisc_fcf_table(phba);
6700 if (rc) {
6701 lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6702 LOG_TRACE_EVENT,
6703 "2772 Issue FCF rediscover mailbox "
6704 "command failed, fail through to FCF "
6705 "dead event\n");
6706 spin_lock_irq(&phba->hbalock);
6707 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6708 spin_unlock_irq(&phba->hbalock);
6709 /*
6710 * Last resort will fail over by treating this
6711 * as a link down to FCF registration.
6712 */
6713 lpfc_sli4_fcf_dead_failthrough(phba);
6714 } else {
6715 /* Reset FCF roundrobin bmask for new discovery */
6716 lpfc_sli4_clear_fcf_rr_bmask(phba);
6717 /*
6718 * Handling fast FCF failover to a DEAD FCF event is
6719 * considered equalivant to receiving CVL to all vports.
6720 */
6721 lpfc_sli4_perform_all_vport_cvl(phba);
6722 }
6723 break;
6724 case LPFC_FIP_EVENT_TYPE_CVL:
6725 phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6726 lpfc_printf_log(phba, KERN_ERR,
6727 LOG_TRACE_EVENT,
6728 "2718 Clear Virtual Link Received for VPI 0x%x"
6729 " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6730
6731 vport = lpfc_find_vport_by_vpid(phba,
6732 acqe_fip->index);
6733 ndlp = lpfc_sli4_perform_vport_cvl(vport);
6734 if (!ndlp)
6735 break;
6736 active_vlink_present = 0;
6737
6738 vports = lpfc_create_vport_work_array(phba);
6739 if (vports) {
6740 for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6741 i++) {
6742 if ((!(vports[i]->fc_flag &
6743 FC_VPORT_CVL_RCVD)) &&
6744 (vports[i]->port_state > LPFC_FDISC)) {
6745 active_vlink_present = 1;
6746 break;
6747 }
6748 }
6749 lpfc_destroy_vport_work_array(phba, vports);
6750 }
6751
6752 /*
6753 * Don't re-instantiate if vport is marked for deletion.
6754 * If we are here first then vport_delete is going to wait
6755 * for discovery to complete.
6756 */
6757 if (!(vport->load_flag & FC_UNLOADING) &&
6758 active_vlink_present) {
6759 /*
6760 * If there are other active VLinks present,
6761 * re-instantiate the Vlink using FDISC.
6762 */
6763 mod_timer(&ndlp->nlp_delayfunc,
6764 jiffies + msecs_to_jiffies(1000));
6765 spin_lock_irq(&ndlp->lock);
6766 ndlp->nlp_flag |= NLP_DELAY_TMO;
6767 spin_unlock_irq(&ndlp->lock);
6768 ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6769 vport->port_state = LPFC_FDISC;
6770 } else {
6771 /*
6772 * Otherwise, we request port to rediscover
6773 * the entire FCF table for a fast recovery
6774 * from possible case that the current FCF
6775 * is no longer valid if we are not already
6776 * in the FCF failover process.
6777 */
6778 spin_lock_irq(&phba->hbalock);
6779 if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6780 spin_unlock_irq(&phba->hbalock);
6781 break;
6782 }
6783 /* Mark the fast failover process in progress */
6784 phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6785 spin_unlock_irq(&phba->hbalock);
6786 lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6787 LOG_DISCOVERY,
6788 "2773 Start FCF failover per CVL, "
6789 "evt_tag:x%x\n", acqe_fip->event_tag);
6790 rc = lpfc_sli4_redisc_fcf_table(phba);
6791 if (rc) {
6792 lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6793 LOG_TRACE_EVENT,
6794 "2774 Issue FCF rediscover "
6795 "mailbox command failed, "
6796 "through to CVL event\n");
6797 spin_lock_irq(&phba->hbalock);
6798 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6799 spin_unlock_irq(&phba->hbalock);
6800 /*
6801 * Last resort will be re-try on the
6802 * the current registered FCF entry.
6803 */
6804 lpfc_retry_pport_discovery(phba);
6805 } else
6806 /*
6807 * Reset FCF roundrobin bmask for new
6808 * discovery.
6809 */
6810 lpfc_sli4_clear_fcf_rr_bmask(phba);
6811 }
6812 break;
6813 default:
6814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6815 "0288 Unknown FCoE event type 0x%x event tag "
6816 "0x%x\n", event_type, acqe_fip->event_tag);
6817 break;
6818 }
6819 }
6820
6821 /**
6822 * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6823 * @phba: pointer to lpfc hba data structure.
6824 * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6825 *
6826 * This routine is to handle the SLI4 asynchronous dcbx event.
6827 **/
6828 static void
lpfc_sli4_async_dcbx_evt(struct lpfc_hba * phba,struct lpfc_acqe_dcbx * acqe_dcbx)6829 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6830 struct lpfc_acqe_dcbx *acqe_dcbx)
6831 {
6832 phba->fc_eventTag = acqe_dcbx->event_tag;
6833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6834 "0290 The SLI4 DCBX asynchronous event is not "
6835 "handled yet\n");
6836 }
6837
6838 /**
6839 * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6840 * @phba: pointer to lpfc hba data structure.
6841 * @acqe_grp5: pointer to the async grp5 completion queue entry.
6842 *
6843 * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6844 * is an asynchronous notified of a logical link speed change. The Port
6845 * reports the logical link speed in units of 10Mbps.
6846 **/
6847 static void
lpfc_sli4_async_grp5_evt(struct lpfc_hba * phba,struct lpfc_acqe_grp5 * acqe_grp5)6848 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6849 struct lpfc_acqe_grp5 *acqe_grp5)
6850 {
6851 uint16_t prev_ll_spd;
6852
6853 phba->fc_eventTag = acqe_grp5->event_tag;
6854 phba->fcoe_eventtag = acqe_grp5->event_tag;
6855 prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
6856 phba->sli4_hba.link_state.logical_speed =
6857 (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
6858 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6859 "2789 GRP5 Async Event: Updating logical link speed "
6860 "from %dMbps to %dMbps\n", prev_ll_spd,
6861 phba->sli4_hba.link_state.logical_speed);
6862 }
6863
6864 /**
6865 * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
6866 * @phba: pointer to lpfc hba data structure.
6867 *
6868 * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
6869 * is an asynchronous notification of a request to reset CM stats.
6870 **/
6871 static void
lpfc_sli4_async_cmstat_evt(struct lpfc_hba * phba)6872 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
6873 {
6874 if (!phba->cgn_i)
6875 return;
6876 lpfc_init_congestion_stat(phba);
6877 }
6878
6879 /**
6880 * lpfc_cgn_params_val - Validate FW congestion parameters.
6881 * @phba: pointer to lpfc hba data structure.
6882 * @p_cfg_param: pointer to FW provided congestion parameters.
6883 *
6884 * This routine validates the congestion parameters passed
6885 * by the FW to the driver via an ACQE event.
6886 **/
6887 static void
lpfc_cgn_params_val(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cfg_param)6888 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
6889 {
6890 spin_lock_irq(&phba->hbalock);
6891
6892 if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
6893 LPFC_CFG_MONITOR)) {
6894 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
6895 "6225 CMF mode param out of range: %d\n",
6896 p_cfg_param->cgn_param_mode);
6897 p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
6898 }
6899
6900 spin_unlock_irq(&phba->hbalock);
6901 }
6902
6903 /**
6904 * lpfc_cgn_params_parse - Process a FW cong parm change event
6905 * @phba: pointer to lpfc hba data structure.
6906 * @p_cgn_param: pointer to a data buffer with the FW cong params.
6907 * @len: the size of pdata in bytes.
6908 *
6909 * This routine validates the congestion management buffer signature
6910 * from the FW, validates the contents and makes corrections for
6911 * valid, in-range values. If the signature magic is correct and
6912 * after parameter validation, the contents are copied to the driver's
6913 * @phba structure. If the magic is incorrect, an error message is
6914 * logged.
6915 **/
6916 static void
lpfc_cgn_params_parse(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cgn_param,uint32_t len)6917 lpfc_cgn_params_parse(struct lpfc_hba *phba,
6918 struct lpfc_cgn_param *p_cgn_param, uint32_t len)
6919 {
6920 struct lpfc_cgn_info *cp;
6921 uint32_t crc, oldmode;
6922
6923 /* Make sure the FW has encoded the correct magic number to
6924 * validate the congestion parameter in FW memory.
6925 */
6926 if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
6927 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
6928 "4668 FW cgn parm buffer data: "
6929 "magic 0x%x version %d mode %d "
6930 "level0 %d level1 %d "
6931 "level2 %d byte13 %d "
6932 "byte14 %d byte15 %d "
6933 "byte11 %d byte12 %d activeMode %d\n",
6934 p_cgn_param->cgn_param_magic,
6935 p_cgn_param->cgn_param_version,
6936 p_cgn_param->cgn_param_mode,
6937 p_cgn_param->cgn_param_level0,
6938 p_cgn_param->cgn_param_level1,
6939 p_cgn_param->cgn_param_level2,
6940 p_cgn_param->byte13,
6941 p_cgn_param->byte14,
6942 p_cgn_param->byte15,
6943 p_cgn_param->byte11,
6944 p_cgn_param->byte12,
6945 phba->cmf_active_mode);
6946
6947 oldmode = phba->cmf_active_mode;
6948
6949 /* Any parameters out of range are corrected to defaults
6950 * by this routine. No need to fail.
6951 */
6952 lpfc_cgn_params_val(phba, p_cgn_param);
6953
6954 /* Parameters are verified, move them into driver storage */
6955 spin_lock_irq(&phba->hbalock);
6956 memcpy(&phba->cgn_p, p_cgn_param,
6957 sizeof(struct lpfc_cgn_param));
6958
6959 /* Update parameters in congestion info buffer now */
6960 if (phba->cgn_i) {
6961 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
6962 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
6963 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
6964 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
6965 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
6966 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
6967 LPFC_CGN_CRC32_SEED);
6968 cp->cgn_info_crc = cpu_to_le32(crc);
6969 }
6970 spin_unlock_irq(&phba->hbalock);
6971
6972 phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
6973
6974 switch (oldmode) {
6975 case LPFC_CFG_OFF:
6976 if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
6977 /* Turning CMF on */
6978 lpfc_cmf_start(phba);
6979
6980 if (phba->link_state >= LPFC_LINK_UP) {
6981 phba->cgn_reg_fpin =
6982 phba->cgn_init_reg_fpin;
6983 phba->cgn_reg_signal =
6984 phba->cgn_init_reg_signal;
6985 lpfc_issue_els_edc(phba->pport, 0);
6986 }
6987 }
6988 break;
6989 case LPFC_CFG_MANAGED:
6990 switch (phba->cgn_p.cgn_param_mode) {
6991 case LPFC_CFG_OFF:
6992 /* Turning CMF off */
6993 lpfc_cmf_stop(phba);
6994 if (phba->link_state >= LPFC_LINK_UP)
6995 lpfc_issue_els_edc(phba->pport, 0);
6996 break;
6997 case LPFC_CFG_MONITOR:
6998 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6999 "4661 Switch from MANAGED to "
7000 "`MONITOR mode\n");
7001 phba->cmf_max_bytes_per_interval =
7002 phba->cmf_link_byte_count;
7003
7004 /* Resume blocked IO - unblock on workqueue */
7005 queue_work(phba->wq,
7006 &phba->unblock_request_work);
7007 break;
7008 }
7009 break;
7010 case LPFC_CFG_MONITOR:
7011 switch (phba->cgn_p.cgn_param_mode) {
7012 case LPFC_CFG_OFF:
7013 /* Turning CMF off */
7014 lpfc_cmf_stop(phba);
7015 if (phba->link_state >= LPFC_LINK_UP)
7016 lpfc_issue_els_edc(phba->pport, 0);
7017 break;
7018 case LPFC_CFG_MANAGED:
7019 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7020 "4662 Switch from MONITOR to "
7021 "MANAGED mode\n");
7022 lpfc_cmf_signal_init(phba);
7023 break;
7024 }
7025 break;
7026 }
7027 } else {
7028 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7029 "4669 FW cgn parm buf wrong magic 0x%x "
7030 "version %d\n", p_cgn_param->cgn_param_magic,
7031 p_cgn_param->cgn_param_version);
7032 }
7033 }
7034
7035 /**
7036 * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7037 * @phba: pointer to lpfc hba data structure.
7038 *
7039 * This routine issues a read_object mailbox command to
7040 * get the congestion management parameters from the FW
7041 * parses it and updates the driver maintained values.
7042 *
7043 * Returns
7044 * 0 if the object was empty
7045 * -Eval if an error was encountered
7046 * Count if bytes were read from object
7047 **/
7048 int
lpfc_sli4_cgn_params_read(struct lpfc_hba * phba)7049 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7050 {
7051 int ret = 0;
7052 struct lpfc_cgn_param *p_cgn_param = NULL;
7053 u32 *pdata = NULL;
7054 u32 len = 0;
7055
7056 /* Find out if the FW has a new set of congestion parameters. */
7057 len = sizeof(struct lpfc_cgn_param);
7058 pdata = kzalloc(len, GFP_KERNEL);
7059 if (!pdata)
7060 return -ENOMEM;
7061 ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7062 pdata, len);
7063
7064 /* 0 means no data. A negative means error. A positive means
7065 * bytes were copied.
7066 */
7067 if (!ret) {
7068 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7069 "4670 CGN RD OBJ returns no data\n");
7070 goto rd_obj_err;
7071 } else if (ret < 0) {
7072 /* Some error. Just exit and return it to the caller.*/
7073 goto rd_obj_err;
7074 }
7075
7076 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7077 "6234 READ CGN PARAMS Successful %d\n", len);
7078
7079 /* Parse data pointer over len and update the phba congestion
7080 * parameters with values passed back. The receive rate values
7081 * may have been altered in FW, but take no action here.
7082 */
7083 p_cgn_param = (struct lpfc_cgn_param *)pdata;
7084 lpfc_cgn_params_parse(phba, p_cgn_param, len);
7085
7086 rd_obj_err:
7087 kfree(pdata);
7088 return ret;
7089 }
7090
7091 /**
7092 * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7093 * @phba: pointer to lpfc hba data structure.
7094 *
7095 * The FW generated Async ACQE SLI event calls this routine when
7096 * the event type is an SLI Internal Port Event and the Event Code
7097 * indicates a change to the FW maintained congestion parameters.
7098 *
7099 * This routine executes a Read_Object mailbox call to obtain the
7100 * current congestion parameters maintained in FW and corrects
7101 * the driver's active congestion parameters.
7102 *
7103 * The acqe event is not passed because there is no further data
7104 * required.
7105 *
7106 * Returns nonzero error if event processing encountered an error.
7107 * Zero otherwise for success.
7108 **/
7109 static int
lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba * phba)7110 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7111 {
7112 int ret = 0;
7113
7114 if (!phba->sli4_hba.pc_sli4_params.cmf) {
7115 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7116 "4664 Cgn Evt when E2E off. Drop event\n");
7117 return -EACCES;
7118 }
7119
7120 /* If the event is claiming an empty object, it's ok. A write
7121 * could have cleared it. Only error is a negative return
7122 * status.
7123 */
7124 ret = lpfc_sli4_cgn_params_read(phba);
7125 if (ret < 0) {
7126 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7127 "4667 Error reading Cgn Params (%d)\n",
7128 ret);
7129 } else if (!ret) {
7130 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7131 "4673 CGN Event empty object.\n");
7132 }
7133 return ret;
7134 }
7135
7136 /**
7137 * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7138 * @phba: pointer to lpfc hba data structure.
7139 *
7140 * This routine is invoked by the worker thread to process all the pending
7141 * SLI4 asynchronous events.
7142 **/
lpfc_sli4_async_event_proc(struct lpfc_hba * phba)7143 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7144 {
7145 struct lpfc_cq_event *cq_event;
7146 unsigned long iflags;
7147
7148 /* First, declare the async event has been handled */
7149 spin_lock_irqsave(&phba->hbalock, iflags);
7150 phba->hba_flag &= ~ASYNC_EVENT;
7151 spin_unlock_irqrestore(&phba->hbalock, iflags);
7152
7153 /* Now, handle all the async events */
7154 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7155 while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7156 list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7157 cq_event, struct lpfc_cq_event, list);
7158 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7159 iflags);
7160
7161 /* Process the asynchronous event */
7162 switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7163 case LPFC_TRAILER_CODE_LINK:
7164 lpfc_sli4_async_link_evt(phba,
7165 &cq_event->cqe.acqe_link);
7166 break;
7167 case LPFC_TRAILER_CODE_FCOE:
7168 lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7169 break;
7170 case LPFC_TRAILER_CODE_DCBX:
7171 lpfc_sli4_async_dcbx_evt(phba,
7172 &cq_event->cqe.acqe_dcbx);
7173 break;
7174 case LPFC_TRAILER_CODE_GRP5:
7175 lpfc_sli4_async_grp5_evt(phba,
7176 &cq_event->cqe.acqe_grp5);
7177 break;
7178 case LPFC_TRAILER_CODE_FC:
7179 lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7180 break;
7181 case LPFC_TRAILER_CODE_SLI:
7182 lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7183 break;
7184 case LPFC_TRAILER_CODE_CMSTAT:
7185 lpfc_sli4_async_cmstat_evt(phba);
7186 break;
7187 default:
7188 lpfc_printf_log(phba, KERN_ERR,
7189 LOG_TRACE_EVENT,
7190 "1804 Invalid asynchronous event code: "
7191 "x%x\n", bf_get(lpfc_trailer_code,
7192 &cq_event->cqe.mcqe_cmpl));
7193 break;
7194 }
7195
7196 /* Free the completion event processed to the free pool */
7197 lpfc_sli4_cq_event_release(phba, cq_event);
7198 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7199 }
7200 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7201 }
7202
7203 /**
7204 * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7205 * @phba: pointer to lpfc hba data structure.
7206 *
7207 * This routine is invoked by the worker thread to process FCF table
7208 * rediscovery pending completion event.
7209 **/
lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba * phba)7210 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7211 {
7212 int rc;
7213
7214 spin_lock_irq(&phba->hbalock);
7215 /* Clear FCF rediscovery timeout event */
7216 phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7217 /* Clear driver fast failover FCF record flag */
7218 phba->fcf.failover_rec.flag = 0;
7219 /* Set state for FCF fast failover */
7220 phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7221 spin_unlock_irq(&phba->hbalock);
7222
7223 /* Scan FCF table from the first entry to re-discover SAN */
7224 lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7225 "2777 Start post-quiescent FCF table scan\n");
7226 rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7227 if (rc)
7228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7229 "2747 Issue FCF scan read FCF mailbox "
7230 "command failed 0x%x\n", rc);
7231 }
7232
7233 /**
7234 * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7235 * @phba: pointer to lpfc hba data structure.
7236 * @dev_grp: The HBA PCI-Device group number.
7237 *
7238 * This routine is invoked to set up the per HBA PCI-Device group function
7239 * API jump table entries.
7240 *
7241 * Return: 0 if success, otherwise -ENODEV
7242 **/
7243 int
lpfc_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)7244 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7245 {
7246 int rc;
7247
7248 /* Set up lpfc PCI-device group */
7249 phba->pci_dev_grp = dev_grp;
7250
7251 /* The LPFC_PCI_DEV_OC uses SLI4 */
7252 if (dev_grp == LPFC_PCI_DEV_OC)
7253 phba->sli_rev = LPFC_SLI_REV4;
7254
7255 /* Set up device INIT API function jump table */
7256 rc = lpfc_init_api_table_setup(phba, dev_grp);
7257 if (rc)
7258 return -ENODEV;
7259 /* Set up SCSI API function jump table */
7260 rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7261 if (rc)
7262 return -ENODEV;
7263 /* Set up SLI API function jump table */
7264 rc = lpfc_sli_api_table_setup(phba, dev_grp);
7265 if (rc)
7266 return -ENODEV;
7267 /* Set up MBOX API function jump table */
7268 rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7269 if (rc)
7270 return -ENODEV;
7271
7272 return 0;
7273 }
7274
7275 /**
7276 * lpfc_log_intr_mode - Log the active interrupt mode
7277 * @phba: pointer to lpfc hba data structure.
7278 * @intr_mode: active interrupt mode adopted.
7279 *
7280 * This routine it invoked to log the currently used active interrupt mode
7281 * to the device.
7282 **/
lpfc_log_intr_mode(struct lpfc_hba * phba,uint32_t intr_mode)7283 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7284 {
7285 switch (intr_mode) {
7286 case 0:
7287 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7288 "0470 Enable INTx interrupt mode.\n");
7289 break;
7290 case 1:
7291 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7292 "0481 Enabled MSI interrupt mode.\n");
7293 break;
7294 case 2:
7295 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7296 "0480 Enabled MSI-X interrupt mode.\n");
7297 break;
7298 default:
7299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7300 "0482 Illegal interrupt mode.\n");
7301 break;
7302 }
7303 return;
7304 }
7305
7306 /**
7307 * lpfc_enable_pci_dev - Enable a generic PCI device.
7308 * @phba: pointer to lpfc hba data structure.
7309 *
7310 * This routine is invoked to enable the PCI device that is common to all
7311 * PCI devices.
7312 *
7313 * Return codes
7314 * 0 - successful
7315 * other values - error
7316 **/
7317 static int
lpfc_enable_pci_dev(struct lpfc_hba * phba)7318 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7319 {
7320 struct pci_dev *pdev;
7321
7322 /* Obtain PCI device reference */
7323 if (!phba->pcidev)
7324 goto out_error;
7325 else
7326 pdev = phba->pcidev;
7327 /* Enable PCI device */
7328 if (pci_enable_device_mem(pdev))
7329 goto out_error;
7330 /* Request PCI resource for the device */
7331 if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7332 goto out_disable_device;
7333 /* Set up device as PCI master and save state for EEH */
7334 pci_set_master(pdev);
7335 pci_try_set_mwi(pdev);
7336 pci_save_state(pdev);
7337
7338 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7339 if (pci_is_pcie(pdev))
7340 pdev->needs_freset = 1;
7341
7342 return 0;
7343
7344 out_disable_device:
7345 pci_disable_device(pdev);
7346 out_error:
7347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7348 "1401 Failed to enable pci device\n");
7349 return -ENODEV;
7350 }
7351
7352 /**
7353 * lpfc_disable_pci_dev - Disable a generic PCI device.
7354 * @phba: pointer to lpfc hba data structure.
7355 *
7356 * This routine is invoked to disable the PCI device that is common to all
7357 * PCI devices.
7358 **/
7359 static void
lpfc_disable_pci_dev(struct lpfc_hba * phba)7360 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7361 {
7362 struct pci_dev *pdev;
7363
7364 /* Obtain PCI device reference */
7365 if (!phba->pcidev)
7366 return;
7367 else
7368 pdev = phba->pcidev;
7369 /* Release PCI resource and disable PCI device */
7370 pci_release_mem_regions(pdev);
7371 pci_disable_device(pdev);
7372
7373 return;
7374 }
7375
7376 /**
7377 * lpfc_reset_hba - Reset a hba
7378 * @phba: pointer to lpfc hba data structure.
7379 *
7380 * This routine is invoked to reset a hba device. It brings the HBA
7381 * offline, performs a board restart, and then brings the board back
7382 * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7383 * on outstanding mailbox commands.
7384 **/
7385 void
lpfc_reset_hba(struct lpfc_hba * phba)7386 lpfc_reset_hba(struct lpfc_hba *phba)
7387 {
7388 /* If resets are disabled then set error state and return. */
7389 if (!phba->cfg_enable_hba_reset) {
7390 phba->link_state = LPFC_HBA_ERROR;
7391 return;
7392 }
7393
7394 /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7395 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7396 lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7397 } else {
7398 lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7399 lpfc_sli_flush_io_rings(phba);
7400 }
7401 lpfc_offline(phba);
7402 lpfc_sli_brdrestart(phba);
7403 lpfc_online(phba);
7404 lpfc_unblock_mgmt_io(phba);
7405 }
7406
7407 /**
7408 * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7409 * @phba: pointer to lpfc hba data structure.
7410 *
7411 * This function enables the PCI SR-IOV virtual functions to a physical
7412 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7413 * enable the number of virtual functions to the physical function. As
7414 * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7415 * API call does not considered as an error condition for most of the device.
7416 **/
7417 uint16_t
lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba * phba)7418 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7419 {
7420 struct pci_dev *pdev = phba->pcidev;
7421 uint16_t nr_virtfn;
7422 int pos;
7423
7424 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7425 if (pos == 0)
7426 return 0;
7427
7428 pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7429 return nr_virtfn;
7430 }
7431
7432 /**
7433 * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7434 * @phba: pointer to lpfc hba data structure.
7435 * @nr_vfn: number of virtual functions to be enabled.
7436 *
7437 * This function enables the PCI SR-IOV virtual functions to a physical
7438 * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7439 * enable the number of virtual functions to the physical function. As
7440 * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7441 * API call does not considered as an error condition for most of the device.
7442 **/
7443 int
lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba * phba,int nr_vfn)7444 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7445 {
7446 struct pci_dev *pdev = phba->pcidev;
7447 uint16_t max_nr_vfn;
7448 int rc;
7449
7450 max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7451 if (nr_vfn > max_nr_vfn) {
7452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7453 "3057 Requested vfs (%d) greater than "
7454 "supported vfs (%d)", nr_vfn, max_nr_vfn);
7455 return -EINVAL;
7456 }
7457
7458 rc = pci_enable_sriov(pdev, nr_vfn);
7459 if (rc) {
7460 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7461 "2806 Failed to enable sriov on this device "
7462 "with vfn number nr_vf:%d, rc:%d\n",
7463 nr_vfn, rc);
7464 } else
7465 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7466 "2807 Successful enable sriov on this device "
7467 "with vfn number nr_vf:%d\n", nr_vfn);
7468 return rc;
7469 }
7470
7471 static void
lpfc_unblock_requests_work(struct work_struct * work)7472 lpfc_unblock_requests_work(struct work_struct *work)
7473 {
7474 struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7475 unblock_request_work);
7476
7477 lpfc_unblock_requests(phba);
7478 }
7479
7480 /**
7481 * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7482 * @phba: pointer to lpfc hba data structure.
7483 *
7484 * This routine is invoked to set up the driver internal resources before the
7485 * device specific resource setup to support the HBA device it attached to.
7486 *
7487 * Return codes
7488 * 0 - successful
7489 * other values - error
7490 **/
7491 static int
lpfc_setup_driver_resource_phase1(struct lpfc_hba * phba)7492 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7493 {
7494 struct lpfc_sli *psli = &phba->sli;
7495
7496 /*
7497 * Driver resources common to all SLI revisions
7498 */
7499 atomic_set(&phba->fast_event_count, 0);
7500 atomic_set(&phba->dbg_log_idx, 0);
7501 atomic_set(&phba->dbg_log_cnt, 0);
7502 atomic_set(&phba->dbg_log_dmping, 0);
7503 spin_lock_init(&phba->hbalock);
7504
7505 /* Initialize port_list spinlock */
7506 spin_lock_init(&phba->port_list_lock);
7507 INIT_LIST_HEAD(&phba->port_list);
7508
7509 INIT_LIST_HEAD(&phba->work_list);
7510 init_waitqueue_head(&phba->wait_4_mlo_m_q);
7511
7512 /* Initialize the wait queue head for the kernel thread */
7513 init_waitqueue_head(&phba->work_waitq);
7514
7515 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7516 "1403 Protocols supported %s %s %s\n",
7517 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7518 "SCSI" : " "),
7519 ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7520 "NVME" : " "),
7521 (phba->nvmet_support ? "NVMET" : " "));
7522
7523 /* Initialize the IO buffer list used by driver for SLI3 SCSI */
7524 spin_lock_init(&phba->scsi_buf_list_get_lock);
7525 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7526 spin_lock_init(&phba->scsi_buf_list_put_lock);
7527 INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7528
7529 /* Initialize the fabric iocb list */
7530 INIT_LIST_HEAD(&phba->fabric_iocb_list);
7531
7532 /* Initialize list to save ELS buffers */
7533 INIT_LIST_HEAD(&phba->elsbuf);
7534
7535 /* Initialize FCF connection rec list */
7536 INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7537
7538 /* Initialize OAS configuration list */
7539 spin_lock_init(&phba->devicelock);
7540 INIT_LIST_HEAD(&phba->luns);
7541
7542 /* MBOX heartbeat timer */
7543 timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7544 /* Fabric block timer */
7545 timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7546 /* EA polling mode timer */
7547 timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7548 /* Heartbeat timer */
7549 timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7550
7551 INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7552
7553 INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7554 lpfc_idle_stat_delay_work);
7555 INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7556 return 0;
7557 }
7558
7559 /**
7560 * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7561 * @phba: pointer to lpfc hba data structure.
7562 *
7563 * This routine is invoked to set up the driver internal resources specific to
7564 * support the SLI-3 HBA device it attached to.
7565 *
7566 * Return codes
7567 * 0 - successful
7568 * other values - error
7569 **/
7570 static int
lpfc_sli_driver_resource_setup(struct lpfc_hba * phba)7571 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7572 {
7573 int rc, entry_sz;
7574
7575 /*
7576 * Initialize timers used by driver
7577 */
7578
7579 /* FCP polling mode timer */
7580 timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7581
7582 /* Host attention work mask setup */
7583 phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7584 phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7585
7586 /* Get all the module params for configuring this host */
7587 lpfc_get_cfgparam(phba);
7588 /* Set up phase-1 common device driver resources */
7589
7590 rc = lpfc_setup_driver_resource_phase1(phba);
7591 if (rc)
7592 return -ENODEV;
7593
7594 if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
7595 phba->menlo_flag |= HBA_MENLO_SUPPORT;
7596 /* check for menlo minimum sg count */
7597 if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
7598 phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
7599 }
7600
7601 if (!phba->sli.sli3_ring)
7602 phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7603 sizeof(struct lpfc_sli_ring),
7604 GFP_KERNEL);
7605 if (!phba->sli.sli3_ring)
7606 return -ENOMEM;
7607
7608 /*
7609 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7610 * used to create the sg_dma_buf_pool must be dynamically calculated.
7611 */
7612
7613 if (phba->sli_rev == LPFC_SLI_REV4)
7614 entry_sz = sizeof(struct sli4_sge);
7615 else
7616 entry_sz = sizeof(struct ulp_bde64);
7617
7618 /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7619 if (phba->cfg_enable_bg) {
7620 /*
7621 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7622 * the FCP rsp, and a BDE for each. Sice we have no control
7623 * over how many protection data segments the SCSI Layer
7624 * will hand us (ie: there could be one for every block
7625 * in the IO), we just allocate enough BDEs to accomidate
7626 * our max amount and we need to limit lpfc_sg_seg_cnt to
7627 * minimize the risk of running out.
7628 */
7629 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7630 sizeof(struct fcp_rsp) +
7631 (LPFC_MAX_SG_SEG_CNT * entry_sz);
7632
7633 if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7634 phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7635
7636 /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7637 phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7638 } else {
7639 /*
7640 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7641 * the FCP rsp, a BDE for each, and a BDE for up to
7642 * cfg_sg_seg_cnt data segments.
7643 */
7644 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7645 sizeof(struct fcp_rsp) +
7646 ((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7647
7648 /* Total BDEs in BPL for scsi_sg_list */
7649 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7650 }
7651
7652 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7653 "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7654 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7655 phba->cfg_total_seg_cnt);
7656
7657 phba->max_vpi = LPFC_MAX_VPI;
7658 /* This will be set to correct value after config_port mbox */
7659 phba->max_vports = 0;
7660
7661 /*
7662 * Initialize the SLI Layer to run with lpfc HBAs.
7663 */
7664 lpfc_sli_setup(phba);
7665 lpfc_sli_queue_init(phba);
7666
7667 /* Allocate device driver memory */
7668 if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7669 return -ENOMEM;
7670
7671 phba->lpfc_sg_dma_buf_pool =
7672 dma_pool_create("lpfc_sg_dma_buf_pool",
7673 &phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7674 BPL_ALIGN_SZ, 0);
7675
7676 if (!phba->lpfc_sg_dma_buf_pool)
7677 goto fail_free_mem;
7678
7679 phba->lpfc_cmd_rsp_buf_pool =
7680 dma_pool_create("lpfc_cmd_rsp_buf_pool",
7681 &phba->pcidev->dev,
7682 sizeof(struct fcp_cmnd) +
7683 sizeof(struct fcp_rsp),
7684 BPL_ALIGN_SZ, 0);
7685
7686 if (!phba->lpfc_cmd_rsp_buf_pool)
7687 goto fail_free_dma_buf_pool;
7688
7689 /*
7690 * Enable sr-iov virtual functions if supported and configured
7691 * through the module parameter.
7692 */
7693 if (phba->cfg_sriov_nr_virtfn > 0) {
7694 rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7695 phba->cfg_sriov_nr_virtfn);
7696 if (rc) {
7697 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7698 "2808 Requested number of SR-IOV "
7699 "virtual functions (%d) is not "
7700 "supported\n",
7701 phba->cfg_sriov_nr_virtfn);
7702 phba->cfg_sriov_nr_virtfn = 0;
7703 }
7704 }
7705
7706 return 0;
7707
7708 fail_free_dma_buf_pool:
7709 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7710 phba->lpfc_sg_dma_buf_pool = NULL;
7711 fail_free_mem:
7712 lpfc_mem_free(phba);
7713 return -ENOMEM;
7714 }
7715
7716 /**
7717 * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7718 * @phba: pointer to lpfc hba data structure.
7719 *
7720 * This routine is invoked to unset the driver internal resources set up
7721 * specific for supporting the SLI-3 HBA device it attached to.
7722 **/
7723 static void
lpfc_sli_driver_resource_unset(struct lpfc_hba * phba)7724 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7725 {
7726 /* Free device driver memory allocated */
7727 lpfc_mem_free_all(phba);
7728
7729 return;
7730 }
7731
7732 /**
7733 * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7734 * @phba: pointer to lpfc hba data structure.
7735 *
7736 * This routine is invoked to set up the driver internal resources specific to
7737 * support the SLI-4 HBA device it attached to.
7738 *
7739 * Return codes
7740 * 0 - successful
7741 * other values - error
7742 **/
7743 static int
lpfc_sli4_driver_resource_setup(struct lpfc_hba * phba)7744 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7745 {
7746 LPFC_MBOXQ_t *mboxq;
7747 MAILBOX_t *mb;
7748 int rc, i, max_buf_size;
7749 int longs;
7750 int extra;
7751 uint64_t wwn;
7752 u32 if_type;
7753 u32 if_fam;
7754
7755 phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7756 phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7757 phba->sli4_hba.curr_disp_cpu = 0;
7758
7759 /* Get all the module params for configuring this host */
7760 lpfc_get_cfgparam(phba);
7761
7762 /* Set up phase-1 common device driver resources */
7763 rc = lpfc_setup_driver_resource_phase1(phba);
7764 if (rc)
7765 return -ENODEV;
7766
7767 /* Before proceed, wait for POST done and device ready */
7768 rc = lpfc_sli4_post_status_check(phba);
7769 if (rc)
7770 return -ENODEV;
7771
7772 /* Allocate all driver workqueues here */
7773
7774 /* The lpfc_wq workqueue for deferred irq use */
7775 phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7776
7777 /*
7778 * Initialize timers used by driver
7779 */
7780
7781 timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7782
7783 /* FCF rediscover timer */
7784 timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7785
7786 /* CMF congestion timer */
7787 hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7788 phba->cmf_timer.function = lpfc_cmf_timer;
7789
7790 /*
7791 * Control structure for handling external multi-buffer mailbox
7792 * command pass-through.
7793 */
7794 memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7795 sizeof(struct lpfc_mbox_ext_buf_ctx));
7796 INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7797
7798 phba->max_vpi = LPFC_MAX_VPI;
7799
7800 /* This will be set to correct value after the read_config mbox */
7801 phba->max_vports = 0;
7802
7803 /* Program the default value of vlan_id and fc_map */
7804 phba->valid_vlan = 0;
7805 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7806 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7807 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7808
7809 /*
7810 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7811 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7812 * The WQ create will allocate the ring.
7813 */
7814
7815 /* Initialize buffer queue management fields */
7816 INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7817 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7818 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7819
7820 /* for VMID idle timeout if VMID is enabled */
7821 if (lpfc_is_vmid_enabled(phba))
7822 timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7823
7824 /*
7825 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7826 */
7827 /* Initialize the Abort buffer list used by driver */
7828 spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7829 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
7830
7831 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
7832 /* Initialize the Abort nvme buffer list used by driver */
7833 spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
7834 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
7835 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
7836 spin_lock_init(&phba->sli4_hba.t_active_list_lock);
7837 INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
7838 }
7839
7840 /* This abort list used by worker thread */
7841 spin_lock_init(&phba->sli4_hba.sgl_list_lock);
7842 spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
7843 spin_lock_init(&phba->sli4_hba.asynce_list_lock);
7844 spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
7845
7846 /*
7847 * Initialize driver internal slow-path work queues
7848 */
7849
7850 /* Driver internel slow-path CQ Event pool */
7851 INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
7852 /* Response IOCB work queue list */
7853 INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
7854 /* Asynchronous event CQ Event work queue list */
7855 INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
7856 /* Slow-path XRI aborted CQ Event work queue list */
7857 INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
7858 /* Receive queue CQ Event work queue list */
7859 INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
7860
7861 /* Initialize extent block lists. */
7862 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
7863 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
7864 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
7865 INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
7866
7867 /* Initialize mboxq lists. If the early init routines fail
7868 * these lists need to be correctly initialized.
7869 */
7870 INIT_LIST_HEAD(&phba->sli.mboxq);
7871 INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
7872
7873 /* initialize optic_state to 0xFF */
7874 phba->sli4_hba.lnk_info.optic_state = 0xff;
7875
7876 /* Allocate device driver memory */
7877 rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
7878 if (rc)
7879 goto out_destroy_workqueue;
7880
7881 /* IF Type 2 ports get initialized now. */
7882 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
7883 LPFC_SLI_INTF_IF_TYPE_2) {
7884 rc = lpfc_pci_function_reset(phba);
7885 if (unlikely(rc)) {
7886 rc = -ENODEV;
7887 goto out_free_mem;
7888 }
7889 phba->temp_sensor_support = 1;
7890 }
7891
7892 /* Create the bootstrap mailbox command */
7893 rc = lpfc_create_bootstrap_mbox(phba);
7894 if (unlikely(rc))
7895 goto out_free_mem;
7896
7897 /* Set up the host's endian order with the device. */
7898 rc = lpfc_setup_endian_order(phba);
7899 if (unlikely(rc))
7900 goto out_free_bsmbx;
7901
7902 /* Set up the hba's configuration parameters. */
7903 rc = lpfc_sli4_read_config(phba);
7904 if (unlikely(rc))
7905 goto out_free_bsmbx;
7906 rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
7907 if (unlikely(rc))
7908 goto out_free_bsmbx;
7909
7910 /* IF Type 0 ports get initialized now. */
7911 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7912 LPFC_SLI_INTF_IF_TYPE_0) {
7913 rc = lpfc_pci_function_reset(phba);
7914 if (unlikely(rc))
7915 goto out_free_bsmbx;
7916 }
7917
7918 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
7919 GFP_KERNEL);
7920 if (!mboxq) {
7921 rc = -ENOMEM;
7922 goto out_free_bsmbx;
7923 }
7924
7925 /* Check for NVMET being configured */
7926 phba->nvmet_support = 0;
7927 if (lpfc_enable_nvmet_cnt) {
7928
7929 /* First get WWN of HBA instance */
7930 lpfc_read_nv(phba, mboxq);
7931 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7932 if (rc != MBX_SUCCESS) {
7933 lpfc_printf_log(phba, KERN_ERR,
7934 LOG_TRACE_EVENT,
7935 "6016 Mailbox failed , mbxCmd x%x "
7936 "READ_NV, mbxStatus x%x\n",
7937 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7938 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
7939 mempool_free(mboxq, phba->mbox_mem_pool);
7940 rc = -EIO;
7941 goto out_free_bsmbx;
7942 }
7943 mb = &mboxq->u.mb;
7944 memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
7945 sizeof(uint64_t));
7946 wwn = cpu_to_be64(wwn);
7947 phba->sli4_hba.wwnn.u.name = wwn;
7948 memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
7949 sizeof(uint64_t));
7950 /* wwn is WWPN of HBA instance */
7951 wwn = cpu_to_be64(wwn);
7952 phba->sli4_hba.wwpn.u.name = wwn;
7953
7954 /* Check to see if it matches any module parameter */
7955 for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
7956 if (wwn == lpfc_enable_nvmet[i]) {
7957 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
7958 if (lpfc_nvmet_mem_alloc(phba))
7959 break;
7960
7961 phba->nvmet_support = 1; /* a match */
7962
7963 lpfc_printf_log(phba, KERN_ERR,
7964 LOG_TRACE_EVENT,
7965 "6017 NVME Target %016llx\n",
7966 wwn);
7967 #else
7968 lpfc_printf_log(phba, KERN_ERR,
7969 LOG_TRACE_EVENT,
7970 "6021 Can't enable NVME Target."
7971 " NVME_TARGET_FC infrastructure"
7972 " is not in kernel\n");
7973 #endif
7974 /* Not supported for NVMET */
7975 phba->cfg_xri_rebalancing = 0;
7976 if (phba->irq_chann_mode == NHT_MODE) {
7977 phba->cfg_irq_chann =
7978 phba->sli4_hba.num_present_cpu;
7979 phba->cfg_hdw_queue =
7980 phba->sli4_hba.num_present_cpu;
7981 phba->irq_chann_mode = NORMAL_MODE;
7982 }
7983 break;
7984 }
7985 }
7986 }
7987
7988 lpfc_nvme_mod_param_dep(phba);
7989
7990 /*
7991 * Get sli4 parameters that override parameters from Port capabilities.
7992 * If this call fails, it isn't critical unless the SLI4 parameters come
7993 * back in conflict.
7994 */
7995 rc = lpfc_get_sli4_parameters(phba, mboxq);
7996 if (rc) {
7997 if_type = bf_get(lpfc_sli_intf_if_type,
7998 &phba->sli4_hba.sli_intf);
7999 if_fam = bf_get(lpfc_sli_intf_sli_family,
8000 &phba->sli4_hba.sli_intf);
8001 if (phba->sli4_hba.extents_in_use &&
8002 phba->sli4_hba.rpi_hdrs_in_use) {
8003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8004 "2999 Unsupported SLI4 Parameters "
8005 "Extents and RPI headers enabled.\n");
8006 if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8007 if_fam == LPFC_SLI_INTF_FAMILY_BE2) {
8008 mempool_free(mboxq, phba->mbox_mem_pool);
8009 rc = -EIO;
8010 goto out_free_bsmbx;
8011 }
8012 }
8013 if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8014 if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8015 mempool_free(mboxq, phba->mbox_mem_pool);
8016 rc = -EIO;
8017 goto out_free_bsmbx;
8018 }
8019 }
8020
8021 /*
8022 * 1 for cmd, 1 for rsp, NVME adds an extra one
8023 * for boundary conditions in its max_sgl_segment template.
8024 */
8025 extra = 2;
8026 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8027 extra++;
8028
8029 /*
8030 * It doesn't matter what family our adapter is in, we are
8031 * limited to 2 Pages, 512 SGEs, for our SGL.
8032 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8033 */
8034 max_buf_size = (2 * SLI4_PAGE_SIZE);
8035
8036 /*
8037 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8038 * used to create the sg_dma_buf_pool must be calculated.
8039 */
8040 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8041 /* Both cfg_enable_bg and cfg_external_dif code paths */
8042
8043 /*
8044 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8045 * the FCP rsp, and a SGE. Sice we have no control
8046 * over how many protection segments the SCSI Layer
8047 * will hand us (ie: there could be one for every block
8048 * in the IO), just allocate enough SGEs to accomidate
8049 * our max amount and we need to limit lpfc_sg_seg_cnt
8050 * to minimize the risk of running out.
8051 */
8052 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8053 sizeof(struct fcp_rsp) + max_buf_size;
8054
8055 /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8056 phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8057
8058 /*
8059 * If supporting DIF, reduce the seg count for scsi to
8060 * allow room for the DIF sges.
8061 */
8062 if (phba->cfg_enable_bg &&
8063 phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8064 phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8065 else
8066 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8067
8068 } else {
8069 /*
8070 * The scsi_buf for a regular I/O holds the FCP cmnd,
8071 * the FCP rsp, a SGE for each, and a SGE for up to
8072 * cfg_sg_seg_cnt data segments.
8073 */
8074 phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8075 sizeof(struct fcp_rsp) +
8076 ((phba->cfg_sg_seg_cnt + extra) *
8077 sizeof(struct sli4_sge));
8078
8079 /* Total SGEs for scsi_sg_list */
8080 phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8081 phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8082
8083 /*
8084 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8085 * need to post 1 page for the SGL.
8086 */
8087 }
8088
8089 if (phba->cfg_xpsgl && !phba->nvmet_support)
8090 phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8091 else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ)
8092 phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8093 else
8094 phba->cfg_sg_dma_buf_size =
8095 SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8096
8097 phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8098 sizeof(struct sli4_sge);
8099
8100 /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8101 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8102 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8103 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8104 "6300 Reducing NVME sg segment "
8105 "cnt to %d\n",
8106 LPFC_MAX_NVME_SEG_CNT);
8107 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8108 } else
8109 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8110 }
8111
8112 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8113 "9087 sg_seg_cnt:%d dmabuf_size:%d "
8114 "total:%d scsi:%d nvme:%d\n",
8115 phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8116 phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt,
8117 phba->cfg_nvme_seg_cnt);
8118
8119 if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8120 i = phba->cfg_sg_dma_buf_size;
8121 else
8122 i = SLI4_PAGE_SIZE;
8123
8124 phba->lpfc_sg_dma_buf_pool =
8125 dma_pool_create("lpfc_sg_dma_buf_pool",
8126 &phba->pcidev->dev,
8127 phba->cfg_sg_dma_buf_size,
8128 i, 0);
8129 if (!phba->lpfc_sg_dma_buf_pool)
8130 goto out_free_bsmbx;
8131
8132 phba->lpfc_cmd_rsp_buf_pool =
8133 dma_pool_create("lpfc_cmd_rsp_buf_pool",
8134 &phba->pcidev->dev,
8135 sizeof(struct fcp_cmnd) +
8136 sizeof(struct fcp_rsp),
8137 i, 0);
8138 if (!phba->lpfc_cmd_rsp_buf_pool)
8139 goto out_free_sg_dma_buf;
8140
8141 mempool_free(mboxq, phba->mbox_mem_pool);
8142
8143 /* Verify OAS is supported */
8144 lpfc_sli4_oas_verify(phba);
8145
8146 /* Verify RAS support on adapter */
8147 lpfc_sli4_ras_init(phba);
8148
8149 /* Verify all the SLI4 queues */
8150 rc = lpfc_sli4_queue_verify(phba);
8151 if (rc)
8152 goto out_free_cmd_rsp_buf;
8153
8154 /* Create driver internal CQE event pool */
8155 rc = lpfc_sli4_cq_event_pool_create(phba);
8156 if (rc)
8157 goto out_free_cmd_rsp_buf;
8158
8159 /* Initialize sgl lists per host */
8160 lpfc_init_sgl_list(phba);
8161
8162 /* Allocate and initialize active sgl array */
8163 rc = lpfc_init_active_sgl_array(phba);
8164 if (rc) {
8165 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8166 "1430 Failed to initialize sgl list.\n");
8167 goto out_destroy_cq_event_pool;
8168 }
8169 rc = lpfc_sli4_init_rpi_hdrs(phba);
8170 if (rc) {
8171 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8172 "1432 Failed to initialize rpi headers.\n");
8173 goto out_free_active_sgl;
8174 }
8175
8176 /* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8177 longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8178 phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8179 GFP_KERNEL);
8180 if (!phba->fcf.fcf_rr_bmask) {
8181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8182 "2759 Failed allocate memory for FCF round "
8183 "robin failover bmask\n");
8184 rc = -ENOMEM;
8185 goto out_remove_rpi_hdrs;
8186 }
8187
8188 phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8189 sizeof(struct lpfc_hba_eq_hdl),
8190 GFP_KERNEL);
8191 if (!phba->sli4_hba.hba_eq_hdl) {
8192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8193 "2572 Failed allocate memory for "
8194 "fast-path per-EQ handle array\n");
8195 rc = -ENOMEM;
8196 goto out_free_fcf_rr_bmask;
8197 }
8198
8199 phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8200 sizeof(struct lpfc_vector_map_info),
8201 GFP_KERNEL);
8202 if (!phba->sli4_hba.cpu_map) {
8203 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8204 "3327 Failed allocate memory for msi-x "
8205 "interrupt vector mapping\n");
8206 rc = -ENOMEM;
8207 goto out_free_hba_eq_hdl;
8208 }
8209
8210 phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8211 if (!phba->sli4_hba.eq_info) {
8212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8213 "3321 Failed allocation for per_cpu stats\n");
8214 rc = -ENOMEM;
8215 goto out_free_hba_cpu_map;
8216 }
8217
8218 phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8219 sizeof(*phba->sli4_hba.idle_stat),
8220 GFP_KERNEL);
8221 if (!phba->sli4_hba.idle_stat) {
8222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8223 "3390 Failed allocation for idle_stat\n");
8224 rc = -ENOMEM;
8225 goto out_free_hba_eq_info;
8226 }
8227
8228 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8229 phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8230 if (!phba->sli4_hba.c_stat) {
8231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8232 "3332 Failed allocating per cpu hdwq stats\n");
8233 rc = -ENOMEM;
8234 goto out_free_hba_idle_stat;
8235 }
8236 #endif
8237
8238 phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8239 if (!phba->cmf_stat) {
8240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8241 "3331 Failed allocating per cpu cgn stats\n");
8242 rc = -ENOMEM;
8243 goto out_free_hba_hdwq_info;
8244 }
8245
8246 /*
8247 * Enable sr-iov virtual functions if supported and configured
8248 * through the module parameter.
8249 */
8250 if (phba->cfg_sriov_nr_virtfn > 0) {
8251 rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8252 phba->cfg_sriov_nr_virtfn);
8253 if (rc) {
8254 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8255 "3020 Requested number of SR-IOV "
8256 "virtual functions (%d) is not "
8257 "supported\n",
8258 phba->cfg_sriov_nr_virtfn);
8259 phba->cfg_sriov_nr_virtfn = 0;
8260 }
8261 }
8262
8263 return 0;
8264
8265 out_free_hba_hdwq_info:
8266 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8267 free_percpu(phba->sli4_hba.c_stat);
8268 out_free_hba_idle_stat:
8269 #endif
8270 kfree(phba->sli4_hba.idle_stat);
8271 out_free_hba_eq_info:
8272 free_percpu(phba->sli4_hba.eq_info);
8273 out_free_hba_cpu_map:
8274 kfree(phba->sli4_hba.cpu_map);
8275 out_free_hba_eq_hdl:
8276 kfree(phba->sli4_hba.hba_eq_hdl);
8277 out_free_fcf_rr_bmask:
8278 kfree(phba->fcf.fcf_rr_bmask);
8279 out_remove_rpi_hdrs:
8280 lpfc_sli4_remove_rpi_hdrs(phba);
8281 out_free_active_sgl:
8282 lpfc_free_active_sgl(phba);
8283 out_destroy_cq_event_pool:
8284 lpfc_sli4_cq_event_pool_destroy(phba);
8285 out_free_cmd_rsp_buf:
8286 dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8287 phba->lpfc_cmd_rsp_buf_pool = NULL;
8288 out_free_sg_dma_buf:
8289 dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8290 phba->lpfc_sg_dma_buf_pool = NULL;
8291 out_free_bsmbx:
8292 lpfc_destroy_bootstrap_mbox(phba);
8293 out_free_mem:
8294 lpfc_mem_free(phba);
8295 out_destroy_workqueue:
8296 destroy_workqueue(phba->wq);
8297 phba->wq = NULL;
8298 return rc;
8299 }
8300
8301 /**
8302 * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8303 * @phba: pointer to lpfc hba data structure.
8304 *
8305 * This routine is invoked to unset the driver internal resources set up
8306 * specific for supporting the SLI-4 HBA device it attached to.
8307 **/
8308 static void
lpfc_sli4_driver_resource_unset(struct lpfc_hba * phba)8309 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8310 {
8311 struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8312
8313 free_percpu(phba->sli4_hba.eq_info);
8314 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8315 free_percpu(phba->sli4_hba.c_stat);
8316 #endif
8317 free_percpu(phba->cmf_stat);
8318 kfree(phba->sli4_hba.idle_stat);
8319
8320 /* Free memory allocated for msi-x interrupt vector to CPU mapping */
8321 kfree(phba->sli4_hba.cpu_map);
8322 phba->sli4_hba.num_possible_cpu = 0;
8323 phba->sli4_hba.num_present_cpu = 0;
8324 phba->sli4_hba.curr_disp_cpu = 0;
8325 cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8326
8327 /* Free memory allocated for fast-path work queue handles */
8328 kfree(phba->sli4_hba.hba_eq_hdl);
8329
8330 /* Free the allocated rpi headers. */
8331 lpfc_sli4_remove_rpi_hdrs(phba);
8332 lpfc_sli4_remove_rpis(phba);
8333
8334 /* Free eligible FCF index bmask */
8335 kfree(phba->fcf.fcf_rr_bmask);
8336
8337 /* Free the ELS sgl list */
8338 lpfc_free_active_sgl(phba);
8339 lpfc_free_els_sgl_list(phba);
8340 lpfc_free_nvmet_sgl_list(phba);
8341
8342 /* Free the completion queue EQ event pool */
8343 lpfc_sli4_cq_event_release_all(phba);
8344 lpfc_sli4_cq_event_pool_destroy(phba);
8345
8346 /* Release resource identifiers. */
8347 lpfc_sli4_dealloc_resource_identifiers(phba);
8348
8349 /* Free the bsmbx region. */
8350 lpfc_destroy_bootstrap_mbox(phba);
8351
8352 /* Free the SLI Layer memory with SLI4 HBAs */
8353 lpfc_mem_free_all(phba);
8354
8355 /* Free the current connect table */
8356 list_for_each_entry_safe(conn_entry, next_conn_entry,
8357 &phba->fcf_conn_rec_list, list) {
8358 list_del_init(&conn_entry->list);
8359 kfree(conn_entry);
8360 }
8361
8362 return;
8363 }
8364
8365 /**
8366 * lpfc_init_api_table_setup - Set up init api function jump table
8367 * @phba: The hba struct for which this call is being executed.
8368 * @dev_grp: The HBA PCI-Device group number.
8369 *
8370 * This routine sets up the device INIT interface API function jump table
8371 * in @phba struct.
8372 *
8373 * Returns: 0 - success, -ENODEV - failure.
8374 **/
8375 int
lpfc_init_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)8376 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8377 {
8378 phba->lpfc_hba_init_link = lpfc_hba_init_link;
8379 phba->lpfc_hba_down_link = lpfc_hba_down_link;
8380 phba->lpfc_selective_reset = lpfc_selective_reset;
8381 switch (dev_grp) {
8382 case LPFC_PCI_DEV_LP:
8383 phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8384 phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8385 phba->lpfc_stop_port = lpfc_stop_port_s3;
8386 break;
8387 case LPFC_PCI_DEV_OC:
8388 phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8389 phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8390 phba->lpfc_stop_port = lpfc_stop_port_s4;
8391 break;
8392 default:
8393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8394 "1431 Invalid HBA PCI-device group: 0x%x\n",
8395 dev_grp);
8396 return -ENODEV;
8397 }
8398 return 0;
8399 }
8400
8401 /**
8402 * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8403 * @phba: pointer to lpfc hba data structure.
8404 *
8405 * This routine is invoked to set up the driver internal resources after the
8406 * device specific resource setup to support the HBA device it attached to.
8407 *
8408 * Return codes
8409 * 0 - successful
8410 * other values - error
8411 **/
8412 static int
lpfc_setup_driver_resource_phase2(struct lpfc_hba * phba)8413 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8414 {
8415 int error;
8416
8417 /* Startup the kernel thread for this host adapter. */
8418 phba->worker_thread = kthread_run(lpfc_do_work, phba,
8419 "lpfc_worker_%d", phba->brd_no);
8420 if (IS_ERR(phba->worker_thread)) {
8421 error = PTR_ERR(phba->worker_thread);
8422 return error;
8423 }
8424
8425 return 0;
8426 }
8427
8428 /**
8429 * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8430 * @phba: pointer to lpfc hba data structure.
8431 *
8432 * This routine is invoked to unset the driver internal resources set up after
8433 * the device specific resource setup for supporting the HBA device it
8434 * attached to.
8435 **/
8436 static void
lpfc_unset_driver_resource_phase2(struct lpfc_hba * phba)8437 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8438 {
8439 if (phba->wq) {
8440 flush_workqueue(phba->wq);
8441 destroy_workqueue(phba->wq);
8442 phba->wq = NULL;
8443 }
8444
8445 /* Stop kernel worker thread */
8446 if (phba->worker_thread)
8447 kthread_stop(phba->worker_thread);
8448 }
8449
8450 /**
8451 * lpfc_free_iocb_list - Free iocb list.
8452 * @phba: pointer to lpfc hba data structure.
8453 *
8454 * This routine is invoked to free the driver's IOCB list and memory.
8455 **/
8456 void
lpfc_free_iocb_list(struct lpfc_hba * phba)8457 lpfc_free_iocb_list(struct lpfc_hba *phba)
8458 {
8459 struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8460
8461 spin_lock_irq(&phba->hbalock);
8462 list_for_each_entry_safe(iocbq_entry, iocbq_next,
8463 &phba->lpfc_iocb_list, list) {
8464 list_del(&iocbq_entry->list);
8465 kfree(iocbq_entry);
8466 phba->total_iocbq_bufs--;
8467 }
8468 spin_unlock_irq(&phba->hbalock);
8469
8470 return;
8471 }
8472
8473 /**
8474 * lpfc_init_iocb_list - Allocate and initialize iocb list.
8475 * @phba: pointer to lpfc hba data structure.
8476 * @iocb_count: number of requested iocbs
8477 *
8478 * This routine is invoked to allocate and initizlize the driver's IOCB
8479 * list and set up the IOCB tag array accordingly.
8480 *
8481 * Return codes
8482 * 0 - successful
8483 * other values - error
8484 **/
8485 int
lpfc_init_iocb_list(struct lpfc_hba * phba,int iocb_count)8486 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8487 {
8488 struct lpfc_iocbq *iocbq_entry = NULL;
8489 uint16_t iotag;
8490 int i;
8491
8492 /* Initialize and populate the iocb list per host. */
8493 INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8494 for (i = 0; i < iocb_count; i++) {
8495 iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8496 if (iocbq_entry == NULL) {
8497 printk(KERN_ERR "%s: only allocated %d iocbs of "
8498 "expected %d count. Unloading driver.\n",
8499 __func__, i, iocb_count);
8500 goto out_free_iocbq;
8501 }
8502
8503 iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8504 if (iotag == 0) {
8505 kfree(iocbq_entry);
8506 printk(KERN_ERR "%s: failed to allocate IOTAG. "
8507 "Unloading driver.\n", __func__);
8508 goto out_free_iocbq;
8509 }
8510 iocbq_entry->sli4_lxritag = NO_XRI;
8511 iocbq_entry->sli4_xritag = NO_XRI;
8512
8513 spin_lock_irq(&phba->hbalock);
8514 list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8515 phba->total_iocbq_bufs++;
8516 spin_unlock_irq(&phba->hbalock);
8517 }
8518
8519 return 0;
8520
8521 out_free_iocbq:
8522 lpfc_free_iocb_list(phba);
8523
8524 return -ENOMEM;
8525 }
8526
8527 /**
8528 * lpfc_free_sgl_list - Free a given sgl list.
8529 * @phba: pointer to lpfc hba data structure.
8530 * @sglq_list: pointer to the head of sgl list.
8531 *
8532 * This routine is invoked to free a give sgl list and memory.
8533 **/
8534 void
lpfc_free_sgl_list(struct lpfc_hba * phba,struct list_head * sglq_list)8535 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8536 {
8537 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8538
8539 list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8540 list_del(&sglq_entry->list);
8541 lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8542 kfree(sglq_entry);
8543 }
8544 }
8545
8546 /**
8547 * lpfc_free_els_sgl_list - Free els sgl list.
8548 * @phba: pointer to lpfc hba data structure.
8549 *
8550 * This routine is invoked to free the driver's els sgl list and memory.
8551 **/
8552 static void
lpfc_free_els_sgl_list(struct lpfc_hba * phba)8553 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8554 {
8555 LIST_HEAD(sglq_list);
8556
8557 /* Retrieve all els sgls from driver list */
8558 spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8559 list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8560 spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8561
8562 /* Now free the sgl list */
8563 lpfc_free_sgl_list(phba, &sglq_list);
8564 }
8565
8566 /**
8567 * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8568 * @phba: pointer to lpfc hba data structure.
8569 *
8570 * This routine is invoked to free the driver's nvmet sgl list and memory.
8571 **/
8572 static void
lpfc_free_nvmet_sgl_list(struct lpfc_hba * phba)8573 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8574 {
8575 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8576 LIST_HEAD(sglq_list);
8577
8578 /* Retrieve all nvmet sgls from driver list */
8579 spin_lock_irq(&phba->hbalock);
8580 spin_lock(&phba->sli4_hba.sgl_list_lock);
8581 list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8582 spin_unlock(&phba->sli4_hba.sgl_list_lock);
8583 spin_unlock_irq(&phba->hbalock);
8584
8585 /* Now free the sgl list */
8586 list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8587 list_del(&sglq_entry->list);
8588 lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8589 kfree(sglq_entry);
8590 }
8591
8592 /* Update the nvmet_xri_cnt to reflect no current sgls.
8593 * The next initialization cycle sets the count and allocates
8594 * the sgls over again.
8595 */
8596 phba->sli4_hba.nvmet_xri_cnt = 0;
8597 }
8598
8599 /**
8600 * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8601 * @phba: pointer to lpfc hba data structure.
8602 *
8603 * This routine is invoked to allocate the driver's active sgl memory.
8604 * This array will hold the sglq_entry's for active IOs.
8605 **/
8606 static int
lpfc_init_active_sgl_array(struct lpfc_hba * phba)8607 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8608 {
8609 int size;
8610 size = sizeof(struct lpfc_sglq *);
8611 size *= phba->sli4_hba.max_cfg_param.max_xri;
8612
8613 phba->sli4_hba.lpfc_sglq_active_list =
8614 kzalloc(size, GFP_KERNEL);
8615 if (!phba->sli4_hba.lpfc_sglq_active_list)
8616 return -ENOMEM;
8617 return 0;
8618 }
8619
8620 /**
8621 * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8622 * @phba: pointer to lpfc hba data structure.
8623 *
8624 * This routine is invoked to walk through the array of active sglq entries
8625 * and free all of the resources.
8626 * This is just a place holder for now.
8627 **/
8628 static void
lpfc_free_active_sgl(struct lpfc_hba * phba)8629 lpfc_free_active_sgl(struct lpfc_hba *phba)
8630 {
8631 kfree(phba->sli4_hba.lpfc_sglq_active_list);
8632 }
8633
8634 /**
8635 * lpfc_init_sgl_list - Allocate and initialize sgl list.
8636 * @phba: pointer to lpfc hba data structure.
8637 *
8638 * This routine is invoked to allocate and initizlize the driver's sgl
8639 * list and set up the sgl xritag tag array accordingly.
8640 *
8641 **/
8642 static void
lpfc_init_sgl_list(struct lpfc_hba * phba)8643 lpfc_init_sgl_list(struct lpfc_hba *phba)
8644 {
8645 /* Initialize and populate the sglq list per host/VF. */
8646 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8647 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8648 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8649 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8650
8651 /* els xri-sgl book keeping */
8652 phba->sli4_hba.els_xri_cnt = 0;
8653
8654 /* nvme xri-buffer book keeping */
8655 phba->sli4_hba.io_xri_cnt = 0;
8656 }
8657
8658 /**
8659 * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8660 * @phba: pointer to lpfc hba data structure.
8661 *
8662 * This routine is invoked to post rpi header templates to the
8663 * port for those SLI4 ports that do not support extents. This routine
8664 * posts a PAGE_SIZE memory region to the port to hold up to
8665 * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine
8666 * and should be called only when interrupts are disabled.
8667 *
8668 * Return codes
8669 * 0 - successful
8670 * -ERROR - otherwise.
8671 **/
8672 int
lpfc_sli4_init_rpi_hdrs(struct lpfc_hba * phba)8673 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8674 {
8675 int rc = 0;
8676 struct lpfc_rpi_hdr *rpi_hdr;
8677
8678 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8679 if (!phba->sli4_hba.rpi_hdrs_in_use)
8680 return rc;
8681 if (phba->sli4_hba.extents_in_use)
8682 return -EIO;
8683
8684 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8685 if (!rpi_hdr) {
8686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8687 "0391 Error during rpi post operation\n");
8688 lpfc_sli4_remove_rpis(phba);
8689 rc = -ENODEV;
8690 }
8691
8692 return rc;
8693 }
8694
8695 /**
8696 * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8697 * @phba: pointer to lpfc hba data structure.
8698 *
8699 * This routine is invoked to allocate a single 4KB memory region to
8700 * support rpis and stores them in the phba. This single region
8701 * provides support for up to 64 rpis. The region is used globally
8702 * by the device.
8703 *
8704 * Returns:
8705 * A valid rpi hdr on success.
8706 * A NULL pointer on any failure.
8707 **/
8708 struct lpfc_rpi_hdr *
lpfc_sli4_create_rpi_hdr(struct lpfc_hba * phba)8709 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8710 {
8711 uint16_t rpi_limit, curr_rpi_range;
8712 struct lpfc_dmabuf *dmabuf;
8713 struct lpfc_rpi_hdr *rpi_hdr;
8714
8715 /*
8716 * If the SLI4 port supports extents, posting the rpi header isn't
8717 * required. Set the expected maximum count and let the actual value
8718 * get set when extents are fully allocated.
8719 */
8720 if (!phba->sli4_hba.rpi_hdrs_in_use)
8721 return NULL;
8722 if (phba->sli4_hba.extents_in_use)
8723 return NULL;
8724
8725 /* The limit on the logical index is just the max_rpi count. */
8726 rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8727
8728 spin_lock_irq(&phba->hbalock);
8729 /*
8730 * Establish the starting RPI in this header block. The starting
8731 * rpi is normalized to a zero base because the physical rpi is
8732 * port based.
8733 */
8734 curr_rpi_range = phba->sli4_hba.next_rpi;
8735 spin_unlock_irq(&phba->hbalock);
8736
8737 /* Reached full RPI range */
8738 if (curr_rpi_range == rpi_limit)
8739 return NULL;
8740
8741 /*
8742 * First allocate the protocol header region for the port. The
8743 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8744 */
8745 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8746 if (!dmabuf)
8747 return NULL;
8748
8749 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8750 LPFC_HDR_TEMPLATE_SIZE,
8751 &dmabuf->phys, GFP_KERNEL);
8752 if (!dmabuf->virt) {
8753 rpi_hdr = NULL;
8754 goto err_free_dmabuf;
8755 }
8756
8757 if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8758 rpi_hdr = NULL;
8759 goto err_free_coherent;
8760 }
8761
8762 /* Save the rpi header data for cleanup later. */
8763 rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8764 if (!rpi_hdr)
8765 goto err_free_coherent;
8766
8767 rpi_hdr->dmabuf = dmabuf;
8768 rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8769 rpi_hdr->page_count = 1;
8770 spin_lock_irq(&phba->hbalock);
8771
8772 /* The rpi_hdr stores the logical index only. */
8773 rpi_hdr->start_rpi = curr_rpi_range;
8774 rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8775 list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8776
8777 spin_unlock_irq(&phba->hbalock);
8778 return rpi_hdr;
8779
8780 err_free_coherent:
8781 dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8782 dmabuf->virt, dmabuf->phys);
8783 err_free_dmabuf:
8784 kfree(dmabuf);
8785 return NULL;
8786 }
8787
8788 /**
8789 * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8790 * @phba: pointer to lpfc hba data structure.
8791 *
8792 * This routine is invoked to remove all memory resources allocated
8793 * to support rpis for SLI4 ports not supporting extents. This routine
8794 * presumes the caller has released all rpis consumed by fabric or port
8795 * logins and is prepared to have the header pages removed.
8796 **/
8797 void
lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba * phba)8798 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8799 {
8800 struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8801
8802 if (!phba->sli4_hba.rpi_hdrs_in_use)
8803 goto exit;
8804
8805 list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8806 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8807 list_del(&rpi_hdr->list);
8808 dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8809 rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8810 kfree(rpi_hdr->dmabuf);
8811 kfree(rpi_hdr);
8812 }
8813 exit:
8814 /* There are no rpis available to the port now. */
8815 phba->sli4_hba.next_rpi = 0;
8816 }
8817
8818 /**
8819 * lpfc_hba_alloc - Allocate driver hba data structure for a device.
8820 * @pdev: pointer to pci device data structure.
8821 *
8822 * This routine is invoked to allocate the driver hba data structure for an
8823 * HBA device. If the allocation is successful, the phba reference to the
8824 * PCI device data structure is set.
8825 *
8826 * Return codes
8827 * pointer to @phba - successful
8828 * NULL - error
8829 **/
8830 static struct lpfc_hba *
lpfc_hba_alloc(struct pci_dev * pdev)8831 lpfc_hba_alloc(struct pci_dev *pdev)
8832 {
8833 struct lpfc_hba *phba;
8834
8835 /* Allocate memory for HBA structure */
8836 phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
8837 if (!phba) {
8838 dev_err(&pdev->dev, "failed to allocate hba struct\n");
8839 return NULL;
8840 }
8841
8842 /* Set reference to PCI device in HBA structure */
8843 phba->pcidev = pdev;
8844
8845 /* Assign an unused board number */
8846 phba->brd_no = lpfc_get_instance();
8847 if (phba->brd_no < 0) {
8848 kfree(phba);
8849 return NULL;
8850 }
8851 phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
8852
8853 spin_lock_init(&phba->ct_ev_lock);
8854 INIT_LIST_HEAD(&phba->ct_ev_waiters);
8855
8856 return phba;
8857 }
8858
8859 /**
8860 * lpfc_hba_free - Free driver hba data structure with a device.
8861 * @phba: pointer to lpfc hba data structure.
8862 *
8863 * This routine is invoked to free the driver hba data structure with an
8864 * HBA device.
8865 **/
8866 static void
lpfc_hba_free(struct lpfc_hba * phba)8867 lpfc_hba_free(struct lpfc_hba *phba)
8868 {
8869 if (phba->sli_rev == LPFC_SLI_REV4)
8870 kfree(phba->sli4_hba.hdwq);
8871
8872 /* Release the driver assigned board number */
8873 idr_remove(&lpfc_hba_index, phba->brd_no);
8874
8875 /* Free memory allocated with sli3 rings */
8876 kfree(phba->sli.sli3_ring);
8877 phba->sli.sli3_ring = NULL;
8878
8879 kfree(phba);
8880 return;
8881 }
8882
8883 /**
8884 * lpfc_create_shost - Create hba physical port with associated scsi host.
8885 * @phba: pointer to lpfc hba data structure.
8886 *
8887 * This routine is invoked to create HBA physical port and associate a SCSI
8888 * host with it.
8889 *
8890 * Return codes
8891 * 0 - successful
8892 * other values - error
8893 **/
8894 static int
lpfc_create_shost(struct lpfc_hba * phba)8895 lpfc_create_shost(struct lpfc_hba *phba)
8896 {
8897 struct lpfc_vport *vport;
8898 struct Scsi_Host *shost;
8899
8900 /* Initialize HBA FC structure */
8901 phba->fc_edtov = FF_DEF_EDTOV;
8902 phba->fc_ratov = FF_DEF_RATOV;
8903 phba->fc_altov = FF_DEF_ALTOV;
8904 phba->fc_arbtov = FF_DEF_ARBTOV;
8905
8906 atomic_set(&phba->sdev_cnt, 0);
8907 vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
8908 if (!vport)
8909 return -ENODEV;
8910
8911 shost = lpfc_shost_from_vport(vport);
8912 phba->pport = vport;
8913
8914 if (phba->nvmet_support) {
8915 /* Only 1 vport (pport) will support NVME target */
8916 phba->targetport = NULL;
8917 phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
8918 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
8919 "6076 NVME Target Found\n");
8920 }
8921
8922 lpfc_debugfs_initialize(vport);
8923 /* Put reference to SCSI host to driver's device private data */
8924 pci_set_drvdata(phba->pcidev, shost);
8925
8926 /*
8927 * At this point we are fully registered with PSA. In addition,
8928 * any initial discovery should be completed.
8929 */
8930 vport->load_flag |= FC_ALLOW_FDMI;
8931 if (phba->cfg_enable_SmartSAN ||
8932 (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
8933
8934 /* Setup appropriate attribute masks */
8935 vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
8936 if (phba->cfg_enable_SmartSAN)
8937 vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
8938 else
8939 vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
8940 }
8941 return 0;
8942 }
8943
8944 /**
8945 * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
8946 * @phba: pointer to lpfc hba data structure.
8947 *
8948 * This routine is invoked to destroy HBA physical port and the associated
8949 * SCSI host.
8950 **/
8951 static void
lpfc_destroy_shost(struct lpfc_hba * phba)8952 lpfc_destroy_shost(struct lpfc_hba *phba)
8953 {
8954 struct lpfc_vport *vport = phba->pport;
8955
8956 /* Destroy physical port that associated with the SCSI host */
8957 destroy_port(vport);
8958
8959 return;
8960 }
8961
8962 /**
8963 * lpfc_setup_bg - Setup Block guard structures and debug areas.
8964 * @phba: pointer to lpfc hba data structure.
8965 * @shost: the shost to be used to detect Block guard settings.
8966 *
8967 * This routine sets up the local Block guard protocol settings for @shost.
8968 * This routine also allocates memory for debugging bg buffers.
8969 **/
8970 static void
lpfc_setup_bg(struct lpfc_hba * phba,struct Scsi_Host * shost)8971 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
8972 {
8973 uint32_t old_mask;
8974 uint32_t old_guard;
8975
8976 if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
8977 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8978 "1478 Registering BlockGuard with the "
8979 "SCSI layer\n");
8980
8981 old_mask = phba->cfg_prot_mask;
8982 old_guard = phba->cfg_prot_guard;
8983
8984 /* Only allow supported values */
8985 phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
8986 SHOST_DIX_TYPE0_PROTECTION |
8987 SHOST_DIX_TYPE1_PROTECTION);
8988 phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
8989 SHOST_DIX_GUARD_CRC);
8990
8991 /* DIF Type 1 protection for profiles AST1/C1 is end to end */
8992 if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
8993 phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
8994
8995 if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
8996 if ((old_mask != phba->cfg_prot_mask) ||
8997 (old_guard != phba->cfg_prot_guard))
8998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8999 "1475 Registering BlockGuard with the "
9000 "SCSI layer: mask %d guard %d\n",
9001 phba->cfg_prot_mask,
9002 phba->cfg_prot_guard);
9003
9004 scsi_host_set_prot(shost, phba->cfg_prot_mask);
9005 scsi_host_set_guard(shost, phba->cfg_prot_guard);
9006 } else
9007 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9008 "1479 Not Registering BlockGuard with the SCSI "
9009 "layer, Bad protection parameters: %d %d\n",
9010 old_mask, old_guard);
9011 }
9012 }
9013
9014 /**
9015 * lpfc_post_init_setup - Perform necessary device post initialization setup.
9016 * @phba: pointer to lpfc hba data structure.
9017 *
9018 * This routine is invoked to perform all the necessary post initialization
9019 * setup for the device.
9020 **/
9021 static void
lpfc_post_init_setup(struct lpfc_hba * phba)9022 lpfc_post_init_setup(struct lpfc_hba *phba)
9023 {
9024 struct Scsi_Host *shost;
9025 struct lpfc_adapter_event_header adapter_event;
9026
9027 /* Get the default values for Model Name and Description */
9028 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9029
9030 /*
9031 * hba setup may have changed the hba_queue_depth so we need to
9032 * adjust the value of can_queue.
9033 */
9034 shost = pci_get_drvdata(phba->pcidev);
9035 shost->can_queue = phba->cfg_hba_queue_depth - 10;
9036
9037 lpfc_host_attrib_init(shost);
9038
9039 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9040 spin_lock_irq(shost->host_lock);
9041 lpfc_poll_start_timer(phba);
9042 spin_unlock_irq(shost->host_lock);
9043 }
9044
9045 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9046 "0428 Perform SCSI scan\n");
9047 /* Send board arrival event to upper layer */
9048 adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9049 adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9050 fc_host_post_vendor_event(shost, fc_get_event_number(),
9051 sizeof(adapter_event),
9052 (char *) &adapter_event,
9053 LPFC_NL_VENDOR_ID);
9054 return;
9055 }
9056
9057 /**
9058 * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9059 * @phba: pointer to lpfc hba data structure.
9060 *
9061 * This routine is invoked to set up the PCI device memory space for device
9062 * with SLI-3 interface spec.
9063 *
9064 * Return codes
9065 * 0 - successful
9066 * other values - error
9067 **/
9068 static int
lpfc_sli_pci_mem_setup(struct lpfc_hba * phba)9069 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9070 {
9071 struct pci_dev *pdev = phba->pcidev;
9072 unsigned long bar0map_len, bar2map_len;
9073 int i, hbq_count;
9074 void *ptr;
9075 int error;
9076
9077 if (!pdev)
9078 return -ENODEV;
9079
9080 /* Set the device DMA mask size */
9081 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9082 if (error)
9083 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9084 if (error)
9085 return error;
9086 error = -ENODEV;
9087
9088 /* Get the bus address of Bar0 and Bar2 and the number of bytes
9089 * required by each mapping.
9090 */
9091 phba->pci_bar0_map = pci_resource_start(pdev, 0);
9092 bar0map_len = pci_resource_len(pdev, 0);
9093
9094 phba->pci_bar2_map = pci_resource_start(pdev, 2);
9095 bar2map_len = pci_resource_len(pdev, 2);
9096
9097 /* Map HBA SLIM to a kernel virtual address. */
9098 phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9099 if (!phba->slim_memmap_p) {
9100 dev_printk(KERN_ERR, &pdev->dev,
9101 "ioremap failed for SLIM memory.\n");
9102 goto out;
9103 }
9104
9105 /* Map HBA Control Registers to a kernel virtual address. */
9106 phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9107 if (!phba->ctrl_regs_memmap_p) {
9108 dev_printk(KERN_ERR, &pdev->dev,
9109 "ioremap failed for HBA control registers.\n");
9110 goto out_iounmap_slim;
9111 }
9112
9113 /* Allocate memory for SLI-2 structures */
9114 phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9115 &phba->slim2p.phys, GFP_KERNEL);
9116 if (!phba->slim2p.virt)
9117 goto out_iounmap;
9118
9119 phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9120 phba->mbox_ext = (phba->slim2p.virt +
9121 offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9122 phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9123 phba->IOCBs = (phba->slim2p.virt +
9124 offsetof(struct lpfc_sli2_slim, IOCBs));
9125
9126 phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9127 lpfc_sli_hbq_size(),
9128 &phba->hbqslimp.phys,
9129 GFP_KERNEL);
9130 if (!phba->hbqslimp.virt)
9131 goto out_free_slim;
9132
9133 hbq_count = lpfc_sli_hbq_count();
9134 ptr = phba->hbqslimp.virt;
9135 for (i = 0; i < hbq_count; ++i) {
9136 phba->hbqs[i].hbq_virt = ptr;
9137 INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9138 ptr += (lpfc_hbq_defs[i]->entry_count *
9139 sizeof(struct lpfc_hbq_entry));
9140 }
9141 phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9142 phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9143
9144 memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9145
9146 phba->MBslimaddr = phba->slim_memmap_p;
9147 phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9148 phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9149 phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9150 phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9151
9152 return 0;
9153
9154 out_free_slim:
9155 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9156 phba->slim2p.virt, phba->slim2p.phys);
9157 out_iounmap:
9158 iounmap(phba->ctrl_regs_memmap_p);
9159 out_iounmap_slim:
9160 iounmap(phba->slim_memmap_p);
9161 out:
9162 return error;
9163 }
9164
9165 /**
9166 * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9167 * @phba: pointer to lpfc hba data structure.
9168 *
9169 * This routine is invoked to unset the PCI device memory space for device
9170 * with SLI-3 interface spec.
9171 **/
9172 static void
lpfc_sli_pci_mem_unset(struct lpfc_hba * phba)9173 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9174 {
9175 struct pci_dev *pdev;
9176
9177 /* Obtain PCI device reference */
9178 if (!phba->pcidev)
9179 return;
9180 else
9181 pdev = phba->pcidev;
9182
9183 /* Free coherent DMA memory allocated */
9184 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9185 phba->hbqslimp.virt, phba->hbqslimp.phys);
9186 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9187 phba->slim2p.virt, phba->slim2p.phys);
9188
9189 /* I/O memory unmap */
9190 iounmap(phba->ctrl_regs_memmap_p);
9191 iounmap(phba->slim_memmap_p);
9192
9193 return;
9194 }
9195
9196 /**
9197 * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9198 * @phba: pointer to lpfc hba data structure.
9199 *
9200 * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9201 * done and check status.
9202 *
9203 * Return 0 if successful, otherwise -ENODEV.
9204 **/
9205 int
lpfc_sli4_post_status_check(struct lpfc_hba * phba)9206 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9207 {
9208 struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9209 struct lpfc_register reg_data;
9210 int i, port_error = 0;
9211 uint32_t if_type;
9212
9213 memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9214 memset(®_data, 0, sizeof(reg_data));
9215 if (!phba->sli4_hba.PSMPHRregaddr)
9216 return -ENODEV;
9217
9218 /* Wait up to 30 seconds for the SLI Port POST done and ready */
9219 for (i = 0; i < 3000; i++) {
9220 if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9221 &portsmphr_reg.word0) ||
9222 (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9223 /* Port has a fatal POST error, break out */
9224 port_error = -ENODEV;
9225 break;
9226 }
9227 if (LPFC_POST_STAGE_PORT_READY ==
9228 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9229 break;
9230 msleep(10);
9231 }
9232
9233 /*
9234 * If there was a port error during POST, then don't proceed with
9235 * other register reads as the data may not be valid. Just exit.
9236 */
9237 if (port_error) {
9238 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9239 "1408 Port Failed POST - portsmphr=0x%x, "
9240 "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9241 "scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9242 portsmphr_reg.word0,
9243 bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9244 bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9245 bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9246 bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9247 bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9248 bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9249 bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9250 bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9251 } else {
9252 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9253 "2534 Device Info: SLIFamily=0x%x, "
9254 "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9255 "SLIHint_2=0x%x, FT=0x%x\n",
9256 bf_get(lpfc_sli_intf_sli_family,
9257 &phba->sli4_hba.sli_intf),
9258 bf_get(lpfc_sli_intf_slirev,
9259 &phba->sli4_hba.sli_intf),
9260 bf_get(lpfc_sli_intf_if_type,
9261 &phba->sli4_hba.sli_intf),
9262 bf_get(lpfc_sli_intf_sli_hint1,
9263 &phba->sli4_hba.sli_intf),
9264 bf_get(lpfc_sli_intf_sli_hint2,
9265 &phba->sli4_hba.sli_intf),
9266 bf_get(lpfc_sli_intf_func_type,
9267 &phba->sli4_hba.sli_intf));
9268 /*
9269 * Check for other Port errors during the initialization
9270 * process. Fail the load if the port did not come up
9271 * correctly.
9272 */
9273 if_type = bf_get(lpfc_sli_intf_if_type,
9274 &phba->sli4_hba.sli_intf);
9275 switch (if_type) {
9276 case LPFC_SLI_INTF_IF_TYPE_0:
9277 phba->sli4_hba.ue_mask_lo =
9278 readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9279 phba->sli4_hba.ue_mask_hi =
9280 readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9281 uerrlo_reg.word0 =
9282 readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9283 uerrhi_reg.word0 =
9284 readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9285 if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9286 (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9287 lpfc_printf_log(phba, KERN_ERR,
9288 LOG_TRACE_EVENT,
9289 "1422 Unrecoverable Error "
9290 "Detected during POST "
9291 "uerr_lo_reg=0x%x, "
9292 "uerr_hi_reg=0x%x, "
9293 "ue_mask_lo_reg=0x%x, "
9294 "ue_mask_hi_reg=0x%x\n",
9295 uerrlo_reg.word0,
9296 uerrhi_reg.word0,
9297 phba->sli4_hba.ue_mask_lo,
9298 phba->sli4_hba.ue_mask_hi);
9299 port_error = -ENODEV;
9300 }
9301 break;
9302 case LPFC_SLI_INTF_IF_TYPE_2:
9303 case LPFC_SLI_INTF_IF_TYPE_6:
9304 /* Final checks. The port status should be clean. */
9305 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9306 ®_data.word0) ||
9307 (bf_get(lpfc_sliport_status_err, ®_data) &&
9308 !bf_get(lpfc_sliport_status_rn, ®_data))) {
9309 phba->work_status[0] =
9310 readl(phba->sli4_hba.u.if_type2.
9311 ERR1regaddr);
9312 phba->work_status[1] =
9313 readl(phba->sli4_hba.u.if_type2.
9314 ERR2regaddr);
9315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9316 "2888 Unrecoverable port error "
9317 "following POST: port status reg "
9318 "0x%x, port_smphr reg 0x%x, "
9319 "error 1=0x%x, error 2=0x%x\n",
9320 reg_data.word0,
9321 portsmphr_reg.word0,
9322 phba->work_status[0],
9323 phba->work_status[1]);
9324 port_error = -ENODEV;
9325 }
9326 break;
9327 case LPFC_SLI_INTF_IF_TYPE_1:
9328 default:
9329 break;
9330 }
9331 }
9332 return port_error;
9333 }
9334
9335 /**
9336 * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9337 * @phba: pointer to lpfc hba data structure.
9338 * @if_type: The SLI4 interface type getting configured.
9339 *
9340 * This routine is invoked to set up SLI4 BAR0 PCI config space register
9341 * memory map.
9342 **/
9343 static void
lpfc_sli4_bar0_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9344 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9345 {
9346 switch (if_type) {
9347 case LPFC_SLI_INTF_IF_TYPE_0:
9348 phba->sli4_hba.u.if_type0.UERRLOregaddr =
9349 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9350 phba->sli4_hba.u.if_type0.UERRHIregaddr =
9351 phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9352 phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9353 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9354 phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9355 phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9356 phba->sli4_hba.SLIINTFregaddr =
9357 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9358 break;
9359 case LPFC_SLI_INTF_IF_TYPE_2:
9360 phba->sli4_hba.u.if_type2.EQDregaddr =
9361 phba->sli4_hba.conf_regs_memmap_p +
9362 LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9363 phba->sli4_hba.u.if_type2.ERR1regaddr =
9364 phba->sli4_hba.conf_regs_memmap_p +
9365 LPFC_CTL_PORT_ER1_OFFSET;
9366 phba->sli4_hba.u.if_type2.ERR2regaddr =
9367 phba->sli4_hba.conf_regs_memmap_p +
9368 LPFC_CTL_PORT_ER2_OFFSET;
9369 phba->sli4_hba.u.if_type2.CTRLregaddr =
9370 phba->sli4_hba.conf_regs_memmap_p +
9371 LPFC_CTL_PORT_CTL_OFFSET;
9372 phba->sli4_hba.u.if_type2.STATUSregaddr =
9373 phba->sli4_hba.conf_regs_memmap_p +
9374 LPFC_CTL_PORT_STA_OFFSET;
9375 phba->sli4_hba.SLIINTFregaddr =
9376 phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9377 phba->sli4_hba.PSMPHRregaddr =
9378 phba->sli4_hba.conf_regs_memmap_p +
9379 LPFC_CTL_PORT_SEM_OFFSET;
9380 phba->sli4_hba.RQDBregaddr =
9381 phba->sli4_hba.conf_regs_memmap_p +
9382 LPFC_ULP0_RQ_DOORBELL;
9383 phba->sli4_hba.WQDBregaddr =
9384 phba->sli4_hba.conf_regs_memmap_p +
9385 LPFC_ULP0_WQ_DOORBELL;
9386 phba->sli4_hba.CQDBregaddr =
9387 phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9388 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9389 phba->sli4_hba.MQDBregaddr =
9390 phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9391 phba->sli4_hba.BMBXregaddr =
9392 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9393 break;
9394 case LPFC_SLI_INTF_IF_TYPE_6:
9395 phba->sli4_hba.u.if_type2.EQDregaddr =
9396 phba->sli4_hba.conf_regs_memmap_p +
9397 LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9398 phba->sli4_hba.u.if_type2.ERR1regaddr =
9399 phba->sli4_hba.conf_regs_memmap_p +
9400 LPFC_CTL_PORT_ER1_OFFSET;
9401 phba->sli4_hba.u.if_type2.ERR2regaddr =
9402 phba->sli4_hba.conf_regs_memmap_p +
9403 LPFC_CTL_PORT_ER2_OFFSET;
9404 phba->sli4_hba.u.if_type2.CTRLregaddr =
9405 phba->sli4_hba.conf_regs_memmap_p +
9406 LPFC_CTL_PORT_CTL_OFFSET;
9407 phba->sli4_hba.u.if_type2.STATUSregaddr =
9408 phba->sli4_hba.conf_regs_memmap_p +
9409 LPFC_CTL_PORT_STA_OFFSET;
9410 phba->sli4_hba.PSMPHRregaddr =
9411 phba->sli4_hba.conf_regs_memmap_p +
9412 LPFC_CTL_PORT_SEM_OFFSET;
9413 phba->sli4_hba.BMBXregaddr =
9414 phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9415 break;
9416 case LPFC_SLI_INTF_IF_TYPE_1:
9417 default:
9418 dev_printk(KERN_ERR, &phba->pcidev->dev,
9419 "FATAL - unsupported SLI4 interface type - %d\n",
9420 if_type);
9421 break;
9422 }
9423 }
9424
9425 /**
9426 * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9427 * @phba: pointer to lpfc hba data structure.
9428 * @if_type: sli if type to operate on.
9429 *
9430 * This routine is invoked to set up SLI4 BAR1 register memory map.
9431 **/
9432 static void
lpfc_sli4_bar1_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9433 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9434 {
9435 switch (if_type) {
9436 case LPFC_SLI_INTF_IF_TYPE_0:
9437 phba->sli4_hba.PSMPHRregaddr =
9438 phba->sli4_hba.ctrl_regs_memmap_p +
9439 LPFC_SLIPORT_IF0_SMPHR;
9440 phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9441 LPFC_HST_ISR0;
9442 phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9443 LPFC_HST_IMR0;
9444 phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9445 LPFC_HST_ISCR0;
9446 break;
9447 case LPFC_SLI_INTF_IF_TYPE_6:
9448 phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9449 LPFC_IF6_RQ_DOORBELL;
9450 phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9451 LPFC_IF6_WQ_DOORBELL;
9452 phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9453 LPFC_IF6_CQ_DOORBELL;
9454 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9455 LPFC_IF6_EQ_DOORBELL;
9456 phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9457 LPFC_IF6_MQ_DOORBELL;
9458 break;
9459 case LPFC_SLI_INTF_IF_TYPE_2:
9460 case LPFC_SLI_INTF_IF_TYPE_1:
9461 default:
9462 dev_err(&phba->pcidev->dev,
9463 "FATAL - unsupported SLI4 interface type - %d\n",
9464 if_type);
9465 break;
9466 }
9467 }
9468
9469 /**
9470 * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9471 * @phba: pointer to lpfc hba data structure.
9472 * @vf: virtual function number
9473 *
9474 * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9475 * based on the given viftual function number, @vf.
9476 *
9477 * Return 0 if successful, otherwise -ENODEV.
9478 **/
9479 static int
lpfc_sli4_bar2_register_memmap(struct lpfc_hba * phba,uint32_t vf)9480 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9481 {
9482 if (vf > LPFC_VIR_FUNC_MAX)
9483 return -ENODEV;
9484
9485 phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9486 vf * LPFC_VFR_PAGE_SIZE +
9487 LPFC_ULP0_RQ_DOORBELL);
9488 phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9489 vf * LPFC_VFR_PAGE_SIZE +
9490 LPFC_ULP0_WQ_DOORBELL);
9491 phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9492 vf * LPFC_VFR_PAGE_SIZE +
9493 LPFC_EQCQ_DOORBELL);
9494 phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9495 phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9496 vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9497 phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9498 vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9499 return 0;
9500 }
9501
9502 /**
9503 * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9504 * @phba: pointer to lpfc hba data structure.
9505 *
9506 * This routine is invoked to create the bootstrap mailbox
9507 * region consistent with the SLI-4 interface spec. This
9508 * routine allocates all memory necessary to communicate
9509 * mailbox commands to the port and sets up all alignment
9510 * needs. No locks are expected to be held when calling
9511 * this routine.
9512 *
9513 * Return codes
9514 * 0 - successful
9515 * -ENOMEM - could not allocated memory.
9516 **/
9517 static int
lpfc_create_bootstrap_mbox(struct lpfc_hba * phba)9518 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9519 {
9520 uint32_t bmbx_size;
9521 struct lpfc_dmabuf *dmabuf;
9522 struct dma_address *dma_address;
9523 uint32_t pa_addr;
9524 uint64_t phys_addr;
9525
9526 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9527 if (!dmabuf)
9528 return -ENOMEM;
9529
9530 /*
9531 * The bootstrap mailbox region is comprised of 2 parts
9532 * plus an alignment restriction of 16 bytes.
9533 */
9534 bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9535 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9536 &dmabuf->phys, GFP_KERNEL);
9537 if (!dmabuf->virt) {
9538 kfree(dmabuf);
9539 return -ENOMEM;
9540 }
9541
9542 /*
9543 * Initialize the bootstrap mailbox pointers now so that the register
9544 * operations are simple later. The mailbox dma address is required
9545 * to be 16-byte aligned. Also align the virtual memory as each
9546 * maibox is copied into the bmbx mailbox region before issuing the
9547 * command to the port.
9548 */
9549 phba->sli4_hba.bmbx.dmabuf = dmabuf;
9550 phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9551
9552 phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9553 LPFC_ALIGN_16_BYTE);
9554 phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9555 LPFC_ALIGN_16_BYTE);
9556
9557 /*
9558 * Set the high and low physical addresses now. The SLI4 alignment
9559 * requirement is 16 bytes and the mailbox is posted to the port
9560 * as two 30-bit addresses. The other data is a bit marking whether
9561 * the 30-bit address is the high or low address.
9562 * Upcast bmbx aphys to 64bits so shift instruction compiles
9563 * clean on 32 bit machines.
9564 */
9565 dma_address = &phba->sli4_hba.bmbx.dma_address;
9566 phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9567 pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9568 dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9569 LPFC_BMBX_BIT1_ADDR_HI);
9570
9571 pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9572 dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9573 LPFC_BMBX_BIT1_ADDR_LO);
9574 return 0;
9575 }
9576
9577 /**
9578 * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9579 * @phba: pointer to lpfc hba data structure.
9580 *
9581 * This routine is invoked to teardown the bootstrap mailbox
9582 * region and release all host resources. This routine requires
9583 * the caller to ensure all mailbox commands recovered, no
9584 * additional mailbox comands are sent, and interrupts are disabled
9585 * before calling this routine.
9586 *
9587 **/
9588 static void
lpfc_destroy_bootstrap_mbox(struct lpfc_hba * phba)9589 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9590 {
9591 dma_free_coherent(&phba->pcidev->dev,
9592 phba->sli4_hba.bmbx.bmbx_size,
9593 phba->sli4_hba.bmbx.dmabuf->virt,
9594 phba->sli4_hba.bmbx.dmabuf->phys);
9595
9596 kfree(phba->sli4_hba.bmbx.dmabuf);
9597 memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9598 }
9599
9600 static const char * const lpfc_topo_to_str[] = {
9601 "Loop then P2P",
9602 "Loopback",
9603 "P2P Only",
9604 "Unsupported",
9605 "Loop Only",
9606 "Unsupported",
9607 "P2P then Loop",
9608 };
9609
9610 #define LINK_FLAGS_DEF 0x0
9611 #define LINK_FLAGS_P2P 0x1
9612 #define LINK_FLAGS_LOOP 0x2
9613 /**
9614 * lpfc_map_topology - Map the topology read from READ_CONFIG
9615 * @phba: pointer to lpfc hba data structure.
9616 * @rd_config: pointer to read config data
9617 *
9618 * This routine is invoked to map the topology values as read
9619 * from the read config mailbox command. If the persistent
9620 * topology feature is supported, the firmware will provide the
9621 * saved topology information to be used in INIT_LINK
9622 **/
9623 static void
lpfc_map_topology(struct lpfc_hba * phba,struct lpfc_mbx_read_config * rd_config)9624 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9625 {
9626 u8 ptv, tf, pt;
9627
9628 ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9629 tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9630 pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9631
9632 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9633 "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9634 ptv, tf, pt);
9635 if (!ptv) {
9636 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9637 "2019 FW does not support persistent topology "
9638 "Using driver parameter defined value [%s]",
9639 lpfc_topo_to_str[phba->cfg_topology]);
9640 return;
9641 }
9642 /* FW supports persistent topology - override module parameter value */
9643 phba->hba_flag |= HBA_PERSISTENT_TOPO;
9644
9645 /* if ASIC_GEN_NUM >= 0xC) */
9646 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9647 LPFC_SLI_INTF_IF_TYPE_6) ||
9648 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9649 LPFC_SLI_INTF_FAMILY_G6)) {
9650 if (!tf) {
9651 phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9652 ? FLAGS_TOPOLOGY_MODE_LOOP
9653 : FLAGS_TOPOLOGY_MODE_PT_PT);
9654 } else {
9655 phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9656 }
9657 } else { /* G5 */
9658 if (tf) {
9659 /* If topology failover set - pt is '0' or '1' */
9660 phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9661 FLAGS_TOPOLOGY_MODE_LOOP_PT);
9662 } else {
9663 phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9664 ? FLAGS_TOPOLOGY_MODE_PT_PT
9665 : FLAGS_TOPOLOGY_MODE_LOOP);
9666 }
9667 }
9668 if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9669 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9670 "2020 Using persistent topology value [%s]",
9671 lpfc_topo_to_str[phba->cfg_topology]);
9672 } else {
9673 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9674 "2021 Invalid topology values from FW "
9675 "Using driver parameter defined value [%s]",
9676 lpfc_topo_to_str[phba->cfg_topology]);
9677 }
9678 }
9679
9680 /**
9681 * lpfc_sli4_read_config - Get the config parameters.
9682 * @phba: pointer to lpfc hba data structure.
9683 *
9684 * This routine is invoked to read the configuration parameters from the HBA.
9685 * The configuration parameters are used to set the base and maximum values
9686 * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9687 * allocation for the port.
9688 *
9689 * Return codes
9690 * 0 - successful
9691 * -ENOMEM - No available memory
9692 * -EIO - The mailbox failed to complete successfully.
9693 **/
9694 int
lpfc_sli4_read_config(struct lpfc_hba * phba)9695 lpfc_sli4_read_config(struct lpfc_hba *phba)
9696 {
9697 LPFC_MBOXQ_t *pmb;
9698 struct lpfc_mbx_read_config *rd_config;
9699 union lpfc_sli4_cfg_shdr *shdr;
9700 uint32_t shdr_status, shdr_add_status;
9701 struct lpfc_mbx_get_func_cfg *get_func_cfg;
9702 struct lpfc_rsrc_desc_fcfcoe *desc;
9703 char *pdesc_0;
9704 uint16_t forced_link_speed;
9705 uint32_t if_type, qmin;
9706 int length, i, rc = 0, rc2;
9707
9708 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9709 if (!pmb) {
9710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9711 "2011 Unable to allocate memory for issuing "
9712 "SLI_CONFIG_SPECIAL mailbox command\n");
9713 return -ENOMEM;
9714 }
9715
9716 lpfc_read_config(phba, pmb);
9717
9718 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9719 if (rc != MBX_SUCCESS) {
9720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9721 "2012 Mailbox failed , mbxCmd x%x "
9722 "READ_CONFIG, mbxStatus x%x\n",
9723 bf_get(lpfc_mqe_command, &pmb->u.mqe),
9724 bf_get(lpfc_mqe_status, &pmb->u.mqe));
9725 rc = -EIO;
9726 } else {
9727 rd_config = &pmb->u.mqe.un.rd_config;
9728 if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9729 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9730 phba->sli4_hba.lnk_info.lnk_tp =
9731 bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9732 phba->sli4_hba.lnk_info.lnk_no =
9733 bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9734 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9735 "3081 lnk_type:%d, lnk_numb:%d\n",
9736 phba->sli4_hba.lnk_info.lnk_tp,
9737 phba->sli4_hba.lnk_info.lnk_no);
9738 } else
9739 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9740 "3082 Mailbox (x%x) returned ldv:x0\n",
9741 bf_get(lpfc_mqe_command, &pmb->u.mqe));
9742 if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9743 phba->bbcredit_support = 1;
9744 phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9745 }
9746
9747 phba->sli4_hba.conf_trunk =
9748 bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9749 phba->sli4_hba.extents_in_use =
9750 bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9751 phba->sli4_hba.max_cfg_param.max_xri =
9752 bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9753 /* Reduce resource usage in kdump environment */
9754 if (is_kdump_kernel() &&
9755 phba->sli4_hba.max_cfg_param.max_xri > 512)
9756 phba->sli4_hba.max_cfg_param.max_xri = 512;
9757 phba->sli4_hba.max_cfg_param.xri_base =
9758 bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9759 phba->sli4_hba.max_cfg_param.max_vpi =
9760 bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9761 /* Limit the max we support */
9762 if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9763 phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9764 phba->sli4_hba.max_cfg_param.vpi_base =
9765 bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9766 phba->sli4_hba.max_cfg_param.max_rpi =
9767 bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9768 phba->sli4_hba.max_cfg_param.rpi_base =
9769 bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9770 phba->sli4_hba.max_cfg_param.max_vfi =
9771 bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9772 phba->sli4_hba.max_cfg_param.vfi_base =
9773 bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
9774 phba->sli4_hba.max_cfg_param.max_fcfi =
9775 bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
9776 phba->sli4_hba.max_cfg_param.max_eq =
9777 bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
9778 phba->sli4_hba.max_cfg_param.max_rq =
9779 bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
9780 phba->sli4_hba.max_cfg_param.max_wq =
9781 bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
9782 phba->sli4_hba.max_cfg_param.max_cq =
9783 bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
9784 phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
9785 phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
9786 phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
9787 phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
9788 phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
9789 (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
9790 phba->max_vports = phba->max_vpi;
9791
9792 /* Next decide on FPIN or Signal E2E CGN support
9793 * For congestion alarms and warnings valid combination are:
9794 * 1. FPIN alarms / FPIN warnings
9795 * 2. Signal alarms / Signal warnings
9796 * 3. FPIN alarms / Signal warnings
9797 * 4. Signal alarms / FPIN warnings
9798 *
9799 * Initialize the adapter frequency to 100 mSecs
9800 */
9801 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9802 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
9803 phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
9804
9805 if (lpfc_use_cgn_signal) {
9806 if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
9807 phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
9808 phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
9809 }
9810 if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
9811 /* MUST support both alarm and warning
9812 * because EDC does not support alarm alone.
9813 */
9814 if (phba->cgn_reg_signal !=
9815 EDC_CG_SIG_WARN_ONLY) {
9816 /* Must support both or none */
9817 phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9818 phba->cgn_reg_signal =
9819 EDC_CG_SIG_NOTSUPPORTED;
9820 } else {
9821 phba->cgn_reg_signal =
9822 EDC_CG_SIG_WARN_ALARM;
9823 phba->cgn_reg_fpin =
9824 LPFC_CGN_FPIN_NONE;
9825 }
9826 }
9827 }
9828
9829 /* Set the congestion initial signal and fpin values. */
9830 phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
9831 phba->cgn_init_reg_signal = phba->cgn_reg_signal;
9832
9833 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
9834 "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
9835 phba->cgn_reg_signal, phba->cgn_reg_fpin);
9836
9837 lpfc_map_topology(phba, rd_config);
9838 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9839 "2003 cfg params Extents? %d "
9840 "XRI(B:%d M:%d), "
9841 "VPI(B:%d M:%d) "
9842 "VFI(B:%d M:%d) "
9843 "RPI(B:%d M:%d) "
9844 "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
9845 phba->sli4_hba.extents_in_use,
9846 phba->sli4_hba.max_cfg_param.xri_base,
9847 phba->sli4_hba.max_cfg_param.max_xri,
9848 phba->sli4_hba.max_cfg_param.vpi_base,
9849 phba->sli4_hba.max_cfg_param.max_vpi,
9850 phba->sli4_hba.max_cfg_param.vfi_base,
9851 phba->sli4_hba.max_cfg_param.max_vfi,
9852 phba->sli4_hba.max_cfg_param.rpi_base,
9853 phba->sli4_hba.max_cfg_param.max_rpi,
9854 phba->sli4_hba.max_cfg_param.max_fcfi,
9855 phba->sli4_hba.max_cfg_param.max_eq,
9856 phba->sli4_hba.max_cfg_param.max_cq,
9857 phba->sli4_hba.max_cfg_param.max_wq,
9858 phba->sli4_hba.max_cfg_param.max_rq,
9859 phba->lmt);
9860
9861 /*
9862 * Calculate queue resources based on how
9863 * many WQ/CQ/EQs are available.
9864 */
9865 qmin = phba->sli4_hba.max_cfg_param.max_wq;
9866 if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
9867 qmin = phba->sli4_hba.max_cfg_param.max_cq;
9868 if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
9869 qmin = phba->sli4_hba.max_cfg_param.max_eq;
9870 /*
9871 * Whats left after this can go toward NVME / FCP.
9872 * The minus 4 accounts for ELS, NVME LS, MBOX
9873 * plus one extra. When configured for
9874 * NVMET, FCP io channel WQs are not created.
9875 */
9876 qmin -= 4;
9877
9878 /* Check to see if there is enough for NVME */
9879 if ((phba->cfg_irq_chann > qmin) ||
9880 (phba->cfg_hdw_queue > qmin)) {
9881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9882 "2005 Reducing Queues - "
9883 "FW resource limitation: "
9884 "WQ %d CQ %d EQ %d: min %d: "
9885 "IRQ %d HDWQ %d\n",
9886 phba->sli4_hba.max_cfg_param.max_wq,
9887 phba->sli4_hba.max_cfg_param.max_cq,
9888 phba->sli4_hba.max_cfg_param.max_eq,
9889 qmin, phba->cfg_irq_chann,
9890 phba->cfg_hdw_queue);
9891
9892 if (phba->cfg_irq_chann > qmin)
9893 phba->cfg_irq_chann = qmin;
9894 if (phba->cfg_hdw_queue > qmin)
9895 phba->cfg_hdw_queue = qmin;
9896 }
9897 }
9898
9899 if (rc)
9900 goto read_cfg_out;
9901
9902 /* Update link speed if forced link speed is supported */
9903 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
9904 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9905 forced_link_speed =
9906 bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
9907 if (forced_link_speed) {
9908 phba->hba_flag |= HBA_FORCED_LINK_SPEED;
9909
9910 switch (forced_link_speed) {
9911 case LINK_SPEED_1G:
9912 phba->cfg_link_speed =
9913 LPFC_USER_LINK_SPEED_1G;
9914 break;
9915 case LINK_SPEED_2G:
9916 phba->cfg_link_speed =
9917 LPFC_USER_LINK_SPEED_2G;
9918 break;
9919 case LINK_SPEED_4G:
9920 phba->cfg_link_speed =
9921 LPFC_USER_LINK_SPEED_4G;
9922 break;
9923 case LINK_SPEED_8G:
9924 phba->cfg_link_speed =
9925 LPFC_USER_LINK_SPEED_8G;
9926 break;
9927 case LINK_SPEED_10G:
9928 phba->cfg_link_speed =
9929 LPFC_USER_LINK_SPEED_10G;
9930 break;
9931 case LINK_SPEED_16G:
9932 phba->cfg_link_speed =
9933 LPFC_USER_LINK_SPEED_16G;
9934 break;
9935 case LINK_SPEED_32G:
9936 phba->cfg_link_speed =
9937 LPFC_USER_LINK_SPEED_32G;
9938 break;
9939 case LINK_SPEED_64G:
9940 phba->cfg_link_speed =
9941 LPFC_USER_LINK_SPEED_64G;
9942 break;
9943 case 0xffff:
9944 phba->cfg_link_speed =
9945 LPFC_USER_LINK_SPEED_AUTO;
9946 break;
9947 default:
9948 lpfc_printf_log(phba, KERN_ERR,
9949 LOG_TRACE_EVENT,
9950 "0047 Unrecognized link "
9951 "speed : %d\n",
9952 forced_link_speed);
9953 phba->cfg_link_speed =
9954 LPFC_USER_LINK_SPEED_AUTO;
9955 }
9956 }
9957 }
9958
9959 /* Reset the DFT_HBA_Q_DEPTH to the max xri */
9960 length = phba->sli4_hba.max_cfg_param.max_xri -
9961 lpfc_sli4_get_els_iocb_cnt(phba);
9962 if (phba->cfg_hba_queue_depth > length) {
9963 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
9964 "3361 HBA queue depth changed from %d to %d\n",
9965 phba->cfg_hba_queue_depth, length);
9966 phba->cfg_hba_queue_depth = length;
9967 }
9968
9969 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
9970 LPFC_SLI_INTF_IF_TYPE_2)
9971 goto read_cfg_out;
9972
9973 /* get the pf# and vf# for SLI4 if_type 2 port */
9974 length = (sizeof(struct lpfc_mbx_get_func_cfg) -
9975 sizeof(struct lpfc_sli4_cfg_mhdr));
9976 lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
9977 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
9978 length, LPFC_SLI4_MBX_EMBED);
9979
9980 rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9981 shdr = (union lpfc_sli4_cfg_shdr *)
9982 &pmb->u.mqe.un.sli4_config.header.cfg_shdr;
9983 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
9984 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
9985 if (rc2 || shdr_status || shdr_add_status) {
9986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9987 "3026 Mailbox failed , mbxCmd x%x "
9988 "GET_FUNCTION_CONFIG, mbxStatus x%x\n",
9989 bf_get(lpfc_mqe_command, &pmb->u.mqe),
9990 bf_get(lpfc_mqe_status, &pmb->u.mqe));
9991 goto read_cfg_out;
9992 }
9993
9994 /* search for fc_fcoe resrouce descriptor */
9995 get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
9996
9997 pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
9998 desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
9999 length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10000 if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10001 length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10002 else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10003 goto read_cfg_out;
10004
10005 for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10006 desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10007 if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10008 bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10009 phba->sli4_hba.iov.pf_number =
10010 bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10011 phba->sli4_hba.iov.vf_number =
10012 bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10013 break;
10014 }
10015 }
10016
10017 if (i < LPFC_RSRC_DESC_MAX_NUM)
10018 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10019 "3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10020 "vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10021 phba->sli4_hba.iov.vf_number);
10022 else
10023 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10024 "3028 GET_FUNCTION_CONFIG: failed to find "
10025 "Resource Descriptor:x%x\n",
10026 LPFC_RSRC_DESC_TYPE_FCFCOE);
10027
10028 read_cfg_out:
10029 mempool_free(pmb, phba->mbox_mem_pool);
10030 return rc;
10031 }
10032
10033 /**
10034 * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10035 * @phba: pointer to lpfc hba data structure.
10036 *
10037 * This routine is invoked to setup the port-side endian order when
10038 * the port if_type is 0. This routine has no function for other
10039 * if_types.
10040 *
10041 * Return codes
10042 * 0 - successful
10043 * -ENOMEM - No available memory
10044 * -EIO - The mailbox failed to complete successfully.
10045 **/
10046 static int
lpfc_setup_endian_order(struct lpfc_hba * phba)10047 lpfc_setup_endian_order(struct lpfc_hba *phba)
10048 {
10049 LPFC_MBOXQ_t *mboxq;
10050 uint32_t if_type, rc = 0;
10051 uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10052 HOST_ENDIAN_HIGH_WORD1};
10053
10054 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10055 switch (if_type) {
10056 case LPFC_SLI_INTF_IF_TYPE_0:
10057 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10058 GFP_KERNEL);
10059 if (!mboxq) {
10060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10061 "0492 Unable to allocate memory for "
10062 "issuing SLI_CONFIG_SPECIAL mailbox "
10063 "command\n");
10064 return -ENOMEM;
10065 }
10066
10067 /*
10068 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10069 * two words to contain special data values and no other data.
10070 */
10071 memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10072 memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10073 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10074 if (rc != MBX_SUCCESS) {
10075 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10076 "0493 SLI_CONFIG_SPECIAL mailbox "
10077 "failed with status x%x\n",
10078 rc);
10079 rc = -EIO;
10080 }
10081 mempool_free(mboxq, phba->mbox_mem_pool);
10082 break;
10083 case LPFC_SLI_INTF_IF_TYPE_6:
10084 case LPFC_SLI_INTF_IF_TYPE_2:
10085 case LPFC_SLI_INTF_IF_TYPE_1:
10086 default:
10087 break;
10088 }
10089 return rc;
10090 }
10091
10092 /**
10093 * lpfc_sli4_queue_verify - Verify and update EQ counts
10094 * @phba: pointer to lpfc hba data structure.
10095 *
10096 * This routine is invoked to check the user settable queue counts for EQs.
10097 * After this routine is called the counts will be set to valid values that
10098 * adhere to the constraints of the system's interrupt vectors and the port's
10099 * queue resources.
10100 *
10101 * Return codes
10102 * 0 - successful
10103 * -ENOMEM - No available memory
10104 **/
10105 static int
lpfc_sli4_queue_verify(struct lpfc_hba * phba)10106 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10107 {
10108 /*
10109 * Sanity check for configured queue parameters against the run-time
10110 * device parameters
10111 */
10112
10113 if (phba->nvmet_support) {
10114 if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10115 phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10116 if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10117 phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10118 }
10119
10120 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10121 "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10122 phba->cfg_hdw_queue, phba->cfg_irq_chann,
10123 phba->cfg_nvmet_mrq);
10124
10125 /* Get EQ depth from module parameter, fake the default for now */
10126 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10127 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10128
10129 /* Get CQ depth from module parameter, fake the default for now */
10130 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10131 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10132 return 0;
10133 }
10134
10135 static int
lpfc_alloc_io_wq_cq(struct lpfc_hba * phba,int idx)10136 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10137 {
10138 struct lpfc_queue *qdesc;
10139 u32 wqesize;
10140 int cpu;
10141
10142 cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10143 /* Create Fast Path IO CQs */
10144 if (phba->enab_exp_wqcq_pages)
10145 /* Increase the CQ size when WQEs contain an embedded cdb */
10146 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10147 phba->sli4_hba.cq_esize,
10148 LPFC_CQE_EXP_COUNT, cpu);
10149
10150 else
10151 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10152 phba->sli4_hba.cq_esize,
10153 phba->sli4_hba.cq_ecount, cpu);
10154 if (!qdesc) {
10155 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10156 "0499 Failed allocate fast-path IO CQ (%d)\n",
10157 idx);
10158 return 1;
10159 }
10160 qdesc->qe_valid = 1;
10161 qdesc->hdwq = idx;
10162 qdesc->chann = cpu;
10163 phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10164
10165 /* Create Fast Path IO WQs */
10166 if (phba->enab_exp_wqcq_pages) {
10167 /* Increase the WQ size when WQEs contain an embedded cdb */
10168 wqesize = (phba->fcp_embed_io) ?
10169 LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10170 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10171 wqesize,
10172 LPFC_WQE_EXP_COUNT, cpu);
10173 } else
10174 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10175 phba->sli4_hba.wq_esize,
10176 phba->sli4_hba.wq_ecount, cpu);
10177
10178 if (!qdesc) {
10179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10180 "0503 Failed allocate fast-path IO WQ (%d)\n",
10181 idx);
10182 return 1;
10183 }
10184 qdesc->hdwq = idx;
10185 qdesc->chann = cpu;
10186 phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10187 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10188 return 0;
10189 }
10190
10191 /**
10192 * lpfc_sli4_queue_create - Create all the SLI4 queues
10193 * @phba: pointer to lpfc hba data structure.
10194 *
10195 * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10196 * operation. For each SLI4 queue type, the parameters such as queue entry
10197 * count (queue depth) shall be taken from the module parameter. For now,
10198 * we just use some constant number as place holder.
10199 *
10200 * Return codes
10201 * 0 - successful
10202 * -ENOMEM - No availble memory
10203 * -EIO - The mailbox failed to complete successfully.
10204 **/
10205 int
lpfc_sli4_queue_create(struct lpfc_hba * phba)10206 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10207 {
10208 struct lpfc_queue *qdesc;
10209 int idx, cpu, eqcpu;
10210 struct lpfc_sli4_hdw_queue *qp;
10211 struct lpfc_vector_map_info *cpup;
10212 struct lpfc_vector_map_info *eqcpup;
10213 struct lpfc_eq_intr_info *eqi;
10214
10215 /*
10216 * Create HBA Record arrays.
10217 * Both NVME and FCP will share that same vectors / EQs
10218 */
10219 phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10220 phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10221 phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10222 phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10223 phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10224 phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10225 phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10226 phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10227 phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10228 phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10229
10230 if (!phba->sli4_hba.hdwq) {
10231 phba->sli4_hba.hdwq = kcalloc(
10232 phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10233 GFP_KERNEL);
10234 if (!phba->sli4_hba.hdwq) {
10235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10236 "6427 Failed allocate memory for "
10237 "fast-path Hardware Queue array\n");
10238 goto out_error;
10239 }
10240 /* Prepare hardware queues to take IO buffers */
10241 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10242 qp = &phba->sli4_hba.hdwq[idx];
10243 spin_lock_init(&qp->io_buf_list_get_lock);
10244 spin_lock_init(&qp->io_buf_list_put_lock);
10245 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10246 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10247 qp->get_io_bufs = 0;
10248 qp->put_io_bufs = 0;
10249 qp->total_io_bufs = 0;
10250 spin_lock_init(&qp->abts_io_buf_list_lock);
10251 INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10252 qp->abts_scsi_io_bufs = 0;
10253 qp->abts_nvme_io_bufs = 0;
10254 INIT_LIST_HEAD(&qp->sgl_list);
10255 INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10256 spin_lock_init(&qp->hdwq_lock);
10257 }
10258 }
10259
10260 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10261 if (phba->nvmet_support) {
10262 phba->sli4_hba.nvmet_cqset = kcalloc(
10263 phba->cfg_nvmet_mrq,
10264 sizeof(struct lpfc_queue *),
10265 GFP_KERNEL);
10266 if (!phba->sli4_hba.nvmet_cqset) {
10267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10268 "3121 Fail allocate memory for "
10269 "fast-path CQ set array\n");
10270 goto out_error;
10271 }
10272 phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10273 phba->cfg_nvmet_mrq,
10274 sizeof(struct lpfc_queue *),
10275 GFP_KERNEL);
10276 if (!phba->sli4_hba.nvmet_mrq_hdr) {
10277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10278 "3122 Fail allocate memory for "
10279 "fast-path RQ set hdr array\n");
10280 goto out_error;
10281 }
10282 phba->sli4_hba.nvmet_mrq_data = kcalloc(
10283 phba->cfg_nvmet_mrq,
10284 sizeof(struct lpfc_queue *),
10285 GFP_KERNEL);
10286 if (!phba->sli4_hba.nvmet_mrq_data) {
10287 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10288 "3124 Fail allocate memory for "
10289 "fast-path RQ set data array\n");
10290 goto out_error;
10291 }
10292 }
10293 }
10294
10295 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10296
10297 /* Create HBA Event Queues (EQs) */
10298 for_each_present_cpu(cpu) {
10299 /* We only want to create 1 EQ per vector, even though
10300 * multiple CPUs might be using that vector. so only
10301 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10302 */
10303 cpup = &phba->sli4_hba.cpu_map[cpu];
10304 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10305 continue;
10306
10307 /* Get a ptr to the Hardware Queue associated with this CPU */
10308 qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10309
10310 /* Allocate an EQ */
10311 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10312 phba->sli4_hba.eq_esize,
10313 phba->sli4_hba.eq_ecount, cpu);
10314 if (!qdesc) {
10315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10316 "0497 Failed allocate EQ (%d)\n",
10317 cpup->hdwq);
10318 goto out_error;
10319 }
10320 qdesc->qe_valid = 1;
10321 qdesc->hdwq = cpup->hdwq;
10322 qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10323 qdesc->last_cpu = qdesc->chann;
10324
10325 /* Save the allocated EQ in the Hardware Queue */
10326 qp->hba_eq = qdesc;
10327
10328 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10329 list_add(&qdesc->cpu_list, &eqi->list);
10330 }
10331
10332 /* Now we need to populate the other Hardware Queues, that share
10333 * an IRQ vector, with the associated EQ ptr.
10334 */
10335 for_each_present_cpu(cpu) {
10336 cpup = &phba->sli4_hba.cpu_map[cpu];
10337
10338 /* Check for EQ already allocated in previous loop */
10339 if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10340 continue;
10341
10342 /* Check for multiple CPUs per hdwq */
10343 qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10344 if (qp->hba_eq)
10345 continue;
10346
10347 /* We need to share an EQ for this hdwq */
10348 eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10349 eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10350 qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10351 }
10352
10353 /* Allocate IO Path SLI4 CQ/WQs */
10354 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10355 if (lpfc_alloc_io_wq_cq(phba, idx))
10356 goto out_error;
10357 }
10358
10359 if (phba->nvmet_support) {
10360 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10361 cpu = lpfc_find_cpu_handle(phba, idx,
10362 LPFC_FIND_BY_HDWQ);
10363 qdesc = lpfc_sli4_queue_alloc(phba,
10364 LPFC_DEFAULT_PAGE_SIZE,
10365 phba->sli4_hba.cq_esize,
10366 phba->sli4_hba.cq_ecount,
10367 cpu);
10368 if (!qdesc) {
10369 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10370 "3142 Failed allocate NVME "
10371 "CQ Set (%d)\n", idx);
10372 goto out_error;
10373 }
10374 qdesc->qe_valid = 1;
10375 qdesc->hdwq = idx;
10376 qdesc->chann = cpu;
10377 phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10378 }
10379 }
10380
10381 /*
10382 * Create Slow Path Completion Queues (CQs)
10383 */
10384
10385 cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10386 /* Create slow-path Mailbox Command Complete Queue */
10387 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10388 phba->sli4_hba.cq_esize,
10389 phba->sli4_hba.cq_ecount, cpu);
10390 if (!qdesc) {
10391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10392 "0500 Failed allocate slow-path mailbox CQ\n");
10393 goto out_error;
10394 }
10395 qdesc->qe_valid = 1;
10396 phba->sli4_hba.mbx_cq = qdesc;
10397
10398 /* Create slow-path ELS Complete Queue */
10399 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10400 phba->sli4_hba.cq_esize,
10401 phba->sli4_hba.cq_ecount, cpu);
10402 if (!qdesc) {
10403 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10404 "0501 Failed allocate slow-path ELS CQ\n");
10405 goto out_error;
10406 }
10407 qdesc->qe_valid = 1;
10408 qdesc->chann = cpu;
10409 phba->sli4_hba.els_cq = qdesc;
10410
10411
10412 /*
10413 * Create Slow Path Work Queues (WQs)
10414 */
10415
10416 /* Create Mailbox Command Queue */
10417
10418 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10419 phba->sli4_hba.mq_esize,
10420 phba->sli4_hba.mq_ecount, cpu);
10421 if (!qdesc) {
10422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10423 "0505 Failed allocate slow-path MQ\n");
10424 goto out_error;
10425 }
10426 qdesc->chann = cpu;
10427 phba->sli4_hba.mbx_wq = qdesc;
10428
10429 /*
10430 * Create ELS Work Queues
10431 */
10432
10433 /* Create slow-path ELS Work Queue */
10434 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10435 phba->sli4_hba.wq_esize,
10436 phba->sli4_hba.wq_ecount, cpu);
10437 if (!qdesc) {
10438 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10439 "0504 Failed allocate slow-path ELS WQ\n");
10440 goto out_error;
10441 }
10442 qdesc->chann = cpu;
10443 phba->sli4_hba.els_wq = qdesc;
10444 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10445
10446 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10447 /* Create NVME LS Complete Queue */
10448 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10449 phba->sli4_hba.cq_esize,
10450 phba->sli4_hba.cq_ecount, cpu);
10451 if (!qdesc) {
10452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10453 "6079 Failed allocate NVME LS CQ\n");
10454 goto out_error;
10455 }
10456 qdesc->chann = cpu;
10457 qdesc->qe_valid = 1;
10458 phba->sli4_hba.nvmels_cq = qdesc;
10459
10460 /* Create NVME LS Work Queue */
10461 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10462 phba->sli4_hba.wq_esize,
10463 phba->sli4_hba.wq_ecount, cpu);
10464 if (!qdesc) {
10465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10466 "6080 Failed allocate NVME LS WQ\n");
10467 goto out_error;
10468 }
10469 qdesc->chann = cpu;
10470 phba->sli4_hba.nvmels_wq = qdesc;
10471 list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10472 }
10473
10474 /*
10475 * Create Receive Queue (RQ)
10476 */
10477
10478 /* Create Receive Queue for header */
10479 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10480 phba->sli4_hba.rq_esize,
10481 phba->sli4_hba.rq_ecount, cpu);
10482 if (!qdesc) {
10483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10484 "0506 Failed allocate receive HRQ\n");
10485 goto out_error;
10486 }
10487 phba->sli4_hba.hdr_rq = qdesc;
10488
10489 /* Create Receive Queue for data */
10490 qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10491 phba->sli4_hba.rq_esize,
10492 phba->sli4_hba.rq_ecount, cpu);
10493 if (!qdesc) {
10494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10495 "0507 Failed allocate receive DRQ\n");
10496 goto out_error;
10497 }
10498 phba->sli4_hba.dat_rq = qdesc;
10499
10500 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10501 phba->nvmet_support) {
10502 for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10503 cpu = lpfc_find_cpu_handle(phba, idx,
10504 LPFC_FIND_BY_HDWQ);
10505 /* Create NVMET Receive Queue for header */
10506 qdesc = lpfc_sli4_queue_alloc(phba,
10507 LPFC_DEFAULT_PAGE_SIZE,
10508 phba->sli4_hba.rq_esize,
10509 LPFC_NVMET_RQE_DEF_COUNT,
10510 cpu);
10511 if (!qdesc) {
10512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10513 "3146 Failed allocate "
10514 "receive HRQ\n");
10515 goto out_error;
10516 }
10517 qdesc->hdwq = idx;
10518 phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10519
10520 /* Only needed for header of RQ pair */
10521 qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10522 GFP_KERNEL,
10523 cpu_to_node(cpu));
10524 if (qdesc->rqbp == NULL) {
10525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10526 "6131 Failed allocate "
10527 "Header RQBP\n");
10528 goto out_error;
10529 }
10530
10531 /* Put list in known state in case driver load fails. */
10532 INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10533
10534 /* Create NVMET Receive Queue for data */
10535 qdesc = lpfc_sli4_queue_alloc(phba,
10536 LPFC_DEFAULT_PAGE_SIZE,
10537 phba->sli4_hba.rq_esize,
10538 LPFC_NVMET_RQE_DEF_COUNT,
10539 cpu);
10540 if (!qdesc) {
10541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10542 "3156 Failed allocate "
10543 "receive DRQ\n");
10544 goto out_error;
10545 }
10546 qdesc->hdwq = idx;
10547 phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10548 }
10549 }
10550
10551 /* Clear NVME stats */
10552 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10553 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10554 memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10555 sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10556 }
10557 }
10558
10559 /* Clear SCSI stats */
10560 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10561 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10562 memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10563 sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10564 }
10565 }
10566
10567 return 0;
10568
10569 out_error:
10570 lpfc_sli4_queue_destroy(phba);
10571 return -ENOMEM;
10572 }
10573
10574 static inline void
__lpfc_sli4_release_queue(struct lpfc_queue ** qp)10575 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10576 {
10577 if (*qp != NULL) {
10578 lpfc_sli4_queue_free(*qp);
10579 *qp = NULL;
10580 }
10581 }
10582
10583 static inline void
lpfc_sli4_release_queues(struct lpfc_queue *** qs,int max)10584 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10585 {
10586 int idx;
10587
10588 if (*qs == NULL)
10589 return;
10590
10591 for (idx = 0; idx < max; idx++)
10592 __lpfc_sli4_release_queue(&(*qs)[idx]);
10593
10594 kfree(*qs);
10595 *qs = NULL;
10596 }
10597
10598 static inline void
lpfc_sli4_release_hdwq(struct lpfc_hba * phba)10599 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10600 {
10601 struct lpfc_sli4_hdw_queue *hdwq;
10602 struct lpfc_queue *eq;
10603 uint32_t idx;
10604
10605 hdwq = phba->sli4_hba.hdwq;
10606
10607 /* Loop thru all Hardware Queues */
10608 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10609 /* Free the CQ/WQ corresponding to the Hardware Queue */
10610 lpfc_sli4_queue_free(hdwq[idx].io_cq);
10611 lpfc_sli4_queue_free(hdwq[idx].io_wq);
10612 hdwq[idx].hba_eq = NULL;
10613 hdwq[idx].io_cq = NULL;
10614 hdwq[idx].io_wq = NULL;
10615 if (phba->cfg_xpsgl && !phba->nvmet_support)
10616 lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10617 lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10618 }
10619 /* Loop thru all IRQ vectors */
10620 for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10621 /* Free the EQ corresponding to the IRQ vector */
10622 eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10623 lpfc_sli4_queue_free(eq);
10624 phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10625 }
10626 }
10627
10628 /**
10629 * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10630 * @phba: pointer to lpfc hba data structure.
10631 *
10632 * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10633 * operation.
10634 *
10635 * Return codes
10636 * 0 - successful
10637 * -ENOMEM - No available memory
10638 * -EIO - The mailbox failed to complete successfully.
10639 **/
10640 void
lpfc_sli4_queue_destroy(struct lpfc_hba * phba)10641 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10642 {
10643 /*
10644 * Set FREE_INIT before beginning to free the queues.
10645 * Wait until the users of queues to acknowledge to
10646 * release queues by clearing FREE_WAIT.
10647 */
10648 spin_lock_irq(&phba->hbalock);
10649 phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10650 while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10651 spin_unlock_irq(&phba->hbalock);
10652 msleep(20);
10653 spin_lock_irq(&phba->hbalock);
10654 }
10655 spin_unlock_irq(&phba->hbalock);
10656
10657 lpfc_sli4_cleanup_poll_list(phba);
10658
10659 /* Release HBA eqs */
10660 if (phba->sli4_hba.hdwq)
10661 lpfc_sli4_release_hdwq(phba);
10662
10663 if (phba->nvmet_support) {
10664 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10665 phba->cfg_nvmet_mrq);
10666
10667 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10668 phba->cfg_nvmet_mrq);
10669 lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10670 phba->cfg_nvmet_mrq);
10671 }
10672
10673 /* Release mailbox command work queue */
10674 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10675
10676 /* Release ELS work queue */
10677 __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10678
10679 /* Release ELS work queue */
10680 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10681
10682 /* Release unsolicited receive queue */
10683 __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10684 __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10685
10686 /* Release ELS complete queue */
10687 __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10688
10689 /* Release NVME LS complete queue */
10690 __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10691
10692 /* Release mailbox command complete queue */
10693 __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10694
10695 /* Everything on this list has been freed */
10696 INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10697
10698 /* Done with freeing the queues */
10699 spin_lock_irq(&phba->hbalock);
10700 phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10701 spin_unlock_irq(&phba->hbalock);
10702 }
10703
10704 int
lpfc_free_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * rq)10705 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10706 {
10707 struct lpfc_rqb *rqbp;
10708 struct lpfc_dmabuf *h_buf;
10709 struct rqb_dmabuf *rqb_buffer;
10710
10711 rqbp = rq->rqbp;
10712 while (!list_empty(&rqbp->rqb_buffer_list)) {
10713 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10714 struct lpfc_dmabuf, list);
10715
10716 rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10717 (rqbp->rqb_free_buffer)(phba, rqb_buffer);
10718 rqbp->buffer_count--;
10719 }
10720 return 1;
10721 }
10722
10723 static int
lpfc_create_wq_cq(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_queue * cq,struct lpfc_queue * wq,uint16_t * cq_map,int qidx,uint32_t qtype)10724 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10725 struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10726 int qidx, uint32_t qtype)
10727 {
10728 struct lpfc_sli_ring *pring;
10729 int rc;
10730
10731 if (!eq || !cq || !wq) {
10732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10733 "6085 Fast-path %s (%d) not allocated\n",
10734 ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10735 return -ENOMEM;
10736 }
10737
10738 /* create the Cq first */
10739 rc = lpfc_cq_create(phba, cq, eq,
10740 (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10741 if (rc) {
10742 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10743 "6086 Failed setup of CQ (%d), rc = 0x%x\n",
10744 qidx, (uint32_t)rc);
10745 return rc;
10746 }
10747
10748 if (qtype != LPFC_MBOX) {
10749 /* Setup cq_map for fast lookup */
10750 if (cq_map)
10751 *cq_map = cq->queue_id;
10752
10753 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10754 "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10755 qidx, cq->queue_id, qidx, eq->queue_id);
10756
10757 /* create the wq */
10758 rc = lpfc_wq_create(phba, wq, cq, qtype);
10759 if (rc) {
10760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10761 "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10762 qidx, (uint32_t)rc);
10763 /* no need to tear down cq - caller will do so */
10764 return rc;
10765 }
10766
10767 /* Bind this CQ/WQ to the NVME ring */
10768 pring = wq->pring;
10769 pring->sli.sli4.wqp = (void *)wq;
10770 cq->pring = pring;
10771
10772 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10773 "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10774 qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
10775 } else {
10776 rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
10777 if (rc) {
10778 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10779 "0539 Failed setup of slow-path MQ: "
10780 "rc = 0x%x\n", rc);
10781 /* no need to tear down cq - caller will do so */
10782 return rc;
10783 }
10784
10785 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10786 "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
10787 phba->sli4_hba.mbx_wq->queue_id,
10788 phba->sli4_hba.mbx_cq->queue_id);
10789 }
10790
10791 return 0;
10792 }
10793
10794 /**
10795 * lpfc_setup_cq_lookup - Setup the CQ lookup table
10796 * @phba: pointer to lpfc hba data structure.
10797 *
10798 * This routine will populate the cq_lookup table by all
10799 * available CQ queue_id's.
10800 **/
10801 static void
lpfc_setup_cq_lookup(struct lpfc_hba * phba)10802 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
10803 {
10804 struct lpfc_queue *eq, *childq;
10805 int qidx;
10806
10807 memset(phba->sli4_hba.cq_lookup, 0,
10808 (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
10809 /* Loop thru all IRQ vectors */
10810 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10811 /* Get the EQ corresponding to the IRQ vector */
10812 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
10813 if (!eq)
10814 continue;
10815 /* Loop through all CQs associated with that EQ */
10816 list_for_each_entry(childq, &eq->child_list, list) {
10817 if (childq->queue_id > phba->sli4_hba.cq_max)
10818 continue;
10819 if (childq->subtype == LPFC_IO)
10820 phba->sli4_hba.cq_lookup[childq->queue_id] =
10821 childq;
10822 }
10823 }
10824 }
10825
10826 /**
10827 * lpfc_sli4_queue_setup - Set up all the SLI4 queues
10828 * @phba: pointer to lpfc hba data structure.
10829 *
10830 * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
10831 * operation.
10832 *
10833 * Return codes
10834 * 0 - successful
10835 * -ENOMEM - No available memory
10836 * -EIO - The mailbox failed to complete successfully.
10837 **/
10838 int
lpfc_sli4_queue_setup(struct lpfc_hba * phba)10839 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
10840 {
10841 uint32_t shdr_status, shdr_add_status;
10842 union lpfc_sli4_cfg_shdr *shdr;
10843 struct lpfc_vector_map_info *cpup;
10844 struct lpfc_sli4_hdw_queue *qp;
10845 LPFC_MBOXQ_t *mboxq;
10846 int qidx, cpu;
10847 uint32_t length, usdelay;
10848 int rc = -ENOMEM;
10849
10850 /* Check for dual-ULP support */
10851 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10852 if (!mboxq) {
10853 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10854 "3249 Unable to allocate memory for "
10855 "QUERY_FW_CFG mailbox command\n");
10856 return -ENOMEM;
10857 }
10858 length = (sizeof(struct lpfc_mbx_query_fw_config) -
10859 sizeof(struct lpfc_sli4_cfg_mhdr));
10860 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
10861 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
10862 length, LPFC_SLI4_MBX_EMBED);
10863
10864 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10865
10866 shdr = (union lpfc_sli4_cfg_shdr *)
10867 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
10868 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10869 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10870 if (shdr_status || shdr_add_status || rc) {
10871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10872 "3250 QUERY_FW_CFG mailbox failed with status "
10873 "x%x add_status x%x, mbx status x%x\n",
10874 shdr_status, shdr_add_status, rc);
10875 mempool_free(mboxq, phba->mbox_mem_pool);
10876 rc = -ENXIO;
10877 goto out_error;
10878 }
10879
10880 phba->sli4_hba.fw_func_mode =
10881 mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
10882 phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
10883 phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
10884 phba->sli4_hba.physical_port =
10885 mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
10886 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10887 "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
10888 "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
10889 phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
10890
10891 mempool_free(mboxq, phba->mbox_mem_pool);
10892
10893 /*
10894 * Set up HBA Event Queues (EQs)
10895 */
10896 qp = phba->sli4_hba.hdwq;
10897
10898 /* Set up HBA event queue */
10899 if (!qp) {
10900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10901 "3147 Fast-path EQs not allocated\n");
10902 rc = -ENOMEM;
10903 goto out_error;
10904 }
10905
10906 /* Loop thru all IRQ vectors */
10907 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10908 /* Create HBA Event Queues (EQs) in order */
10909 for_each_present_cpu(cpu) {
10910 cpup = &phba->sli4_hba.cpu_map[cpu];
10911
10912 /* Look for the CPU thats using that vector with
10913 * LPFC_CPU_FIRST_IRQ set.
10914 */
10915 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10916 continue;
10917 if (qidx != cpup->eq)
10918 continue;
10919
10920 /* Create an EQ for that vector */
10921 rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
10922 phba->cfg_fcp_imax);
10923 if (rc) {
10924 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10925 "0523 Failed setup of fast-path"
10926 " EQ (%d), rc = 0x%x\n",
10927 cpup->eq, (uint32_t)rc);
10928 goto out_destroy;
10929 }
10930
10931 /* Save the EQ for that vector in the hba_eq_hdl */
10932 phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
10933 qp[cpup->hdwq].hba_eq;
10934
10935 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10936 "2584 HBA EQ setup: queue[%d]-id=%d\n",
10937 cpup->eq,
10938 qp[cpup->hdwq].hba_eq->queue_id);
10939 }
10940 }
10941
10942 /* Loop thru all Hardware Queues */
10943 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
10944 cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
10945 cpup = &phba->sli4_hba.cpu_map[cpu];
10946
10947 /* Create the CQ/WQ corresponding to the Hardware Queue */
10948 rc = lpfc_create_wq_cq(phba,
10949 phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
10950 qp[qidx].io_cq,
10951 qp[qidx].io_wq,
10952 &phba->sli4_hba.hdwq[qidx].io_cq_map,
10953 qidx,
10954 LPFC_IO);
10955 if (rc) {
10956 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10957 "0535 Failed to setup fastpath "
10958 "IO WQ/CQ (%d), rc = 0x%x\n",
10959 qidx, (uint32_t)rc);
10960 goto out_destroy;
10961 }
10962 }
10963
10964 /*
10965 * Set up Slow Path Complete Queues (CQs)
10966 */
10967
10968 /* Set up slow-path MBOX CQ/MQ */
10969
10970 if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
10971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10972 "0528 %s not allocated\n",
10973 phba->sli4_hba.mbx_cq ?
10974 "Mailbox WQ" : "Mailbox CQ");
10975 rc = -ENOMEM;
10976 goto out_destroy;
10977 }
10978
10979 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
10980 phba->sli4_hba.mbx_cq,
10981 phba->sli4_hba.mbx_wq,
10982 NULL, 0, LPFC_MBOX);
10983 if (rc) {
10984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10985 "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
10986 (uint32_t)rc);
10987 goto out_destroy;
10988 }
10989 if (phba->nvmet_support) {
10990 if (!phba->sli4_hba.nvmet_cqset) {
10991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10992 "3165 Fast-path NVME CQ Set "
10993 "array not allocated\n");
10994 rc = -ENOMEM;
10995 goto out_destroy;
10996 }
10997 if (phba->cfg_nvmet_mrq > 1) {
10998 rc = lpfc_cq_create_set(phba,
10999 phba->sli4_hba.nvmet_cqset,
11000 qp,
11001 LPFC_WCQ, LPFC_NVMET);
11002 if (rc) {
11003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11004 "3164 Failed setup of NVME CQ "
11005 "Set, rc = 0x%x\n",
11006 (uint32_t)rc);
11007 goto out_destroy;
11008 }
11009 } else {
11010 /* Set up NVMET Receive Complete Queue */
11011 rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11012 qp[0].hba_eq,
11013 LPFC_WCQ, LPFC_NVMET);
11014 if (rc) {
11015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11016 "6089 Failed setup NVMET CQ: "
11017 "rc = 0x%x\n", (uint32_t)rc);
11018 goto out_destroy;
11019 }
11020 phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11021
11022 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11023 "6090 NVMET CQ setup: cq-id=%d, "
11024 "parent eq-id=%d\n",
11025 phba->sli4_hba.nvmet_cqset[0]->queue_id,
11026 qp[0].hba_eq->queue_id);
11027 }
11028 }
11029
11030 /* Set up slow-path ELS WQ/CQ */
11031 if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11032 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11033 "0530 ELS %s not allocated\n",
11034 phba->sli4_hba.els_cq ? "WQ" : "CQ");
11035 rc = -ENOMEM;
11036 goto out_destroy;
11037 }
11038 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11039 phba->sli4_hba.els_cq,
11040 phba->sli4_hba.els_wq,
11041 NULL, 0, LPFC_ELS);
11042 if (rc) {
11043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11044 "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11045 (uint32_t)rc);
11046 goto out_destroy;
11047 }
11048 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11049 "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11050 phba->sli4_hba.els_wq->queue_id,
11051 phba->sli4_hba.els_cq->queue_id);
11052
11053 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11054 /* Set up NVME LS Complete Queue */
11055 if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11057 "6091 LS %s not allocated\n",
11058 phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11059 rc = -ENOMEM;
11060 goto out_destroy;
11061 }
11062 rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11063 phba->sli4_hba.nvmels_cq,
11064 phba->sli4_hba.nvmels_wq,
11065 NULL, 0, LPFC_NVME_LS);
11066 if (rc) {
11067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11068 "0526 Failed setup of NVVME LS WQ/CQ: "
11069 "rc = 0x%x\n", (uint32_t)rc);
11070 goto out_destroy;
11071 }
11072
11073 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11074 "6096 ELS WQ setup: wq-id=%d, "
11075 "parent cq-id=%d\n",
11076 phba->sli4_hba.nvmels_wq->queue_id,
11077 phba->sli4_hba.nvmels_cq->queue_id);
11078 }
11079
11080 /*
11081 * Create NVMET Receive Queue (RQ)
11082 */
11083 if (phba->nvmet_support) {
11084 if ((!phba->sli4_hba.nvmet_cqset) ||
11085 (!phba->sli4_hba.nvmet_mrq_hdr) ||
11086 (!phba->sli4_hba.nvmet_mrq_data)) {
11087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11088 "6130 MRQ CQ Queues not "
11089 "allocated\n");
11090 rc = -ENOMEM;
11091 goto out_destroy;
11092 }
11093 if (phba->cfg_nvmet_mrq > 1) {
11094 rc = lpfc_mrq_create(phba,
11095 phba->sli4_hba.nvmet_mrq_hdr,
11096 phba->sli4_hba.nvmet_mrq_data,
11097 phba->sli4_hba.nvmet_cqset,
11098 LPFC_NVMET);
11099 if (rc) {
11100 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11101 "6098 Failed setup of NVMET "
11102 "MRQ: rc = 0x%x\n",
11103 (uint32_t)rc);
11104 goto out_destroy;
11105 }
11106
11107 } else {
11108 rc = lpfc_rq_create(phba,
11109 phba->sli4_hba.nvmet_mrq_hdr[0],
11110 phba->sli4_hba.nvmet_mrq_data[0],
11111 phba->sli4_hba.nvmet_cqset[0],
11112 LPFC_NVMET);
11113 if (rc) {
11114 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11115 "6057 Failed setup of NVMET "
11116 "Receive Queue: rc = 0x%x\n",
11117 (uint32_t)rc);
11118 goto out_destroy;
11119 }
11120
11121 lpfc_printf_log(
11122 phba, KERN_INFO, LOG_INIT,
11123 "6099 NVMET RQ setup: hdr-rq-id=%d, "
11124 "dat-rq-id=%d parent cq-id=%d\n",
11125 phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11126 phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11127 phba->sli4_hba.nvmet_cqset[0]->queue_id);
11128
11129 }
11130 }
11131
11132 if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11134 "0540 Receive Queue not allocated\n");
11135 rc = -ENOMEM;
11136 goto out_destroy;
11137 }
11138
11139 rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11140 phba->sli4_hba.els_cq, LPFC_USOL);
11141 if (rc) {
11142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11143 "0541 Failed setup of Receive Queue: "
11144 "rc = 0x%x\n", (uint32_t)rc);
11145 goto out_destroy;
11146 }
11147
11148 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11149 "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11150 "parent cq-id=%d\n",
11151 phba->sli4_hba.hdr_rq->queue_id,
11152 phba->sli4_hba.dat_rq->queue_id,
11153 phba->sli4_hba.els_cq->queue_id);
11154
11155 if (phba->cfg_fcp_imax)
11156 usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11157 else
11158 usdelay = 0;
11159
11160 for (qidx = 0; qidx < phba->cfg_irq_chann;
11161 qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11162 lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11163 usdelay);
11164
11165 if (phba->sli4_hba.cq_max) {
11166 kfree(phba->sli4_hba.cq_lookup);
11167 phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11168 sizeof(struct lpfc_queue *), GFP_KERNEL);
11169 if (!phba->sli4_hba.cq_lookup) {
11170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11171 "0549 Failed setup of CQ Lookup table: "
11172 "size 0x%x\n", phba->sli4_hba.cq_max);
11173 rc = -ENOMEM;
11174 goto out_destroy;
11175 }
11176 lpfc_setup_cq_lookup(phba);
11177 }
11178 return 0;
11179
11180 out_destroy:
11181 lpfc_sli4_queue_unset(phba);
11182 out_error:
11183 return rc;
11184 }
11185
11186 /**
11187 * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11188 * @phba: pointer to lpfc hba data structure.
11189 *
11190 * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11191 * operation.
11192 *
11193 * Return codes
11194 * 0 - successful
11195 * -ENOMEM - No available memory
11196 * -EIO - The mailbox failed to complete successfully.
11197 **/
11198 void
lpfc_sli4_queue_unset(struct lpfc_hba * phba)11199 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11200 {
11201 struct lpfc_sli4_hdw_queue *qp;
11202 struct lpfc_queue *eq;
11203 int qidx;
11204
11205 /* Unset mailbox command work queue */
11206 if (phba->sli4_hba.mbx_wq)
11207 lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11208
11209 /* Unset NVME LS work queue */
11210 if (phba->sli4_hba.nvmels_wq)
11211 lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11212
11213 /* Unset ELS work queue */
11214 if (phba->sli4_hba.els_wq)
11215 lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11216
11217 /* Unset unsolicited receive queue */
11218 if (phba->sli4_hba.hdr_rq)
11219 lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11220 phba->sli4_hba.dat_rq);
11221
11222 /* Unset mailbox command complete queue */
11223 if (phba->sli4_hba.mbx_cq)
11224 lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11225
11226 /* Unset ELS complete queue */
11227 if (phba->sli4_hba.els_cq)
11228 lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11229
11230 /* Unset NVME LS complete queue */
11231 if (phba->sli4_hba.nvmels_cq)
11232 lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11233
11234 if (phba->nvmet_support) {
11235 /* Unset NVMET MRQ queue */
11236 if (phba->sli4_hba.nvmet_mrq_hdr) {
11237 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11238 lpfc_rq_destroy(
11239 phba,
11240 phba->sli4_hba.nvmet_mrq_hdr[qidx],
11241 phba->sli4_hba.nvmet_mrq_data[qidx]);
11242 }
11243
11244 /* Unset NVMET CQ Set complete queue */
11245 if (phba->sli4_hba.nvmet_cqset) {
11246 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11247 lpfc_cq_destroy(
11248 phba, phba->sli4_hba.nvmet_cqset[qidx]);
11249 }
11250 }
11251
11252 /* Unset fast-path SLI4 queues */
11253 if (phba->sli4_hba.hdwq) {
11254 /* Loop thru all Hardware Queues */
11255 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11256 /* Destroy the CQ/WQ corresponding to Hardware Queue */
11257 qp = &phba->sli4_hba.hdwq[qidx];
11258 lpfc_wq_destroy(phba, qp->io_wq);
11259 lpfc_cq_destroy(phba, qp->io_cq);
11260 }
11261 /* Loop thru all IRQ vectors */
11262 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11263 /* Destroy the EQ corresponding to the IRQ vector */
11264 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11265 lpfc_eq_destroy(phba, eq);
11266 }
11267 }
11268
11269 kfree(phba->sli4_hba.cq_lookup);
11270 phba->sli4_hba.cq_lookup = NULL;
11271 phba->sli4_hba.cq_max = 0;
11272 }
11273
11274 /**
11275 * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11276 * @phba: pointer to lpfc hba data structure.
11277 *
11278 * This routine is invoked to allocate and set up a pool of completion queue
11279 * events. The body of the completion queue event is a completion queue entry
11280 * CQE. For now, this pool is used for the interrupt service routine to queue
11281 * the following HBA completion queue events for the worker thread to process:
11282 * - Mailbox asynchronous events
11283 * - Receive queue completion unsolicited events
11284 * Later, this can be used for all the slow-path events.
11285 *
11286 * Return codes
11287 * 0 - successful
11288 * -ENOMEM - No available memory
11289 **/
11290 static int
lpfc_sli4_cq_event_pool_create(struct lpfc_hba * phba)11291 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11292 {
11293 struct lpfc_cq_event *cq_event;
11294 int i;
11295
11296 for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11297 cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11298 if (!cq_event)
11299 goto out_pool_create_fail;
11300 list_add_tail(&cq_event->list,
11301 &phba->sli4_hba.sp_cqe_event_pool);
11302 }
11303 return 0;
11304
11305 out_pool_create_fail:
11306 lpfc_sli4_cq_event_pool_destroy(phba);
11307 return -ENOMEM;
11308 }
11309
11310 /**
11311 * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11312 * @phba: pointer to lpfc hba data structure.
11313 *
11314 * This routine is invoked to free the pool of completion queue events at
11315 * driver unload time. Note that, it is the responsibility of the driver
11316 * cleanup routine to free all the outstanding completion-queue events
11317 * allocated from this pool back into the pool before invoking this routine
11318 * to destroy the pool.
11319 **/
11320 static void
lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba * phba)11321 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11322 {
11323 struct lpfc_cq_event *cq_event, *next_cq_event;
11324
11325 list_for_each_entry_safe(cq_event, next_cq_event,
11326 &phba->sli4_hba.sp_cqe_event_pool, list) {
11327 list_del(&cq_event->list);
11328 kfree(cq_event);
11329 }
11330 }
11331
11332 /**
11333 * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11334 * @phba: pointer to lpfc hba data structure.
11335 *
11336 * This routine is the lock free version of the API invoked to allocate a
11337 * completion-queue event from the free pool.
11338 *
11339 * Return: Pointer to the newly allocated completion-queue event if successful
11340 * NULL otherwise.
11341 **/
11342 struct lpfc_cq_event *
__lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11343 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11344 {
11345 struct lpfc_cq_event *cq_event = NULL;
11346
11347 list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11348 struct lpfc_cq_event, list);
11349 return cq_event;
11350 }
11351
11352 /**
11353 * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11354 * @phba: pointer to lpfc hba data structure.
11355 *
11356 * This routine is the lock version of the API invoked to allocate a
11357 * completion-queue event from the free pool.
11358 *
11359 * Return: Pointer to the newly allocated completion-queue event if successful
11360 * NULL otherwise.
11361 **/
11362 struct lpfc_cq_event *
lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11363 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11364 {
11365 struct lpfc_cq_event *cq_event;
11366 unsigned long iflags;
11367
11368 spin_lock_irqsave(&phba->hbalock, iflags);
11369 cq_event = __lpfc_sli4_cq_event_alloc(phba);
11370 spin_unlock_irqrestore(&phba->hbalock, iflags);
11371 return cq_event;
11372 }
11373
11374 /**
11375 * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11376 * @phba: pointer to lpfc hba data structure.
11377 * @cq_event: pointer to the completion queue event to be freed.
11378 *
11379 * This routine is the lock free version of the API invoked to release a
11380 * completion-queue event back into the free pool.
11381 **/
11382 void
__lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11383 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11384 struct lpfc_cq_event *cq_event)
11385 {
11386 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11387 }
11388
11389 /**
11390 * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11391 * @phba: pointer to lpfc hba data structure.
11392 * @cq_event: pointer to the completion queue event to be freed.
11393 *
11394 * This routine is the lock version of the API invoked to release a
11395 * completion-queue event back into the free pool.
11396 **/
11397 void
lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11398 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11399 struct lpfc_cq_event *cq_event)
11400 {
11401 unsigned long iflags;
11402 spin_lock_irqsave(&phba->hbalock, iflags);
11403 __lpfc_sli4_cq_event_release(phba, cq_event);
11404 spin_unlock_irqrestore(&phba->hbalock, iflags);
11405 }
11406
11407 /**
11408 * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11409 * @phba: pointer to lpfc hba data structure.
11410 *
11411 * This routine is to free all the pending completion-queue events to the
11412 * back into the free pool for device reset.
11413 **/
11414 static void
lpfc_sli4_cq_event_release_all(struct lpfc_hba * phba)11415 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11416 {
11417 LIST_HEAD(cq_event_list);
11418 struct lpfc_cq_event *cq_event;
11419 unsigned long iflags;
11420
11421 /* Retrieve all the pending WCQEs from pending WCQE lists */
11422
11423 /* Pending ELS XRI abort events */
11424 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11425 list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11426 &cq_event_list);
11427 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11428
11429 /* Pending asynnc events */
11430 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11431 list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11432 &cq_event_list);
11433 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11434
11435 while (!list_empty(&cq_event_list)) {
11436 list_remove_head(&cq_event_list, cq_event,
11437 struct lpfc_cq_event, list);
11438 lpfc_sli4_cq_event_release(phba, cq_event);
11439 }
11440 }
11441
11442 /**
11443 * lpfc_pci_function_reset - Reset pci function.
11444 * @phba: pointer to lpfc hba data structure.
11445 *
11446 * This routine is invoked to request a PCI function reset. It will destroys
11447 * all resources assigned to the PCI function which originates this request.
11448 *
11449 * Return codes
11450 * 0 - successful
11451 * -ENOMEM - No available memory
11452 * -EIO - The mailbox failed to complete successfully.
11453 **/
11454 int
lpfc_pci_function_reset(struct lpfc_hba * phba)11455 lpfc_pci_function_reset(struct lpfc_hba *phba)
11456 {
11457 LPFC_MBOXQ_t *mboxq;
11458 uint32_t rc = 0, if_type;
11459 uint32_t shdr_status, shdr_add_status;
11460 uint32_t rdy_chk;
11461 uint32_t port_reset = 0;
11462 union lpfc_sli4_cfg_shdr *shdr;
11463 struct lpfc_register reg_data;
11464 uint16_t devid;
11465
11466 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11467 switch (if_type) {
11468 case LPFC_SLI_INTF_IF_TYPE_0:
11469 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11470 GFP_KERNEL);
11471 if (!mboxq) {
11472 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11473 "0494 Unable to allocate memory for "
11474 "issuing SLI_FUNCTION_RESET mailbox "
11475 "command\n");
11476 return -ENOMEM;
11477 }
11478
11479 /* Setup PCI function reset mailbox-ioctl command */
11480 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11481 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11482 LPFC_SLI4_MBX_EMBED);
11483 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11484 shdr = (union lpfc_sli4_cfg_shdr *)
11485 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11486 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11487 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11488 &shdr->response);
11489 mempool_free(mboxq, phba->mbox_mem_pool);
11490 if (shdr_status || shdr_add_status || rc) {
11491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11492 "0495 SLI_FUNCTION_RESET mailbox "
11493 "failed with status x%x add_status x%x,"
11494 " mbx status x%x\n",
11495 shdr_status, shdr_add_status, rc);
11496 rc = -ENXIO;
11497 }
11498 break;
11499 case LPFC_SLI_INTF_IF_TYPE_2:
11500 case LPFC_SLI_INTF_IF_TYPE_6:
11501 wait:
11502 /*
11503 * Poll the Port Status Register and wait for RDY for
11504 * up to 30 seconds. If the port doesn't respond, treat
11505 * it as an error.
11506 */
11507 for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11508 if (lpfc_readl(phba->sli4_hba.u.if_type2.
11509 STATUSregaddr, ®_data.word0)) {
11510 rc = -ENODEV;
11511 goto out;
11512 }
11513 if (bf_get(lpfc_sliport_status_rdy, ®_data))
11514 break;
11515 msleep(20);
11516 }
11517
11518 if (!bf_get(lpfc_sliport_status_rdy, ®_data)) {
11519 phba->work_status[0] = readl(
11520 phba->sli4_hba.u.if_type2.ERR1regaddr);
11521 phba->work_status[1] = readl(
11522 phba->sli4_hba.u.if_type2.ERR2regaddr);
11523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11524 "2890 Port not ready, port status reg "
11525 "0x%x error 1=0x%x, error 2=0x%x\n",
11526 reg_data.word0,
11527 phba->work_status[0],
11528 phba->work_status[1]);
11529 rc = -ENODEV;
11530 goto out;
11531 }
11532
11533 if (!port_reset) {
11534 /*
11535 * Reset the port now
11536 */
11537 reg_data.word0 = 0;
11538 bf_set(lpfc_sliport_ctrl_end, ®_data,
11539 LPFC_SLIPORT_LITTLE_ENDIAN);
11540 bf_set(lpfc_sliport_ctrl_ip, ®_data,
11541 LPFC_SLIPORT_INIT_PORT);
11542 writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11543 CTRLregaddr);
11544 /* flush */
11545 pci_read_config_word(phba->pcidev,
11546 PCI_DEVICE_ID, &devid);
11547
11548 port_reset = 1;
11549 msleep(20);
11550 goto wait;
11551 } else if (bf_get(lpfc_sliport_status_rn, ®_data)) {
11552 rc = -ENODEV;
11553 goto out;
11554 }
11555 break;
11556
11557 case LPFC_SLI_INTF_IF_TYPE_1:
11558 default:
11559 break;
11560 }
11561
11562 out:
11563 /* Catch the not-ready port failure after a port reset. */
11564 if (rc) {
11565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11566 "3317 HBA not functional: IP Reset Failed "
11567 "try: echo fw_reset > board_mode\n");
11568 rc = -ENODEV;
11569 }
11570
11571 return rc;
11572 }
11573
11574 /**
11575 * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11576 * @phba: pointer to lpfc hba data structure.
11577 *
11578 * This routine is invoked to set up the PCI device memory space for device
11579 * with SLI-4 interface spec.
11580 *
11581 * Return codes
11582 * 0 - successful
11583 * other values - error
11584 **/
11585 static int
lpfc_sli4_pci_mem_setup(struct lpfc_hba * phba)11586 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11587 {
11588 struct pci_dev *pdev = phba->pcidev;
11589 unsigned long bar0map_len, bar1map_len, bar2map_len;
11590 int error;
11591 uint32_t if_type;
11592
11593 if (!pdev)
11594 return -ENODEV;
11595
11596 /* Set the device DMA mask size */
11597 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11598 if (error)
11599 error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11600 if (error)
11601 return error;
11602
11603 /*
11604 * The BARs and register set definitions and offset locations are
11605 * dependent on the if_type.
11606 */
11607 if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11608 &phba->sli4_hba.sli_intf.word0)) {
11609 return -ENODEV;
11610 }
11611
11612 /* There is no SLI3 failback for SLI4 devices. */
11613 if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11614 LPFC_SLI_INTF_VALID) {
11615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11616 "2894 SLI_INTF reg contents invalid "
11617 "sli_intf reg 0x%x\n",
11618 phba->sli4_hba.sli_intf.word0);
11619 return -ENODEV;
11620 }
11621
11622 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11623 /*
11624 * Get the bus address of SLI4 device Bar regions and the
11625 * number of bytes required by each mapping. The mapping of the
11626 * particular PCI BARs regions is dependent on the type of
11627 * SLI4 device.
11628 */
11629 if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11630 phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11631 bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11632
11633 /*
11634 * Map SLI4 PCI Config Space Register base to a kernel virtual
11635 * addr
11636 */
11637 phba->sli4_hba.conf_regs_memmap_p =
11638 ioremap(phba->pci_bar0_map, bar0map_len);
11639 if (!phba->sli4_hba.conf_regs_memmap_p) {
11640 dev_printk(KERN_ERR, &pdev->dev,
11641 "ioremap failed for SLI4 PCI config "
11642 "registers.\n");
11643 return -ENODEV;
11644 }
11645 phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11646 /* Set up BAR0 PCI config space register memory map */
11647 lpfc_sli4_bar0_register_memmap(phba, if_type);
11648 } else {
11649 phba->pci_bar0_map = pci_resource_start(pdev, 1);
11650 bar0map_len = pci_resource_len(pdev, 1);
11651 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11652 dev_printk(KERN_ERR, &pdev->dev,
11653 "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11654 return -ENODEV;
11655 }
11656 phba->sli4_hba.conf_regs_memmap_p =
11657 ioremap(phba->pci_bar0_map, bar0map_len);
11658 if (!phba->sli4_hba.conf_regs_memmap_p) {
11659 dev_printk(KERN_ERR, &pdev->dev,
11660 "ioremap failed for SLI4 PCI config "
11661 "registers.\n");
11662 return -ENODEV;
11663 }
11664 lpfc_sli4_bar0_register_memmap(phba, if_type);
11665 }
11666
11667 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11668 if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11669 /*
11670 * Map SLI4 if type 0 HBA Control Register base to a
11671 * kernel virtual address and setup the registers.
11672 */
11673 phba->pci_bar1_map = pci_resource_start(pdev,
11674 PCI_64BIT_BAR2);
11675 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11676 phba->sli4_hba.ctrl_regs_memmap_p =
11677 ioremap(phba->pci_bar1_map,
11678 bar1map_len);
11679 if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11680 dev_err(&pdev->dev,
11681 "ioremap failed for SLI4 HBA "
11682 "control registers.\n");
11683 error = -ENOMEM;
11684 goto out_iounmap_conf;
11685 }
11686 phba->pci_bar2_memmap_p =
11687 phba->sli4_hba.ctrl_regs_memmap_p;
11688 lpfc_sli4_bar1_register_memmap(phba, if_type);
11689 } else {
11690 error = -ENOMEM;
11691 goto out_iounmap_conf;
11692 }
11693 }
11694
11695 if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11696 (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11697 /*
11698 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11699 * virtual address and setup the registers.
11700 */
11701 phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11702 bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11703 phba->sli4_hba.drbl_regs_memmap_p =
11704 ioremap(phba->pci_bar1_map, bar1map_len);
11705 if (!phba->sli4_hba.drbl_regs_memmap_p) {
11706 dev_err(&pdev->dev,
11707 "ioremap failed for SLI4 HBA doorbell registers.\n");
11708 error = -ENOMEM;
11709 goto out_iounmap_conf;
11710 }
11711 phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11712 lpfc_sli4_bar1_register_memmap(phba, if_type);
11713 }
11714
11715 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11716 if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11717 /*
11718 * Map SLI4 if type 0 HBA Doorbell Register base to
11719 * a kernel virtual address and setup the registers.
11720 */
11721 phba->pci_bar2_map = pci_resource_start(pdev,
11722 PCI_64BIT_BAR4);
11723 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11724 phba->sli4_hba.drbl_regs_memmap_p =
11725 ioremap(phba->pci_bar2_map,
11726 bar2map_len);
11727 if (!phba->sli4_hba.drbl_regs_memmap_p) {
11728 dev_err(&pdev->dev,
11729 "ioremap failed for SLI4 HBA"
11730 " doorbell registers.\n");
11731 error = -ENOMEM;
11732 goto out_iounmap_ctrl;
11733 }
11734 phba->pci_bar4_memmap_p =
11735 phba->sli4_hba.drbl_regs_memmap_p;
11736 error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11737 if (error)
11738 goto out_iounmap_all;
11739 } else {
11740 error = -ENOMEM;
11741 goto out_iounmap_ctrl;
11742 }
11743 }
11744
11745 if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11746 pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11747 /*
11748 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11749 * virtual address and setup the registers.
11750 */
11751 phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11752 bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11753 phba->sli4_hba.dpp_regs_memmap_p =
11754 ioremap(phba->pci_bar2_map, bar2map_len);
11755 if (!phba->sli4_hba.dpp_regs_memmap_p) {
11756 dev_err(&pdev->dev,
11757 "ioremap failed for SLI4 HBA dpp registers.\n");
11758 error = -ENOMEM;
11759 goto out_iounmap_all;
11760 }
11761 phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11762 }
11763
11764 /* Set up the EQ/CQ register handeling functions now */
11765 switch (if_type) {
11766 case LPFC_SLI_INTF_IF_TYPE_0:
11767 case LPFC_SLI_INTF_IF_TYPE_2:
11768 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11769 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11770 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11771 break;
11772 case LPFC_SLI_INTF_IF_TYPE_6:
11773 phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
11774 phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
11775 phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
11776 break;
11777 default:
11778 break;
11779 }
11780
11781 return 0;
11782
11783 out_iounmap_all:
11784 if (phba->sli4_hba.drbl_regs_memmap_p)
11785 iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11786 out_iounmap_ctrl:
11787 if (phba->sli4_hba.ctrl_regs_memmap_p)
11788 iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11789 out_iounmap_conf:
11790 iounmap(phba->sli4_hba.conf_regs_memmap_p);
11791
11792 return error;
11793 }
11794
11795 /**
11796 * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
11797 * @phba: pointer to lpfc hba data structure.
11798 *
11799 * This routine is invoked to unset the PCI device memory space for device
11800 * with SLI-4 interface spec.
11801 **/
11802 static void
lpfc_sli4_pci_mem_unset(struct lpfc_hba * phba)11803 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
11804 {
11805 uint32_t if_type;
11806 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11807
11808 switch (if_type) {
11809 case LPFC_SLI_INTF_IF_TYPE_0:
11810 iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11811 iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11812 iounmap(phba->sli4_hba.conf_regs_memmap_p);
11813 break;
11814 case LPFC_SLI_INTF_IF_TYPE_2:
11815 iounmap(phba->sli4_hba.conf_regs_memmap_p);
11816 break;
11817 case LPFC_SLI_INTF_IF_TYPE_6:
11818 iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11819 iounmap(phba->sli4_hba.conf_regs_memmap_p);
11820 if (phba->sli4_hba.dpp_regs_memmap_p)
11821 iounmap(phba->sli4_hba.dpp_regs_memmap_p);
11822 break;
11823 case LPFC_SLI_INTF_IF_TYPE_1:
11824 default:
11825 dev_printk(KERN_ERR, &phba->pcidev->dev,
11826 "FATAL - unsupported SLI4 interface type - %d\n",
11827 if_type);
11828 break;
11829 }
11830 }
11831
11832 /**
11833 * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
11834 * @phba: pointer to lpfc hba data structure.
11835 *
11836 * This routine is invoked to enable the MSI-X interrupt vectors to device
11837 * with SLI-3 interface specs.
11838 *
11839 * Return codes
11840 * 0 - successful
11841 * other values - error
11842 **/
11843 static int
lpfc_sli_enable_msix(struct lpfc_hba * phba)11844 lpfc_sli_enable_msix(struct lpfc_hba *phba)
11845 {
11846 int rc;
11847 LPFC_MBOXQ_t *pmb;
11848
11849 /* Set up MSI-X multi-message vectors */
11850 rc = pci_alloc_irq_vectors(phba->pcidev,
11851 LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
11852 if (rc < 0) {
11853 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11854 "0420 PCI enable MSI-X failed (%d)\n", rc);
11855 goto vec_fail_out;
11856 }
11857
11858 /*
11859 * Assign MSI-X vectors to interrupt handlers
11860 */
11861
11862 /* vector-0 is associated to slow-path handler */
11863 rc = request_irq(pci_irq_vector(phba->pcidev, 0),
11864 &lpfc_sli_sp_intr_handler, 0,
11865 LPFC_SP_DRIVER_HANDLER_NAME, phba);
11866 if (rc) {
11867 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11868 "0421 MSI-X slow-path request_irq failed "
11869 "(%d)\n", rc);
11870 goto msi_fail_out;
11871 }
11872
11873 /* vector-1 is associated to fast-path handler */
11874 rc = request_irq(pci_irq_vector(phba->pcidev, 1),
11875 &lpfc_sli_fp_intr_handler, 0,
11876 LPFC_FP_DRIVER_HANDLER_NAME, phba);
11877
11878 if (rc) {
11879 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11880 "0429 MSI-X fast-path request_irq failed "
11881 "(%d)\n", rc);
11882 goto irq_fail_out;
11883 }
11884
11885 /*
11886 * Configure HBA MSI-X attention conditions to messages
11887 */
11888 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11889
11890 if (!pmb) {
11891 rc = -ENOMEM;
11892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11893 "0474 Unable to allocate memory for issuing "
11894 "MBOX_CONFIG_MSI command\n");
11895 goto mem_fail_out;
11896 }
11897 rc = lpfc_config_msi(phba, pmb);
11898 if (rc)
11899 goto mbx_fail_out;
11900 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
11901 if (rc != MBX_SUCCESS) {
11902 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
11903 "0351 Config MSI mailbox command failed, "
11904 "mbxCmd x%x, mbxStatus x%x\n",
11905 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
11906 goto mbx_fail_out;
11907 }
11908
11909 /* Free memory allocated for mailbox command */
11910 mempool_free(pmb, phba->mbox_mem_pool);
11911 return rc;
11912
11913 mbx_fail_out:
11914 /* Free memory allocated for mailbox command */
11915 mempool_free(pmb, phba->mbox_mem_pool);
11916
11917 mem_fail_out:
11918 /* free the irq already requested */
11919 free_irq(pci_irq_vector(phba->pcidev, 1), phba);
11920
11921 irq_fail_out:
11922 /* free the irq already requested */
11923 free_irq(pci_irq_vector(phba->pcidev, 0), phba);
11924
11925 msi_fail_out:
11926 /* Unconfigure MSI-X capability structure */
11927 pci_free_irq_vectors(phba->pcidev);
11928
11929 vec_fail_out:
11930 return rc;
11931 }
11932
11933 /**
11934 * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
11935 * @phba: pointer to lpfc hba data structure.
11936 *
11937 * This routine is invoked to enable the MSI interrupt mode to device with
11938 * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
11939 * enable the MSI vector. The device driver is responsible for calling the
11940 * request_irq() to register MSI vector with a interrupt the handler, which
11941 * is done in this function.
11942 *
11943 * Return codes
11944 * 0 - successful
11945 * other values - error
11946 */
11947 static int
lpfc_sli_enable_msi(struct lpfc_hba * phba)11948 lpfc_sli_enable_msi(struct lpfc_hba *phba)
11949 {
11950 int rc;
11951
11952 rc = pci_enable_msi(phba->pcidev);
11953 if (!rc)
11954 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11955 "0462 PCI enable MSI mode success.\n");
11956 else {
11957 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11958 "0471 PCI enable MSI mode failed (%d)\n", rc);
11959 return rc;
11960 }
11961
11962 rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
11963 0, LPFC_DRIVER_NAME, phba);
11964 if (rc) {
11965 pci_disable_msi(phba->pcidev);
11966 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11967 "0478 MSI request_irq failed (%d)\n", rc);
11968 }
11969 return rc;
11970 }
11971
11972 /**
11973 * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
11974 * @phba: pointer to lpfc hba data structure.
11975 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
11976 *
11977 * This routine is invoked to enable device interrupt and associate driver's
11978 * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
11979 * spec. Depends on the interrupt mode configured to the driver, the driver
11980 * will try to fallback from the configured interrupt mode to an interrupt
11981 * mode which is supported by the platform, kernel, and device in the order
11982 * of:
11983 * MSI-X -> MSI -> IRQ.
11984 *
11985 * Return codes
11986 * 0 - successful
11987 * other values - error
11988 **/
11989 static uint32_t
lpfc_sli_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)11990 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
11991 {
11992 uint32_t intr_mode = LPFC_INTR_ERROR;
11993 int retval;
11994
11995 /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
11996 retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
11997 if (retval)
11998 return intr_mode;
11999 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12000
12001 if (cfg_mode == 2) {
12002 /* Now, try to enable MSI-X interrupt mode */
12003 retval = lpfc_sli_enable_msix(phba);
12004 if (!retval) {
12005 /* Indicate initialization to MSI-X mode */
12006 phba->intr_type = MSIX;
12007 intr_mode = 2;
12008 }
12009 }
12010
12011 /* Fallback to MSI if MSI-X initialization failed */
12012 if (cfg_mode >= 1 && phba->intr_type == NONE) {
12013 retval = lpfc_sli_enable_msi(phba);
12014 if (!retval) {
12015 /* Indicate initialization to MSI mode */
12016 phba->intr_type = MSI;
12017 intr_mode = 1;
12018 }
12019 }
12020
12021 /* Fallback to INTx if both MSI-X/MSI initalization failed */
12022 if (phba->intr_type == NONE) {
12023 retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12024 IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12025 if (!retval) {
12026 /* Indicate initialization to INTx mode */
12027 phba->intr_type = INTx;
12028 intr_mode = 0;
12029 }
12030 }
12031 return intr_mode;
12032 }
12033
12034 /**
12035 * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12036 * @phba: pointer to lpfc hba data structure.
12037 *
12038 * This routine is invoked to disable device interrupt and disassociate the
12039 * driver's interrupt handler(s) from interrupt vector(s) to device with
12040 * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12041 * release the interrupt vector(s) for the message signaled interrupt.
12042 **/
12043 static void
lpfc_sli_disable_intr(struct lpfc_hba * phba)12044 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12045 {
12046 int nr_irqs, i;
12047
12048 if (phba->intr_type == MSIX)
12049 nr_irqs = LPFC_MSIX_VECTORS;
12050 else
12051 nr_irqs = 1;
12052
12053 for (i = 0; i < nr_irqs; i++)
12054 free_irq(pci_irq_vector(phba->pcidev, i), phba);
12055 pci_free_irq_vectors(phba->pcidev);
12056
12057 /* Reset interrupt management states */
12058 phba->intr_type = NONE;
12059 phba->sli.slistat.sli_intr = 0;
12060 }
12061
12062 /**
12063 * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12064 * @phba: pointer to lpfc hba data structure.
12065 * @id: EQ vector index or Hardware Queue index
12066 * @match: LPFC_FIND_BY_EQ = match by EQ
12067 * LPFC_FIND_BY_HDWQ = match by Hardware Queue
12068 * Return the CPU that matches the selection criteria
12069 */
12070 static uint16_t
lpfc_find_cpu_handle(struct lpfc_hba * phba,uint16_t id,int match)12071 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12072 {
12073 struct lpfc_vector_map_info *cpup;
12074 int cpu;
12075
12076 /* Loop through all CPUs */
12077 for_each_present_cpu(cpu) {
12078 cpup = &phba->sli4_hba.cpu_map[cpu];
12079
12080 /* If we are matching by EQ, there may be multiple CPUs using
12081 * using the same vector, so select the one with
12082 * LPFC_CPU_FIRST_IRQ set.
12083 */
12084 if ((match == LPFC_FIND_BY_EQ) &&
12085 (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12086 (cpup->eq == id))
12087 return cpu;
12088
12089 /* If matching by HDWQ, select the first CPU that matches */
12090 if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12091 return cpu;
12092 }
12093 return 0;
12094 }
12095
12096 #ifdef CONFIG_X86
12097 /**
12098 * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12099 * @phba: pointer to lpfc hba data structure.
12100 * @cpu: CPU map index
12101 * @phys_id: CPU package physical id
12102 * @core_id: CPU core id
12103 */
12104 static int
lpfc_find_hyper(struct lpfc_hba * phba,int cpu,uint16_t phys_id,uint16_t core_id)12105 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12106 uint16_t phys_id, uint16_t core_id)
12107 {
12108 struct lpfc_vector_map_info *cpup;
12109 int idx;
12110
12111 for_each_present_cpu(idx) {
12112 cpup = &phba->sli4_hba.cpu_map[idx];
12113 /* Does the cpup match the one we are looking for */
12114 if ((cpup->phys_id == phys_id) &&
12115 (cpup->core_id == core_id) &&
12116 (cpu != idx))
12117 return 1;
12118 }
12119 return 0;
12120 }
12121 #endif
12122
12123 /*
12124 * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12125 * @phba: pointer to lpfc hba data structure.
12126 * @eqidx: index for eq and irq vector
12127 * @flag: flags to set for vector_map structure
12128 * @cpu: cpu used to index vector_map structure
12129 *
12130 * The routine assigns eq info into vector_map structure
12131 */
12132 static inline void
lpfc_assign_eq_map_info(struct lpfc_hba * phba,uint16_t eqidx,uint16_t flag,unsigned int cpu)12133 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12134 unsigned int cpu)
12135 {
12136 struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12137 struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12138
12139 cpup->eq = eqidx;
12140 cpup->flag |= flag;
12141
12142 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12143 "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12144 cpu, eqhdl->irq, cpup->eq, cpup->flag);
12145 }
12146
12147 /**
12148 * lpfc_cpu_map_array_init - Initialize cpu_map structure
12149 * @phba: pointer to lpfc hba data structure.
12150 *
12151 * The routine initializes the cpu_map array structure
12152 */
12153 static void
lpfc_cpu_map_array_init(struct lpfc_hba * phba)12154 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12155 {
12156 struct lpfc_vector_map_info *cpup;
12157 struct lpfc_eq_intr_info *eqi;
12158 int cpu;
12159
12160 for_each_possible_cpu(cpu) {
12161 cpup = &phba->sli4_hba.cpu_map[cpu];
12162 cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12163 cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12164 cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12165 cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12166 cpup->flag = 0;
12167 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12168 INIT_LIST_HEAD(&eqi->list);
12169 eqi->icnt = 0;
12170 }
12171 }
12172
12173 /**
12174 * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12175 * @phba: pointer to lpfc hba data structure.
12176 *
12177 * The routine initializes the hba_eq_hdl array structure
12178 */
12179 static void
lpfc_hba_eq_hdl_array_init(struct lpfc_hba * phba)12180 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12181 {
12182 struct lpfc_hba_eq_hdl *eqhdl;
12183 int i;
12184
12185 for (i = 0; i < phba->cfg_irq_chann; i++) {
12186 eqhdl = lpfc_get_eq_hdl(i);
12187 eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12188 eqhdl->phba = phba;
12189 }
12190 }
12191
12192 /**
12193 * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12194 * @phba: pointer to lpfc hba data structure.
12195 * @vectors: number of msix vectors allocated.
12196 *
12197 * The routine will figure out the CPU affinity assignment for every
12198 * MSI-X vector allocated for the HBA.
12199 * In addition, the CPU to IO channel mapping will be calculated
12200 * and the phba->sli4_hba.cpu_map array will reflect this.
12201 */
12202 static void
lpfc_cpu_affinity_check(struct lpfc_hba * phba,int vectors)12203 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12204 {
12205 int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12206 int max_phys_id, min_phys_id;
12207 int max_core_id, min_core_id;
12208 struct lpfc_vector_map_info *cpup;
12209 struct lpfc_vector_map_info *new_cpup;
12210 #ifdef CONFIG_X86
12211 struct cpuinfo_x86 *cpuinfo;
12212 #endif
12213 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12214 struct lpfc_hdwq_stat *c_stat;
12215 #endif
12216
12217 max_phys_id = 0;
12218 min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12219 max_core_id = 0;
12220 min_core_id = LPFC_VECTOR_MAP_EMPTY;
12221
12222 /* Update CPU map with physical id and core id of each CPU */
12223 for_each_present_cpu(cpu) {
12224 cpup = &phba->sli4_hba.cpu_map[cpu];
12225 #ifdef CONFIG_X86
12226 cpuinfo = &cpu_data(cpu);
12227 cpup->phys_id = cpuinfo->phys_proc_id;
12228 cpup->core_id = cpuinfo->cpu_core_id;
12229 if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12230 cpup->flag |= LPFC_CPU_MAP_HYPER;
12231 #else
12232 /* No distinction between CPUs for other platforms */
12233 cpup->phys_id = 0;
12234 cpup->core_id = cpu;
12235 #endif
12236
12237 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12238 "3328 CPU %d physid %d coreid %d flag x%x\n",
12239 cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12240
12241 if (cpup->phys_id > max_phys_id)
12242 max_phys_id = cpup->phys_id;
12243 if (cpup->phys_id < min_phys_id)
12244 min_phys_id = cpup->phys_id;
12245
12246 if (cpup->core_id > max_core_id)
12247 max_core_id = cpup->core_id;
12248 if (cpup->core_id < min_core_id)
12249 min_core_id = cpup->core_id;
12250 }
12251
12252 /* After looking at each irq vector assigned to this pcidev, its
12253 * possible to see that not ALL CPUs have been accounted for.
12254 * Next we will set any unassigned (unaffinitized) cpu map
12255 * entries to a IRQ on the same phys_id.
12256 */
12257 first_cpu = cpumask_first(cpu_present_mask);
12258 start_cpu = first_cpu;
12259
12260 for_each_present_cpu(cpu) {
12261 cpup = &phba->sli4_hba.cpu_map[cpu];
12262
12263 /* Is this CPU entry unassigned */
12264 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12265 /* Mark CPU as IRQ not assigned by the kernel */
12266 cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12267
12268 /* If so, find a new_cpup thats on the the SAME
12269 * phys_id as cpup. start_cpu will start where we
12270 * left off so all unassigned entries don't get assgined
12271 * the IRQ of the first entry.
12272 */
12273 new_cpu = start_cpu;
12274 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12275 new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12276 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12277 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12278 (new_cpup->phys_id == cpup->phys_id))
12279 goto found_same;
12280 new_cpu = cpumask_next(
12281 new_cpu, cpu_present_mask);
12282 if (new_cpu == nr_cpumask_bits)
12283 new_cpu = first_cpu;
12284 }
12285 /* At this point, we leave the CPU as unassigned */
12286 continue;
12287 found_same:
12288 /* We found a matching phys_id, so copy the IRQ info */
12289 cpup->eq = new_cpup->eq;
12290
12291 /* Bump start_cpu to the next slot to minmize the
12292 * chance of having multiple unassigned CPU entries
12293 * selecting the same IRQ.
12294 */
12295 start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12296 if (start_cpu == nr_cpumask_bits)
12297 start_cpu = first_cpu;
12298
12299 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12300 "3337 Set Affinity: CPU %d "
12301 "eq %d from peer cpu %d same "
12302 "phys_id (%d)\n",
12303 cpu, cpup->eq, new_cpu,
12304 cpup->phys_id);
12305 }
12306 }
12307
12308 /* Set any unassigned cpu map entries to a IRQ on any phys_id */
12309 start_cpu = first_cpu;
12310
12311 for_each_present_cpu(cpu) {
12312 cpup = &phba->sli4_hba.cpu_map[cpu];
12313
12314 /* Is this entry unassigned */
12315 if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12316 /* Mark it as IRQ not assigned by the kernel */
12317 cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12318
12319 /* If so, find a new_cpup thats on ANY phys_id
12320 * as the cpup. start_cpu will start where we
12321 * left off so all unassigned entries don't get
12322 * assigned the IRQ of the first entry.
12323 */
12324 new_cpu = start_cpu;
12325 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12326 new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12327 if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12328 (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12329 goto found_any;
12330 new_cpu = cpumask_next(
12331 new_cpu, cpu_present_mask);
12332 if (new_cpu == nr_cpumask_bits)
12333 new_cpu = first_cpu;
12334 }
12335 /* We should never leave an entry unassigned */
12336 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12337 "3339 Set Affinity: CPU %d "
12338 "eq %d UNASSIGNED\n",
12339 cpup->hdwq, cpup->eq);
12340 continue;
12341 found_any:
12342 /* We found an available entry, copy the IRQ info */
12343 cpup->eq = new_cpup->eq;
12344
12345 /* Bump start_cpu to the next slot to minmize the
12346 * chance of having multiple unassigned CPU entries
12347 * selecting the same IRQ.
12348 */
12349 start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12350 if (start_cpu == nr_cpumask_bits)
12351 start_cpu = first_cpu;
12352
12353 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12354 "3338 Set Affinity: CPU %d "
12355 "eq %d from peer cpu %d (%d/%d)\n",
12356 cpu, cpup->eq, new_cpu,
12357 new_cpup->phys_id, new_cpup->core_id);
12358 }
12359 }
12360
12361 /* Assign hdwq indices that are unique across all cpus in the map
12362 * that are also FIRST_CPUs.
12363 */
12364 idx = 0;
12365 for_each_present_cpu(cpu) {
12366 cpup = &phba->sli4_hba.cpu_map[cpu];
12367
12368 /* Only FIRST IRQs get a hdwq index assignment. */
12369 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12370 continue;
12371
12372 /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12373 cpup->hdwq = idx;
12374 idx++;
12375 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12376 "3333 Set Affinity: CPU %d (phys %d core %d): "
12377 "hdwq %d eq %d flg x%x\n",
12378 cpu, cpup->phys_id, cpup->core_id,
12379 cpup->hdwq, cpup->eq, cpup->flag);
12380 }
12381 /* Associate a hdwq with each cpu_map entry
12382 * This will be 1 to 1 - hdwq to cpu, unless there are less
12383 * hardware queues then CPUs. For that case we will just round-robin
12384 * the available hardware queues as they get assigned to CPUs.
12385 * The next_idx is the idx from the FIRST_CPU loop above to account
12386 * for irq_chann < hdwq. The idx is used for round-robin assignments
12387 * and needs to start at 0.
12388 */
12389 next_idx = idx;
12390 start_cpu = 0;
12391 idx = 0;
12392 for_each_present_cpu(cpu) {
12393 cpup = &phba->sli4_hba.cpu_map[cpu];
12394
12395 /* FIRST cpus are already mapped. */
12396 if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12397 continue;
12398
12399 /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12400 * of the unassigned cpus to the next idx so that all
12401 * hdw queues are fully utilized.
12402 */
12403 if (next_idx < phba->cfg_hdw_queue) {
12404 cpup->hdwq = next_idx;
12405 next_idx++;
12406 continue;
12407 }
12408
12409 /* Not a First CPU and all hdw_queues are used. Reuse a
12410 * Hardware Queue for another CPU, so be smart about it
12411 * and pick one that has its IRQ/EQ mapped to the same phys_id
12412 * (CPU package) and core_id.
12413 */
12414 new_cpu = start_cpu;
12415 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12416 new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12417 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12418 new_cpup->phys_id == cpup->phys_id &&
12419 new_cpup->core_id == cpup->core_id) {
12420 goto found_hdwq;
12421 }
12422 new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12423 if (new_cpu == nr_cpumask_bits)
12424 new_cpu = first_cpu;
12425 }
12426
12427 /* If we can't match both phys_id and core_id,
12428 * settle for just a phys_id match.
12429 */
12430 new_cpu = start_cpu;
12431 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12432 new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12433 if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12434 new_cpup->phys_id == cpup->phys_id)
12435 goto found_hdwq;
12436
12437 new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12438 if (new_cpu == nr_cpumask_bits)
12439 new_cpu = first_cpu;
12440 }
12441
12442 /* Otherwise just round robin on cfg_hdw_queue */
12443 cpup->hdwq = idx % phba->cfg_hdw_queue;
12444 idx++;
12445 goto logit;
12446 found_hdwq:
12447 /* We found an available entry, copy the IRQ info */
12448 start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12449 if (start_cpu == nr_cpumask_bits)
12450 start_cpu = first_cpu;
12451 cpup->hdwq = new_cpup->hdwq;
12452 logit:
12453 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12454 "3335 Set Affinity: CPU %d (phys %d core %d): "
12455 "hdwq %d eq %d flg x%x\n",
12456 cpu, cpup->phys_id, cpup->core_id,
12457 cpup->hdwq, cpup->eq, cpup->flag);
12458 }
12459
12460 /*
12461 * Initialize the cpu_map slots for not-present cpus in case
12462 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12463 */
12464 idx = 0;
12465 for_each_possible_cpu(cpu) {
12466 cpup = &phba->sli4_hba.cpu_map[cpu];
12467 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12468 c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12469 c_stat->hdwq_no = cpup->hdwq;
12470 #endif
12471 if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12472 continue;
12473
12474 cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12475 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12476 c_stat->hdwq_no = cpup->hdwq;
12477 #endif
12478 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12479 "3340 Set Affinity: not present "
12480 "CPU %d hdwq %d\n",
12481 cpu, cpup->hdwq);
12482 }
12483
12484 /* The cpu_map array will be used later during initialization
12485 * when EQ / CQ / WQs are allocated and configured.
12486 */
12487 return;
12488 }
12489
12490 /**
12491 * lpfc_cpuhp_get_eq
12492 *
12493 * @phba: pointer to lpfc hba data structure.
12494 * @cpu: cpu going offline
12495 * @eqlist: eq list to append to
12496 */
12497 static int
lpfc_cpuhp_get_eq(struct lpfc_hba * phba,unsigned int cpu,struct list_head * eqlist)12498 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12499 struct list_head *eqlist)
12500 {
12501 const struct cpumask *maskp;
12502 struct lpfc_queue *eq;
12503 struct cpumask *tmp;
12504 u16 idx;
12505
12506 tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12507 if (!tmp)
12508 return -ENOMEM;
12509
12510 for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12511 maskp = pci_irq_get_affinity(phba->pcidev, idx);
12512 if (!maskp)
12513 continue;
12514 /*
12515 * if irq is not affinitized to the cpu going
12516 * then we don't need to poll the eq attached
12517 * to it.
12518 */
12519 if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12520 continue;
12521 /* get the cpus that are online and are affini-
12522 * tized to this irq vector. If the count is
12523 * more than 1 then cpuhp is not going to shut-
12524 * down this vector. Since this cpu has not
12525 * gone offline yet, we need >1.
12526 */
12527 cpumask_and(tmp, maskp, cpu_online_mask);
12528 if (cpumask_weight(tmp) > 1)
12529 continue;
12530
12531 /* Now that we have an irq to shutdown, get the eq
12532 * mapped to this irq. Note: multiple hdwq's in
12533 * the software can share an eq, but eventually
12534 * only eq will be mapped to this vector
12535 */
12536 eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12537 list_add(&eq->_poll_list, eqlist);
12538 }
12539 kfree(tmp);
12540 return 0;
12541 }
12542
__lpfc_cpuhp_remove(struct lpfc_hba * phba)12543 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12544 {
12545 if (phba->sli_rev != LPFC_SLI_REV4)
12546 return;
12547
12548 cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12549 &phba->cpuhp);
12550 /*
12551 * unregistering the instance doesn't stop the polling
12552 * timer. Wait for the poll timer to retire.
12553 */
12554 synchronize_rcu();
12555 del_timer_sync(&phba->cpuhp_poll_timer);
12556 }
12557
lpfc_cpuhp_remove(struct lpfc_hba * phba)12558 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12559 {
12560 if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12561 return;
12562
12563 __lpfc_cpuhp_remove(phba);
12564 }
12565
lpfc_cpuhp_add(struct lpfc_hba * phba)12566 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12567 {
12568 if (phba->sli_rev != LPFC_SLI_REV4)
12569 return;
12570
12571 rcu_read_lock();
12572
12573 if (!list_empty(&phba->poll_list))
12574 mod_timer(&phba->cpuhp_poll_timer,
12575 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12576
12577 rcu_read_unlock();
12578
12579 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12580 &phba->cpuhp);
12581 }
12582
__lpfc_cpuhp_checks(struct lpfc_hba * phba,int * retval)12583 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12584 {
12585 if (phba->pport->load_flag & FC_UNLOADING) {
12586 *retval = -EAGAIN;
12587 return true;
12588 }
12589
12590 if (phba->sli_rev != LPFC_SLI_REV4) {
12591 *retval = 0;
12592 return true;
12593 }
12594
12595 /* proceed with the hotplug */
12596 return false;
12597 }
12598
12599 /**
12600 * lpfc_irq_set_aff - set IRQ affinity
12601 * @eqhdl: EQ handle
12602 * @cpu: cpu to set affinity
12603 *
12604 **/
12605 static inline void
lpfc_irq_set_aff(struct lpfc_hba_eq_hdl * eqhdl,unsigned int cpu)12606 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12607 {
12608 cpumask_clear(&eqhdl->aff_mask);
12609 cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12610 irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12611 irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask);
12612 }
12613
12614 /**
12615 * lpfc_irq_clear_aff - clear IRQ affinity
12616 * @eqhdl: EQ handle
12617 *
12618 **/
12619 static inline void
lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl * eqhdl)12620 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12621 {
12622 cpumask_clear(&eqhdl->aff_mask);
12623 irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12624 }
12625
12626 /**
12627 * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12628 * @phba: pointer to HBA context object.
12629 * @cpu: cpu going offline/online
12630 * @offline: true, cpu is going offline. false, cpu is coming online.
12631 *
12632 * If cpu is going offline, we'll try our best effort to find the next
12633 * online cpu on the phba's original_mask and migrate all offlining IRQ
12634 * affinities.
12635 *
12636 * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12637 *
12638 * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12639 * PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12640 *
12641 **/
12642 static void
lpfc_irq_rebalance(struct lpfc_hba * phba,unsigned int cpu,bool offline)12643 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12644 {
12645 struct lpfc_vector_map_info *cpup;
12646 struct cpumask *aff_mask;
12647 unsigned int cpu_select, cpu_next, idx;
12648 const struct cpumask *orig_mask;
12649
12650 if (phba->irq_chann_mode == NORMAL_MODE)
12651 return;
12652
12653 orig_mask = &phba->sli4_hba.irq_aff_mask;
12654
12655 if (!cpumask_test_cpu(cpu, orig_mask))
12656 return;
12657
12658 cpup = &phba->sli4_hba.cpu_map[cpu];
12659
12660 if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12661 return;
12662
12663 if (offline) {
12664 /* Find next online CPU on original mask */
12665 cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12666 cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12667
12668 /* Found a valid CPU */
12669 if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12670 /* Go through each eqhdl and ensure offlining
12671 * cpu aff_mask is migrated
12672 */
12673 for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12674 aff_mask = lpfc_get_aff_mask(idx);
12675
12676 /* Migrate affinity */
12677 if (cpumask_test_cpu(cpu, aff_mask))
12678 lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12679 cpu_select);
12680 }
12681 } else {
12682 /* Rely on irqbalance if no online CPUs left on NUMA */
12683 for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12684 lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12685 }
12686 } else {
12687 /* Migrate affinity back to this CPU */
12688 lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12689 }
12690 }
12691
lpfc_cpu_offline(unsigned int cpu,struct hlist_node * node)12692 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12693 {
12694 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12695 struct lpfc_queue *eq, *next;
12696 LIST_HEAD(eqlist);
12697 int retval;
12698
12699 if (!phba) {
12700 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12701 return 0;
12702 }
12703
12704 if (__lpfc_cpuhp_checks(phba, &retval))
12705 return retval;
12706
12707 lpfc_irq_rebalance(phba, cpu, true);
12708
12709 retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12710 if (retval)
12711 return retval;
12712
12713 /* start polling on these eq's */
12714 list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12715 list_del_init(&eq->_poll_list);
12716 lpfc_sli4_start_polling(eq);
12717 }
12718
12719 return 0;
12720 }
12721
lpfc_cpu_online(unsigned int cpu,struct hlist_node * node)12722 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12723 {
12724 struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12725 struct lpfc_queue *eq, *next;
12726 unsigned int n;
12727 int retval;
12728
12729 if (!phba) {
12730 WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12731 return 0;
12732 }
12733
12734 if (__lpfc_cpuhp_checks(phba, &retval))
12735 return retval;
12736
12737 lpfc_irq_rebalance(phba, cpu, false);
12738
12739 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12740 n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12741 if (n == cpu)
12742 lpfc_sli4_stop_polling(eq);
12743 }
12744
12745 return 0;
12746 }
12747
12748 /**
12749 * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12750 * @phba: pointer to lpfc hba data structure.
12751 *
12752 * This routine is invoked to enable the MSI-X interrupt vectors to device
12753 * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them
12754 * to cpus on the system.
12755 *
12756 * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12757 * the number of cpus on the same numa node as this adapter. The vectors are
12758 * allocated without requesting OS affinity mapping. A vector will be
12759 * allocated and assigned to each online and offline cpu. If the cpu is
12760 * online, then affinity will be set to that cpu. If the cpu is offline, then
12761 * affinity will be set to the nearest peer cpu within the numa node that is
12762 * online. If there are no online cpus within the numa node, affinity is not
12763 * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12764 * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12765 * configured.
12766 *
12767 * If numa mode is not enabled and there is more than 1 vector allocated, then
12768 * the driver relies on the managed irq interface where the OS assigns vector to
12769 * cpu affinity. The driver will then use that affinity mapping to setup its
12770 * cpu mapping table.
12771 *
12772 * Return codes
12773 * 0 - successful
12774 * other values - error
12775 **/
12776 static int
lpfc_sli4_enable_msix(struct lpfc_hba * phba)12777 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12778 {
12779 int vectors, rc, index;
12780 char *name;
12781 const struct cpumask *aff_mask = NULL;
12782 unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12783 struct lpfc_vector_map_info *cpup;
12784 struct lpfc_hba_eq_hdl *eqhdl;
12785 const struct cpumask *maskp;
12786 unsigned int flags = PCI_IRQ_MSIX;
12787
12788 /* Set up MSI-X multi-message vectors */
12789 vectors = phba->cfg_irq_chann;
12790
12791 if (phba->irq_chann_mode != NORMAL_MODE)
12792 aff_mask = &phba->sli4_hba.irq_aff_mask;
12793
12794 if (aff_mask) {
12795 cpu_cnt = cpumask_weight(aff_mask);
12796 vectors = min(phba->cfg_irq_chann, cpu_cnt);
12797
12798 /* cpu: iterates over aff_mask including offline or online
12799 * cpu_select: iterates over online aff_mask to set affinity
12800 */
12801 cpu = cpumask_first(aff_mask);
12802 cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12803 } else {
12804 flags |= PCI_IRQ_AFFINITY;
12805 }
12806
12807 rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
12808 if (rc < 0) {
12809 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12810 "0484 PCI enable MSI-X failed (%d)\n", rc);
12811 goto vec_fail_out;
12812 }
12813 vectors = rc;
12814
12815 /* Assign MSI-X vectors to interrupt handlers */
12816 for (index = 0; index < vectors; index++) {
12817 eqhdl = lpfc_get_eq_hdl(index);
12818 name = eqhdl->handler_name;
12819 memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
12820 snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
12821 LPFC_DRIVER_HANDLER_NAME"%d", index);
12822
12823 eqhdl->idx = index;
12824 rc = request_irq(pci_irq_vector(phba->pcidev, index),
12825 &lpfc_sli4_hba_intr_handler, 0,
12826 name, eqhdl);
12827 if (rc) {
12828 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12829 "0486 MSI-X fast-path (%d) "
12830 "request_irq failed (%d)\n", index, rc);
12831 goto cfg_fail_out;
12832 }
12833
12834 eqhdl->irq = pci_irq_vector(phba->pcidev, index);
12835
12836 if (aff_mask) {
12837 /* If found a neighboring online cpu, set affinity */
12838 if (cpu_select < nr_cpu_ids)
12839 lpfc_irq_set_aff(eqhdl, cpu_select);
12840
12841 /* Assign EQ to cpu_map */
12842 lpfc_assign_eq_map_info(phba, index,
12843 LPFC_CPU_FIRST_IRQ,
12844 cpu);
12845
12846 /* Iterate to next offline or online cpu in aff_mask */
12847 cpu = cpumask_next(cpu, aff_mask);
12848
12849 /* Find next online cpu in aff_mask to set affinity */
12850 cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12851 } else if (vectors == 1) {
12852 cpu = cpumask_first(cpu_present_mask);
12853 lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
12854 cpu);
12855 } else {
12856 maskp = pci_irq_get_affinity(phba->pcidev, index);
12857
12858 /* Loop through all CPUs associated with vector index */
12859 for_each_cpu_and(cpu, maskp, cpu_present_mask) {
12860 cpup = &phba->sli4_hba.cpu_map[cpu];
12861
12862 /* If this is the first CPU thats assigned to
12863 * this vector, set LPFC_CPU_FIRST_IRQ.
12864 *
12865 * With certain platforms its possible that irq
12866 * vectors are affinitized to all the cpu's.
12867 * This can result in each cpu_map.eq to be set
12868 * to the last vector, resulting in overwrite
12869 * of all the previous cpu_map.eq. Ensure that
12870 * each vector receives a place in cpu_map.
12871 * Later call to lpfc_cpu_affinity_check will
12872 * ensure we are nicely balanced out.
12873 */
12874 if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
12875 continue;
12876 lpfc_assign_eq_map_info(phba, index,
12877 LPFC_CPU_FIRST_IRQ,
12878 cpu);
12879 break;
12880 }
12881 }
12882 }
12883
12884 if (vectors != phba->cfg_irq_chann) {
12885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12886 "3238 Reducing IO channels to match number of "
12887 "MSI-X vectors, requested %d got %d\n",
12888 phba->cfg_irq_chann, vectors);
12889 if (phba->cfg_irq_chann > vectors)
12890 phba->cfg_irq_chann = vectors;
12891 }
12892
12893 return rc;
12894
12895 cfg_fail_out:
12896 /* free the irq already requested */
12897 for (--index; index >= 0; index--) {
12898 eqhdl = lpfc_get_eq_hdl(index);
12899 lpfc_irq_clear_aff(eqhdl);
12900 irq_set_affinity_hint(eqhdl->irq, NULL);
12901 free_irq(eqhdl->irq, eqhdl);
12902 }
12903
12904 /* Unconfigure MSI-X capability structure */
12905 pci_free_irq_vectors(phba->pcidev);
12906
12907 vec_fail_out:
12908 return rc;
12909 }
12910
12911 /**
12912 * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
12913 * @phba: pointer to lpfc hba data structure.
12914 *
12915 * This routine is invoked to enable the MSI interrupt mode to device with
12916 * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
12917 * called to enable the MSI vector. The device driver is responsible for
12918 * calling the request_irq() to register MSI vector with a interrupt the
12919 * handler, which is done in this function.
12920 *
12921 * Return codes
12922 * 0 - successful
12923 * other values - error
12924 **/
12925 static int
lpfc_sli4_enable_msi(struct lpfc_hba * phba)12926 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
12927 {
12928 int rc, index;
12929 unsigned int cpu;
12930 struct lpfc_hba_eq_hdl *eqhdl;
12931
12932 rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
12933 PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
12934 if (rc > 0)
12935 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12936 "0487 PCI enable MSI mode success.\n");
12937 else {
12938 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12939 "0488 PCI enable MSI mode failed (%d)\n", rc);
12940 return rc ? rc : -1;
12941 }
12942
12943 rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
12944 0, LPFC_DRIVER_NAME, phba);
12945 if (rc) {
12946 pci_free_irq_vectors(phba->pcidev);
12947 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12948 "0490 MSI request_irq failed (%d)\n", rc);
12949 return rc;
12950 }
12951
12952 eqhdl = lpfc_get_eq_hdl(0);
12953 eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
12954
12955 cpu = cpumask_first(cpu_present_mask);
12956 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
12957
12958 for (index = 0; index < phba->cfg_irq_chann; index++) {
12959 eqhdl = lpfc_get_eq_hdl(index);
12960 eqhdl->idx = index;
12961 }
12962
12963 return 0;
12964 }
12965
12966 /**
12967 * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
12968 * @phba: pointer to lpfc hba data structure.
12969 * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12970 *
12971 * This routine is invoked to enable device interrupt and associate driver's
12972 * interrupt handler(s) to interrupt vector(s) to device with SLI-4
12973 * interface spec. Depends on the interrupt mode configured to the driver,
12974 * the driver will try to fallback from the configured interrupt mode to an
12975 * interrupt mode which is supported by the platform, kernel, and device in
12976 * the order of:
12977 * MSI-X -> MSI -> IRQ.
12978 *
12979 * Return codes
12980 * 0 - successful
12981 * other values - error
12982 **/
12983 static uint32_t
lpfc_sli4_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)12984 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12985 {
12986 uint32_t intr_mode = LPFC_INTR_ERROR;
12987 int retval, idx;
12988
12989 if (cfg_mode == 2) {
12990 /* Preparation before conf_msi mbox cmd */
12991 retval = 0;
12992 if (!retval) {
12993 /* Now, try to enable MSI-X interrupt mode */
12994 retval = lpfc_sli4_enable_msix(phba);
12995 if (!retval) {
12996 /* Indicate initialization to MSI-X mode */
12997 phba->intr_type = MSIX;
12998 intr_mode = 2;
12999 }
13000 }
13001 }
13002
13003 /* Fallback to MSI if MSI-X initialization failed */
13004 if (cfg_mode >= 1 && phba->intr_type == NONE) {
13005 retval = lpfc_sli4_enable_msi(phba);
13006 if (!retval) {
13007 /* Indicate initialization to MSI mode */
13008 phba->intr_type = MSI;
13009 intr_mode = 1;
13010 }
13011 }
13012
13013 /* Fallback to INTx if both MSI-X/MSI initalization failed */
13014 if (phba->intr_type == NONE) {
13015 retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13016 IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13017 if (!retval) {
13018 struct lpfc_hba_eq_hdl *eqhdl;
13019 unsigned int cpu;
13020
13021 /* Indicate initialization to INTx mode */
13022 phba->intr_type = INTx;
13023 intr_mode = 0;
13024
13025 eqhdl = lpfc_get_eq_hdl(0);
13026 eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13027
13028 cpu = cpumask_first(cpu_present_mask);
13029 lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13030 cpu);
13031 for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13032 eqhdl = lpfc_get_eq_hdl(idx);
13033 eqhdl->idx = idx;
13034 }
13035 }
13036 }
13037 return intr_mode;
13038 }
13039
13040 /**
13041 * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13042 * @phba: pointer to lpfc hba data structure.
13043 *
13044 * This routine is invoked to disable device interrupt and disassociate
13045 * the driver's interrupt handler(s) from interrupt vector(s) to device
13046 * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13047 * will release the interrupt vector(s) for the message signaled interrupt.
13048 **/
13049 static void
lpfc_sli4_disable_intr(struct lpfc_hba * phba)13050 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13051 {
13052 /* Disable the currently initialized interrupt mode */
13053 if (phba->intr_type == MSIX) {
13054 int index;
13055 struct lpfc_hba_eq_hdl *eqhdl;
13056
13057 /* Free up MSI-X multi-message vectors */
13058 for (index = 0; index < phba->cfg_irq_chann; index++) {
13059 eqhdl = lpfc_get_eq_hdl(index);
13060 lpfc_irq_clear_aff(eqhdl);
13061 irq_set_affinity_hint(eqhdl->irq, NULL);
13062 free_irq(eqhdl->irq, eqhdl);
13063 }
13064 } else {
13065 free_irq(phba->pcidev->irq, phba);
13066 }
13067
13068 pci_free_irq_vectors(phba->pcidev);
13069
13070 /* Reset interrupt management states */
13071 phba->intr_type = NONE;
13072 phba->sli.slistat.sli_intr = 0;
13073 }
13074
13075 /**
13076 * lpfc_unset_hba - Unset SLI3 hba device initialization
13077 * @phba: pointer to lpfc hba data structure.
13078 *
13079 * This routine is invoked to unset the HBA device initialization steps to
13080 * a device with SLI-3 interface spec.
13081 **/
13082 static void
lpfc_unset_hba(struct lpfc_hba * phba)13083 lpfc_unset_hba(struct lpfc_hba *phba)
13084 {
13085 struct lpfc_vport *vport = phba->pport;
13086 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
13087
13088 spin_lock_irq(shost->host_lock);
13089 vport->load_flag |= FC_UNLOADING;
13090 spin_unlock_irq(shost->host_lock);
13091
13092 kfree(phba->vpi_bmask);
13093 kfree(phba->vpi_ids);
13094
13095 lpfc_stop_hba_timers(phba);
13096
13097 phba->pport->work_port_events = 0;
13098
13099 lpfc_sli_hba_down(phba);
13100
13101 lpfc_sli_brdrestart(phba);
13102
13103 lpfc_sli_disable_intr(phba);
13104
13105 return;
13106 }
13107
13108 /**
13109 * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13110 * @phba: Pointer to HBA context object.
13111 *
13112 * This function is called in the SLI4 code path to wait for completion
13113 * of device's XRIs exchange busy. It will check the XRI exchange busy
13114 * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13115 * that, it will check the XRI exchange busy on outstanding FCP and ELS
13116 * I/Os every 30 seconds, log error message, and wait forever. Only when
13117 * all XRI exchange busy complete, the driver unload shall proceed with
13118 * invoking the function reset ioctl mailbox command to the CNA and the
13119 * the rest of the driver unload resource release.
13120 **/
13121 static void
lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba * phba)13122 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13123 {
13124 struct lpfc_sli4_hdw_queue *qp;
13125 int idx, ccnt;
13126 int wait_time = 0;
13127 int io_xri_cmpl = 1;
13128 int nvmet_xri_cmpl = 1;
13129 int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13130
13131 /* Driver just aborted IOs during the hba_unset process. Pause
13132 * here to give the HBA time to complete the IO and get entries
13133 * into the abts lists.
13134 */
13135 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13136
13137 /* Wait for NVME pending IO to flush back to transport. */
13138 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13139 lpfc_nvme_wait_for_io_drain(phba);
13140
13141 ccnt = 0;
13142 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13143 qp = &phba->sli4_hba.hdwq[idx];
13144 io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13145 if (!io_xri_cmpl) /* if list is NOT empty */
13146 ccnt++;
13147 }
13148 if (ccnt)
13149 io_xri_cmpl = 0;
13150
13151 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13152 nvmet_xri_cmpl =
13153 list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13154 }
13155
13156 while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13157 if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13158 if (!nvmet_xri_cmpl)
13159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13160 "6424 NVMET XRI exchange busy "
13161 "wait time: %d seconds.\n",
13162 wait_time/1000);
13163 if (!io_xri_cmpl)
13164 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13165 "6100 IO XRI exchange busy "
13166 "wait time: %d seconds.\n",
13167 wait_time/1000);
13168 if (!els_xri_cmpl)
13169 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13170 "2878 ELS XRI exchange busy "
13171 "wait time: %d seconds.\n",
13172 wait_time/1000);
13173 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13174 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13175 } else {
13176 msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13177 wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13178 }
13179
13180 ccnt = 0;
13181 for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13182 qp = &phba->sli4_hba.hdwq[idx];
13183 io_xri_cmpl = list_empty(
13184 &qp->lpfc_abts_io_buf_list);
13185 if (!io_xri_cmpl) /* if list is NOT empty */
13186 ccnt++;
13187 }
13188 if (ccnt)
13189 io_xri_cmpl = 0;
13190
13191 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13192 nvmet_xri_cmpl = list_empty(
13193 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13194 }
13195 els_xri_cmpl =
13196 list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13197
13198 }
13199 }
13200
13201 /**
13202 * lpfc_sli4_hba_unset - Unset the fcoe hba
13203 * @phba: Pointer to HBA context object.
13204 *
13205 * This function is called in the SLI4 code path to reset the HBA's FCoE
13206 * function. The caller is not required to hold any lock. This routine
13207 * issues PCI function reset mailbox command to reset the FCoE function.
13208 * At the end of the function, it calls lpfc_hba_down_post function to
13209 * free any pending commands.
13210 **/
13211 static void
lpfc_sli4_hba_unset(struct lpfc_hba * phba)13212 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13213 {
13214 int wait_cnt = 0;
13215 LPFC_MBOXQ_t *mboxq;
13216 struct pci_dev *pdev = phba->pcidev;
13217
13218 lpfc_stop_hba_timers(phba);
13219 hrtimer_cancel(&phba->cmf_timer);
13220
13221 if (phba->pport)
13222 phba->sli4_hba.intr_enable = 0;
13223
13224 /*
13225 * Gracefully wait out the potential current outstanding asynchronous
13226 * mailbox command.
13227 */
13228
13229 /* First, block any pending async mailbox command from posted */
13230 spin_lock_irq(&phba->hbalock);
13231 phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13232 spin_unlock_irq(&phba->hbalock);
13233 /* Now, trying to wait it out if we can */
13234 while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13235 msleep(10);
13236 if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13237 break;
13238 }
13239 /* Forcefully release the outstanding mailbox command if timed out */
13240 if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13241 spin_lock_irq(&phba->hbalock);
13242 mboxq = phba->sli.mbox_active;
13243 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13244 __lpfc_mbox_cmpl_put(phba, mboxq);
13245 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13246 phba->sli.mbox_active = NULL;
13247 spin_unlock_irq(&phba->hbalock);
13248 }
13249
13250 /* Abort all iocbs associated with the hba */
13251 lpfc_sli_hba_iocb_abort(phba);
13252
13253 /* Wait for completion of device XRI exchange busy */
13254 lpfc_sli4_xri_exchange_busy_wait(phba);
13255
13256 /* per-phba callback de-registration for hotplug event */
13257 if (phba->pport)
13258 lpfc_cpuhp_remove(phba);
13259
13260 /* Disable PCI subsystem interrupt */
13261 lpfc_sli4_disable_intr(phba);
13262
13263 /* Disable SR-IOV if enabled */
13264 if (phba->cfg_sriov_nr_virtfn)
13265 pci_disable_sriov(pdev);
13266
13267 /* Stop kthread signal shall trigger work_done one more time */
13268 kthread_stop(phba->worker_thread);
13269
13270 /* Disable FW logging to host memory */
13271 lpfc_ras_stop_fwlog(phba);
13272
13273 /* Unset the queues shared with the hardware then release all
13274 * allocated resources.
13275 */
13276 lpfc_sli4_queue_unset(phba);
13277 lpfc_sli4_queue_destroy(phba);
13278
13279 /* Reset SLI4 HBA FCoE function */
13280 lpfc_pci_function_reset(phba);
13281
13282 /* Free RAS DMA memory */
13283 if (phba->ras_fwlog.ras_enabled)
13284 lpfc_sli4_ras_dma_free(phba);
13285
13286 /* Stop the SLI4 device port */
13287 if (phba->pport)
13288 phba->pport->work_port_events = 0;
13289 }
13290
13291 static uint32_t
lpfc_cgn_crc32(uint32_t crc,u8 byte)13292 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13293 {
13294 uint32_t msb = 0;
13295 uint32_t bit;
13296
13297 for (bit = 0; bit < 8; bit++) {
13298 msb = (crc >> 31) & 1;
13299 crc <<= 1;
13300
13301 if (msb ^ (byte & 1)) {
13302 crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13303 crc |= 1;
13304 }
13305 byte >>= 1;
13306 }
13307 return crc;
13308 }
13309
13310 static uint32_t
lpfc_cgn_reverse_bits(uint32_t wd)13311 lpfc_cgn_reverse_bits(uint32_t wd)
13312 {
13313 uint32_t result = 0;
13314 uint32_t i;
13315
13316 for (i = 0; i < 32; i++) {
13317 result <<= 1;
13318 result |= (1 & (wd >> i));
13319 }
13320 return result;
13321 }
13322
13323 /*
13324 * The routine corresponds with the algorithm the HBA firmware
13325 * uses to validate the data integrity.
13326 */
13327 uint32_t
lpfc_cgn_calc_crc32(void * ptr,uint32_t byteLen,uint32_t crc)13328 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13329 {
13330 uint32_t i;
13331 uint32_t result;
13332 uint8_t *data = (uint8_t *)ptr;
13333
13334 for (i = 0; i < byteLen; ++i)
13335 crc = lpfc_cgn_crc32(crc, data[i]);
13336
13337 result = ~lpfc_cgn_reverse_bits(crc);
13338 return result;
13339 }
13340
13341 void
lpfc_init_congestion_buf(struct lpfc_hba * phba)13342 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13343 {
13344 struct lpfc_cgn_info *cp;
13345 struct timespec64 cmpl_time;
13346 struct tm broken;
13347 uint16_t size;
13348 uint32_t crc;
13349
13350 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13351 "6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13352
13353 if (!phba->cgn_i)
13354 return;
13355 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13356
13357 atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13358 atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13359 atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13360 atomic_set(&phba->cgn_sync_warn_cnt, 0);
13361
13362 atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
13363 atomic64_set(&phba->cgn_acqe_stat.warn, 0);
13364 atomic_set(&phba->cgn_driver_evt_cnt, 0);
13365 atomic_set(&phba->cgn_latency_evt_cnt, 0);
13366 atomic64_set(&phba->cgn_latency_evt, 0);
13367 phba->cgn_evt_minute = 0;
13368 phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13369
13370 memset(cp, 0xff, LPFC_CGN_DATA_SIZE);
13371 cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13372 cp->cgn_info_version = LPFC_CGN_INFO_V3;
13373
13374 /* cgn parameters */
13375 cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13376 cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13377 cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13378 cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13379
13380 ktime_get_real_ts64(&cmpl_time);
13381 time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13382
13383 cp->cgn_info_month = broken.tm_mon + 1;
13384 cp->cgn_info_day = broken.tm_mday;
13385 cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13386 cp->cgn_info_hour = broken.tm_hour;
13387 cp->cgn_info_minute = broken.tm_min;
13388 cp->cgn_info_second = broken.tm_sec;
13389
13390 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13391 "2643 CGNInfo Init: Start Time "
13392 "%d/%d/%d %d:%d:%d\n",
13393 cp->cgn_info_day, cp->cgn_info_month,
13394 cp->cgn_info_year, cp->cgn_info_hour,
13395 cp->cgn_info_minute, cp->cgn_info_second);
13396
13397 /* Fill in default LUN qdepth */
13398 if (phba->pport) {
13399 size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13400 cp->cgn_lunq = cpu_to_le16(size);
13401 }
13402
13403 /* last used Index initialized to 0xff already */
13404
13405 cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13406 cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13407 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13408 cp->cgn_info_crc = cpu_to_le32(crc);
13409
13410 phba->cgn_evt_timestamp = jiffies +
13411 msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13412 }
13413
13414 void
lpfc_init_congestion_stat(struct lpfc_hba * phba)13415 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13416 {
13417 struct lpfc_cgn_info *cp;
13418 struct timespec64 cmpl_time;
13419 struct tm broken;
13420 uint32_t crc;
13421
13422 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13423 "6236 INIT Congestion Stat %p\n", phba->cgn_i);
13424
13425 if (!phba->cgn_i)
13426 return;
13427
13428 cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13429 memset(&cp->cgn_stat_npm, 0, LPFC_CGN_STAT_SIZE);
13430
13431 ktime_get_real_ts64(&cmpl_time);
13432 time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13433
13434 cp->cgn_stat_month = broken.tm_mon + 1;
13435 cp->cgn_stat_day = broken.tm_mday;
13436 cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13437 cp->cgn_stat_hour = broken.tm_hour;
13438 cp->cgn_stat_minute = broken.tm_min;
13439
13440 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13441 "2647 CGNstat Init: Start Time "
13442 "%d/%d/%d %d:%d\n",
13443 cp->cgn_stat_day, cp->cgn_stat_month,
13444 cp->cgn_stat_year, cp->cgn_stat_hour,
13445 cp->cgn_stat_minute);
13446
13447 crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13448 cp->cgn_info_crc = cpu_to_le32(crc);
13449 }
13450
13451 /**
13452 * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13453 * @phba: Pointer to hba context object.
13454 * @reg: flag to determine register or unregister.
13455 */
13456 static int
__lpfc_reg_congestion_buf(struct lpfc_hba * phba,int reg)13457 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13458 {
13459 struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13460 union lpfc_sli4_cfg_shdr *shdr;
13461 uint32_t shdr_status, shdr_add_status;
13462 LPFC_MBOXQ_t *mboxq;
13463 int length, rc;
13464
13465 if (!phba->cgn_i)
13466 return -ENXIO;
13467
13468 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13469 if (!mboxq) {
13470 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13471 "2641 REG_CONGESTION_BUF mbox allocation fail: "
13472 "HBA state x%x reg %d\n",
13473 phba->pport->port_state, reg);
13474 return -ENOMEM;
13475 }
13476
13477 length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13478 sizeof(struct lpfc_sli4_cfg_mhdr));
13479 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13480 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13481 LPFC_SLI4_MBX_EMBED);
13482 reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13483 bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13484 if (reg > 0)
13485 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13486 else
13487 bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13488 reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13489 reg_congestion_buf->addr_lo =
13490 putPaddrLow(phba->cgn_i->phys);
13491 reg_congestion_buf->addr_hi =
13492 putPaddrHigh(phba->cgn_i->phys);
13493
13494 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13495 shdr = (union lpfc_sli4_cfg_shdr *)
13496 &mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13497 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13498 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13499 &shdr->response);
13500 mempool_free(mboxq, phba->mbox_mem_pool);
13501 if (shdr_status || shdr_add_status || rc) {
13502 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13503 "2642 REG_CONGESTION_BUF mailbox "
13504 "failed with status x%x add_status x%x,"
13505 " mbx status x%x reg %d\n",
13506 shdr_status, shdr_add_status, rc, reg);
13507 return -ENXIO;
13508 }
13509 return 0;
13510 }
13511
13512 int
lpfc_unreg_congestion_buf(struct lpfc_hba * phba)13513 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13514 {
13515 lpfc_cmf_stop(phba);
13516 return __lpfc_reg_congestion_buf(phba, 0);
13517 }
13518
13519 int
lpfc_reg_congestion_buf(struct lpfc_hba * phba)13520 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13521 {
13522 return __lpfc_reg_congestion_buf(phba, 1);
13523 }
13524
13525 /**
13526 * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13527 * @phba: Pointer to HBA context object.
13528 * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13529 *
13530 * This function is called in the SLI4 code path to read the port's
13531 * sli4 capabilities.
13532 *
13533 * This function may be be called from any context that can block-wait
13534 * for the completion. The expectation is that this routine is called
13535 * typically from probe_one or from the online routine.
13536 **/
13537 int
lpfc_get_sli4_parameters(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)13538 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13539 {
13540 int rc;
13541 struct lpfc_mqe *mqe = &mboxq->u.mqe;
13542 struct lpfc_pc_sli4_params *sli4_params;
13543 uint32_t mbox_tmo;
13544 int length;
13545 bool exp_wqcq_pages = true;
13546 struct lpfc_sli4_parameters *mbx_sli4_parameters;
13547
13548 /*
13549 * By default, the driver assumes the SLI4 port requires RPI
13550 * header postings. The SLI4_PARAM response will correct this
13551 * assumption.
13552 */
13553 phba->sli4_hba.rpi_hdrs_in_use = 1;
13554
13555 /* Read the port's SLI4 Config Parameters */
13556 length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13557 sizeof(struct lpfc_sli4_cfg_mhdr));
13558 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13559 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13560 length, LPFC_SLI4_MBX_EMBED);
13561 if (!phba->sli4_hba.intr_enable)
13562 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13563 else {
13564 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13565 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13566 }
13567 if (unlikely(rc))
13568 return rc;
13569 sli4_params = &phba->sli4_hba.pc_sli4_params;
13570 mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13571 sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13572 sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13573 sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13574 sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13575 mbx_sli4_parameters);
13576 sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13577 mbx_sli4_parameters);
13578 if (bf_get(cfg_phwq, mbx_sli4_parameters))
13579 phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13580 else
13581 phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13582 sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13583 sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13584 mbx_sli4_parameters);
13585 sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13586 sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13587 sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13588 sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13589 sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13590 sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13591 sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13592 sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13593 sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13594 sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13595 sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13596 mbx_sli4_parameters);
13597 sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13598 sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13599 mbx_sli4_parameters);
13600 phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13601 phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13602
13603 /* Check for Extended Pre-Registered SGL support */
13604 phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13605
13606 /* Check for firmware nvme support */
13607 rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13608 bf_get(cfg_xib, mbx_sli4_parameters));
13609
13610 if (rc) {
13611 /* Save this to indicate the Firmware supports NVME */
13612 sli4_params->nvme = 1;
13613
13614 /* Firmware NVME support, check driver FC4 NVME support */
13615 if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13616 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13617 "6133 Disabling NVME support: "
13618 "FC4 type not supported: x%x\n",
13619 phba->cfg_enable_fc4_type);
13620 goto fcponly;
13621 }
13622 } else {
13623 /* No firmware NVME support, check driver FC4 NVME support */
13624 sli4_params->nvme = 0;
13625 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13626 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13627 "6101 Disabling NVME support: Not "
13628 "supported by firmware (%d %d) x%x\n",
13629 bf_get(cfg_nvme, mbx_sli4_parameters),
13630 bf_get(cfg_xib, mbx_sli4_parameters),
13631 phba->cfg_enable_fc4_type);
13632 fcponly:
13633 phba->nvmet_support = 0;
13634 phba->cfg_nvmet_mrq = 0;
13635 phba->cfg_nvme_seg_cnt = 0;
13636
13637 /* If no FC4 type support, move to just SCSI support */
13638 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13639 return -ENODEV;
13640 phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13641 }
13642 }
13643
13644 /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13645 * accommodate 512K and 1M IOs in a single nvme buf.
13646 */
13647 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13648 phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13649
13650 /* Enable embedded Payload BDE if support is indicated */
13651 if (bf_get(cfg_pbde, mbx_sli4_parameters))
13652 phba->cfg_enable_pbde = 1;
13653 else
13654 phba->cfg_enable_pbde = 0;
13655
13656 /*
13657 * To support Suppress Response feature we must satisfy 3 conditions.
13658 * lpfc_suppress_rsp module parameter must be set (default).
13659 * In SLI4-Parameters Descriptor:
13660 * Extended Inline Buffers (XIB) must be supported.
13661 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13662 * (double negative).
13663 */
13664 if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13665 !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13666 phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13667 else
13668 phba->cfg_suppress_rsp = 0;
13669
13670 if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13671 phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13672
13673 /* Make sure that sge_supp_len can be handled by the driver */
13674 if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13675 sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13676
13677 /*
13678 * Check whether the adapter supports an embedded copy of the
13679 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13680 * to use this option, 128-byte WQEs must be used.
13681 */
13682 if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13683 phba->fcp_embed_io = 1;
13684 else
13685 phba->fcp_embed_io = 0;
13686
13687 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13688 "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13689 bf_get(cfg_xib, mbx_sli4_parameters),
13690 phba->cfg_enable_pbde,
13691 phba->fcp_embed_io, sli4_params->nvme,
13692 phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13693
13694 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13695 LPFC_SLI_INTF_IF_TYPE_2) &&
13696 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13697 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13698 exp_wqcq_pages = false;
13699
13700 if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13701 (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13702 exp_wqcq_pages &&
13703 (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13704 phba->enab_exp_wqcq_pages = 1;
13705 else
13706 phba->enab_exp_wqcq_pages = 0;
13707 /*
13708 * Check if the SLI port supports MDS Diagnostics
13709 */
13710 if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13711 phba->mds_diags_support = 1;
13712 else
13713 phba->mds_diags_support = 0;
13714
13715 /*
13716 * Check if the SLI port supports NSLER
13717 */
13718 if (bf_get(cfg_nsler, mbx_sli4_parameters))
13719 phba->nsler = 1;
13720 else
13721 phba->nsler = 0;
13722
13723 return 0;
13724 }
13725
13726 /**
13727 * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13728 * @pdev: pointer to PCI device
13729 * @pid: pointer to PCI device identifier
13730 *
13731 * This routine is to be called to attach a device with SLI-3 interface spec
13732 * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13733 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13734 * information of the device and driver to see if the driver state that it can
13735 * support this kind of device. If the match is successful, the driver core
13736 * invokes this routine. If this routine determines it can claim the HBA, it
13737 * does all the initialization that it needs to do to handle the HBA properly.
13738 *
13739 * Return code
13740 * 0 - driver can claim the device
13741 * negative value - driver can not claim the device
13742 **/
13743 static int
lpfc_pci_probe_one_s3(struct pci_dev * pdev,const struct pci_device_id * pid)13744 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13745 {
13746 struct lpfc_hba *phba;
13747 struct lpfc_vport *vport = NULL;
13748 struct Scsi_Host *shost = NULL;
13749 int error;
13750 uint32_t cfg_mode, intr_mode;
13751
13752 /* Allocate memory for HBA structure */
13753 phba = lpfc_hba_alloc(pdev);
13754 if (!phba)
13755 return -ENOMEM;
13756
13757 /* Perform generic PCI device enabling operation */
13758 error = lpfc_enable_pci_dev(phba);
13759 if (error)
13760 goto out_free_phba;
13761
13762 /* Set up SLI API function jump table for PCI-device group-0 HBAs */
13763 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13764 if (error)
13765 goto out_disable_pci_dev;
13766
13767 /* Set up SLI-3 specific device PCI memory space */
13768 error = lpfc_sli_pci_mem_setup(phba);
13769 if (error) {
13770 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13771 "1402 Failed to set up pci memory space.\n");
13772 goto out_disable_pci_dev;
13773 }
13774
13775 /* Set up SLI-3 specific device driver resources */
13776 error = lpfc_sli_driver_resource_setup(phba);
13777 if (error) {
13778 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13779 "1404 Failed to set up driver resource.\n");
13780 goto out_unset_pci_mem_s3;
13781 }
13782
13783 /* Initialize and populate the iocb list per host */
13784
13785 error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13786 if (error) {
13787 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13788 "1405 Failed to initialize iocb list.\n");
13789 goto out_unset_driver_resource_s3;
13790 }
13791
13792 /* Set up common device driver resources */
13793 error = lpfc_setup_driver_resource_phase2(phba);
13794 if (error) {
13795 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13796 "1406 Failed to set up driver resource.\n");
13797 goto out_free_iocb_list;
13798 }
13799
13800 /* Get the default values for Model Name and Description */
13801 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13802
13803 /* Create SCSI host to the physical port */
13804 error = lpfc_create_shost(phba);
13805 if (error) {
13806 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13807 "1407 Failed to create scsi host.\n");
13808 goto out_unset_driver_resource;
13809 }
13810
13811 /* Configure sysfs attributes */
13812 vport = phba->pport;
13813 error = lpfc_alloc_sysfs_attr(vport);
13814 if (error) {
13815 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13816 "1476 Failed to allocate sysfs attr\n");
13817 goto out_destroy_shost;
13818 }
13819
13820 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
13821 /* Now, trying to enable interrupt and bring up the device */
13822 cfg_mode = phba->cfg_use_msi;
13823 while (true) {
13824 /* Put device to a known state before enabling interrupt */
13825 lpfc_stop_port(phba);
13826 /* Configure and enable interrupt */
13827 intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
13828 if (intr_mode == LPFC_INTR_ERROR) {
13829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13830 "0431 Failed to enable interrupt.\n");
13831 error = -ENODEV;
13832 goto out_free_sysfs_attr;
13833 }
13834 /* SLI-3 HBA setup */
13835 if (lpfc_sli_hba_setup(phba)) {
13836 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13837 "1477 Failed to set up hba\n");
13838 error = -ENODEV;
13839 goto out_remove_device;
13840 }
13841
13842 /* Wait 50ms for the interrupts of previous mailbox commands */
13843 msleep(50);
13844 /* Check active interrupts on message signaled interrupts */
13845 if (intr_mode == 0 ||
13846 phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
13847 /* Log the current active interrupt mode */
13848 phba->intr_mode = intr_mode;
13849 lpfc_log_intr_mode(phba, intr_mode);
13850 break;
13851 } else {
13852 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13853 "0447 Configure interrupt mode (%d) "
13854 "failed active interrupt test.\n",
13855 intr_mode);
13856 /* Disable the current interrupt mode */
13857 lpfc_sli_disable_intr(phba);
13858 /* Try next level of interrupt mode */
13859 cfg_mode = --intr_mode;
13860 }
13861 }
13862
13863 /* Perform post initialization setup */
13864 lpfc_post_init_setup(phba);
13865
13866 /* Check if there are static vports to be created. */
13867 lpfc_create_static_vport(phba);
13868
13869 return 0;
13870
13871 out_remove_device:
13872 lpfc_unset_hba(phba);
13873 out_free_sysfs_attr:
13874 lpfc_free_sysfs_attr(vport);
13875 out_destroy_shost:
13876 lpfc_destroy_shost(phba);
13877 out_unset_driver_resource:
13878 lpfc_unset_driver_resource_phase2(phba);
13879 out_free_iocb_list:
13880 lpfc_free_iocb_list(phba);
13881 out_unset_driver_resource_s3:
13882 lpfc_sli_driver_resource_unset(phba);
13883 out_unset_pci_mem_s3:
13884 lpfc_sli_pci_mem_unset(phba);
13885 out_disable_pci_dev:
13886 lpfc_disable_pci_dev(phba);
13887 if (shost)
13888 scsi_host_put(shost);
13889 out_free_phba:
13890 lpfc_hba_free(phba);
13891 return error;
13892 }
13893
13894 /**
13895 * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
13896 * @pdev: pointer to PCI device
13897 *
13898 * This routine is to be called to disattach a device with SLI-3 interface
13899 * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13900 * removed from PCI bus, it performs all the necessary cleanup for the HBA
13901 * device to be removed from the PCI subsystem properly.
13902 **/
13903 static void
lpfc_pci_remove_one_s3(struct pci_dev * pdev)13904 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
13905 {
13906 struct Scsi_Host *shost = pci_get_drvdata(pdev);
13907 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
13908 struct lpfc_vport **vports;
13909 struct lpfc_hba *phba = vport->phba;
13910 int i;
13911
13912 spin_lock_irq(&phba->hbalock);
13913 vport->load_flag |= FC_UNLOADING;
13914 spin_unlock_irq(&phba->hbalock);
13915
13916 lpfc_free_sysfs_attr(vport);
13917
13918 /* Release all the vports against this physical port */
13919 vports = lpfc_create_vport_work_array(phba);
13920 if (vports != NULL)
13921 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
13922 if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
13923 continue;
13924 fc_vport_terminate(vports[i]->fc_vport);
13925 }
13926 lpfc_destroy_vport_work_array(phba, vports);
13927
13928 /* Remove FC host with the physical port */
13929 fc_remove_host(shost);
13930 scsi_remove_host(shost);
13931
13932 /* Clean up all nodes, mailboxes and IOs. */
13933 lpfc_cleanup(vport);
13934
13935 /*
13936 * Bring down the SLI Layer. This step disable all interrupts,
13937 * clears the rings, discards all mailbox commands, and resets
13938 * the HBA.
13939 */
13940
13941 /* HBA interrupt will be disabled after this call */
13942 lpfc_sli_hba_down(phba);
13943 /* Stop kthread signal shall trigger work_done one more time */
13944 kthread_stop(phba->worker_thread);
13945 /* Final cleanup of txcmplq and reset the HBA */
13946 lpfc_sli_brdrestart(phba);
13947
13948 kfree(phba->vpi_bmask);
13949 kfree(phba->vpi_ids);
13950
13951 lpfc_stop_hba_timers(phba);
13952 spin_lock_irq(&phba->port_list_lock);
13953 list_del_init(&vport->listentry);
13954 spin_unlock_irq(&phba->port_list_lock);
13955
13956 lpfc_debugfs_terminate(vport);
13957
13958 /* Disable SR-IOV if enabled */
13959 if (phba->cfg_sriov_nr_virtfn)
13960 pci_disable_sriov(pdev);
13961
13962 /* Disable interrupt */
13963 lpfc_sli_disable_intr(phba);
13964
13965 scsi_host_put(shost);
13966
13967 /*
13968 * Call scsi_free before mem_free since scsi bufs are released to their
13969 * corresponding pools here.
13970 */
13971 lpfc_scsi_free(phba);
13972 lpfc_free_iocb_list(phba);
13973
13974 lpfc_mem_free_all(phba);
13975
13976 dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
13977 phba->hbqslimp.virt, phba->hbqslimp.phys);
13978
13979 /* Free resources associated with SLI2 interface */
13980 dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
13981 phba->slim2p.virt, phba->slim2p.phys);
13982
13983 /* unmap adapter SLIM and Control Registers */
13984 iounmap(phba->ctrl_regs_memmap_p);
13985 iounmap(phba->slim_memmap_p);
13986
13987 lpfc_hba_free(phba);
13988
13989 pci_release_mem_regions(pdev);
13990 pci_disable_device(pdev);
13991 }
13992
13993 /**
13994 * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
13995 * @dev_d: pointer to device
13996 *
13997 * This routine is to be called from the kernel's PCI subsystem to support
13998 * system Power Management (PM) to device with SLI-3 interface spec. When
13999 * PM invokes this method, it quiesces the device by stopping the driver's
14000 * worker thread for the device, turning off device's interrupt and DMA,
14001 * and bring the device offline. Note that as the driver implements the
14002 * minimum PM requirements to a power-aware driver's PM support for the
14003 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14004 * to the suspend() method call will be treated as SUSPEND and the driver will
14005 * fully reinitialize its device during resume() method call, the driver will
14006 * set device to PCI_D3hot state in PCI config space instead of setting it
14007 * according to the @msg provided by the PM.
14008 *
14009 * Return code
14010 * 0 - driver suspended the device
14011 * Error otherwise
14012 **/
14013 static int __maybe_unused
lpfc_pci_suspend_one_s3(struct device * dev_d)14014 lpfc_pci_suspend_one_s3(struct device *dev_d)
14015 {
14016 struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14017 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14018
14019 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14020 "0473 PCI device Power Management suspend.\n");
14021
14022 /* Bring down the device */
14023 lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14024 lpfc_offline(phba);
14025 kthread_stop(phba->worker_thread);
14026
14027 /* Disable interrupt from device */
14028 lpfc_sli_disable_intr(phba);
14029
14030 return 0;
14031 }
14032
14033 /**
14034 * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14035 * @dev_d: pointer to device
14036 *
14037 * This routine is to be called from the kernel's PCI subsystem to support
14038 * system Power Management (PM) to device with SLI-3 interface spec. When PM
14039 * invokes this method, it restores the device's PCI config space state and
14040 * fully reinitializes the device and brings it online. Note that as the
14041 * driver implements the minimum PM requirements to a power-aware driver's
14042 * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14043 * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14044 * driver will fully reinitialize its device during resume() method call,
14045 * the device will be set to PCI_D0 directly in PCI config space before
14046 * restoring the state.
14047 *
14048 * Return code
14049 * 0 - driver suspended the device
14050 * Error otherwise
14051 **/
14052 static int __maybe_unused
lpfc_pci_resume_one_s3(struct device * dev_d)14053 lpfc_pci_resume_one_s3(struct device *dev_d)
14054 {
14055 struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14056 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14057 uint32_t intr_mode;
14058 int error;
14059
14060 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14061 "0452 PCI device Power Management resume.\n");
14062
14063 /* Startup the kernel thread for this host adapter. */
14064 phba->worker_thread = kthread_run(lpfc_do_work, phba,
14065 "lpfc_worker_%d", phba->brd_no);
14066 if (IS_ERR(phba->worker_thread)) {
14067 error = PTR_ERR(phba->worker_thread);
14068 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14069 "0434 PM resume failed to start worker "
14070 "thread: error=x%x.\n", error);
14071 return error;
14072 }
14073
14074 /* Init cpu_map array */
14075 lpfc_cpu_map_array_init(phba);
14076 /* Init hba_eq_hdl array */
14077 lpfc_hba_eq_hdl_array_init(phba);
14078 /* Configure and enable interrupt */
14079 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14080 if (intr_mode == LPFC_INTR_ERROR) {
14081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14082 "0430 PM resume Failed to enable interrupt\n");
14083 return -EIO;
14084 } else
14085 phba->intr_mode = intr_mode;
14086
14087 /* Restart HBA and bring it online */
14088 lpfc_sli_brdrestart(phba);
14089 lpfc_online(phba);
14090
14091 /* Log the current active interrupt mode */
14092 lpfc_log_intr_mode(phba, phba->intr_mode);
14093
14094 return 0;
14095 }
14096
14097 /**
14098 * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14099 * @phba: pointer to lpfc hba data structure.
14100 *
14101 * This routine is called to prepare the SLI3 device for PCI slot recover. It
14102 * aborts all the outstanding SCSI I/Os to the pci device.
14103 **/
14104 static void
lpfc_sli_prep_dev_for_recover(struct lpfc_hba * phba)14105 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14106 {
14107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14108 "2723 PCI channel I/O abort preparing for recovery\n");
14109
14110 /*
14111 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14112 * and let the SCSI mid-layer to retry them to recover.
14113 */
14114 lpfc_sli_abort_fcp_rings(phba);
14115 }
14116
14117 /**
14118 * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14119 * @phba: pointer to lpfc hba data structure.
14120 *
14121 * This routine is called to prepare the SLI3 device for PCI slot reset. It
14122 * disables the device interrupt and pci device, and aborts the internal FCP
14123 * pending I/Os.
14124 **/
14125 static void
lpfc_sli_prep_dev_for_reset(struct lpfc_hba * phba)14126 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14127 {
14128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14129 "2710 PCI channel disable preparing for reset\n");
14130
14131 /* Block any management I/Os to the device */
14132 lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14133
14134 /* Block all SCSI devices' I/Os on the host */
14135 lpfc_scsi_dev_block(phba);
14136
14137 /* Flush all driver's outstanding SCSI I/Os as we are to reset */
14138 lpfc_sli_flush_io_rings(phba);
14139
14140 /* stop all timers */
14141 lpfc_stop_hba_timers(phba);
14142
14143 /* Disable interrupt and pci device */
14144 lpfc_sli_disable_intr(phba);
14145 pci_disable_device(phba->pcidev);
14146 }
14147
14148 /**
14149 * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14150 * @phba: pointer to lpfc hba data structure.
14151 *
14152 * This routine is called to prepare the SLI3 device for PCI slot permanently
14153 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14154 * pending I/Os.
14155 **/
14156 static void
lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba * phba)14157 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14158 {
14159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14160 "2711 PCI channel permanent disable for failure\n");
14161 /* Block all SCSI devices' I/Os on the host */
14162 lpfc_scsi_dev_block(phba);
14163
14164 /* stop all timers */
14165 lpfc_stop_hba_timers(phba);
14166
14167 /* Clean up all driver's outstanding SCSI I/Os */
14168 lpfc_sli_flush_io_rings(phba);
14169 }
14170
14171 /**
14172 * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14173 * @pdev: pointer to PCI device.
14174 * @state: the current PCI connection state.
14175 *
14176 * This routine is called from the PCI subsystem for I/O error handling to
14177 * device with SLI-3 interface spec. This function is called by the PCI
14178 * subsystem after a PCI bus error affecting this device has been detected.
14179 * When this function is invoked, it will need to stop all the I/Os and
14180 * interrupt(s) to the device. Once that is done, it will return
14181 * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14182 * as desired.
14183 *
14184 * Return codes
14185 * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14186 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14187 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14188 **/
14189 static pci_ers_result_t
lpfc_io_error_detected_s3(struct pci_dev * pdev,pci_channel_state_t state)14190 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14191 {
14192 struct Scsi_Host *shost = pci_get_drvdata(pdev);
14193 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14194
14195 switch (state) {
14196 case pci_channel_io_normal:
14197 /* Non-fatal error, prepare for recovery */
14198 lpfc_sli_prep_dev_for_recover(phba);
14199 return PCI_ERS_RESULT_CAN_RECOVER;
14200 case pci_channel_io_frozen:
14201 /* Fatal error, prepare for slot reset */
14202 lpfc_sli_prep_dev_for_reset(phba);
14203 return PCI_ERS_RESULT_NEED_RESET;
14204 case pci_channel_io_perm_failure:
14205 /* Permanent failure, prepare for device down */
14206 lpfc_sli_prep_dev_for_perm_failure(phba);
14207 return PCI_ERS_RESULT_DISCONNECT;
14208 default:
14209 /* Unknown state, prepare and request slot reset */
14210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14211 "0472 Unknown PCI error state: x%x\n", state);
14212 lpfc_sli_prep_dev_for_reset(phba);
14213 return PCI_ERS_RESULT_NEED_RESET;
14214 }
14215 }
14216
14217 /**
14218 * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14219 * @pdev: pointer to PCI device.
14220 *
14221 * This routine is called from the PCI subsystem for error handling to
14222 * device with SLI-3 interface spec. This is called after PCI bus has been
14223 * reset to restart the PCI card from scratch, as if from a cold-boot.
14224 * During the PCI subsystem error recovery, after driver returns
14225 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14226 * recovery and then call this routine before calling the .resume method
14227 * to recover the device. This function will initialize the HBA device,
14228 * enable the interrupt, but it will just put the HBA to offline state
14229 * without passing any I/O traffic.
14230 *
14231 * Return codes
14232 * PCI_ERS_RESULT_RECOVERED - the device has been recovered
14233 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14234 */
14235 static pci_ers_result_t
lpfc_io_slot_reset_s3(struct pci_dev * pdev)14236 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14237 {
14238 struct Scsi_Host *shost = pci_get_drvdata(pdev);
14239 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14240 struct lpfc_sli *psli = &phba->sli;
14241 uint32_t intr_mode;
14242
14243 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14244 if (pci_enable_device_mem(pdev)) {
14245 printk(KERN_ERR "lpfc: Cannot re-enable "
14246 "PCI device after reset.\n");
14247 return PCI_ERS_RESULT_DISCONNECT;
14248 }
14249
14250 pci_restore_state(pdev);
14251
14252 /*
14253 * As the new kernel behavior of pci_restore_state() API call clears
14254 * device saved_state flag, need to save the restored state again.
14255 */
14256 pci_save_state(pdev);
14257
14258 if (pdev->is_busmaster)
14259 pci_set_master(pdev);
14260
14261 spin_lock_irq(&phba->hbalock);
14262 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14263 spin_unlock_irq(&phba->hbalock);
14264
14265 /* Configure and enable interrupt */
14266 intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14267 if (intr_mode == LPFC_INTR_ERROR) {
14268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14269 "0427 Cannot re-enable interrupt after "
14270 "slot reset.\n");
14271 return PCI_ERS_RESULT_DISCONNECT;
14272 } else
14273 phba->intr_mode = intr_mode;
14274
14275 /* Take device offline, it will perform cleanup */
14276 lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14277 lpfc_offline(phba);
14278 lpfc_sli_brdrestart(phba);
14279
14280 /* Log the current active interrupt mode */
14281 lpfc_log_intr_mode(phba, phba->intr_mode);
14282
14283 return PCI_ERS_RESULT_RECOVERED;
14284 }
14285
14286 /**
14287 * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14288 * @pdev: pointer to PCI device
14289 *
14290 * This routine is called from the PCI subsystem for error handling to device
14291 * with SLI-3 interface spec. It is called when kernel error recovery tells
14292 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14293 * error recovery. After this call, traffic can start to flow from this device
14294 * again.
14295 */
14296 static void
lpfc_io_resume_s3(struct pci_dev * pdev)14297 lpfc_io_resume_s3(struct pci_dev *pdev)
14298 {
14299 struct Scsi_Host *shost = pci_get_drvdata(pdev);
14300 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14301
14302 /* Bring device online, it will be no-op for non-fatal error resume */
14303 lpfc_online(phba);
14304 }
14305
14306 /**
14307 * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14308 * @phba: pointer to lpfc hba data structure.
14309 *
14310 * returns the number of ELS/CT IOCBs to reserve
14311 **/
14312 int
lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba * phba)14313 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14314 {
14315 int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14316
14317 if (phba->sli_rev == LPFC_SLI_REV4) {
14318 if (max_xri <= 100)
14319 return 10;
14320 else if (max_xri <= 256)
14321 return 25;
14322 else if (max_xri <= 512)
14323 return 50;
14324 else if (max_xri <= 1024)
14325 return 100;
14326 else if (max_xri <= 1536)
14327 return 150;
14328 else if (max_xri <= 2048)
14329 return 200;
14330 else
14331 return 250;
14332 } else
14333 return 0;
14334 }
14335
14336 /**
14337 * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14338 * @phba: pointer to lpfc hba data structure.
14339 *
14340 * returns the number of ELS/CT + NVMET IOCBs to reserve
14341 **/
14342 int
lpfc_sli4_get_iocb_cnt(struct lpfc_hba * phba)14343 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14344 {
14345 int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14346
14347 if (phba->nvmet_support)
14348 max_xri += LPFC_NVMET_BUF_POST;
14349 return max_xri;
14350 }
14351
14352
14353 static int
lpfc_log_write_firmware_error(struct lpfc_hba * phba,uint32_t offset,uint32_t magic_number,uint32_t ftype,uint32_t fid,uint32_t fsize,const struct firmware * fw)14354 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14355 uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14356 const struct firmware *fw)
14357 {
14358 int rc;
14359 u8 sli_family;
14360
14361 sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14362 /* Three cases: (1) FW was not supported on the detected adapter.
14363 * (2) FW update has been locked out administratively.
14364 * (3) Some other error during FW update.
14365 * In each case, an unmaskable message is written to the console
14366 * for admin diagnosis.
14367 */
14368 if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14369 (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14370 magic_number != MAGIC_NUMBER_G6) ||
14371 (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14372 magic_number != MAGIC_NUMBER_G7) ||
14373 (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14374 magic_number != MAGIC_NUMBER_G7P)) {
14375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14376 "3030 This firmware version is not supported on"
14377 " this HBA model. Device:%x Magic:%x Type:%x "
14378 "ID:%x Size %d %zd\n",
14379 phba->pcidev->device, magic_number, ftype, fid,
14380 fsize, fw->size);
14381 rc = -EINVAL;
14382 } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14383 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14384 "3021 Firmware downloads have been prohibited "
14385 "by a system configuration setting on "
14386 "Device:%x Magic:%x Type:%x ID:%x Size %d "
14387 "%zd\n",
14388 phba->pcidev->device, magic_number, ftype, fid,
14389 fsize, fw->size);
14390 rc = -EACCES;
14391 } else {
14392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14393 "3022 FW Download failed. Add Status x%x "
14394 "Device:%x Magic:%x Type:%x ID:%x Size %d "
14395 "%zd\n",
14396 offset, phba->pcidev->device, magic_number,
14397 ftype, fid, fsize, fw->size);
14398 rc = -EIO;
14399 }
14400 return rc;
14401 }
14402
14403 /**
14404 * lpfc_write_firmware - attempt to write a firmware image to the port
14405 * @fw: pointer to firmware image returned from request_firmware.
14406 * @context: pointer to firmware image returned from request_firmware.
14407 *
14408 **/
14409 static void
lpfc_write_firmware(const struct firmware * fw,void * context)14410 lpfc_write_firmware(const struct firmware *fw, void *context)
14411 {
14412 struct lpfc_hba *phba = (struct lpfc_hba *)context;
14413 char fwrev[FW_REV_STR_SIZE];
14414 struct lpfc_grp_hdr *image;
14415 struct list_head dma_buffer_list;
14416 int i, rc = 0;
14417 struct lpfc_dmabuf *dmabuf, *next;
14418 uint32_t offset = 0, temp_offset = 0;
14419 uint32_t magic_number, ftype, fid, fsize;
14420
14421 /* It can be null in no-wait mode, sanity check */
14422 if (!fw) {
14423 rc = -ENXIO;
14424 goto out;
14425 }
14426 image = (struct lpfc_grp_hdr *)fw->data;
14427
14428 magic_number = be32_to_cpu(image->magic_number);
14429 ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14430 fid = bf_get_be32(lpfc_grp_hdr_id, image);
14431 fsize = be32_to_cpu(image->size);
14432
14433 INIT_LIST_HEAD(&dma_buffer_list);
14434 lpfc_decode_firmware_rev(phba, fwrev, 1);
14435 if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14437 "3023 Updating Firmware, Current Version:%s "
14438 "New Version:%s\n",
14439 fwrev, image->revision);
14440 for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14441 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14442 GFP_KERNEL);
14443 if (!dmabuf) {
14444 rc = -ENOMEM;
14445 goto release_out;
14446 }
14447 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14448 SLI4_PAGE_SIZE,
14449 &dmabuf->phys,
14450 GFP_KERNEL);
14451 if (!dmabuf->virt) {
14452 kfree(dmabuf);
14453 rc = -ENOMEM;
14454 goto release_out;
14455 }
14456 list_add_tail(&dmabuf->list, &dma_buffer_list);
14457 }
14458 while (offset < fw->size) {
14459 temp_offset = offset;
14460 list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14461 if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14462 memcpy(dmabuf->virt,
14463 fw->data + temp_offset,
14464 fw->size - temp_offset);
14465 temp_offset = fw->size;
14466 break;
14467 }
14468 memcpy(dmabuf->virt, fw->data + temp_offset,
14469 SLI4_PAGE_SIZE);
14470 temp_offset += SLI4_PAGE_SIZE;
14471 }
14472 rc = lpfc_wr_object(phba, &dma_buffer_list,
14473 (fw->size - offset), &offset);
14474 if (rc) {
14475 rc = lpfc_log_write_firmware_error(phba, offset,
14476 magic_number,
14477 ftype,
14478 fid,
14479 fsize,
14480 fw);
14481 goto release_out;
14482 }
14483 }
14484 rc = offset;
14485 } else
14486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14487 "3029 Skipped Firmware update, Current "
14488 "Version:%s New Version:%s\n",
14489 fwrev, image->revision);
14490
14491 release_out:
14492 list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14493 list_del(&dmabuf->list);
14494 dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14495 dmabuf->virt, dmabuf->phys);
14496 kfree(dmabuf);
14497 }
14498 release_firmware(fw);
14499 out:
14500 if (rc < 0)
14501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14502 "3062 Firmware update error, status %d.\n", rc);
14503 else
14504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14505 "3024 Firmware update success: size %d.\n", rc);
14506 }
14507
14508 /**
14509 * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14510 * @phba: pointer to lpfc hba data structure.
14511 * @fw_upgrade: which firmware to update.
14512 *
14513 * This routine is called to perform Linux generic firmware upgrade on device
14514 * that supports such feature.
14515 **/
14516 int
lpfc_sli4_request_firmware_update(struct lpfc_hba * phba,uint8_t fw_upgrade)14517 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14518 {
14519 char file_name[ELX_FW_NAME_SIZE] = {0};
14520 int ret;
14521 const struct firmware *fw;
14522
14523 /* Only supported on SLI4 interface type 2 for now */
14524 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14525 LPFC_SLI_INTF_IF_TYPE_2)
14526 return -EPERM;
14527
14528 scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14529
14530 if (fw_upgrade == INT_FW_UPGRADE) {
14531 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14532 file_name, &phba->pcidev->dev,
14533 GFP_KERNEL, (void *)phba,
14534 lpfc_write_firmware);
14535 } else if (fw_upgrade == RUN_FW_UPGRADE) {
14536 ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14537 if (!ret)
14538 lpfc_write_firmware(fw, (void *)phba);
14539 } else {
14540 ret = -EINVAL;
14541 }
14542
14543 return ret;
14544 }
14545
14546 /**
14547 * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14548 * @pdev: pointer to PCI device
14549 * @pid: pointer to PCI device identifier
14550 *
14551 * This routine is called from the kernel's PCI subsystem to device with
14552 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14553 * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14554 * information of the device and driver to see if the driver state that it
14555 * can support this kind of device. If the match is successful, the driver
14556 * core invokes this routine. If this routine determines it can claim the HBA,
14557 * it does all the initialization that it needs to do to handle the HBA
14558 * properly.
14559 *
14560 * Return code
14561 * 0 - driver can claim the device
14562 * negative value - driver can not claim the device
14563 **/
14564 static int
lpfc_pci_probe_one_s4(struct pci_dev * pdev,const struct pci_device_id * pid)14565 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14566 {
14567 struct lpfc_hba *phba;
14568 struct lpfc_vport *vport = NULL;
14569 struct Scsi_Host *shost = NULL;
14570 int error;
14571 uint32_t cfg_mode, intr_mode;
14572
14573 /* Allocate memory for HBA structure */
14574 phba = lpfc_hba_alloc(pdev);
14575 if (!phba)
14576 return -ENOMEM;
14577
14578 INIT_LIST_HEAD(&phba->poll_list);
14579
14580 /* Perform generic PCI device enabling operation */
14581 error = lpfc_enable_pci_dev(phba);
14582 if (error)
14583 goto out_free_phba;
14584
14585 /* Set up SLI API function jump table for PCI-device group-1 HBAs */
14586 error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14587 if (error)
14588 goto out_disable_pci_dev;
14589
14590 /* Set up SLI-4 specific device PCI memory space */
14591 error = lpfc_sli4_pci_mem_setup(phba);
14592 if (error) {
14593 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14594 "1410 Failed to set up pci memory space.\n");
14595 goto out_disable_pci_dev;
14596 }
14597
14598 /* Set up SLI-4 Specific device driver resources */
14599 error = lpfc_sli4_driver_resource_setup(phba);
14600 if (error) {
14601 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14602 "1412 Failed to set up driver resource.\n");
14603 goto out_unset_pci_mem_s4;
14604 }
14605
14606 INIT_LIST_HEAD(&phba->active_rrq_list);
14607 INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14608
14609 /* Set up common device driver resources */
14610 error = lpfc_setup_driver_resource_phase2(phba);
14611 if (error) {
14612 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14613 "1414 Failed to set up driver resource.\n");
14614 goto out_unset_driver_resource_s4;
14615 }
14616
14617 /* Get the default values for Model Name and Description */
14618 lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14619
14620 /* Now, trying to enable interrupt and bring up the device */
14621 cfg_mode = phba->cfg_use_msi;
14622
14623 /* Put device to a known state before enabling interrupt */
14624 phba->pport = NULL;
14625 lpfc_stop_port(phba);
14626
14627 /* Init cpu_map array */
14628 lpfc_cpu_map_array_init(phba);
14629
14630 /* Init hba_eq_hdl array */
14631 lpfc_hba_eq_hdl_array_init(phba);
14632
14633 /* Configure and enable interrupt */
14634 intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14635 if (intr_mode == LPFC_INTR_ERROR) {
14636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14637 "0426 Failed to enable interrupt.\n");
14638 error = -ENODEV;
14639 goto out_unset_driver_resource;
14640 }
14641 /* Default to single EQ for non-MSI-X */
14642 if (phba->intr_type != MSIX) {
14643 phba->cfg_irq_chann = 1;
14644 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14645 if (phba->nvmet_support)
14646 phba->cfg_nvmet_mrq = 1;
14647 }
14648 }
14649 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14650
14651 /* Create SCSI host to the physical port */
14652 error = lpfc_create_shost(phba);
14653 if (error) {
14654 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14655 "1415 Failed to create scsi host.\n");
14656 goto out_disable_intr;
14657 }
14658 vport = phba->pport;
14659 shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14660
14661 /* Configure sysfs attributes */
14662 error = lpfc_alloc_sysfs_attr(vport);
14663 if (error) {
14664 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14665 "1416 Failed to allocate sysfs attr\n");
14666 goto out_destroy_shost;
14667 }
14668
14669 /* Set up SLI-4 HBA */
14670 if (lpfc_sli4_hba_setup(phba)) {
14671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14672 "1421 Failed to set up hba\n");
14673 error = -ENODEV;
14674 goto out_free_sysfs_attr;
14675 }
14676
14677 /* Log the current active interrupt mode */
14678 phba->intr_mode = intr_mode;
14679 lpfc_log_intr_mode(phba, intr_mode);
14680
14681 /* Perform post initialization setup */
14682 lpfc_post_init_setup(phba);
14683
14684 /* NVME support in FW earlier in the driver load corrects the
14685 * FC4 type making a check for nvme_support unnecessary.
14686 */
14687 if (phba->nvmet_support == 0) {
14688 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14689 /* Create NVME binding with nvme_fc_transport. This
14690 * ensures the vport is initialized. If the localport
14691 * create fails, it should not unload the driver to
14692 * support field issues.
14693 */
14694 error = lpfc_nvme_create_localport(vport);
14695 if (error) {
14696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14697 "6004 NVME registration "
14698 "failed, error x%x\n",
14699 error);
14700 }
14701 }
14702 }
14703
14704 /* check for firmware upgrade or downgrade */
14705 if (phba->cfg_request_firmware_upgrade)
14706 lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14707
14708 /* Check if there are static vports to be created. */
14709 lpfc_create_static_vport(phba);
14710
14711 /* Enable RAS FW log support */
14712 lpfc_sli4_ras_setup(phba);
14713
14714 timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14715 cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14716
14717 return 0;
14718
14719 out_free_sysfs_attr:
14720 lpfc_free_sysfs_attr(vport);
14721 out_destroy_shost:
14722 lpfc_destroy_shost(phba);
14723 out_disable_intr:
14724 lpfc_sli4_disable_intr(phba);
14725 out_unset_driver_resource:
14726 lpfc_unset_driver_resource_phase2(phba);
14727 out_unset_driver_resource_s4:
14728 lpfc_sli4_driver_resource_unset(phba);
14729 out_unset_pci_mem_s4:
14730 lpfc_sli4_pci_mem_unset(phba);
14731 out_disable_pci_dev:
14732 lpfc_disable_pci_dev(phba);
14733 if (shost)
14734 scsi_host_put(shost);
14735 out_free_phba:
14736 lpfc_hba_free(phba);
14737 return error;
14738 }
14739
14740 /**
14741 * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14742 * @pdev: pointer to PCI device
14743 *
14744 * This routine is called from the kernel's PCI subsystem to device with
14745 * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14746 * removed from PCI bus, it performs all the necessary cleanup for the HBA
14747 * device to be removed from the PCI subsystem properly.
14748 **/
14749 static void
lpfc_pci_remove_one_s4(struct pci_dev * pdev)14750 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14751 {
14752 struct Scsi_Host *shost = pci_get_drvdata(pdev);
14753 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14754 struct lpfc_vport **vports;
14755 struct lpfc_hba *phba = vport->phba;
14756 int i;
14757
14758 /* Mark the device unloading flag */
14759 spin_lock_irq(&phba->hbalock);
14760 vport->load_flag |= FC_UNLOADING;
14761 spin_unlock_irq(&phba->hbalock);
14762 if (phba->cgn_i)
14763 lpfc_unreg_congestion_buf(phba);
14764
14765 lpfc_free_sysfs_attr(vport);
14766
14767 /* Release all the vports against this physical port */
14768 vports = lpfc_create_vport_work_array(phba);
14769 if (vports != NULL)
14770 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14771 if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14772 continue;
14773 fc_vport_terminate(vports[i]->fc_vport);
14774 }
14775 lpfc_destroy_vport_work_array(phba, vports);
14776
14777 /* Remove FC host with the physical port */
14778 fc_remove_host(shost);
14779 scsi_remove_host(shost);
14780
14781 /* Perform ndlp cleanup on the physical port. The nvme and nvmet
14782 * localports are destroyed after to cleanup all transport memory.
14783 */
14784 lpfc_cleanup(vport);
14785 lpfc_nvmet_destroy_targetport(phba);
14786 lpfc_nvme_destroy_localport(vport);
14787
14788 /* De-allocate multi-XRI pools */
14789 if (phba->cfg_xri_rebalancing)
14790 lpfc_destroy_multixri_pools(phba);
14791
14792 /*
14793 * Bring down the SLI Layer. This step disables all interrupts,
14794 * clears the rings, discards all mailbox commands, and resets
14795 * the HBA FCoE function.
14796 */
14797 lpfc_debugfs_terminate(vport);
14798
14799 lpfc_stop_hba_timers(phba);
14800 spin_lock_irq(&phba->port_list_lock);
14801 list_del_init(&vport->listentry);
14802 spin_unlock_irq(&phba->port_list_lock);
14803
14804 /* Perform scsi free before driver resource_unset since scsi
14805 * buffers are released to their corresponding pools here.
14806 */
14807 lpfc_io_free(phba);
14808 lpfc_free_iocb_list(phba);
14809 lpfc_sli4_hba_unset(phba);
14810
14811 lpfc_unset_driver_resource_phase2(phba);
14812 lpfc_sli4_driver_resource_unset(phba);
14813
14814 /* Unmap adapter Control and Doorbell registers */
14815 lpfc_sli4_pci_mem_unset(phba);
14816
14817 /* Release PCI resources and disable device's PCI function */
14818 scsi_host_put(shost);
14819 lpfc_disable_pci_dev(phba);
14820
14821 /* Finally, free the driver's device data structure */
14822 lpfc_hba_free(phba);
14823
14824 return;
14825 }
14826
14827 /**
14828 * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
14829 * @dev_d: pointer to device
14830 *
14831 * This routine is called from the kernel's PCI subsystem to support system
14832 * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
14833 * this method, it quiesces the device by stopping the driver's worker
14834 * thread for the device, turning off device's interrupt and DMA, and bring
14835 * the device offline. Note that as the driver implements the minimum PM
14836 * requirements to a power-aware driver's PM support for suspend/resume -- all
14837 * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
14838 * method call will be treated as SUSPEND and the driver will fully
14839 * reinitialize its device during resume() method call, the driver will set
14840 * device to PCI_D3hot state in PCI config space instead of setting it
14841 * according to the @msg provided by the PM.
14842 *
14843 * Return code
14844 * 0 - driver suspended the device
14845 * Error otherwise
14846 **/
14847 static int __maybe_unused
lpfc_pci_suspend_one_s4(struct device * dev_d)14848 lpfc_pci_suspend_one_s4(struct device *dev_d)
14849 {
14850 struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14851 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14852
14853 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14854 "2843 PCI device Power Management suspend.\n");
14855
14856 /* Bring down the device */
14857 lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14858 lpfc_offline(phba);
14859 kthread_stop(phba->worker_thread);
14860
14861 /* Disable interrupt from device */
14862 lpfc_sli4_disable_intr(phba);
14863 lpfc_sli4_queue_destroy(phba);
14864
14865 return 0;
14866 }
14867
14868 /**
14869 * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
14870 * @dev_d: pointer to device
14871 *
14872 * This routine is called from the kernel's PCI subsystem to support system
14873 * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
14874 * this method, it restores the device's PCI config space state and fully
14875 * reinitializes the device and brings it online. Note that as the driver
14876 * implements the minimum PM requirements to a power-aware driver's PM for
14877 * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14878 * to the suspend() method call will be treated as SUSPEND and the driver
14879 * will fully reinitialize its device during resume() method call, the device
14880 * will be set to PCI_D0 directly in PCI config space before restoring the
14881 * state.
14882 *
14883 * Return code
14884 * 0 - driver suspended the device
14885 * Error otherwise
14886 **/
14887 static int __maybe_unused
lpfc_pci_resume_one_s4(struct device * dev_d)14888 lpfc_pci_resume_one_s4(struct device *dev_d)
14889 {
14890 struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14891 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14892 uint32_t intr_mode;
14893 int error;
14894
14895 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14896 "0292 PCI device Power Management resume.\n");
14897
14898 /* Startup the kernel thread for this host adapter. */
14899 phba->worker_thread = kthread_run(lpfc_do_work, phba,
14900 "lpfc_worker_%d", phba->brd_no);
14901 if (IS_ERR(phba->worker_thread)) {
14902 error = PTR_ERR(phba->worker_thread);
14903 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14904 "0293 PM resume failed to start worker "
14905 "thread: error=x%x.\n", error);
14906 return error;
14907 }
14908
14909 /* Configure and enable interrupt */
14910 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
14911 if (intr_mode == LPFC_INTR_ERROR) {
14912 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14913 "0294 PM resume Failed to enable interrupt\n");
14914 return -EIO;
14915 } else
14916 phba->intr_mode = intr_mode;
14917
14918 /* Restart HBA and bring it online */
14919 lpfc_sli_brdrestart(phba);
14920 lpfc_online(phba);
14921
14922 /* Log the current active interrupt mode */
14923 lpfc_log_intr_mode(phba, phba->intr_mode);
14924
14925 return 0;
14926 }
14927
14928 /**
14929 * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
14930 * @phba: pointer to lpfc hba data structure.
14931 *
14932 * This routine is called to prepare the SLI4 device for PCI slot recover. It
14933 * aborts all the outstanding SCSI I/Os to the pci device.
14934 **/
14935 static void
lpfc_sli4_prep_dev_for_recover(struct lpfc_hba * phba)14936 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
14937 {
14938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14939 "2828 PCI channel I/O abort preparing for recovery\n");
14940 /*
14941 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14942 * and let the SCSI mid-layer to retry them to recover.
14943 */
14944 lpfc_sli_abort_fcp_rings(phba);
14945 }
14946
14947 /**
14948 * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
14949 * @phba: pointer to lpfc hba data structure.
14950 *
14951 * This routine is called to prepare the SLI4 device for PCI slot reset. It
14952 * disables the device interrupt and pci device, and aborts the internal FCP
14953 * pending I/Os.
14954 **/
14955 static void
lpfc_sli4_prep_dev_for_reset(struct lpfc_hba * phba)14956 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
14957 {
14958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14959 "2826 PCI channel disable preparing for reset\n");
14960
14961 /* Block any management I/Os to the device */
14962 lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
14963
14964 /* Block all SCSI devices' I/Os on the host */
14965 lpfc_scsi_dev_block(phba);
14966
14967 /* Flush all driver's outstanding I/Os as we are to reset */
14968 lpfc_sli_flush_io_rings(phba);
14969
14970 /* stop all timers */
14971 lpfc_stop_hba_timers(phba);
14972
14973 /* Disable interrupt and pci device */
14974 lpfc_sli4_disable_intr(phba);
14975 lpfc_sli4_queue_destroy(phba);
14976 pci_disable_device(phba->pcidev);
14977 }
14978
14979 /**
14980 * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
14981 * @phba: pointer to lpfc hba data structure.
14982 *
14983 * This routine is called to prepare the SLI4 device for PCI slot permanently
14984 * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14985 * pending I/Os.
14986 **/
14987 static void
lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba * phba)14988 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14989 {
14990 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14991 "2827 PCI channel permanent disable for failure\n");
14992
14993 /* Block all SCSI devices' I/Os on the host */
14994 lpfc_scsi_dev_block(phba);
14995
14996 /* stop all timers */
14997 lpfc_stop_hba_timers(phba);
14998
14999 /* Clean up all driver's outstanding I/Os */
15000 lpfc_sli_flush_io_rings(phba);
15001 }
15002
15003 /**
15004 * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15005 * @pdev: pointer to PCI device.
15006 * @state: the current PCI connection state.
15007 *
15008 * This routine is called from the PCI subsystem for error handling to device
15009 * with SLI-4 interface spec. This function is called by the PCI subsystem
15010 * after a PCI bus error affecting this device has been detected. When this
15011 * function is invoked, it will need to stop all the I/Os and interrupt(s)
15012 * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15013 * for the PCI subsystem to perform proper recovery as desired.
15014 *
15015 * Return codes
15016 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15017 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15018 **/
15019 static pci_ers_result_t
lpfc_io_error_detected_s4(struct pci_dev * pdev,pci_channel_state_t state)15020 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15021 {
15022 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15023 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15024
15025 switch (state) {
15026 case pci_channel_io_normal:
15027 /* Non-fatal error, prepare for recovery */
15028 lpfc_sli4_prep_dev_for_recover(phba);
15029 return PCI_ERS_RESULT_CAN_RECOVER;
15030 case pci_channel_io_frozen:
15031 phba->hba_flag |= HBA_PCI_ERR;
15032 /* Fatal error, prepare for slot reset */
15033 lpfc_sli4_prep_dev_for_reset(phba);
15034 return PCI_ERS_RESULT_NEED_RESET;
15035 case pci_channel_io_perm_failure:
15036 phba->hba_flag |= HBA_PCI_ERR;
15037 /* Permanent failure, prepare for device down */
15038 lpfc_sli4_prep_dev_for_perm_failure(phba);
15039 return PCI_ERS_RESULT_DISCONNECT;
15040 default:
15041 phba->hba_flag |= HBA_PCI_ERR;
15042 /* Unknown state, prepare and request slot reset */
15043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15044 "2825 Unknown PCI error state: x%x\n", state);
15045 lpfc_sli4_prep_dev_for_reset(phba);
15046 return PCI_ERS_RESULT_NEED_RESET;
15047 }
15048 }
15049
15050 /**
15051 * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15052 * @pdev: pointer to PCI device.
15053 *
15054 * This routine is called from the PCI subsystem for error handling to device
15055 * with SLI-4 interface spec. It is called after PCI bus has been reset to
15056 * restart the PCI card from scratch, as if from a cold-boot. During the
15057 * PCI subsystem error recovery, after the driver returns
15058 * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15059 * recovery and then call this routine before calling the .resume method to
15060 * recover the device. This function will initialize the HBA device, enable
15061 * the interrupt, but it will just put the HBA to offline state without
15062 * passing any I/O traffic.
15063 *
15064 * Return codes
15065 * PCI_ERS_RESULT_RECOVERED - the device has been recovered
15066 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15067 */
15068 static pci_ers_result_t
lpfc_io_slot_reset_s4(struct pci_dev * pdev)15069 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15070 {
15071 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15072 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15073 struct lpfc_sli *psli = &phba->sli;
15074 uint32_t intr_mode;
15075
15076 dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15077 if (pci_enable_device_mem(pdev)) {
15078 printk(KERN_ERR "lpfc: Cannot re-enable "
15079 "PCI device after reset.\n");
15080 return PCI_ERS_RESULT_DISCONNECT;
15081 }
15082
15083 pci_restore_state(pdev);
15084
15085 phba->hba_flag &= ~HBA_PCI_ERR;
15086 /*
15087 * As the new kernel behavior of pci_restore_state() API call clears
15088 * device saved_state flag, need to save the restored state again.
15089 */
15090 pci_save_state(pdev);
15091
15092 if (pdev->is_busmaster)
15093 pci_set_master(pdev);
15094
15095 spin_lock_irq(&phba->hbalock);
15096 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15097 spin_unlock_irq(&phba->hbalock);
15098
15099 /* Init cpu_map array */
15100 lpfc_cpu_map_array_init(phba);
15101 /* Configure and enable interrupt */
15102 intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15103 if (intr_mode == LPFC_INTR_ERROR) {
15104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15105 "2824 Cannot re-enable interrupt after "
15106 "slot reset.\n");
15107 return PCI_ERS_RESULT_DISCONNECT;
15108 } else
15109 phba->intr_mode = intr_mode;
15110 lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15111
15112 /* Log the current active interrupt mode */
15113 lpfc_log_intr_mode(phba, phba->intr_mode);
15114
15115 return PCI_ERS_RESULT_RECOVERED;
15116 }
15117
15118 /**
15119 * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15120 * @pdev: pointer to PCI device
15121 *
15122 * This routine is called from the PCI subsystem for error handling to device
15123 * with SLI-4 interface spec. It is called when kernel error recovery tells
15124 * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15125 * error recovery. After this call, traffic can start to flow from this device
15126 * again.
15127 **/
15128 static void
lpfc_io_resume_s4(struct pci_dev * pdev)15129 lpfc_io_resume_s4(struct pci_dev *pdev)
15130 {
15131 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15132 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15133
15134 /*
15135 * In case of slot reset, as function reset is performed through
15136 * mailbox command which needs DMA to be enabled, this operation
15137 * has to be moved to the io resume phase. Taking device offline
15138 * will perform the necessary cleanup.
15139 */
15140 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15141 /* Perform device reset */
15142 lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15143 lpfc_offline(phba);
15144 lpfc_sli_brdrestart(phba);
15145 /* Bring the device back online */
15146 lpfc_online(phba);
15147 }
15148 }
15149
15150 /**
15151 * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15152 * @pdev: pointer to PCI device
15153 * @pid: pointer to PCI device identifier
15154 *
15155 * This routine is to be registered to the kernel's PCI subsystem. When an
15156 * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15157 * at PCI device-specific information of the device and driver to see if the
15158 * driver state that it can support this kind of device. If the match is
15159 * successful, the driver core invokes this routine. This routine dispatches
15160 * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15161 * do all the initialization that it needs to do to handle the HBA device
15162 * properly.
15163 *
15164 * Return code
15165 * 0 - driver can claim the device
15166 * negative value - driver can not claim the device
15167 **/
15168 static int
lpfc_pci_probe_one(struct pci_dev * pdev,const struct pci_device_id * pid)15169 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15170 {
15171 int rc;
15172 struct lpfc_sli_intf intf;
15173
15174 if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15175 return -ENODEV;
15176
15177 if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15178 (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15179 rc = lpfc_pci_probe_one_s4(pdev, pid);
15180 else
15181 rc = lpfc_pci_probe_one_s3(pdev, pid);
15182
15183 return rc;
15184 }
15185
15186 /**
15187 * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15188 * @pdev: pointer to PCI device
15189 *
15190 * This routine is to be registered to the kernel's PCI subsystem. When an
15191 * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15192 * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15193 * remove routine, which will perform all the necessary cleanup for the
15194 * device to be removed from the PCI subsystem properly.
15195 **/
15196 static void
lpfc_pci_remove_one(struct pci_dev * pdev)15197 lpfc_pci_remove_one(struct pci_dev *pdev)
15198 {
15199 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15200 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15201
15202 switch (phba->pci_dev_grp) {
15203 case LPFC_PCI_DEV_LP:
15204 lpfc_pci_remove_one_s3(pdev);
15205 break;
15206 case LPFC_PCI_DEV_OC:
15207 lpfc_pci_remove_one_s4(pdev);
15208 break;
15209 default:
15210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15211 "1424 Invalid PCI device group: 0x%x\n",
15212 phba->pci_dev_grp);
15213 break;
15214 }
15215 return;
15216 }
15217
15218 /**
15219 * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15220 * @dev: pointer to device
15221 *
15222 * This routine is to be registered to the kernel's PCI subsystem to support
15223 * system Power Management (PM). When PM invokes this method, it dispatches
15224 * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15225 * suspend the device.
15226 *
15227 * Return code
15228 * 0 - driver suspended the device
15229 * Error otherwise
15230 **/
15231 static int __maybe_unused
lpfc_pci_suspend_one(struct device * dev)15232 lpfc_pci_suspend_one(struct device *dev)
15233 {
15234 struct Scsi_Host *shost = dev_get_drvdata(dev);
15235 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15236 int rc = -ENODEV;
15237
15238 switch (phba->pci_dev_grp) {
15239 case LPFC_PCI_DEV_LP:
15240 rc = lpfc_pci_suspend_one_s3(dev);
15241 break;
15242 case LPFC_PCI_DEV_OC:
15243 rc = lpfc_pci_suspend_one_s4(dev);
15244 break;
15245 default:
15246 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15247 "1425 Invalid PCI device group: 0x%x\n",
15248 phba->pci_dev_grp);
15249 break;
15250 }
15251 return rc;
15252 }
15253
15254 /**
15255 * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15256 * @dev: pointer to device
15257 *
15258 * This routine is to be registered to the kernel's PCI subsystem to support
15259 * system Power Management (PM). When PM invokes this method, it dispatches
15260 * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15261 * resume the device.
15262 *
15263 * Return code
15264 * 0 - driver suspended the device
15265 * Error otherwise
15266 **/
15267 static int __maybe_unused
lpfc_pci_resume_one(struct device * dev)15268 lpfc_pci_resume_one(struct device *dev)
15269 {
15270 struct Scsi_Host *shost = dev_get_drvdata(dev);
15271 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15272 int rc = -ENODEV;
15273
15274 switch (phba->pci_dev_grp) {
15275 case LPFC_PCI_DEV_LP:
15276 rc = lpfc_pci_resume_one_s3(dev);
15277 break;
15278 case LPFC_PCI_DEV_OC:
15279 rc = lpfc_pci_resume_one_s4(dev);
15280 break;
15281 default:
15282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15283 "1426 Invalid PCI device group: 0x%x\n",
15284 phba->pci_dev_grp);
15285 break;
15286 }
15287 return rc;
15288 }
15289
15290 /**
15291 * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15292 * @pdev: pointer to PCI device.
15293 * @state: the current PCI connection state.
15294 *
15295 * This routine is registered to the PCI subsystem for error handling. This
15296 * function is called by the PCI subsystem after a PCI bus error affecting
15297 * this device has been detected. When this routine is invoked, it dispatches
15298 * the action to the proper SLI-3 or SLI-4 device error detected handling
15299 * routine, which will perform the proper error detected operation.
15300 *
15301 * Return codes
15302 * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15303 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15304 **/
15305 static pci_ers_result_t
lpfc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)15306 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15307 {
15308 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15309 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15310 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15311
15312 if (phba->link_state == LPFC_HBA_ERROR &&
15313 phba->hba_flag & HBA_IOQ_FLUSH)
15314 return PCI_ERS_RESULT_NEED_RESET;
15315
15316 switch (phba->pci_dev_grp) {
15317 case LPFC_PCI_DEV_LP:
15318 rc = lpfc_io_error_detected_s3(pdev, state);
15319 break;
15320 case LPFC_PCI_DEV_OC:
15321 rc = lpfc_io_error_detected_s4(pdev, state);
15322 break;
15323 default:
15324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15325 "1427 Invalid PCI device group: 0x%x\n",
15326 phba->pci_dev_grp);
15327 break;
15328 }
15329 return rc;
15330 }
15331
15332 /**
15333 * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15334 * @pdev: pointer to PCI device.
15335 *
15336 * This routine is registered to the PCI subsystem for error handling. This
15337 * function is called after PCI bus has been reset to restart the PCI card
15338 * from scratch, as if from a cold-boot. When this routine is invoked, it
15339 * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15340 * routine, which will perform the proper device reset.
15341 *
15342 * Return codes
15343 * PCI_ERS_RESULT_RECOVERED - the device has been recovered
15344 * PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15345 **/
15346 static pci_ers_result_t
lpfc_io_slot_reset(struct pci_dev * pdev)15347 lpfc_io_slot_reset(struct pci_dev *pdev)
15348 {
15349 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15350 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15351 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15352
15353 switch (phba->pci_dev_grp) {
15354 case LPFC_PCI_DEV_LP:
15355 rc = lpfc_io_slot_reset_s3(pdev);
15356 break;
15357 case LPFC_PCI_DEV_OC:
15358 rc = lpfc_io_slot_reset_s4(pdev);
15359 break;
15360 default:
15361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15362 "1428 Invalid PCI device group: 0x%x\n",
15363 phba->pci_dev_grp);
15364 break;
15365 }
15366 return rc;
15367 }
15368
15369 /**
15370 * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15371 * @pdev: pointer to PCI device
15372 *
15373 * This routine is registered to the PCI subsystem for error handling. It
15374 * is called when kernel error recovery tells the lpfc driver that it is
15375 * OK to resume normal PCI operation after PCI bus error recovery. When
15376 * this routine is invoked, it dispatches the action to the proper SLI-3
15377 * or SLI-4 device io_resume routine, which will resume the device operation.
15378 **/
15379 static void
lpfc_io_resume(struct pci_dev * pdev)15380 lpfc_io_resume(struct pci_dev *pdev)
15381 {
15382 struct Scsi_Host *shost = pci_get_drvdata(pdev);
15383 struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15384
15385 switch (phba->pci_dev_grp) {
15386 case LPFC_PCI_DEV_LP:
15387 lpfc_io_resume_s3(pdev);
15388 break;
15389 case LPFC_PCI_DEV_OC:
15390 lpfc_io_resume_s4(pdev);
15391 break;
15392 default:
15393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15394 "1429 Invalid PCI device group: 0x%x\n",
15395 phba->pci_dev_grp);
15396 break;
15397 }
15398 return;
15399 }
15400
15401 /**
15402 * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15403 * @phba: pointer to lpfc hba data structure.
15404 *
15405 * This routine checks to see if OAS is supported for this adapter. If
15406 * supported, the configure Flash Optimized Fabric flag is set. Otherwise,
15407 * the enable oas flag is cleared and the pool created for OAS device data
15408 * is destroyed.
15409 *
15410 **/
15411 static void
lpfc_sli4_oas_verify(struct lpfc_hba * phba)15412 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15413 {
15414
15415 if (!phba->cfg_EnableXLane)
15416 return;
15417
15418 if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15419 phba->cfg_fof = 1;
15420 } else {
15421 phba->cfg_fof = 0;
15422 mempool_destroy(phba->device_data_mem_pool);
15423 phba->device_data_mem_pool = NULL;
15424 }
15425
15426 return;
15427 }
15428
15429 /**
15430 * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15431 * @phba: pointer to lpfc hba data structure.
15432 *
15433 * This routine checks to see if RAS is supported by the adapter. Check the
15434 * function through which RAS support enablement is to be done.
15435 **/
15436 void
lpfc_sli4_ras_init(struct lpfc_hba * phba)15437 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15438 {
15439 /* if ASIC_GEN_NUM >= 0xC) */
15440 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15441 LPFC_SLI_INTF_IF_TYPE_6) ||
15442 (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15443 LPFC_SLI_INTF_FAMILY_G6)) {
15444 phba->ras_fwlog.ras_hwsupport = true;
15445 if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15446 phba->cfg_ras_fwlog_buffsize)
15447 phba->ras_fwlog.ras_enabled = true;
15448 else
15449 phba->ras_fwlog.ras_enabled = false;
15450 } else {
15451 phba->ras_fwlog.ras_hwsupport = false;
15452 }
15453 }
15454
15455
15456 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15457
15458 static const struct pci_error_handlers lpfc_err_handler = {
15459 .error_detected = lpfc_io_error_detected,
15460 .slot_reset = lpfc_io_slot_reset,
15461 .resume = lpfc_io_resume,
15462 };
15463
15464 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15465 lpfc_pci_suspend_one,
15466 lpfc_pci_resume_one);
15467
15468 static struct pci_driver lpfc_driver = {
15469 .name = LPFC_DRIVER_NAME,
15470 .id_table = lpfc_id_table,
15471 .probe = lpfc_pci_probe_one,
15472 .remove = lpfc_pci_remove_one,
15473 .shutdown = lpfc_pci_remove_one,
15474 .driver.pm = &lpfc_pci_pm_ops_one,
15475 .err_handler = &lpfc_err_handler,
15476 };
15477
15478 static const struct file_operations lpfc_mgmt_fop = {
15479 .owner = THIS_MODULE,
15480 };
15481
15482 static struct miscdevice lpfc_mgmt_dev = {
15483 .minor = MISC_DYNAMIC_MINOR,
15484 .name = "lpfcmgmt",
15485 .fops = &lpfc_mgmt_fop,
15486 };
15487
15488 /**
15489 * lpfc_init - lpfc module initialization routine
15490 *
15491 * This routine is to be invoked when the lpfc module is loaded into the
15492 * kernel. The special kernel macro module_init() is used to indicate the
15493 * role of this routine to the kernel as lpfc module entry point.
15494 *
15495 * Return codes
15496 * 0 - successful
15497 * -ENOMEM - FC attach transport failed
15498 * all others - failed
15499 */
15500 static int __init
lpfc_init(void)15501 lpfc_init(void)
15502 {
15503 int error = 0;
15504
15505 pr_info(LPFC_MODULE_DESC "\n");
15506 pr_info(LPFC_COPYRIGHT "\n");
15507
15508 error = misc_register(&lpfc_mgmt_dev);
15509 if (error)
15510 printk(KERN_ERR "Could not register lpfcmgmt device, "
15511 "misc_register returned with status %d", error);
15512
15513 error = -ENOMEM;
15514 lpfc_transport_functions.vport_create = lpfc_vport_create;
15515 lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15516 lpfc_transport_template =
15517 fc_attach_transport(&lpfc_transport_functions);
15518 if (lpfc_transport_template == NULL)
15519 goto unregister;
15520 lpfc_vport_transport_template =
15521 fc_attach_transport(&lpfc_vport_transport_functions);
15522 if (lpfc_vport_transport_template == NULL) {
15523 fc_release_transport(lpfc_transport_template);
15524 goto unregister;
15525 }
15526 lpfc_wqe_cmd_template();
15527 lpfc_nvmet_cmd_template();
15528
15529 /* Initialize in case vector mapping is needed */
15530 lpfc_present_cpu = num_present_cpus();
15531
15532 error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15533 "lpfc/sli4:online",
15534 lpfc_cpu_online, lpfc_cpu_offline);
15535 if (error < 0)
15536 goto cpuhp_failure;
15537 lpfc_cpuhp_state = error;
15538
15539 error = pci_register_driver(&lpfc_driver);
15540 if (error)
15541 goto unwind;
15542
15543 return error;
15544
15545 unwind:
15546 cpuhp_remove_multi_state(lpfc_cpuhp_state);
15547 cpuhp_failure:
15548 fc_release_transport(lpfc_transport_template);
15549 fc_release_transport(lpfc_vport_transport_template);
15550 unregister:
15551 misc_deregister(&lpfc_mgmt_dev);
15552
15553 return error;
15554 }
15555
lpfc_dmp_dbg(struct lpfc_hba * phba)15556 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15557 {
15558 unsigned int start_idx;
15559 unsigned int dbg_cnt;
15560 unsigned int temp_idx;
15561 int i;
15562 int j = 0;
15563 unsigned long rem_nsec;
15564
15565 if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15566 return;
15567
15568 start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15569 dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15570 if (!dbg_cnt)
15571 goto out;
15572 temp_idx = start_idx;
15573 if (dbg_cnt >= DBG_LOG_SZ) {
15574 dbg_cnt = DBG_LOG_SZ;
15575 temp_idx -= 1;
15576 } else {
15577 if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15578 temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15579 } else {
15580 if (start_idx < dbg_cnt)
15581 start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15582 else
15583 start_idx -= dbg_cnt;
15584 }
15585 }
15586 dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15587 start_idx, temp_idx, dbg_cnt);
15588
15589 for (i = 0; i < dbg_cnt; i++) {
15590 if ((start_idx + i) < DBG_LOG_SZ)
15591 temp_idx = (start_idx + i) % DBG_LOG_SZ;
15592 else
15593 temp_idx = j++;
15594 rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15595 dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15596 temp_idx,
15597 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15598 rem_nsec / 1000,
15599 phba->dbg_log[temp_idx].log);
15600 }
15601 out:
15602 atomic_set(&phba->dbg_log_cnt, 0);
15603 atomic_set(&phba->dbg_log_dmping, 0);
15604 }
15605
15606 __printf(2, 3)
lpfc_dbg_print(struct lpfc_hba * phba,const char * fmt,...)15607 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15608 {
15609 unsigned int idx;
15610 va_list args;
15611 int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15612 struct va_format vaf;
15613
15614
15615 va_start(args, fmt);
15616 if (unlikely(dbg_dmping)) {
15617 vaf.fmt = fmt;
15618 vaf.va = &args;
15619 dev_info(&phba->pcidev->dev, "%pV", &vaf);
15620 va_end(args);
15621 return;
15622 }
15623 idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15624 DBG_LOG_SZ;
15625
15626 atomic_inc(&phba->dbg_log_cnt);
15627
15628 vscnprintf(phba->dbg_log[idx].log,
15629 sizeof(phba->dbg_log[idx].log), fmt, args);
15630 va_end(args);
15631
15632 phba->dbg_log[idx].t_ns = local_clock();
15633 }
15634
15635 /**
15636 * lpfc_exit - lpfc module removal routine
15637 *
15638 * This routine is invoked when the lpfc module is removed from the kernel.
15639 * The special kernel macro module_exit() is used to indicate the role of
15640 * this routine to the kernel as lpfc module exit point.
15641 */
15642 static void __exit
lpfc_exit(void)15643 lpfc_exit(void)
15644 {
15645 misc_deregister(&lpfc_mgmt_dev);
15646 pci_unregister_driver(&lpfc_driver);
15647 cpuhp_remove_multi_state(lpfc_cpuhp_state);
15648 fc_release_transport(lpfc_transport_template);
15649 fc_release_transport(lpfc_vport_transport_template);
15650 idr_destroy(&lpfc_hba_index);
15651 }
15652
15653 module_init(lpfc_init);
15654 module_exit(lpfc_exit);
15655 MODULE_LICENSE("GPL");
15656 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15657 MODULE_AUTHOR("Broadcom");
15658 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15659