• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/idr.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/kthread.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 #include <linux/ctype.h>
34 #include <linux/aer.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/miscdevice.h>
38 #include <linux/percpu.h>
39 #include <linux/msi.h>
40 #include <linux/irq.h>
41 #include <linux/bitops.h>
42 #include <linux/crash_dump.h>
43 #include <linux/cpu.h>
44 #include <linux/cpuhotplug.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_transport_fc.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/fc/fc_fs.h>
52 
53 #include "lpfc_hw4.h"
54 #include "lpfc_hw.h"
55 #include "lpfc_sli.h"
56 #include "lpfc_sli4.h"
57 #include "lpfc_nl.h"
58 #include "lpfc_disc.h"
59 #include "lpfc.h"
60 #include "lpfc_scsi.h"
61 #include "lpfc_nvme.h"
62 #include "lpfc_logmsg.h"
63 #include "lpfc_crtn.h"
64 #include "lpfc_vport.h"
65 #include "lpfc_version.h"
66 #include "lpfc_ids.h"
67 
68 static enum cpuhp_state lpfc_cpuhp_state;
69 /* Used when mapping IRQ vectors in a driver centric manner */
70 static uint32_t lpfc_present_cpu;
71 
72 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba);
73 static void lpfc_cpuhp_remove(struct lpfc_hba *phba);
74 static void lpfc_cpuhp_add(struct lpfc_hba *phba);
75 static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
76 static int lpfc_post_rcv_buf(struct lpfc_hba *);
77 static int lpfc_sli4_queue_verify(struct lpfc_hba *);
78 static int lpfc_create_bootstrap_mbox(struct lpfc_hba *);
79 static int lpfc_setup_endian_order(struct lpfc_hba *);
80 static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *);
81 static void lpfc_free_els_sgl_list(struct lpfc_hba *);
82 static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *);
83 static void lpfc_init_sgl_list(struct lpfc_hba *);
84 static int lpfc_init_active_sgl_array(struct lpfc_hba *);
85 static void lpfc_free_active_sgl(struct lpfc_hba *);
86 static int lpfc_hba_down_post_s3(struct lpfc_hba *phba);
87 static int lpfc_hba_down_post_s4(struct lpfc_hba *phba);
88 static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *);
89 static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *);
90 static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *);
91 static void lpfc_sli4_disable_intr(struct lpfc_hba *);
92 static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t);
93 static void lpfc_sli4_oas_verify(struct lpfc_hba *phba);
94 static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int);
95 static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *);
96 static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *);
97 
98 static struct scsi_transport_template *lpfc_transport_template = NULL;
99 static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
100 static DEFINE_IDR(lpfc_hba_index);
101 #define LPFC_NVMET_BUF_POST 254
102 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport);
103 
104 /**
105  * lpfc_config_port_prep - Perform lpfc initialization prior to config port
106  * @phba: pointer to lpfc hba data structure.
107  *
108  * This routine will do LPFC initialization prior to issuing the CONFIG_PORT
109  * mailbox command. It retrieves the revision information from the HBA and
110  * collects the Vital Product Data (VPD) about the HBA for preparing the
111  * configuration of the HBA.
112  *
113  * Return codes:
114  *   0 - success.
115  *   -ERESTART - requests the SLI layer to reset the HBA and try again.
116  *   Any other value - indicates an error.
117  **/
118 int
lpfc_config_port_prep(struct lpfc_hba * phba)119 lpfc_config_port_prep(struct lpfc_hba *phba)
120 {
121 	lpfc_vpd_t *vp = &phba->vpd;
122 	int i = 0, rc;
123 	LPFC_MBOXQ_t *pmb;
124 	MAILBOX_t *mb;
125 	char *lpfc_vpd_data = NULL;
126 	uint16_t offset = 0;
127 	static char licensed[56] =
128 		    "key unlock for use with gnu public licensed code only\0";
129 	static int init_key = 1;
130 
131 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
132 	if (!pmb) {
133 		phba->link_state = LPFC_HBA_ERROR;
134 		return -ENOMEM;
135 	}
136 
137 	mb = &pmb->u.mb;
138 	phba->link_state = LPFC_INIT_MBX_CMDS;
139 
140 	if (lpfc_is_LC_HBA(phba->pcidev->device)) {
141 		if (init_key) {
142 			uint32_t *ptext = (uint32_t *) licensed;
143 
144 			for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
145 				*ptext = cpu_to_be32(*ptext);
146 			init_key = 0;
147 		}
148 
149 		lpfc_read_nv(phba, pmb);
150 		memset((char*)mb->un.varRDnvp.rsvd3, 0,
151 			sizeof (mb->un.varRDnvp.rsvd3));
152 		memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
153 			 sizeof (licensed));
154 
155 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
156 
157 		if (rc != MBX_SUCCESS) {
158 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
159 					"0324 Config Port initialization "
160 					"error, mbxCmd x%x READ_NVPARM, "
161 					"mbxStatus x%x\n",
162 					mb->mbxCommand, mb->mbxStatus);
163 			mempool_free(pmb, phba->mbox_mem_pool);
164 			return -ERESTART;
165 		}
166 		memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
167 		       sizeof(phba->wwnn));
168 		memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
169 		       sizeof(phba->wwpn));
170 	}
171 
172 	/*
173 	 * Clear all option bits except LPFC_SLI3_BG_ENABLED,
174 	 * which was already set in lpfc_get_cfgparam()
175 	 */
176 	phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED;
177 
178 	/* Setup and issue mailbox READ REV command */
179 	lpfc_read_rev(phba, pmb);
180 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
181 	if (rc != MBX_SUCCESS) {
182 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
183 				"0439 Adapter failed to init, mbxCmd x%x "
184 				"READ_REV, mbxStatus x%x\n",
185 				mb->mbxCommand, mb->mbxStatus);
186 		mempool_free( pmb, phba->mbox_mem_pool);
187 		return -ERESTART;
188 	}
189 
190 
191 	/*
192 	 * The value of rr must be 1 since the driver set the cv field to 1.
193 	 * This setting requires the FW to set all revision fields.
194 	 */
195 	if (mb->un.varRdRev.rr == 0) {
196 		vp->rev.rBit = 0;
197 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
198 				"0440 Adapter failed to init, READ_REV has "
199 				"missing revision information.\n");
200 		mempool_free(pmb, phba->mbox_mem_pool);
201 		return -ERESTART;
202 	}
203 
204 	if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
205 		mempool_free(pmb, phba->mbox_mem_pool);
206 		return -EINVAL;
207 	}
208 
209 	/* Save information as VPD data */
210 	vp->rev.rBit = 1;
211 	memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
212 	vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
213 	memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
214 	vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
215 	memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
216 	vp->rev.biuRev = mb->un.varRdRev.biuRev;
217 	vp->rev.smRev = mb->un.varRdRev.smRev;
218 	vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
219 	vp->rev.endecRev = mb->un.varRdRev.endecRev;
220 	vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
221 	vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
222 	vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
223 	vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
224 	vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
225 	vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
226 
227 	/* If the sli feature level is less then 9, we must
228 	 * tear down all RPIs and VPIs on link down if NPIV
229 	 * is enabled.
230 	 */
231 	if (vp->rev.feaLevelHigh < 9)
232 		phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
233 
234 	if (lpfc_is_LC_HBA(phba->pcidev->device))
235 		memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
236 						sizeof (phba->RandomData));
237 
238 	/* Get adapter VPD information */
239 	lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
240 	if (!lpfc_vpd_data)
241 		goto out_free_mbox;
242 	do {
243 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD);
244 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
245 
246 		if (rc != MBX_SUCCESS) {
247 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
248 					"0441 VPD not present on adapter, "
249 					"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
250 					mb->mbxCommand, mb->mbxStatus);
251 			mb->un.varDmp.word_cnt = 0;
252 		}
253 		/* dump mem may return a zero when finished or we got a
254 		 * mailbox error, either way we are done.
255 		 */
256 		if (mb->un.varDmp.word_cnt == 0)
257 			break;
258 
259 		if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
260 			mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
261 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
262 				      lpfc_vpd_data + offset,
263 				      mb->un.varDmp.word_cnt);
264 		offset += mb->un.varDmp.word_cnt;
265 	} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
266 
267 	lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
268 
269 	kfree(lpfc_vpd_data);
270 out_free_mbox:
271 	mempool_free(pmb, phba->mbox_mem_pool);
272 	return 0;
273 }
274 
275 /**
276  * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
277  * @phba: pointer to lpfc hba data structure.
278  * @pmboxq: pointer to the driver internal queue element for mailbox command.
279  *
280  * This is the completion handler for driver's configuring asynchronous event
281  * mailbox command to the device. If the mailbox command returns successfully,
282  * it will set internal async event support flag to 1; otherwise, it will
283  * set internal async event support flag to 0.
284  **/
285 static void
lpfc_config_async_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)286 lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
287 {
288 	if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS)
289 		phba->temp_sensor_support = 1;
290 	else
291 		phba->temp_sensor_support = 0;
292 	mempool_free(pmboxq, phba->mbox_mem_pool);
293 	return;
294 }
295 
296 /**
297  * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
298  * @phba: pointer to lpfc hba data structure.
299  * @pmboxq: pointer to the driver internal queue element for mailbox command.
300  *
301  * This is the completion handler for dump mailbox command for getting
302  * wake up parameters. When this command complete, the response contain
303  * Option rom version of the HBA. This function translate the version number
304  * into a human readable string and store it in OptionROMVersion.
305  **/
306 static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)307 lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
308 {
309 	struct prog_id *prg;
310 	uint32_t prog_id_word;
311 	char dist = ' ';
312 	/* character array used for decoding dist type. */
313 	char dist_char[] = "nabx";
314 
315 	if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) {
316 		mempool_free(pmboxq, phba->mbox_mem_pool);
317 		return;
318 	}
319 
320 	prg = (struct prog_id *) &prog_id_word;
321 
322 	/* word 7 contain option rom version */
323 	prog_id_word = pmboxq->u.mb.un.varWords[7];
324 
325 	/* Decode the Option rom version word to a readable string */
326 	if (prg->dist < 4)
327 		dist = dist_char[prg->dist];
328 
329 	if ((prg->dist == 3) && (prg->num == 0))
330 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d",
331 			prg->ver, prg->rev, prg->lev);
332 	else
333 		snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d",
334 			prg->ver, prg->rev, prg->lev,
335 			dist, prg->num);
336 	mempool_free(pmboxq, phba->mbox_mem_pool);
337 	return;
338 }
339 
340 /**
341  * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname,
342  *	cfg_soft_wwnn, cfg_soft_wwpn
343  * @vport: pointer to lpfc vport data structure.
344  *
345  *
346  * Return codes
347  *   None.
348  **/
349 void
lpfc_update_vport_wwn(struct lpfc_vport * vport)350 lpfc_update_vport_wwn(struct lpfc_vport *vport)
351 {
352 	uint8_t vvvl = vport->fc_sparam.cmn.valid_vendor_ver_level;
353 	u32 *fawwpn_key = (u32 *)&vport->fc_sparam.un.vendorVersion[0];
354 
355 	/* If the soft name exists then update it using the service params */
356 	if (vport->phba->cfg_soft_wwnn)
357 		u64_to_wwn(vport->phba->cfg_soft_wwnn,
358 			   vport->fc_sparam.nodeName.u.wwn);
359 	if (vport->phba->cfg_soft_wwpn)
360 		u64_to_wwn(vport->phba->cfg_soft_wwpn,
361 			   vport->fc_sparam.portName.u.wwn);
362 
363 	/*
364 	 * If the name is empty or there exists a soft name
365 	 * then copy the service params name, otherwise use the fc name
366 	 */
367 	if (vport->fc_nodename.u.wwn[0] == 0 || vport->phba->cfg_soft_wwnn)
368 		memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
369 			sizeof(struct lpfc_name));
370 	else
371 		memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename,
372 			sizeof(struct lpfc_name));
373 
374 	/*
375 	 * If the port name has changed, then set the Param changes flag
376 	 * to unreg the login
377 	 */
378 	if (vport->fc_portname.u.wwn[0] != 0 &&
379 		memcmp(&vport->fc_portname, &vport->fc_sparam.portName,
380 			sizeof(struct lpfc_name)))
381 		vport->vport_flag |= FAWWPN_PARAM_CHG;
382 
383 	if (vport->fc_portname.u.wwn[0] == 0 ||
384 	    vport->phba->cfg_soft_wwpn ||
385 	    (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR) ||
386 	    vport->vport_flag & FAWWPN_SET) {
387 		memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
388 			sizeof(struct lpfc_name));
389 		vport->vport_flag &= ~FAWWPN_SET;
390 		if (vvvl == 1 && cpu_to_be32(*fawwpn_key) == FAPWWN_KEY_VENDOR)
391 			vport->vport_flag |= FAWWPN_SET;
392 	}
393 	else
394 		memcpy(&vport->fc_sparam.portName, &vport->fc_portname,
395 			sizeof(struct lpfc_name));
396 }
397 
398 /**
399  * lpfc_config_port_post - Perform lpfc initialization after config port
400  * @phba: pointer to lpfc hba data structure.
401  *
402  * This routine will do LPFC initialization after the CONFIG_PORT mailbox
403  * command call. It performs all internal resource and state setups on the
404  * port: post IOCB buffers, enable appropriate host interrupt attentions,
405  * ELS ring timers, etc.
406  *
407  * Return codes
408  *   0 - success.
409  *   Any other value - error.
410  **/
411 int
lpfc_config_port_post(struct lpfc_hba * phba)412 lpfc_config_port_post(struct lpfc_hba *phba)
413 {
414 	struct lpfc_vport *vport = phba->pport;
415 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
416 	LPFC_MBOXQ_t *pmb;
417 	MAILBOX_t *mb;
418 	struct lpfc_dmabuf *mp;
419 	struct lpfc_sli *psli = &phba->sli;
420 	uint32_t status, timeout;
421 	int i, j;
422 	int rc;
423 
424 	spin_lock_irq(&phba->hbalock);
425 	/*
426 	 * If the Config port completed correctly the HBA is not
427 	 * over heated any more.
428 	 */
429 	if (phba->over_temp_state == HBA_OVER_TEMP)
430 		phba->over_temp_state = HBA_NORMAL_TEMP;
431 	spin_unlock_irq(&phba->hbalock);
432 
433 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
434 	if (!pmb) {
435 		phba->link_state = LPFC_HBA_ERROR;
436 		return -ENOMEM;
437 	}
438 	mb = &pmb->u.mb;
439 
440 	/* Get login parameters for NID.  */
441 	rc = lpfc_read_sparam(phba, pmb, 0);
442 	if (rc) {
443 		mempool_free(pmb, phba->mbox_mem_pool);
444 		return -ENOMEM;
445 	}
446 
447 	pmb->vport = vport;
448 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
449 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
450 				"0448 Adapter failed init, mbxCmd x%x "
451 				"READ_SPARM mbxStatus x%x\n",
452 				mb->mbxCommand, mb->mbxStatus);
453 		phba->link_state = LPFC_HBA_ERROR;
454 		mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
455 		mempool_free(pmb, phba->mbox_mem_pool);
456 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
457 		kfree(mp);
458 		return -EIO;
459 	}
460 
461 	mp = (struct lpfc_dmabuf *)pmb->ctx_buf;
462 
463 	memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
464 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
465 	kfree(mp);
466 	pmb->ctx_buf = NULL;
467 	lpfc_update_vport_wwn(vport);
468 
469 	/* Update the fc_host data structures with new wwn. */
470 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
471 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
472 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
473 
474 	/* If no serial number in VPD data, use low 6 bytes of WWNN */
475 	/* This should be consolidated into parse_vpd ? - mr */
476 	if (phba->SerialNumber[0] == 0) {
477 		uint8_t *outptr;
478 
479 		outptr = &vport->fc_nodename.u.s.IEEE[0];
480 		for (i = 0; i < 12; i++) {
481 			status = *outptr++;
482 			j = ((status & 0xf0) >> 4);
483 			if (j <= 9)
484 				phba->SerialNumber[i] =
485 				    (char)((uint8_t) 0x30 + (uint8_t) j);
486 			else
487 				phba->SerialNumber[i] =
488 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
489 			i++;
490 			j = (status & 0xf);
491 			if (j <= 9)
492 				phba->SerialNumber[i] =
493 				    (char)((uint8_t) 0x30 + (uint8_t) j);
494 			else
495 				phba->SerialNumber[i] =
496 				    (char)((uint8_t) 0x61 + (uint8_t) (j - 10));
497 		}
498 	}
499 
500 	lpfc_read_config(phba, pmb);
501 	pmb->vport = vport;
502 	if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
503 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
504 				"0453 Adapter failed to init, mbxCmd x%x "
505 				"READ_CONFIG, mbxStatus x%x\n",
506 				mb->mbxCommand, mb->mbxStatus);
507 		phba->link_state = LPFC_HBA_ERROR;
508 		mempool_free( pmb, phba->mbox_mem_pool);
509 		return -EIO;
510 	}
511 
512 	/* Check if the port is disabled */
513 	lpfc_sli_read_link_ste(phba);
514 
515 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
516 	if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) {
517 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
518 				"3359 HBA queue depth changed from %d to %d\n",
519 				phba->cfg_hba_queue_depth,
520 				mb->un.varRdConfig.max_xri);
521 		phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri;
522 	}
523 
524 	phba->lmt = mb->un.varRdConfig.lmt;
525 
526 	/* Get the default values for Model Name and Description */
527 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
528 
529 	phba->link_state = LPFC_LINK_DOWN;
530 
531 	/* Only process IOCBs on ELS ring till hba_state is READY */
532 	if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr)
533 		psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT;
534 	if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr)
535 		psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT;
536 
537 	/* Post receive buffers for desired rings */
538 	if (phba->sli_rev != 3)
539 		lpfc_post_rcv_buf(phba);
540 
541 	/*
542 	 * Configure HBA MSI-X attention conditions to messages if MSI-X mode
543 	 */
544 	if (phba->intr_type == MSIX) {
545 		rc = lpfc_config_msi(phba, pmb);
546 		if (rc) {
547 			mempool_free(pmb, phba->mbox_mem_pool);
548 			return -EIO;
549 		}
550 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
551 		if (rc != MBX_SUCCESS) {
552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
553 					"0352 Config MSI mailbox command "
554 					"failed, mbxCmd x%x, mbxStatus x%x\n",
555 					pmb->u.mb.mbxCommand,
556 					pmb->u.mb.mbxStatus);
557 			mempool_free(pmb, phba->mbox_mem_pool);
558 			return -EIO;
559 		}
560 	}
561 
562 	spin_lock_irq(&phba->hbalock);
563 	/* Initialize ERATT handling flag */
564 	phba->hba_flag &= ~HBA_ERATT_HANDLED;
565 
566 	/* Enable appropriate host interrupts */
567 	if (lpfc_readl(phba->HCregaddr, &status)) {
568 		spin_unlock_irq(&phba->hbalock);
569 		return -EIO;
570 	}
571 	status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
572 	if (psli->num_rings > 0)
573 		status |= HC_R0INT_ENA;
574 	if (psli->num_rings > 1)
575 		status |= HC_R1INT_ENA;
576 	if (psli->num_rings > 2)
577 		status |= HC_R2INT_ENA;
578 	if (psli->num_rings > 3)
579 		status |= HC_R3INT_ENA;
580 
581 	if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
582 	    (phba->cfg_poll & DISABLE_FCP_RING_INT))
583 		status &= ~(HC_R0INT_ENA);
584 
585 	writel(status, phba->HCregaddr);
586 	readl(phba->HCregaddr); /* flush */
587 	spin_unlock_irq(&phba->hbalock);
588 
589 	/* Set up ring-0 (ELS) timer */
590 	timeout = phba->fc_ratov * 2;
591 	mod_timer(&vport->els_tmofunc,
592 		  jiffies + msecs_to_jiffies(1000 * timeout));
593 	/* Set up heart beat (HB) timer */
594 	mod_timer(&phba->hb_tmofunc,
595 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
596 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
597 	phba->last_completion_time = jiffies;
598 	/* Set up error attention (ERATT) polling timer */
599 	mod_timer(&phba->eratt_poll,
600 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
601 
602 	if (phba->hba_flag & LINK_DISABLED) {
603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
604 				"2598 Adapter Link is disabled.\n");
605 		lpfc_down_link(phba, pmb);
606 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
607 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
608 		if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
609 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
610 					"2599 Adapter failed to issue DOWN_LINK"
611 					" mbox command rc 0x%x\n", rc);
612 
613 			mempool_free(pmb, phba->mbox_mem_pool);
614 			return -EIO;
615 		}
616 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
617 		mempool_free(pmb, phba->mbox_mem_pool);
618 		rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
619 		if (rc)
620 			return rc;
621 	}
622 	/* MBOX buffer will be freed in mbox compl */
623 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
624 	if (!pmb) {
625 		phba->link_state = LPFC_HBA_ERROR;
626 		return -ENOMEM;
627 	}
628 
629 	lpfc_config_async(phba, pmb, LPFC_ELS_RING);
630 	pmb->mbox_cmpl = lpfc_config_async_cmpl;
631 	pmb->vport = phba->pport;
632 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
633 
634 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
635 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
636 				"0456 Adapter failed to issue "
637 				"ASYNCEVT_ENABLE mbox status x%x\n",
638 				rc);
639 		mempool_free(pmb, phba->mbox_mem_pool);
640 	}
641 
642 	/* Get Option rom version */
643 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
644 	if (!pmb) {
645 		phba->link_state = LPFC_HBA_ERROR;
646 		return -ENOMEM;
647 	}
648 
649 	lpfc_dump_wakeup_param(phba, pmb);
650 	pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
651 	pmb->vport = phba->pport;
652 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
653 
654 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
655 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
656 				"0435 Adapter failed "
657 				"to get Option ROM version status x%x\n", rc);
658 		mempool_free(pmb, phba->mbox_mem_pool);
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * lpfc_hba_init_link - Initialize the FC link
666  * @phba: pointer to lpfc hba data structure.
667  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
668  *
669  * This routine will issue the INIT_LINK mailbox command call.
670  * It is available to other drivers through the lpfc_hba data
671  * structure for use as a delayed link up mechanism with the
672  * module parameter lpfc_suppress_link_up.
673  *
674  * Return code
675  *		0 - success
676  *		Any other value - error
677  **/
678 static int
lpfc_hba_init_link(struct lpfc_hba * phba,uint32_t flag)679 lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag)
680 {
681 	return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag);
682 }
683 
684 /**
685  * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology
686  * @phba: pointer to lpfc hba data structure.
687  * @fc_topology: desired fc topology.
688  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
689  *
690  * This routine will issue the INIT_LINK mailbox command call.
691  * It is available to other drivers through the lpfc_hba data
692  * structure for use as a delayed link up mechanism with the
693  * module parameter lpfc_suppress_link_up.
694  *
695  * Return code
696  *              0 - success
697  *              Any other value - error
698  **/
699 int
lpfc_hba_init_link_fc_topology(struct lpfc_hba * phba,uint32_t fc_topology,uint32_t flag)700 lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology,
701 			       uint32_t flag)
702 {
703 	struct lpfc_vport *vport = phba->pport;
704 	LPFC_MBOXQ_t *pmb;
705 	MAILBOX_t *mb;
706 	int rc;
707 
708 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
709 	if (!pmb) {
710 		phba->link_state = LPFC_HBA_ERROR;
711 		return -ENOMEM;
712 	}
713 	mb = &pmb->u.mb;
714 	pmb->vport = vport;
715 
716 	if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) ||
717 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) &&
718 	     !(phba->lmt & LMT_1Gb)) ||
719 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) &&
720 	     !(phba->lmt & LMT_2Gb)) ||
721 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) &&
722 	     !(phba->lmt & LMT_4Gb)) ||
723 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) &&
724 	     !(phba->lmt & LMT_8Gb)) ||
725 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) &&
726 	     !(phba->lmt & LMT_10Gb)) ||
727 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) &&
728 	     !(phba->lmt & LMT_16Gb)) ||
729 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) &&
730 	     !(phba->lmt & LMT_32Gb)) ||
731 	    ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) &&
732 	     !(phba->lmt & LMT_64Gb))) {
733 		/* Reset link speed to auto */
734 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
735 				"1302 Invalid speed for this board:%d "
736 				"Reset link speed to auto.\n",
737 				phba->cfg_link_speed);
738 			phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO;
739 	}
740 	lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed);
741 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
742 	if (phba->sli_rev < LPFC_SLI_REV4)
743 		lpfc_set_loopback_flag(phba);
744 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
745 	if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
746 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
747 				"0498 Adapter failed to init, mbxCmd x%x "
748 				"INIT_LINK, mbxStatus x%x\n",
749 				mb->mbxCommand, mb->mbxStatus);
750 		if (phba->sli_rev <= LPFC_SLI_REV3) {
751 			/* Clear all interrupt enable conditions */
752 			writel(0, phba->HCregaddr);
753 			readl(phba->HCregaddr); /* flush */
754 			/* Clear all pending interrupts */
755 			writel(0xffffffff, phba->HAregaddr);
756 			readl(phba->HAregaddr); /* flush */
757 		}
758 		phba->link_state = LPFC_HBA_ERROR;
759 		if (rc != MBX_BUSY || flag == MBX_POLL)
760 			mempool_free(pmb, phba->mbox_mem_pool);
761 		return -EIO;
762 	}
763 	phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK;
764 	if (flag == MBX_POLL)
765 		mempool_free(pmb, phba->mbox_mem_pool);
766 
767 	return 0;
768 }
769 
770 /**
771  * lpfc_hba_down_link - this routine downs the FC link
772  * @phba: pointer to lpfc hba data structure.
773  * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT
774  *
775  * This routine will issue the DOWN_LINK mailbox command call.
776  * It is available to other drivers through the lpfc_hba data
777  * structure for use to stop the link.
778  *
779  * Return code
780  *		0 - success
781  *		Any other value - error
782  **/
783 static int
lpfc_hba_down_link(struct lpfc_hba * phba,uint32_t flag)784 lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag)
785 {
786 	LPFC_MBOXQ_t *pmb;
787 	int rc;
788 
789 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
790 	if (!pmb) {
791 		phba->link_state = LPFC_HBA_ERROR;
792 		return -ENOMEM;
793 	}
794 
795 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
796 			"0491 Adapter Link is disabled.\n");
797 	lpfc_down_link(phba, pmb);
798 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
799 	rc = lpfc_sli_issue_mbox(phba, pmb, flag);
800 	if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) {
801 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
802 				"2522 Adapter failed to issue DOWN_LINK"
803 				" mbox command rc 0x%x\n", rc);
804 
805 		mempool_free(pmb, phba->mbox_mem_pool);
806 		return -EIO;
807 	}
808 	if (flag == MBX_POLL)
809 		mempool_free(pmb, phba->mbox_mem_pool);
810 
811 	return 0;
812 }
813 
814 /**
815  * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
816  * @phba: pointer to lpfc HBA data structure.
817  *
818  * This routine will do LPFC uninitialization before the HBA is reset when
819  * bringing down the SLI Layer.
820  *
821  * Return codes
822  *   0 - success.
823  *   Any other value - error.
824  **/
825 int
lpfc_hba_down_prep(struct lpfc_hba * phba)826 lpfc_hba_down_prep(struct lpfc_hba *phba)
827 {
828 	struct lpfc_vport **vports;
829 	int i;
830 
831 	if (phba->sli_rev <= LPFC_SLI_REV3) {
832 		/* Disable interrupts */
833 		writel(0, phba->HCregaddr);
834 		readl(phba->HCregaddr); /* flush */
835 	}
836 
837 	if (phba->pport->load_flag & FC_UNLOADING)
838 		lpfc_cleanup_discovery_resources(phba->pport);
839 	else {
840 		vports = lpfc_create_vport_work_array(phba);
841 		if (vports != NULL)
842 			for (i = 0; i <= phba->max_vports &&
843 				vports[i] != NULL; i++)
844 				lpfc_cleanup_discovery_resources(vports[i]);
845 		lpfc_destroy_vport_work_array(phba, vports);
846 	}
847 	return 0;
848 }
849 
850 /**
851  * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free
852  * rspiocb which got deferred
853  *
854  * @phba: pointer to lpfc HBA data structure.
855  *
856  * This routine will cleanup completed slow path events after HBA is reset
857  * when bringing down the SLI Layer.
858  *
859  *
860  * Return codes
861  *   void.
862  **/
863 static void
lpfc_sli4_free_sp_events(struct lpfc_hba * phba)864 lpfc_sli4_free_sp_events(struct lpfc_hba *phba)
865 {
866 	struct lpfc_iocbq *rspiocbq;
867 	struct hbq_dmabuf *dmabuf;
868 	struct lpfc_cq_event *cq_event;
869 
870 	spin_lock_irq(&phba->hbalock);
871 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
872 	spin_unlock_irq(&phba->hbalock);
873 
874 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
875 		/* Get the response iocb from the head of work queue */
876 		spin_lock_irq(&phba->hbalock);
877 		list_remove_head(&phba->sli4_hba.sp_queue_event,
878 				 cq_event, struct lpfc_cq_event, list);
879 		spin_unlock_irq(&phba->hbalock);
880 
881 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
882 		case CQE_CODE_COMPL_WQE:
883 			rspiocbq = container_of(cq_event, struct lpfc_iocbq,
884 						 cq_event);
885 			lpfc_sli_release_iocbq(phba, rspiocbq);
886 			break;
887 		case CQE_CODE_RECEIVE:
888 		case CQE_CODE_RECEIVE_V1:
889 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
890 					      cq_event);
891 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
892 		}
893 	}
894 }
895 
896 /**
897  * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset
898  * @phba: pointer to lpfc HBA data structure.
899  *
900  * This routine will cleanup posted ELS buffers after the HBA is reset
901  * when bringing down the SLI Layer.
902  *
903  *
904  * Return codes
905  *   void.
906  **/
907 static void
lpfc_hba_free_post_buf(struct lpfc_hba * phba)908 lpfc_hba_free_post_buf(struct lpfc_hba *phba)
909 {
910 	struct lpfc_sli *psli = &phba->sli;
911 	struct lpfc_sli_ring *pring;
912 	struct lpfc_dmabuf *mp, *next_mp;
913 	LIST_HEAD(buflist);
914 	int count;
915 
916 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
917 		lpfc_sli_hbqbuf_free_all(phba);
918 	else {
919 		/* Cleanup preposted buffers on the ELS ring */
920 		pring = &psli->sli3_ring[LPFC_ELS_RING];
921 		spin_lock_irq(&phba->hbalock);
922 		list_splice_init(&pring->postbufq, &buflist);
923 		spin_unlock_irq(&phba->hbalock);
924 
925 		count = 0;
926 		list_for_each_entry_safe(mp, next_mp, &buflist, list) {
927 			list_del(&mp->list);
928 			count++;
929 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
930 			kfree(mp);
931 		}
932 
933 		spin_lock_irq(&phba->hbalock);
934 		pring->postbufq_cnt -= count;
935 		spin_unlock_irq(&phba->hbalock);
936 	}
937 }
938 
939 /**
940  * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset
941  * @phba: pointer to lpfc HBA data structure.
942  *
943  * This routine will cleanup the txcmplq after the HBA is reset when bringing
944  * down the SLI Layer.
945  *
946  * Return codes
947  *   void
948  **/
949 static void
lpfc_hba_clean_txcmplq(struct lpfc_hba * phba)950 lpfc_hba_clean_txcmplq(struct lpfc_hba *phba)
951 {
952 	struct lpfc_sli *psli = &phba->sli;
953 	struct lpfc_queue *qp = NULL;
954 	struct lpfc_sli_ring *pring;
955 	LIST_HEAD(completions);
956 	int i;
957 	struct lpfc_iocbq *piocb, *next_iocb;
958 
959 	if (phba->sli_rev != LPFC_SLI_REV4) {
960 		for (i = 0; i < psli->num_rings; i++) {
961 			pring = &psli->sli3_ring[i];
962 			spin_lock_irq(&phba->hbalock);
963 			/* At this point in time the HBA is either reset or DOA
964 			 * Nothing should be on txcmplq as it will
965 			 * NEVER complete.
966 			 */
967 			list_splice_init(&pring->txcmplq, &completions);
968 			pring->txcmplq_cnt = 0;
969 			spin_unlock_irq(&phba->hbalock);
970 
971 			lpfc_sli_abort_iocb_ring(phba, pring);
972 		}
973 		/* Cancel all the IOCBs from the completions list */
974 		lpfc_sli_cancel_iocbs(phba, &completions,
975 				      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
976 		return;
977 	}
978 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
979 		pring = qp->pring;
980 		if (!pring)
981 			continue;
982 		spin_lock_irq(&pring->ring_lock);
983 		list_for_each_entry_safe(piocb, next_iocb,
984 					 &pring->txcmplq, list)
985 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
986 		list_splice_init(&pring->txcmplq, &completions);
987 		pring->txcmplq_cnt = 0;
988 		spin_unlock_irq(&pring->ring_lock);
989 		lpfc_sli_abort_iocb_ring(phba, pring);
990 	}
991 	/* Cancel all the IOCBs from the completions list */
992 	lpfc_sli_cancel_iocbs(phba, &completions,
993 			      IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED);
994 }
995 
996 /**
997  * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset
998  * @phba: pointer to lpfc HBA data structure.
999  *
1000  * This routine will do uninitialization after the HBA is reset when bring
1001  * down the SLI Layer.
1002  *
1003  * Return codes
1004  *   0 - success.
1005  *   Any other value - error.
1006  **/
1007 static int
lpfc_hba_down_post_s3(struct lpfc_hba * phba)1008 lpfc_hba_down_post_s3(struct lpfc_hba *phba)
1009 {
1010 	lpfc_hba_free_post_buf(phba);
1011 	lpfc_hba_clean_txcmplq(phba);
1012 	return 0;
1013 }
1014 
1015 /**
1016  * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset
1017  * @phba: pointer to lpfc HBA data structure.
1018  *
1019  * This routine will do uninitialization after the HBA is reset when bring
1020  * down the SLI Layer.
1021  *
1022  * Return codes
1023  *   0 - success.
1024  *   Any other value - error.
1025  **/
1026 static int
lpfc_hba_down_post_s4(struct lpfc_hba * phba)1027 lpfc_hba_down_post_s4(struct lpfc_hba *phba)
1028 {
1029 	struct lpfc_io_buf *psb, *psb_next;
1030 	struct lpfc_async_xchg_ctx *ctxp, *ctxp_next;
1031 	struct lpfc_sli4_hdw_queue *qp;
1032 	LIST_HEAD(aborts);
1033 	LIST_HEAD(nvme_aborts);
1034 	LIST_HEAD(nvmet_aborts);
1035 	struct lpfc_sglq *sglq_entry = NULL;
1036 	int cnt, idx;
1037 
1038 
1039 	lpfc_sli_hbqbuf_free_all(phba);
1040 	lpfc_hba_clean_txcmplq(phba);
1041 
1042 	/* At this point in time the HBA is either reset or DOA. Either
1043 	 * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be
1044 	 * on the lpfc_els_sgl_list so that it can either be freed if the
1045 	 * driver is unloading or reposted if the driver is restarting
1046 	 * the port.
1047 	 */
1048 
1049 	/* sgl_list_lock required because worker thread uses this
1050 	 * list.
1051 	 */
1052 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
1053 	list_for_each_entry(sglq_entry,
1054 		&phba->sli4_hba.lpfc_abts_els_sgl_list, list)
1055 		sglq_entry->state = SGL_FREED;
1056 
1057 	list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list,
1058 			&phba->sli4_hba.lpfc_els_sgl_list);
1059 
1060 
1061 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
1062 
1063 	/* abts_xxxx_buf_list_lock required because worker thread uses this
1064 	 * list.
1065 	 */
1066 	spin_lock_irq(&phba->hbalock);
1067 	cnt = 0;
1068 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
1069 		qp = &phba->sli4_hba.hdwq[idx];
1070 
1071 		spin_lock(&qp->abts_io_buf_list_lock);
1072 		list_splice_init(&qp->lpfc_abts_io_buf_list,
1073 				 &aborts);
1074 
1075 		list_for_each_entry_safe(psb, psb_next, &aborts, list) {
1076 			psb->pCmd = NULL;
1077 			psb->status = IOSTAT_SUCCESS;
1078 			cnt++;
1079 		}
1080 		spin_lock(&qp->io_buf_list_put_lock);
1081 		list_splice_init(&aborts, &qp->lpfc_io_buf_list_put);
1082 		qp->put_io_bufs += qp->abts_scsi_io_bufs;
1083 		qp->put_io_bufs += qp->abts_nvme_io_bufs;
1084 		qp->abts_scsi_io_bufs = 0;
1085 		qp->abts_nvme_io_bufs = 0;
1086 		spin_unlock(&qp->io_buf_list_put_lock);
1087 		spin_unlock(&qp->abts_io_buf_list_lock);
1088 	}
1089 	spin_unlock_irq(&phba->hbalock);
1090 
1091 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
1092 		spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1093 		list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1094 				 &nvmet_aborts);
1095 		spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1096 		list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) {
1097 			ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP);
1098 			lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1099 		}
1100 	}
1101 
1102 	lpfc_sli4_free_sp_events(phba);
1103 	return cnt;
1104 }
1105 
1106 /**
1107  * lpfc_hba_down_post - Wrapper func for hba down post routine
1108  * @phba: pointer to lpfc HBA data structure.
1109  *
1110  * This routine wraps the actual SLI3 or SLI4 routine for performing
1111  * uninitialization after the HBA is reset when bring down the SLI Layer.
1112  *
1113  * Return codes
1114  *   0 - success.
1115  *   Any other value - error.
1116  **/
1117 int
lpfc_hba_down_post(struct lpfc_hba * phba)1118 lpfc_hba_down_post(struct lpfc_hba *phba)
1119 {
1120 	return (*phba->lpfc_hba_down_post)(phba);
1121 }
1122 
1123 /**
1124  * lpfc_hb_timeout - The HBA-timer timeout handler
1125  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1126  *
1127  * This is the HBA-timer timeout handler registered to the lpfc driver. When
1128  * this timer fires, a HBA timeout event shall be posted to the lpfc driver
1129  * work-port-events bitmap and the worker thread is notified. This timeout
1130  * event will be used by the worker thread to invoke the actual timeout
1131  * handler routine, lpfc_hb_timeout_handler. Any periodical operations will
1132  * be performed in the timeout handler and the HBA timeout event bit shall
1133  * be cleared by the worker thread after it has taken the event bitmap out.
1134  **/
1135 static void
lpfc_hb_timeout(struct timer_list * t)1136 lpfc_hb_timeout(struct timer_list *t)
1137 {
1138 	struct lpfc_hba *phba;
1139 	uint32_t tmo_posted;
1140 	unsigned long iflag;
1141 
1142 	phba = from_timer(phba, t, hb_tmofunc);
1143 
1144 	/* Check for heart beat timeout conditions */
1145 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1146 	tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
1147 	if (!tmo_posted)
1148 		phba->pport->work_port_events |= WORKER_HB_TMO;
1149 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1150 
1151 	/* Tell the worker thread there is work to do */
1152 	if (!tmo_posted)
1153 		lpfc_worker_wake_up(phba);
1154 	return;
1155 }
1156 
1157 /**
1158  * lpfc_rrq_timeout - The RRQ-timer timeout handler
1159  * @t: timer context used to obtain the pointer to lpfc hba data structure.
1160  *
1161  * This is the RRQ-timer timeout handler registered to the lpfc driver. When
1162  * this timer fires, a RRQ timeout event shall be posted to the lpfc driver
1163  * work-port-events bitmap and the worker thread is notified. This timeout
1164  * event will be used by the worker thread to invoke the actual timeout
1165  * handler routine, lpfc_rrq_handler. Any periodical operations will
1166  * be performed in the timeout handler and the RRQ timeout event bit shall
1167  * be cleared by the worker thread after it has taken the event bitmap out.
1168  **/
1169 static void
lpfc_rrq_timeout(struct timer_list * t)1170 lpfc_rrq_timeout(struct timer_list *t)
1171 {
1172 	struct lpfc_hba *phba;
1173 	unsigned long iflag;
1174 
1175 	phba = from_timer(phba, t, rrq_tmr);
1176 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
1177 	if (!(phba->pport->load_flag & FC_UNLOADING))
1178 		phba->hba_flag |= HBA_RRQ_ACTIVE;
1179 	else
1180 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1181 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
1182 
1183 	if (!(phba->pport->load_flag & FC_UNLOADING))
1184 		lpfc_worker_wake_up(phba);
1185 }
1186 
1187 /**
1188  * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
1189  * @phba: pointer to lpfc hba data structure.
1190  * @pmboxq: pointer to the driver internal queue element for mailbox command.
1191  *
1192  * This is the callback function to the lpfc heart-beat mailbox command.
1193  * If configured, the lpfc driver issues the heart-beat mailbox command to
1194  * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
1195  * heart-beat mailbox command is issued, the driver shall set up heart-beat
1196  * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
1197  * heart-beat outstanding state. Once the mailbox command comes back and
1198  * no error conditions detected, the heart-beat mailbox command timer is
1199  * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
1200  * state is cleared for the next heart-beat. If the timer expired with the
1201  * heart-beat outstanding state set, the driver will put the HBA offline.
1202  **/
1203 static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)1204 lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
1205 {
1206 	unsigned long drvr_flag;
1207 
1208 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
1209 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
1210 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
1211 
1212 	/* Check and reset heart-beat timer if necessary */
1213 	mempool_free(pmboxq, phba->mbox_mem_pool);
1214 	if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
1215 		!(phba->link_state == LPFC_HBA_ERROR) &&
1216 		!(phba->pport->load_flag & FC_UNLOADING))
1217 		mod_timer(&phba->hb_tmofunc,
1218 			  jiffies +
1219 			  msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
1220 	return;
1221 }
1222 
1223 /*
1224  * lpfc_idle_stat_delay_work - idle_stat tracking
1225  *
1226  * This routine tracks per-cq idle_stat and determines polling decisions.
1227  *
1228  * Return codes:
1229  *   None
1230  **/
1231 static void
lpfc_idle_stat_delay_work(struct work_struct * work)1232 lpfc_idle_stat_delay_work(struct work_struct *work)
1233 {
1234 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1235 					     struct lpfc_hba,
1236 					     idle_stat_delay_work);
1237 	struct lpfc_queue *cq;
1238 	struct lpfc_sli4_hdw_queue *hdwq;
1239 	struct lpfc_idle_stat *idle_stat;
1240 	u32 i, idle_percent;
1241 	u64 wall, wall_idle, diff_wall, diff_idle, busy_time;
1242 
1243 	if (phba->pport->load_flag & FC_UNLOADING)
1244 		return;
1245 
1246 	if (phba->link_state == LPFC_HBA_ERROR ||
1247 	    phba->pport->fc_flag & FC_OFFLINE_MODE ||
1248 	    phba->cmf_active_mode != LPFC_CFG_OFF)
1249 		goto requeue;
1250 
1251 	for_each_present_cpu(i) {
1252 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
1253 		cq = hdwq->io_cq;
1254 
1255 		/* Skip if we've already handled this cq's primary CPU */
1256 		if (cq->chann != i)
1257 			continue;
1258 
1259 		idle_stat = &phba->sli4_hba.idle_stat[i];
1260 
1261 		/* get_cpu_idle_time returns values as running counters. Thus,
1262 		 * to know the amount for this period, the prior counter values
1263 		 * need to be subtracted from the current counter values.
1264 		 * From there, the idle time stat can be calculated as a
1265 		 * percentage of 100 - the sum of the other consumption times.
1266 		 */
1267 		wall_idle = get_cpu_idle_time(i, &wall, 1);
1268 		diff_idle = wall_idle - idle_stat->prev_idle;
1269 		diff_wall = wall - idle_stat->prev_wall;
1270 
1271 		if (diff_wall <= diff_idle)
1272 			busy_time = 0;
1273 		else
1274 			busy_time = diff_wall - diff_idle;
1275 
1276 		idle_percent = div64_u64(100 * busy_time, diff_wall);
1277 		idle_percent = 100 - idle_percent;
1278 
1279 		if (idle_percent < 15)
1280 			cq->poll_mode = LPFC_QUEUE_WORK;
1281 		else
1282 			cq->poll_mode = LPFC_IRQ_POLL;
1283 
1284 		idle_stat->prev_idle = wall_idle;
1285 		idle_stat->prev_wall = wall;
1286 	}
1287 
1288 requeue:
1289 	schedule_delayed_work(&phba->idle_stat_delay_work,
1290 			      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
1291 }
1292 
1293 static void
lpfc_hb_eq_delay_work(struct work_struct * work)1294 lpfc_hb_eq_delay_work(struct work_struct *work)
1295 {
1296 	struct lpfc_hba *phba = container_of(to_delayed_work(work),
1297 					     struct lpfc_hba, eq_delay_work);
1298 	struct lpfc_eq_intr_info *eqi, *eqi_new;
1299 	struct lpfc_queue *eq, *eq_next;
1300 	unsigned char *ena_delay = NULL;
1301 	uint32_t usdelay;
1302 	int i;
1303 
1304 	if (!phba->cfg_auto_imax || phba->pport->load_flag & FC_UNLOADING)
1305 		return;
1306 
1307 	if (phba->link_state == LPFC_HBA_ERROR ||
1308 	    phba->pport->fc_flag & FC_OFFLINE_MODE)
1309 		goto requeue;
1310 
1311 	ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay),
1312 			    GFP_KERNEL);
1313 	if (!ena_delay)
1314 		goto requeue;
1315 
1316 	for (i = 0; i < phba->cfg_irq_chann; i++) {
1317 		/* Get the EQ corresponding to the IRQ vector */
1318 		eq = phba->sli4_hba.hba_eq_hdl[i].eq;
1319 		if (!eq)
1320 			continue;
1321 		if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) {
1322 			eq->q_flag &= ~HBA_EQ_DELAY_CHK;
1323 			ena_delay[eq->last_cpu] = 1;
1324 		}
1325 	}
1326 
1327 	for_each_present_cpu(i) {
1328 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i);
1329 		if (ena_delay[i]) {
1330 			usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP;
1331 			if (usdelay > LPFC_MAX_AUTO_EQ_DELAY)
1332 				usdelay = LPFC_MAX_AUTO_EQ_DELAY;
1333 		} else {
1334 			usdelay = 0;
1335 		}
1336 
1337 		eqi->icnt = 0;
1338 
1339 		list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) {
1340 			if (unlikely(eq->last_cpu != i)) {
1341 				eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info,
1342 						      eq->last_cpu);
1343 				list_move_tail(&eq->cpu_list, &eqi_new->list);
1344 				continue;
1345 			}
1346 			if (usdelay != eq->q_mode)
1347 				lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1,
1348 							 usdelay);
1349 		}
1350 	}
1351 
1352 	kfree(ena_delay);
1353 
1354 requeue:
1355 	queue_delayed_work(phba->wq, &phba->eq_delay_work,
1356 			   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
1357 }
1358 
1359 /**
1360  * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution
1361  * @phba: pointer to lpfc hba data structure.
1362  *
1363  * For each heartbeat, this routine does some heuristic methods to adjust
1364  * XRI distribution. The goal is to fully utilize free XRIs.
1365  **/
lpfc_hb_mxp_handler(struct lpfc_hba * phba)1366 static void lpfc_hb_mxp_handler(struct lpfc_hba *phba)
1367 {
1368 	u32 i;
1369 	u32 hwq_count;
1370 
1371 	hwq_count = phba->cfg_hdw_queue;
1372 	for (i = 0; i < hwq_count; i++) {
1373 		/* Adjust XRIs in private pool */
1374 		lpfc_adjust_pvt_pool_count(phba, i);
1375 
1376 		/* Adjust high watermark */
1377 		lpfc_adjust_high_watermark(phba, i);
1378 
1379 #ifdef LPFC_MXP_STAT
1380 		/* Snapshot pbl, pvt and busy count */
1381 		lpfc_snapshot_mxp(phba, i);
1382 #endif
1383 	}
1384 }
1385 
1386 /**
1387  * lpfc_issue_hb_mbox - Issues heart-beat mailbox command
1388  * @phba: pointer to lpfc hba data structure.
1389  *
1390  * If a HB mbox is not already in progrees, this routine will allocate
1391  * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command,
1392  * and issue it. The HBA_HBEAT_INP flag means the command is in progress.
1393  **/
1394 int
lpfc_issue_hb_mbox(struct lpfc_hba * phba)1395 lpfc_issue_hb_mbox(struct lpfc_hba *phba)
1396 {
1397 	LPFC_MBOXQ_t *pmboxq;
1398 	int retval;
1399 
1400 	/* Is a Heartbeat mbox already in progress */
1401 	if (phba->hba_flag & HBA_HBEAT_INP)
1402 		return 0;
1403 
1404 	pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1405 	if (!pmboxq)
1406 		return -ENOMEM;
1407 
1408 	lpfc_heart_beat(phba, pmboxq);
1409 	pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
1410 	pmboxq->vport = phba->pport;
1411 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
1412 
1413 	if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
1414 		mempool_free(pmboxq, phba->mbox_mem_pool);
1415 		return -ENXIO;
1416 	}
1417 	phba->hba_flag |= HBA_HBEAT_INP;
1418 
1419 	return 0;
1420 }
1421 
1422 /**
1423  * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command
1424  * @phba: pointer to lpfc hba data structure.
1425  *
1426  * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO
1427  * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless
1428  * of the value of lpfc_enable_hba_heartbeat.
1429  * If lpfc_enable_hba_heartbeat is set, the timeout routine will always
1430  * try to issue a MBX_HEARTBEAT mbox command.
1431  **/
1432 void
lpfc_issue_hb_tmo(struct lpfc_hba * phba)1433 lpfc_issue_hb_tmo(struct lpfc_hba *phba)
1434 {
1435 	if (phba->cfg_enable_hba_heartbeat)
1436 		return;
1437 	phba->hba_flag |= HBA_HBEAT_TMO;
1438 }
1439 
1440 /**
1441  * lpfc_hb_timeout_handler - The HBA-timer timeout handler
1442  * @phba: pointer to lpfc hba data structure.
1443  *
1444  * This is the actual HBA-timer timeout handler to be invoked by the worker
1445  * thread whenever the HBA timer fired and HBA-timeout event posted. This
1446  * handler performs any periodic operations needed for the device. If such
1447  * periodic event has already been attended to either in the interrupt handler
1448  * or by processing slow-ring or fast-ring events within the HBA-timer
1449  * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
1450  * the timer for the next timeout period. If lpfc heart-beat mailbox command
1451  * is configured and there is no heart-beat mailbox command outstanding, a
1452  * heart-beat mailbox is issued and timer set properly. Otherwise, if there
1453  * has been a heart-beat mailbox command outstanding, the HBA shall be put
1454  * to offline.
1455  **/
1456 void
lpfc_hb_timeout_handler(struct lpfc_hba * phba)1457 lpfc_hb_timeout_handler(struct lpfc_hba *phba)
1458 {
1459 	struct lpfc_vport **vports;
1460 	struct lpfc_dmabuf *buf_ptr;
1461 	int retval = 0;
1462 	int i, tmo;
1463 	struct lpfc_sli *psli = &phba->sli;
1464 	LIST_HEAD(completions);
1465 
1466 	if (phba->cfg_xri_rebalancing) {
1467 		/* Multi-XRI pools handler */
1468 		lpfc_hb_mxp_handler(phba);
1469 	}
1470 
1471 	vports = lpfc_create_vport_work_array(phba);
1472 	if (vports != NULL)
1473 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
1474 			lpfc_rcv_seq_check_edtov(vports[i]);
1475 			lpfc_fdmi_change_check(vports[i]);
1476 		}
1477 	lpfc_destroy_vport_work_array(phba, vports);
1478 
1479 	if ((phba->link_state == LPFC_HBA_ERROR) ||
1480 		(phba->pport->load_flag & FC_UNLOADING) ||
1481 		(phba->pport->fc_flag & FC_OFFLINE_MODE))
1482 		return;
1483 
1484 	if (phba->elsbuf_cnt &&
1485 		(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
1486 		spin_lock_irq(&phba->hbalock);
1487 		list_splice_init(&phba->elsbuf, &completions);
1488 		phba->elsbuf_cnt = 0;
1489 		phba->elsbuf_prev_cnt = 0;
1490 		spin_unlock_irq(&phba->hbalock);
1491 
1492 		while (!list_empty(&completions)) {
1493 			list_remove_head(&completions, buf_ptr,
1494 				struct lpfc_dmabuf, list);
1495 			lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
1496 			kfree(buf_ptr);
1497 		}
1498 	}
1499 	phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
1500 
1501 	/* If there is no heart beat outstanding, issue a heartbeat command */
1502 	if (phba->cfg_enable_hba_heartbeat) {
1503 		/* If IOs are completing, no need to issue a MBX_HEARTBEAT */
1504 		spin_lock_irq(&phba->pport->work_port_lock);
1505 		if (time_after(phba->last_completion_time +
1506 				msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL),
1507 				jiffies)) {
1508 			spin_unlock_irq(&phba->pport->work_port_lock);
1509 			if (phba->hba_flag & HBA_HBEAT_INP)
1510 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1511 			else
1512 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1513 			goto out;
1514 		}
1515 		spin_unlock_irq(&phba->pport->work_port_lock);
1516 
1517 		/* Check if a MBX_HEARTBEAT is already in progress */
1518 		if (phba->hba_flag & HBA_HBEAT_INP) {
1519 			/*
1520 			 * If heart beat timeout called with HBA_HBEAT_INP set
1521 			 * we need to give the hb mailbox cmd a chance to
1522 			 * complete or TMO.
1523 			 */
1524 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
1525 				"0459 Adapter heartbeat still outstanding: "
1526 				"last compl time was %d ms.\n",
1527 				jiffies_to_msecs(jiffies
1528 					 - phba->last_completion_time));
1529 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1530 		} else {
1531 			if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) &&
1532 				(list_empty(&psli->mboxq))) {
1533 
1534 				retval = lpfc_issue_hb_mbox(phba);
1535 				if (retval) {
1536 					tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1537 					goto out;
1538 				}
1539 				phba->skipped_hb = 0;
1540 			} else if (time_before_eq(phba->last_completion_time,
1541 					phba->skipped_hb)) {
1542 				lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
1543 					"2857 Last completion time not "
1544 					" updated in %d ms\n",
1545 					jiffies_to_msecs(jiffies
1546 						 - phba->last_completion_time));
1547 			} else
1548 				phba->skipped_hb = jiffies;
1549 
1550 			tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1551 			goto out;
1552 		}
1553 	} else {
1554 		/* Check to see if we want to force a MBX_HEARTBEAT */
1555 		if (phba->hba_flag & HBA_HBEAT_TMO) {
1556 			retval = lpfc_issue_hb_mbox(phba);
1557 			if (retval)
1558 				tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1559 			else
1560 				tmo = (1000 * LPFC_HB_MBOX_TIMEOUT);
1561 			goto out;
1562 		}
1563 		tmo = (1000 * LPFC_HB_MBOX_INTERVAL);
1564 	}
1565 out:
1566 	mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo));
1567 }
1568 
1569 /**
1570  * lpfc_offline_eratt - Bring lpfc offline on hardware error attention
1571  * @phba: pointer to lpfc hba data structure.
1572  *
1573  * This routine is called to bring the HBA offline when HBA hardware error
1574  * other than Port Error 6 has been detected.
1575  **/
1576 static void
lpfc_offline_eratt(struct lpfc_hba * phba)1577 lpfc_offline_eratt(struct lpfc_hba *phba)
1578 {
1579 	struct lpfc_sli   *psli = &phba->sli;
1580 
1581 	spin_lock_irq(&phba->hbalock);
1582 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1583 	spin_unlock_irq(&phba->hbalock);
1584 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1585 
1586 	lpfc_offline(phba);
1587 	lpfc_reset_barrier(phba);
1588 	spin_lock_irq(&phba->hbalock);
1589 	lpfc_sli_brdreset(phba);
1590 	spin_unlock_irq(&phba->hbalock);
1591 	lpfc_hba_down_post(phba);
1592 	lpfc_sli_brdready(phba, HS_MBRDY);
1593 	lpfc_unblock_mgmt_io(phba);
1594 	phba->link_state = LPFC_HBA_ERROR;
1595 	return;
1596 }
1597 
1598 /**
1599  * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention
1600  * @phba: pointer to lpfc hba data structure.
1601  *
1602  * This routine is called to bring a SLI4 HBA offline when HBA hardware error
1603  * other than Port Error 6 has been detected.
1604  **/
1605 void
lpfc_sli4_offline_eratt(struct lpfc_hba * phba)1606 lpfc_sli4_offline_eratt(struct lpfc_hba *phba)
1607 {
1608 	spin_lock_irq(&phba->hbalock);
1609 	if (phba->link_state == LPFC_HBA_ERROR &&
1610 	    phba->hba_flag & HBA_PCI_ERR) {
1611 		spin_unlock_irq(&phba->hbalock);
1612 		return;
1613 	}
1614 	phba->link_state = LPFC_HBA_ERROR;
1615 	spin_unlock_irq(&phba->hbalock);
1616 
1617 	lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1618 	lpfc_sli_flush_io_rings(phba);
1619 	lpfc_offline(phba);
1620 	lpfc_hba_down_post(phba);
1621 	lpfc_unblock_mgmt_io(phba);
1622 }
1623 
1624 /**
1625  * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
1626  * @phba: pointer to lpfc hba data structure.
1627  *
1628  * This routine is invoked to handle the deferred HBA hardware error
1629  * conditions. This type of error is indicated by HBA by setting ER1
1630  * and another ER bit in the host status register. The driver will
1631  * wait until the ER1 bit clears before handling the error condition.
1632  **/
1633 static void
lpfc_handle_deferred_eratt(struct lpfc_hba * phba)1634 lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
1635 {
1636 	uint32_t old_host_status = phba->work_hs;
1637 	struct lpfc_sli *psli = &phba->sli;
1638 
1639 	/* If the pci channel is offline, ignore possible errors,
1640 	 * since we cannot communicate with the pci card anyway.
1641 	 */
1642 	if (pci_channel_offline(phba->pcidev)) {
1643 		spin_lock_irq(&phba->hbalock);
1644 		phba->hba_flag &= ~DEFER_ERATT;
1645 		spin_unlock_irq(&phba->hbalock);
1646 		return;
1647 	}
1648 
1649 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1650 			"0479 Deferred Adapter Hardware Error "
1651 			"Data: x%x x%x x%x\n",
1652 			phba->work_hs, phba->work_status[0],
1653 			phba->work_status[1]);
1654 
1655 	spin_lock_irq(&phba->hbalock);
1656 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1657 	spin_unlock_irq(&phba->hbalock);
1658 
1659 
1660 	/*
1661 	 * Firmware stops when it triggred erratt. That could cause the I/Os
1662 	 * dropped by the firmware. Error iocb (I/O) on txcmplq and let the
1663 	 * SCSI layer retry it after re-establishing link.
1664 	 */
1665 	lpfc_sli_abort_fcp_rings(phba);
1666 
1667 	/*
1668 	 * There was a firmware error. Take the hba offline and then
1669 	 * attempt to restart it.
1670 	 */
1671 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
1672 	lpfc_offline(phba);
1673 
1674 	/* Wait for the ER1 bit to clear.*/
1675 	while (phba->work_hs & HS_FFER1) {
1676 		msleep(100);
1677 		if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) {
1678 			phba->work_hs = UNPLUG_ERR ;
1679 			break;
1680 		}
1681 		/* If driver is unloading let the worker thread continue */
1682 		if (phba->pport->load_flag & FC_UNLOADING) {
1683 			phba->work_hs = 0;
1684 			break;
1685 		}
1686 	}
1687 
1688 	/*
1689 	 * This is to ptrotect against a race condition in which
1690 	 * first write to the host attention register clear the
1691 	 * host status register.
1692 	 */
1693 	if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
1694 		phba->work_hs = old_host_status & ~HS_FFER1;
1695 
1696 	spin_lock_irq(&phba->hbalock);
1697 	phba->hba_flag &= ~DEFER_ERATT;
1698 	spin_unlock_irq(&phba->hbalock);
1699 	phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
1700 	phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
1701 }
1702 
1703 static void
lpfc_board_errevt_to_mgmt(struct lpfc_hba * phba)1704 lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba)
1705 {
1706 	struct lpfc_board_event_header board_event;
1707 	struct Scsi_Host *shost;
1708 
1709 	board_event.event_type = FC_REG_BOARD_EVENT;
1710 	board_event.subcategory = LPFC_EVENT_PORTINTERR;
1711 	shost = lpfc_shost_from_vport(phba->pport);
1712 	fc_host_post_vendor_event(shost, fc_get_event_number(),
1713 				  sizeof(board_event),
1714 				  (char *) &board_event,
1715 				  LPFC_NL_VENDOR_ID);
1716 }
1717 
1718 /**
1719  * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler
1720  * @phba: pointer to lpfc hba data structure.
1721  *
1722  * This routine is invoked to handle the following HBA hardware error
1723  * conditions:
1724  * 1 - HBA error attention interrupt
1725  * 2 - DMA ring index out of range
1726  * 3 - Mailbox command came back as unknown
1727  **/
1728 static void
lpfc_handle_eratt_s3(struct lpfc_hba * phba)1729 lpfc_handle_eratt_s3(struct lpfc_hba *phba)
1730 {
1731 	struct lpfc_vport *vport = phba->pport;
1732 	struct lpfc_sli   *psli = &phba->sli;
1733 	uint32_t event_data;
1734 	unsigned long temperature;
1735 	struct temp_event temp_event_data;
1736 	struct Scsi_Host  *shost;
1737 
1738 	/* If the pci channel is offline, ignore possible errors,
1739 	 * since we cannot communicate with the pci card anyway.
1740 	 */
1741 	if (pci_channel_offline(phba->pcidev)) {
1742 		spin_lock_irq(&phba->hbalock);
1743 		phba->hba_flag &= ~DEFER_ERATT;
1744 		spin_unlock_irq(&phba->hbalock);
1745 		return;
1746 	}
1747 
1748 	/* If resets are disabled then leave the HBA alone and return */
1749 	if (!phba->cfg_enable_hba_reset)
1750 		return;
1751 
1752 	/* Send an internal error event to mgmt application */
1753 	lpfc_board_errevt_to_mgmt(phba);
1754 
1755 	if (phba->hba_flag & DEFER_ERATT)
1756 		lpfc_handle_deferred_eratt(phba);
1757 
1758 	if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) {
1759 		if (phba->work_hs & HS_FFER6)
1760 			/* Re-establishing Link */
1761 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1762 					"1301 Re-establishing Link "
1763 					"Data: x%x x%x x%x\n",
1764 					phba->work_hs, phba->work_status[0],
1765 					phba->work_status[1]);
1766 		if (phba->work_hs & HS_FFER8)
1767 			/* Device Zeroization */
1768 			lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
1769 					"2861 Host Authentication device "
1770 					"zeroization Data:x%x x%x x%x\n",
1771 					phba->work_hs, phba->work_status[0],
1772 					phba->work_status[1]);
1773 
1774 		spin_lock_irq(&phba->hbalock);
1775 		psli->sli_flag &= ~LPFC_SLI_ACTIVE;
1776 		spin_unlock_irq(&phba->hbalock);
1777 
1778 		/*
1779 		* Firmware stops when it triggled erratt with HS_FFER6.
1780 		* That could cause the I/Os dropped by the firmware.
1781 		* Error iocb (I/O) on txcmplq and let the SCSI layer
1782 		* retry it after re-establishing link.
1783 		*/
1784 		lpfc_sli_abort_fcp_rings(phba);
1785 
1786 		/*
1787 		 * There was a firmware error.  Take the hba offline and then
1788 		 * attempt to restart it.
1789 		 */
1790 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
1791 		lpfc_offline(phba);
1792 		lpfc_sli_brdrestart(phba);
1793 		if (lpfc_online(phba) == 0) {	/* Initialize the HBA */
1794 			lpfc_unblock_mgmt_io(phba);
1795 			return;
1796 		}
1797 		lpfc_unblock_mgmt_io(phba);
1798 	} else if (phba->work_hs & HS_CRIT_TEMP) {
1799 		temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
1800 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
1801 		temp_event_data.event_code = LPFC_CRIT_TEMP;
1802 		temp_event_data.data = (uint32_t)temperature;
1803 
1804 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1805 				"0406 Adapter maximum temperature exceeded "
1806 				"(%ld), taking this port offline "
1807 				"Data: x%x x%x x%x\n",
1808 				temperature, phba->work_hs,
1809 				phba->work_status[0], phba->work_status[1]);
1810 
1811 		shost = lpfc_shost_from_vport(phba->pport);
1812 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1813 					  sizeof(temp_event_data),
1814 					  (char *) &temp_event_data,
1815 					  SCSI_NL_VID_TYPE_PCI
1816 					  | PCI_VENDOR_ID_EMULEX);
1817 
1818 		spin_lock_irq(&phba->hbalock);
1819 		phba->over_temp_state = HBA_OVER_TEMP;
1820 		spin_unlock_irq(&phba->hbalock);
1821 		lpfc_offline_eratt(phba);
1822 
1823 	} else {
1824 		/* The if clause above forces this code path when the status
1825 		 * failure is a value other than FFER6. Do not call the offline
1826 		 * twice. This is the adapter hardware error path.
1827 		 */
1828 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1829 				"0457 Adapter Hardware Error "
1830 				"Data: x%x x%x x%x\n",
1831 				phba->work_hs,
1832 				phba->work_status[0], phba->work_status[1]);
1833 
1834 		event_data = FC_REG_DUMP_EVENT;
1835 		shost = lpfc_shost_from_vport(vport);
1836 		fc_host_post_vendor_event(shost, fc_get_event_number(),
1837 				sizeof(event_data), (char *) &event_data,
1838 				SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
1839 
1840 		lpfc_offline_eratt(phba);
1841 	}
1842 	return;
1843 }
1844 
1845 /**
1846  * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg
1847  * @phba: pointer to lpfc hba data structure.
1848  * @mbx_action: flag for mailbox shutdown action.
1849  * @en_rn_msg: send reset/port recovery message.
1850  * This routine is invoked to perform an SLI4 port PCI function reset in
1851  * response to port status register polling attention. It waits for port
1852  * status register (ERR, RDY, RN) bits before proceeding with function reset.
1853  * During this process, interrupt vectors are freed and later requested
1854  * for handling possible port resource change.
1855  **/
1856 static int
lpfc_sli4_port_sta_fn_reset(struct lpfc_hba * phba,int mbx_action,bool en_rn_msg)1857 lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action,
1858 			    bool en_rn_msg)
1859 {
1860 	int rc;
1861 	uint32_t intr_mode;
1862 	LPFC_MBOXQ_t *mboxq;
1863 
1864 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
1865 	    LPFC_SLI_INTF_IF_TYPE_2) {
1866 		/*
1867 		 * On error status condition, driver need to wait for port
1868 		 * ready before performing reset.
1869 		 */
1870 		rc = lpfc_sli4_pdev_status_reg_wait(phba);
1871 		if (rc)
1872 			return rc;
1873 	}
1874 
1875 	/* need reset: attempt for port recovery */
1876 	if (en_rn_msg)
1877 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1878 				"2887 Reset Needed: Attempting Port "
1879 				"Recovery...\n");
1880 
1881 	/* If we are no wait, the HBA has been reset and is not
1882 	 * functional, thus we should clear
1883 	 * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags.
1884 	 */
1885 	if (mbx_action == LPFC_MBX_NO_WAIT) {
1886 		spin_lock_irq(&phba->hbalock);
1887 		phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
1888 		if (phba->sli.mbox_active) {
1889 			mboxq = phba->sli.mbox_active;
1890 			mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
1891 			__lpfc_mbox_cmpl_put(phba, mboxq);
1892 			phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
1893 			phba->sli.mbox_active = NULL;
1894 		}
1895 		spin_unlock_irq(&phba->hbalock);
1896 	}
1897 
1898 	lpfc_offline_prep(phba, mbx_action);
1899 	lpfc_sli_flush_io_rings(phba);
1900 	lpfc_offline(phba);
1901 	/* release interrupt for possible resource change */
1902 	lpfc_sli4_disable_intr(phba);
1903 	rc = lpfc_sli_brdrestart(phba);
1904 	if (rc) {
1905 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1906 				"6309 Failed to restart board\n");
1907 		return rc;
1908 	}
1909 	/* request and enable interrupt */
1910 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
1911 	if (intr_mode == LPFC_INTR_ERROR) {
1912 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1913 				"3175 Failed to enable interrupt\n");
1914 		return -EIO;
1915 	}
1916 	phba->intr_mode = intr_mode;
1917 	rc = lpfc_online(phba);
1918 	if (rc == 0)
1919 		lpfc_unblock_mgmt_io(phba);
1920 
1921 	return rc;
1922 }
1923 
1924 /**
1925  * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler
1926  * @phba: pointer to lpfc hba data structure.
1927  *
1928  * This routine is invoked to handle the SLI4 HBA hardware error attention
1929  * conditions.
1930  **/
1931 static void
lpfc_handle_eratt_s4(struct lpfc_hba * phba)1932 lpfc_handle_eratt_s4(struct lpfc_hba *phba)
1933 {
1934 	struct lpfc_vport *vport = phba->pport;
1935 	uint32_t event_data;
1936 	struct Scsi_Host *shost;
1937 	uint32_t if_type;
1938 	struct lpfc_register portstat_reg = {0};
1939 	uint32_t reg_err1, reg_err2;
1940 	uint32_t uerrlo_reg, uemasklo_reg;
1941 	uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2;
1942 	bool en_rn_msg = true;
1943 	struct temp_event temp_event_data;
1944 	struct lpfc_register portsmphr_reg;
1945 	int rc, i;
1946 
1947 	/* If the pci channel is offline, ignore possible errors, since
1948 	 * we cannot communicate with the pci card anyway.
1949 	 */
1950 	if (pci_channel_offline(phba->pcidev)) {
1951 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1952 				"3166 pci channel is offline\n");
1953 		return;
1954 	}
1955 
1956 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
1957 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
1958 	switch (if_type) {
1959 	case LPFC_SLI_INTF_IF_TYPE_0:
1960 		pci_rd_rc1 = lpfc_readl(
1961 				phba->sli4_hba.u.if_type0.UERRLOregaddr,
1962 				&uerrlo_reg);
1963 		pci_rd_rc2 = lpfc_readl(
1964 				phba->sli4_hba.u.if_type0.UEMASKLOregaddr,
1965 				&uemasklo_reg);
1966 		/* consider PCI bus read error as pci_channel_offline */
1967 		if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO)
1968 			return;
1969 		if (!(phba->hba_flag & HBA_RECOVERABLE_UE)) {
1970 			lpfc_sli4_offline_eratt(phba);
1971 			return;
1972 		}
1973 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1974 				"7623 Checking UE recoverable");
1975 
1976 		for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) {
1977 			if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
1978 				       &portsmphr_reg.word0))
1979 				continue;
1980 
1981 			smphr_port_status = bf_get(lpfc_port_smphr_port_status,
1982 						   &portsmphr_reg);
1983 			if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
1984 			    LPFC_PORT_SEM_UE_RECOVERABLE)
1985 				break;
1986 			/*Sleep for 1Sec, before checking SEMAPHORE */
1987 			msleep(1000);
1988 		}
1989 
1990 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1991 				"4827 smphr_port_status x%x : Waited %dSec",
1992 				smphr_port_status, i);
1993 
1994 		/* Recoverable UE, reset the HBA device */
1995 		if ((smphr_port_status & LPFC_PORT_SEM_MASK) ==
1996 		    LPFC_PORT_SEM_UE_RECOVERABLE) {
1997 			for (i = 0; i < 20; i++) {
1998 				msleep(1000);
1999 				if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
2000 				    &portsmphr_reg.word0) &&
2001 				    (LPFC_POST_STAGE_PORT_READY ==
2002 				     bf_get(lpfc_port_smphr_port_status,
2003 				     &portsmphr_reg))) {
2004 					rc = lpfc_sli4_port_sta_fn_reset(phba,
2005 						LPFC_MBX_NO_WAIT, en_rn_msg);
2006 					if (rc == 0)
2007 						return;
2008 					lpfc_printf_log(phba, KERN_ERR,
2009 						LOG_TRACE_EVENT,
2010 						"4215 Failed to recover UE");
2011 					break;
2012 				}
2013 			}
2014 		}
2015 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2016 				"7624 Firmware not ready: Failing UE recovery,"
2017 				" waited %dSec", i);
2018 		phba->link_state = LPFC_HBA_ERROR;
2019 		break;
2020 
2021 	case LPFC_SLI_INTF_IF_TYPE_2:
2022 	case LPFC_SLI_INTF_IF_TYPE_6:
2023 		pci_rd_rc1 = lpfc_readl(
2024 				phba->sli4_hba.u.if_type2.STATUSregaddr,
2025 				&portstat_reg.word0);
2026 		/* consider PCI bus read error as pci_channel_offline */
2027 		if (pci_rd_rc1 == -EIO) {
2028 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2029 				"3151 PCI bus read access failure: x%x\n",
2030 				readl(phba->sli4_hba.u.if_type2.STATUSregaddr));
2031 			lpfc_sli4_offline_eratt(phba);
2032 			return;
2033 		}
2034 		reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
2035 		reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
2036 		if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) {
2037 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2038 					"2889 Port Overtemperature event, "
2039 					"taking port offline Data: x%x x%x\n",
2040 					reg_err1, reg_err2);
2041 
2042 			phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
2043 			temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
2044 			temp_event_data.event_code = LPFC_CRIT_TEMP;
2045 			temp_event_data.data = 0xFFFFFFFF;
2046 
2047 			shost = lpfc_shost_from_vport(phba->pport);
2048 			fc_host_post_vendor_event(shost, fc_get_event_number(),
2049 						  sizeof(temp_event_data),
2050 						  (char *)&temp_event_data,
2051 						  SCSI_NL_VID_TYPE_PCI
2052 						  | PCI_VENDOR_ID_EMULEX);
2053 
2054 			spin_lock_irq(&phba->hbalock);
2055 			phba->over_temp_state = HBA_OVER_TEMP;
2056 			spin_unlock_irq(&phba->hbalock);
2057 			lpfc_sli4_offline_eratt(phba);
2058 			return;
2059 		}
2060 		if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2061 		    reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) {
2062 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2063 					"3143 Port Down: Firmware Update "
2064 					"Detected\n");
2065 			en_rn_msg = false;
2066 		} else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2067 			 reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2068 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2069 					"3144 Port Down: Debug Dump\n");
2070 		else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2071 			 reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON)
2072 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2073 					"3145 Port Down: Provisioning\n");
2074 
2075 		/* If resets are disabled then leave the HBA alone and return */
2076 		if (!phba->cfg_enable_hba_reset)
2077 			return;
2078 
2079 		/* Check port status register for function reset */
2080 		rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT,
2081 				en_rn_msg);
2082 		if (rc == 0) {
2083 			/* don't report event on forced debug dump */
2084 			if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 &&
2085 			    reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP)
2086 				return;
2087 			else
2088 				break;
2089 		}
2090 		/* fall through for not able to recover */
2091 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2092 				"3152 Unrecoverable error\n");
2093 		phba->link_state = LPFC_HBA_ERROR;
2094 		break;
2095 	case LPFC_SLI_INTF_IF_TYPE_1:
2096 	default:
2097 		break;
2098 	}
2099 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
2100 			"3123 Report dump event to upper layer\n");
2101 	/* Send an internal error event to mgmt application */
2102 	lpfc_board_errevt_to_mgmt(phba);
2103 
2104 	event_data = FC_REG_DUMP_EVENT;
2105 	shost = lpfc_shost_from_vport(vport);
2106 	fc_host_post_vendor_event(shost, fc_get_event_number(),
2107 				  sizeof(event_data), (char *) &event_data,
2108 				  SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
2109 }
2110 
2111 /**
2112  * lpfc_handle_eratt - Wrapper func for handling hba error attention
2113  * @phba: pointer to lpfc HBA data structure.
2114  *
2115  * This routine wraps the actual SLI3 or SLI4 hba error attention handling
2116  * routine from the API jump table function pointer from the lpfc_hba struct.
2117  *
2118  * Return codes
2119  *   0 - success.
2120  *   Any other value - error.
2121  **/
2122 void
lpfc_handle_eratt(struct lpfc_hba * phba)2123 lpfc_handle_eratt(struct lpfc_hba *phba)
2124 {
2125 	(*phba->lpfc_handle_eratt)(phba);
2126 }
2127 
2128 /**
2129  * lpfc_handle_latt - The HBA link event handler
2130  * @phba: pointer to lpfc hba data structure.
2131  *
2132  * This routine is invoked from the worker thread to handle a HBA host
2133  * attention link event. SLI3 only.
2134  **/
2135 void
lpfc_handle_latt(struct lpfc_hba * phba)2136 lpfc_handle_latt(struct lpfc_hba *phba)
2137 {
2138 	struct lpfc_vport *vport = phba->pport;
2139 	struct lpfc_sli   *psli = &phba->sli;
2140 	LPFC_MBOXQ_t *pmb;
2141 	volatile uint32_t control;
2142 	struct lpfc_dmabuf *mp;
2143 	int rc = 0;
2144 
2145 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
2146 	if (!pmb) {
2147 		rc = 1;
2148 		goto lpfc_handle_latt_err_exit;
2149 	}
2150 
2151 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
2152 	if (!mp) {
2153 		rc = 2;
2154 		goto lpfc_handle_latt_free_pmb;
2155 	}
2156 
2157 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
2158 	if (!mp->virt) {
2159 		rc = 3;
2160 		goto lpfc_handle_latt_free_mp;
2161 	}
2162 
2163 	/* Cleanup any outstanding ELS commands */
2164 	lpfc_els_flush_all_cmd(phba);
2165 
2166 	psli->slistat.link_event++;
2167 	lpfc_read_topology(phba, pmb, mp);
2168 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
2169 	pmb->vport = vport;
2170 	/* Block ELS IOCBs until we have processed this mbox command */
2171 	phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
2172 	rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
2173 	if (rc == MBX_NOT_FINISHED) {
2174 		rc = 4;
2175 		goto lpfc_handle_latt_free_mbuf;
2176 	}
2177 
2178 	/* Clear Link Attention in HA REG */
2179 	spin_lock_irq(&phba->hbalock);
2180 	writel(HA_LATT, phba->HAregaddr);
2181 	readl(phba->HAregaddr); /* flush */
2182 	spin_unlock_irq(&phba->hbalock);
2183 
2184 	return;
2185 
2186 lpfc_handle_latt_free_mbuf:
2187 	phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
2188 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
2189 lpfc_handle_latt_free_mp:
2190 	kfree(mp);
2191 lpfc_handle_latt_free_pmb:
2192 	mempool_free(pmb, phba->mbox_mem_pool);
2193 lpfc_handle_latt_err_exit:
2194 	/* Enable Link attention interrupts */
2195 	spin_lock_irq(&phba->hbalock);
2196 	psli->sli_flag |= LPFC_PROCESS_LA;
2197 	control = readl(phba->HCregaddr);
2198 	control |= HC_LAINT_ENA;
2199 	writel(control, phba->HCregaddr);
2200 	readl(phba->HCregaddr); /* flush */
2201 
2202 	/* Clear Link Attention in HA REG */
2203 	writel(HA_LATT, phba->HAregaddr);
2204 	readl(phba->HAregaddr); /* flush */
2205 	spin_unlock_irq(&phba->hbalock);
2206 	lpfc_linkdown(phba);
2207 	phba->link_state = LPFC_HBA_ERROR;
2208 
2209 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2210 			"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
2211 
2212 	return;
2213 }
2214 
2215 /**
2216  * lpfc_parse_vpd - Parse VPD (Vital Product Data)
2217  * @phba: pointer to lpfc hba data structure.
2218  * @vpd: pointer to the vital product data.
2219  * @len: length of the vital product data in bytes.
2220  *
2221  * This routine parses the Vital Product Data (VPD). The VPD is treated as
2222  * an array of characters. In this routine, the ModelName, ProgramType, and
2223  * ModelDesc, etc. fields of the phba data structure will be populated.
2224  *
2225  * Return codes
2226  *   0 - pointer to the VPD passed in is NULL
2227  *   1 - success
2228  **/
2229 int
lpfc_parse_vpd(struct lpfc_hba * phba,uint8_t * vpd,int len)2230 lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
2231 {
2232 	uint8_t lenlo, lenhi;
2233 	int Length;
2234 	int i, j;
2235 	int finished = 0;
2236 	int index = 0;
2237 
2238 	if (!vpd)
2239 		return 0;
2240 
2241 	/* Vital Product */
2242 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
2243 			"0455 Vital Product Data: x%x x%x x%x x%x\n",
2244 			(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
2245 			(uint32_t) vpd[3]);
2246 	while (!finished && (index < (len - 4))) {
2247 		switch (vpd[index]) {
2248 		case 0x82:
2249 		case 0x91:
2250 			index += 1;
2251 			lenlo = vpd[index];
2252 			index += 1;
2253 			lenhi = vpd[index];
2254 			index += 1;
2255 			i = ((((unsigned short)lenhi) << 8) + lenlo);
2256 			index += i;
2257 			break;
2258 		case 0x90:
2259 			index += 1;
2260 			lenlo = vpd[index];
2261 			index += 1;
2262 			lenhi = vpd[index];
2263 			index += 1;
2264 			Length = ((((unsigned short)lenhi) << 8) + lenlo);
2265 			if (Length > len - index)
2266 				Length = len - index;
2267 			while (Length > 0) {
2268 			/* Look for Serial Number */
2269 			if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
2270 				index += 2;
2271 				i = vpd[index];
2272 				index += 1;
2273 				j = 0;
2274 				Length -= (3+i);
2275 				while(i--) {
2276 					phba->SerialNumber[j++] = vpd[index++];
2277 					if (j == 31)
2278 						break;
2279 				}
2280 				phba->SerialNumber[j] = 0;
2281 				continue;
2282 			}
2283 			else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
2284 				phba->vpd_flag |= VPD_MODEL_DESC;
2285 				index += 2;
2286 				i = vpd[index];
2287 				index += 1;
2288 				j = 0;
2289 				Length -= (3+i);
2290 				while(i--) {
2291 					phba->ModelDesc[j++] = vpd[index++];
2292 					if (j == 255)
2293 						break;
2294 				}
2295 				phba->ModelDesc[j] = 0;
2296 				continue;
2297 			}
2298 			else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
2299 				phba->vpd_flag |= VPD_MODEL_NAME;
2300 				index += 2;
2301 				i = vpd[index];
2302 				index += 1;
2303 				j = 0;
2304 				Length -= (3+i);
2305 				while(i--) {
2306 					phba->ModelName[j++] = vpd[index++];
2307 					if (j == 79)
2308 						break;
2309 				}
2310 				phba->ModelName[j] = 0;
2311 				continue;
2312 			}
2313 			else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
2314 				phba->vpd_flag |= VPD_PROGRAM_TYPE;
2315 				index += 2;
2316 				i = vpd[index];
2317 				index += 1;
2318 				j = 0;
2319 				Length -= (3+i);
2320 				while(i--) {
2321 					phba->ProgramType[j++] = vpd[index++];
2322 					if (j == 255)
2323 						break;
2324 				}
2325 				phba->ProgramType[j] = 0;
2326 				continue;
2327 			}
2328 			else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
2329 				phba->vpd_flag |= VPD_PORT;
2330 				index += 2;
2331 				i = vpd[index];
2332 				index += 1;
2333 				j = 0;
2334 				Length -= (3+i);
2335 				while(i--) {
2336 					if ((phba->sli_rev == LPFC_SLI_REV4) &&
2337 					    (phba->sli4_hba.pport_name_sta ==
2338 					     LPFC_SLI4_PPNAME_GET)) {
2339 						j++;
2340 						index++;
2341 					} else
2342 						phba->Port[j++] = vpd[index++];
2343 					if (j == 19)
2344 						break;
2345 				}
2346 				if ((phba->sli_rev != LPFC_SLI_REV4) ||
2347 				    (phba->sli4_hba.pport_name_sta ==
2348 				     LPFC_SLI4_PPNAME_NON))
2349 					phba->Port[j] = 0;
2350 				continue;
2351 			}
2352 			else {
2353 				index += 2;
2354 				i = vpd[index];
2355 				index += 1;
2356 				index += i;
2357 				Length -= (3 + i);
2358 			}
2359 		}
2360 		finished = 0;
2361 		break;
2362 		case 0x78:
2363 			finished = 1;
2364 			break;
2365 		default:
2366 			index ++;
2367 			break;
2368 		}
2369 	}
2370 
2371 	return(1);
2372 }
2373 
2374 /**
2375  * lpfc_get_hba_model_desc - Retrieve HBA device model name and description
2376  * @phba: pointer to lpfc hba data structure.
2377  * @mdp: pointer to the data structure to hold the derived model name.
2378  * @descp: pointer to the data structure to hold the derived description.
2379  *
2380  * This routine retrieves HBA's description based on its registered PCI device
2381  * ID. The @descp passed into this function points to an array of 256 chars. It
2382  * shall be returned with the model name, maximum speed, and the host bus type.
2383  * The @mdp passed into this function points to an array of 80 chars. When the
2384  * function returns, the @mdp will be filled with the model name.
2385  **/
2386 static void
lpfc_get_hba_model_desc(struct lpfc_hba * phba,uint8_t * mdp,uint8_t * descp)2387 lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
2388 {
2389 	lpfc_vpd_t *vp;
2390 	uint16_t dev_id = phba->pcidev->device;
2391 	int max_speed;
2392 	int GE = 0;
2393 	int oneConnect = 0; /* default is not a oneConnect */
2394 	struct {
2395 		char *name;
2396 		char *bus;
2397 		char *function;
2398 	} m = {"<Unknown>", "", ""};
2399 
2400 	if (mdp && mdp[0] != '\0'
2401 		&& descp && descp[0] != '\0')
2402 		return;
2403 
2404 	if (phba->lmt & LMT_64Gb)
2405 		max_speed = 64;
2406 	else if (phba->lmt & LMT_32Gb)
2407 		max_speed = 32;
2408 	else if (phba->lmt & LMT_16Gb)
2409 		max_speed = 16;
2410 	else if (phba->lmt & LMT_10Gb)
2411 		max_speed = 10;
2412 	else if (phba->lmt & LMT_8Gb)
2413 		max_speed = 8;
2414 	else if (phba->lmt & LMT_4Gb)
2415 		max_speed = 4;
2416 	else if (phba->lmt & LMT_2Gb)
2417 		max_speed = 2;
2418 	else if (phba->lmt & LMT_1Gb)
2419 		max_speed = 1;
2420 	else
2421 		max_speed = 0;
2422 
2423 	vp = &phba->vpd;
2424 
2425 	switch (dev_id) {
2426 	case PCI_DEVICE_ID_FIREFLY:
2427 		m = (typeof(m)){"LP6000", "PCI",
2428 				"Obsolete, Unsupported Fibre Channel Adapter"};
2429 		break;
2430 	case PCI_DEVICE_ID_SUPERFLY:
2431 		if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
2432 			m = (typeof(m)){"LP7000", "PCI", ""};
2433 		else
2434 			m = (typeof(m)){"LP7000E", "PCI", ""};
2435 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2436 		break;
2437 	case PCI_DEVICE_ID_DRAGONFLY:
2438 		m = (typeof(m)){"LP8000", "PCI",
2439 				"Obsolete, Unsupported Fibre Channel Adapter"};
2440 		break;
2441 	case PCI_DEVICE_ID_CENTAUR:
2442 		if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
2443 			m = (typeof(m)){"LP9002", "PCI", ""};
2444 		else
2445 			m = (typeof(m)){"LP9000", "PCI", ""};
2446 		m.function = "Obsolete, Unsupported Fibre Channel Adapter";
2447 		break;
2448 	case PCI_DEVICE_ID_RFLY:
2449 		m = (typeof(m)){"LP952", "PCI",
2450 				"Obsolete, Unsupported Fibre Channel Adapter"};
2451 		break;
2452 	case PCI_DEVICE_ID_PEGASUS:
2453 		m = (typeof(m)){"LP9802", "PCI-X",
2454 				"Obsolete, Unsupported Fibre Channel Adapter"};
2455 		break;
2456 	case PCI_DEVICE_ID_THOR:
2457 		m = (typeof(m)){"LP10000", "PCI-X",
2458 				"Obsolete, Unsupported Fibre Channel Adapter"};
2459 		break;
2460 	case PCI_DEVICE_ID_VIPER:
2461 		m = (typeof(m)){"LPX1000",  "PCI-X",
2462 				"Obsolete, Unsupported Fibre Channel Adapter"};
2463 		break;
2464 	case PCI_DEVICE_ID_PFLY:
2465 		m = (typeof(m)){"LP982", "PCI-X",
2466 				"Obsolete, Unsupported Fibre Channel Adapter"};
2467 		break;
2468 	case PCI_DEVICE_ID_TFLY:
2469 		m = (typeof(m)){"LP1050", "PCI-X",
2470 				"Obsolete, Unsupported Fibre Channel Adapter"};
2471 		break;
2472 	case PCI_DEVICE_ID_HELIOS:
2473 		m = (typeof(m)){"LP11000", "PCI-X2",
2474 				"Obsolete, Unsupported Fibre Channel Adapter"};
2475 		break;
2476 	case PCI_DEVICE_ID_HELIOS_SCSP:
2477 		m = (typeof(m)){"LP11000-SP", "PCI-X2",
2478 				"Obsolete, Unsupported Fibre Channel Adapter"};
2479 		break;
2480 	case PCI_DEVICE_ID_HELIOS_DCSP:
2481 		m = (typeof(m)){"LP11002-SP",  "PCI-X2",
2482 				"Obsolete, Unsupported Fibre Channel Adapter"};
2483 		break;
2484 	case PCI_DEVICE_ID_NEPTUNE:
2485 		m = (typeof(m)){"LPe1000", "PCIe",
2486 				"Obsolete, Unsupported Fibre Channel Adapter"};
2487 		break;
2488 	case PCI_DEVICE_ID_NEPTUNE_SCSP:
2489 		m = (typeof(m)){"LPe1000-SP", "PCIe",
2490 				"Obsolete, Unsupported Fibre Channel Adapter"};
2491 		break;
2492 	case PCI_DEVICE_ID_NEPTUNE_DCSP:
2493 		m = (typeof(m)){"LPe1002-SP", "PCIe",
2494 				"Obsolete, Unsupported Fibre Channel Adapter"};
2495 		break;
2496 	case PCI_DEVICE_ID_BMID:
2497 		m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"};
2498 		break;
2499 	case PCI_DEVICE_ID_BSMB:
2500 		m = (typeof(m)){"LP111", "PCI-X2",
2501 				"Obsolete, Unsupported Fibre Channel Adapter"};
2502 		break;
2503 	case PCI_DEVICE_ID_ZEPHYR:
2504 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2505 		break;
2506 	case PCI_DEVICE_ID_ZEPHYR_SCSP:
2507 		m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"};
2508 		break;
2509 	case PCI_DEVICE_ID_ZEPHYR_DCSP:
2510 		m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"};
2511 		GE = 1;
2512 		break;
2513 	case PCI_DEVICE_ID_ZMID:
2514 		m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"};
2515 		break;
2516 	case PCI_DEVICE_ID_ZSMB:
2517 		m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"};
2518 		break;
2519 	case PCI_DEVICE_ID_LP101:
2520 		m = (typeof(m)){"LP101", "PCI-X",
2521 				"Obsolete, Unsupported Fibre Channel Adapter"};
2522 		break;
2523 	case PCI_DEVICE_ID_LP10000S:
2524 		m = (typeof(m)){"LP10000-S", "PCI",
2525 				"Obsolete, Unsupported Fibre Channel Adapter"};
2526 		break;
2527 	case PCI_DEVICE_ID_LP11000S:
2528 		m = (typeof(m)){"LP11000-S", "PCI-X2",
2529 				"Obsolete, Unsupported Fibre Channel Adapter"};
2530 		break;
2531 	case PCI_DEVICE_ID_LPE11000S:
2532 		m = (typeof(m)){"LPe11000-S", "PCIe",
2533 				"Obsolete, Unsupported Fibre Channel Adapter"};
2534 		break;
2535 	case PCI_DEVICE_ID_SAT:
2536 		m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"};
2537 		break;
2538 	case PCI_DEVICE_ID_SAT_MID:
2539 		m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"};
2540 		break;
2541 	case PCI_DEVICE_ID_SAT_SMB:
2542 		m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"};
2543 		break;
2544 	case PCI_DEVICE_ID_SAT_DCSP:
2545 		m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"};
2546 		break;
2547 	case PCI_DEVICE_ID_SAT_SCSP:
2548 		m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"};
2549 		break;
2550 	case PCI_DEVICE_ID_SAT_S:
2551 		m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"};
2552 		break;
2553 	case PCI_DEVICE_ID_HORNET:
2554 		m = (typeof(m)){"LP21000", "PCIe",
2555 				"Obsolete, Unsupported FCoE Adapter"};
2556 		GE = 1;
2557 		break;
2558 	case PCI_DEVICE_ID_PROTEUS_VF:
2559 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2560 				"Obsolete, Unsupported Fibre Channel Adapter"};
2561 		break;
2562 	case PCI_DEVICE_ID_PROTEUS_PF:
2563 		m = (typeof(m)){"LPev12000", "PCIe IOV",
2564 				"Obsolete, Unsupported Fibre Channel Adapter"};
2565 		break;
2566 	case PCI_DEVICE_ID_PROTEUS_S:
2567 		m = (typeof(m)){"LPemv12002-S", "PCIe IOV",
2568 				"Obsolete, Unsupported Fibre Channel Adapter"};
2569 		break;
2570 	case PCI_DEVICE_ID_TIGERSHARK:
2571 		oneConnect = 1;
2572 		m = (typeof(m)){"OCe10100", "PCIe", "FCoE"};
2573 		break;
2574 	case PCI_DEVICE_ID_TOMCAT:
2575 		oneConnect = 1;
2576 		m = (typeof(m)){"OCe11100", "PCIe", "FCoE"};
2577 		break;
2578 	case PCI_DEVICE_ID_FALCON:
2579 		m = (typeof(m)){"LPSe12002-ML1-E", "PCIe",
2580 				"EmulexSecure Fibre"};
2581 		break;
2582 	case PCI_DEVICE_ID_BALIUS:
2583 		m = (typeof(m)){"LPVe12002", "PCIe Shared I/O",
2584 				"Obsolete, Unsupported Fibre Channel Adapter"};
2585 		break;
2586 	case PCI_DEVICE_ID_LANCER_FC:
2587 		m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"};
2588 		break;
2589 	case PCI_DEVICE_ID_LANCER_FC_VF:
2590 		m = (typeof(m)){"LPe16000", "PCIe",
2591 				"Obsolete, Unsupported Fibre Channel Adapter"};
2592 		break;
2593 	case PCI_DEVICE_ID_LANCER_FCOE:
2594 		oneConnect = 1;
2595 		m = (typeof(m)){"OCe15100", "PCIe", "FCoE"};
2596 		break;
2597 	case PCI_DEVICE_ID_LANCER_FCOE_VF:
2598 		oneConnect = 1;
2599 		m = (typeof(m)){"OCe15100", "PCIe",
2600 				"Obsolete, Unsupported FCoE"};
2601 		break;
2602 	case PCI_DEVICE_ID_LANCER_G6_FC:
2603 		m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"};
2604 		break;
2605 	case PCI_DEVICE_ID_LANCER_G7_FC:
2606 		m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"};
2607 		break;
2608 	case PCI_DEVICE_ID_LANCER_G7P_FC:
2609 		m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"};
2610 		break;
2611 	case PCI_DEVICE_ID_SKYHAWK:
2612 	case PCI_DEVICE_ID_SKYHAWK_VF:
2613 		oneConnect = 1;
2614 		m = (typeof(m)){"OCe14000", "PCIe", "FCoE"};
2615 		break;
2616 	default:
2617 		m = (typeof(m)){"Unknown", "", ""};
2618 		break;
2619 	}
2620 
2621 	if (mdp && mdp[0] == '\0')
2622 		snprintf(mdp, 79,"%s", m.name);
2623 	/*
2624 	 * oneConnect hba requires special processing, they are all initiators
2625 	 * and we put the port number on the end
2626 	 */
2627 	if (descp && descp[0] == '\0') {
2628 		if (oneConnect)
2629 			snprintf(descp, 255,
2630 				"Emulex OneConnect %s, %s Initiator %s",
2631 				m.name, m.function,
2632 				phba->Port);
2633 		else if (max_speed == 0)
2634 			snprintf(descp, 255,
2635 				"Emulex %s %s %s",
2636 				m.name, m.bus, m.function);
2637 		else
2638 			snprintf(descp, 255,
2639 				"Emulex %s %d%s %s %s",
2640 				m.name, max_speed, (GE) ? "GE" : "Gb",
2641 				m.bus, m.function);
2642 	}
2643 }
2644 
2645 /**
2646  * lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
2647  * @phba: pointer to lpfc hba data structure.
2648  * @pring: pointer to a IOCB ring.
2649  * @cnt: the number of IOCBs to be posted to the IOCB ring.
2650  *
2651  * This routine posts a given number of IOCBs with the associated DMA buffer
2652  * descriptors specified by the cnt argument to the given IOCB ring.
2653  *
2654  * Return codes
2655  *   The number of IOCBs NOT able to be posted to the IOCB ring.
2656  **/
2657 int
lpfc_post_buffer(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,int cnt)2658 lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
2659 {
2660 	IOCB_t *icmd;
2661 	struct lpfc_iocbq *iocb;
2662 	struct lpfc_dmabuf *mp1, *mp2;
2663 
2664 	cnt += pring->missbufcnt;
2665 
2666 	/* While there are buffers to post */
2667 	while (cnt > 0) {
2668 		/* Allocate buffer for  command iocb */
2669 		iocb = lpfc_sli_get_iocbq(phba);
2670 		if (iocb == NULL) {
2671 			pring->missbufcnt = cnt;
2672 			return cnt;
2673 		}
2674 		icmd = &iocb->iocb;
2675 
2676 		/* 2 buffers can be posted per command */
2677 		/* Allocate buffer to post */
2678 		mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2679 		if (mp1)
2680 		    mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
2681 		if (!mp1 || !mp1->virt) {
2682 			kfree(mp1);
2683 			lpfc_sli_release_iocbq(phba, iocb);
2684 			pring->missbufcnt = cnt;
2685 			return cnt;
2686 		}
2687 
2688 		INIT_LIST_HEAD(&mp1->list);
2689 		/* Allocate buffer to post */
2690 		if (cnt > 1) {
2691 			mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
2692 			if (mp2)
2693 				mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
2694 							    &mp2->phys);
2695 			if (!mp2 || !mp2->virt) {
2696 				kfree(mp2);
2697 				lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2698 				kfree(mp1);
2699 				lpfc_sli_release_iocbq(phba, iocb);
2700 				pring->missbufcnt = cnt;
2701 				return cnt;
2702 			}
2703 
2704 			INIT_LIST_HEAD(&mp2->list);
2705 		} else {
2706 			mp2 = NULL;
2707 		}
2708 
2709 		icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
2710 		icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
2711 		icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
2712 		icmd->ulpBdeCount = 1;
2713 		cnt--;
2714 		if (mp2) {
2715 			icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
2716 			icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
2717 			icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
2718 			cnt--;
2719 			icmd->ulpBdeCount = 2;
2720 		}
2721 
2722 		icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
2723 		icmd->ulpLe = 1;
2724 
2725 		if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) ==
2726 		    IOCB_ERROR) {
2727 			lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
2728 			kfree(mp1);
2729 			cnt++;
2730 			if (mp2) {
2731 				lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
2732 				kfree(mp2);
2733 				cnt++;
2734 			}
2735 			lpfc_sli_release_iocbq(phba, iocb);
2736 			pring->missbufcnt = cnt;
2737 			return cnt;
2738 		}
2739 		lpfc_sli_ringpostbuf_put(phba, pring, mp1);
2740 		if (mp2)
2741 			lpfc_sli_ringpostbuf_put(phba, pring, mp2);
2742 	}
2743 	pring->missbufcnt = 0;
2744 	return 0;
2745 }
2746 
2747 /**
2748  * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
2749  * @phba: pointer to lpfc hba data structure.
2750  *
2751  * This routine posts initial receive IOCB buffers to the ELS ring. The
2752  * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
2753  * set to 64 IOCBs. SLI3 only.
2754  *
2755  * Return codes
2756  *   0 - success (currently always success)
2757  **/
2758 static int
lpfc_post_rcv_buf(struct lpfc_hba * phba)2759 lpfc_post_rcv_buf(struct lpfc_hba *phba)
2760 {
2761 	struct lpfc_sli *psli = &phba->sli;
2762 
2763 	/* Ring 0, ELS / CT buffers */
2764 	lpfc_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0);
2765 	/* Ring 2 - FCP no buffers needed */
2766 
2767 	return 0;
2768 }
2769 
2770 #define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
2771 
2772 /**
2773  * lpfc_sha_init - Set up initial array of hash table entries
2774  * @HashResultPointer: pointer to an array as hash table.
2775  *
2776  * This routine sets up the initial values to the array of hash table entries
2777  * for the LC HBAs.
2778  **/
2779 static void
lpfc_sha_init(uint32_t * HashResultPointer)2780 lpfc_sha_init(uint32_t * HashResultPointer)
2781 {
2782 	HashResultPointer[0] = 0x67452301;
2783 	HashResultPointer[1] = 0xEFCDAB89;
2784 	HashResultPointer[2] = 0x98BADCFE;
2785 	HashResultPointer[3] = 0x10325476;
2786 	HashResultPointer[4] = 0xC3D2E1F0;
2787 }
2788 
2789 /**
2790  * lpfc_sha_iterate - Iterate initial hash table with the working hash table
2791  * @HashResultPointer: pointer to an initial/result hash table.
2792  * @HashWorkingPointer: pointer to an working hash table.
2793  *
2794  * This routine iterates an initial hash table pointed by @HashResultPointer
2795  * with the values from the working hash table pointeed by @HashWorkingPointer.
2796  * The results are putting back to the initial hash table, returned through
2797  * the @HashResultPointer as the result hash table.
2798  **/
2799 static void
lpfc_sha_iterate(uint32_t * HashResultPointer,uint32_t * HashWorkingPointer)2800 lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
2801 {
2802 	int t;
2803 	uint32_t TEMP;
2804 	uint32_t A, B, C, D, E;
2805 	t = 16;
2806 	do {
2807 		HashWorkingPointer[t] =
2808 		    S(1,
2809 		      HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
2810 								     8] ^
2811 		      HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
2812 	} while (++t <= 79);
2813 	t = 0;
2814 	A = HashResultPointer[0];
2815 	B = HashResultPointer[1];
2816 	C = HashResultPointer[2];
2817 	D = HashResultPointer[3];
2818 	E = HashResultPointer[4];
2819 
2820 	do {
2821 		if (t < 20) {
2822 			TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
2823 		} else if (t < 40) {
2824 			TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
2825 		} else if (t < 60) {
2826 			TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
2827 		} else {
2828 			TEMP = (B ^ C ^ D) + 0xCA62C1D6;
2829 		}
2830 		TEMP += S(5, A) + E + HashWorkingPointer[t];
2831 		E = D;
2832 		D = C;
2833 		C = S(30, B);
2834 		B = A;
2835 		A = TEMP;
2836 	} while (++t <= 79);
2837 
2838 	HashResultPointer[0] += A;
2839 	HashResultPointer[1] += B;
2840 	HashResultPointer[2] += C;
2841 	HashResultPointer[3] += D;
2842 	HashResultPointer[4] += E;
2843 
2844 }
2845 
2846 /**
2847  * lpfc_challenge_key - Create challenge key based on WWPN of the HBA
2848  * @RandomChallenge: pointer to the entry of host challenge random number array.
2849  * @HashWorking: pointer to the entry of the working hash array.
2850  *
2851  * This routine calculates the working hash array referred by @HashWorking
2852  * from the challenge random numbers associated with the host, referred by
2853  * @RandomChallenge. The result is put into the entry of the working hash
2854  * array and returned by reference through @HashWorking.
2855  **/
2856 static void
lpfc_challenge_key(uint32_t * RandomChallenge,uint32_t * HashWorking)2857 lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
2858 {
2859 	*HashWorking = (*RandomChallenge ^ *HashWorking);
2860 }
2861 
2862 /**
2863  * lpfc_hba_init - Perform special handling for LC HBA initialization
2864  * @phba: pointer to lpfc hba data structure.
2865  * @hbainit: pointer to an array of unsigned 32-bit integers.
2866  *
2867  * This routine performs the special handling for LC HBA initialization.
2868  **/
2869 void
lpfc_hba_init(struct lpfc_hba * phba,uint32_t * hbainit)2870 lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
2871 {
2872 	int t;
2873 	uint32_t *HashWorking;
2874 	uint32_t *pwwnn = (uint32_t *) phba->wwnn;
2875 
2876 	HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
2877 	if (!HashWorking)
2878 		return;
2879 
2880 	HashWorking[0] = HashWorking[78] = *pwwnn++;
2881 	HashWorking[1] = HashWorking[79] = *pwwnn;
2882 
2883 	for (t = 0; t < 7; t++)
2884 		lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
2885 
2886 	lpfc_sha_init(hbainit);
2887 	lpfc_sha_iterate(hbainit, HashWorking);
2888 	kfree(HashWorking);
2889 }
2890 
2891 /**
2892  * lpfc_cleanup - Performs vport cleanups before deleting a vport
2893  * @vport: pointer to a virtual N_Port data structure.
2894  *
2895  * This routine performs the necessary cleanups before deleting the @vport.
2896  * It invokes the discovery state machine to perform necessary state
2897  * transitions and to release the ndlps associated with the @vport. Note,
2898  * the physical port is treated as @vport 0.
2899  **/
2900 void
lpfc_cleanup(struct lpfc_vport * vport)2901 lpfc_cleanup(struct lpfc_vport *vport)
2902 {
2903 	struct lpfc_hba   *phba = vport->phba;
2904 	struct lpfc_nodelist *ndlp, *next_ndlp;
2905 	int i = 0;
2906 
2907 	if (phba->link_state > LPFC_LINK_DOWN)
2908 		lpfc_port_link_failure(vport);
2909 
2910 	/* Clean up VMID resources */
2911 	if (lpfc_is_vmid_enabled(phba))
2912 		lpfc_vmid_vport_cleanup(vport);
2913 
2914 	list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
2915 		if (vport->port_type != LPFC_PHYSICAL_PORT &&
2916 		    ndlp->nlp_DID == Fabric_DID) {
2917 			/* Just free up ndlp with Fabric_DID for vports */
2918 			lpfc_nlp_put(ndlp);
2919 			continue;
2920 		}
2921 
2922 		if (ndlp->nlp_DID == Fabric_Cntl_DID &&
2923 		    ndlp->nlp_state == NLP_STE_UNUSED_NODE) {
2924 			lpfc_nlp_put(ndlp);
2925 			continue;
2926 		}
2927 
2928 		/* Fabric Ports not in UNMAPPED state are cleaned up in the
2929 		 * DEVICE_RM event.
2930 		 */
2931 		if (ndlp->nlp_type & NLP_FABRIC &&
2932 		    ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)
2933 			lpfc_disc_state_machine(vport, ndlp, NULL,
2934 					NLP_EVT_DEVICE_RECOVERY);
2935 
2936 		if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD)))
2937 			lpfc_disc_state_machine(vport, ndlp, NULL,
2938 					NLP_EVT_DEVICE_RM);
2939 	}
2940 
2941 	/* At this point, ALL ndlp's should be gone
2942 	 * because of the previous NLP_EVT_DEVICE_RM.
2943 	 * Lets wait for this to happen, if needed.
2944 	 */
2945 	while (!list_empty(&vport->fc_nodes)) {
2946 		if (i++ > 3000) {
2947 			lpfc_printf_vlog(vport, KERN_ERR,
2948 					 LOG_TRACE_EVENT,
2949 				"0233 Nodelist not empty\n");
2950 			list_for_each_entry_safe(ndlp, next_ndlp,
2951 						&vport->fc_nodes, nlp_listp) {
2952 				lpfc_printf_vlog(ndlp->vport, KERN_ERR,
2953 						 LOG_TRACE_EVENT,
2954 						 "0282 did:x%x ndlp:x%px "
2955 						 "refcnt:%d xflags x%x nflag x%x\n",
2956 						 ndlp->nlp_DID, (void *)ndlp,
2957 						 kref_read(&ndlp->kref),
2958 						 ndlp->fc4_xpt_flags,
2959 						 ndlp->nlp_flag);
2960 			}
2961 			break;
2962 		}
2963 
2964 		/* Wait for any activity on ndlps to settle */
2965 		msleep(10);
2966 	}
2967 	lpfc_cleanup_vports_rrqs(vport, NULL);
2968 }
2969 
2970 /**
2971  * lpfc_stop_vport_timers - Stop all the timers associated with a vport
2972  * @vport: pointer to a virtual N_Port data structure.
2973  *
2974  * This routine stops all the timers associated with a @vport. This function
2975  * is invoked before disabling or deleting a @vport. Note that the physical
2976  * port is treated as @vport 0.
2977  **/
2978 void
lpfc_stop_vport_timers(struct lpfc_vport * vport)2979 lpfc_stop_vport_timers(struct lpfc_vport *vport)
2980 {
2981 	del_timer_sync(&vport->els_tmofunc);
2982 	del_timer_sync(&vport->delayed_disc_tmo);
2983 	lpfc_can_disctmo(vport);
2984 	return;
2985 }
2986 
2987 /**
2988  * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
2989  * @phba: pointer to lpfc hba data structure.
2990  *
2991  * This routine stops the SLI4 FCF rediscover wait timer if it's on. The
2992  * caller of this routine should already hold the host lock.
2993  **/
2994 void
__lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)2995 __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
2996 {
2997 	/* Clear pending FCF rediscovery wait flag */
2998 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
2999 
3000 	/* Now, try to stop the timer */
3001 	del_timer(&phba->fcf.redisc_wait);
3002 }
3003 
3004 /**
3005  * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer
3006  * @phba: pointer to lpfc hba data structure.
3007  *
3008  * This routine stops the SLI4 FCF rediscover wait timer if it's on. It
3009  * checks whether the FCF rediscovery wait timer is pending with the host
3010  * lock held before proceeding with disabling the timer and clearing the
3011  * wait timer pendig flag.
3012  **/
3013 void
lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba * phba)3014 lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba)
3015 {
3016 	spin_lock_irq(&phba->hbalock);
3017 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
3018 		/* FCF rediscovery timer already fired or stopped */
3019 		spin_unlock_irq(&phba->hbalock);
3020 		return;
3021 	}
3022 	__lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3023 	/* Clear failover in progress flags */
3024 	phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC);
3025 	spin_unlock_irq(&phba->hbalock);
3026 }
3027 
3028 /**
3029  * lpfc_cmf_stop - Stop CMF processing
3030  * @phba: pointer to lpfc hba data structure.
3031  *
3032  * This is called when the link goes down or if CMF mode is turned OFF.
3033  * It is also called when going offline or unloaded just before the
3034  * congestion info buffer is unregistered.
3035  **/
3036 void
lpfc_cmf_stop(struct lpfc_hba * phba)3037 lpfc_cmf_stop(struct lpfc_hba *phba)
3038 {
3039 	int cpu;
3040 	struct lpfc_cgn_stat *cgs;
3041 
3042 	/* We only do something if CMF is enabled */
3043 	if (!phba->sli4_hba.pc_sli4_params.cmf)
3044 		return;
3045 
3046 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3047 			"6221 Stop CMF / Cancel Timer\n");
3048 
3049 	/* Cancel the CMF timer */
3050 	hrtimer_cancel(&phba->cmf_timer);
3051 
3052 	/* Zero CMF counters */
3053 	atomic_set(&phba->cmf_busy, 0);
3054 	for_each_present_cpu(cpu) {
3055 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3056 		atomic64_set(&cgs->total_bytes, 0);
3057 		atomic64_set(&cgs->rcv_bytes, 0);
3058 		atomic_set(&cgs->rx_io_cnt, 0);
3059 		atomic64_set(&cgs->rx_latency, 0);
3060 	}
3061 	atomic_set(&phba->cmf_bw_wait, 0);
3062 
3063 	/* Resume any blocked IO - Queue unblock on workqueue */
3064 	queue_work(phba->wq, &phba->unblock_request_work);
3065 }
3066 
3067 static inline uint64_t
lpfc_get_max_line_rate(struct lpfc_hba * phba)3068 lpfc_get_max_line_rate(struct lpfc_hba *phba)
3069 {
3070 	uint64_t rate = lpfc_sli_port_speed_get(phba);
3071 
3072 	return ((((unsigned long)rate) * 1024 * 1024) / 10);
3073 }
3074 
3075 void
lpfc_cmf_signal_init(struct lpfc_hba * phba)3076 lpfc_cmf_signal_init(struct lpfc_hba *phba)
3077 {
3078 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3079 			"6223 Signal CMF init\n");
3080 
3081 	/* Use the new fc_linkspeed to recalculate */
3082 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
3083 	phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba);
3084 	phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
3085 					    phba->cmf_interval_rate, 1000);
3086 	phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count;
3087 
3088 	/* This is a signal to firmware to sync up CMF BW with link speed */
3089 	lpfc_issue_cmf_sync_wqe(phba, 0, 0);
3090 }
3091 
3092 /**
3093  * lpfc_cmf_start - Start CMF processing
3094  * @phba: pointer to lpfc hba data structure.
3095  *
3096  * This is called when the link comes up or if CMF mode is turned OFF
3097  * to Monitor or Managed.
3098  **/
3099 void
lpfc_cmf_start(struct lpfc_hba * phba)3100 lpfc_cmf_start(struct lpfc_hba *phba)
3101 {
3102 	struct lpfc_cgn_stat *cgs;
3103 	int cpu;
3104 
3105 	/* We only do something if CMF is enabled */
3106 	if (!phba->sli4_hba.pc_sli4_params.cmf ||
3107 	    phba->cmf_active_mode == LPFC_CFG_OFF)
3108 		return;
3109 
3110 	/* Reinitialize congestion buffer info */
3111 	lpfc_init_congestion_buf(phba);
3112 
3113 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
3114 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
3115 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
3116 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
3117 
3118 	atomic_set(&phba->cmf_busy, 0);
3119 	for_each_present_cpu(cpu) {
3120 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
3121 		atomic64_set(&cgs->total_bytes, 0);
3122 		atomic64_set(&cgs->rcv_bytes, 0);
3123 		atomic_set(&cgs->rx_io_cnt, 0);
3124 		atomic64_set(&cgs->rx_latency, 0);
3125 	}
3126 	phba->cmf_latency.tv_sec = 0;
3127 	phba->cmf_latency.tv_nsec = 0;
3128 
3129 	lpfc_cmf_signal_init(phba);
3130 
3131 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
3132 			"6222 Start CMF / Timer\n");
3133 
3134 	phba->cmf_timer_cnt = 0;
3135 	hrtimer_start(&phba->cmf_timer,
3136 		      ktime_set(0, LPFC_CMF_INTERVAL * 1000000),
3137 		      HRTIMER_MODE_REL);
3138 	/* Setup for latency check in IO cmpl routines */
3139 	ktime_get_real_ts64(&phba->cmf_latency);
3140 
3141 	atomic_set(&phba->cmf_bw_wait, 0);
3142 	atomic_set(&phba->cmf_stop_io, 0);
3143 }
3144 
3145 /**
3146  * lpfc_stop_hba_timers - Stop all the timers associated with an HBA
3147  * @phba: pointer to lpfc hba data structure.
3148  *
3149  * This routine stops all the timers associated with a HBA. This function is
3150  * invoked before either putting a HBA offline or unloading the driver.
3151  **/
3152 void
lpfc_stop_hba_timers(struct lpfc_hba * phba)3153 lpfc_stop_hba_timers(struct lpfc_hba *phba)
3154 {
3155 	if (phba->pport)
3156 		lpfc_stop_vport_timers(phba->pport);
3157 	cancel_delayed_work_sync(&phba->eq_delay_work);
3158 	cancel_delayed_work_sync(&phba->idle_stat_delay_work);
3159 	del_timer_sync(&phba->sli.mbox_tmo);
3160 	del_timer_sync(&phba->fabric_block_timer);
3161 	del_timer_sync(&phba->eratt_poll);
3162 	del_timer_sync(&phba->hb_tmofunc);
3163 	if (phba->sli_rev == LPFC_SLI_REV4) {
3164 		del_timer_sync(&phba->rrq_tmr);
3165 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
3166 	}
3167 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
3168 
3169 	switch (phba->pci_dev_grp) {
3170 	case LPFC_PCI_DEV_LP:
3171 		/* Stop any LightPulse device specific driver timers */
3172 		del_timer_sync(&phba->fcp_poll_timer);
3173 		break;
3174 	case LPFC_PCI_DEV_OC:
3175 		/* Stop any OneConnect device specific driver timers */
3176 		lpfc_sli4_stop_fcf_redisc_wait_timer(phba);
3177 		break;
3178 	default:
3179 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3180 				"0297 Invalid device group (x%x)\n",
3181 				phba->pci_dev_grp);
3182 		break;
3183 	}
3184 	return;
3185 }
3186 
3187 /**
3188  * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
3189  * @phba: pointer to lpfc hba data structure.
3190  * @mbx_action: flag for mailbox no wait action.
3191  *
3192  * This routine marks a HBA's management interface as blocked. Once the HBA's
3193  * management interface is marked as blocked, all the user space access to
3194  * the HBA, whether they are from sysfs interface or libdfc interface will
3195  * all be blocked. The HBA is set to block the management interface when the
3196  * driver prepares the HBA interface for online or offline.
3197  **/
3198 static void
lpfc_block_mgmt_io(struct lpfc_hba * phba,int mbx_action)3199 lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action)
3200 {
3201 	unsigned long iflag;
3202 	uint8_t actcmd = MBX_HEARTBEAT;
3203 	unsigned long timeout;
3204 
3205 	spin_lock_irqsave(&phba->hbalock, iflag);
3206 	phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
3207 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3208 	if (mbx_action == LPFC_MBX_NO_WAIT)
3209 		return;
3210 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
3211 	spin_lock_irqsave(&phba->hbalock, iflag);
3212 	if (phba->sli.mbox_active) {
3213 		actcmd = phba->sli.mbox_active->u.mb.mbxCommand;
3214 		/* Determine how long we might wait for the active mailbox
3215 		 * command to be gracefully completed by firmware.
3216 		 */
3217 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
3218 				phba->sli.mbox_active) * 1000) + jiffies;
3219 	}
3220 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3221 
3222 	/* Wait for the outstnading mailbox command to complete */
3223 	while (phba->sli.mbox_active) {
3224 		/* Check active mailbox complete status every 2ms */
3225 		msleep(2);
3226 		if (time_after(jiffies, timeout)) {
3227 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3228 					"2813 Mgmt IO is Blocked %x "
3229 					"- mbox cmd %x still active\n",
3230 					phba->sli.sli_flag, actcmd);
3231 			break;
3232 		}
3233 	}
3234 }
3235 
3236 /**
3237  * lpfc_sli4_node_prep - Assign RPIs for active nodes.
3238  * @phba: pointer to lpfc hba data structure.
3239  *
3240  * Allocate RPIs for all active remote nodes. This is needed whenever
3241  * an SLI4 adapter is reset and the driver is not unloading. Its purpose
3242  * is to fixup the temporary rpi assignments.
3243  **/
3244 void
lpfc_sli4_node_prep(struct lpfc_hba * phba)3245 lpfc_sli4_node_prep(struct lpfc_hba *phba)
3246 {
3247 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3248 	struct lpfc_vport **vports;
3249 	int i, rpi;
3250 
3251 	if (phba->sli_rev != LPFC_SLI_REV4)
3252 		return;
3253 
3254 	vports = lpfc_create_vport_work_array(phba);
3255 	if (vports == NULL)
3256 		return;
3257 
3258 	for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3259 		if (vports[i]->load_flag & FC_UNLOADING)
3260 			continue;
3261 
3262 		list_for_each_entry_safe(ndlp, next_ndlp,
3263 					 &vports[i]->fc_nodes,
3264 					 nlp_listp) {
3265 			rpi = lpfc_sli4_alloc_rpi(phba);
3266 			if (rpi == LPFC_RPI_ALLOC_ERROR) {
3267 				/* TODO print log? */
3268 				continue;
3269 			}
3270 			ndlp->nlp_rpi = rpi;
3271 			lpfc_printf_vlog(ndlp->vport, KERN_INFO,
3272 					 LOG_NODE | LOG_DISCOVERY,
3273 					 "0009 Assign RPI x%x to ndlp x%px "
3274 					 "DID:x%06x flg:x%x\n",
3275 					 ndlp->nlp_rpi, ndlp, ndlp->nlp_DID,
3276 					 ndlp->nlp_flag);
3277 		}
3278 	}
3279 	lpfc_destroy_vport_work_array(phba, vports);
3280 }
3281 
3282 /**
3283  * lpfc_create_expedite_pool - create expedite pool
3284  * @phba: pointer to lpfc hba data structure.
3285  *
3286  * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0
3287  * to expedite pool. Mark them as expedite.
3288  **/
lpfc_create_expedite_pool(struct lpfc_hba * phba)3289 static void lpfc_create_expedite_pool(struct lpfc_hba *phba)
3290 {
3291 	struct lpfc_sli4_hdw_queue *qp;
3292 	struct lpfc_io_buf *lpfc_ncmd;
3293 	struct lpfc_io_buf *lpfc_ncmd_next;
3294 	struct lpfc_epd_pool *epd_pool;
3295 	unsigned long iflag;
3296 
3297 	epd_pool = &phba->epd_pool;
3298 	qp = &phba->sli4_hba.hdwq[0];
3299 
3300 	spin_lock_init(&epd_pool->lock);
3301 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3302 	spin_lock(&epd_pool->lock);
3303 	INIT_LIST_HEAD(&epd_pool->list);
3304 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3305 				 &qp->lpfc_io_buf_list_put, list) {
3306 		list_move_tail(&lpfc_ncmd->list, &epd_pool->list);
3307 		lpfc_ncmd->expedite = true;
3308 		qp->put_io_bufs--;
3309 		epd_pool->count++;
3310 		if (epd_pool->count >= XRI_BATCH)
3311 			break;
3312 	}
3313 	spin_unlock(&epd_pool->lock);
3314 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3315 }
3316 
3317 /**
3318  * lpfc_destroy_expedite_pool - destroy expedite pool
3319  * @phba: pointer to lpfc hba data structure.
3320  *
3321  * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put
3322  * of HWQ 0. Clear the mark.
3323  **/
lpfc_destroy_expedite_pool(struct lpfc_hba * phba)3324 static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba)
3325 {
3326 	struct lpfc_sli4_hdw_queue *qp;
3327 	struct lpfc_io_buf *lpfc_ncmd;
3328 	struct lpfc_io_buf *lpfc_ncmd_next;
3329 	struct lpfc_epd_pool *epd_pool;
3330 	unsigned long iflag;
3331 
3332 	epd_pool = &phba->epd_pool;
3333 	qp = &phba->sli4_hba.hdwq[0];
3334 
3335 	spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3336 	spin_lock(&epd_pool->lock);
3337 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3338 				 &epd_pool->list, list) {
3339 		list_move_tail(&lpfc_ncmd->list,
3340 			       &qp->lpfc_io_buf_list_put);
3341 		lpfc_ncmd->flags = false;
3342 		qp->put_io_bufs++;
3343 		epd_pool->count--;
3344 	}
3345 	spin_unlock(&epd_pool->lock);
3346 	spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3347 }
3348 
3349 /**
3350  * lpfc_create_multixri_pools - create multi-XRI pools
3351  * @phba: pointer to lpfc hba data structure.
3352  *
3353  * This routine initialize public, private per HWQ. Then, move XRIs from
3354  * lpfc_io_buf_list_put to public pool. High and low watermark are also
3355  * Initialized.
3356  **/
lpfc_create_multixri_pools(struct lpfc_hba * phba)3357 void lpfc_create_multixri_pools(struct lpfc_hba *phba)
3358 {
3359 	u32 i, j;
3360 	u32 hwq_count;
3361 	u32 count_per_hwq;
3362 	struct lpfc_io_buf *lpfc_ncmd;
3363 	struct lpfc_io_buf *lpfc_ncmd_next;
3364 	unsigned long iflag;
3365 	struct lpfc_sli4_hdw_queue *qp;
3366 	struct lpfc_multixri_pool *multixri_pool;
3367 	struct lpfc_pbl_pool *pbl_pool;
3368 	struct lpfc_pvt_pool *pvt_pool;
3369 
3370 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3371 			"1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n",
3372 			phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu,
3373 			phba->sli4_hba.io_xri_cnt);
3374 
3375 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3376 		lpfc_create_expedite_pool(phba);
3377 
3378 	hwq_count = phba->cfg_hdw_queue;
3379 	count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count;
3380 
3381 	for (i = 0; i < hwq_count; i++) {
3382 		multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL);
3383 
3384 		if (!multixri_pool) {
3385 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3386 					"1238 Failed to allocate memory for "
3387 					"multixri_pool\n");
3388 
3389 			if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3390 				lpfc_destroy_expedite_pool(phba);
3391 
3392 			j = 0;
3393 			while (j < i) {
3394 				qp = &phba->sli4_hba.hdwq[j];
3395 				kfree(qp->p_multixri_pool);
3396 				j++;
3397 			}
3398 			phba->cfg_xri_rebalancing = 0;
3399 			return;
3400 		}
3401 
3402 		qp = &phba->sli4_hba.hdwq[i];
3403 		qp->p_multixri_pool = multixri_pool;
3404 
3405 		multixri_pool->xri_limit = count_per_hwq;
3406 		multixri_pool->rrb_next_hwqid = i;
3407 
3408 		/* Deal with public free xri pool */
3409 		pbl_pool = &multixri_pool->pbl_pool;
3410 		spin_lock_init(&pbl_pool->lock);
3411 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3412 		spin_lock(&pbl_pool->lock);
3413 		INIT_LIST_HEAD(&pbl_pool->list);
3414 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3415 					 &qp->lpfc_io_buf_list_put, list) {
3416 			list_move_tail(&lpfc_ncmd->list, &pbl_pool->list);
3417 			qp->put_io_bufs--;
3418 			pbl_pool->count++;
3419 		}
3420 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3421 				"1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n",
3422 				pbl_pool->count, i);
3423 		spin_unlock(&pbl_pool->lock);
3424 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3425 
3426 		/* Deal with private free xri pool */
3427 		pvt_pool = &multixri_pool->pvt_pool;
3428 		pvt_pool->high_watermark = multixri_pool->xri_limit / 2;
3429 		pvt_pool->low_watermark = XRI_BATCH;
3430 		spin_lock_init(&pvt_pool->lock);
3431 		spin_lock_irqsave(&pvt_pool->lock, iflag);
3432 		INIT_LIST_HEAD(&pvt_pool->list);
3433 		pvt_pool->count = 0;
3434 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
3435 	}
3436 }
3437 
3438 /**
3439  * lpfc_destroy_multixri_pools - destroy multi-XRI pools
3440  * @phba: pointer to lpfc hba data structure.
3441  *
3442  * This routine returns XRIs from public/private to lpfc_io_buf_list_put.
3443  **/
lpfc_destroy_multixri_pools(struct lpfc_hba * phba)3444 static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba)
3445 {
3446 	u32 i;
3447 	u32 hwq_count;
3448 	struct lpfc_io_buf *lpfc_ncmd;
3449 	struct lpfc_io_buf *lpfc_ncmd_next;
3450 	unsigned long iflag;
3451 	struct lpfc_sli4_hdw_queue *qp;
3452 	struct lpfc_multixri_pool *multixri_pool;
3453 	struct lpfc_pbl_pool *pbl_pool;
3454 	struct lpfc_pvt_pool *pvt_pool;
3455 
3456 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
3457 		lpfc_destroy_expedite_pool(phba);
3458 
3459 	if (!(phba->pport->load_flag & FC_UNLOADING))
3460 		lpfc_sli_flush_io_rings(phba);
3461 
3462 	hwq_count = phba->cfg_hdw_queue;
3463 
3464 	for (i = 0; i < hwq_count; i++) {
3465 		qp = &phba->sli4_hba.hdwq[i];
3466 		multixri_pool = qp->p_multixri_pool;
3467 		if (!multixri_pool)
3468 			continue;
3469 
3470 		qp->p_multixri_pool = NULL;
3471 
3472 		spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag);
3473 
3474 		/* Deal with public free xri pool */
3475 		pbl_pool = &multixri_pool->pbl_pool;
3476 		spin_lock(&pbl_pool->lock);
3477 
3478 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3479 				"1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n",
3480 				pbl_pool->count, i);
3481 
3482 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3483 					 &pbl_pool->list, list) {
3484 			list_move_tail(&lpfc_ncmd->list,
3485 				       &qp->lpfc_io_buf_list_put);
3486 			qp->put_io_bufs++;
3487 			pbl_pool->count--;
3488 		}
3489 
3490 		INIT_LIST_HEAD(&pbl_pool->list);
3491 		pbl_pool->count = 0;
3492 
3493 		spin_unlock(&pbl_pool->lock);
3494 
3495 		/* Deal with private free xri pool */
3496 		pvt_pool = &multixri_pool->pvt_pool;
3497 		spin_lock(&pvt_pool->lock);
3498 
3499 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3500 				"1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n",
3501 				pvt_pool->count, i);
3502 
3503 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3504 					 &pvt_pool->list, list) {
3505 			list_move_tail(&lpfc_ncmd->list,
3506 				       &qp->lpfc_io_buf_list_put);
3507 			qp->put_io_bufs++;
3508 			pvt_pool->count--;
3509 		}
3510 
3511 		INIT_LIST_HEAD(&pvt_pool->list);
3512 		pvt_pool->count = 0;
3513 
3514 		spin_unlock(&pvt_pool->lock);
3515 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag);
3516 
3517 		kfree(multixri_pool);
3518 	}
3519 }
3520 
3521 /**
3522  * lpfc_online - Initialize and bring a HBA online
3523  * @phba: pointer to lpfc hba data structure.
3524  *
3525  * This routine initializes the HBA and brings a HBA online. During this
3526  * process, the management interface is blocked to prevent user space access
3527  * to the HBA interfering with the driver initialization.
3528  *
3529  * Return codes
3530  *   0 - successful
3531  *   1 - failed
3532  **/
3533 int
lpfc_online(struct lpfc_hba * phba)3534 lpfc_online(struct lpfc_hba *phba)
3535 {
3536 	struct lpfc_vport *vport;
3537 	struct lpfc_vport **vports;
3538 	int i, error = 0;
3539 	bool vpis_cleared = false;
3540 
3541 	if (!phba)
3542 		return 0;
3543 	vport = phba->pport;
3544 
3545 	if (!(vport->fc_flag & FC_OFFLINE_MODE))
3546 		return 0;
3547 
3548 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3549 			"0458 Bring Adapter online\n");
3550 
3551 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
3552 
3553 	if (phba->sli_rev == LPFC_SLI_REV4) {
3554 		if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */
3555 			lpfc_unblock_mgmt_io(phba);
3556 			return 1;
3557 		}
3558 		spin_lock_irq(&phba->hbalock);
3559 		if (!phba->sli4_hba.max_cfg_param.vpi_used)
3560 			vpis_cleared = true;
3561 		spin_unlock_irq(&phba->hbalock);
3562 
3563 		/* Reestablish the local initiator port.
3564 		 * The offline process destroyed the previous lport.
3565 		 */
3566 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME &&
3567 				!phba->nvmet_support) {
3568 			error = lpfc_nvme_create_localport(phba->pport);
3569 			if (error)
3570 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3571 					"6132 NVME restore reg failed "
3572 					"on nvmei error x%x\n", error);
3573 		}
3574 	} else {
3575 		lpfc_sli_queue_init(phba);
3576 		if (lpfc_sli_hba_setup(phba)) {	/* Initialize SLI2/SLI3 HBA */
3577 			lpfc_unblock_mgmt_io(phba);
3578 			return 1;
3579 		}
3580 	}
3581 
3582 	vports = lpfc_create_vport_work_array(phba);
3583 	if (vports != NULL) {
3584 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3585 			struct Scsi_Host *shost;
3586 			shost = lpfc_shost_from_vport(vports[i]);
3587 			spin_lock_irq(shost->host_lock);
3588 			vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
3589 			if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
3590 				vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3591 			if (phba->sli_rev == LPFC_SLI_REV4) {
3592 				vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI;
3593 				if ((vpis_cleared) &&
3594 				    (vports[i]->port_type !=
3595 					LPFC_PHYSICAL_PORT))
3596 					vports[i]->vpi = 0;
3597 			}
3598 			spin_unlock_irq(shost->host_lock);
3599 		}
3600 	}
3601 	lpfc_destroy_vport_work_array(phba, vports);
3602 
3603 	if (phba->cfg_xri_rebalancing)
3604 		lpfc_create_multixri_pools(phba);
3605 
3606 	lpfc_cpuhp_add(phba);
3607 
3608 	lpfc_unblock_mgmt_io(phba);
3609 	return 0;
3610 }
3611 
3612 /**
3613  * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
3614  * @phba: pointer to lpfc hba data structure.
3615  *
3616  * This routine marks a HBA's management interface as not blocked. Once the
3617  * HBA's management interface is marked as not blocked, all the user space
3618  * access to the HBA, whether they are from sysfs interface or libdfc
3619  * interface will be allowed. The HBA is set to block the management interface
3620  * when the driver prepares the HBA interface for online or offline and then
3621  * set to unblock the management interface afterwards.
3622  **/
3623 void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)3624 lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
3625 {
3626 	unsigned long iflag;
3627 
3628 	spin_lock_irqsave(&phba->hbalock, iflag);
3629 	phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
3630 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3631 }
3632 
3633 /**
3634  * lpfc_offline_prep - Prepare a HBA to be brought offline
3635  * @phba: pointer to lpfc hba data structure.
3636  * @mbx_action: flag for mailbox shutdown action.
3637  *
3638  * This routine is invoked to prepare a HBA to be brought offline. It performs
3639  * unregistration login to all the nodes on all vports and flushes the mailbox
3640  * queue to make it ready to be brought offline.
3641  **/
3642 void
lpfc_offline_prep(struct lpfc_hba * phba,int mbx_action)3643 lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action)
3644 {
3645 	struct lpfc_vport *vport = phba->pport;
3646 	struct lpfc_nodelist  *ndlp, *next_ndlp;
3647 	struct lpfc_vport **vports;
3648 	struct Scsi_Host *shost;
3649 	int i;
3650 	int offline = 0;
3651 
3652 	if (vport->fc_flag & FC_OFFLINE_MODE)
3653 		return;
3654 
3655 	lpfc_block_mgmt_io(phba, mbx_action);
3656 
3657 	lpfc_linkdown(phba);
3658 
3659 	offline =  pci_channel_offline(phba->pcidev);
3660 
3661 	/* Issue an unreg_login to all nodes on all vports */
3662 	vports = lpfc_create_vport_work_array(phba);
3663 	if (vports != NULL) {
3664 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3665 			if (vports[i]->load_flag & FC_UNLOADING)
3666 				continue;
3667 			shost = lpfc_shost_from_vport(vports[i]);
3668 			spin_lock_irq(shost->host_lock);
3669 			vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED;
3670 			vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
3671 			vports[i]->fc_flag &= ~FC_VFI_REGISTERED;
3672 			spin_unlock_irq(shost->host_lock);
3673 
3674 			shost =	lpfc_shost_from_vport(vports[i]);
3675 			list_for_each_entry_safe(ndlp, next_ndlp,
3676 						 &vports[i]->fc_nodes,
3677 						 nlp_listp) {
3678 
3679 				spin_lock_irq(&ndlp->lock);
3680 				ndlp->nlp_flag &= ~NLP_NPR_ADISC;
3681 				spin_unlock_irq(&ndlp->lock);
3682 
3683 				if (offline) {
3684 					spin_lock_irq(&ndlp->lock);
3685 					ndlp->nlp_flag &= ~(NLP_UNREG_INP |
3686 							    NLP_RPI_REGISTERED);
3687 					spin_unlock_irq(&ndlp->lock);
3688 				} else {
3689 					lpfc_unreg_rpi(vports[i], ndlp);
3690 				}
3691 				/*
3692 				 * Whenever an SLI4 port goes offline, free the
3693 				 * RPI. Get a new RPI when the adapter port
3694 				 * comes back online.
3695 				 */
3696 				if (phba->sli_rev == LPFC_SLI_REV4) {
3697 					lpfc_printf_vlog(vports[i], KERN_INFO,
3698 						 LOG_NODE | LOG_DISCOVERY,
3699 						 "0011 Free RPI x%x on "
3700 						 "ndlp: x%px did x%x\n",
3701 						 ndlp->nlp_rpi, ndlp,
3702 						 ndlp->nlp_DID);
3703 					lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi);
3704 					ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
3705 				}
3706 
3707 				if (ndlp->nlp_type & NLP_FABRIC) {
3708 					lpfc_disc_state_machine(vports[i], ndlp,
3709 						NULL, NLP_EVT_DEVICE_RECOVERY);
3710 
3711 					/* Don't remove the node unless the node
3712 					 * has been unregistered with the
3713 					 * transport, and we're not in recovery
3714 					 * before dev_loss_tmo triggered.
3715 					 * Otherwise, let dev_loss take care of
3716 					 * the node.
3717 					 */
3718 					if (!(ndlp->save_flags &
3719 					      NLP_IN_RECOV_POST_DEV_LOSS) &&
3720 					    !(ndlp->fc4_xpt_flags &
3721 					      (NVME_XPT_REGD | SCSI_XPT_REGD)))
3722 						lpfc_disc_state_machine
3723 							(vports[i], ndlp,
3724 							 NULL,
3725 							 NLP_EVT_DEVICE_RM);
3726 				}
3727 			}
3728 		}
3729 	}
3730 	lpfc_destroy_vport_work_array(phba, vports);
3731 
3732 	lpfc_sli_mbox_sys_shutdown(phba, mbx_action);
3733 
3734 	if (phba->wq)
3735 		flush_workqueue(phba->wq);
3736 }
3737 
3738 /**
3739  * lpfc_offline - Bring a HBA offline
3740  * @phba: pointer to lpfc hba data structure.
3741  *
3742  * This routine actually brings a HBA offline. It stops all the timers
3743  * associated with the HBA, brings down the SLI layer, and eventually
3744  * marks the HBA as in offline state for the upper layer protocol.
3745  **/
3746 void
lpfc_offline(struct lpfc_hba * phba)3747 lpfc_offline(struct lpfc_hba *phba)
3748 {
3749 	struct Scsi_Host  *shost;
3750 	struct lpfc_vport **vports;
3751 	int i;
3752 
3753 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3754 		return;
3755 
3756 	/* stop port and all timers associated with this hba */
3757 	lpfc_stop_port(phba);
3758 
3759 	/* Tear down the local and target port registrations.  The
3760 	 * nvme transports need to cleanup.
3761 	 */
3762 	lpfc_nvmet_destroy_targetport(phba);
3763 	lpfc_nvme_destroy_localport(phba->pport);
3764 
3765 	vports = lpfc_create_vport_work_array(phba);
3766 	if (vports != NULL)
3767 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
3768 			lpfc_stop_vport_timers(vports[i]);
3769 	lpfc_destroy_vport_work_array(phba, vports);
3770 	lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
3771 			"0460 Bring Adapter offline\n");
3772 	/* Bring down the SLI Layer and cleanup.  The HBA is offline
3773 	   now.  */
3774 	lpfc_sli_hba_down(phba);
3775 	spin_lock_irq(&phba->hbalock);
3776 	phba->work_ha = 0;
3777 	spin_unlock_irq(&phba->hbalock);
3778 	vports = lpfc_create_vport_work_array(phba);
3779 	if (vports != NULL)
3780 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
3781 			shost = lpfc_shost_from_vport(vports[i]);
3782 			spin_lock_irq(shost->host_lock);
3783 			vports[i]->work_port_events = 0;
3784 			vports[i]->fc_flag |= FC_OFFLINE_MODE;
3785 			spin_unlock_irq(shost->host_lock);
3786 		}
3787 	lpfc_destroy_vport_work_array(phba, vports);
3788 	/* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled
3789 	 * in hba_unset
3790 	 */
3791 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
3792 		__lpfc_cpuhp_remove(phba);
3793 
3794 	if (phba->cfg_xri_rebalancing)
3795 		lpfc_destroy_multixri_pools(phba);
3796 }
3797 
3798 /**
3799  * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
3800  * @phba: pointer to lpfc hba data structure.
3801  *
3802  * This routine is to free all the SCSI buffers and IOCBs from the driver
3803  * list back to kernel. It is called from lpfc_pci_remove_one to free
3804  * the internal resources before the device is removed from the system.
3805  **/
3806 static void
lpfc_scsi_free(struct lpfc_hba * phba)3807 lpfc_scsi_free(struct lpfc_hba *phba)
3808 {
3809 	struct lpfc_io_buf *sb, *sb_next;
3810 
3811 	if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
3812 		return;
3813 
3814 	spin_lock_irq(&phba->hbalock);
3815 
3816 	/* Release all the lpfc_scsi_bufs maintained by this host. */
3817 
3818 	spin_lock(&phba->scsi_buf_list_put_lock);
3819 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put,
3820 				 list) {
3821 		list_del(&sb->list);
3822 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3823 			      sb->dma_handle);
3824 		kfree(sb);
3825 		phba->total_scsi_bufs--;
3826 	}
3827 	spin_unlock(&phba->scsi_buf_list_put_lock);
3828 
3829 	spin_lock(&phba->scsi_buf_list_get_lock);
3830 	list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get,
3831 				 list) {
3832 		list_del(&sb->list);
3833 		dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data,
3834 			      sb->dma_handle);
3835 		kfree(sb);
3836 		phba->total_scsi_bufs--;
3837 	}
3838 	spin_unlock(&phba->scsi_buf_list_get_lock);
3839 	spin_unlock_irq(&phba->hbalock);
3840 }
3841 
3842 /**
3843  * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists
3844  * @phba: pointer to lpfc hba data structure.
3845  *
3846  * This routine is to free all the IO buffers and IOCBs from the driver
3847  * list back to kernel. It is called from lpfc_pci_remove_one to free
3848  * the internal resources before the device is removed from the system.
3849  **/
3850 void
lpfc_io_free(struct lpfc_hba * phba)3851 lpfc_io_free(struct lpfc_hba *phba)
3852 {
3853 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
3854 	struct lpfc_sli4_hdw_queue *qp;
3855 	int idx;
3856 
3857 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
3858 		qp = &phba->sli4_hba.hdwq[idx];
3859 		/* Release all the lpfc_nvme_bufs maintained by this host. */
3860 		spin_lock(&qp->io_buf_list_put_lock);
3861 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3862 					 &qp->lpfc_io_buf_list_put,
3863 					 list) {
3864 			list_del(&lpfc_ncmd->list);
3865 			qp->put_io_bufs--;
3866 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3867 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3868 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3869 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3870 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3871 			kfree(lpfc_ncmd);
3872 			qp->total_io_bufs--;
3873 		}
3874 		spin_unlock(&qp->io_buf_list_put_lock);
3875 
3876 		spin_lock(&qp->io_buf_list_get_lock);
3877 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
3878 					 &qp->lpfc_io_buf_list_get,
3879 					 list) {
3880 			list_del(&lpfc_ncmd->list);
3881 			qp->get_io_bufs--;
3882 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
3883 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
3884 			if (phba->cfg_xpsgl && !phba->nvmet_support)
3885 				lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
3886 			lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
3887 			kfree(lpfc_ncmd);
3888 			qp->total_io_bufs--;
3889 		}
3890 		spin_unlock(&qp->io_buf_list_get_lock);
3891 	}
3892 }
3893 
3894 /**
3895  * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping
3896  * @phba: pointer to lpfc hba data structure.
3897  *
3898  * This routine first calculates the sizes of the current els and allocated
3899  * scsi sgl lists, and then goes through all sgls to updates the physical
3900  * XRIs assigned due to port function reset. During port initialization, the
3901  * current els and allocated scsi sgl lists are 0s.
3902  *
3903  * Return codes
3904  *   0 - successful (for now, it always returns 0)
3905  **/
3906 int
lpfc_sli4_els_sgl_update(struct lpfc_hba * phba)3907 lpfc_sli4_els_sgl_update(struct lpfc_hba *phba)
3908 {
3909 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
3910 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
3911 	LIST_HEAD(els_sgl_list);
3912 	int rc;
3913 
3914 	/*
3915 	 * update on pci function's els xri-sgl list
3916 	 */
3917 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
3918 
3919 	if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) {
3920 		/* els xri-sgl expanded */
3921 		xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt;
3922 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3923 				"3157 ELS xri-sgl count increased from "
3924 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3925 				els_xri_cnt);
3926 		/* allocate the additional els sgls */
3927 		for (i = 0; i < xri_cnt; i++) {
3928 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
3929 					     GFP_KERNEL);
3930 			if (sglq_entry == NULL) {
3931 				lpfc_printf_log(phba, KERN_ERR,
3932 						LOG_TRACE_EVENT,
3933 						"2562 Failure to allocate an "
3934 						"ELS sgl entry:%d\n", i);
3935 				rc = -ENOMEM;
3936 				goto out_free_mem;
3937 			}
3938 			sglq_entry->buff_type = GEN_BUFF_TYPE;
3939 			sglq_entry->virt = lpfc_mbuf_alloc(phba, 0,
3940 							   &sglq_entry->phys);
3941 			if (sglq_entry->virt == NULL) {
3942 				kfree(sglq_entry);
3943 				lpfc_printf_log(phba, KERN_ERR,
3944 						LOG_TRACE_EVENT,
3945 						"2563 Failure to allocate an "
3946 						"ELS mbuf:%d\n", i);
3947 				rc = -ENOMEM;
3948 				goto out_free_mem;
3949 			}
3950 			sglq_entry->sgl = sglq_entry->virt;
3951 			memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE);
3952 			sglq_entry->state = SGL_FREED;
3953 			list_add_tail(&sglq_entry->list, &els_sgl_list);
3954 		}
3955 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3956 		list_splice_init(&els_sgl_list,
3957 				 &phba->sli4_hba.lpfc_els_sgl_list);
3958 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3959 	} else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) {
3960 		/* els xri-sgl shrinked */
3961 		xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt;
3962 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3963 				"3158 ELS xri-sgl count decreased from "
3964 				"%d to %d\n", phba->sli4_hba.els_xri_cnt,
3965 				els_xri_cnt);
3966 		spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
3967 		list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list,
3968 				 &els_sgl_list);
3969 		/* release extra els sgls from list */
3970 		for (i = 0; i < xri_cnt; i++) {
3971 			list_remove_head(&els_sgl_list,
3972 					 sglq_entry, struct lpfc_sglq, list);
3973 			if (sglq_entry) {
3974 				__lpfc_mbuf_free(phba, sglq_entry->virt,
3975 						 sglq_entry->phys);
3976 				kfree(sglq_entry);
3977 			}
3978 		}
3979 		list_splice_init(&els_sgl_list,
3980 				 &phba->sli4_hba.lpfc_els_sgl_list);
3981 		spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
3982 	} else
3983 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3984 				"3163 ELS xri-sgl count unchanged: %d\n",
3985 				els_xri_cnt);
3986 	phba->sli4_hba.els_xri_cnt = els_xri_cnt;
3987 
3988 	/* update xris to els sgls on the list */
3989 	sglq_entry = NULL;
3990 	sglq_entry_next = NULL;
3991 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
3992 				 &phba->sli4_hba.lpfc_els_sgl_list, list) {
3993 		lxri = lpfc_sli4_next_xritag(phba);
3994 		if (lxri == NO_XRI) {
3995 			lpfc_printf_log(phba, KERN_ERR,
3996 					LOG_TRACE_EVENT,
3997 					"2400 Failed to allocate xri for "
3998 					"ELS sgl\n");
3999 			rc = -ENOMEM;
4000 			goto out_free_mem;
4001 		}
4002 		sglq_entry->sli4_lxritag = lxri;
4003 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4004 	}
4005 	return 0;
4006 
4007 out_free_mem:
4008 	lpfc_free_els_sgl_list(phba);
4009 	return rc;
4010 }
4011 
4012 /**
4013  * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping
4014  * @phba: pointer to lpfc hba data structure.
4015  *
4016  * This routine first calculates the sizes of the current els and allocated
4017  * scsi sgl lists, and then goes through all sgls to updates the physical
4018  * XRIs assigned due to port function reset. During port initialization, the
4019  * current els and allocated scsi sgl lists are 0s.
4020  *
4021  * Return codes
4022  *   0 - successful (for now, it always returns 0)
4023  **/
4024 int
lpfc_sli4_nvmet_sgl_update(struct lpfc_hba * phba)4025 lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba)
4026 {
4027 	struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL;
4028 	uint16_t i, lxri, xri_cnt, els_xri_cnt;
4029 	uint16_t nvmet_xri_cnt;
4030 	LIST_HEAD(nvmet_sgl_list);
4031 	int rc;
4032 
4033 	/*
4034 	 * update on pci function's nvmet xri-sgl list
4035 	 */
4036 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4037 
4038 	/* For NVMET, ALL remaining XRIs are dedicated for IO processing */
4039 	nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4040 	if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) {
4041 		/* els xri-sgl expanded */
4042 		xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt;
4043 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4044 				"6302 NVMET xri-sgl cnt grew from %d to %d\n",
4045 				phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt);
4046 		/* allocate the additional nvmet sgls */
4047 		for (i = 0; i < xri_cnt; i++) {
4048 			sglq_entry = kzalloc(sizeof(struct lpfc_sglq),
4049 					     GFP_KERNEL);
4050 			if (sglq_entry == NULL) {
4051 				lpfc_printf_log(phba, KERN_ERR,
4052 						LOG_TRACE_EVENT,
4053 						"6303 Failure to allocate an "
4054 						"NVMET sgl entry:%d\n", i);
4055 				rc = -ENOMEM;
4056 				goto out_free_mem;
4057 			}
4058 			sglq_entry->buff_type = NVMET_BUFF_TYPE;
4059 			sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0,
4060 							   &sglq_entry->phys);
4061 			if (sglq_entry->virt == NULL) {
4062 				kfree(sglq_entry);
4063 				lpfc_printf_log(phba, KERN_ERR,
4064 						LOG_TRACE_EVENT,
4065 						"6304 Failure to allocate an "
4066 						"NVMET buf:%d\n", i);
4067 				rc = -ENOMEM;
4068 				goto out_free_mem;
4069 			}
4070 			sglq_entry->sgl = sglq_entry->virt;
4071 			memset(sglq_entry->sgl, 0,
4072 			       phba->cfg_sg_dma_buf_size);
4073 			sglq_entry->state = SGL_FREED;
4074 			list_add_tail(&sglq_entry->list, &nvmet_sgl_list);
4075 		}
4076 		spin_lock_irq(&phba->hbalock);
4077 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4078 		list_splice_init(&nvmet_sgl_list,
4079 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4080 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4081 		spin_unlock_irq(&phba->hbalock);
4082 	} else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) {
4083 		/* nvmet xri-sgl shrunk */
4084 		xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt;
4085 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4086 				"6305 NVMET xri-sgl count decreased from "
4087 				"%d to %d\n", phba->sli4_hba.nvmet_xri_cnt,
4088 				nvmet_xri_cnt);
4089 		spin_lock_irq(&phba->hbalock);
4090 		spin_lock(&phba->sli4_hba.sgl_list_lock);
4091 		list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list,
4092 				 &nvmet_sgl_list);
4093 		/* release extra nvmet sgls from list */
4094 		for (i = 0; i < xri_cnt; i++) {
4095 			list_remove_head(&nvmet_sgl_list,
4096 					 sglq_entry, struct lpfc_sglq, list);
4097 			if (sglq_entry) {
4098 				lpfc_nvmet_buf_free(phba, sglq_entry->virt,
4099 						    sglq_entry->phys);
4100 				kfree(sglq_entry);
4101 			}
4102 		}
4103 		list_splice_init(&nvmet_sgl_list,
4104 				 &phba->sli4_hba.lpfc_nvmet_sgl_list);
4105 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
4106 		spin_unlock_irq(&phba->hbalock);
4107 	} else
4108 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4109 				"6306 NVMET xri-sgl count unchanged: %d\n",
4110 				nvmet_xri_cnt);
4111 	phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt;
4112 
4113 	/* update xris to nvmet sgls on the list */
4114 	sglq_entry = NULL;
4115 	sglq_entry_next = NULL;
4116 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
4117 				 &phba->sli4_hba.lpfc_nvmet_sgl_list, list) {
4118 		lxri = lpfc_sli4_next_xritag(phba);
4119 		if (lxri == NO_XRI) {
4120 			lpfc_printf_log(phba, KERN_ERR,
4121 					LOG_TRACE_EVENT,
4122 					"6307 Failed to allocate xri for "
4123 					"NVMET sgl\n");
4124 			rc = -ENOMEM;
4125 			goto out_free_mem;
4126 		}
4127 		sglq_entry->sli4_lxritag = lxri;
4128 		sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4129 	}
4130 	return 0;
4131 
4132 out_free_mem:
4133 	lpfc_free_nvmet_sgl_list(phba);
4134 	return rc;
4135 }
4136 
4137 int
lpfc_io_buf_flush(struct lpfc_hba * phba,struct list_head * cbuf)4138 lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf)
4139 {
4140 	LIST_HEAD(blist);
4141 	struct lpfc_sli4_hdw_queue *qp;
4142 	struct lpfc_io_buf *lpfc_cmd;
4143 	struct lpfc_io_buf *iobufp, *prev_iobufp;
4144 	int idx, cnt, xri, inserted;
4145 
4146 	cnt = 0;
4147 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4148 		qp = &phba->sli4_hba.hdwq[idx];
4149 		spin_lock_irq(&qp->io_buf_list_get_lock);
4150 		spin_lock(&qp->io_buf_list_put_lock);
4151 
4152 		/* Take everything off the get and put lists */
4153 		list_splice_init(&qp->lpfc_io_buf_list_get, &blist);
4154 		list_splice(&qp->lpfc_io_buf_list_put, &blist);
4155 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
4156 		INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
4157 		cnt += qp->get_io_bufs + qp->put_io_bufs;
4158 		qp->get_io_bufs = 0;
4159 		qp->put_io_bufs = 0;
4160 		qp->total_io_bufs = 0;
4161 		spin_unlock(&qp->io_buf_list_put_lock);
4162 		spin_unlock_irq(&qp->io_buf_list_get_lock);
4163 	}
4164 
4165 	/*
4166 	 * Take IO buffers off blist and put on cbuf sorted by XRI.
4167 	 * This is because POST_SGL takes a sequential range of XRIs
4168 	 * to post to the firmware.
4169 	 */
4170 	for (idx = 0; idx < cnt; idx++) {
4171 		list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list);
4172 		if (!lpfc_cmd)
4173 			return cnt;
4174 		if (idx == 0) {
4175 			list_add_tail(&lpfc_cmd->list, cbuf);
4176 			continue;
4177 		}
4178 		xri = lpfc_cmd->cur_iocbq.sli4_xritag;
4179 		inserted = 0;
4180 		prev_iobufp = NULL;
4181 		list_for_each_entry(iobufp, cbuf, list) {
4182 			if (xri < iobufp->cur_iocbq.sli4_xritag) {
4183 				if (prev_iobufp)
4184 					list_add(&lpfc_cmd->list,
4185 						 &prev_iobufp->list);
4186 				else
4187 					list_add(&lpfc_cmd->list, cbuf);
4188 				inserted = 1;
4189 				break;
4190 			}
4191 			prev_iobufp = iobufp;
4192 		}
4193 		if (!inserted)
4194 			list_add_tail(&lpfc_cmd->list, cbuf);
4195 	}
4196 	return cnt;
4197 }
4198 
4199 int
lpfc_io_buf_replenish(struct lpfc_hba * phba,struct list_head * cbuf)4200 lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf)
4201 {
4202 	struct lpfc_sli4_hdw_queue *qp;
4203 	struct lpfc_io_buf *lpfc_cmd;
4204 	int idx, cnt;
4205 
4206 	qp = phba->sli4_hba.hdwq;
4207 	cnt = 0;
4208 	while (!list_empty(cbuf)) {
4209 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
4210 			list_remove_head(cbuf, lpfc_cmd,
4211 					 struct lpfc_io_buf, list);
4212 			if (!lpfc_cmd)
4213 				return cnt;
4214 			cnt++;
4215 			qp = &phba->sli4_hba.hdwq[idx];
4216 			lpfc_cmd->hdwq_no = idx;
4217 			lpfc_cmd->hdwq = qp;
4218 			lpfc_cmd->cur_iocbq.wqe_cmpl = NULL;
4219 			lpfc_cmd->cur_iocbq.iocb_cmpl = NULL;
4220 			spin_lock(&qp->io_buf_list_put_lock);
4221 			list_add_tail(&lpfc_cmd->list,
4222 				      &qp->lpfc_io_buf_list_put);
4223 			qp->put_io_bufs++;
4224 			qp->total_io_bufs++;
4225 			spin_unlock(&qp->io_buf_list_put_lock);
4226 		}
4227 	}
4228 	return cnt;
4229 }
4230 
4231 /**
4232  * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping
4233  * @phba: pointer to lpfc hba data structure.
4234  *
4235  * This routine first calculates the sizes of the current els and allocated
4236  * scsi sgl lists, and then goes through all sgls to updates the physical
4237  * XRIs assigned due to port function reset. During port initialization, the
4238  * current els and allocated scsi sgl lists are 0s.
4239  *
4240  * Return codes
4241  *   0 - successful (for now, it always returns 0)
4242  **/
4243 int
lpfc_sli4_io_sgl_update(struct lpfc_hba * phba)4244 lpfc_sli4_io_sgl_update(struct lpfc_hba *phba)
4245 {
4246 	struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL;
4247 	uint16_t i, lxri, els_xri_cnt;
4248 	uint16_t io_xri_cnt, io_xri_max;
4249 	LIST_HEAD(io_sgl_list);
4250 	int rc, cnt;
4251 
4252 	/*
4253 	 * update on pci function's allocated nvme xri-sgl list
4254 	 */
4255 
4256 	/* maximum number of xris available for nvme buffers */
4257 	els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
4258 	io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt;
4259 	phba->sli4_hba.io_xri_max = io_xri_max;
4260 
4261 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4262 			"6074 Current allocated XRI sgl count:%d, "
4263 			"maximum XRI count:%d\n",
4264 			phba->sli4_hba.io_xri_cnt,
4265 			phba->sli4_hba.io_xri_max);
4266 
4267 	cnt = lpfc_io_buf_flush(phba, &io_sgl_list);
4268 
4269 	if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) {
4270 		/* max nvme xri shrunk below the allocated nvme buffers */
4271 		io_xri_cnt = phba->sli4_hba.io_xri_cnt -
4272 					phba->sli4_hba.io_xri_max;
4273 		/* release the extra allocated nvme buffers */
4274 		for (i = 0; i < io_xri_cnt; i++) {
4275 			list_remove_head(&io_sgl_list, lpfc_ncmd,
4276 					 struct lpfc_io_buf, list);
4277 			if (lpfc_ncmd) {
4278 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4279 					      lpfc_ncmd->data,
4280 					      lpfc_ncmd->dma_handle);
4281 				kfree(lpfc_ncmd);
4282 			}
4283 		}
4284 		phba->sli4_hba.io_xri_cnt -= io_xri_cnt;
4285 	}
4286 
4287 	/* update xris associated to remaining allocated nvme buffers */
4288 	lpfc_ncmd = NULL;
4289 	lpfc_ncmd_next = NULL;
4290 	phba->sli4_hba.io_xri_cnt = cnt;
4291 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
4292 				 &io_sgl_list, list) {
4293 		lxri = lpfc_sli4_next_xritag(phba);
4294 		if (lxri == NO_XRI) {
4295 			lpfc_printf_log(phba, KERN_ERR,
4296 					LOG_TRACE_EVENT,
4297 					"6075 Failed to allocate xri for "
4298 					"nvme buffer\n");
4299 			rc = -ENOMEM;
4300 			goto out_free_mem;
4301 		}
4302 		lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri;
4303 		lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4304 	}
4305 	cnt = lpfc_io_buf_replenish(phba, &io_sgl_list);
4306 	return 0;
4307 
4308 out_free_mem:
4309 	lpfc_io_free(phba);
4310 	return rc;
4311 }
4312 
4313 /**
4314  * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec
4315  * @phba: Pointer to lpfc hba data structure.
4316  * @num_to_alloc: The requested number of buffers to allocate.
4317  *
4318  * This routine allocates nvme buffers for device with SLI-4 interface spec,
4319  * the nvme buffer contains all the necessary information needed to initiate
4320  * an I/O. After allocating up to @num_to_allocate IO buffers and put
4321  * them on a list, it post them to the port by using SGL block post.
4322  *
4323  * Return codes:
4324  *   int - number of IO buffers that were allocated and posted.
4325  *   0 = failure, less than num_to_alloc is a partial failure.
4326  **/
4327 int
lpfc_new_io_buf(struct lpfc_hba * phba,int num_to_alloc)4328 lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc)
4329 {
4330 	struct lpfc_io_buf *lpfc_ncmd;
4331 	struct lpfc_iocbq *pwqeq;
4332 	uint16_t iotag, lxri = 0;
4333 	int bcnt, num_posted;
4334 	LIST_HEAD(prep_nblist);
4335 	LIST_HEAD(post_nblist);
4336 	LIST_HEAD(nvme_nblist);
4337 
4338 	phba->sli4_hba.io_xri_cnt = 0;
4339 	for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
4340 		lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL);
4341 		if (!lpfc_ncmd)
4342 			break;
4343 		/*
4344 		 * Get memory from the pci pool to map the virt space to
4345 		 * pci bus space for an I/O. The DMA buffer includes the
4346 		 * number of SGE's necessary to support the sg_tablesize.
4347 		 */
4348 		lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
4349 						  GFP_KERNEL,
4350 						  &lpfc_ncmd->dma_handle);
4351 		if (!lpfc_ncmd->data) {
4352 			kfree(lpfc_ncmd);
4353 			break;
4354 		}
4355 
4356 		if (phba->cfg_xpsgl && !phba->nvmet_support) {
4357 			INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list);
4358 		} else {
4359 			/*
4360 			 * 4K Page alignment is CRITICAL to BlockGuard, double
4361 			 * check to be sure.
4362 			 */
4363 			if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
4364 			    (((unsigned long)(lpfc_ncmd->data) &
4365 			    (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) {
4366 				lpfc_printf_log(phba, KERN_ERR,
4367 						LOG_TRACE_EVENT,
4368 						"3369 Memory alignment err: "
4369 						"addr=%lx\n",
4370 						(unsigned long)lpfc_ncmd->data);
4371 				dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4372 					      lpfc_ncmd->data,
4373 					      lpfc_ncmd->dma_handle);
4374 				kfree(lpfc_ncmd);
4375 				break;
4376 			}
4377 		}
4378 
4379 		INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list);
4380 
4381 		lxri = lpfc_sli4_next_xritag(phba);
4382 		if (lxri == NO_XRI) {
4383 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4384 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4385 			kfree(lpfc_ncmd);
4386 			break;
4387 		}
4388 		pwqeq = &lpfc_ncmd->cur_iocbq;
4389 
4390 		/* Allocate iotag for lpfc_ncmd->cur_iocbq. */
4391 		iotag = lpfc_sli_next_iotag(phba, pwqeq);
4392 		if (iotag == 0) {
4393 			dma_pool_free(phba->lpfc_sg_dma_buf_pool,
4394 				      lpfc_ncmd->data, lpfc_ncmd->dma_handle);
4395 			kfree(lpfc_ncmd);
4396 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4397 					"6121 Failed to allocate IOTAG for"
4398 					" XRI:0x%x\n", lxri);
4399 			lpfc_sli4_free_xri(phba, lxri);
4400 			break;
4401 		}
4402 		pwqeq->sli4_lxritag = lxri;
4403 		pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
4404 		pwqeq->context1 = lpfc_ncmd;
4405 
4406 		/* Initialize local short-hand pointers. */
4407 		lpfc_ncmd->dma_sgl = lpfc_ncmd->data;
4408 		lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle;
4409 		lpfc_ncmd->cur_iocbq.context1 = lpfc_ncmd;
4410 		spin_lock_init(&lpfc_ncmd->buf_lock);
4411 
4412 		/* add the nvme buffer to a post list */
4413 		list_add_tail(&lpfc_ncmd->list, &post_nblist);
4414 		phba->sli4_hba.io_xri_cnt++;
4415 	}
4416 	lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
4417 			"6114 Allocate %d out of %d requested new NVME "
4418 			"buffers\n", bcnt, num_to_alloc);
4419 
4420 	/* post the list of nvme buffer sgls to port if available */
4421 	if (!list_empty(&post_nblist))
4422 		num_posted = lpfc_sli4_post_io_sgl_list(
4423 				phba, &post_nblist, bcnt);
4424 	else
4425 		num_posted = 0;
4426 
4427 	return num_posted;
4428 }
4429 
4430 static uint64_t
lpfc_get_wwpn(struct lpfc_hba * phba)4431 lpfc_get_wwpn(struct lpfc_hba *phba)
4432 {
4433 	uint64_t wwn;
4434 	int rc;
4435 	LPFC_MBOXQ_t *mboxq;
4436 	MAILBOX_t *mb;
4437 
4438 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
4439 						GFP_KERNEL);
4440 	if (!mboxq)
4441 		return (uint64_t)-1;
4442 
4443 	/* First get WWN of HBA instance */
4444 	lpfc_read_nv(phba, mboxq);
4445 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4446 	if (rc != MBX_SUCCESS) {
4447 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4448 				"6019 Mailbox failed , mbxCmd x%x "
4449 				"READ_NV, mbxStatus x%x\n",
4450 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4451 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
4452 		mempool_free(mboxq, phba->mbox_mem_pool);
4453 		return (uint64_t) -1;
4454 	}
4455 	mb = &mboxq->u.mb;
4456 	memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t));
4457 	/* wwn is WWPN of HBA instance */
4458 	mempool_free(mboxq, phba->mbox_mem_pool);
4459 	if (phba->sli_rev == LPFC_SLI_REV4)
4460 		return be64_to_cpu(wwn);
4461 	else
4462 		return rol64(wwn, 32);
4463 }
4464 
4465 /**
4466  * lpfc_vmid_res_alloc - Allocates resources for VMID
4467  * @phba: pointer to lpfc hba data structure.
4468  * @vport: pointer to vport data structure
4469  *
4470  * This routine allocated the resources needed for the VMID.
4471  *
4472  * Return codes
4473  *	0 on Success
4474  *	Non-0 on Failure
4475  */
4476 static int
lpfc_vmid_res_alloc(struct lpfc_hba * phba,struct lpfc_vport * vport)4477 lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport)
4478 {
4479 	/* VMID feature is supported only on SLI4 */
4480 	if (phba->sli_rev == LPFC_SLI_REV3) {
4481 		phba->cfg_vmid_app_header = 0;
4482 		phba->cfg_vmid_priority_tagging = 0;
4483 	}
4484 
4485 	if (lpfc_is_vmid_enabled(phba)) {
4486 		vport->vmid =
4487 		    kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid),
4488 			    GFP_KERNEL);
4489 		if (!vport->vmid)
4490 			return -ENOMEM;
4491 
4492 		rwlock_init(&vport->vmid_lock);
4493 
4494 		/* Set the VMID parameters for the vport */
4495 		vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging;
4496 		vport->vmid_inactivity_timeout =
4497 		    phba->cfg_vmid_inactivity_timeout;
4498 		vport->max_vmid = phba->cfg_max_vmid;
4499 		vport->cur_vmid_cnt = 0;
4500 
4501 		vport->vmid_priority_range = bitmap_zalloc
4502 			(LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL);
4503 
4504 		if (!vport->vmid_priority_range) {
4505 			kfree(vport->vmid);
4506 			return -ENOMEM;
4507 		}
4508 
4509 		hash_init(vport->hash_table);
4510 	}
4511 	return 0;
4512 }
4513 
4514 /**
4515  * lpfc_create_port - Create an FC port
4516  * @phba: pointer to lpfc hba data structure.
4517  * @instance: a unique integer ID to this FC port.
4518  * @dev: pointer to the device data structure.
4519  *
4520  * This routine creates a FC port for the upper layer protocol. The FC port
4521  * can be created on top of either a physical port or a virtual port provided
4522  * by the HBA. This routine also allocates a SCSI host data structure (shost)
4523  * and associates the FC port created before adding the shost into the SCSI
4524  * layer.
4525  *
4526  * Return codes
4527  *   @vport - pointer to the virtual N_Port data structure.
4528  *   NULL - port create failed.
4529  **/
4530 struct lpfc_vport *
lpfc_create_port(struct lpfc_hba * phba,int instance,struct device * dev)4531 lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
4532 {
4533 	struct lpfc_vport *vport;
4534 	struct Scsi_Host  *shost = NULL;
4535 	struct scsi_host_template *template;
4536 	int error = 0;
4537 	int i;
4538 	uint64_t wwn;
4539 	bool use_no_reset_hba = false;
4540 	int rc;
4541 
4542 	if (lpfc_no_hba_reset_cnt) {
4543 		if (phba->sli_rev < LPFC_SLI_REV4 &&
4544 		    dev == &phba->pcidev->dev) {
4545 			/* Reset the port first */
4546 			lpfc_sli_brdrestart(phba);
4547 			rc = lpfc_sli_chipset_init(phba);
4548 			if (rc)
4549 				return NULL;
4550 		}
4551 		wwn = lpfc_get_wwpn(phba);
4552 	}
4553 
4554 	for (i = 0; i < lpfc_no_hba_reset_cnt; i++) {
4555 		if (wwn == lpfc_no_hba_reset[i]) {
4556 			lpfc_printf_log(phba, KERN_ERR,
4557 					LOG_TRACE_EVENT,
4558 					"6020 Setting use_no_reset port=%llx\n",
4559 					wwn);
4560 			use_no_reset_hba = true;
4561 			break;
4562 		}
4563 	}
4564 
4565 	/* Seed template for SCSI host registration */
4566 	if (dev == &phba->pcidev->dev) {
4567 		template = &phba->port_template;
4568 
4569 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
4570 			/* Seed physical port template */
4571 			memcpy(template, &lpfc_template, sizeof(*template));
4572 
4573 			if (use_no_reset_hba)
4574 				/* template is for a no reset SCSI Host */
4575 				template->eh_host_reset_handler = NULL;
4576 
4577 			/* Template for all vports this physical port creates */
4578 			memcpy(&phba->vport_template, &lpfc_template,
4579 			       sizeof(*template));
4580 			phba->vport_template.shost_attrs = lpfc_vport_attrs;
4581 			phba->vport_template.eh_bus_reset_handler = NULL;
4582 			phba->vport_template.eh_host_reset_handler = NULL;
4583 			phba->vport_template.vendor_id = 0;
4584 
4585 			/* Initialize the host templates with updated value */
4586 			if (phba->sli_rev == LPFC_SLI_REV4) {
4587 				template->sg_tablesize = phba->cfg_scsi_seg_cnt;
4588 				phba->vport_template.sg_tablesize =
4589 					phba->cfg_scsi_seg_cnt;
4590 			} else {
4591 				template->sg_tablesize = phba->cfg_sg_seg_cnt;
4592 				phba->vport_template.sg_tablesize =
4593 					phba->cfg_sg_seg_cnt;
4594 			}
4595 
4596 		} else {
4597 			/* NVMET is for physical port only */
4598 			memcpy(template, &lpfc_template_nvme,
4599 			       sizeof(*template));
4600 		}
4601 	} else {
4602 		template = &phba->vport_template;
4603 	}
4604 
4605 	shost = scsi_host_alloc(template, sizeof(struct lpfc_vport));
4606 	if (!shost)
4607 		goto out;
4608 
4609 	vport = (struct lpfc_vport *) shost->hostdata;
4610 	vport->phba = phba;
4611 	vport->load_flag |= FC_LOADING;
4612 	vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
4613 	vport->fc_rscn_flush = 0;
4614 	lpfc_get_vport_cfgparam(vport);
4615 
4616 	/* Adjust value in vport */
4617 	vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type;
4618 
4619 	shost->unique_id = instance;
4620 	shost->max_id = LPFC_MAX_TARGET;
4621 	shost->max_lun = vport->cfg_max_luns;
4622 	shost->this_id = -1;
4623 	shost->max_cmd_len = 16;
4624 
4625 	if (phba->sli_rev == LPFC_SLI_REV4) {
4626 		if (!phba->cfg_fcp_mq_threshold ||
4627 		    phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue)
4628 			phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue;
4629 
4630 		shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(),
4631 					    phba->cfg_fcp_mq_threshold);
4632 
4633 		shost->dma_boundary =
4634 			phba->sli4_hba.pc_sli4_params.sge_supp_len-1;
4635 
4636 		if (phba->cfg_xpsgl && !phba->nvmet_support)
4637 			shost->sg_tablesize = LPFC_MAX_SG_TABLESIZE;
4638 		else
4639 			shost->sg_tablesize = phba->cfg_scsi_seg_cnt;
4640 	} else
4641 		/* SLI-3 has a limited number of hardware queues (3),
4642 		 * thus there is only one for FCP processing.
4643 		 */
4644 		shost->nr_hw_queues = 1;
4645 
4646 	/*
4647 	 * Set initial can_queue value since 0 is no longer supported and
4648 	 * scsi_add_host will fail. This will be adjusted later based on the
4649 	 * max xri value determined in hba setup.
4650 	 */
4651 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
4652 	if (dev != &phba->pcidev->dev) {
4653 		shost->transportt = lpfc_vport_transport_template;
4654 		vport->port_type = LPFC_NPIV_PORT;
4655 	} else {
4656 		shost->transportt = lpfc_transport_template;
4657 		vport->port_type = LPFC_PHYSICAL_PORT;
4658 	}
4659 
4660 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
4661 			"9081 CreatePort TMPLATE type %x TBLsize %d "
4662 			"SEGcnt %d/%d\n",
4663 			vport->port_type, shost->sg_tablesize,
4664 			phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt);
4665 
4666 	/* Allocate the resources for VMID */
4667 	rc = lpfc_vmid_res_alloc(phba, vport);
4668 
4669 	if (rc)
4670 		goto out_put_shost;
4671 
4672 	/* Initialize all internally managed lists. */
4673 	INIT_LIST_HEAD(&vport->fc_nodes);
4674 	INIT_LIST_HEAD(&vport->rcv_buffer_list);
4675 	spin_lock_init(&vport->work_port_lock);
4676 
4677 	timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0);
4678 
4679 	timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0);
4680 
4681 	timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0);
4682 
4683 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED)
4684 		lpfc_setup_bg(phba, shost);
4685 
4686 	error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev);
4687 	if (error)
4688 		goto out_free_vmid;
4689 
4690 	spin_lock_irq(&phba->port_list_lock);
4691 	list_add_tail(&vport->listentry, &phba->port_list);
4692 	spin_unlock_irq(&phba->port_list_lock);
4693 	return vport;
4694 
4695 out_free_vmid:
4696 	kfree(vport->vmid);
4697 	bitmap_free(vport->vmid_priority_range);
4698 out_put_shost:
4699 	scsi_host_put(shost);
4700 out:
4701 	return NULL;
4702 }
4703 
4704 /**
4705  * destroy_port -  destroy an FC port
4706  * @vport: pointer to an lpfc virtual N_Port data structure.
4707  *
4708  * This routine destroys a FC port from the upper layer protocol. All the
4709  * resources associated with the port are released.
4710  **/
4711 void
destroy_port(struct lpfc_vport * vport)4712 destroy_port(struct lpfc_vport *vport)
4713 {
4714 	struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
4715 	struct lpfc_hba  *phba = vport->phba;
4716 
4717 	lpfc_debugfs_terminate(vport);
4718 	fc_remove_host(shost);
4719 	scsi_remove_host(shost);
4720 
4721 	spin_lock_irq(&phba->port_list_lock);
4722 	list_del_init(&vport->listentry);
4723 	spin_unlock_irq(&phba->port_list_lock);
4724 
4725 	lpfc_cleanup(vport);
4726 	return;
4727 }
4728 
4729 /**
4730  * lpfc_get_instance - Get a unique integer ID
4731  *
4732  * This routine allocates a unique integer ID from lpfc_hba_index pool. It
4733  * uses the kernel idr facility to perform the task.
4734  *
4735  * Return codes:
4736  *   instance - a unique integer ID allocated as the new instance.
4737  *   -1 - lpfc get instance failed.
4738  **/
4739 int
lpfc_get_instance(void)4740 lpfc_get_instance(void)
4741 {
4742 	int ret;
4743 
4744 	ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL);
4745 	return ret < 0 ? -1 : ret;
4746 }
4747 
4748 /**
4749  * lpfc_scan_finished - method for SCSI layer to detect whether scan is done
4750  * @shost: pointer to SCSI host data structure.
4751  * @time: elapsed time of the scan in jiffies.
4752  *
4753  * This routine is called by the SCSI layer with a SCSI host to determine
4754  * whether the scan host is finished.
4755  *
4756  * Note: there is no scan_start function as adapter initialization will have
4757  * asynchronously kicked off the link initialization.
4758  *
4759  * Return codes
4760  *   0 - SCSI host scan is not over yet.
4761  *   1 - SCSI host scan is over.
4762  **/
lpfc_scan_finished(struct Scsi_Host * shost,unsigned long time)4763 int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
4764 {
4765 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4766 	struct lpfc_hba   *phba = vport->phba;
4767 	int stat = 0;
4768 
4769 	spin_lock_irq(shost->host_lock);
4770 
4771 	if (vport->load_flag & FC_UNLOADING) {
4772 		stat = 1;
4773 		goto finished;
4774 	}
4775 	if (time >= msecs_to_jiffies(30 * 1000)) {
4776 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4777 				"0461 Scanning longer than 30 "
4778 				"seconds.  Continuing initialization\n");
4779 		stat = 1;
4780 		goto finished;
4781 	}
4782 	if (time >= msecs_to_jiffies(15 * 1000) &&
4783 	    phba->link_state <= LPFC_LINK_DOWN) {
4784 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4785 				"0465 Link down longer than 15 "
4786 				"seconds.  Continuing initialization\n");
4787 		stat = 1;
4788 		goto finished;
4789 	}
4790 
4791 	if (vport->port_state != LPFC_VPORT_READY)
4792 		goto finished;
4793 	if (vport->num_disc_nodes || vport->fc_prli_sent)
4794 		goto finished;
4795 	if (vport->fc_map_cnt == 0 && time < msecs_to_jiffies(2 * 1000))
4796 		goto finished;
4797 	if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
4798 		goto finished;
4799 
4800 	stat = 1;
4801 
4802 finished:
4803 	spin_unlock_irq(shost->host_lock);
4804 	return stat;
4805 }
4806 
lpfc_host_supported_speeds_set(struct Scsi_Host * shost)4807 static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost)
4808 {
4809 	struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata;
4810 	struct lpfc_hba   *phba = vport->phba;
4811 
4812 	fc_host_supported_speeds(shost) = 0;
4813 	/*
4814 	 * Avoid reporting supported link speed for FCoE as it can't be
4815 	 * controlled via FCoE.
4816 	 */
4817 	if (phba->hba_flag & HBA_FCOE_MODE)
4818 		return;
4819 
4820 	if (phba->lmt & LMT_256Gb)
4821 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT;
4822 	if (phba->lmt & LMT_128Gb)
4823 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT;
4824 	if (phba->lmt & LMT_64Gb)
4825 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT;
4826 	if (phba->lmt & LMT_32Gb)
4827 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT;
4828 	if (phba->lmt & LMT_16Gb)
4829 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT;
4830 	if (phba->lmt & LMT_10Gb)
4831 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
4832 	if (phba->lmt & LMT_8Gb)
4833 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
4834 	if (phba->lmt & LMT_4Gb)
4835 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
4836 	if (phba->lmt & LMT_2Gb)
4837 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
4838 	if (phba->lmt & LMT_1Gb)
4839 		fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
4840 }
4841 
4842 /**
4843  * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
4844  * @shost: pointer to SCSI host data structure.
4845  *
4846  * This routine initializes a given SCSI host attributes on a FC port. The
4847  * SCSI host can be either on top of a physical port or a virtual port.
4848  **/
lpfc_host_attrib_init(struct Scsi_Host * shost)4849 void lpfc_host_attrib_init(struct Scsi_Host *shost)
4850 {
4851 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
4852 	struct lpfc_hba   *phba = vport->phba;
4853 	/*
4854 	 * Set fixed host attributes.  Must done after lpfc_sli_hba_setup().
4855 	 */
4856 
4857 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
4858 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
4859 	fc_host_supported_classes(shost) = FC_COS_CLASS3;
4860 
4861 	memset(fc_host_supported_fc4s(shost), 0,
4862 	       sizeof(fc_host_supported_fc4s(shost)));
4863 	fc_host_supported_fc4s(shost)[2] = 1;
4864 	fc_host_supported_fc4s(shost)[7] = 1;
4865 
4866 	lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
4867 				 sizeof fc_host_symbolic_name(shost));
4868 
4869 	lpfc_host_supported_speeds_set(shost);
4870 
4871 	fc_host_maxframe_size(shost) =
4872 		(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
4873 		(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
4874 
4875 	fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo;
4876 
4877 	/* This value is also unchanging */
4878 	memset(fc_host_active_fc4s(shost), 0,
4879 	       sizeof(fc_host_active_fc4s(shost)));
4880 	fc_host_active_fc4s(shost)[2] = 1;
4881 	fc_host_active_fc4s(shost)[7] = 1;
4882 
4883 	fc_host_max_npiv_vports(shost) = phba->max_vpi;
4884 	spin_lock_irq(shost->host_lock);
4885 	vport->load_flag &= ~FC_LOADING;
4886 	spin_unlock_irq(shost->host_lock);
4887 }
4888 
4889 /**
4890  * lpfc_stop_port_s3 - Stop SLI3 device port
4891  * @phba: pointer to lpfc hba data structure.
4892  *
4893  * This routine is invoked to stop an SLI3 device port, it stops the device
4894  * from generating interrupts and stops the device driver's timers for the
4895  * device.
4896  **/
4897 static void
lpfc_stop_port_s3(struct lpfc_hba * phba)4898 lpfc_stop_port_s3(struct lpfc_hba *phba)
4899 {
4900 	/* Clear all interrupt enable conditions */
4901 	writel(0, phba->HCregaddr);
4902 	readl(phba->HCregaddr); /* flush */
4903 	/* Clear all pending interrupts */
4904 	writel(0xffffffff, phba->HAregaddr);
4905 	readl(phba->HAregaddr); /* flush */
4906 
4907 	/* Reset some HBA SLI setup states */
4908 	lpfc_stop_hba_timers(phba);
4909 	phba->pport->work_port_events = 0;
4910 }
4911 
4912 /**
4913  * lpfc_stop_port_s4 - Stop SLI4 device port
4914  * @phba: pointer to lpfc hba data structure.
4915  *
4916  * This routine is invoked to stop an SLI4 device port, it stops the device
4917  * from generating interrupts and stops the device driver's timers for the
4918  * device.
4919  **/
4920 static void
lpfc_stop_port_s4(struct lpfc_hba * phba)4921 lpfc_stop_port_s4(struct lpfc_hba *phba)
4922 {
4923 	/* Reset some HBA SLI4 setup states */
4924 	lpfc_stop_hba_timers(phba);
4925 	if (phba->pport)
4926 		phba->pport->work_port_events = 0;
4927 	phba->sli4_hba.intr_enable = 0;
4928 }
4929 
4930 /**
4931  * lpfc_stop_port - Wrapper function for stopping hba port
4932  * @phba: Pointer to HBA context object.
4933  *
4934  * This routine wraps the actual SLI3 or SLI4 hba stop port routine from
4935  * the API jump table function pointer from the lpfc_hba struct.
4936  **/
4937 void
lpfc_stop_port(struct lpfc_hba * phba)4938 lpfc_stop_port(struct lpfc_hba *phba)
4939 {
4940 	phba->lpfc_stop_port(phba);
4941 
4942 	if (phba->wq)
4943 		flush_workqueue(phba->wq);
4944 }
4945 
4946 /**
4947  * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer
4948  * @phba: Pointer to hba for which this call is being executed.
4949  *
4950  * This routine starts the timer waiting for the FCF rediscovery to complete.
4951  **/
4952 void
lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba * phba)4953 lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba)
4954 {
4955 	unsigned long fcf_redisc_wait_tmo =
4956 		(jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO));
4957 	/* Start fcf rediscovery wait period timer */
4958 	mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo);
4959 	spin_lock_irq(&phba->hbalock);
4960 	/* Allow action to new fcf asynchronous event */
4961 	phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE);
4962 	/* Mark the FCF rediscovery pending state */
4963 	phba->fcf.fcf_flag |= FCF_REDISC_PEND;
4964 	spin_unlock_irq(&phba->hbalock);
4965 }
4966 
4967 /**
4968  * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout
4969  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
4970  *
4971  * This routine is invoked when waiting for FCF table rediscover has been
4972  * timed out. If new FCF record(s) has (have) been discovered during the
4973  * wait period, a new FCF event shall be added to the FCOE async event
4974  * list, and then worker thread shall be waked up for processing from the
4975  * worker thread context.
4976  **/
4977 static void
lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list * t)4978 lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t)
4979 {
4980 	struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait);
4981 
4982 	/* Don't send FCF rediscovery event if timer cancelled */
4983 	spin_lock_irq(&phba->hbalock);
4984 	if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) {
4985 		spin_unlock_irq(&phba->hbalock);
4986 		return;
4987 	}
4988 	/* Clear FCF rediscovery timer pending flag */
4989 	phba->fcf.fcf_flag &= ~FCF_REDISC_PEND;
4990 	/* FCF rediscovery event to worker thread */
4991 	phba->fcf.fcf_flag |= FCF_REDISC_EVT;
4992 	spin_unlock_irq(&phba->hbalock);
4993 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
4994 			"2776 FCF rediscover quiescent timer expired\n");
4995 	/* wake up worker thread */
4996 	lpfc_worker_wake_up(phba);
4997 }
4998 
4999 /**
5000  * lpfc_vmid_poll - VMID timeout detection
5001  * @t: Timer context used to obtain the pointer to lpfc hba data structure.
5002  *
5003  * This routine is invoked when there is no I/O on by a VM for the specified
5004  * amount of time. When this situation is detected, the VMID has to be
5005  * deregistered from the switch and all the local resources freed. The VMID
5006  * will be reassigned to the VM once the I/O begins.
5007  **/
5008 static void
lpfc_vmid_poll(struct timer_list * t)5009 lpfc_vmid_poll(struct timer_list *t)
5010 {
5011 	struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll);
5012 	u32 wake_up = 0;
5013 
5014 	/* check if there is a need to issue QFPA */
5015 	if (phba->pport->vmid_priority_tagging) {
5016 		wake_up = 1;
5017 		phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
5018 	}
5019 
5020 	/* Is the vmid inactivity timer enabled */
5021 	if (phba->pport->vmid_inactivity_timeout ||
5022 	    phba->pport->load_flag & FC_DEREGISTER_ALL_APP_ID) {
5023 		wake_up = 1;
5024 		phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID;
5025 	}
5026 
5027 	if (wake_up)
5028 		lpfc_worker_wake_up(phba);
5029 
5030 	/* restart the timer for the next iteration */
5031 	mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 *
5032 							LPFC_VMID_TIMER));
5033 }
5034 
5035 /**
5036  * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code
5037  * @phba: pointer to lpfc hba data structure.
5038  * @acqe_link: pointer to the async link completion queue entry.
5039  *
5040  * This routine is to parse the SLI4 link-attention link fault code.
5041  **/
5042 static void
lpfc_sli4_parse_latt_fault(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5043 lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba,
5044 			   struct lpfc_acqe_link *acqe_link)
5045 {
5046 	switch (bf_get(lpfc_acqe_link_fault, acqe_link)) {
5047 	case LPFC_ASYNC_LINK_FAULT_NONE:
5048 	case LPFC_ASYNC_LINK_FAULT_LOCAL:
5049 	case LPFC_ASYNC_LINK_FAULT_REMOTE:
5050 	case LPFC_ASYNC_LINK_FAULT_LR_LRR:
5051 		break;
5052 	default:
5053 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5054 				"0398 Unknown link fault code: x%x\n",
5055 				bf_get(lpfc_acqe_link_fault, acqe_link));
5056 		break;
5057 	}
5058 }
5059 
5060 /**
5061  * lpfc_sli4_parse_latt_type - Parse sli4 link attention type
5062  * @phba: pointer to lpfc hba data structure.
5063  * @acqe_link: pointer to the async link completion queue entry.
5064  *
5065  * This routine is to parse the SLI4 link attention type and translate it
5066  * into the base driver's link attention type coding.
5067  *
5068  * Return: Link attention type in terms of base driver's coding.
5069  **/
5070 static uint8_t
lpfc_sli4_parse_latt_type(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5071 lpfc_sli4_parse_latt_type(struct lpfc_hba *phba,
5072 			  struct lpfc_acqe_link *acqe_link)
5073 {
5074 	uint8_t att_type;
5075 
5076 	switch (bf_get(lpfc_acqe_link_status, acqe_link)) {
5077 	case LPFC_ASYNC_LINK_STATUS_DOWN:
5078 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN:
5079 		att_type = LPFC_ATT_LINK_DOWN;
5080 		break;
5081 	case LPFC_ASYNC_LINK_STATUS_UP:
5082 		/* Ignore physical link up events - wait for logical link up */
5083 		att_type = LPFC_ATT_RESERVED;
5084 		break;
5085 	case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP:
5086 		att_type = LPFC_ATT_LINK_UP;
5087 		break;
5088 	default:
5089 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5090 				"0399 Invalid link attention type: x%x\n",
5091 				bf_get(lpfc_acqe_link_status, acqe_link));
5092 		att_type = LPFC_ATT_RESERVED;
5093 		break;
5094 	}
5095 	return att_type;
5096 }
5097 
5098 /**
5099  * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed
5100  * @phba: pointer to lpfc hba data structure.
5101  *
5102  * This routine is to get an SLI3 FC port's link speed in Mbps.
5103  *
5104  * Return: link speed in terms of Mbps.
5105  **/
5106 uint32_t
lpfc_sli_port_speed_get(struct lpfc_hba * phba)5107 lpfc_sli_port_speed_get(struct lpfc_hba *phba)
5108 {
5109 	uint32_t link_speed;
5110 
5111 	if (!lpfc_is_link_up(phba))
5112 		return 0;
5113 
5114 	if (phba->sli_rev <= LPFC_SLI_REV3) {
5115 		switch (phba->fc_linkspeed) {
5116 		case LPFC_LINK_SPEED_1GHZ:
5117 			link_speed = 1000;
5118 			break;
5119 		case LPFC_LINK_SPEED_2GHZ:
5120 			link_speed = 2000;
5121 			break;
5122 		case LPFC_LINK_SPEED_4GHZ:
5123 			link_speed = 4000;
5124 			break;
5125 		case LPFC_LINK_SPEED_8GHZ:
5126 			link_speed = 8000;
5127 			break;
5128 		case LPFC_LINK_SPEED_10GHZ:
5129 			link_speed = 10000;
5130 			break;
5131 		case LPFC_LINK_SPEED_16GHZ:
5132 			link_speed = 16000;
5133 			break;
5134 		default:
5135 			link_speed = 0;
5136 		}
5137 	} else {
5138 		if (phba->sli4_hba.link_state.logical_speed)
5139 			link_speed =
5140 			      phba->sli4_hba.link_state.logical_speed;
5141 		else
5142 			link_speed = phba->sli4_hba.link_state.speed;
5143 	}
5144 	return link_speed;
5145 }
5146 
5147 /**
5148  * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed
5149  * @phba: pointer to lpfc hba data structure.
5150  * @evt_code: asynchronous event code.
5151  * @speed_code: asynchronous event link speed code.
5152  *
5153  * This routine is to parse the giving SLI4 async event link speed code into
5154  * value of Mbps for the link speed.
5155  *
5156  * Return: link speed in terms of Mbps.
5157  **/
5158 static uint32_t
lpfc_sli4_port_speed_parse(struct lpfc_hba * phba,uint32_t evt_code,uint8_t speed_code)5159 lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code,
5160 			   uint8_t speed_code)
5161 {
5162 	uint32_t port_speed;
5163 
5164 	switch (evt_code) {
5165 	case LPFC_TRAILER_CODE_LINK:
5166 		switch (speed_code) {
5167 		case LPFC_ASYNC_LINK_SPEED_ZERO:
5168 			port_speed = 0;
5169 			break;
5170 		case LPFC_ASYNC_LINK_SPEED_10MBPS:
5171 			port_speed = 10;
5172 			break;
5173 		case LPFC_ASYNC_LINK_SPEED_100MBPS:
5174 			port_speed = 100;
5175 			break;
5176 		case LPFC_ASYNC_LINK_SPEED_1GBPS:
5177 			port_speed = 1000;
5178 			break;
5179 		case LPFC_ASYNC_LINK_SPEED_10GBPS:
5180 			port_speed = 10000;
5181 			break;
5182 		case LPFC_ASYNC_LINK_SPEED_20GBPS:
5183 			port_speed = 20000;
5184 			break;
5185 		case LPFC_ASYNC_LINK_SPEED_25GBPS:
5186 			port_speed = 25000;
5187 			break;
5188 		case LPFC_ASYNC_LINK_SPEED_40GBPS:
5189 			port_speed = 40000;
5190 			break;
5191 		case LPFC_ASYNC_LINK_SPEED_100GBPS:
5192 			port_speed = 100000;
5193 			break;
5194 		default:
5195 			port_speed = 0;
5196 		}
5197 		break;
5198 	case LPFC_TRAILER_CODE_FC:
5199 		switch (speed_code) {
5200 		case LPFC_FC_LA_SPEED_UNKNOWN:
5201 			port_speed = 0;
5202 			break;
5203 		case LPFC_FC_LA_SPEED_1G:
5204 			port_speed = 1000;
5205 			break;
5206 		case LPFC_FC_LA_SPEED_2G:
5207 			port_speed = 2000;
5208 			break;
5209 		case LPFC_FC_LA_SPEED_4G:
5210 			port_speed = 4000;
5211 			break;
5212 		case LPFC_FC_LA_SPEED_8G:
5213 			port_speed = 8000;
5214 			break;
5215 		case LPFC_FC_LA_SPEED_10G:
5216 			port_speed = 10000;
5217 			break;
5218 		case LPFC_FC_LA_SPEED_16G:
5219 			port_speed = 16000;
5220 			break;
5221 		case LPFC_FC_LA_SPEED_32G:
5222 			port_speed = 32000;
5223 			break;
5224 		case LPFC_FC_LA_SPEED_64G:
5225 			port_speed = 64000;
5226 			break;
5227 		case LPFC_FC_LA_SPEED_128G:
5228 			port_speed = 128000;
5229 			break;
5230 		case LPFC_FC_LA_SPEED_256G:
5231 			port_speed = 256000;
5232 			break;
5233 		default:
5234 			port_speed = 0;
5235 		}
5236 		break;
5237 	default:
5238 		port_speed = 0;
5239 	}
5240 	return port_speed;
5241 }
5242 
5243 /**
5244  * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event
5245  * @phba: pointer to lpfc hba data structure.
5246  * @acqe_link: pointer to the async link completion queue entry.
5247  *
5248  * This routine is to handle the SLI4 asynchronous FCoE link event.
5249  **/
5250 static void
lpfc_sli4_async_link_evt(struct lpfc_hba * phba,struct lpfc_acqe_link * acqe_link)5251 lpfc_sli4_async_link_evt(struct lpfc_hba *phba,
5252 			 struct lpfc_acqe_link *acqe_link)
5253 {
5254 	struct lpfc_dmabuf *mp;
5255 	LPFC_MBOXQ_t *pmb;
5256 	MAILBOX_t *mb;
5257 	struct lpfc_mbx_read_top *la;
5258 	uint8_t att_type;
5259 	int rc;
5260 
5261 	att_type = lpfc_sli4_parse_latt_type(phba, acqe_link);
5262 	if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP)
5263 		return;
5264 	phba->fcoe_eventtag = acqe_link->event_tag;
5265 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5266 	if (!pmb) {
5267 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5268 				"0395 The mboxq allocation failed\n");
5269 		return;
5270 	}
5271 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5272 	if (!mp) {
5273 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5274 				"0396 The lpfc_dmabuf allocation failed\n");
5275 		goto out_free_pmb;
5276 	}
5277 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
5278 	if (!mp->virt) {
5279 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5280 				"0397 The mbuf allocation failed\n");
5281 		goto out_free_dmabuf;
5282 	}
5283 
5284 	/* Cleanup any outstanding ELS commands */
5285 	lpfc_els_flush_all_cmd(phba);
5286 
5287 	/* Block ELS IOCBs until we have done process link event */
5288 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
5289 
5290 	/* Update link event statistics */
5291 	phba->sli.slistat.link_event++;
5292 
5293 	/* Create lpfc_handle_latt mailbox command from link ACQE */
5294 	lpfc_read_topology(phba, pmb, mp);
5295 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
5296 	pmb->vport = phba->pport;
5297 
5298 	/* Keep the link status for extra SLI4 state machine reference */
5299 	phba->sli4_hba.link_state.speed =
5300 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK,
5301 				bf_get(lpfc_acqe_link_speed, acqe_link));
5302 	phba->sli4_hba.link_state.duplex =
5303 				bf_get(lpfc_acqe_link_duplex, acqe_link);
5304 	phba->sli4_hba.link_state.status =
5305 				bf_get(lpfc_acqe_link_status, acqe_link);
5306 	phba->sli4_hba.link_state.type =
5307 				bf_get(lpfc_acqe_link_type, acqe_link);
5308 	phba->sli4_hba.link_state.number =
5309 				bf_get(lpfc_acqe_link_number, acqe_link);
5310 	phba->sli4_hba.link_state.fault =
5311 				bf_get(lpfc_acqe_link_fault, acqe_link);
5312 	phba->sli4_hba.link_state.logical_speed =
5313 			bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10;
5314 
5315 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5316 			"2900 Async FC/FCoE Link event - Speed:%dGBit "
5317 			"duplex:x%x LA Type:x%x Port Type:%d Port Number:%d "
5318 			"Logical speed:%dMbps Fault:%d\n",
5319 			phba->sli4_hba.link_state.speed,
5320 			phba->sli4_hba.link_state.topology,
5321 			phba->sli4_hba.link_state.status,
5322 			phba->sli4_hba.link_state.type,
5323 			phba->sli4_hba.link_state.number,
5324 			phba->sli4_hba.link_state.logical_speed,
5325 			phba->sli4_hba.link_state.fault);
5326 	/*
5327 	 * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch
5328 	 * topology info. Note: Optional for non FC-AL ports.
5329 	 */
5330 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
5331 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
5332 		if (rc == MBX_NOT_FINISHED) {
5333 			lpfc_mbuf_free(phba, mp->virt, mp->phys);
5334 			goto out_free_dmabuf;
5335 		}
5336 		return;
5337 	}
5338 	/*
5339 	 * For FCoE Mode: fill in all the topology information we need and call
5340 	 * the READ_TOPOLOGY completion routine to continue without actually
5341 	 * sending the READ_TOPOLOGY mailbox command to the port.
5342 	 */
5343 	/* Initialize completion status */
5344 	mb = &pmb->u.mb;
5345 	mb->mbxStatus = MBX_SUCCESS;
5346 
5347 	/* Parse port fault information field */
5348 	lpfc_sli4_parse_latt_fault(phba, acqe_link);
5349 
5350 	/* Parse and translate link attention fields */
5351 	la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop;
5352 	la->eventTag = acqe_link->event_tag;
5353 	bf_set(lpfc_mbx_read_top_att_type, la, att_type);
5354 	bf_set(lpfc_mbx_read_top_link_spd, la,
5355 	       (bf_get(lpfc_acqe_link_speed, acqe_link)));
5356 
5357 	/* Fake the the following irrelvant fields */
5358 	bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT);
5359 	bf_set(lpfc_mbx_read_top_alpa_granted, la, 0);
5360 	bf_set(lpfc_mbx_read_top_il, la, 0);
5361 	bf_set(lpfc_mbx_read_top_pb, la, 0);
5362 	bf_set(lpfc_mbx_read_top_fa, la, 0);
5363 	bf_set(lpfc_mbx_read_top_mm, la, 0);
5364 
5365 	/* Invoke the lpfc_handle_latt mailbox command callback function */
5366 	lpfc_mbx_cmpl_read_topology(phba, pmb);
5367 
5368 	return;
5369 
5370 out_free_dmabuf:
5371 	kfree(mp);
5372 out_free_pmb:
5373 	mempool_free(pmb, phba->mbox_mem_pool);
5374 }
5375 
5376 /**
5377  * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read
5378  * topology.
5379  * @phba: pointer to lpfc hba data structure.
5380  * @speed_code: asynchronous event link speed code.
5381  *
5382  * This routine is to parse the giving SLI4 async event link speed code into
5383  * value of Read topology link speed.
5384  *
5385  * Return: link speed in terms of Read topology.
5386  **/
5387 static uint8_t
lpfc_async_link_speed_to_read_top(struct lpfc_hba * phba,uint8_t speed_code)5388 lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code)
5389 {
5390 	uint8_t port_speed;
5391 
5392 	switch (speed_code) {
5393 	case LPFC_FC_LA_SPEED_1G:
5394 		port_speed = LPFC_LINK_SPEED_1GHZ;
5395 		break;
5396 	case LPFC_FC_LA_SPEED_2G:
5397 		port_speed = LPFC_LINK_SPEED_2GHZ;
5398 		break;
5399 	case LPFC_FC_LA_SPEED_4G:
5400 		port_speed = LPFC_LINK_SPEED_4GHZ;
5401 		break;
5402 	case LPFC_FC_LA_SPEED_8G:
5403 		port_speed = LPFC_LINK_SPEED_8GHZ;
5404 		break;
5405 	case LPFC_FC_LA_SPEED_16G:
5406 		port_speed = LPFC_LINK_SPEED_16GHZ;
5407 		break;
5408 	case LPFC_FC_LA_SPEED_32G:
5409 		port_speed = LPFC_LINK_SPEED_32GHZ;
5410 		break;
5411 	case LPFC_FC_LA_SPEED_64G:
5412 		port_speed = LPFC_LINK_SPEED_64GHZ;
5413 		break;
5414 	case LPFC_FC_LA_SPEED_128G:
5415 		port_speed = LPFC_LINK_SPEED_128GHZ;
5416 		break;
5417 	case LPFC_FC_LA_SPEED_256G:
5418 		port_speed = LPFC_LINK_SPEED_256GHZ;
5419 		break;
5420 	default:
5421 		port_speed = 0;
5422 		break;
5423 	}
5424 
5425 	return port_speed;
5426 }
5427 
5428 void
lpfc_cgn_dump_rxmonitor(struct lpfc_hba * phba)5429 lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba)
5430 {
5431 	if (!phba->rx_monitor) {
5432 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5433 				"4411 Rx Monitor Info is empty.\n");
5434 	} else {
5435 		lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0,
5436 				       LPFC_MAX_RXMONITOR_DUMP);
5437 	}
5438 }
5439 
5440 /**
5441  * lpfc_cgn_update_stat - Save data into congestion stats buffer
5442  * @phba: pointer to lpfc hba data structure.
5443  * @dtag: FPIN descriptor received
5444  *
5445  * Increment the FPIN received counter/time when it happens.
5446  */
5447 void
lpfc_cgn_update_stat(struct lpfc_hba * phba,uint32_t dtag)5448 lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag)
5449 {
5450 	struct lpfc_cgn_info *cp;
5451 	struct tm broken;
5452 	struct timespec64 cur_time;
5453 	u32 cnt;
5454 	u16 value;
5455 
5456 	/* Make sure we have a congestion info buffer */
5457 	if (!phba->cgn_i)
5458 		return;
5459 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5460 	ktime_get_real_ts64(&cur_time);
5461 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5462 
5463 	/* Update congestion statistics */
5464 	switch (dtag) {
5465 	case ELS_DTAG_LNK_INTEGRITY:
5466 		cnt = le32_to_cpu(cp->link_integ_notification);
5467 		cnt++;
5468 		cp->link_integ_notification = cpu_to_le32(cnt);
5469 
5470 		cp->cgn_stat_lnk_month = broken.tm_mon + 1;
5471 		cp->cgn_stat_lnk_day = broken.tm_mday;
5472 		cp->cgn_stat_lnk_year = broken.tm_year - 100;
5473 		cp->cgn_stat_lnk_hour = broken.tm_hour;
5474 		cp->cgn_stat_lnk_min = broken.tm_min;
5475 		cp->cgn_stat_lnk_sec = broken.tm_sec;
5476 		break;
5477 	case ELS_DTAG_DELIVERY:
5478 		cnt = le32_to_cpu(cp->delivery_notification);
5479 		cnt++;
5480 		cp->delivery_notification = cpu_to_le32(cnt);
5481 
5482 		cp->cgn_stat_del_month = broken.tm_mon + 1;
5483 		cp->cgn_stat_del_day = broken.tm_mday;
5484 		cp->cgn_stat_del_year = broken.tm_year - 100;
5485 		cp->cgn_stat_del_hour = broken.tm_hour;
5486 		cp->cgn_stat_del_min = broken.tm_min;
5487 		cp->cgn_stat_del_sec = broken.tm_sec;
5488 		break;
5489 	case ELS_DTAG_PEER_CONGEST:
5490 		cnt = le32_to_cpu(cp->cgn_peer_notification);
5491 		cnt++;
5492 		cp->cgn_peer_notification = cpu_to_le32(cnt);
5493 
5494 		cp->cgn_stat_peer_month = broken.tm_mon + 1;
5495 		cp->cgn_stat_peer_day = broken.tm_mday;
5496 		cp->cgn_stat_peer_year = broken.tm_year - 100;
5497 		cp->cgn_stat_peer_hour = broken.tm_hour;
5498 		cp->cgn_stat_peer_min = broken.tm_min;
5499 		cp->cgn_stat_peer_sec = broken.tm_sec;
5500 		break;
5501 	case ELS_DTAG_CONGESTION:
5502 		cnt = le32_to_cpu(cp->cgn_notification);
5503 		cnt++;
5504 		cp->cgn_notification = cpu_to_le32(cnt);
5505 
5506 		cp->cgn_stat_cgn_month = broken.tm_mon + 1;
5507 		cp->cgn_stat_cgn_day = broken.tm_mday;
5508 		cp->cgn_stat_cgn_year = broken.tm_year - 100;
5509 		cp->cgn_stat_cgn_hour = broken.tm_hour;
5510 		cp->cgn_stat_cgn_min = broken.tm_min;
5511 		cp->cgn_stat_cgn_sec = broken.tm_sec;
5512 	}
5513 	if (phba->cgn_fpin_frequency &&
5514 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5515 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5516 		cp->cgn_stat_npm = value;
5517 	}
5518 	value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5519 				    LPFC_CGN_CRC32_SEED);
5520 	cp->cgn_info_crc = cpu_to_le32(value);
5521 }
5522 
5523 /**
5524  * lpfc_cgn_save_evt_cnt - Save data into registered congestion buffer
5525  * @phba: pointer to lpfc hba data structure.
5526  *
5527  * Save the congestion event data every minute.
5528  * On the hour collapse all the minute data into hour data. Every day
5529  * collapse all the hour data into daily data. Separate driver
5530  * and fabrc congestion event counters that will be saved out
5531  * to the registered congestion buffer every minute.
5532  */
5533 static void
lpfc_cgn_save_evt_cnt(struct lpfc_hba * phba)5534 lpfc_cgn_save_evt_cnt(struct lpfc_hba *phba)
5535 {
5536 	struct lpfc_cgn_info *cp;
5537 	struct tm broken;
5538 	struct timespec64 cur_time;
5539 	uint32_t i, index;
5540 	uint16_t value, mvalue;
5541 	uint64_t bps;
5542 	uint32_t mbps;
5543 	uint32_t dvalue, wvalue, lvalue, avalue;
5544 	uint64_t latsum;
5545 	__le16 *ptr;
5546 	__le32 *lptr;
5547 	__le16 *mptr;
5548 
5549 	/* Make sure we have a congestion info buffer */
5550 	if (!phba->cgn_i)
5551 		return;
5552 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
5553 
5554 	if (time_before(jiffies, phba->cgn_evt_timestamp))
5555 		return;
5556 	phba->cgn_evt_timestamp = jiffies +
5557 			msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
5558 	phba->cgn_evt_minute++;
5559 
5560 	/* We should get to this point in the routine on 1 minute intervals */
5561 
5562 	ktime_get_real_ts64(&cur_time);
5563 	time64_to_tm(cur_time.tv_sec, 0, &broken);
5564 
5565 	if (phba->cgn_fpin_frequency &&
5566 	    phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) {
5567 		value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency;
5568 		cp->cgn_stat_npm = value;
5569 	}
5570 
5571 	/* Read and clear the latency counters for this minute */
5572 	lvalue = atomic_read(&phba->cgn_latency_evt_cnt);
5573 	latsum = atomic64_read(&phba->cgn_latency_evt);
5574 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
5575 	atomic64_set(&phba->cgn_latency_evt, 0);
5576 
5577 	/* We need to store MB/sec bandwidth in the congestion information.
5578 	 * block_cnt is count of 512 byte blocks for the entire minute,
5579 	 * bps will get bytes per sec before finally converting to MB/sec.
5580 	 */
5581 	bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512;
5582 	phba->rx_block_cnt = 0;
5583 	mvalue = bps / (1024 * 1024); /* convert to MB/sec */
5584 
5585 	/* Every minute */
5586 	/* cgn parameters */
5587 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
5588 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
5589 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
5590 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
5591 
5592 	/* Fill in default LUN qdepth */
5593 	value = (uint16_t)(phba->pport->cfg_lun_queue_depth);
5594 	cp->cgn_lunq = cpu_to_le16(value);
5595 
5596 	/* Record congestion buffer info - every minute
5597 	 * cgn_driver_evt_cnt (Driver events)
5598 	 * cgn_fabric_warn_cnt (Congestion Warnings)
5599 	 * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency)
5600 	 * cgn_fabric_alarm_cnt (Congestion Alarms)
5601 	 */
5602 	index = ++cp->cgn_index_minute;
5603 	if (cp->cgn_index_minute == LPFC_MIN_HOUR) {
5604 		cp->cgn_index_minute = 0;
5605 		index = 0;
5606 	}
5607 
5608 	/* Get the number of driver events in this sample and reset counter */
5609 	dvalue = atomic_read(&phba->cgn_driver_evt_cnt);
5610 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
5611 
5612 	/* Get the number of warning events - FPIN and Signal for this minute */
5613 	wvalue = 0;
5614 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) ||
5615 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
5616 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5617 		wvalue = atomic_read(&phba->cgn_fabric_warn_cnt);
5618 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
5619 
5620 	/* Get the number of alarm events - FPIN and Signal for this minute */
5621 	avalue = 0;
5622 	if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) ||
5623 	    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM)
5624 		avalue = atomic_read(&phba->cgn_fabric_alarm_cnt);
5625 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
5626 
5627 	/* Collect the driver, warning, alarm and latency counts for this
5628 	 * minute into the driver congestion buffer.
5629 	 */
5630 	ptr = &cp->cgn_drvr_min[index];
5631 	value = (uint16_t)dvalue;
5632 	*ptr = cpu_to_le16(value);
5633 
5634 	ptr = &cp->cgn_warn_min[index];
5635 	value = (uint16_t)wvalue;
5636 	*ptr = cpu_to_le16(value);
5637 
5638 	ptr = &cp->cgn_alarm_min[index];
5639 	value = (uint16_t)avalue;
5640 	*ptr = cpu_to_le16(value);
5641 
5642 	lptr = &cp->cgn_latency_min[index];
5643 	if (lvalue) {
5644 		lvalue = (uint32_t)div_u64(latsum, lvalue);
5645 		*lptr = cpu_to_le32(lvalue);
5646 	} else {
5647 		*lptr = 0;
5648 	}
5649 
5650 	/* Collect the bandwidth value into the driver's congesion buffer. */
5651 	mptr = &cp->cgn_bw_min[index];
5652 	*mptr = cpu_to_le16(mvalue);
5653 
5654 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5655 			"2418 Congestion Info - minute (%d): %d %d %d %d %d\n",
5656 			index, dvalue, wvalue, *lptr, mvalue, avalue);
5657 
5658 	/* Every hour */
5659 	if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) {
5660 		/* Record congestion buffer info - every hour
5661 		 * Collapse all minutes into an hour
5662 		 */
5663 		index = ++cp->cgn_index_hour;
5664 		if (cp->cgn_index_hour == LPFC_HOUR_DAY) {
5665 			cp->cgn_index_hour = 0;
5666 			index = 0;
5667 		}
5668 
5669 		dvalue = 0;
5670 		wvalue = 0;
5671 		lvalue = 0;
5672 		avalue = 0;
5673 		mvalue = 0;
5674 		mbps = 0;
5675 		for (i = 0; i < LPFC_MIN_HOUR; i++) {
5676 			dvalue += le16_to_cpu(cp->cgn_drvr_min[i]);
5677 			wvalue += le16_to_cpu(cp->cgn_warn_min[i]);
5678 			lvalue += le32_to_cpu(cp->cgn_latency_min[i]);
5679 			mbps += le16_to_cpu(cp->cgn_bw_min[i]);
5680 			avalue += le16_to_cpu(cp->cgn_alarm_min[i]);
5681 		}
5682 		if (lvalue)		/* Avg of latency averages */
5683 			lvalue /= LPFC_MIN_HOUR;
5684 		if (mbps)		/* Avg of Bandwidth averages */
5685 			mvalue = mbps / LPFC_MIN_HOUR;
5686 
5687 		lptr = &cp->cgn_drvr_hr[index];
5688 		*lptr = cpu_to_le32(dvalue);
5689 		lptr = &cp->cgn_warn_hr[index];
5690 		*lptr = cpu_to_le32(wvalue);
5691 		lptr = &cp->cgn_latency_hr[index];
5692 		*lptr = cpu_to_le32(lvalue);
5693 		mptr = &cp->cgn_bw_hr[index];
5694 		*mptr = cpu_to_le16(mvalue);
5695 		lptr = &cp->cgn_alarm_hr[index];
5696 		*lptr = cpu_to_le32(avalue);
5697 
5698 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5699 				"2419 Congestion Info - hour "
5700 				"(%d): %d %d %d %d %d\n",
5701 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5702 	}
5703 
5704 	/* Every day */
5705 	if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) {
5706 		/* Record congestion buffer info - every hour
5707 		 * Collapse all hours into a day. Rotate days
5708 		 * after LPFC_MAX_CGN_DAYS.
5709 		 */
5710 		index = ++cp->cgn_index_day;
5711 		if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) {
5712 			cp->cgn_index_day = 0;
5713 			index = 0;
5714 		}
5715 
5716 		/* Anytime we overwrite daily index 0, after we wrap,
5717 		 * we will be overwriting the oldest day, so we must
5718 		 * update the congestion data start time for that day.
5719 		 * That start time should have previously been saved after
5720 		 * we wrote the last days worth of data.
5721 		 */
5722 		if ((phba->hba_flag & HBA_CGN_DAY_WRAP) && index == 0) {
5723 			time64_to_tm(phba->cgn_daily_ts.tv_sec, 0, &broken);
5724 
5725 			cp->cgn_info_month = broken.tm_mon + 1;
5726 			cp->cgn_info_day = broken.tm_mday;
5727 			cp->cgn_info_year = broken.tm_year - 100;
5728 			cp->cgn_info_hour = broken.tm_hour;
5729 			cp->cgn_info_minute = broken.tm_min;
5730 			cp->cgn_info_second = broken.tm_sec;
5731 
5732 			lpfc_printf_log
5733 				(phba, KERN_INFO, LOG_CGN_MGMT,
5734 				"2646 CGNInfo idx0 Start Time: "
5735 				"%d/%d/%d %d:%d:%d\n",
5736 				cp->cgn_info_day, cp->cgn_info_month,
5737 				cp->cgn_info_year, cp->cgn_info_hour,
5738 				cp->cgn_info_minute, cp->cgn_info_second);
5739 		}
5740 
5741 		dvalue = 0;
5742 		wvalue = 0;
5743 		lvalue = 0;
5744 		mvalue = 0;
5745 		mbps = 0;
5746 		avalue = 0;
5747 		for (i = 0; i < LPFC_HOUR_DAY; i++) {
5748 			dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]);
5749 			wvalue += le32_to_cpu(cp->cgn_warn_hr[i]);
5750 			lvalue += le32_to_cpu(cp->cgn_latency_hr[i]);
5751 			mbps += le16_to_cpu(cp->cgn_bw_hr[i]);
5752 			avalue += le32_to_cpu(cp->cgn_alarm_hr[i]);
5753 		}
5754 		if (lvalue)		/* Avg of latency averages */
5755 			lvalue /= LPFC_HOUR_DAY;
5756 		if (mbps)		/* Avg of Bandwidth averages */
5757 			mvalue = mbps / LPFC_HOUR_DAY;
5758 
5759 		lptr = &cp->cgn_drvr_day[index];
5760 		*lptr = cpu_to_le32(dvalue);
5761 		lptr = &cp->cgn_warn_day[index];
5762 		*lptr = cpu_to_le32(wvalue);
5763 		lptr = &cp->cgn_latency_day[index];
5764 		*lptr = cpu_to_le32(lvalue);
5765 		mptr = &cp->cgn_bw_day[index];
5766 		*mptr = cpu_to_le16(mvalue);
5767 		lptr = &cp->cgn_alarm_day[index];
5768 		*lptr = cpu_to_le32(avalue);
5769 
5770 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5771 				"2420 Congestion Info - daily (%d): "
5772 				"%d %d %d %d %d\n",
5773 				index, dvalue, wvalue, lvalue, mvalue, avalue);
5774 
5775 		/* We just wrote LPFC_MAX_CGN_DAYS of data,
5776 		 * so we are wrapped on any data after this.
5777 		 * Save this as the start time for the next day.
5778 		 */
5779 		if (index == (LPFC_MAX_CGN_DAYS - 1)) {
5780 			phba->hba_flag |= HBA_CGN_DAY_WRAP;
5781 			ktime_get_real_ts64(&phba->cgn_daily_ts);
5782 		}
5783 	}
5784 
5785 	/* Use the frequency found in the last rcv'ed FPIN */
5786 	value = phba->cgn_fpin_frequency;
5787 	cp->cgn_warn_freq = cpu_to_le16(value);
5788 	cp->cgn_alarm_freq = cpu_to_le16(value);
5789 
5790 	lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
5791 				     LPFC_CGN_CRC32_SEED);
5792 	cp->cgn_info_crc = cpu_to_le32(lvalue);
5793 }
5794 
5795 /**
5796  * lpfc_calc_cmf_latency - latency from start of rxate timer interval
5797  * @phba: The Hba for which this call is being executed.
5798  *
5799  * The routine calculates the latency from the beginning of the CMF timer
5800  * interval to the current point in time. It is called from IO completion
5801  * when we exceed our Bandwidth limitation for the time interval.
5802  */
5803 uint32_t
lpfc_calc_cmf_latency(struct lpfc_hba * phba)5804 lpfc_calc_cmf_latency(struct lpfc_hba *phba)
5805 {
5806 	struct timespec64 cmpl_time;
5807 	uint32_t msec = 0;
5808 
5809 	ktime_get_real_ts64(&cmpl_time);
5810 
5811 	/* This routine works on a ms granularity so sec and usec are
5812 	 * converted accordingly.
5813 	 */
5814 	if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) {
5815 		msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) /
5816 			NSEC_PER_MSEC;
5817 	} else {
5818 		if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) {
5819 			msec = (cmpl_time.tv_sec -
5820 				phba->cmf_latency.tv_sec) * MSEC_PER_SEC;
5821 			msec += ((cmpl_time.tv_nsec -
5822 				  phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC);
5823 		} else {
5824 			msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec -
5825 				1) * MSEC_PER_SEC;
5826 			msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) +
5827 				 cmpl_time.tv_nsec) / NSEC_PER_MSEC);
5828 		}
5829 	}
5830 	return msec;
5831 }
5832 
5833 /**
5834  * lpfc_cmf_timer -  This is the timer function for one congestion
5835  * rate interval.
5836  * @timer: Pointer to the high resolution timer that expired
5837  */
5838 static enum hrtimer_restart
lpfc_cmf_timer(struct hrtimer * timer)5839 lpfc_cmf_timer(struct hrtimer *timer)
5840 {
5841 	struct lpfc_hba *phba = container_of(timer, struct lpfc_hba,
5842 					     cmf_timer);
5843 	struct rx_info_entry entry;
5844 	uint32_t io_cnt;
5845 	uint32_t busy, max_read;
5846 	uint64_t total, rcv, lat, mbpi, extra, cnt;
5847 	int timer_interval = LPFC_CMF_INTERVAL;
5848 	uint32_t ms;
5849 	struct lpfc_cgn_stat *cgs;
5850 	int cpu;
5851 
5852 	/* Only restart the timer if congestion mgmt is on */
5853 	if (phba->cmf_active_mode == LPFC_CFG_OFF ||
5854 	    !phba->cmf_latency.tv_sec) {
5855 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
5856 				"6224 CMF timer exit: %d %lld\n",
5857 				phba->cmf_active_mode,
5858 				(uint64_t)phba->cmf_latency.tv_sec);
5859 		return HRTIMER_NORESTART;
5860 	}
5861 
5862 	/* If pport is not ready yet, just exit and wait for
5863 	 * the next timer cycle to hit.
5864 	 */
5865 	if (!phba->pport)
5866 		goto skip;
5867 
5868 	/* Do not block SCSI IO while in the timer routine since
5869 	 * total_bytes will be cleared
5870 	 */
5871 	atomic_set(&phba->cmf_stop_io, 1);
5872 
5873 	/* First we need to calculate the actual ms between
5874 	 * the last timer interrupt and this one. We ask for
5875 	 * LPFC_CMF_INTERVAL, however the actual time may
5876 	 * vary depending on system overhead.
5877 	 */
5878 	ms = lpfc_calc_cmf_latency(phba);
5879 
5880 
5881 	/* Immediately after we calculate the time since the last
5882 	 * timer interrupt, set the start time for the next
5883 	 * interrupt
5884 	 */
5885 	ktime_get_real_ts64(&phba->cmf_latency);
5886 
5887 	phba->cmf_link_byte_count =
5888 		div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000);
5889 
5890 	/* Collect all the stats from the prior timer interval */
5891 	total = 0;
5892 	io_cnt = 0;
5893 	lat = 0;
5894 	rcv = 0;
5895 	for_each_present_cpu(cpu) {
5896 		cgs = per_cpu_ptr(phba->cmf_stat, cpu);
5897 		total += atomic64_xchg(&cgs->total_bytes, 0);
5898 		io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0);
5899 		lat += atomic64_xchg(&cgs->rx_latency, 0);
5900 		rcv += atomic64_xchg(&cgs->rcv_bytes, 0);
5901 	}
5902 
5903 	/* Before we issue another CMF_SYNC_WQE, retrieve the BW
5904 	 * returned from the last CMF_SYNC_WQE issued, from
5905 	 * cmf_last_sync_bw. This will be the target BW for
5906 	 * this next timer interval.
5907 	 */
5908 	if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
5909 	    phba->link_state != LPFC_LINK_DOWN &&
5910 	    phba->hba_flag & HBA_SETUP) {
5911 		mbpi = phba->cmf_last_sync_bw;
5912 		phba->cmf_last_sync_bw = 0;
5913 		extra = 0;
5914 
5915 		/* Calculate any extra bytes needed to account for the
5916 		 * timer accuracy. If we are less than LPFC_CMF_INTERVAL
5917 		 * calculate the adjustment needed for total to reflect
5918 		 * a full LPFC_CMF_INTERVAL.
5919 		 */
5920 		if (ms && ms < LPFC_CMF_INTERVAL) {
5921 			cnt = div_u64(total, ms); /* bytes per ms */
5922 			cnt *= LPFC_CMF_INTERVAL; /* what total should be */
5923 			if (cnt > mbpi)
5924 				cnt = mbpi;
5925 			extra = cnt - total;
5926 		}
5927 		lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra);
5928 	} else {
5929 		/* For Monitor mode or link down we want mbpi
5930 		 * to be the full link speed
5931 		 */
5932 		mbpi = phba->cmf_link_byte_count;
5933 		extra = 0;
5934 	}
5935 	phba->cmf_timer_cnt++;
5936 
5937 	if (io_cnt) {
5938 		/* Update congestion info buffer latency in us */
5939 		atomic_add(io_cnt, &phba->cgn_latency_evt_cnt);
5940 		atomic64_add(lat, &phba->cgn_latency_evt);
5941 	}
5942 	busy = atomic_xchg(&phba->cmf_busy, 0);
5943 	max_read = atomic_xchg(&phba->rx_max_read_cnt, 0);
5944 
5945 	/* Calculate MBPI for the next timer interval */
5946 	if (mbpi) {
5947 		if (mbpi > phba->cmf_link_byte_count ||
5948 		    phba->cmf_active_mode == LPFC_CFG_MONITOR)
5949 			mbpi = phba->cmf_link_byte_count;
5950 
5951 		/* Change max_bytes_per_interval to what the prior
5952 		 * CMF_SYNC_WQE cmpl indicated.
5953 		 */
5954 		if (mbpi != phba->cmf_max_bytes_per_interval)
5955 			phba->cmf_max_bytes_per_interval = mbpi;
5956 	}
5957 
5958 	/* Save rxmonitor information for debug */
5959 	if (phba->rx_monitor) {
5960 		entry.total_bytes = total;
5961 		entry.cmf_bytes = total + extra;
5962 		entry.rcv_bytes = rcv;
5963 		entry.cmf_busy = busy;
5964 		entry.cmf_info = phba->cmf_active_info;
5965 		if (io_cnt) {
5966 			entry.avg_io_latency = div_u64(lat, io_cnt);
5967 			entry.avg_io_size = div_u64(rcv, io_cnt);
5968 		} else {
5969 			entry.avg_io_latency = 0;
5970 			entry.avg_io_size = 0;
5971 		}
5972 		entry.max_read_cnt = max_read;
5973 		entry.io_cnt = io_cnt;
5974 		entry.max_bytes_per_interval = mbpi;
5975 		if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
5976 			entry.timer_utilization = phba->cmf_last_ts;
5977 		else
5978 			entry.timer_utilization = ms;
5979 		entry.timer_interval = ms;
5980 		phba->cmf_last_ts = 0;
5981 
5982 		lpfc_rx_monitor_record(phba->rx_monitor, &entry);
5983 	}
5984 
5985 	if (phba->cmf_active_mode == LPFC_CFG_MONITOR) {
5986 		/* If Monitor mode, check if we are oversubscribed
5987 		 * against the full line rate.
5988 		 */
5989 		if (mbpi && total > mbpi)
5990 			atomic_inc(&phba->cgn_driver_evt_cnt);
5991 	}
5992 	phba->rx_block_cnt += div_u64(rcv, 512);  /* save 512 byte block cnt */
5993 
5994 	/* Each minute save Fabric and Driver congestion information */
5995 	lpfc_cgn_save_evt_cnt(phba);
5996 
5997 	/* Since we need to call lpfc_cgn_save_evt_cnt every minute, on the
5998 	 * minute, adjust our next timer interval, if needed, to ensure a
5999 	 * 1 minute granularity when we get the next timer interrupt.
6000 	 */
6001 	if (time_after(jiffies + msecs_to_jiffies(LPFC_CMF_INTERVAL),
6002 		       phba->cgn_evt_timestamp)) {
6003 		timer_interval = jiffies_to_msecs(phba->cgn_evt_timestamp -
6004 						  jiffies);
6005 		if (timer_interval <= 0)
6006 			timer_interval = LPFC_CMF_INTERVAL;
6007 
6008 		/* If we adjust timer_interval, max_bytes_per_interval
6009 		 * needs to be adjusted as well.
6010 		 */
6011 		phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate *
6012 						    timer_interval, 1000);
6013 		if (phba->cmf_active_mode == LPFC_CFG_MONITOR)
6014 			phba->cmf_max_bytes_per_interval =
6015 				phba->cmf_link_byte_count;
6016 	}
6017 
6018 	/* Since total_bytes has already been zero'ed, its okay to unblock
6019 	 * after max_bytes_per_interval is setup.
6020 	 */
6021 	if (atomic_xchg(&phba->cmf_bw_wait, 0))
6022 		queue_work(phba->wq, &phba->unblock_request_work);
6023 
6024 	/* SCSI IO is now unblocked */
6025 	atomic_set(&phba->cmf_stop_io, 0);
6026 
6027 skip:
6028 	hrtimer_forward_now(timer,
6029 			    ktime_set(0, timer_interval * NSEC_PER_MSEC));
6030 	return HRTIMER_RESTART;
6031 }
6032 
6033 #define trunk_link_status(__idx)\
6034 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6035 	       ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\
6036 		"Link up" : "Link down") : "NA"
6037 /* Did port __idx reported an error */
6038 #define trunk_port_fault(__idx)\
6039 	bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\
6040 	       (port_fault & (1 << __idx) ? "YES" : "NO") : "NA"
6041 
6042 static void
lpfc_update_trunk_link_status(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6043 lpfc_update_trunk_link_status(struct lpfc_hba *phba,
6044 			      struct lpfc_acqe_fc_la *acqe_fc)
6045 {
6046 	uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc);
6047 	uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc);
6048 
6049 	phba->sli4_hba.link_state.speed =
6050 		lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6051 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6052 
6053 	phba->sli4_hba.link_state.logical_speed =
6054 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6055 	/* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */
6056 	phba->fc_linkspeed =
6057 		 lpfc_async_link_speed_to_read_top(
6058 				phba,
6059 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6060 
6061 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) {
6062 		phba->trunk_link.link0.state =
6063 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc)
6064 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6065 		phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0;
6066 	}
6067 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) {
6068 		phba->trunk_link.link1.state =
6069 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc)
6070 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6071 		phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0;
6072 	}
6073 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) {
6074 		phba->trunk_link.link2.state =
6075 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc)
6076 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6077 		phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0;
6078 	}
6079 	if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) {
6080 		phba->trunk_link.link3.state =
6081 			bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc)
6082 			? LPFC_LINK_UP : LPFC_LINK_DOWN;
6083 		phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0;
6084 	}
6085 
6086 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6087 			"2910 Async FC Trunking Event - Speed:%d\n"
6088 			"\tLogical speed:%d "
6089 			"port0: %s port1: %s port2: %s port3: %s\n",
6090 			phba->sli4_hba.link_state.speed,
6091 			phba->sli4_hba.link_state.logical_speed,
6092 			trunk_link_status(0), trunk_link_status(1),
6093 			trunk_link_status(2), trunk_link_status(3));
6094 
6095 	if (phba->cmf_active_mode != LPFC_CFG_OFF)
6096 		lpfc_cmf_signal_init(phba);
6097 
6098 	if (port_fault)
6099 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6100 				"3202 trunk error:0x%x (%s) seen on port0:%s "
6101 				/*
6102 				 * SLI-4: We have only 0xA error codes
6103 				 * defined as of now. print an appropriate
6104 				 * message in case driver needs to be updated.
6105 				 */
6106 				"port1:%s port2:%s port3:%s\n", err, err > 0xA ?
6107 				"UNDEFINED. update driver." : trunk_errmsg[err],
6108 				trunk_port_fault(0), trunk_port_fault(1),
6109 				trunk_port_fault(2), trunk_port_fault(3));
6110 }
6111 
6112 
6113 /**
6114  * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event
6115  * @phba: pointer to lpfc hba data structure.
6116  * @acqe_fc: pointer to the async fc completion queue entry.
6117  *
6118  * This routine is to handle the SLI4 asynchronous FC event. It will simply log
6119  * that the event was received and then issue a read_topology mailbox command so
6120  * that the rest of the driver will treat it the same as SLI3.
6121  **/
6122 static void
lpfc_sli4_async_fc_evt(struct lpfc_hba * phba,struct lpfc_acqe_fc_la * acqe_fc)6123 lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc)
6124 {
6125 	struct lpfc_dmabuf *mp;
6126 	LPFC_MBOXQ_t *pmb;
6127 	MAILBOX_t *mb;
6128 	struct lpfc_mbx_read_top *la;
6129 	int rc;
6130 
6131 	if (bf_get(lpfc_trailer_type, acqe_fc) !=
6132 	    LPFC_FC_LA_EVENT_TYPE_FC_LINK) {
6133 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6134 				"2895 Non FC link Event detected.(%d)\n",
6135 				bf_get(lpfc_trailer_type, acqe_fc));
6136 		return;
6137 	}
6138 
6139 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6140 	    LPFC_FC_LA_TYPE_TRUNKING_EVENT) {
6141 		lpfc_update_trunk_link_status(phba, acqe_fc);
6142 		return;
6143 	}
6144 
6145 	/* Keep the link status for extra SLI4 state machine reference */
6146 	phba->sli4_hba.link_state.speed =
6147 			lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC,
6148 				bf_get(lpfc_acqe_fc_la_speed, acqe_fc));
6149 	phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL;
6150 	phba->sli4_hba.link_state.topology =
6151 				bf_get(lpfc_acqe_fc_la_topology, acqe_fc);
6152 	phba->sli4_hba.link_state.status =
6153 				bf_get(lpfc_acqe_fc_la_att_type, acqe_fc);
6154 	phba->sli4_hba.link_state.type =
6155 				bf_get(lpfc_acqe_fc_la_port_type, acqe_fc);
6156 	phba->sli4_hba.link_state.number =
6157 				bf_get(lpfc_acqe_fc_la_port_number, acqe_fc);
6158 	phba->sli4_hba.link_state.fault =
6159 				bf_get(lpfc_acqe_link_fault, acqe_fc);
6160 
6161 	if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) ==
6162 	    LPFC_FC_LA_TYPE_LINK_DOWN)
6163 		phba->sli4_hba.link_state.logical_speed = 0;
6164 	else if	(!phba->sli4_hba.conf_trunk)
6165 		phba->sli4_hba.link_state.logical_speed =
6166 				bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10;
6167 
6168 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6169 			"2896 Async FC event - Speed:%dGBaud Topology:x%x "
6170 			"LA Type:x%x Port Type:%d Port Number:%d Logical speed:"
6171 			"%dMbps Fault:%d\n",
6172 			phba->sli4_hba.link_state.speed,
6173 			phba->sli4_hba.link_state.topology,
6174 			phba->sli4_hba.link_state.status,
6175 			phba->sli4_hba.link_state.type,
6176 			phba->sli4_hba.link_state.number,
6177 			phba->sli4_hba.link_state.logical_speed,
6178 			phba->sli4_hba.link_state.fault);
6179 	pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6180 	if (!pmb) {
6181 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6182 				"2897 The mboxq allocation failed\n");
6183 		return;
6184 	}
6185 	mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
6186 	if (!mp) {
6187 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6188 				"2898 The lpfc_dmabuf allocation failed\n");
6189 		goto out_free_pmb;
6190 	}
6191 	mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
6192 	if (!mp->virt) {
6193 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6194 				"2899 The mbuf allocation failed\n");
6195 		goto out_free_dmabuf;
6196 	}
6197 
6198 	/* Cleanup any outstanding ELS commands */
6199 	lpfc_els_flush_all_cmd(phba);
6200 
6201 	/* Block ELS IOCBs until we have done process link event */
6202 	phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT;
6203 
6204 	/* Update link event statistics */
6205 	phba->sli.slistat.link_event++;
6206 
6207 	/* Create lpfc_handle_latt mailbox command from link ACQE */
6208 	lpfc_read_topology(phba, pmb, mp);
6209 	pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology;
6210 	pmb->vport = phba->pport;
6211 
6212 	if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) {
6213 		phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK);
6214 
6215 		switch (phba->sli4_hba.link_state.status) {
6216 		case LPFC_FC_LA_TYPE_MDS_LINK_DOWN:
6217 			phba->link_flag |= LS_MDS_LINK_DOWN;
6218 			break;
6219 		case LPFC_FC_LA_TYPE_MDS_LOOPBACK:
6220 			phba->link_flag |= LS_MDS_LOOPBACK;
6221 			break;
6222 		default:
6223 			break;
6224 		}
6225 
6226 		/* Initialize completion status */
6227 		mb = &pmb->u.mb;
6228 		mb->mbxStatus = MBX_SUCCESS;
6229 
6230 		/* Parse port fault information field */
6231 		lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc);
6232 
6233 		/* Parse and translate link attention fields */
6234 		la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop;
6235 		la->eventTag = acqe_fc->event_tag;
6236 
6237 		if (phba->sli4_hba.link_state.status ==
6238 		    LPFC_FC_LA_TYPE_UNEXP_WWPN) {
6239 			bf_set(lpfc_mbx_read_top_att_type, la,
6240 			       LPFC_FC_LA_TYPE_UNEXP_WWPN);
6241 		} else {
6242 			bf_set(lpfc_mbx_read_top_att_type, la,
6243 			       LPFC_FC_LA_TYPE_LINK_DOWN);
6244 		}
6245 		/* Invoke the mailbox command callback function */
6246 		lpfc_mbx_cmpl_read_topology(phba, pmb);
6247 
6248 		return;
6249 	}
6250 
6251 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
6252 	if (rc == MBX_NOT_FINISHED) {
6253 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
6254 		goto out_free_dmabuf;
6255 	}
6256 	return;
6257 
6258 out_free_dmabuf:
6259 	kfree(mp);
6260 out_free_pmb:
6261 	mempool_free(pmb, phba->mbox_mem_pool);
6262 }
6263 
6264 /**
6265  * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event
6266  * @phba: pointer to lpfc hba data structure.
6267  * @acqe_sli: pointer to the async SLI completion queue entry.
6268  *
6269  * This routine is to handle the SLI4 asynchronous SLI events.
6270  **/
6271 static void
lpfc_sli4_async_sli_evt(struct lpfc_hba * phba,struct lpfc_acqe_sli * acqe_sli)6272 lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli)
6273 {
6274 	char port_name;
6275 	char message[128];
6276 	uint8_t status;
6277 	uint8_t evt_type;
6278 	uint8_t operational = 0;
6279 	struct temp_event temp_event_data;
6280 	struct lpfc_acqe_misconfigured_event *misconfigured;
6281 	struct lpfc_acqe_cgn_signal *cgn_signal;
6282 	struct Scsi_Host  *shost;
6283 	struct lpfc_vport **vports;
6284 	int rc, i, cnt;
6285 
6286 	evt_type = bf_get(lpfc_trailer_type, acqe_sli);
6287 
6288 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6289 			"2901 Async SLI event - Type:%d, Event Data: x%08x "
6290 			"x%08x x%08x x%08x\n", evt_type,
6291 			acqe_sli->event_data1, acqe_sli->event_data2,
6292 			acqe_sli->reserved, acqe_sli->trailer);
6293 
6294 	port_name = phba->Port[0];
6295 	if (port_name == 0x00)
6296 		port_name = '?'; /* get port name is empty */
6297 
6298 	switch (evt_type) {
6299 	case LPFC_SLI_EVENT_TYPE_OVER_TEMP:
6300 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6301 		temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
6302 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6303 
6304 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6305 				"3190 Over Temperature:%d Celsius- Port Name %c\n",
6306 				acqe_sli->event_data1, port_name);
6307 
6308 		phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE;
6309 		shost = lpfc_shost_from_vport(phba->pport);
6310 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6311 					  sizeof(temp_event_data),
6312 					  (char *)&temp_event_data,
6313 					  SCSI_NL_VID_TYPE_PCI
6314 					  | PCI_VENDOR_ID_EMULEX);
6315 		break;
6316 	case LPFC_SLI_EVENT_TYPE_NORM_TEMP:
6317 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
6318 		temp_event_data.event_code = LPFC_NORMAL_TEMP;
6319 		temp_event_data.data = (uint32_t)acqe_sli->event_data1;
6320 
6321 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6322 				"3191 Normal Temperature:%d Celsius - Port Name %c\n",
6323 				acqe_sli->event_data1, port_name);
6324 
6325 		shost = lpfc_shost_from_vport(phba->pport);
6326 		fc_host_post_vendor_event(shost, fc_get_event_number(),
6327 					  sizeof(temp_event_data),
6328 					  (char *)&temp_event_data,
6329 					  SCSI_NL_VID_TYPE_PCI
6330 					  | PCI_VENDOR_ID_EMULEX);
6331 		break;
6332 	case LPFC_SLI_EVENT_TYPE_MISCONFIGURED:
6333 		misconfigured = (struct lpfc_acqe_misconfigured_event *)
6334 					&acqe_sli->event_data1;
6335 
6336 		/* fetch the status for this port */
6337 		switch (phba->sli4_hba.lnk_info.lnk_no) {
6338 		case LPFC_LINK_NUMBER_0:
6339 			status = bf_get(lpfc_sli_misconfigured_port0_state,
6340 					&misconfigured->theEvent);
6341 			operational = bf_get(lpfc_sli_misconfigured_port0_op,
6342 					&misconfigured->theEvent);
6343 			break;
6344 		case LPFC_LINK_NUMBER_1:
6345 			status = bf_get(lpfc_sli_misconfigured_port1_state,
6346 					&misconfigured->theEvent);
6347 			operational = bf_get(lpfc_sli_misconfigured_port1_op,
6348 					&misconfigured->theEvent);
6349 			break;
6350 		case LPFC_LINK_NUMBER_2:
6351 			status = bf_get(lpfc_sli_misconfigured_port2_state,
6352 					&misconfigured->theEvent);
6353 			operational = bf_get(lpfc_sli_misconfigured_port2_op,
6354 					&misconfigured->theEvent);
6355 			break;
6356 		case LPFC_LINK_NUMBER_3:
6357 			status = bf_get(lpfc_sli_misconfigured_port3_state,
6358 					&misconfigured->theEvent);
6359 			operational = bf_get(lpfc_sli_misconfigured_port3_op,
6360 					&misconfigured->theEvent);
6361 			break;
6362 		default:
6363 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6364 					"3296 "
6365 					"LPFC_SLI_EVENT_TYPE_MISCONFIGURED "
6366 					"event: Invalid link %d",
6367 					phba->sli4_hba.lnk_info.lnk_no);
6368 			return;
6369 		}
6370 
6371 		/* Skip if optic state unchanged */
6372 		if (phba->sli4_hba.lnk_info.optic_state == status)
6373 			return;
6374 
6375 		switch (status) {
6376 		case LPFC_SLI_EVENT_STATUS_VALID:
6377 			sprintf(message, "Physical Link is functional");
6378 			break;
6379 		case LPFC_SLI_EVENT_STATUS_NOT_PRESENT:
6380 			sprintf(message, "Optics faulted/incorrectly "
6381 				"installed/not installed - Reseat optics, "
6382 				"if issue not resolved, replace.");
6383 			break;
6384 		case LPFC_SLI_EVENT_STATUS_WRONG_TYPE:
6385 			sprintf(message,
6386 				"Optics of two types installed - Remove one "
6387 				"optic or install matching pair of optics.");
6388 			break;
6389 		case LPFC_SLI_EVENT_STATUS_UNSUPPORTED:
6390 			sprintf(message, "Incompatible optics - Replace with "
6391 				"compatible optics for card to function.");
6392 			break;
6393 		case LPFC_SLI_EVENT_STATUS_UNQUALIFIED:
6394 			sprintf(message, "Unqualified optics - Replace with "
6395 				"Avago optics for Warranty and Technical "
6396 				"Support - Link is%s operational",
6397 				(operational) ? " not" : "");
6398 			break;
6399 		case LPFC_SLI_EVENT_STATUS_UNCERTIFIED:
6400 			sprintf(message, "Uncertified optics - Replace with "
6401 				"Avago-certified optics to enable link "
6402 				"operation - Link is%s operational",
6403 				(operational) ? " not" : "");
6404 			break;
6405 		default:
6406 			/* firmware is reporting a status we don't know about */
6407 			sprintf(message, "Unknown event status x%02x", status);
6408 			break;
6409 		}
6410 
6411 		/* Issue READ_CONFIG mbox command to refresh supported speeds */
6412 		rc = lpfc_sli4_read_config(phba);
6413 		if (rc) {
6414 			phba->lmt = 0;
6415 			lpfc_printf_log(phba, KERN_ERR,
6416 					LOG_TRACE_EVENT,
6417 					"3194 Unable to retrieve supported "
6418 					"speeds, rc = 0x%x\n", rc);
6419 		}
6420 		vports = lpfc_create_vport_work_array(phba);
6421 		if (vports != NULL) {
6422 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6423 					i++) {
6424 				shost = lpfc_shost_from_vport(vports[i]);
6425 				lpfc_host_supported_speeds_set(shost);
6426 			}
6427 		}
6428 		lpfc_destroy_vport_work_array(phba, vports);
6429 
6430 		phba->sli4_hba.lnk_info.optic_state = status;
6431 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6432 				"3176 Port Name %c %s\n", port_name, message);
6433 		break;
6434 	case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT:
6435 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6436 				"3192 Remote DPort Test Initiated - "
6437 				"Event Data1:x%08x Event Data2: x%08x\n",
6438 				acqe_sli->event_data1, acqe_sli->event_data2);
6439 		break;
6440 	case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG:
6441 		/* Call FW to obtain active parms */
6442 		lpfc_sli4_cgn_parm_chg_evt(phba);
6443 		break;
6444 	case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN:
6445 		/* Misconfigured WWN. Reports that the SLI Port is configured
6446 		 * to use FA-WWN, but the attached device doesn’t support it.
6447 		 * No driver action is required.
6448 		 * Event Data1 - N.A, Event Data2 - N.A
6449 		 */
6450 		lpfc_log_msg(phba, KERN_WARNING, LOG_SLI,
6451 			     "2699 Misconfigured FA-WWN - Attached device does "
6452 			     "not support FA-WWN\n");
6453 		break;
6454 	case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE:
6455 		/* EEPROM failure. No driver action is required */
6456 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6457 			     "2518 EEPROM failure - "
6458 			     "Event Data1: x%08x Event Data2: x%08x\n",
6459 			     acqe_sli->event_data1, acqe_sli->event_data2);
6460 		break;
6461 	case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL:
6462 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6463 			break;
6464 		cgn_signal = (struct lpfc_acqe_cgn_signal *)
6465 					&acqe_sli->event_data1;
6466 		phba->cgn_acqe_cnt++;
6467 
6468 		cnt = bf_get(lpfc_warn_acqe, cgn_signal);
6469 		atomic64_add(cnt, &phba->cgn_acqe_stat.warn);
6470 		atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm);
6471 
6472 		/* no threshold for CMF, even 1 signal will trigger an event */
6473 
6474 		/* Alarm overrides warning, so check that first */
6475 		if (cgn_signal->alarm_cnt) {
6476 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6477 				/* Keep track of alarm cnt for CMF_SYNC_WQE */
6478 				atomic_add(cgn_signal->alarm_cnt,
6479 					   &phba->cgn_sync_alarm_cnt);
6480 			}
6481 		} else if (cnt) {
6482 			/* signal action needs to be taken */
6483 			if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
6484 			    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6485 				/* Keep track of warning cnt for CMF_SYNC_WQE */
6486 				atomic_add(cnt, &phba->cgn_sync_warn_cnt);
6487 			}
6488 		}
6489 		break;
6490 	default:
6491 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6492 				"3193 Unrecognized SLI event, type: 0x%x",
6493 				evt_type);
6494 		break;
6495 	}
6496 }
6497 
6498 /**
6499  * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport
6500  * @vport: pointer to vport data structure.
6501  *
6502  * This routine is to perform Clear Virtual Link (CVL) on a vport in
6503  * response to a CVL event.
6504  *
6505  * Return the pointer to the ndlp with the vport if successful, otherwise
6506  * return NULL.
6507  **/
6508 static struct lpfc_nodelist *
lpfc_sli4_perform_vport_cvl(struct lpfc_vport * vport)6509 lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport)
6510 {
6511 	struct lpfc_nodelist *ndlp;
6512 	struct Scsi_Host *shost;
6513 	struct lpfc_hba *phba;
6514 
6515 	if (!vport)
6516 		return NULL;
6517 	phba = vport->phba;
6518 	if (!phba)
6519 		return NULL;
6520 	ndlp = lpfc_findnode_did(vport, Fabric_DID);
6521 	if (!ndlp) {
6522 		/* Cannot find existing Fabric ndlp, so allocate a new one */
6523 		ndlp = lpfc_nlp_init(vport, Fabric_DID);
6524 		if (!ndlp)
6525 			return 0;
6526 		/* Set the node type */
6527 		ndlp->nlp_type |= NLP_FABRIC;
6528 		/* Put ndlp onto node list */
6529 		lpfc_enqueue_node(vport, ndlp);
6530 	}
6531 	if ((phba->pport->port_state < LPFC_FLOGI) &&
6532 		(phba->pport->port_state != LPFC_VPORT_FAILED))
6533 		return NULL;
6534 	/* If virtual link is not yet instantiated ignore CVL */
6535 	if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC)
6536 		&& (vport->port_state != LPFC_VPORT_FAILED))
6537 		return NULL;
6538 	shost = lpfc_shost_from_vport(vport);
6539 	if (!shost)
6540 		return NULL;
6541 	lpfc_linkdown_port(vport);
6542 	lpfc_cleanup_pending_mbox(vport);
6543 	spin_lock_irq(shost->host_lock);
6544 	vport->fc_flag |= FC_VPORT_CVL_RCVD;
6545 	spin_unlock_irq(shost->host_lock);
6546 
6547 	return ndlp;
6548 }
6549 
6550 /**
6551  * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports
6552  * @phba: pointer to lpfc hba data structure.
6553  *
6554  * This routine is to perform Clear Virtual Link (CVL) on all vports in
6555  * response to a FCF dead event.
6556  **/
6557 static void
lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba * phba)6558 lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba)
6559 {
6560 	struct lpfc_vport **vports;
6561 	int i;
6562 
6563 	vports = lpfc_create_vport_work_array(phba);
6564 	if (vports)
6565 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++)
6566 			lpfc_sli4_perform_vport_cvl(vports[i]);
6567 	lpfc_destroy_vport_work_array(phba, vports);
6568 }
6569 
6570 /**
6571  * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event
6572  * @phba: pointer to lpfc hba data structure.
6573  * @acqe_fip: pointer to the async fcoe completion queue entry.
6574  *
6575  * This routine is to handle the SLI4 asynchronous fcoe event.
6576  **/
6577 static void
lpfc_sli4_async_fip_evt(struct lpfc_hba * phba,struct lpfc_acqe_fip * acqe_fip)6578 lpfc_sli4_async_fip_evt(struct lpfc_hba *phba,
6579 			struct lpfc_acqe_fip *acqe_fip)
6580 {
6581 	uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip);
6582 	int rc;
6583 	struct lpfc_vport *vport;
6584 	struct lpfc_nodelist *ndlp;
6585 	int active_vlink_present;
6586 	struct lpfc_vport **vports;
6587 	int i;
6588 
6589 	phba->fc_eventTag = acqe_fip->event_tag;
6590 	phba->fcoe_eventtag = acqe_fip->event_tag;
6591 	switch (event_type) {
6592 	case LPFC_FIP_EVENT_TYPE_NEW_FCF:
6593 	case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD:
6594 		if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF)
6595 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6596 					"2546 New FCF event, evt_tag:x%x, "
6597 					"index:x%x\n",
6598 					acqe_fip->event_tag,
6599 					acqe_fip->index);
6600 		else
6601 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP |
6602 					LOG_DISCOVERY,
6603 					"2788 FCF param modified event, "
6604 					"evt_tag:x%x, index:x%x\n",
6605 					acqe_fip->event_tag,
6606 					acqe_fip->index);
6607 		if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6608 			/*
6609 			 * During period of FCF discovery, read the FCF
6610 			 * table record indexed by the event to update
6611 			 * FCF roundrobin failover eligible FCF bmask.
6612 			 */
6613 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6614 					LOG_DISCOVERY,
6615 					"2779 Read FCF (x%x) for updating "
6616 					"roundrobin FCF failover bmask\n",
6617 					acqe_fip->index);
6618 			rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index);
6619 		}
6620 
6621 		/* If the FCF discovery is in progress, do nothing. */
6622 		spin_lock_irq(&phba->hbalock);
6623 		if (phba->hba_flag & FCF_TS_INPROG) {
6624 			spin_unlock_irq(&phba->hbalock);
6625 			break;
6626 		}
6627 		/* If fast FCF failover rescan event is pending, do nothing */
6628 		if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) {
6629 			spin_unlock_irq(&phba->hbalock);
6630 			break;
6631 		}
6632 
6633 		/* If the FCF has been in discovered state, do nothing. */
6634 		if (phba->fcf.fcf_flag & FCF_SCAN_DONE) {
6635 			spin_unlock_irq(&phba->hbalock);
6636 			break;
6637 		}
6638 		spin_unlock_irq(&phba->hbalock);
6639 
6640 		/* Otherwise, scan the entire FCF table and re-discover SAN */
6641 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6642 				"2770 Start FCF table scan per async FCF "
6643 				"event, evt_tag:x%x, index:x%x\n",
6644 				acqe_fip->event_tag, acqe_fip->index);
6645 		rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba,
6646 						     LPFC_FCOE_FCF_GET_FIRST);
6647 		if (rc)
6648 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6649 					"2547 Issue FCF scan read FCF mailbox "
6650 					"command failed (x%x)\n", rc);
6651 		break;
6652 
6653 	case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL:
6654 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6655 				"2548 FCF Table full count 0x%x tag 0x%x\n",
6656 				bf_get(lpfc_acqe_fip_fcf_count, acqe_fip),
6657 				acqe_fip->event_tag);
6658 		break;
6659 
6660 	case LPFC_FIP_EVENT_TYPE_FCF_DEAD:
6661 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6662 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6663 				"2549 FCF (x%x) disconnected from network, "
6664 				 "tag:x%x\n", acqe_fip->index,
6665 				 acqe_fip->event_tag);
6666 		/*
6667 		 * If we are in the middle of FCF failover process, clear
6668 		 * the corresponding FCF bit in the roundrobin bitmap.
6669 		 */
6670 		spin_lock_irq(&phba->hbalock);
6671 		if ((phba->fcf.fcf_flag & FCF_DISCOVERY) &&
6672 		    (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) {
6673 			spin_unlock_irq(&phba->hbalock);
6674 			/* Update FLOGI FCF failover eligible FCF bmask */
6675 			lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index);
6676 			break;
6677 		}
6678 		spin_unlock_irq(&phba->hbalock);
6679 
6680 		/* If the event is not for currently used fcf do nothing */
6681 		if (phba->fcf.current_rec.fcf_indx != acqe_fip->index)
6682 			break;
6683 
6684 		/*
6685 		 * Otherwise, request the port to rediscover the entire FCF
6686 		 * table for a fast recovery from case that the current FCF
6687 		 * is no longer valid as we are not in the middle of FCF
6688 		 * failover process already.
6689 		 */
6690 		spin_lock_irq(&phba->hbalock);
6691 		/* Mark the fast failover process in progress */
6692 		phba->fcf.fcf_flag |= FCF_DEAD_DISC;
6693 		spin_unlock_irq(&phba->hbalock);
6694 
6695 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
6696 				"2771 Start FCF fast failover process due to "
6697 				"FCF DEAD event: evt_tag:x%x, fcf_index:x%x "
6698 				"\n", acqe_fip->event_tag, acqe_fip->index);
6699 		rc = lpfc_sli4_redisc_fcf_table(phba);
6700 		if (rc) {
6701 			lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6702 					LOG_TRACE_EVENT,
6703 					"2772 Issue FCF rediscover mailbox "
6704 					"command failed, fail through to FCF "
6705 					"dead event\n");
6706 			spin_lock_irq(&phba->hbalock);
6707 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
6708 			spin_unlock_irq(&phba->hbalock);
6709 			/*
6710 			 * Last resort will fail over by treating this
6711 			 * as a link down to FCF registration.
6712 			 */
6713 			lpfc_sli4_fcf_dead_failthrough(phba);
6714 		} else {
6715 			/* Reset FCF roundrobin bmask for new discovery */
6716 			lpfc_sli4_clear_fcf_rr_bmask(phba);
6717 			/*
6718 			 * Handling fast FCF failover to a DEAD FCF event is
6719 			 * considered equalivant to receiving CVL to all vports.
6720 			 */
6721 			lpfc_sli4_perform_all_vport_cvl(phba);
6722 		}
6723 		break;
6724 	case LPFC_FIP_EVENT_TYPE_CVL:
6725 		phba->fcoe_cvl_eventtag = acqe_fip->event_tag;
6726 		lpfc_printf_log(phba, KERN_ERR,
6727 				LOG_TRACE_EVENT,
6728 			"2718 Clear Virtual Link Received for VPI 0x%x"
6729 			" tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag);
6730 
6731 		vport = lpfc_find_vport_by_vpid(phba,
6732 						acqe_fip->index);
6733 		ndlp = lpfc_sli4_perform_vport_cvl(vport);
6734 		if (!ndlp)
6735 			break;
6736 		active_vlink_present = 0;
6737 
6738 		vports = lpfc_create_vport_work_array(phba);
6739 		if (vports) {
6740 			for (i = 0; i <= phba->max_vports && vports[i] != NULL;
6741 					i++) {
6742 				if ((!(vports[i]->fc_flag &
6743 					FC_VPORT_CVL_RCVD)) &&
6744 					(vports[i]->port_state > LPFC_FDISC)) {
6745 					active_vlink_present = 1;
6746 					break;
6747 				}
6748 			}
6749 			lpfc_destroy_vport_work_array(phba, vports);
6750 		}
6751 
6752 		/*
6753 		 * Don't re-instantiate if vport is marked for deletion.
6754 		 * If we are here first then vport_delete is going to wait
6755 		 * for discovery to complete.
6756 		 */
6757 		if (!(vport->load_flag & FC_UNLOADING) &&
6758 					active_vlink_present) {
6759 			/*
6760 			 * If there are other active VLinks present,
6761 			 * re-instantiate the Vlink using FDISC.
6762 			 */
6763 			mod_timer(&ndlp->nlp_delayfunc,
6764 				  jiffies + msecs_to_jiffies(1000));
6765 			spin_lock_irq(&ndlp->lock);
6766 			ndlp->nlp_flag |= NLP_DELAY_TMO;
6767 			spin_unlock_irq(&ndlp->lock);
6768 			ndlp->nlp_last_elscmd = ELS_CMD_FDISC;
6769 			vport->port_state = LPFC_FDISC;
6770 		} else {
6771 			/*
6772 			 * Otherwise, we request port to rediscover
6773 			 * the entire FCF table for a fast recovery
6774 			 * from possible case that the current FCF
6775 			 * is no longer valid if we are not already
6776 			 * in the FCF failover process.
6777 			 */
6778 			spin_lock_irq(&phba->hbalock);
6779 			if (phba->fcf.fcf_flag & FCF_DISCOVERY) {
6780 				spin_unlock_irq(&phba->hbalock);
6781 				break;
6782 			}
6783 			/* Mark the fast failover process in progress */
6784 			phba->fcf.fcf_flag |= FCF_ACVL_DISC;
6785 			spin_unlock_irq(&phba->hbalock);
6786 			lpfc_printf_log(phba, KERN_INFO, LOG_FIP |
6787 					LOG_DISCOVERY,
6788 					"2773 Start FCF failover per CVL, "
6789 					"evt_tag:x%x\n", acqe_fip->event_tag);
6790 			rc = lpfc_sli4_redisc_fcf_table(phba);
6791 			if (rc) {
6792 				lpfc_printf_log(phba, KERN_ERR, LOG_FIP |
6793 						LOG_TRACE_EVENT,
6794 						"2774 Issue FCF rediscover "
6795 						"mailbox command failed, "
6796 						"through to CVL event\n");
6797 				spin_lock_irq(&phba->hbalock);
6798 				phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
6799 				spin_unlock_irq(&phba->hbalock);
6800 				/*
6801 				 * Last resort will be re-try on the
6802 				 * the current registered FCF entry.
6803 				 */
6804 				lpfc_retry_pport_discovery(phba);
6805 			} else
6806 				/*
6807 				 * Reset FCF roundrobin bmask for new
6808 				 * discovery.
6809 				 */
6810 				lpfc_sli4_clear_fcf_rr_bmask(phba);
6811 		}
6812 		break;
6813 	default:
6814 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6815 				"0288 Unknown FCoE event type 0x%x event tag "
6816 				"0x%x\n", event_type, acqe_fip->event_tag);
6817 		break;
6818 	}
6819 }
6820 
6821 /**
6822  * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event
6823  * @phba: pointer to lpfc hba data structure.
6824  * @acqe_dcbx: pointer to the async dcbx completion queue entry.
6825  *
6826  * This routine is to handle the SLI4 asynchronous dcbx event.
6827  **/
6828 static void
lpfc_sli4_async_dcbx_evt(struct lpfc_hba * phba,struct lpfc_acqe_dcbx * acqe_dcbx)6829 lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba,
6830 			 struct lpfc_acqe_dcbx *acqe_dcbx)
6831 {
6832 	phba->fc_eventTag = acqe_dcbx->event_tag;
6833 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6834 			"0290 The SLI4 DCBX asynchronous event is not "
6835 			"handled yet\n");
6836 }
6837 
6838 /**
6839  * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event
6840  * @phba: pointer to lpfc hba data structure.
6841  * @acqe_grp5: pointer to the async grp5 completion queue entry.
6842  *
6843  * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event
6844  * is an asynchronous notified of a logical link speed change.  The Port
6845  * reports the logical link speed in units of 10Mbps.
6846  **/
6847 static void
lpfc_sli4_async_grp5_evt(struct lpfc_hba * phba,struct lpfc_acqe_grp5 * acqe_grp5)6848 lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba,
6849 			 struct lpfc_acqe_grp5 *acqe_grp5)
6850 {
6851 	uint16_t prev_ll_spd;
6852 
6853 	phba->fc_eventTag = acqe_grp5->event_tag;
6854 	phba->fcoe_eventtag = acqe_grp5->event_tag;
6855 	prev_ll_spd = phba->sli4_hba.link_state.logical_speed;
6856 	phba->sli4_hba.link_state.logical_speed =
6857 		(bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10;
6858 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6859 			"2789 GRP5 Async Event: Updating logical link speed "
6860 			"from %dMbps to %dMbps\n", prev_ll_spd,
6861 			phba->sli4_hba.link_state.logical_speed);
6862 }
6863 
6864 /**
6865  * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event
6866  * @phba: pointer to lpfc hba data structure.
6867  *
6868  * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event
6869  * is an asynchronous notification of a request to reset CM stats.
6870  **/
6871 static void
lpfc_sli4_async_cmstat_evt(struct lpfc_hba * phba)6872 lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba)
6873 {
6874 	if (!phba->cgn_i)
6875 		return;
6876 	lpfc_init_congestion_stat(phba);
6877 }
6878 
6879 /**
6880  * lpfc_cgn_params_val - Validate FW congestion parameters.
6881  * @phba: pointer to lpfc hba data structure.
6882  * @p_cfg_param: pointer to FW provided congestion parameters.
6883  *
6884  * This routine validates the congestion parameters passed
6885  * by the FW to the driver via an ACQE event.
6886  **/
6887 static void
lpfc_cgn_params_val(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cfg_param)6888 lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param)
6889 {
6890 	spin_lock_irq(&phba->hbalock);
6891 
6892 	if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF,
6893 			     LPFC_CFG_MONITOR)) {
6894 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
6895 				"6225 CMF mode param out of range: %d\n",
6896 				 p_cfg_param->cgn_param_mode);
6897 		p_cfg_param->cgn_param_mode = LPFC_CFG_OFF;
6898 	}
6899 
6900 	spin_unlock_irq(&phba->hbalock);
6901 }
6902 
6903 /**
6904  * lpfc_cgn_params_parse - Process a FW cong parm change event
6905  * @phba: pointer to lpfc hba data structure.
6906  * @p_cgn_param: pointer to a data buffer with the FW cong params.
6907  * @len: the size of pdata in bytes.
6908  *
6909  * This routine validates the congestion management buffer signature
6910  * from the FW, validates the contents and makes corrections for
6911  * valid, in-range values.  If the signature magic is correct and
6912  * after parameter validation, the contents are copied to the driver's
6913  * @phba structure. If the magic is incorrect, an error message is
6914  * logged.
6915  **/
6916 static void
lpfc_cgn_params_parse(struct lpfc_hba * phba,struct lpfc_cgn_param * p_cgn_param,uint32_t len)6917 lpfc_cgn_params_parse(struct lpfc_hba *phba,
6918 		      struct lpfc_cgn_param *p_cgn_param, uint32_t len)
6919 {
6920 	struct lpfc_cgn_info *cp;
6921 	uint32_t crc, oldmode;
6922 
6923 	/* Make sure the FW has encoded the correct magic number to
6924 	 * validate the congestion parameter in FW memory.
6925 	 */
6926 	if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) {
6927 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
6928 				"4668 FW cgn parm buffer data: "
6929 				"magic 0x%x version %d mode %d "
6930 				"level0 %d level1 %d "
6931 				"level2 %d byte13 %d "
6932 				"byte14 %d byte15 %d "
6933 				"byte11 %d byte12 %d activeMode %d\n",
6934 				p_cgn_param->cgn_param_magic,
6935 				p_cgn_param->cgn_param_version,
6936 				p_cgn_param->cgn_param_mode,
6937 				p_cgn_param->cgn_param_level0,
6938 				p_cgn_param->cgn_param_level1,
6939 				p_cgn_param->cgn_param_level2,
6940 				p_cgn_param->byte13,
6941 				p_cgn_param->byte14,
6942 				p_cgn_param->byte15,
6943 				p_cgn_param->byte11,
6944 				p_cgn_param->byte12,
6945 				phba->cmf_active_mode);
6946 
6947 		oldmode = phba->cmf_active_mode;
6948 
6949 		/* Any parameters out of range are corrected to defaults
6950 		 * by this routine.  No need to fail.
6951 		 */
6952 		lpfc_cgn_params_val(phba, p_cgn_param);
6953 
6954 		/* Parameters are verified, move them into driver storage */
6955 		spin_lock_irq(&phba->hbalock);
6956 		memcpy(&phba->cgn_p, p_cgn_param,
6957 		       sizeof(struct lpfc_cgn_param));
6958 
6959 		/* Update parameters in congestion info buffer now */
6960 		if (phba->cgn_i) {
6961 			cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
6962 			cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
6963 			cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
6964 			cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
6965 			cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
6966 			crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ,
6967 						  LPFC_CGN_CRC32_SEED);
6968 			cp->cgn_info_crc = cpu_to_le32(crc);
6969 		}
6970 		spin_unlock_irq(&phba->hbalock);
6971 
6972 		phba->cmf_active_mode = phba->cgn_p.cgn_param_mode;
6973 
6974 		switch (oldmode) {
6975 		case LPFC_CFG_OFF:
6976 			if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) {
6977 				/* Turning CMF on */
6978 				lpfc_cmf_start(phba);
6979 
6980 				if (phba->link_state >= LPFC_LINK_UP) {
6981 					phba->cgn_reg_fpin =
6982 						phba->cgn_init_reg_fpin;
6983 					phba->cgn_reg_signal =
6984 						phba->cgn_init_reg_signal;
6985 					lpfc_issue_els_edc(phba->pport, 0);
6986 				}
6987 			}
6988 			break;
6989 		case LPFC_CFG_MANAGED:
6990 			switch (phba->cgn_p.cgn_param_mode) {
6991 			case LPFC_CFG_OFF:
6992 				/* Turning CMF off */
6993 				lpfc_cmf_stop(phba);
6994 				if (phba->link_state >= LPFC_LINK_UP)
6995 					lpfc_issue_els_edc(phba->pport, 0);
6996 				break;
6997 			case LPFC_CFG_MONITOR:
6998 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
6999 						"4661 Switch from MANAGED to "
7000 						"`MONITOR mode\n");
7001 				phba->cmf_max_bytes_per_interval =
7002 					phba->cmf_link_byte_count;
7003 
7004 				/* Resume blocked IO - unblock on workqueue */
7005 				queue_work(phba->wq,
7006 					   &phba->unblock_request_work);
7007 				break;
7008 			}
7009 			break;
7010 		case LPFC_CFG_MONITOR:
7011 			switch (phba->cgn_p.cgn_param_mode) {
7012 			case LPFC_CFG_OFF:
7013 				/* Turning CMF off */
7014 				lpfc_cmf_stop(phba);
7015 				if (phba->link_state >= LPFC_LINK_UP)
7016 					lpfc_issue_els_edc(phba->pport, 0);
7017 				break;
7018 			case LPFC_CFG_MANAGED:
7019 				lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7020 						"4662 Switch from MONITOR to "
7021 						"MANAGED mode\n");
7022 				lpfc_cmf_signal_init(phba);
7023 				break;
7024 			}
7025 			break;
7026 		}
7027 	} else {
7028 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7029 				"4669 FW cgn parm buf wrong magic 0x%x "
7030 				"version %d\n", p_cgn_param->cgn_param_magic,
7031 				p_cgn_param->cgn_param_version);
7032 	}
7033 }
7034 
7035 /**
7036  * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters.
7037  * @phba: pointer to lpfc hba data structure.
7038  *
7039  * This routine issues a read_object mailbox command to
7040  * get the congestion management parameters from the FW
7041  * parses it and updates the driver maintained values.
7042  *
7043  * Returns
7044  *  0     if the object was empty
7045  *  -Eval if an error was encountered
7046  *  Count if bytes were read from object
7047  **/
7048 int
lpfc_sli4_cgn_params_read(struct lpfc_hba * phba)7049 lpfc_sli4_cgn_params_read(struct lpfc_hba *phba)
7050 {
7051 	int ret = 0;
7052 	struct lpfc_cgn_param *p_cgn_param = NULL;
7053 	u32 *pdata = NULL;
7054 	u32 len = 0;
7055 
7056 	/* Find out if the FW has a new set of congestion parameters. */
7057 	len = sizeof(struct lpfc_cgn_param);
7058 	pdata = kzalloc(len, GFP_KERNEL);
7059 	if (!pdata)
7060 		return -ENOMEM;
7061 	ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME,
7062 			       pdata, len);
7063 
7064 	/* 0 means no data.  A negative means error.  A positive means
7065 	 * bytes were copied.
7066 	 */
7067 	if (!ret) {
7068 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7069 				"4670 CGN RD OBJ returns no data\n");
7070 		goto rd_obj_err;
7071 	} else if (ret < 0) {
7072 		/* Some error.  Just exit and return it to the caller.*/
7073 		goto rd_obj_err;
7074 	}
7075 
7076 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
7077 			"6234 READ CGN PARAMS Successful %d\n", len);
7078 
7079 	/* Parse data pointer over len and update the phba congestion
7080 	 * parameters with values passed back.  The receive rate values
7081 	 * may have been altered in FW, but take no action here.
7082 	 */
7083 	p_cgn_param = (struct lpfc_cgn_param *)pdata;
7084 	lpfc_cgn_params_parse(phba, p_cgn_param, len);
7085 
7086  rd_obj_err:
7087 	kfree(pdata);
7088 	return ret;
7089 }
7090 
7091 /**
7092  * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event
7093  * @phba: pointer to lpfc hba data structure.
7094  *
7095  * The FW generated Async ACQE SLI event calls this routine when
7096  * the event type is an SLI Internal Port Event and the Event Code
7097  * indicates a change to the FW maintained congestion parameters.
7098  *
7099  * This routine executes a Read_Object mailbox call to obtain the
7100  * current congestion parameters maintained in FW and corrects
7101  * the driver's active congestion parameters.
7102  *
7103  * The acqe event is not passed because there is no further data
7104  * required.
7105  *
7106  * Returns nonzero error if event processing encountered an error.
7107  * Zero otherwise for success.
7108  **/
7109 static int
lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba * phba)7110 lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba)
7111 {
7112 	int ret = 0;
7113 
7114 	if (!phba->sli4_hba.pc_sli4_params.cmf) {
7115 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7116 				"4664 Cgn Evt when E2E off. Drop event\n");
7117 		return -EACCES;
7118 	}
7119 
7120 	/* If the event is claiming an empty object, it's ok.  A write
7121 	 * could have cleared it.  Only error is a negative return
7122 	 * status.
7123 	 */
7124 	ret = lpfc_sli4_cgn_params_read(phba);
7125 	if (ret < 0) {
7126 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7127 				"4667 Error reading Cgn Params (%d)\n",
7128 				ret);
7129 	} else if (!ret) {
7130 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
7131 				"4673 CGN Event empty object.\n");
7132 	}
7133 	return ret;
7134 }
7135 
7136 /**
7137  * lpfc_sli4_async_event_proc - Process all the pending asynchronous event
7138  * @phba: pointer to lpfc hba data structure.
7139  *
7140  * This routine is invoked by the worker thread to process all the pending
7141  * SLI4 asynchronous events.
7142  **/
lpfc_sli4_async_event_proc(struct lpfc_hba * phba)7143 void lpfc_sli4_async_event_proc(struct lpfc_hba *phba)
7144 {
7145 	struct lpfc_cq_event *cq_event;
7146 	unsigned long iflags;
7147 
7148 	/* First, declare the async event has been handled */
7149 	spin_lock_irqsave(&phba->hbalock, iflags);
7150 	phba->hba_flag &= ~ASYNC_EVENT;
7151 	spin_unlock_irqrestore(&phba->hbalock, iflags);
7152 
7153 	/* Now, handle all the async events */
7154 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7155 	while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) {
7156 		list_remove_head(&phba->sli4_hba.sp_asynce_work_queue,
7157 				 cq_event, struct lpfc_cq_event, list);
7158 		spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock,
7159 				       iflags);
7160 
7161 		/* Process the asynchronous event */
7162 		switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) {
7163 		case LPFC_TRAILER_CODE_LINK:
7164 			lpfc_sli4_async_link_evt(phba,
7165 						 &cq_event->cqe.acqe_link);
7166 			break;
7167 		case LPFC_TRAILER_CODE_FCOE:
7168 			lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip);
7169 			break;
7170 		case LPFC_TRAILER_CODE_DCBX:
7171 			lpfc_sli4_async_dcbx_evt(phba,
7172 						 &cq_event->cqe.acqe_dcbx);
7173 			break;
7174 		case LPFC_TRAILER_CODE_GRP5:
7175 			lpfc_sli4_async_grp5_evt(phba,
7176 						 &cq_event->cqe.acqe_grp5);
7177 			break;
7178 		case LPFC_TRAILER_CODE_FC:
7179 			lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc);
7180 			break;
7181 		case LPFC_TRAILER_CODE_SLI:
7182 			lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli);
7183 			break;
7184 		case LPFC_TRAILER_CODE_CMSTAT:
7185 			lpfc_sli4_async_cmstat_evt(phba);
7186 			break;
7187 		default:
7188 			lpfc_printf_log(phba, KERN_ERR,
7189 					LOG_TRACE_EVENT,
7190 					"1804 Invalid asynchronous event code: "
7191 					"x%x\n", bf_get(lpfc_trailer_code,
7192 					&cq_event->cqe.mcqe_cmpl));
7193 			break;
7194 		}
7195 
7196 		/* Free the completion event processed to the free pool */
7197 		lpfc_sli4_cq_event_release(phba, cq_event);
7198 		spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
7199 	}
7200 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
7201 }
7202 
7203 /**
7204  * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event
7205  * @phba: pointer to lpfc hba data structure.
7206  *
7207  * This routine is invoked by the worker thread to process FCF table
7208  * rediscovery pending completion event.
7209  **/
lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba * phba)7210 void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba)
7211 {
7212 	int rc;
7213 
7214 	spin_lock_irq(&phba->hbalock);
7215 	/* Clear FCF rediscovery timeout event */
7216 	phba->fcf.fcf_flag &= ~FCF_REDISC_EVT;
7217 	/* Clear driver fast failover FCF record flag */
7218 	phba->fcf.failover_rec.flag = 0;
7219 	/* Set state for FCF fast failover */
7220 	phba->fcf.fcf_flag |= FCF_REDISC_FOV;
7221 	spin_unlock_irq(&phba->hbalock);
7222 
7223 	/* Scan FCF table from the first entry to re-discover SAN */
7224 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY,
7225 			"2777 Start post-quiescent FCF table scan\n");
7226 	rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST);
7227 	if (rc)
7228 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7229 				"2747 Issue FCF scan read FCF mailbox "
7230 				"command failed 0x%x\n", rc);
7231 }
7232 
7233 /**
7234  * lpfc_api_table_setup - Set up per hba pci-device group func api jump table
7235  * @phba: pointer to lpfc hba data structure.
7236  * @dev_grp: The HBA PCI-Device group number.
7237  *
7238  * This routine is invoked to set up the per HBA PCI-Device group function
7239  * API jump table entries.
7240  *
7241  * Return: 0 if success, otherwise -ENODEV
7242  **/
7243 int
lpfc_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)7244 lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7245 {
7246 	int rc;
7247 
7248 	/* Set up lpfc PCI-device group */
7249 	phba->pci_dev_grp = dev_grp;
7250 
7251 	/* The LPFC_PCI_DEV_OC uses SLI4 */
7252 	if (dev_grp == LPFC_PCI_DEV_OC)
7253 		phba->sli_rev = LPFC_SLI_REV4;
7254 
7255 	/* Set up device INIT API function jump table */
7256 	rc = lpfc_init_api_table_setup(phba, dev_grp);
7257 	if (rc)
7258 		return -ENODEV;
7259 	/* Set up SCSI API function jump table */
7260 	rc = lpfc_scsi_api_table_setup(phba, dev_grp);
7261 	if (rc)
7262 		return -ENODEV;
7263 	/* Set up SLI API function jump table */
7264 	rc = lpfc_sli_api_table_setup(phba, dev_grp);
7265 	if (rc)
7266 		return -ENODEV;
7267 	/* Set up MBOX API function jump table */
7268 	rc = lpfc_mbox_api_table_setup(phba, dev_grp);
7269 	if (rc)
7270 		return -ENODEV;
7271 
7272 	return 0;
7273 }
7274 
7275 /**
7276  * lpfc_log_intr_mode - Log the active interrupt mode
7277  * @phba: pointer to lpfc hba data structure.
7278  * @intr_mode: active interrupt mode adopted.
7279  *
7280  * This routine it invoked to log the currently used active interrupt mode
7281  * to the device.
7282  **/
lpfc_log_intr_mode(struct lpfc_hba * phba,uint32_t intr_mode)7283 static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
7284 {
7285 	switch (intr_mode) {
7286 	case 0:
7287 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7288 				"0470 Enable INTx interrupt mode.\n");
7289 		break;
7290 	case 1:
7291 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7292 				"0481 Enabled MSI interrupt mode.\n");
7293 		break;
7294 	case 2:
7295 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7296 				"0480 Enabled MSI-X interrupt mode.\n");
7297 		break;
7298 	default:
7299 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7300 				"0482 Illegal interrupt mode.\n");
7301 		break;
7302 	}
7303 	return;
7304 }
7305 
7306 /**
7307  * lpfc_enable_pci_dev - Enable a generic PCI device.
7308  * @phba: pointer to lpfc hba data structure.
7309  *
7310  * This routine is invoked to enable the PCI device that is common to all
7311  * PCI devices.
7312  *
7313  * Return codes
7314  * 	0 - successful
7315  * 	other values - error
7316  **/
7317 static int
lpfc_enable_pci_dev(struct lpfc_hba * phba)7318 lpfc_enable_pci_dev(struct lpfc_hba *phba)
7319 {
7320 	struct pci_dev *pdev;
7321 
7322 	/* Obtain PCI device reference */
7323 	if (!phba->pcidev)
7324 		goto out_error;
7325 	else
7326 		pdev = phba->pcidev;
7327 	/* Enable PCI device */
7328 	if (pci_enable_device_mem(pdev))
7329 		goto out_error;
7330 	/* Request PCI resource for the device */
7331 	if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME))
7332 		goto out_disable_device;
7333 	/* Set up device as PCI master and save state for EEH */
7334 	pci_set_master(pdev);
7335 	pci_try_set_mwi(pdev);
7336 	pci_save_state(pdev);
7337 
7338 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7339 	if (pci_is_pcie(pdev))
7340 		pdev->needs_freset = 1;
7341 
7342 	return 0;
7343 
7344 out_disable_device:
7345 	pci_disable_device(pdev);
7346 out_error:
7347 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7348 			"1401 Failed to enable pci device\n");
7349 	return -ENODEV;
7350 }
7351 
7352 /**
7353  * lpfc_disable_pci_dev - Disable a generic PCI device.
7354  * @phba: pointer to lpfc hba data structure.
7355  *
7356  * This routine is invoked to disable the PCI device that is common to all
7357  * PCI devices.
7358  **/
7359 static void
lpfc_disable_pci_dev(struct lpfc_hba * phba)7360 lpfc_disable_pci_dev(struct lpfc_hba *phba)
7361 {
7362 	struct pci_dev *pdev;
7363 
7364 	/* Obtain PCI device reference */
7365 	if (!phba->pcidev)
7366 		return;
7367 	else
7368 		pdev = phba->pcidev;
7369 	/* Release PCI resource and disable PCI device */
7370 	pci_release_mem_regions(pdev);
7371 	pci_disable_device(pdev);
7372 
7373 	return;
7374 }
7375 
7376 /**
7377  * lpfc_reset_hba - Reset a hba
7378  * @phba: pointer to lpfc hba data structure.
7379  *
7380  * This routine is invoked to reset a hba device. It brings the HBA
7381  * offline, performs a board restart, and then brings the board back
7382  * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up
7383  * on outstanding mailbox commands.
7384  **/
7385 void
lpfc_reset_hba(struct lpfc_hba * phba)7386 lpfc_reset_hba(struct lpfc_hba *phba)
7387 {
7388 	/* If resets are disabled then set error state and return. */
7389 	if (!phba->cfg_enable_hba_reset) {
7390 		phba->link_state = LPFC_HBA_ERROR;
7391 		return;
7392 	}
7393 
7394 	/* If not LPFC_SLI_ACTIVE, force all IO to be flushed */
7395 	if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) {
7396 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
7397 	} else {
7398 		lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT);
7399 		lpfc_sli_flush_io_rings(phba);
7400 	}
7401 	lpfc_offline(phba);
7402 	lpfc_sli_brdrestart(phba);
7403 	lpfc_online(phba);
7404 	lpfc_unblock_mgmt_io(phba);
7405 }
7406 
7407 /**
7408  * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions
7409  * @phba: pointer to lpfc hba data structure.
7410  *
7411  * This function enables the PCI SR-IOV virtual functions to a physical
7412  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7413  * enable the number of virtual functions to the physical function. As
7414  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7415  * API call does not considered as an error condition for most of the device.
7416  **/
7417 uint16_t
lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba * phba)7418 lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba)
7419 {
7420 	struct pci_dev *pdev = phba->pcidev;
7421 	uint16_t nr_virtfn;
7422 	int pos;
7423 
7424 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
7425 	if (pos == 0)
7426 		return 0;
7427 
7428 	pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn);
7429 	return nr_virtfn;
7430 }
7431 
7432 /**
7433  * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions
7434  * @phba: pointer to lpfc hba data structure.
7435  * @nr_vfn: number of virtual functions to be enabled.
7436  *
7437  * This function enables the PCI SR-IOV virtual functions to a physical
7438  * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to
7439  * enable the number of virtual functions to the physical function. As
7440  * not all devices support SR-IOV, the return code from the pci_enable_sriov()
7441  * API call does not considered as an error condition for most of the device.
7442  **/
7443 int
lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba * phba,int nr_vfn)7444 lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn)
7445 {
7446 	struct pci_dev *pdev = phba->pcidev;
7447 	uint16_t max_nr_vfn;
7448 	int rc;
7449 
7450 	max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba);
7451 	if (nr_vfn > max_nr_vfn) {
7452 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7453 				"3057 Requested vfs (%d) greater than "
7454 				"supported vfs (%d)", nr_vfn, max_nr_vfn);
7455 		return -EINVAL;
7456 	}
7457 
7458 	rc = pci_enable_sriov(pdev, nr_vfn);
7459 	if (rc) {
7460 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7461 				"2806 Failed to enable sriov on this device "
7462 				"with vfn number nr_vf:%d, rc:%d\n",
7463 				nr_vfn, rc);
7464 	} else
7465 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7466 				"2807 Successful enable sriov on this device "
7467 				"with vfn number nr_vf:%d\n", nr_vfn);
7468 	return rc;
7469 }
7470 
7471 static void
lpfc_unblock_requests_work(struct work_struct * work)7472 lpfc_unblock_requests_work(struct work_struct *work)
7473 {
7474 	struct lpfc_hba *phba = container_of(work, struct lpfc_hba,
7475 					     unblock_request_work);
7476 
7477 	lpfc_unblock_requests(phba);
7478 }
7479 
7480 /**
7481  * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources.
7482  * @phba: pointer to lpfc hba data structure.
7483  *
7484  * This routine is invoked to set up the driver internal resources before the
7485  * device specific resource setup to support the HBA device it attached to.
7486  *
7487  * Return codes
7488  *	0 - successful
7489  *	other values - error
7490  **/
7491 static int
lpfc_setup_driver_resource_phase1(struct lpfc_hba * phba)7492 lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba)
7493 {
7494 	struct lpfc_sli *psli = &phba->sli;
7495 
7496 	/*
7497 	 * Driver resources common to all SLI revisions
7498 	 */
7499 	atomic_set(&phba->fast_event_count, 0);
7500 	atomic_set(&phba->dbg_log_idx, 0);
7501 	atomic_set(&phba->dbg_log_cnt, 0);
7502 	atomic_set(&phba->dbg_log_dmping, 0);
7503 	spin_lock_init(&phba->hbalock);
7504 
7505 	/* Initialize port_list spinlock */
7506 	spin_lock_init(&phba->port_list_lock);
7507 	INIT_LIST_HEAD(&phba->port_list);
7508 
7509 	INIT_LIST_HEAD(&phba->work_list);
7510 	init_waitqueue_head(&phba->wait_4_mlo_m_q);
7511 
7512 	/* Initialize the wait queue head for the kernel thread */
7513 	init_waitqueue_head(&phba->work_waitq);
7514 
7515 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7516 			"1403 Protocols supported %s %s %s\n",
7517 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ?
7518 				"SCSI" : " "),
7519 			((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ?
7520 				"NVME" : " "),
7521 			(phba->nvmet_support ? "NVMET" : " "));
7522 
7523 	/* Initialize the IO buffer list used by driver for SLI3 SCSI */
7524 	spin_lock_init(&phba->scsi_buf_list_get_lock);
7525 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get);
7526 	spin_lock_init(&phba->scsi_buf_list_put_lock);
7527 	INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
7528 
7529 	/* Initialize the fabric iocb list */
7530 	INIT_LIST_HEAD(&phba->fabric_iocb_list);
7531 
7532 	/* Initialize list to save ELS buffers */
7533 	INIT_LIST_HEAD(&phba->elsbuf);
7534 
7535 	/* Initialize FCF connection rec list */
7536 	INIT_LIST_HEAD(&phba->fcf_conn_rec_list);
7537 
7538 	/* Initialize OAS configuration list */
7539 	spin_lock_init(&phba->devicelock);
7540 	INIT_LIST_HEAD(&phba->luns);
7541 
7542 	/* MBOX heartbeat timer */
7543 	timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0);
7544 	/* Fabric block timer */
7545 	timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0);
7546 	/* EA polling mode timer */
7547 	timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0);
7548 	/* Heartbeat timer */
7549 	timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0);
7550 
7551 	INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work);
7552 
7553 	INIT_DELAYED_WORK(&phba->idle_stat_delay_work,
7554 			  lpfc_idle_stat_delay_work);
7555 	INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work);
7556 	return 0;
7557 }
7558 
7559 /**
7560  * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev
7561  * @phba: pointer to lpfc hba data structure.
7562  *
7563  * This routine is invoked to set up the driver internal resources specific to
7564  * support the SLI-3 HBA device it attached to.
7565  *
7566  * Return codes
7567  * 0 - successful
7568  * other values - error
7569  **/
7570 static int
lpfc_sli_driver_resource_setup(struct lpfc_hba * phba)7571 lpfc_sli_driver_resource_setup(struct lpfc_hba *phba)
7572 {
7573 	int rc, entry_sz;
7574 
7575 	/*
7576 	 * Initialize timers used by driver
7577 	 */
7578 
7579 	/* FCP polling mode timer */
7580 	timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0);
7581 
7582 	/* Host attention work mask setup */
7583 	phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
7584 	phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
7585 
7586 	/* Get all the module params for configuring this host */
7587 	lpfc_get_cfgparam(phba);
7588 	/* Set up phase-1 common device driver resources */
7589 
7590 	rc = lpfc_setup_driver_resource_phase1(phba);
7591 	if (rc)
7592 		return -ENODEV;
7593 
7594 	if (phba->pcidev->device == PCI_DEVICE_ID_HORNET) {
7595 		phba->menlo_flag |= HBA_MENLO_SUPPORT;
7596 		/* check for menlo minimum sg count */
7597 		if (phba->cfg_sg_seg_cnt < LPFC_DEFAULT_MENLO_SG_SEG_CNT)
7598 			phba->cfg_sg_seg_cnt = LPFC_DEFAULT_MENLO_SG_SEG_CNT;
7599 	}
7600 
7601 	if (!phba->sli.sli3_ring)
7602 		phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING,
7603 					      sizeof(struct lpfc_sli_ring),
7604 					      GFP_KERNEL);
7605 	if (!phba->sli.sli3_ring)
7606 		return -ENOMEM;
7607 
7608 	/*
7609 	 * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size
7610 	 * used to create the sg_dma_buf_pool must be dynamically calculated.
7611 	 */
7612 
7613 	if (phba->sli_rev == LPFC_SLI_REV4)
7614 		entry_sz = sizeof(struct sli4_sge);
7615 	else
7616 		entry_sz = sizeof(struct ulp_bde64);
7617 
7618 	/* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */
7619 	if (phba->cfg_enable_bg) {
7620 		/*
7621 		 * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd,
7622 		 * the FCP rsp, and a BDE for each. Sice we have no control
7623 		 * over how many protection data segments the SCSI Layer
7624 		 * will hand us (ie: there could be one for every block
7625 		 * in the IO), we just allocate enough BDEs to accomidate
7626 		 * our max amount and we need to limit lpfc_sg_seg_cnt to
7627 		 * minimize the risk of running out.
7628 		 */
7629 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7630 			sizeof(struct fcp_rsp) +
7631 			(LPFC_MAX_SG_SEG_CNT * entry_sz);
7632 
7633 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF)
7634 			phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF;
7635 
7636 		/* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */
7637 		phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT;
7638 	} else {
7639 		/*
7640 		 * The scsi_buf for a regular I/O will hold the FCP cmnd,
7641 		 * the FCP rsp, a BDE for each, and a BDE for up to
7642 		 * cfg_sg_seg_cnt data segments.
7643 		 */
7644 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
7645 			sizeof(struct fcp_rsp) +
7646 			((phba->cfg_sg_seg_cnt + 2) * entry_sz);
7647 
7648 		/* Total BDEs in BPL for scsi_sg_list */
7649 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2;
7650 	}
7651 
7652 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
7653 			"9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n",
7654 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
7655 			phba->cfg_total_seg_cnt);
7656 
7657 	phba->max_vpi = LPFC_MAX_VPI;
7658 	/* This will be set to correct value after config_port mbox */
7659 	phba->max_vports = 0;
7660 
7661 	/*
7662 	 * Initialize the SLI Layer to run with lpfc HBAs.
7663 	 */
7664 	lpfc_sli_setup(phba);
7665 	lpfc_sli_queue_init(phba);
7666 
7667 	/* Allocate device driver memory */
7668 	if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ))
7669 		return -ENOMEM;
7670 
7671 	phba->lpfc_sg_dma_buf_pool =
7672 		dma_pool_create("lpfc_sg_dma_buf_pool",
7673 				&phba->pcidev->dev, phba->cfg_sg_dma_buf_size,
7674 				BPL_ALIGN_SZ, 0);
7675 
7676 	if (!phba->lpfc_sg_dma_buf_pool)
7677 		goto fail_free_mem;
7678 
7679 	phba->lpfc_cmd_rsp_buf_pool =
7680 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
7681 					&phba->pcidev->dev,
7682 					sizeof(struct fcp_cmnd) +
7683 					sizeof(struct fcp_rsp),
7684 					BPL_ALIGN_SZ, 0);
7685 
7686 	if (!phba->lpfc_cmd_rsp_buf_pool)
7687 		goto fail_free_dma_buf_pool;
7688 
7689 	/*
7690 	 * Enable sr-iov virtual functions if supported and configured
7691 	 * through the module parameter.
7692 	 */
7693 	if (phba->cfg_sriov_nr_virtfn > 0) {
7694 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
7695 						 phba->cfg_sriov_nr_virtfn);
7696 		if (rc) {
7697 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7698 					"2808 Requested number of SR-IOV "
7699 					"virtual functions (%d) is not "
7700 					"supported\n",
7701 					phba->cfg_sriov_nr_virtfn);
7702 			phba->cfg_sriov_nr_virtfn = 0;
7703 		}
7704 	}
7705 
7706 	return 0;
7707 
7708 fail_free_dma_buf_pool:
7709 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
7710 	phba->lpfc_sg_dma_buf_pool = NULL;
7711 fail_free_mem:
7712 	lpfc_mem_free(phba);
7713 	return -ENOMEM;
7714 }
7715 
7716 /**
7717  * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev
7718  * @phba: pointer to lpfc hba data structure.
7719  *
7720  * This routine is invoked to unset the driver internal resources set up
7721  * specific for supporting the SLI-3 HBA device it attached to.
7722  **/
7723 static void
lpfc_sli_driver_resource_unset(struct lpfc_hba * phba)7724 lpfc_sli_driver_resource_unset(struct lpfc_hba *phba)
7725 {
7726 	/* Free device driver memory allocated */
7727 	lpfc_mem_free_all(phba);
7728 
7729 	return;
7730 }
7731 
7732 /**
7733  * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev
7734  * @phba: pointer to lpfc hba data structure.
7735  *
7736  * This routine is invoked to set up the driver internal resources specific to
7737  * support the SLI-4 HBA device it attached to.
7738  *
7739  * Return codes
7740  * 	0 - successful
7741  * 	other values - error
7742  **/
7743 static int
lpfc_sli4_driver_resource_setup(struct lpfc_hba * phba)7744 lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba)
7745 {
7746 	LPFC_MBOXQ_t *mboxq;
7747 	MAILBOX_t *mb;
7748 	int rc, i, max_buf_size;
7749 	int longs;
7750 	int extra;
7751 	uint64_t wwn;
7752 	u32 if_type;
7753 	u32 if_fam;
7754 
7755 	phba->sli4_hba.num_present_cpu = lpfc_present_cpu;
7756 	phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1;
7757 	phba->sli4_hba.curr_disp_cpu = 0;
7758 
7759 	/* Get all the module params for configuring this host */
7760 	lpfc_get_cfgparam(phba);
7761 
7762 	/* Set up phase-1 common device driver resources */
7763 	rc = lpfc_setup_driver_resource_phase1(phba);
7764 	if (rc)
7765 		return -ENODEV;
7766 
7767 	/* Before proceed, wait for POST done and device ready */
7768 	rc = lpfc_sli4_post_status_check(phba);
7769 	if (rc)
7770 		return -ENODEV;
7771 
7772 	/* Allocate all driver workqueues here */
7773 
7774 	/* The lpfc_wq workqueue for deferred irq use */
7775 	phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0);
7776 
7777 	/*
7778 	 * Initialize timers used by driver
7779 	 */
7780 
7781 	timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0);
7782 
7783 	/* FCF rediscover timer */
7784 	timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0);
7785 
7786 	/* CMF congestion timer */
7787 	hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7788 	phba->cmf_timer.function = lpfc_cmf_timer;
7789 
7790 	/*
7791 	 * Control structure for handling external multi-buffer mailbox
7792 	 * command pass-through.
7793 	 */
7794 	memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0,
7795 		sizeof(struct lpfc_mbox_ext_buf_ctx));
7796 	INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list);
7797 
7798 	phba->max_vpi = LPFC_MAX_VPI;
7799 
7800 	/* This will be set to correct value after the read_config mbox */
7801 	phba->max_vports = 0;
7802 
7803 	/* Program the default value of vlan_id and fc_map */
7804 	phba->valid_vlan = 0;
7805 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
7806 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
7807 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
7808 
7809 	/*
7810 	 * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands
7811 	 * we will associate a new ring, for each EQ/CQ/WQ tuple.
7812 	 * The WQ create will allocate the ring.
7813 	 */
7814 
7815 	/* Initialize buffer queue management fields */
7816 	INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list);
7817 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc;
7818 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free;
7819 
7820 	/* for VMID idle timeout if VMID is enabled */
7821 	if (lpfc_is_vmid_enabled(phba))
7822 		timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0);
7823 
7824 	/*
7825 	 * Initialize the SLI Layer to run with lpfc SLI4 HBAs.
7826 	 */
7827 	/* Initialize the Abort buffer list used by driver */
7828 	spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock);
7829 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list);
7830 
7831 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
7832 		/* Initialize the Abort nvme buffer list used by driver */
7833 		spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock);
7834 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
7835 		INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list);
7836 		spin_lock_init(&phba->sli4_hba.t_active_list_lock);
7837 		INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list);
7838 	}
7839 
7840 	/* This abort list used by worker thread */
7841 	spin_lock_init(&phba->sli4_hba.sgl_list_lock);
7842 	spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock);
7843 	spin_lock_init(&phba->sli4_hba.asynce_list_lock);
7844 	spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock);
7845 
7846 	/*
7847 	 * Initialize driver internal slow-path work queues
7848 	 */
7849 
7850 	/* Driver internel slow-path CQ Event pool */
7851 	INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool);
7852 	/* Response IOCB work queue list */
7853 	INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event);
7854 	/* Asynchronous event CQ Event work queue list */
7855 	INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue);
7856 	/* Slow-path XRI aborted CQ Event work queue list */
7857 	INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue);
7858 	/* Receive queue CQ Event work queue list */
7859 	INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue);
7860 
7861 	/* Initialize extent block lists. */
7862 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list);
7863 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list);
7864 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list);
7865 	INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list);
7866 
7867 	/* Initialize mboxq lists. If the early init routines fail
7868 	 * these lists need to be correctly initialized.
7869 	 */
7870 	INIT_LIST_HEAD(&phba->sli.mboxq);
7871 	INIT_LIST_HEAD(&phba->sli.mboxq_cmpl);
7872 
7873 	/* initialize optic_state to 0xFF */
7874 	phba->sli4_hba.lnk_info.optic_state = 0xff;
7875 
7876 	/* Allocate device driver memory */
7877 	rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ);
7878 	if (rc)
7879 		goto out_destroy_workqueue;
7880 
7881 	/* IF Type 2 ports get initialized now. */
7882 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >=
7883 	    LPFC_SLI_INTF_IF_TYPE_2) {
7884 		rc = lpfc_pci_function_reset(phba);
7885 		if (unlikely(rc)) {
7886 			rc = -ENODEV;
7887 			goto out_free_mem;
7888 		}
7889 		phba->temp_sensor_support = 1;
7890 	}
7891 
7892 	/* Create the bootstrap mailbox command */
7893 	rc = lpfc_create_bootstrap_mbox(phba);
7894 	if (unlikely(rc))
7895 		goto out_free_mem;
7896 
7897 	/* Set up the host's endian order with the device. */
7898 	rc = lpfc_setup_endian_order(phba);
7899 	if (unlikely(rc))
7900 		goto out_free_bsmbx;
7901 
7902 	/* Set up the hba's configuration parameters. */
7903 	rc = lpfc_sli4_read_config(phba);
7904 	if (unlikely(rc))
7905 		goto out_free_bsmbx;
7906 	rc = lpfc_mem_alloc_active_rrq_pool_s4(phba);
7907 	if (unlikely(rc))
7908 		goto out_free_bsmbx;
7909 
7910 	/* IF Type 0 ports get initialized now. */
7911 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7912 	    LPFC_SLI_INTF_IF_TYPE_0) {
7913 		rc = lpfc_pci_function_reset(phba);
7914 		if (unlikely(rc))
7915 			goto out_free_bsmbx;
7916 	}
7917 
7918 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
7919 						       GFP_KERNEL);
7920 	if (!mboxq) {
7921 		rc = -ENOMEM;
7922 		goto out_free_bsmbx;
7923 	}
7924 
7925 	/* Check for NVMET being configured */
7926 	phba->nvmet_support = 0;
7927 	if (lpfc_enable_nvmet_cnt) {
7928 
7929 		/* First get WWN of HBA instance */
7930 		lpfc_read_nv(phba, mboxq);
7931 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7932 		if (rc != MBX_SUCCESS) {
7933 			lpfc_printf_log(phba, KERN_ERR,
7934 					LOG_TRACE_EVENT,
7935 					"6016 Mailbox failed , mbxCmd x%x "
7936 					"READ_NV, mbxStatus x%x\n",
7937 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7938 					bf_get(lpfc_mqe_status, &mboxq->u.mqe));
7939 			mempool_free(mboxq, phba->mbox_mem_pool);
7940 			rc = -EIO;
7941 			goto out_free_bsmbx;
7942 		}
7943 		mb = &mboxq->u.mb;
7944 		memcpy(&wwn, (char *)mb->un.varRDnvp.nodename,
7945 		       sizeof(uint64_t));
7946 		wwn = cpu_to_be64(wwn);
7947 		phba->sli4_hba.wwnn.u.name = wwn;
7948 		memcpy(&wwn, (char *)mb->un.varRDnvp.portname,
7949 		       sizeof(uint64_t));
7950 		/* wwn is WWPN of HBA instance */
7951 		wwn = cpu_to_be64(wwn);
7952 		phba->sli4_hba.wwpn.u.name = wwn;
7953 
7954 		/* Check to see if it matches any module parameter */
7955 		for (i = 0; i < lpfc_enable_nvmet_cnt; i++) {
7956 			if (wwn == lpfc_enable_nvmet[i]) {
7957 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
7958 				if (lpfc_nvmet_mem_alloc(phba))
7959 					break;
7960 
7961 				phba->nvmet_support = 1; /* a match */
7962 
7963 				lpfc_printf_log(phba, KERN_ERR,
7964 						LOG_TRACE_EVENT,
7965 						"6017 NVME Target %016llx\n",
7966 						wwn);
7967 #else
7968 				lpfc_printf_log(phba, KERN_ERR,
7969 						LOG_TRACE_EVENT,
7970 						"6021 Can't enable NVME Target."
7971 						" NVME_TARGET_FC infrastructure"
7972 						" is not in kernel\n");
7973 #endif
7974 				/* Not supported for NVMET */
7975 				phba->cfg_xri_rebalancing = 0;
7976 				if (phba->irq_chann_mode == NHT_MODE) {
7977 					phba->cfg_irq_chann =
7978 						phba->sli4_hba.num_present_cpu;
7979 					phba->cfg_hdw_queue =
7980 						phba->sli4_hba.num_present_cpu;
7981 					phba->irq_chann_mode = NORMAL_MODE;
7982 				}
7983 				break;
7984 			}
7985 		}
7986 	}
7987 
7988 	lpfc_nvme_mod_param_dep(phba);
7989 
7990 	/*
7991 	 * Get sli4 parameters that override parameters from Port capabilities.
7992 	 * If this call fails, it isn't critical unless the SLI4 parameters come
7993 	 * back in conflict.
7994 	 */
7995 	rc = lpfc_get_sli4_parameters(phba, mboxq);
7996 	if (rc) {
7997 		if_type = bf_get(lpfc_sli_intf_if_type,
7998 				 &phba->sli4_hba.sli_intf);
7999 		if_fam = bf_get(lpfc_sli_intf_sli_family,
8000 				&phba->sli4_hba.sli_intf);
8001 		if (phba->sli4_hba.extents_in_use &&
8002 		    phba->sli4_hba.rpi_hdrs_in_use) {
8003 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8004 					"2999 Unsupported SLI4 Parameters "
8005 					"Extents and RPI headers enabled.\n");
8006 			if (if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8007 			    if_fam ==  LPFC_SLI_INTF_FAMILY_BE2) {
8008 				mempool_free(mboxq, phba->mbox_mem_pool);
8009 				rc = -EIO;
8010 				goto out_free_bsmbx;
8011 			}
8012 		}
8013 		if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 &&
8014 		      if_fam == LPFC_SLI_INTF_FAMILY_BE2)) {
8015 			mempool_free(mboxq, phba->mbox_mem_pool);
8016 			rc = -EIO;
8017 			goto out_free_bsmbx;
8018 		}
8019 	}
8020 
8021 	/*
8022 	 * 1 for cmd, 1 for rsp, NVME adds an extra one
8023 	 * for boundary conditions in its max_sgl_segment template.
8024 	 */
8025 	extra = 2;
8026 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
8027 		extra++;
8028 
8029 	/*
8030 	 * It doesn't matter what family our adapter is in, we are
8031 	 * limited to 2 Pages, 512 SGEs, for our SGL.
8032 	 * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp
8033 	 */
8034 	max_buf_size = (2 * SLI4_PAGE_SIZE);
8035 
8036 	/*
8037 	 * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size
8038 	 * used to create the sg_dma_buf_pool must be calculated.
8039 	 */
8040 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8041 		/* Both cfg_enable_bg and cfg_external_dif code paths */
8042 
8043 		/*
8044 		 * The scsi_buf for a T10-DIF I/O holds the FCP cmnd,
8045 		 * the FCP rsp, and a SGE. Sice we have no control
8046 		 * over how many protection segments the SCSI Layer
8047 		 * will hand us (ie: there could be one for every block
8048 		 * in the IO), just allocate enough SGEs to accomidate
8049 		 * our max amount and we need to limit lpfc_sg_seg_cnt
8050 		 * to minimize the risk of running out.
8051 		 */
8052 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8053 				sizeof(struct fcp_rsp) + max_buf_size;
8054 
8055 		/* Total SGEs for scsi_sg_list and scsi_sg_prot_list */
8056 		phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT;
8057 
8058 		/*
8059 		 * If supporting DIF, reduce the seg count for scsi to
8060 		 * allow room for the DIF sges.
8061 		 */
8062 		if (phba->cfg_enable_bg &&
8063 		    phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF)
8064 			phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF;
8065 		else
8066 			phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8067 
8068 	} else {
8069 		/*
8070 		 * The scsi_buf for a regular I/O holds the FCP cmnd,
8071 		 * the FCP rsp, a SGE for each, and a SGE for up to
8072 		 * cfg_sg_seg_cnt data segments.
8073 		 */
8074 		phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) +
8075 				sizeof(struct fcp_rsp) +
8076 				((phba->cfg_sg_seg_cnt + extra) *
8077 				sizeof(struct sli4_sge));
8078 
8079 		/* Total SGEs for scsi_sg_list */
8080 		phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra;
8081 		phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt;
8082 
8083 		/*
8084 		 * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only
8085 		 * need to post 1 page for the SGL.
8086 		 */
8087 	}
8088 
8089 	if (phba->cfg_xpsgl && !phba->nvmet_support)
8090 		phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE;
8091 	else if (phba->cfg_sg_dma_buf_size  <= LPFC_MIN_SG_SLI4_BUF_SZ)
8092 		phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ;
8093 	else
8094 		phba->cfg_sg_dma_buf_size =
8095 				SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size);
8096 
8097 	phba->border_sge_num = phba->cfg_sg_dma_buf_size /
8098 			       sizeof(struct sli4_sge);
8099 
8100 	/* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */
8101 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
8102 		if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
8103 			lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
8104 					"6300 Reducing NVME sg segment "
8105 					"cnt to %d\n",
8106 					LPFC_MAX_NVME_SEG_CNT);
8107 			phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
8108 		} else
8109 			phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
8110 	}
8111 
8112 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP,
8113 			"9087 sg_seg_cnt:%d dmabuf_size:%d "
8114 			"total:%d scsi:%d nvme:%d\n",
8115 			phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size,
8116 			phba->cfg_total_seg_cnt,  phba->cfg_scsi_seg_cnt,
8117 			phba->cfg_nvme_seg_cnt);
8118 
8119 	if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE)
8120 		i = phba->cfg_sg_dma_buf_size;
8121 	else
8122 		i = SLI4_PAGE_SIZE;
8123 
8124 	phba->lpfc_sg_dma_buf_pool =
8125 			dma_pool_create("lpfc_sg_dma_buf_pool",
8126 					&phba->pcidev->dev,
8127 					phba->cfg_sg_dma_buf_size,
8128 					i, 0);
8129 	if (!phba->lpfc_sg_dma_buf_pool)
8130 		goto out_free_bsmbx;
8131 
8132 	phba->lpfc_cmd_rsp_buf_pool =
8133 			dma_pool_create("lpfc_cmd_rsp_buf_pool",
8134 					&phba->pcidev->dev,
8135 					sizeof(struct fcp_cmnd) +
8136 					sizeof(struct fcp_rsp),
8137 					i, 0);
8138 	if (!phba->lpfc_cmd_rsp_buf_pool)
8139 		goto out_free_sg_dma_buf;
8140 
8141 	mempool_free(mboxq, phba->mbox_mem_pool);
8142 
8143 	/* Verify OAS is supported */
8144 	lpfc_sli4_oas_verify(phba);
8145 
8146 	/* Verify RAS support on adapter */
8147 	lpfc_sli4_ras_init(phba);
8148 
8149 	/* Verify all the SLI4 queues */
8150 	rc = lpfc_sli4_queue_verify(phba);
8151 	if (rc)
8152 		goto out_free_cmd_rsp_buf;
8153 
8154 	/* Create driver internal CQE event pool */
8155 	rc = lpfc_sli4_cq_event_pool_create(phba);
8156 	if (rc)
8157 		goto out_free_cmd_rsp_buf;
8158 
8159 	/* Initialize sgl lists per host */
8160 	lpfc_init_sgl_list(phba);
8161 
8162 	/* Allocate and initialize active sgl array */
8163 	rc = lpfc_init_active_sgl_array(phba);
8164 	if (rc) {
8165 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8166 				"1430 Failed to initialize sgl list.\n");
8167 		goto out_destroy_cq_event_pool;
8168 	}
8169 	rc = lpfc_sli4_init_rpi_hdrs(phba);
8170 	if (rc) {
8171 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8172 				"1432 Failed to initialize rpi headers.\n");
8173 		goto out_free_active_sgl;
8174 	}
8175 
8176 	/* Allocate eligible FCF bmask memory for FCF roundrobin failover */
8177 	longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG;
8178 	phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long),
8179 					 GFP_KERNEL);
8180 	if (!phba->fcf.fcf_rr_bmask) {
8181 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8182 				"2759 Failed allocate memory for FCF round "
8183 				"robin failover bmask\n");
8184 		rc = -ENOMEM;
8185 		goto out_remove_rpi_hdrs;
8186 	}
8187 
8188 	phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann,
8189 					    sizeof(struct lpfc_hba_eq_hdl),
8190 					    GFP_KERNEL);
8191 	if (!phba->sli4_hba.hba_eq_hdl) {
8192 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8193 				"2572 Failed allocate memory for "
8194 				"fast-path per-EQ handle array\n");
8195 		rc = -ENOMEM;
8196 		goto out_free_fcf_rr_bmask;
8197 	}
8198 
8199 	phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu,
8200 					sizeof(struct lpfc_vector_map_info),
8201 					GFP_KERNEL);
8202 	if (!phba->sli4_hba.cpu_map) {
8203 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8204 				"3327 Failed allocate memory for msi-x "
8205 				"interrupt vector mapping\n");
8206 		rc = -ENOMEM;
8207 		goto out_free_hba_eq_hdl;
8208 	}
8209 
8210 	phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info);
8211 	if (!phba->sli4_hba.eq_info) {
8212 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8213 				"3321 Failed allocation for per_cpu stats\n");
8214 		rc = -ENOMEM;
8215 		goto out_free_hba_cpu_map;
8216 	}
8217 
8218 	phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu,
8219 					   sizeof(*phba->sli4_hba.idle_stat),
8220 					   GFP_KERNEL);
8221 	if (!phba->sli4_hba.idle_stat) {
8222 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8223 				"3390 Failed allocation for idle_stat\n");
8224 		rc = -ENOMEM;
8225 		goto out_free_hba_eq_info;
8226 	}
8227 
8228 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8229 	phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat);
8230 	if (!phba->sli4_hba.c_stat) {
8231 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8232 				"3332 Failed allocating per cpu hdwq stats\n");
8233 		rc = -ENOMEM;
8234 		goto out_free_hba_idle_stat;
8235 	}
8236 #endif
8237 
8238 	phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat);
8239 	if (!phba->cmf_stat) {
8240 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8241 				"3331 Failed allocating per cpu cgn stats\n");
8242 		rc = -ENOMEM;
8243 		goto out_free_hba_hdwq_info;
8244 	}
8245 
8246 	/*
8247 	 * Enable sr-iov virtual functions if supported and configured
8248 	 * through the module parameter.
8249 	 */
8250 	if (phba->cfg_sriov_nr_virtfn > 0) {
8251 		rc = lpfc_sli_probe_sriov_nr_virtfn(phba,
8252 						 phba->cfg_sriov_nr_virtfn);
8253 		if (rc) {
8254 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
8255 					"3020 Requested number of SR-IOV "
8256 					"virtual functions (%d) is not "
8257 					"supported\n",
8258 					phba->cfg_sriov_nr_virtfn);
8259 			phba->cfg_sriov_nr_virtfn = 0;
8260 		}
8261 	}
8262 
8263 	return 0;
8264 
8265 out_free_hba_hdwq_info:
8266 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8267 	free_percpu(phba->sli4_hba.c_stat);
8268 out_free_hba_idle_stat:
8269 #endif
8270 	kfree(phba->sli4_hba.idle_stat);
8271 out_free_hba_eq_info:
8272 	free_percpu(phba->sli4_hba.eq_info);
8273 out_free_hba_cpu_map:
8274 	kfree(phba->sli4_hba.cpu_map);
8275 out_free_hba_eq_hdl:
8276 	kfree(phba->sli4_hba.hba_eq_hdl);
8277 out_free_fcf_rr_bmask:
8278 	kfree(phba->fcf.fcf_rr_bmask);
8279 out_remove_rpi_hdrs:
8280 	lpfc_sli4_remove_rpi_hdrs(phba);
8281 out_free_active_sgl:
8282 	lpfc_free_active_sgl(phba);
8283 out_destroy_cq_event_pool:
8284 	lpfc_sli4_cq_event_pool_destroy(phba);
8285 out_free_cmd_rsp_buf:
8286 	dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool);
8287 	phba->lpfc_cmd_rsp_buf_pool = NULL;
8288 out_free_sg_dma_buf:
8289 	dma_pool_destroy(phba->lpfc_sg_dma_buf_pool);
8290 	phba->lpfc_sg_dma_buf_pool = NULL;
8291 out_free_bsmbx:
8292 	lpfc_destroy_bootstrap_mbox(phba);
8293 out_free_mem:
8294 	lpfc_mem_free(phba);
8295 out_destroy_workqueue:
8296 	destroy_workqueue(phba->wq);
8297 	phba->wq = NULL;
8298 	return rc;
8299 }
8300 
8301 /**
8302  * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev
8303  * @phba: pointer to lpfc hba data structure.
8304  *
8305  * This routine is invoked to unset the driver internal resources set up
8306  * specific for supporting the SLI-4 HBA device it attached to.
8307  **/
8308 static void
lpfc_sli4_driver_resource_unset(struct lpfc_hba * phba)8309 lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba)
8310 {
8311 	struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry;
8312 
8313 	free_percpu(phba->sli4_hba.eq_info);
8314 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
8315 	free_percpu(phba->sli4_hba.c_stat);
8316 #endif
8317 	free_percpu(phba->cmf_stat);
8318 	kfree(phba->sli4_hba.idle_stat);
8319 
8320 	/* Free memory allocated for msi-x interrupt vector to CPU mapping */
8321 	kfree(phba->sli4_hba.cpu_map);
8322 	phba->sli4_hba.num_possible_cpu = 0;
8323 	phba->sli4_hba.num_present_cpu = 0;
8324 	phba->sli4_hba.curr_disp_cpu = 0;
8325 	cpumask_clear(&phba->sli4_hba.irq_aff_mask);
8326 
8327 	/* Free memory allocated for fast-path work queue handles */
8328 	kfree(phba->sli4_hba.hba_eq_hdl);
8329 
8330 	/* Free the allocated rpi headers. */
8331 	lpfc_sli4_remove_rpi_hdrs(phba);
8332 	lpfc_sli4_remove_rpis(phba);
8333 
8334 	/* Free eligible FCF index bmask */
8335 	kfree(phba->fcf.fcf_rr_bmask);
8336 
8337 	/* Free the ELS sgl list */
8338 	lpfc_free_active_sgl(phba);
8339 	lpfc_free_els_sgl_list(phba);
8340 	lpfc_free_nvmet_sgl_list(phba);
8341 
8342 	/* Free the completion queue EQ event pool */
8343 	lpfc_sli4_cq_event_release_all(phba);
8344 	lpfc_sli4_cq_event_pool_destroy(phba);
8345 
8346 	/* Release resource identifiers. */
8347 	lpfc_sli4_dealloc_resource_identifiers(phba);
8348 
8349 	/* Free the bsmbx region. */
8350 	lpfc_destroy_bootstrap_mbox(phba);
8351 
8352 	/* Free the SLI Layer memory with SLI4 HBAs */
8353 	lpfc_mem_free_all(phba);
8354 
8355 	/* Free the current connect table */
8356 	list_for_each_entry_safe(conn_entry, next_conn_entry,
8357 		&phba->fcf_conn_rec_list, list) {
8358 		list_del_init(&conn_entry->list);
8359 		kfree(conn_entry);
8360 	}
8361 
8362 	return;
8363 }
8364 
8365 /**
8366  * lpfc_init_api_table_setup - Set up init api function jump table
8367  * @phba: The hba struct for which this call is being executed.
8368  * @dev_grp: The HBA PCI-Device group number.
8369  *
8370  * This routine sets up the device INIT interface API function jump table
8371  * in @phba struct.
8372  *
8373  * Returns: 0 - success, -ENODEV - failure.
8374  **/
8375 int
lpfc_init_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)8376 lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8377 {
8378 	phba->lpfc_hba_init_link = lpfc_hba_init_link;
8379 	phba->lpfc_hba_down_link = lpfc_hba_down_link;
8380 	phba->lpfc_selective_reset = lpfc_selective_reset;
8381 	switch (dev_grp) {
8382 	case LPFC_PCI_DEV_LP:
8383 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s3;
8384 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s3;
8385 		phba->lpfc_stop_port = lpfc_stop_port_s3;
8386 		break;
8387 	case LPFC_PCI_DEV_OC:
8388 		phba->lpfc_hba_down_post = lpfc_hba_down_post_s4;
8389 		phba->lpfc_handle_eratt = lpfc_handle_eratt_s4;
8390 		phba->lpfc_stop_port = lpfc_stop_port_s4;
8391 		break;
8392 	default:
8393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8394 				"1431 Invalid HBA PCI-device group: 0x%x\n",
8395 				dev_grp);
8396 		return -ENODEV;
8397 	}
8398 	return 0;
8399 }
8400 
8401 /**
8402  * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources.
8403  * @phba: pointer to lpfc hba data structure.
8404  *
8405  * This routine is invoked to set up the driver internal resources after the
8406  * device specific resource setup to support the HBA device it attached to.
8407  *
8408  * Return codes
8409  * 	0 - successful
8410  * 	other values - error
8411  **/
8412 static int
lpfc_setup_driver_resource_phase2(struct lpfc_hba * phba)8413 lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba)
8414 {
8415 	int error;
8416 
8417 	/* Startup the kernel thread for this host adapter. */
8418 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
8419 					  "lpfc_worker_%d", phba->brd_no);
8420 	if (IS_ERR(phba->worker_thread)) {
8421 		error = PTR_ERR(phba->worker_thread);
8422 		return error;
8423 	}
8424 
8425 	return 0;
8426 }
8427 
8428 /**
8429  * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources.
8430  * @phba: pointer to lpfc hba data structure.
8431  *
8432  * This routine is invoked to unset the driver internal resources set up after
8433  * the device specific resource setup for supporting the HBA device it
8434  * attached to.
8435  **/
8436 static void
lpfc_unset_driver_resource_phase2(struct lpfc_hba * phba)8437 lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba)
8438 {
8439 	if (phba->wq) {
8440 		flush_workqueue(phba->wq);
8441 		destroy_workqueue(phba->wq);
8442 		phba->wq = NULL;
8443 	}
8444 
8445 	/* Stop kernel worker thread */
8446 	if (phba->worker_thread)
8447 		kthread_stop(phba->worker_thread);
8448 }
8449 
8450 /**
8451  * lpfc_free_iocb_list - Free iocb list.
8452  * @phba: pointer to lpfc hba data structure.
8453  *
8454  * This routine is invoked to free the driver's IOCB list and memory.
8455  **/
8456 void
lpfc_free_iocb_list(struct lpfc_hba * phba)8457 lpfc_free_iocb_list(struct lpfc_hba *phba)
8458 {
8459 	struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
8460 
8461 	spin_lock_irq(&phba->hbalock);
8462 	list_for_each_entry_safe(iocbq_entry, iocbq_next,
8463 				 &phba->lpfc_iocb_list, list) {
8464 		list_del(&iocbq_entry->list);
8465 		kfree(iocbq_entry);
8466 		phba->total_iocbq_bufs--;
8467 	}
8468 	spin_unlock_irq(&phba->hbalock);
8469 
8470 	return;
8471 }
8472 
8473 /**
8474  * lpfc_init_iocb_list - Allocate and initialize iocb list.
8475  * @phba: pointer to lpfc hba data structure.
8476  * @iocb_count: number of requested iocbs
8477  *
8478  * This routine is invoked to allocate and initizlize the driver's IOCB
8479  * list and set up the IOCB tag array accordingly.
8480  *
8481  * Return codes
8482  *	0 - successful
8483  *	other values - error
8484  **/
8485 int
lpfc_init_iocb_list(struct lpfc_hba * phba,int iocb_count)8486 lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count)
8487 {
8488 	struct lpfc_iocbq *iocbq_entry = NULL;
8489 	uint16_t iotag;
8490 	int i;
8491 
8492 	/* Initialize and populate the iocb list per host.  */
8493 	INIT_LIST_HEAD(&phba->lpfc_iocb_list);
8494 	for (i = 0; i < iocb_count; i++) {
8495 		iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
8496 		if (iocbq_entry == NULL) {
8497 			printk(KERN_ERR "%s: only allocated %d iocbs of "
8498 				"expected %d count. Unloading driver.\n",
8499 				__func__, i, iocb_count);
8500 			goto out_free_iocbq;
8501 		}
8502 
8503 		iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
8504 		if (iotag == 0) {
8505 			kfree(iocbq_entry);
8506 			printk(KERN_ERR "%s: failed to allocate IOTAG. "
8507 				"Unloading driver.\n", __func__);
8508 			goto out_free_iocbq;
8509 		}
8510 		iocbq_entry->sli4_lxritag = NO_XRI;
8511 		iocbq_entry->sli4_xritag = NO_XRI;
8512 
8513 		spin_lock_irq(&phba->hbalock);
8514 		list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
8515 		phba->total_iocbq_bufs++;
8516 		spin_unlock_irq(&phba->hbalock);
8517 	}
8518 
8519 	return 0;
8520 
8521 out_free_iocbq:
8522 	lpfc_free_iocb_list(phba);
8523 
8524 	return -ENOMEM;
8525 }
8526 
8527 /**
8528  * lpfc_free_sgl_list - Free a given sgl list.
8529  * @phba: pointer to lpfc hba data structure.
8530  * @sglq_list: pointer to the head of sgl list.
8531  *
8532  * This routine is invoked to free a give sgl list and memory.
8533  **/
8534 void
lpfc_free_sgl_list(struct lpfc_hba * phba,struct list_head * sglq_list)8535 lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list)
8536 {
8537 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8538 
8539 	list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) {
8540 		list_del(&sglq_entry->list);
8541 		lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys);
8542 		kfree(sglq_entry);
8543 	}
8544 }
8545 
8546 /**
8547  * lpfc_free_els_sgl_list - Free els sgl list.
8548  * @phba: pointer to lpfc hba data structure.
8549  *
8550  * This routine is invoked to free the driver's els sgl list and memory.
8551  **/
8552 static void
lpfc_free_els_sgl_list(struct lpfc_hba * phba)8553 lpfc_free_els_sgl_list(struct lpfc_hba *phba)
8554 {
8555 	LIST_HEAD(sglq_list);
8556 
8557 	/* Retrieve all els sgls from driver list */
8558 	spin_lock_irq(&phba->sli4_hba.sgl_list_lock);
8559 	list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list);
8560 	spin_unlock_irq(&phba->sli4_hba.sgl_list_lock);
8561 
8562 	/* Now free the sgl list */
8563 	lpfc_free_sgl_list(phba, &sglq_list);
8564 }
8565 
8566 /**
8567  * lpfc_free_nvmet_sgl_list - Free nvmet sgl list.
8568  * @phba: pointer to lpfc hba data structure.
8569  *
8570  * This routine is invoked to free the driver's nvmet sgl list and memory.
8571  **/
8572 static void
lpfc_free_nvmet_sgl_list(struct lpfc_hba * phba)8573 lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba)
8574 {
8575 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
8576 	LIST_HEAD(sglq_list);
8577 
8578 	/* Retrieve all nvmet sgls from driver list */
8579 	spin_lock_irq(&phba->hbalock);
8580 	spin_lock(&phba->sli4_hba.sgl_list_lock);
8581 	list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list);
8582 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
8583 	spin_unlock_irq(&phba->hbalock);
8584 
8585 	/* Now free the sgl list */
8586 	list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) {
8587 		list_del(&sglq_entry->list);
8588 		lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys);
8589 		kfree(sglq_entry);
8590 	}
8591 
8592 	/* Update the nvmet_xri_cnt to reflect no current sgls.
8593 	 * The next initialization cycle sets the count and allocates
8594 	 * the sgls over again.
8595 	 */
8596 	phba->sli4_hba.nvmet_xri_cnt = 0;
8597 }
8598 
8599 /**
8600  * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs.
8601  * @phba: pointer to lpfc hba data structure.
8602  *
8603  * This routine is invoked to allocate the driver's active sgl memory.
8604  * This array will hold the sglq_entry's for active IOs.
8605  **/
8606 static int
lpfc_init_active_sgl_array(struct lpfc_hba * phba)8607 lpfc_init_active_sgl_array(struct lpfc_hba *phba)
8608 {
8609 	int size;
8610 	size = sizeof(struct lpfc_sglq *);
8611 	size *= phba->sli4_hba.max_cfg_param.max_xri;
8612 
8613 	phba->sli4_hba.lpfc_sglq_active_list =
8614 		kzalloc(size, GFP_KERNEL);
8615 	if (!phba->sli4_hba.lpfc_sglq_active_list)
8616 		return -ENOMEM;
8617 	return 0;
8618 }
8619 
8620 /**
8621  * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs.
8622  * @phba: pointer to lpfc hba data structure.
8623  *
8624  * This routine is invoked to walk through the array of active sglq entries
8625  * and free all of the resources.
8626  * This is just a place holder for now.
8627  **/
8628 static void
lpfc_free_active_sgl(struct lpfc_hba * phba)8629 lpfc_free_active_sgl(struct lpfc_hba *phba)
8630 {
8631 	kfree(phba->sli4_hba.lpfc_sglq_active_list);
8632 }
8633 
8634 /**
8635  * lpfc_init_sgl_list - Allocate and initialize sgl list.
8636  * @phba: pointer to lpfc hba data structure.
8637  *
8638  * This routine is invoked to allocate and initizlize the driver's sgl
8639  * list and set up the sgl xritag tag array accordingly.
8640  *
8641  **/
8642 static void
lpfc_init_sgl_list(struct lpfc_hba * phba)8643 lpfc_init_sgl_list(struct lpfc_hba *phba)
8644 {
8645 	/* Initialize and populate the sglq list per host/VF. */
8646 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list);
8647 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list);
8648 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list);
8649 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
8650 
8651 	/* els xri-sgl book keeping */
8652 	phba->sli4_hba.els_xri_cnt = 0;
8653 
8654 	/* nvme xri-buffer book keeping */
8655 	phba->sli4_hba.io_xri_cnt = 0;
8656 }
8657 
8658 /**
8659  * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port
8660  * @phba: pointer to lpfc hba data structure.
8661  *
8662  * This routine is invoked to post rpi header templates to the
8663  * port for those SLI4 ports that do not support extents.  This routine
8664  * posts a PAGE_SIZE memory region to the port to hold up to
8665  * PAGE_SIZE modulo 64 rpi context headers.  This is an initialization routine
8666  * and should be called only when interrupts are disabled.
8667  *
8668  * Return codes
8669  * 	0 - successful
8670  *	-ERROR - otherwise.
8671  **/
8672 int
lpfc_sli4_init_rpi_hdrs(struct lpfc_hba * phba)8673 lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba)
8674 {
8675 	int rc = 0;
8676 	struct lpfc_rpi_hdr *rpi_hdr;
8677 
8678 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list);
8679 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8680 		return rc;
8681 	if (phba->sli4_hba.extents_in_use)
8682 		return -EIO;
8683 
8684 	rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
8685 	if (!rpi_hdr) {
8686 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8687 				"0391 Error during rpi post operation\n");
8688 		lpfc_sli4_remove_rpis(phba);
8689 		rc = -ENODEV;
8690 	}
8691 
8692 	return rc;
8693 }
8694 
8695 /**
8696  * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region
8697  * @phba: pointer to lpfc hba data structure.
8698  *
8699  * This routine is invoked to allocate a single 4KB memory region to
8700  * support rpis and stores them in the phba.  This single region
8701  * provides support for up to 64 rpis.  The region is used globally
8702  * by the device.
8703  *
8704  * Returns:
8705  *   A valid rpi hdr on success.
8706  *   A NULL pointer on any failure.
8707  **/
8708 struct lpfc_rpi_hdr *
lpfc_sli4_create_rpi_hdr(struct lpfc_hba * phba)8709 lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba)
8710 {
8711 	uint16_t rpi_limit, curr_rpi_range;
8712 	struct lpfc_dmabuf *dmabuf;
8713 	struct lpfc_rpi_hdr *rpi_hdr;
8714 
8715 	/*
8716 	 * If the SLI4 port supports extents, posting the rpi header isn't
8717 	 * required.  Set the expected maximum count and let the actual value
8718 	 * get set when extents are fully allocated.
8719 	 */
8720 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8721 		return NULL;
8722 	if (phba->sli4_hba.extents_in_use)
8723 		return NULL;
8724 
8725 	/* The limit on the logical index is just the max_rpi count. */
8726 	rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi;
8727 
8728 	spin_lock_irq(&phba->hbalock);
8729 	/*
8730 	 * Establish the starting RPI in this header block.  The starting
8731 	 * rpi is normalized to a zero base because the physical rpi is
8732 	 * port based.
8733 	 */
8734 	curr_rpi_range = phba->sli4_hba.next_rpi;
8735 	spin_unlock_irq(&phba->hbalock);
8736 
8737 	/* Reached full RPI range */
8738 	if (curr_rpi_range == rpi_limit)
8739 		return NULL;
8740 
8741 	/*
8742 	 * First allocate the protocol header region for the port.  The
8743 	 * port expects a 4KB DMA-mapped memory region that is 4K aligned.
8744 	 */
8745 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
8746 	if (!dmabuf)
8747 		return NULL;
8748 
8749 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
8750 					  LPFC_HDR_TEMPLATE_SIZE,
8751 					  &dmabuf->phys, GFP_KERNEL);
8752 	if (!dmabuf->virt) {
8753 		rpi_hdr = NULL;
8754 		goto err_free_dmabuf;
8755 	}
8756 
8757 	if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) {
8758 		rpi_hdr = NULL;
8759 		goto err_free_coherent;
8760 	}
8761 
8762 	/* Save the rpi header data for cleanup later. */
8763 	rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL);
8764 	if (!rpi_hdr)
8765 		goto err_free_coherent;
8766 
8767 	rpi_hdr->dmabuf = dmabuf;
8768 	rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE;
8769 	rpi_hdr->page_count = 1;
8770 	spin_lock_irq(&phba->hbalock);
8771 
8772 	/* The rpi_hdr stores the logical index only. */
8773 	rpi_hdr->start_rpi = curr_rpi_range;
8774 	rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT;
8775 	list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list);
8776 
8777 	spin_unlock_irq(&phba->hbalock);
8778 	return rpi_hdr;
8779 
8780  err_free_coherent:
8781 	dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE,
8782 			  dmabuf->virt, dmabuf->phys);
8783  err_free_dmabuf:
8784 	kfree(dmabuf);
8785 	return NULL;
8786 }
8787 
8788 /**
8789  * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions
8790  * @phba: pointer to lpfc hba data structure.
8791  *
8792  * This routine is invoked to remove all memory resources allocated
8793  * to support rpis for SLI4 ports not supporting extents. This routine
8794  * presumes the caller has released all rpis consumed by fabric or port
8795  * logins and is prepared to have the header pages removed.
8796  **/
8797 void
lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba * phba)8798 lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba)
8799 {
8800 	struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr;
8801 
8802 	if (!phba->sli4_hba.rpi_hdrs_in_use)
8803 		goto exit;
8804 
8805 	list_for_each_entry_safe(rpi_hdr, next_rpi_hdr,
8806 				 &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
8807 		list_del(&rpi_hdr->list);
8808 		dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len,
8809 				  rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys);
8810 		kfree(rpi_hdr->dmabuf);
8811 		kfree(rpi_hdr);
8812 	}
8813  exit:
8814 	/* There are no rpis available to the port now. */
8815 	phba->sli4_hba.next_rpi = 0;
8816 }
8817 
8818 /**
8819  * lpfc_hba_alloc - Allocate driver hba data structure for a device.
8820  * @pdev: pointer to pci device data structure.
8821  *
8822  * This routine is invoked to allocate the driver hba data structure for an
8823  * HBA device. If the allocation is successful, the phba reference to the
8824  * PCI device data structure is set.
8825  *
8826  * Return codes
8827  *      pointer to @phba - successful
8828  *      NULL - error
8829  **/
8830 static struct lpfc_hba *
lpfc_hba_alloc(struct pci_dev * pdev)8831 lpfc_hba_alloc(struct pci_dev *pdev)
8832 {
8833 	struct lpfc_hba *phba;
8834 
8835 	/* Allocate memory for HBA structure */
8836 	phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL);
8837 	if (!phba) {
8838 		dev_err(&pdev->dev, "failed to allocate hba struct\n");
8839 		return NULL;
8840 	}
8841 
8842 	/* Set reference to PCI device in HBA structure */
8843 	phba->pcidev = pdev;
8844 
8845 	/* Assign an unused board number */
8846 	phba->brd_no = lpfc_get_instance();
8847 	if (phba->brd_no < 0) {
8848 		kfree(phba);
8849 		return NULL;
8850 	}
8851 	phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL;
8852 
8853 	spin_lock_init(&phba->ct_ev_lock);
8854 	INIT_LIST_HEAD(&phba->ct_ev_waiters);
8855 
8856 	return phba;
8857 }
8858 
8859 /**
8860  * lpfc_hba_free - Free driver hba data structure with a device.
8861  * @phba: pointer to lpfc hba data structure.
8862  *
8863  * This routine is invoked to free the driver hba data structure with an
8864  * HBA device.
8865  **/
8866 static void
lpfc_hba_free(struct lpfc_hba * phba)8867 lpfc_hba_free(struct lpfc_hba *phba)
8868 {
8869 	if (phba->sli_rev == LPFC_SLI_REV4)
8870 		kfree(phba->sli4_hba.hdwq);
8871 
8872 	/* Release the driver assigned board number */
8873 	idr_remove(&lpfc_hba_index, phba->brd_no);
8874 
8875 	/* Free memory allocated with sli3 rings */
8876 	kfree(phba->sli.sli3_ring);
8877 	phba->sli.sli3_ring = NULL;
8878 
8879 	kfree(phba);
8880 	return;
8881 }
8882 
8883 /**
8884  * lpfc_create_shost - Create hba physical port with associated scsi host.
8885  * @phba: pointer to lpfc hba data structure.
8886  *
8887  * This routine is invoked to create HBA physical port and associate a SCSI
8888  * host with it.
8889  *
8890  * Return codes
8891  *      0 - successful
8892  *      other values - error
8893  **/
8894 static int
lpfc_create_shost(struct lpfc_hba * phba)8895 lpfc_create_shost(struct lpfc_hba *phba)
8896 {
8897 	struct lpfc_vport *vport;
8898 	struct Scsi_Host  *shost;
8899 
8900 	/* Initialize HBA FC structure */
8901 	phba->fc_edtov = FF_DEF_EDTOV;
8902 	phba->fc_ratov = FF_DEF_RATOV;
8903 	phba->fc_altov = FF_DEF_ALTOV;
8904 	phba->fc_arbtov = FF_DEF_ARBTOV;
8905 
8906 	atomic_set(&phba->sdev_cnt, 0);
8907 	vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
8908 	if (!vport)
8909 		return -ENODEV;
8910 
8911 	shost = lpfc_shost_from_vport(vport);
8912 	phba->pport = vport;
8913 
8914 	if (phba->nvmet_support) {
8915 		/* Only 1 vport (pport) will support NVME target */
8916 		phba->targetport = NULL;
8917 		phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME;
8918 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC,
8919 				"6076 NVME Target Found\n");
8920 	}
8921 
8922 	lpfc_debugfs_initialize(vport);
8923 	/* Put reference to SCSI host to driver's device private data */
8924 	pci_set_drvdata(phba->pcidev, shost);
8925 
8926 	/*
8927 	 * At this point we are fully registered with PSA. In addition,
8928 	 * any initial discovery should be completed.
8929 	 */
8930 	vport->load_flag |= FC_ALLOW_FDMI;
8931 	if (phba->cfg_enable_SmartSAN ||
8932 	    (phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT)) {
8933 
8934 		/* Setup appropriate attribute masks */
8935 		vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR;
8936 		if (phba->cfg_enable_SmartSAN)
8937 			vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR;
8938 		else
8939 			vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR;
8940 	}
8941 	return 0;
8942 }
8943 
8944 /**
8945  * lpfc_destroy_shost - Destroy hba physical port with associated scsi host.
8946  * @phba: pointer to lpfc hba data structure.
8947  *
8948  * This routine is invoked to destroy HBA physical port and the associated
8949  * SCSI host.
8950  **/
8951 static void
lpfc_destroy_shost(struct lpfc_hba * phba)8952 lpfc_destroy_shost(struct lpfc_hba *phba)
8953 {
8954 	struct lpfc_vport *vport = phba->pport;
8955 
8956 	/* Destroy physical port that associated with the SCSI host */
8957 	destroy_port(vport);
8958 
8959 	return;
8960 }
8961 
8962 /**
8963  * lpfc_setup_bg - Setup Block guard structures and debug areas.
8964  * @phba: pointer to lpfc hba data structure.
8965  * @shost: the shost to be used to detect Block guard settings.
8966  *
8967  * This routine sets up the local Block guard protocol settings for @shost.
8968  * This routine also allocates memory for debugging bg buffers.
8969  **/
8970 static void
lpfc_setup_bg(struct lpfc_hba * phba,struct Scsi_Host * shost)8971 lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost)
8972 {
8973 	uint32_t old_mask;
8974 	uint32_t old_guard;
8975 
8976 	if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
8977 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8978 				"1478 Registering BlockGuard with the "
8979 				"SCSI layer\n");
8980 
8981 		old_mask = phba->cfg_prot_mask;
8982 		old_guard = phba->cfg_prot_guard;
8983 
8984 		/* Only allow supported values */
8985 		phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION |
8986 			SHOST_DIX_TYPE0_PROTECTION |
8987 			SHOST_DIX_TYPE1_PROTECTION);
8988 		phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP |
8989 					 SHOST_DIX_GUARD_CRC);
8990 
8991 		/* DIF Type 1 protection for profiles AST1/C1 is end to end */
8992 		if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION)
8993 			phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION;
8994 
8995 		if (phba->cfg_prot_mask && phba->cfg_prot_guard) {
8996 			if ((old_mask != phba->cfg_prot_mask) ||
8997 				(old_guard != phba->cfg_prot_guard))
8998 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8999 					"1475 Registering BlockGuard with the "
9000 					"SCSI layer: mask %d  guard %d\n",
9001 					phba->cfg_prot_mask,
9002 					phba->cfg_prot_guard);
9003 
9004 			scsi_host_set_prot(shost, phba->cfg_prot_mask);
9005 			scsi_host_set_guard(shost, phba->cfg_prot_guard);
9006 		} else
9007 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9008 				"1479 Not Registering BlockGuard with the SCSI "
9009 				"layer, Bad protection parameters: %d %d\n",
9010 				old_mask, old_guard);
9011 	}
9012 }
9013 
9014 /**
9015  * lpfc_post_init_setup - Perform necessary device post initialization setup.
9016  * @phba: pointer to lpfc hba data structure.
9017  *
9018  * This routine is invoked to perform all the necessary post initialization
9019  * setup for the device.
9020  **/
9021 static void
lpfc_post_init_setup(struct lpfc_hba * phba)9022 lpfc_post_init_setup(struct lpfc_hba *phba)
9023 {
9024 	struct Scsi_Host  *shost;
9025 	struct lpfc_adapter_event_header adapter_event;
9026 
9027 	/* Get the default values for Model Name and Description */
9028 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
9029 
9030 	/*
9031 	 * hba setup may have changed the hba_queue_depth so we need to
9032 	 * adjust the value of can_queue.
9033 	 */
9034 	shost = pci_get_drvdata(phba->pcidev);
9035 	shost->can_queue = phba->cfg_hba_queue_depth - 10;
9036 
9037 	lpfc_host_attrib_init(shost);
9038 
9039 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9040 		spin_lock_irq(shost->host_lock);
9041 		lpfc_poll_start_timer(phba);
9042 		spin_unlock_irq(shost->host_lock);
9043 	}
9044 
9045 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9046 			"0428 Perform SCSI scan\n");
9047 	/* Send board arrival event to upper layer */
9048 	adapter_event.event_type = FC_REG_ADAPTER_EVENT;
9049 	adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
9050 	fc_host_post_vendor_event(shost, fc_get_event_number(),
9051 				  sizeof(adapter_event),
9052 				  (char *) &adapter_event,
9053 				  LPFC_NL_VENDOR_ID);
9054 	return;
9055 }
9056 
9057 /**
9058  * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space.
9059  * @phba: pointer to lpfc hba data structure.
9060  *
9061  * This routine is invoked to set up the PCI device memory space for device
9062  * with SLI-3 interface spec.
9063  *
9064  * Return codes
9065  * 	0 - successful
9066  * 	other values - error
9067  **/
9068 static int
lpfc_sli_pci_mem_setup(struct lpfc_hba * phba)9069 lpfc_sli_pci_mem_setup(struct lpfc_hba *phba)
9070 {
9071 	struct pci_dev *pdev = phba->pcidev;
9072 	unsigned long bar0map_len, bar2map_len;
9073 	int i, hbq_count;
9074 	void *ptr;
9075 	int error;
9076 
9077 	if (!pdev)
9078 		return -ENODEV;
9079 
9080 	/* Set the device DMA mask size */
9081 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9082 	if (error)
9083 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9084 	if (error)
9085 		return error;
9086 	error = -ENODEV;
9087 
9088 	/* Get the bus address of Bar0 and Bar2 and the number of bytes
9089 	 * required by each mapping.
9090 	 */
9091 	phba->pci_bar0_map = pci_resource_start(pdev, 0);
9092 	bar0map_len = pci_resource_len(pdev, 0);
9093 
9094 	phba->pci_bar2_map = pci_resource_start(pdev, 2);
9095 	bar2map_len = pci_resource_len(pdev, 2);
9096 
9097 	/* Map HBA SLIM to a kernel virtual address. */
9098 	phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
9099 	if (!phba->slim_memmap_p) {
9100 		dev_printk(KERN_ERR, &pdev->dev,
9101 			   "ioremap failed for SLIM memory.\n");
9102 		goto out;
9103 	}
9104 
9105 	/* Map HBA Control Registers to a kernel virtual address. */
9106 	phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
9107 	if (!phba->ctrl_regs_memmap_p) {
9108 		dev_printk(KERN_ERR, &pdev->dev,
9109 			   "ioremap failed for HBA control registers.\n");
9110 		goto out_iounmap_slim;
9111 	}
9112 
9113 	/* Allocate memory for SLI-2 structures */
9114 	phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9115 					       &phba->slim2p.phys, GFP_KERNEL);
9116 	if (!phba->slim2p.virt)
9117 		goto out_iounmap;
9118 
9119 	phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
9120 	phba->mbox_ext = (phba->slim2p.virt +
9121 		offsetof(struct lpfc_sli2_slim, mbx_ext_words));
9122 	phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
9123 	phba->IOCBs = (phba->slim2p.virt +
9124 		       offsetof(struct lpfc_sli2_slim, IOCBs));
9125 
9126 	phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev,
9127 						 lpfc_sli_hbq_size(),
9128 						 &phba->hbqslimp.phys,
9129 						 GFP_KERNEL);
9130 	if (!phba->hbqslimp.virt)
9131 		goto out_free_slim;
9132 
9133 	hbq_count = lpfc_sli_hbq_count();
9134 	ptr = phba->hbqslimp.virt;
9135 	for (i = 0; i < hbq_count; ++i) {
9136 		phba->hbqs[i].hbq_virt = ptr;
9137 		INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
9138 		ptr += (lpfc_hbq_defs[i]->entry_count *
9139 			sizeof(struct lpfc_hbq_entry));
9140 	}
9141 	phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
9142 	phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
9143 
9144 	memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
9145 
9146 	phba->MBslimaddr = phba->slim_memmap_p;
9147 	phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
9148 	phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
9149 	phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
9150 	phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
9151 
9152 	return 0;
9153 
9154 out_free_slim:
9155 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9156 			  phba->slim2p.virt, phba->slim2p.phys);
9157 out_iounmap:
9158 	iounmap(phba->ctrl_regs_memmap_p);
9159 out_iounmap_slim:
9160 	iounmap(phba->slim_memmap_p);
9161 out:
9162 	return error;
9163 }
9164 
9165 /**
9166  * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space.
9167  * @phba: pointer to lpfc hba data structure.
9168  *
9169  * This routine is invoked to unset the PCI device memory space for device
9170  * with SLI-3 interface spec.
9171  **/
9172 static void
lpfc_sli_pci_mem_unset(struct lpfc_hba * phba)9173 lpfc_sli_pci_mem_unset(struct lpfc_hba *phba)
9174 {
9175 	struct pci_dev *pdev;
9176 
9177 	/* Obtain PCI device reference */
9178 	if (!phba->pcidev)
9179 		return;
9180 	else
9181 		pdev = phba->pcidev;
9182 
9183 	/* Free coherent DMA memory allocated */
9184 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
9185 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
9186 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
9187 			  phba->slim2p.virt, phba->slim2p.phys);
9188 
9189 	/* I/O memory unmap */
9190 	iounmap(phba->ctrl_regs_memmap_p);
9191 	iounmap(phba->slim_memmap_p);
9192 
9193 	return;
9194 }
9195 
9196 /**
9197  * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status
9198  * @phba: pointer to lpfc hba data structure.
9199  *
9200  * This routine is invoked to wait for SLI4 device Power On Self Test (POST)
9201  * done and check status.
9202  *
9203  * Return 0 if successful, otherwise -ENODEV.
9204  **/
9205 int
lpfc_sli4_post_status_check(struct lpfc_hba * phba)9206 lpfc_sli4_post_status_check(struct lpfc_hba *phba)
9207 {
9208 	struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg;
9209 	struct lpfc_register reg_data;
9210 	int i, port_error = 0;
9211 	uint32_t if_type;
9212 
9213 	memset(&portsmphr_reg, 0, sizeof(portsmphr_reg));
9214 	memset(&reg_data, 0, sizeof(reg_data));
9215 	if (!phba->sli4_hba.PSMPHRregaddr)
9216 		return -ENODEV;
9217 
9218 	/* Wait up to 30 seconds for the SLI Port POST done and ready */
9219 	for (i = 0; i < 3000; i++) {
9220 		if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9221 			&portsmphr_reg.word0) ||
9222 			(bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) {
9223 			/* Port has a fatal POST error, break out */
9224 			port_error = -ENODEV;
9225 			break;
9226 		}
9227 		if (LPFC_POST_STAGE_PORT_READY ==
9228 		    bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))
9229 			break;
9230 		msleep(10);
9231 	}
9232 
9233 	/*
9234 	 * If there was a port error during POST, then don't proceed with
9235 	 * other register reads as the data may not be valid.  Just exit.
9236 	 */
9237 	if (port_error) {
9238 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9239 			"1408 Port Failed POST - portsmphr=0x%x, "
9240 			"perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, "
9241 			"scr2=x%x, hscratch=x%x, pstatus=x%x\n",
9242 			portsmphr_reg.word0,
9243 			bf_get(lpfc_port_smphr_perr, &portsmphr_reg),
9244 			bf_get(lpfc_port_smphr_sfi, &portsmphr_reg),
9245 			bf_get(lpfc_port_smphr_nip, &portsmphr_reg),
9246 			bf_get(lpfc_port_smphr_ipc, &portsmphr_reg),
9247 			bf_get(lpfc_port_smphr_scr1, &portsmphr_reg),
9248 			bf_get(lpfc_port_smphr_scr2, &portsmphr_reg),
9249 			bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg),
9250 			bf_get(lpfc_port_smphr_port_status, &portsmphr_reg));
9251 	} else {
9252 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
9253 				"2534 Device Info: SLIFamily=0x%x, "
9254 				"SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, "
9255 				"SLIHint_2=0x%x, FT=0x%x\n",
9256 				bf_get(lpfc_sli_intf_sli_family,
9257 				       &phba->sli4_hba.sli_intf),
9258 				bf_get(lpfc_sli_intf_slirev,
9259 				       &phba->sli4_hba.sli_intf),
9260 				bf_get(lpfc_sli_intf_if_type,
9261 				       &phba->sli4_hba.sli_intf),
9262 				bf_get(lpfc_sli_intf_sli_hint1,
9263 				       &phba->sli4_hba.sli_intf),
9264 				bf_get(lpfc_sli_intf_sli_hint2,
9265 				       &phba->sli4_hba.sli_intf),
9266 				bf_get(lpfc_sli_intf_func_type,
9267 				       &phba->sli4_hba.sli_intf));
9268 		/*
9269 		 * Check for other Port errors during the initialization
9270 		 * process.  Fail the load if the port did not come up
9271 		 * correctly.
9272 		 */
9273 		if_type = bf_get(lpfc_sli_intf_if_type,
9274 				 &phba->sli4_hba.sli_intf);
9275 		switch (if_type) {
9276 		case LPFC_SLI_INTF_IF_TYPE_0:
9277 			phba->sli4_hba.ue_mask_lo =
9278 			      readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr);
9279 			phba->sli4_hba.ue_mask_hi =
9280 			      readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr);
9281 			uerrlo_reg.word0 =
9282 			      readl(phba->sli4_hba.u.if_type0.UERRLOregaddr);
9283 			uerrhi_reg.word0 =
9284 				readl(phba->sli4_hba.u.if_type0.UERRHIregaddr);
9285 			if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) ||
9286 			    (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) {
9287 				lpfc_printf_log(phba, KERN_ERR,
9288 						LOG_TRACE_EVENT,
9289 						"1422 Unrecoverable Error "
9290 						"Detected during POST "
9291 						"uerr_lo_reg=0x%x, "
9292 						"uerr_hi_reg=0x%x, "
9293 						"ue_mask_lo_reg=0x%x, "
9294 						"ue_mask_hi_reg=0x%x\n",
9295 						uerrlo_reg.word0,
9296 						uerrhi_reg.word0,
9297 						phba->sli4_hba.ue_mask_lo,
9298 						phba->sli4_hba.ue_mask_hi);
9299 				port_error = -ENODEV;
9300 			}
9301 			break;
9302 		case LPFC_SLI_INTF_IF_TYPE_2:
9303 		case LPFC_SLI_INTF_IF_TYPE_6:
9304 			/* Final checks.  The port status should be clean. */
9305 			if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9306 				&reg_data.word0) ||
9307 				(bf_get(lpfc_sliport_status_err, &reg_data) &&
9308 				 !bf_get(lpfc_sliport_status_rn, &reg_data))) {
9309 				phba->work_status[0] =
9310 					readl(phba->sli4_hba.u.if_type2.
9311 					      ERR1regaddr);
9312 				phba->work_status[1] =
9313 					readl(phba->sli4_hba.u.if_type2.
9314 					      ERR2regaddr);
9315 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9316 					"2888 Unrecoverable port error "
9317 					"following POST: port status reg "
9318 					"0x%x, port_smphr reg 0x%x, "
9319 					"error 1=0x%x, error 2=0x%x\n",
9320 					reg_data.word0,
9321 					portsmphr_reg.word0,
9322 					phba->work_status[0],
9323 					phba->work_status[1]);
9324 				port_error = -ENODEV;
9325 			}
9326 			break;
9327 		case LPFC_SLI_INTF_IF_TYPE_1:
9328 		default:
9329 			break;
9330 		}
9331 	}
9332 	return port_error;
9333 }
9334 
9335 /**
9336  * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map.
9337  * @phba: pointer to lpfc hba data structure.
9338  * @if_type:  The SLI4 interface type getting configured.
9339  *
9340  * This routine is invoked to set up SLI4 BAR0 PCI config space register
9341  * memory map.
9342  **/
9343 static void
lpfc_sli4_bar0_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9344 lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9345 {
9346 	switch (if_type) {
9347 	case LPFC_SLI_INTF_IF_TYPE_0:
9348 		phba->sli4_hba.u.if_type0.UERRLOregaddr =
9349 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO;
9350 		phba->sli4_hba.u.if_type0.UERRHIregaddr =
9351 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI;
9352 		phba->sli4_hba.u.if_type0.UEMASKLOregaddr =
9353 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO;
9354 		phba->sli4_hba.u.if_type0.UEMASKHIregaddr =
9355 			phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI;
9356 		phba->sli4_hba.SLIINTFregaddr =
9357 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9358 		break;
9359 	case LPFC_SLI_INTF_IF_TYPE_2:
9360 		phba->sli4_hba.u.if_type2.EQDregaddr =
9361 			phba->sli4_hba.conf_regs_memmap_p +
9362 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9363 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9364 			phba->sli4_hba.conf_regs_memmap_p +
9365 						LPFC_CTL_PORT_ER1_OFFSET;
9366 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9367 			phba->sli4_hba.conf_regs_memmap_p +
9368 						LPFC_CTL_PORT_ER2_OFFSET;
9369 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9370 			phba->sli4_hba.conf_regs_memmap_p +
9371 						LPFC_CTL_PORT_CTL_OFFSET;
9372 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9373 			phba->sli4_hba.conf_regs_memmap_p +
9374 						LPFC_CTL_PORT_STA_OFFSET;
9375 		phba->sli4_hba.SLIINTFregaddr =
9376 			phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF;
9377 		phba->sli4_hba.PSMPHRregaddr =
9378 			phba->sli4_hba.conf_regs_memmap_p +
9379 						LPFC_CTL_PORT_SEM_OFFSET;
9380 		phba->sli4_hba.RQDBregaddr =
9381 			phba->sli4_hba.conf_regs_memmap_p +
9382 						LPFC_ULP0_RQ_DOORBELL;
9383 		phba->sli4_hba.WQDBregaddr =
9384 			phba->sli4_hba.conf_regs_memmap_p +
9385 						LPFC_ULP0_WQ_DOORBELL;
9386 		phba->sli4_hba.CQDBregaddr =
9387 			phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL;
9388 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9389 		phba->sli4_hba.MQDBregaddr =
9390 			phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL;
9391 		phba->sli4_hba.BMBXregaddr =
9392 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9393 		break;
9394 	case LPFC_SLI_INTF_IF_TYPE_6:
9395 		phba->sli4_hba.u.if_type2.EQDregaddr =
9396 			phba->sli4_hba.conf_regs_memmap_p +
9397 						LPFC_CTL_PORT_EQ_DELAY_OFFSET;
9398 		phba->sli4_hba.u.if_type2.ERR1regaddr =
9399 			phba->sli4_hba.conf_regs_memmap_p +
9400 						LPFC_CTL_PORT_ER1_OFFSET;
9401 		phba->sli4_hba.u.if_type2.ERR2regaddr =
9402 			phba->sli4_hba.conf_regs_memmap_p +
9403 						LPFC_CTL_PORT_ER2_OFFSET;
9404 		phba->sli4_hba.u.if_type2.CTRLregaddr =
9405 			phba->sli4_hba.conf_regs_memmap_p +
9406 						LPFC_CTL_PORT_CTL_OFFSET;
9407 		phba->sli4_hba.u.if_type2.STATUSregaddr =
9408 			phba->sli4_hba.conf_regs_memmap_p +
9409 						LPFC_CTL_PORT_STA_OFFSET;
9410 		phba->sli4_hba.PSMPHRregaddr =
9411 			phba->sli4_hba.conf_regs_memmap_p +
9412 						LPFC_CTL_PORT_SEM_OFFSET;
9413 		phba->sli4_hba.BMBXregaddr =
9414 			phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX;
9415 		break;
9416 	case LPFC_SLI_INTF_IF_TYPE_1:
9417 	default:
9418 		dev_printk(KERN_ERR, &phba->pcidev->dev,
9419 			   "FATAL - unsupported SLI4 interface type - %d\n",
9420 			   if_type);
9421 		break;
9422 	}
9423 }
9424 
9425 /**
9426  * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map.
9427  * @phba: pointer to lpfc hba data structure.
9428  * @if_type: sli if type to operate on.
9429  *
9430  * This routine is invoked to set up SLI4 BAR1 register memory map.
9431  **/
9432 static void
lpfc_sli4_bar1_register_memmap(struct lpfc_hba * phba,uint32_t if_type)9433 lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type)
9434 {
9435 	switch (if_type) {
9436 	case LPFC_SLI_INTF_IF_TYPE_0:
9437 		phba->sli4_hba.PSMPHRregaddr =
9438 			phba->sli4_hba.ctrl_regs_memmap_p +
9439 			LPFC_SLIPORT_IF0_SMPHR;
9440 		phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9441 			LPFC_HST_ISR0;
9442 		phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9443 			LPFC_HST_IMR0;
9444 		phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p +
9445 			LPFC_HST_ISCR0;
9446 		break;
9447 	case LPFC_SLI_INTF_IF_TYPE_6:
9448 		phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9449 			LPFC_IF6_RQ_DOORBELL;
9450 		phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9451 			LPFC_IF6_WQ_DOORBELL;
9452 		phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9453 			LPFC_IF6_CQ_DOORBELL;
9454 		phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9455 			LPFC_IF6_EQ_DOORBELL;
9456 		phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p +
9457 			LPFC_IF6_MQ_DOORBELL;
9458 		break;
9459 	case LPFC_SLI_INTF_IF_TYPE_2:
9460 	case LPFC_SLI_INTF_IF_TYPE_1:
9461 	default:
9462 		dev_err(&phba->pcidev->dev,
9463 			   "FATAL - unsupported SLI4 interface type - %d\n",
9464 			   if_type);
9465 		break;
9466 	}
9467 }
9468 
9469 /**
9470  * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map.
9471  * @phba: pointer to lpfc hba data structure.
9472  * @vf: virtual function number
9473  *
9474  * This routine is invoked to set up SLI4 BAR2 doorbell register memory map
9475  * based on the given viftual function number, @vf.
9476  *
9477  * Return 0 if successful, otherwise -ENODEV.
9478  **/
9479 static int
lpfc_sli4_bar2_register_memmap(struct lpfc_hba * phba,uint32_t vf)9480 lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf)
9481 {
9482 	if (vf > LPFC_VIR_FUNC_MAX)
9483 		return -ENODEV;
9484 
9485 	phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9486 				vf * LPFC_VFR_PAGE_SIZE +
9487 					LPFC_ULP0_RQ_DOORBELL);
9488 	phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9489 				vf * LPFC_VFR_PAGE_SIZE +
9490 					LPFC_ULP0_WQ_DOORBELL);
9491 	phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9492 				vf * LPFC_VFR_PAGE_SIZE +
9493 					LPFC_EQCQ_DOORBELL);
9494 	phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr;
9495 	phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9496 				vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL);
9497 	phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p +
9498 				vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX);
9499 	return 0;
9500 }
9501 
9502 /**
9503  * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox
9504  * @phba: pointer to lpfc hba data structure.
9505  *
9506  * This routine is invoked to create the bootstrap mailbox
9507  * region consistent with the SLI-4 interface spec.  This
9508  * routine allocates all memory necessary to communicate
9509  * mailbox commands to the port and sets up all alignment
9510  * needs.  No locks are expected to be held when calling
9511  * this routine.
9512  *
9513  * Return codes
9514  * 	0 - successful
9515  * 	-ENOMEM - could not allocated memory.
9516  **/
9517 static int
lpfc_create_bootstrap_mbox(struct lpfc_hba * phba)9518 lpfc_create_bootstrap_mbox(struct lpfc_hba *phba)
9519 {
9520 	uint32_t bmbx_size;
9521 	struct lpfc_dmabuf *dmabuf;
9522 	struct dma_address *dma_address;
9523 	uint32_t pa_addr;
9524 	uint64_t phys_addr;
9525 
9526 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
9527 	if (!dmabuf)
9528 		return -ENOMEM;
9529 
9530 	/*
9531 	 * The bootstrap mailbox region is comprised of 2 parts
9532 	 * plus an alignment restriction of 16 bytes.
9533 	 */
9534 	bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1);
9535 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size,
9536 					  &dmabuf->phys, GFP_KERNEL);
9537 	if (!dmabuf->virt) {
9538 		kfree(dmabuf);
9539 		return -ENOMEM;
9540 	}
9541 
9542 	/*
9543 	 * Initialize the bootstrap mailbox pointers now so that the register
9544 	 * operations are simple later.  The mailbox dma address is required
9545 	 * to be 16-byte aligned.  Also align the virtual memory as each
9546 	 * maibox is copied into the bmbx mailbox region before issuing the
9547 	 * command to the port.
9548 	 */
9549 	phba->sli4_hba.bmbx.dmabuf = dmabuf;
9550 	phba->sli4_hba.bmbx.bmbx_size = bmbx_size;
9551 
9552 	phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt,
9553 					      LPFC_ALIGN_16_BYTE);
9554 	phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys,
9555 					      LPFC_ALIGN_16_BYTE);
9556 
9557 	/*
9558 	 * Set the high and low physical addresses now.  The SLI4 alignment
9559 	 * requirement is 16 bytes and the mailbox is posted to the port
9560 	 * as two 30-bit addresses.  The other data is a bit marking whether
9561 	 * the 30-bit address is the high or low address.
9562 	 * Upcast bmbx aphys to 64bits so shift instruction compiles
9563 	 * clean on 32 bit machines.
9564 	 */
9565 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9566 	phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys;
9567 	pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff);
9568 	dma_address->addr_hi = (uint32_t) ((pa_addr << 2) |
9569 					   LPFC_BMBX_BIT1_ADDR_HI);
9570 
9571 	pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff);
9572 	dma_address->addr_lo = (uint32_t) ((pa_addr << 2) |
9573 					   LPFC_BMBX_BIT1_ADDR_LO);
9574 	return 0;
9575 }
9576 
9577 /**
9578  * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources
9579  * @phba: pointer to lpfc hba data structure.
9580  *
9581  * This routine is invoked to teardown the bootstrap mailbox
9582  * region and release all host resources. This routine requires
9583  * the caller to ensure all mailbox commands recovered, no
9584  * additional mailbox comands are sent, and interrupts are disabled
9585  * before calling this routine.
9586  *
9587  **/
9588 static void
lpfc_destroy_bootstrap_mbox(struct lpfc_hba * phba)9589 lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba)
9590 {
9591 	dma_free_coherent(&phba->pcidev->dev,
9592 			  phba->sli4_hba.bmbx.bmbx_size,
9593 			  phba->sli4_hba.bmbx.dmabuf->virt,
9594 			  phba->sli4_hba.bmbx.dmabuf->phys);
9595 
9596 	kfree(phba->sli4_hba.bmbx.dmabuf);
9597 	memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx));
9598 }
9599 
9600 static const char * const lpfc_topo_to_str[] = {
9601 	"Loop then P2P",
9602 	"Loopback",
9603 	"P2P Only",
9604 	"Unsupported",
9605 	"Loop Only",
9606 	"Unsupported",
9607 	"P2P then Loop",
9608 };
9609 
9610 #define	LINK_FLAGS_DEF	0x0
9611 #define	LINK_FLAGS_P2P	0x1
9612 #define	LINK_FLAGS_LOOP	0x2
9613 /**
9614  * lpfc_map_topology - Map the topology read from READ_CONFIG
9615  * @phba: pointer to lpfc hba data structure.
9616  * @rd_config: pointer to read config data
9617  *
9618  * This routine is invoked to map the topology values as read
9619  * from the read config mailbox command. If the persistent
9620  * topology feature is supported, the firmware will provide the
9621  * saved topology information to be used in INIT_LINK
9622  **/
9623 static void
lpfc_map_topology(struct lpfc_hba * phba,struct lpfc_mbx_read_config * rd_config)9624 lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config)
9625 {
9626 	u8 ptv, tf, pt;
9627 
9628 	ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config);
9629 	tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config);
9630 	pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config);
9631 
9632 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9633 			"2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x",
9634 			 ptv, tf, pt);
9635 	if (!ptv) {
9636 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9637 				"2019 FW does not support persistent topology "
9638 				"Using driver parameter defined value [%s]",
9639 				lpfc_topo_to_str[phba->cfg_topology]);
9640 		return;
9641 	}
9642 	/* FW supports persistent topology - override module parameter value */
9643 	phba->hba_flag |= HBA_PERSISTENT_TOPO;
9644 
9645 	/* if ASIC_GEN_NUM >= 0xC) */
9646 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
9647 		    LPFC_SLI_INTF_IF_TYPE_6) ||
9648 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
9649 		    LPFC_SLI_INTF_FAMILY_G6)) {
9650 		if (!tf) {
9651 			phba->cfg_topology = ((pt == LINK_FLAGS_LOOP)
9652 					? FLAGS_TOPOLOGY_MODE_LOOP
9653 					: FLAGS_TOPOLOGY_MODE_PT_PT);
9654 		} else {
9655 			phba->hba_flag &= ~HBA_PERSISTENT_TOPO;
9656 		}
9657 	} else { /* G5 */
9658 		if (tf) {
9659 			/* If topology failover set - pt is '0' or '1' */
9660 			phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP :
9661 					      FLAGS_TOPOLOGY_MODE_LOOP_PT);
9662 		} else {
9663 			phba->cfg_topology = ((pt == LINK_FLAGS_P2P)
9664 					? FLAGS_TOPOLOGY_MODE_PT_PT
9665 					: FLAGS_TOPOLOGY_MODE_LOOP);
9666 		}
9667 	}
9668 	if (phba->hba_flag & HBA_PERSISTENT_TOPO) {
9669 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9670 				"2020 Using persistent topology value [%s]",
9671 				lpfc_topo_to_str[phba->cfg_topology]);
9672 	} else {
9673 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9674 				"2021 Invalid topology values from FW "
9675 				"Using driver parameter defined value [%s]",
9676 				lpfc_topo_to_str[phba->cfg_topology]);
9677 	}
9678 }
9679 
9680 /**
9681  * lpfc_sli4_read_config - Get the config parameters.
9682  * @phba: pointer to lpfc hba data structure.
9683  *
9684  * This routine is invoked to read the configuration parameters from the HBA.
9685  * The configuration parameters are used to set the base and maximum values
9686  * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource
9687  * allocation for the port.
9688  *
9689  * Return codes
9690  * 	0 - successful
9691  * 	-ENOMEM - No available memory
9692  *      -EIO - The mailbox failed to complete successfully.
9693  **/
9694 int
lpfc_sli4_read_config(struct lpfc_hba * phba)9695 lpfc_sli4_read_config(struct lpfc_hba *phba)
9696 {
9697 	LPFC_MBOXQ_t *pmb;
9698 	struct lpfc_mbx_read_config *rd_config;
9699 	union  lpfc_sli4_cfg_shdr *shdr;
9700 	uint32_t shdr_status, shdr_add_status;
9701 	struct lpfc_mbx_get_func_cfg *get_func_cfg;
9702 	struct lpfc_rsrc_desc_fcfcoe *desc;
9703 	char *pdesc_0;
9704 	uint16_t forced_link_speed;
9705 	uint32_t if_type, qmin;
9706 	int length, i, rc = 0, rc2;
9707 
9708 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
9709 	if (!pmb) {
9710 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9711 				"2011 Unable to allocate memory for issuing "
9712 				"SLI_CONFIG_SPECIAL mailbox command\n");
9713 		return -ENOMEM;
9714 	}
9715 
9716 	lpfc_read_config(phba, pmb);
9717 
9718 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9719 	if (rc != MBX_SUCCESS) {
9720 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9721 				"2012 Mailbox failed , mbxCmd x%x "
9722 				"READ_CONFIG, mbxStatus x%x\n",
9723 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9724 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9725 		rc = -EIO;
9726 	} else {
9727 		rd_config = &pmb->u.mqe.un.rd_config;
9728 		if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) {
9729 			phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
9730 			phba->sli4_hba.lnk_info.lnk_tp =
9731 				bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config);
9732 			phba->sli4_hba.lnk_info.lnk_no =
9733 				bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config);
9734 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9735 					"3081 lnk_type:%d, lnk_numb:%d\n",
9736 					phba->sli4_hba.lnk_info.lnk_tp,
9737 					phba->sli4_hba.lnk_info.lnk_no);
9738 		} else
9739 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
9740 					"3082 Mailbox (x%x) returned ldv:x0\n",
9741 					bf_get(lpfc_mqe_command, &pmb->u.mqe));
9742 		if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) {
9743 			phba->bbcredit_support = 1;
9744 			phba->sli4_hba.bbscn_params.word0 = rd_config->word8;
9745 		}
9746 
9747 		phba->sli4_hba.conf_trunk =
9748 			bf_get(lpfc_mbx_rd_conf_trunk, rd_config);
9749 		phba->sli4_hba.extents_in_use =
9750 			bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config);
9751 		phba->sli4_hba.max_cfg_param.max_xri =
9752 			bf_get(lpfc_mbx_rd_conf_xri_count, rd_config);
9753 		/* Reduce resource usage in kdump environment */
9754 		if (is_kdump_kernel() &&
9755 		    phba->sli4_hba.max_cfg_param.max_xri > 512)
9756 			phba->sli4_hba.max_cfg_param.max_xri = 512;
9757 		phba->sli4_hba.max_cfg_param.xri_base =
9758 			bf_get(lpfc_mbx_rd_conf_xri_base, rd_config);
9759 		phba->sli4_hba.max_cfg_param.max_vpi =
9760 			bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config);
9761 		/* Limit the max we support */
9762 		if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS)
9763 			phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS;
9764 		phba->sli4_hba.max_cfg_param.vpi_base =
9765 			bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config);
9766 		phba->sli4_hba.max_cfg_param.max_rpi =
9767 			bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config);
9768 		phba->sli4_hba.max_cfg_param.rpi_base =
9769 			bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config);
9770 		phba->sli4_hba.max_cfg_param.max_vfi =
9771 			bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config);
9772 		phba->sli4_hba.max_cfg_param.vfi_base =
9773 			bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config);
9774 		phba->sli4_hba.max_cfg_param.max_fcfi =
9775 			bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config);
9776 		phba->sli4_hba.max_cfg_param.max_eq =
9777 			bf_get(lpfc_mbx_rd_conf_eq_count, rd_config);
9778 		phba->sli4_hba.max_cfg_param.max_rq =
9779 			bf_get(lpfc_mbx_rd_conf_rq_count, rd_config);
9780 		phba->sli4_hba.max_cfg_param.max_wq =
9781 			bf_get(lpfc_mbx_rd_conf_wq_count, rd_config);
9782 		phba->sli4_hba.max_cfg_param.max_cq =
9783 			bf_get(lpfc_mbx_rd_conf_cq_count, rd_config);
9784 		phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config);
9785 		phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base;
9786 		phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base;
9787 		phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base;
9788 		phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ?
9789 				(phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0;
9790 		phba->max_vports = phba->max_vpi;
9791 
9792 		/* Next decide on FPIN or Signal E2E CGN support
9793 		 * For congestion alarms and warnings valid combination are:
9794 		 * 1. FPIN alarms / FPIN warnings
9795 		 * 2. Signal alarms / Signal warnings
9796 		 * 3. FPIN alarms / Signal warnings
9797 		 * 4. Signal alarms / FPIN warnings
9798 		 *
9799 		 * Initialize the adapter frequency to 100 mSecs
9800 		 */
9801 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9802 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
9803 		phba->cgn_sig_freq = lpfc_fabric_cgn_frequency;
9804 
9805 		if (lpfc_use_cgn_signal) {
9806 			if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) {
9807 				phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY;
9808 				phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN;
9809 			}
9810 			if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) {
9811 				/* MUST support both alarm and warning
9812 				 * because EDC does not support alarm alone.
9813 				 */
9814 				if (phba->cgn_reg_signal !=
9815 				    EDC_CG_SIG_WARN_ONLY) {
9816 					/* Must support both or none */
9817 					phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH;
9818 					phba->cgn_reg_signal =
9819 						EDC_CG_SIG_NOTSUPPORTED;
9820 				} else {
9821 					phba->cgn_reg_signal =
9822 						EDC_CG_SIG_WARN_ALARM;
9823 					phba->cgn_reg_fpin =
9824 						LPFC_CGN_FPIN_NONE;
9825 				}
9826 			}
9827 		}
9828 
9829 		/* Set the congestion initial signal and fpin values. */
9830 		phba->cgn_init_reg_fpin = phba->cgn_reg_fpin;
9831 		phba->cgn_init_reg_signal = phba->cgn_reg_signal;
9832 
9833 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
9834 				"6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n",
9835 				phba->cgn_reg_signal, phba->cgn_reg_fpin);
9836 
9837 		lpfc_map_topology(phba, rd_config);
9838 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9839 				"2003 cfg params Extents? %d "
9840 				"XRI(B:%d M:%d), "
9841 				"VPI(B:%d M:%d) "
9842 				"VFI(B:%d M:%d) "
9843 				"RPI(B:%d M:%d) "
9844 				"FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n",
9845 				phba->sli4_hba.extents_in_use,
9846 				phba->sli4_hba.max_cfg_param.xri_base,
9847 				phba->sli4_hba.max_cfg_param.max_xri,
9848 				phba->sli4_hba.max_cfg_param.vpi_base,
9849 				phba->sli4_hba.max_cfg_param.max_vpi,
9850 				phba->sli4_hba.max_cfg_param.vfi_base,
9851 				phba->sli4_hba.max_cfg_param.max_vfi,
9852 				phba->sli4_hba.max_cfg_param.rpi_base,
9853 				phba->sli4_hba.max_cfg_param.max_rpi,
9854 				phba->sli4_hba.max_cfg_param.max_fcfi,
9855 				phba->sli4_hba.max_cfg_param.max_eq,
9856 				phba->sli4_hba.max_cfg_param.max_cq,
9857 				phba->sli4_hba.max_cfg_param.max_wq,
9858 				phba->sli4_hba.max_cfg_param.max_rq,
9859 				phba->lmt);
9860 
9861 		/*
9862 		 * Calculate queue resources based on how
9863 		 * many WQ/CQ/EQs are available.
9864 		 */
9865 		qmin = phba->sli4_hba.max_cfg_param.max_wq;
9866 		if (phba->sli4_hba.max_cfg_param.max_cq < qmin)
9867 			qmin = phba->sli4_hba.max_cfg_param.max_cq;
9868 		if (phba->sli4_hba.max_cfg_param.max_eq < qmin)
9869 			qmin = phba->sli4_hba.max_cfg_param.max_eq;
9870 		/*
9871 		 * Whats left after this can go toward NVME / FCP.
9872 		 * The minus 4 accounts for ELS, NVME LS, MBOX
9873 		 * plus one extra. When configured for
9874 		 * NVMET, FCP io channel WQs are not created.
9875 		 */
9876 		qmin -= 4;
9877 
9878 		/* Check to see if there is enough for NVME */
9879 		if ((phba->cfg_irq_chann > qmin) ||
9880 		    (phba->cfg_hdw_queue > qmin)) {
9881 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9882 					"2005 Reducing Queues - "
9883 					"FW resource limitation: "
9884 					"WQ %d CQ %d EQ %d: min %d: "
9885 					"IRQ %d HDWQ %d\n",
9886 					phba->sli4_hba.max_cfg_param.max_wq,
9887 					phba->sli4_hba.max_cfg_param.max_cq,
9888 					phba->sli4_hba.max_cfg_param.max_eq,
9889 					qmin, phba->cfg_irq_chann,
9890 					phba->cfg_hdw_queue);
9891 
9892 			if (phba->cfg_irq_chann > qmin)
9893 				phba->cfg_irq_chann = qmin;
9894 			if (phba->cfg_hdw_queue > qmin)
9895 				phba->cfg_hdw_queue = qmin;
9896 		}
9897 	}
9898 
9899 	if (rc)
9900 		goto read_cfg_out;
9901 
9902 	/* Update link speed if forced link speed is supported */
9903 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
9904 	if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9905 		forced_link_speed =
9906 			bf_get(lpfc_mbx_rd_conf_link_speed, rd_config);
9907 		if (forced_link_speed) {
9908 			phba->hba_flag |= HBA_FORCED_LINK_SPEED;
9909 
9910 			switch (forced_link_speed) {
9911 			case LINK_SPEED_1G:
9912 				phba->cfg_link_speed =
9913 					LPFC_USER_LINK_SPEED_1G;
9914 				break;
9915 			case LINK_SPEED_2G:
9916 				phba->cfg_link_speed =
9917 					LPFC_USER_LINK_SPEED_2G;
9918 				break;
9919 			case LINK_SPEED_4G:
9920 				phba->cfg_link_speed =
9921 					LPFC_USER_LINK_SPEED_4G;
9922 				break;
9923 			case LINK_SPEED_8G:
9924 				phba->cfg_link_speed =
9925 					LPFC_USER_LINK_SPEED_8G;
9926 				break;
9927 			case LINK_SPEED_10G:
9928 				phba->cfg_link_speed =
9929 					LPFC_USER_LINK_SPEED_10G;
9930 				break;
9931 			case LINK_SPEED_16G:
9932 				phba->cfg_link_speed =
9933 					LPFC_USER_LINK_SPEED_16G;
9934 				break;
9935 			case LINK_SPEED_32G:
9936 				phba->cfg_link_speed =
9937 					LPFC_USER_LINK_SPEED_32G;
9938 				break;
9939 			case LINK_SPEED_64G:
9940 				phba->cfg_link_speed =
9941 					LPFC_USER_LINK_SPEED_64G;
9942 				break;
9943 			case 0xffff:
9944 				phba->cfg_link_speed =
9945 					LPFC_USER_LINK_SPEED_AUTO;
9946 				break;
9947 			default:
9948 				lpfc_printf_log(phba, KERN_ERR,
9949 						LOG_TRACE_EVENT,
9950 						"0047 Unrecognized link "
9951 						"speed : %d\n",
9952 						forced_link_speed);
9953 				phba->cfg_link_speed =
9954 					LPFC_USER_LINK_SPEED_AUTO;
9955 			}
9956 		}
9957 	}
9958 
9959 	/* Reset the DFT_HBA_Q_DEPTH to the max xri  */
9960 	length = phba->sli4_hba.max_cfg_param.max_xri -
9961 			lpfc_sli4_get_els_iocb_cnt(phba);
9962 	if (phba->cfg_hba_queue_depth > length) {
9963 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
9964 				"3361 HBA queue depth changed from %d to %d\n",
9965 				phba->cfg_hba_queue_depth, length);
9966 		phba->cfg_hba_queue_depth = length;
9967 	}
9968 
9969 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
9970 	    LPFC_SLI_INTF_IF_TYPE_2)
9971 		goto read_cfg_out;
9972 
9973 	/* get the pf# and vf# for SLI4 if_type 2 port */
9974 	length = (sizeof(struct lpfc_mbx_get_func_cfg) -
9975 		  sizeof(struct lpfc_sli4_cfg_mhdr));
9976 	lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON,
9977 			 LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG,
9978 			 length, LPFC_SLI4_MBX_EMBED);
9979 
9980 	rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
9981 	shdr = (union lpfc_sli4_cfg_shdr *)
9982 				&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
9983 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
9984 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
9985 	if (rc2 || shdr_status || shdr_add_status) {
9986 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9987 				"3026 Mailbox failed , mbxCmd x%x "
9988 				"GET_FUNCTION_CONFIG, mbxStatus x%x\n",
9989 				bf_get(lpfc_mqe_command, &pmb->u.mqe),
9990 				bf_get(lpfc_mqe_status, &pmb->u.mqe));
9991 		goto read_cfg_out;
9992 	}
9993 
9994 	/* search for fc_fcoe resrouce descriptor */
9995 	get_func_cfg = &pmb->u.mqe.un.get_func_cfg;
9996 
9997 	pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0];
9998 	desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0;
9999 	length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc);
10000 	if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD)
10001 		length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH;
10002 	else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH)
10003 		goto read_cfg_out;
10004 
10005 	for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) {
10006 		desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i);
10007 		if (LPFC_RSRC_DESC_TYPE_FCFCOE ==
10008 		    bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) {
10009 			phba->sli4_hba.iov.pf_number =
10010 				bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc);
10011 			phba->sli4_hba.iov.vf_number =
10012 				bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc);
10013 			break;
10014 		}
10015 	}
10016 
10017 	if (i < LPFC_RSRC_DESC_MAX_NUM)
10018 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10019 				"3027 GET_FUNCTION_CONFIG: pf_number:%d, "
10020 				"vf_number:%d\n", phba->sli4_hba.iov.pf_number,
10021 				phba->sli4_hba.iov.vf_number);
10022 	else
10023 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10024 				"3028 GET_FUNCTION_CONFIG: failed to find "
10025 				"Resource Descriptor:x%x\n",
10026 				LPFC_RSRC_DESC_TYPE_FCFCOE);
10027 
10028 read_cfg_out:
10029 	mempool_free(pmb, phba->mbox_mem_pool);
10030 	return rc;
10031 }
10032 
10033 /**
10034  * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port.
10035  * @phba: pointer to lpfc hba data structure.
10036  *
10037  * This routine is invoked to setup the port-side endian order when
10038  * the port if_type is 0.  This routine has no function for other
10039  * if_types.
10040  *
10041  * Return codes
10042  * 	0 - successful
10043  * 	-ENOMEM - No available memory
10044  *      -EIO - The mailbox failed to complete successfully.
10045  **/
10046 static int
lpfc_setup_endian_order(struct lpfc_hba * phba)10047 lpfc_setup_endian_order(struct lpfc_hba *phba)
10048 {
10049 	LPFC_MBOXQ_t *mboxq;
10050 	uint32_t if_type, rc = 0;
10051 	uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0,
10052 				      HOST_ENDIAN_HIGH_WORD1};
10053 
10054 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
10055 	switch (if_type) {
10056 	case LPFC_SLI_INTF_IF_TYPE_0:
10057 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
10058 						       GFP_KERNEL);
10059 		if (!mboxq) {
10060 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10061 					"0492 Unable to allocate memory for "
10062 					"issuing SLI_CONFIG_SPECIAL mailbox "
10063 					"command\n");
10064 			return -ENOMEM;
10065 		}
10066 
10067 		/*
10068 		 * The SLI4_CONFIG_SPECIAL mailbox command requires the first
10069 		 * two words to contain special data values and no other data.
10070 		 */
10071 		memset(mboxq, 0, sizeof(LPFC_MBOXQ_t));
10072 		memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data));
10073 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10074 		if (rc != MBX_SUCCESS) {
10075 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10076 					"0493 SLI_CONFIG_SPECIAL mailbox "
10077 					"failed with status x%x\n",
10078 					rc);
10079 			rc = -EIO;
10080 		}
10081 		mempool_free(mboxq, phba->mbox_mem_pool);
10082 		break;
10083 	case LPFC_SLI_INTF_IF_TYPE_6:
10084 	case LPFC_SLI_INTF_IF_TYPE_2:
10085 	case LPFC_SLI_INTF_IF_TYPE_1:
10086 	default:
10087 		break;
10088 	}
10089 	return rc;
10090 }
10091 
10092 /**
10093  * lpfc_sli4_queue_verify - Verify and update EQ counts
10094  * @phba: pointer to lpfc hba data structure.
10095  *
10096  * This routine is invoked to check the user settable queue counts for EQs.
10097  * After this routine is called the counts will be set to valid values that
10098  * adhere to the constraints of the system's interrupt vectors and the port's
10099  * queue resources.
10100  *
10101  * Return codes
10102  *      0 - successful
10103  *      -ENOMEM - No available memory
10104  **/
10105 static int
lpfc_sli4_queue_verify(struct lpfc_hba * phba)10106 lpfc_sli4_queue_verify(struct lpfc_hba *phba)
10107 {
10108 	/*
10109 	 * Sanity check for configured queue parameters against the run-time
10110 	 * device parameters
10111 	 */
10112 
10113 	if (phba->nvmet_support) {
10114 		if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq)
10115 			phba->cfg_nvmet_mrq = phba->cfg_hdw_queue;
10116 		if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX)
10117 			phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX;
10118 	}
10119 
10120 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10121 			"2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n",
10122 			phba->cfg_hdw_queue, phba->cfg_irq_chann,
10123 			phba->cfg_nvmet_mrq);
10124 
10125 	/* Get EQ depth from module parameter, fake the default for now */
10126 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10127 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10128 
10129 	/* Get CQ depth from module parameter, fake the default for now */
10130 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10131 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10132 	return 0;
10133 }
10134 
10135 static int
lpfc_alloc_io_wq_cq(struct lpfc_hba * phba,int idx)10136 lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx)
10137 {
10138 	struct lpfc_queue *qdesc;
10139 	u32 wqesize;
10140 	int cpu;
10141 
10142 	cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ);
10143 	/* Create Fast Path IO CQs */
10144 	if (phba->enab_exp_wqcq_pages)
10145 		/* Increase the CQ size when WQEs contain an embedded cdb */
10146 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10147 					      phba->sli4_hba.cq_esize,
10148 					      LPFC_CQE_EXP_COUNT, cpu);
10149 
10150 	else
10151 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10152 					      phba->sli4_hba.cq_esize,
10153 					      phba->sli4_hba.cq_ecount, cpu);
10154 	if (!qdesc) {
10155 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10156 				"0499 Failed allocate fast-path IO CQ (%d)\n",
10157 				idx);
10158 		return 1;
10159 	}
10160 	qdesc->qe_valid = 1;
10161 	qdesc->hdwq = idx;
10162 	qdesc->chann = cpu;
10163 	phba->sli4_hba.hdwq[idx].io_cq = qdesc;
10164 
10165 	/* Create Fast Path IO WQs */
10166 	if (phba->enab_exp_wqcq_pages) {
10167 		/* Increase the WQ size when WQEs contain an embedded cdb */
10168 		wqesize = (phba->fcp_embed_io) ?
10169 			LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize;
10170 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE,
10171 					      wqesize,
10172 					      LPFC_WQE_EXP_COUNT, cpu);
10173 	} else
10174 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10175 					      phba->sli4_hba.wq_esize,
10176 					      phba->sli4_hba.wq_ecount, cpu);
10177 
10178 	if (!qdesc) {
10179 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10180 				"0503 Failed allocate fast-path IO WQ (%d)\n",
10181 				idx);
10182 		return 1;
10183 	}
10184 	qdesc->hdwq = idx;
10185 	qdesc->chann = cpu;
10186 	phba->sli4_hba.hdwq[idx].io_wq = qdesc;
10187 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10188 	return 0;
10189 }
10190 
10191 /**
10192  * lpfc_sli4_queue_create - Create all the SLI4 queues
10193  * @phba: pointer to lpfc hba data structure.
10194  *
10195  * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA
10196  * operation. For each SLI4 queue type, the parameters such as queue entry
10197  * count (queue depth) shall be taken from the module parameter. For now,
10198  * we just use some constant number as place holder.
10199  *
10200  * Return codes
10201  *      0 - successful
10202  *      -ENOMEM - No availble memory
10203  *      -EIO - The mailbox failed to complete successfully.
10204  **/
10205 int
lpfc_sli4_queue_create(struct lpfc_hba * phba)10206 lpfc_sli4_queue_create(struct lpfc_hba *phba)
10207 {
10208 	struct lpfc_queue *qdesc;
10209 	int idx, cpu, eqcpu;
10210 	struct lpfc_sli4_hdw_queue *qp;
10211 	struct lpfc_vector_map_info *cpup;
10212 	struct lpfc_vector_map_info *eqcpup;
10213 	struct lpfc_eq_intr_info *eqi;
10214 
10215 	/*
10216 	 * Create HBA Record arrays.
10217 	 * Both NVME and FCP will share that same vectors / EQs
10218 	 */
10219 	phba->sli4_hba.mq_esize = LPFC_MQE_SIZE;
10220 	phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT;
10221 	phba->sli4_hba.wq_esize = LPFC_WQE_SIZE;
10222 	phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT;
10223 	phba->sli4_hba.rq_esize = LPFC_RQE_SIZE;
10224 	phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT;
10225 	phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B;
10226 	phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT;
10227 	phba->sli4_hba.cq_esize = LPFC_CQE_SIZE;
10228 	phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT;
10229 
10230 	if (!phba->sli4_hba.hdwq) {
10231 		phba->sli4_hba.hdwq = kcalloc(
10232 			phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue),
10233 			GFP_KERNEL);
10234 		if (!phba->sli4_hba.hdwq) {
10235 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10236 					"6427 Failed allocate memory for "
10237 					"fast-path Hardware Queue array\n");
10238 			goto out_error;
10239 		}
10240 		/* Prepare hardware queues to take IO buffers */
10241 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10242 			qp = &phba->sli4_hba.hdwq[idx];
10243 			spin_lock_init(&qp->io_buf_list_get_lock);
10244 			spin_lock_init(&qp->io_buf_list_put_lock);
10245 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get);
10246 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
10247 			qp->get_io_bufs = 0;
10248 			qp->put_io_bufs = 0;
10249 			qp->total_io_bufs = 0;
10250 			spin_lock_init(&qp->abts_io_buf_list_lock);
10251 			INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list);
10252 			qp->abts_scsi_io_bufs = 0;
10253 			qp->abts_nvme_io_bufs = 0;
10254 			INIT_LIST_HEAD(&qp->sgl_list);
10255 			INIT_LIST_HEAD(&qp->cmd_rsp_buf_list);
10256 			spin_lock_init(&qp->hdwq_lock);
10257 		}
10258 	}
10259 
10260 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10261 		if (phba->nvmet_support) {
10262 			phba->sli4_hba.nvmet_cqset = kcalloc(
10263 					phba->cfg_nvmet_mrq,
10264 					sizeof(struct lpfc_queue *),
10265 					GFP_KERNEL);
10266 			if (!phba->sli4_hba.nvmet_cqset) {
10267 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10268 					"3121 Fail allocate memory for "
10269 					"fast-path CQ set array\n");
10270 				goto out_error;
10271 			}
10272 			phba->sli4_hba.nvmet_mrq_hdr = kcalloc(
10273 					phba->cfg_nvmet_mrq,
10274 					sizeof(struct lpfc_queue *),
10275 					GFP_KERNEL);
10276 			if (!phba->sli4_hba.nvmet_mrq_hdr) {
10277 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10278 					"3122 Fail allocate memory for "
10279 					"fast-path RQ set hdr array\n");
10280 				goto out_error;
10281 			}
10282 			phba->sli4_hba.nvmet_mrq_data = kcalloc(
10283 					phba->cfg_nvmet_mrq,
10284 					sizeof(struct lpfc_queue *),
10285 					GFP_KERNEL);
10286 			if (!phba->sli4_hba.nvmet_mrq_data) {
10287 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10288 					"3124 Fail allocate memory for "
10289 					"fast-path RQ set data array\n");
10290 				goto out_error;
10291 			}
10292 		}
10293 	}
10294 
10295 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10296 
10297 	/* Create HBA Event Queues (EQs) */
10298 	for_each_present_cpu(cpu) {
10299 		/* We only want to create 1 EQ per vector, even though
10300 		 * multiple CPUs might be using that vector. so only
10301 		 * selects the CPUs that are LPFC_CPU_FIRST_IRQ.
10302 		 */
10303 		cpup = &phba->sli4_hba.cpu_map[cpu];
10304 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10305 			continue;
10306 
10307 		/* Get a ptr to the Hardware Queue associated with this CPU */
10308 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10309 
10310 		/* Allocate an EQ */
10311 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10312 					      phba->sli4_hba.eq_esize,
10313 					      phba->sli4_hba.eq_ecount, cpu);
10314 		if (!qdesc) {
10315 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10316 					"0497 Failed allocate EQ (%d)\n",
10317 					cpup->hdwq);
10318 			goto out_error;
10319 		}
10320 		qdesc->qe_valid = 1;
10321 		qdesc->hdwq = cpup->hdwq;
10322 		qdesc->chann = cpu; /* First CPU this EQ is affinitized to */
10323 		qdesc->last_cpu = qdesc->chann;
10324 
10325 		/* Save the allocated EQ in the Hardware Queue */
10326 		qp->hba_eq = qdesc;
10327 
10328 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu);
10329 		list_add(&qdesc->cpu_list, &eqi->list);
10330 	}
10331 
10332 	/* Now we need to populate the other Hardware Queues, that share
10333 	 * an IRQ vector, with the associated EQ ptr.
10334 	 */
10335 	for_each_present_cpu(cpu) {
10336 		cpup = &phba->sli4_hba.cpu_map[cpu];
10337 
10338 		/* Check for EQ already allocated in previous loop */
10339 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
10340 			continue;
10341 
10342 		/* Check for multiple CPUs per hdwq */
10343 		qp = &phba->sli4_hba.hdwq[cpup->hdwq];
10344 		if (qp->hba_eq)
10345 			continue;
10346 
10347 		/* We need to share an EQ for this hdwq */
10348 		eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ);
10349 		eqcpup = &phba->sli4_hba.cpu_map[eqcpu];
10350 		qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq;
10351 	}
10352 
10353 	/* Allocate IO Path SLI4 CQ/WQs */
10354 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10355 		if (lpfc_alloc_io_wq_cq(phba, idx))
10356 			goto out_error;
10357 	}
10358 
10359 	if (phba->nvmet_support) {
10360 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10361 			cpu = lpfc_find_cpu_handle(phba, idx,
10362 						   LPFC_FIND_BY_HDWQ);
10363 			qdesc = lpfc_sli4_queue_alloc(phba,
10364 						      LPFC_DEFAULT_PAGE_SIZE,
10365 						      phba->sli4_hba.cq_esize,
10366 						      phba->sli4_hba.cq_ecount,
10367 						      cpu);
10368 			if (!qdesc) {
10369 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10370 						"3142 Failed allocate NVME "
10371 						"CQ Set (%d)\n", idx);
10372 				goto out_error;
10373 			}
10374 			qdesc->qe_valid = 1;
10375 			qdesc->hdwq = idx;
10376 			qdesc->chann = cpu;
10377 			phba->sli4_hba.nvmet_cqset[idx] = qdesc;
10378 		}
10379 	}
10380 
10381 	/*
10382 	 * Create Slow Path Completion Queues (CQs)
10383 	 */
10384 
10385 	cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ);
10386 	/* Create slow-path Mailbox Command Complete Queue */
10387 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10388 				      phba->sli4_hba.cq_esize,
10389 				      phba->sli4_hba.cq_ecount, cpu);
10390 	if (!qdesc) {
10391 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10392 				"0500 Failed allocate slow-path mailbox CQ\n");
10393 		goto out_error;
10394 	}
10395 	qdesc->qe_valid = 1;
10396 	phba->sli4_hba.mbx_cq = qdesc;
10397 
10398 	/* Create slow-path ELS Complete Queue */
10399 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10400 				      phba->sli4_hba.cq_esize,
10401 				      phba->sli4_hba.cq_ecount, cpu);
10402 	if (!qdesc) {
10403 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10404 				"0501 Failed allocate slow-path ELS CQ\n");
10405 		goto out_error;
10406 	}
10407 	qdesc->qe_valid = 1;
10408 	qdesc->chann = cpu;
10409 	phba->sli4_hba.els_cq = qdesc;
10410 
10411 
10412 	/*
10413 	 * Create Slow Path Work Queues (WQs)
10414 	 */
10415 
10416 	/* Create Mailbox Command Queue */
10417 
10418 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10419 				      phba->sli4_hba.mq_esize,
10420 				      phba->sli4_hba.mq_ecount, cpu);
10421 	if (!qdesc) {
10422 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10423 				"0505 Failed allocate slow-path MQ\n");
10424 		goto out_error;
10425 	}
10426 	qdesc->chann = cpu;
10427 	phba->sli4_hba.mbx_wq = qdesc;
10428 
10429 	/*
10430 	 * Create ELS Work Queues
10431 	 */
10432 
10433 	/* Create slow-path ELS Work Queue */
10434 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10435 				      phba->sli4_hba.wq_esize,
10436 				      phba->sli4_hba.wq_ecount, cpu);
10437 	if (!qdesc) {
10438 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10439 				"0504 Failed allocate slow-path ELS WQ\n");
10440 		goto out_error;
10441 	}
10442 	qdesc->chann = cpu;
10443 	phba->sli4_hba.els_wq = qdesc;
10444 	list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10445 
10446 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10447 		/* Create NVME LS Complete Queue */
10448 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10449 					      phba->sli4_hba.cq_esize,
10450 					      phba->sli4_hba.cq_ecount, cpu);
10451 		if (!qdesc) {
10452 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10453 					"6079 Failed allocate NVME LS CQ\n");
10454 			goto out_error;
10455 		}
10456 		qdesc->chann = cpu;
10457 		qdesc->qe_valid = 1;
10458 		phba->sli4_hba.nvmels_cq = qdesc;
10459 
10460 		/* Create NVME LS Work Queue */
10461 		qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10462 					      phba->sli4_hba.wq_esize,
10463 					      phba->sli4_hba.wq_ecount, cpu);
10464 		if (!qdesc) {
10465 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10466 					"6080 Failed allocate NVME LS WQ\n");
10467 			goto out_error;
10468 		}
10469 		qdesc->chann = cpu;
10470 		phba->sli4_hba.nvmels_wq = qdesc;
10471 		list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list);
10472 	}
10473 
10474 	/*
10475 	 * Create Receive Queue (RQ)
10476 	 */
10477 
10478 	/* Create Receive Queue for header */
10479 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10480 				      phba->sli4_hba.rq_esize,
10481 				      phba->sli4_hba.rq_ecount, cpu);
10482 	if (!qdesc) {
10483 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10484 				"0506 Failed allocate receive HRQ\n");
10485 		goto out_error;
10486 	}
10487 	phba->sli4_hba.hdr_rq = qdesc;
10488 
10489 	/* Create Receive Queue for data */
10490 	qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE,
10491 				      phba->sli4_hba.rq_esize,
10492 				      phba->sli4_hba.rq_ecount, cpu);
10493 	if (!qdesc) {
10494 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10495 				"0507 Failed allocate receive DRQ\n");
10496 		goto out_error;
10497 	}
10498 	phba->sli4_hba.dat_rq = qdesc;
10499 
10500 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
10501 	    phba->nvmet_support) {
10502 		for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) {
10503 			cpu = lpfc_find_cpu_handle(phba, idx,
10504 						   LPFC_FIND_BY_HDWQ);
10505 			/* Create NVMET Receive Queue for header */
10506 			qdesc = lpfc_sli4_queue_alloc(phba,
10507 						      LPFC_DEFAULT_PAGE_SIZE,
10508 						      phba->sli4_hba.rq_esize,
10509 						      LPFC_NVMET_RQE_DEF_COUNT,
10510 						      cpu);
10511 			if (!qdesc) {
10512 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10513 						"3146 Failed allocate "
10514 						"receive HRQ\n");
10515 				goto out_error;
10516 			}
10517 			qdesc->hdwq = idx;
10518 			phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc;
10519 
10520 			/* Only needed for header of RQ pair */
10521 			qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp),
10522 						   GFP_KERNEL,
10523 						   cpu_to_node(cpu));
10524 			if (qdesc->rqbp == NULL) {
10525 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10526 						"6131 Failed allocate "
10527 						"Header RQBP\n");
10528 				goto out_error;
10529 			}
10530 
10531 			/* Put list in known state in case driver load fails. */
10532 			INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list);
10533 
10534 			/* Create NVMET Receive Queue for data */
10535 			qdesc = lpfc_sli4_queue_alloc(phba,
10536 						      LPFC_DEFAULT_PAGE_SIZE,
10537 						      phba->sli4_hba.rq_esize,
10538 						      LPFC_NVMET_RQE_DEF_COUNT,
10539 						      cpu);
10540 			if (!qdesc) {
10541 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10542 						"3156 Failed allocate "
10543 						"receive DRQ\n");
10544 				goto out_error;
10545 			}
10546 			qdesc->hdwq = idx;
10547 			phba->sli4_hba.nvmet_mrq_data[idx] = qdesc;
10548 		}
10549 	}
10550 
10551 	/* Clear NVME stats */
10552 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10553 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10554 			memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0,
10555 			       sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat));
10556 		}
10557 	}
10558 
10559 	/* Clear SCSI stats */
10560 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
10561 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10562 			memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0,
10563 			       sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat));
10564 		}
10565 	}
10566 
10567 	return 0;
10568 
10569 out_error:
10570 	lpfc_sli4_queue_destroy(phba);
10571 	return -ENOMEM;
10572 }
10573 
10574 static inline void
__lpfc_sli4_release_queue(struct lpfc_queue ** qp)10575 __lpfc_sli4_release_queue(struct lpfc_queue **qp)
10576 {
10577 	if (*qp != NULL) {
10578 		lpfc_sli4_queue_free(*qp);
10579 		*qp = NULL;
10580 	}
10581 }
10582 
10583 static inline void
lpfc_sli4_release_queues(struct lpfc_queue *** qs,int max)10584 lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max)
10585 {
10586 	int idx;
10587 
10588 	if (*qs == NULL)
10589 		return;
10590 
10591 	for (idx = 0; idx < max; idx++)
10592 		__lpfc_sli4_release_queue(&(*qs)[idx]);
10593 
10594 	kfree(*qs);
10595 	*qs = NULL;
10596 }
10597 
10598 static inline void
lpfc_sli4_release_hdwq(struct lpfc_hba * phba)10599 lpfc_sli4_release_hdwq(struct lpfc_hba *phba)
10600 {
10601 	struct lpfc_sli4_hdw_queue *hdwq;
10602 	struct lpfc_queue *eq;
10603 	uint32_t idx;
10604 
10605 	hdwq = phba->sli4_hba.hdwq;
10606 
10607 	/* Loop thru all Hardware Queues */
10608 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
10609 		/* Free the CQ/WQ corresponding to the Hardware Queue */
10610 		lpfc_sli4_queue_free(hdwq[idx].io_cq);
10611 		lpfc_sli4_queue_free(hdwq[idx].io_wq);
10612 		hdwq[idx].hba_eq = NULL;
10613 		hdwq[idx].io_cq = NULL;
10614 		hdwq[idx].io_wq = NULL;
10615 		if (phba->cfg_xpsgl && !phba->nvmet_support)
10616 			lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]);
10617 		lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]);
10618 	}
10619 	/* Loop thru all IRQ vectors */
10620 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
10621 		/* Free the EQ corresponding to the IRQ vector */
10622 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
10623 		lpfc_sli4_queue_free(eq);
10624 		phba->sli4_hba.hba_eq_hdl[idx].eq = NULL;
10625 	}
10626 }
10627 
10628 /**
10629  * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues
10630  * @phba: pointer to lpfc hba data structure.
10631  *
10632  * This routine is invoked to release all the SLI4 queues with the FCoE HBA
10633  * operation.
10634  *
10635  * Return codes
10636  *      0 - successful
10637  *      -ENOMEM - No available memory
10638  *      -EIO - The mailbox failed to complete successfully.
10639  **/
10640 void
lpfc_sli4_queue_destroy(struct lpfc_hba * phba)10641 lpfc_sli4_queue_destroy(struct lpfc_hba *phba)
10642 {
10643 	/*
10644 	 * Set FREE_INIT before beginning to free the queues.
10645 	 * Wait until the users of queues to acknowledge to
10646 	 * release queues by clearing FREE_WAIT.
10647 	 */
10648 	spin_lock_irq(&phba->hbalock);
10649 	phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT;
10650 	while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) {
10651 		spin_unlock_irq(&phba->hbalock);
10652 		msleep(20);
10653 		spin_lock_irq(&phba->hbalock);
10654 	}
10655 	spin_unlock_irq(&phba->hbalock);
10656 
10657 	lpfc_sli4_cleanup_poll_list(phba);
10658 
10659 	/* Release HBA eqs */
10660 	if (phba->sli4_hba.hdwq)
10661 		lpfc_sli4_release_hdwq(phba);
10662 
10663 	if (phba->nvmet_support) {
10664 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset,
10665 					 phba->cfg_nvmet_mrq);
10666 
10667 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr,
10668 					 phba->cfg_nvmet_mrq);
10669 		lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data,
10670 					 phba->cfg_nvmet_mrq);
10671 	}
10672 
10673 	/* Release mailbox command work queue */
10674 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq);
10675 
10676 	/* Release ELS work queue */
10677 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_wq);
10678 
10679 	/* Release ELS work queue */
10680 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq);
10681 
10682 	/* Release unsolicited receive queue */
10683 	__lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq);
10684 	__lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq);
10685 
10686 	/* Release ELS complete queue */
10687 	__lpfc_sli4_release_queue(&phba->sli4_hba.els_cq);
10688 
10689 	/* Release NVME LS complete queue */
10690 	__lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq);
10691 
10692 	/* Release mailbox command complete queue */
10693 	__lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq);
10694 
10695 	/* Everything on this list has been freed */
10696 	INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list);
10697 
10698 	/* Done with freeing the queues */
10699 	spin_lock_irq(&phba->hbalock);
10700 	phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT;
10701 	spin_unlock_irq(&phba->hbalock);
10702 }
10703 
10704 int
lpfc_free_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * rq)10705 lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq)
10706 {
10707 	struct lpfc_rqb *rqbp;
10708 	struct lpfc_dmabuf *h_buf;
10709 	struct rqb_dmabuf *rqb_buffer;
10710 
10711 	rqbp = rq->rqbp;
10712 	while (!list_empty(&rqbp->rqb_buffer_list)) {
10713 		list_remove_head(&rqbp->rqb_buffer_list, h_buf,
10714 				 struct lpfc_dmabuf, list);
10715 
10716 		rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf);
10717 		(rqbp->rqb_free_buffer)(phba, rqb_buffer);
10718 		rqbp->buffer_count--;
10719 	}
10720 	return 1;
10721 }
10722 
10723 static int
lpfc_create_wq_cq(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_queue * cq,struct lpfc_queue * wq,uint16_t * cq_map,int qidx,uint32_t qtype)10724 lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq,
10725 	struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map,
10726 	int qidx, uint32_t qtype)
10727 {
10728 	struct lpfc_sli_ring *pring;
10729 	int rc;
10730 
10731 	if (!eq || !cq || !wq) {
10732 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10733 			"6085 Fast-path %s (%d) not allocated\n",
10734 			((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx);
10735 		return -ENOMEM;
10736 	}
10737 
10738 	/* create the Cq first */
10739 	rc = lpfc_cq_create(phba, cq, eq,
10740 			(qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype);
10741 	if (rc) {
10742 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10743 				"6086 Failed setup of CQ (%d), rc = 0x%x\n",
10744 				qidx, (uint32_t)rc);
10745 		return rc;
10746 	}
10747 
10748 	if (qtype != LPFC_MBOX) {
10749 		/* Setup cq_map for fast lookup */
10750 		if (cq_map)
10751 			*cq_map = cq->queue_id;
10752 
10753 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10754 			"6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n",
10755 			qidx, cq->queue_id, qidx, eq->queue_id);
10756 
10757 		/* create the wq */
10758 		rc = lpfc_wq_create(phba, wq, cq, qtype);
10759 		if (rc) {
10760 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10761 				"4618 Fail setup fastpath WQ (%d), rc = 0x%x\n",
10762 				qidx, (uint32_t)rc);
10763 			/* no need to tear down cq - caller will do so */
10764 			return rc;
10765 		}
10766 
10767 		/* Bind this CQ/WQ to the NVME ring */
10768 		pring = wq->pring;
10769 		pring->sli.sli4.wqp = (void *)wq;
10770 		cq->pring = pring;
10771 
10772 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10773 			"2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n",
10774 			qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id);
10775 	} else {
10776 		rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX);
10777 		if (rc) {
10778 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10779 					"0539 Failed setup of slow-path MQ: "
10780 					"rc = 0x%x\n", rc);
10781 			/* no need to tear down cq - caller will do so */
10782 			return rc;
10783 		}
10784 
10785 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10786 			"2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n",
10787 			phba->sli4_hba.mbx_wq->queue_id,
10788 			phba->sli4_hba.mbx_cq->queue_id);
10789 	}
10790 
10791 	return 0;
10792 }
10793 
10794 /**
10795  * lpfc_setup_cq_lookup - Setup the CQ lookup table
10796  * @phba: pointer to lpfc hba data structure.
10797  *
10798  * This routine will populate the cq_lookup table by all
10799  * available CQ queue_id's.
10800  **/
10801 static void
lpfc_setup_cq_lookup(struct lpfc_hba * phba)10802 lpfc_setup_cq_lookup(struct lpfc_hba *phba)
10803 {
10804 	struct lpfc_queue *eq, *childq;
10805 	int qidx;
10806 
10807 	memset(phba->sli4_hba.cq_lookup, 0,
10808 	       (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1)));
10809 	/* Loop thru all IRQ vectors */
10810 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10811 		/* Get the EQ corresponding to the IRQ vector */
10812 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
10813 		if (!eq)
10814 			continue;
10815 		/* Loop through all CQs associated with that EQ */
10816 		list_for_each_entry(childq, &eq->child_list, list) {
10817 			if (childq->queue_id > phba->sli4_hba.cq_max)
10818 				continue;
10819 			if (childq->subtype == LPFC_IO)
10820 				phba->sli4_hba.cq_lookup[childq->queue_id] =
10821 					childq;
10822 		}
10823 	}
10824 }
10825 
10826 /**
10827  * lpfc_sli4_queue_setup - Set up all the SLI4 queues
10828  * @phba: pointer to lpfc hba data structure.
10829  *
10830  * This routine is invoked to set up all the SLI4 queues for the FCoE HBA
10831  * operation.
10832  *
10833  * Return codes
10834  *      0 - successful
10835  *      -ENOMEM - No available memory
10836  *      -EIO - The mailbox failed to complete successfully.
10837  **/
10838 int
lpfc_sli4_queue_setup(struct lpfc_hba * phba)10839 lpfc_sli4_queue_setup(struct lpfc_hba *phba)
10840 {
10841 	uint32_t shdr_status, shdr_add_status;
10842 	union lpfc_sli4_cfg_shdr *shdr;
10843 	struct lpfc_vector_map_info *cpup;
10844 	struct lpfc_sli4_hdw_queue *qp;
10845 	LPFC_MBOXQ_t *mboxq;
10846 	int qidx, cpu;
10847 	uint32_t length, usdelay;
10848 	int rc = -ENOMEM;
10849 
10850 	/* Check for dual-ULP support */
10851 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
10852 	if (!mboxq) {
10853 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10854 				"3249 Unable to allocate memory for "
10855 				"QUERY_FW_CFG mailbox command\n");
10856 		return -ENOMEM;
10857 	}
10858 	length = (sizeof(struct lpfc_mbx_query_fw_config) -
10859 		  sizeof(struct lpfc_sli4_cfg_mhdr));
10860 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
10861 			 LPFC_MBOX_OPCODE_QUERY_FW_CFG,
10862 			 length, LPFC_SLI4_MBX_EMBED);
10863 
10864 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
10865 
10866 	shdr = (union lpfc_sli4_cfg_shdr *)
10867 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
10868 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
10869 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
10870 	if (shdr_status || shdr_add_status || rc) {
10871 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10872 				"3250 QUERY_FW_CFG mailbox failed with status "
10873 				"x%x add_status x%x, mbx status x%x\n",
10874 				shdr_status, shdr_add_status, rc);
10875 		mempool_free(mboxq, phba->mbox_mem_pool);
10876 		rc = -ENXIO;
10877 		goto out_error;
10878 	}
10879 
10880 	phba->sli4_hba.fw_func_mode =
10881 			mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode;
10882 	phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode;
10883 	phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode;
10884 	phba->sli4_hba.physical_port =
10885 			mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port;
10886 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10887 			"3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, "
10888 			"ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode,
10889 			phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode);
10890 
10891 	mempool_free(mboxq, phba->mbox_mem_pool);
10892 
10893 	/*
10894 	 * Set up HBA Event Queues (EQs)
10895 	 */
10896 	qp = phba->sli4_hba.hdwq;
10897 
10898 	/* Set up HBA event queue */
10899 	if (!qp) {
10900 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10901 				"3147 Fast-path EQs not allocated\n");
10902 		rc = -ENOMEM;
10903 		goto out_error;
10904 	}
10905 
10906 	/* Loop thru all IRQ vectors */
10907 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
10908 		/* Create HBA Event Queues (EQs) in order */
10909 		for_each_present_cpu(cpu) {
10910 			cpup = &phba->sli4_hba.cpu_map[cpu];
10911 
10912 			/* Look for the CPU thats using that vector with
10913 			 * LPFC_CPU_FIRST_IRQ set.
10914 			 */
10915 			if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
10916 				continue;
10917 			if (qidx != cpup->eq)
10918 				continue;
10919 
10920 			/* Create an EQ for that vector */
10921 			rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq,
10922 					    phba->cfg_fcp_imax);
10923 			if (rc) {
10924 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10925 						"0523 Failed setup of fast-path"
10926 						" EQ (%d), rc = 0x%x\n",
10927 						cpup->eq, (uint32_t)rc);
10928 				goto out_destroy;
10929 			}
10930 
10931 			/* Save the EQ for that vector in the hba_eq_hdl */
10932 			phba->sli4_hba.hba_eq_hdl[cpup->eq].eq =
10933 				qp[cpup->hdwq].hba_eq;
10934 
10935 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
10936 					"2584 HBA EQ setup: queue[%d]-id=%d\n",
10937 					cpup->eq,
10938 					qp[cpup->hdwq].hba_eq->queue_id);
10939 		}
10940 	}
10941 
10942 	/* Loop thru all Hardware Queues */
10943 	for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
10944 		cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ);
10945 		cpup = &phba->sli4_hba.cpu_map[cpu];
10946 
10947 		/* Create the CQ/WQ corresponding to the Hardware Queue */
10948 		rc = lpfc_create_wq_cq(phba,
10949 				       phba->sli4_hba.hdwq[cpup->hdwq].hba_eq,
10950 				       qp[qidx].io_cq,
10951 				       qp[qidx].io_wq,
10952 				       &phba->sli4_hba.hdwq[qidx].io_cq_map,
10953 				       qidx,
10954 				       LPFC_IO);
10955 		if (rc) {
10956 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10957 					"0535 Failed to setup fastpath "
10958 					"IO WQ/CQ (%d), rc = 0x%x\n",
10959 					qidx, (uint32_t)rc);
10960 			goto out_destroy;
10961 		}
10962 	}
10963 
10964 	/*
10965 	 * Set up Slow Path Complete Queues (CQs)
10966 	 */
10967 
10968 	/* Set up slow-path MBOX CQ/MQ */
10969 
10970 	if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) {
10971 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10972 				"0528 %s not allocated\n",
10973 				phba->sli4_hba.mbx_cq ?
10974 				"Mailbox WQ" : "Mailbox CQ");
10975 		rc = -ENOMEM;
10976 		goto out_destroy;
10977 	}
10978 
10979 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
10980 			       phba->sli4_hba.mbx_cq,
10981 			       phba->sli4_hba.mbx_wq,
10982 			       NULL, 0, LPFC_MBOX);
10983 	if (rc) {
10984 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10985 			"0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n",
10986 			(uint32_t)rc);
10987 		goto out_destroy;
10988 	}
10989 	if (phba->nvmet_support) {
10990 		if (!phba->sli4_hba.nvmet_cqset) {
10991 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10992 					"3165 Fast-path NVME CQ Set "
10993 					"array not allocated\n");
10994 			rc = -ENOMEM;
10995 			goto out_destroy;
10996 		}
10997 		if (phba->cfg_nvmet_mrq > 1) {
10998 			rc = lpfc_cq_create_set(phba,
10999 					phba->sli4_hba.nvmet_cqset,
11000 					qp,
11001 					LPFC_WCQ, LPFC_NVMET);
11002 			if (rc) {
11003 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11004 						"3164 Failed setup of NVME CQ "
11005 						"Set, rc = 0x%x\n",
11006 						(uint32_t)rc);
11007 				goto out_destroy;
11008 			}
11009 		} else {
11010 			/* Set up NVMET Receive Complete Queue */
11011 			rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0],
11012 					    qp[0].hba_eq,
11013 					    LPFC_WCQ, LPFC_NVMET);
11014 			if (rc) {
11015 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11016 						"6089 Failed setup NVMET CQ: "
11017 						"rc = 0x%x\n", (uint32_t)rc);
11018 				goto out_destroy;
11019 			}
11020 			phba->sli4_hba.nvmet_cqset[0]->chann = 0;
11021 
11022 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11023 					"6090 NVMET CQ setup: cq-id=%d, "
11024 					"parent eq-id=%d\n",
11025 					phba->sli4_hba.nvmet_cqset[0]->queue_id,
11026 					qp[0].hba_eq->queue_id);
11027 		}
11028 	}
11029 
11030 	/* Set up slow-path ELS WQ/CQ */
11031 	if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) {
11032 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11033 				"0530 ELS %s not allocated\n",
11034 				phba->sli4_hba.els_cq ? "WQ" : "CQ");
11035 		rc = -ENOMEM;
11036 		goto out_destroy;
11037 	}
11038 	rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11039 			       phba->sli4_hba.els_cq,
11040 			       phba->sli4_hba.els_wq,
11041 			       NULL, 0, LPFC_ELS);
11042 	if (rc) {
11043 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11044 				"0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n",
11045 				(uint32_t)rc);
11046 		goto out_destroy;
11047 	}
11048 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11049 			"2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n",
11050 			phba->sli4_hba.els_wq->queue_id,
11051 			phba->sli4_hba.els_cq->queue_id);
11052 
11053 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11054 		/* Set up NVME LS Complete Queue */
11055 		if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) {
11056 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11057 					"6091 LS %s not allocated\n",
11058 					phba->sli4_hba.nvmels_cq ? "WQ" : "CQ");
11059 			rc = -ENOMEM;
11060 			goto out_destroy;
11061 		}
11062 		rc = lpfc_create_wq_cq(phba, qp[0].hba_eq,
11063 				       phba->sli4_hba.nvmels_cq,
11064 				       phba->sli4_hba.nvmels_wq,
11065 				       NULL, 0, LPFC_NVME_LS);
11066 		if (rc) {
11067 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11068 					"0526 Failed setup of NVVME LS WQ/CQ: "
11069 					"rc = 0x%x\n", (uint32_t)rc);
11070 			goto out_destroy;
11071 		}
11072 
11073 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11074 				"6096 ELS WQ setup: wq-id=%d, "
11075 				"parent cq-id=%d\n",
11076 				phba->sli4_hba.nvmels_wq->queue_id,
11077 				phba->sli4_hba.nvmels_cq->queue_id);
11078 	}
11079 
11080 	/*
11081 	 * Create NVMET Receive Queue (RQ)
11082 	 */
11083 	if (phba->nvmet_support) {
11084 		if ((!phba->sli4_hba.nvmet_cqset) ||
11085 		    (!phba->sli4_hba.nvmet_mrq_hdr) ||
11086 		    (!phba->sli4_hba.nvmet_mrq_data)) {
11087 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11088 					"6130 MRQ CQ Queues not "
11089 					"allocated\n");
11090 			rc = -ENOMEM;
11091 			goto out_destroy;
11092 		}
11093 		if (phba->cfg_nvmet_mrq > 1) {
11094 			rc = lpfc_mrq_create(phba,
11095 					     phba->sli4_hba.nvmet_mrq_hdr,
11096 					     phba->sli4_hba.nvmet_mrq_data,
11097 					     phba->sli4_hba.nvmet_cqset,
11098 					     LPFC_NVMET);
11099 			if (rc) {
11100 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11101 						"6098 Failed setup of NVMET "
11102 						"MRQ: rc = 0x%x\n",
11103 						(uint32_t)rc);
11104 				goto out_destroy;
11105 			}
11106 
11107 		} else {
11108 			rc = lpfc_rq_create(phba,
11109 					    phba->sli4_hba.nvmet_mrq_hdr[0],
11110 					    phba->sli4_hba.nvmet_mrq_data[0],
11111 					    phba->sli4_hba.nvmet_cqset[0],
11112 					    LPFC_NVMET);
11113 			if (rc) {
11114 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11115 						"6057 Failed setup of NVMET "
11116 						"Receive Queue: rc = 0x%x\n",
11117 						(uint32_t)rc);
11118 				goto out_destroy;
11119 			}
11120 
11121 			lpfc_printf_log(
11122 				phba, KERN_INFO, LOG_INIT,
11123 				"6099 NVMET RQ setup: hdr-rq-id=%d, "
11124 				"dat-rq-id=%d parent cq-id=%d\n",
11125 				phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id,
11126 				phba->sli4_hba.nvmet_mrq_data[0]->queue_id,
11127 				phba->sli4_hba.nvmet_cqset[0]->queue_id);
11128 
11129 		}
11130 	}
11131 
11132 	if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) {
11133 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11134 				"0540 Receive Queue not allocated\n");
11135 		rc = -ENOMEM;
11136 		goto out_destroy;
11137 	}
11138 
11139 	rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
11140 			    phba->sli4_hba.els_cq, LPFC_USOL);
11141 	if (rc) {
11142 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11143 				"0541 Failed setup of Receive Queue: "
11144 				"rc = 0x%x\n", (uint32_t)rc);
11145 		goto out_destroy;
11146 	}
11147 
11148 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11149 			"2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d "
11150 			"parent cq-id=%d\n",
11151 			phba->sli4_hba.hdr_rq->queue_id,
11152 			phba->sli4_hba.dat_rq->queue_id,
11153 			phba->sli4_hba.els_cq->queue_id);
11154 
11155 	if (phba->cfg_fcp_imax)
11156 		usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax;
11157 	else
11158 		usdelay = 0;
11159 
11160 	for (qidx = 0; qidx < phba->cfg_irq_chann;
11161 	     qidx += LPFC_MAX_EQ_DELAY_EQID_CNT)
11162 		lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT,
11163 					 usdelay);
11164 
11165 	if (phba->sli4_hba.cq_max) {
11166 		kfree(phba->sli4_hba.cq_lookup);
11167 		phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1),
11168 			sizeof(struct lpfc_queue *), GFP_KERNEL);
11169 		if (!phba->sli4_hba.cq_lookup) {
11170 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11171 					"0549 Failed setup of CQ Lookup table: "
11172 					"size 0x%x\n", phba->sli4_hba.cq_max);
11173 			rc = -ENOMEM;
11174 			goto out_destroy;
11175 		}
11176 		lpfc_setup_cq_lookup(phba);
11177 	}
11178 	return 0;
11179 
11180 out_destroy:
11181 	lpfc_sli4_queue_unset(phba);
11182 out_error:
11183 	return rc;
11184 }
11185 
11186 /**
11187  * lpfc_sli4_queue_unset - Unset all the SLI4 queues
11188  * @phba: pointer to lpfc hba data structure.
11189  *
11190  * This routine is invoked to unset all the SLI4 queues with the FCoE HBA
11191  * operation.
11192  *
11193  * Return codes
11194  *      0 - successful
11195  *      -ENOMEM - No available memory
11196  *      -EIO - The mailbox failed to complete successfully.
11197  **/
11198 void
lpfc_sli4_queue_unset(struct lpfc_hba * phba)11199 lpfc_sli4_queue_unset(struct lpfc_hba *phba)
11200 {
11201 	struct lpfc_sli4_hdw_queue *qp;
11202 	struct lpfc_queue *eq;
11203 	int qidx;
11204 
11205 	/* Unset mailbox command work queue */
11206 	if (phba->sli4_hba.mbx_wq)
11207 		lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq);
11208 
11209 	/* Unset NVME LS work queue */
11210 	if (phba->sli4_hba.nvmels_wq)
11211 		lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq);
11212 
11213 	/* Unset ELS work queue */
11214 	if (phba->sli4_hba.els_wq)
11215 		lpfc_wq_destroy(phba, phba->sli4_hba.els_wq);
11216 
11217 	/* Unset unsolicited receive queue */
11218 	if (phba->sli4_hba.hdr_rq)
11219 		lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq,
11220 				phba->sli4_hba.dat_rq);
11221 
11222 	/* Unset mailbox command complete queue */
11223 	if (phba->sli4_hba.mbx_cq)
11224 		lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq);
11225 
11226 	/* Unset ELS complete queue */
11227 	if (phba->sli4_hba.els_cq)
11228 		lpfc_cq_destroy(phba, phba->sli4_hba.els_cq);
11229 
11230 	/* Unset NVME LS complete queue */
11231 	if (phba->sli4_hba.nvmels_cq)
11232 		lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq);
11233 
11234 	if (phba->nvmet_support) {
11235 		/* Unset NVMET MRQ queue */
11236 		if (phba->sli4_hba.nvmet_mrq_hdr) {
11237 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11238 				lpfc_rq_destroy(
11239 					phba,
11240 					phba->sli4_hba.nvmet_mrq_hdr[qidx],
11241 					phba->sli4_hba.nvmet_mrq_data[qidx]);
11242 		}
11243 
11244 		/* Unset NVMET CQ Set complete queue */
11245 		if (phba->sli4_hba.nvmet_cqset) {
11246 			for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++)
11247 				lpfc_cq_destroy(
11248 					phba, phba->sli4_hba.nvmet_cqset[qidx]);
11249 		}
11250 	}
11251 
11252 	/* Unset fast-path SLI4 queues */
11253 	if (phba->sli4_hba.hdwq) {
11254 		/* Loop thru all Hardware Queues */
11255 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
11256 			/* Destroy the CQ/WQ corresponding to Hardware Queue */
11257 			qp = &phba->sli4_hba.hdwq[qidx];
11258 			lpfc_wq_destroy(phba, qp->io_wq);
11259 			lpfc_cq_destroy(phba, qp->io_cq);
11260 		}
11261 		/* Loop thru all IRQ vectors */
11262 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
11263 			/* Destroy the EQ corresponding to the IRQ vector */
11264 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
11265 			lpfc_eq_destroy(phba, eq);
11266 		}
11267 	}
11268 
11269 	kfree(phba->sli4_hba.cq_lookup);
11270 	phba->sli4_hba.cq_lookup = NULL;
11271 	phba->sli4_hba.cq_max = 0;
11272 }
11273 
11274 /**
11275  * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool
11276  * @phba: pointer to lpfc hba data structure.
11277  *
11278  * This routine is invoked to allocate and set up a pool of completion queue
11279  * events. The body of the completion queue event is a completion queue entry
11280  * CQE. For now, this pool is used for the interrupt service routine to queue
11281  * the following HBA completion queue events for the worker thread to process:
11282  *   - Mailbox asynchronous events
11283  *   - Receive queue completion unsolicited events
11284  * Later, this can be used for all the slow-path events.
11285  *
11286  * Return codes
11287  *      0 - successful
11288  *      -ENOMEM - No available memory
11289  **/
11290 static int
lpfc_sli4_cq_event_pool_create(struct lpfc_hba * phba)11291 lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba)
11292 {
11293 	struct lpfc_cq_event *cq_event;
11294 	int i;
11295 
11296 	for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) {
11297 		cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL);
11298 		if (!cq_event)
11299 			goto out_pool_create_fail;
11300 		list_add_tail(&cq_event->list,
11301 			      &phba->sli4_hba.sp_cqe_event_pool);
11302 	}
11303 	return 0;
11304 
11305 out_pool_create_fail:
11306 	lpfc_sli4_cq_event_pool_destroy(phba);
11307 	return -ENOMEM;
11308 }
11309 
11310 /**
11311  * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool
11312  * @phba: pointer to lpfc hba data structure.
11313  *
11314  * This routine is invoked to free the pool of completion queue events at
11315  * driver unload time. Note that, it is the responsibility of the driver
11316  * cleanup routine to free all the outstanding completion-queue events
11317  * allocated from this pool back into the pool before invoking this routine
11318  * to destroy the pool.
11319  **/
11320 static void
lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba * phba)11321 lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba)
11322 {
11323 	struct lpfc_cq_event *cq_event, *next_cq_event;
11324 
11325 	list_for_each_entry_safe(cq_event, next_cq_event,
11326 				 &phba->sli4_hba.sp_cqe_event_pool, list) {
11327 		list_del(&cq_event->list);
11328 		kfree(cq_event);
11329 	}
11330 }
11331 
11332 /**
11333  * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11334  * @phba: pointer to lpfc hba data structure.
11335  *
11336  * This routine is the lock free version of the API invoked to allocate a
11337  * completion-queue event from the free pool.
11338  *
11339  * Return: Pointer to the newly allocated completion-queue event if successful
11340  *         NULL otherwise.
11341  **/
11342 struct lpfc_cq_event *
__lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11343 __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11344 {
11345 	struct lpfc_cq_event *cq_event = NULL;
11346 
11347 	list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event,
11348 			 struct lpfc_cq_event, list);
11349 	return cq_event;
11350 }
11351 
11352 /**
11353  * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool
11354  * @phba: pointer to lpfc hba data structure.
11355  *
11356  * This routine is the lock version of the API invoked to allocate a
11357  * completion-queue event from the free pool.
11358  *
11359  * Return: Pointer to the newly allocated completion-queue event if successful
11360  *         NULL otherwise.
11361  **/
11362 struct lpfc_cq_event *
lpfc_sli4_cq_event_alloc(struct lpfc_hba * phba)11363 lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba)
11364 {
11365 	struct lpfc_cq_event *cq_event;
11366 	unsigned long iflags;
11367 
11368 	spin_lock_irqsave(&phba->hbalock, iflags);
11369 	cq_event = __lpfc_sli4_cq_event_alloc(phba);
11370 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11371 	return cq_event;
11372 }
11373 
11374 /**
11375  * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11376  * @phba: pointer to lpfc hba data structure.
11377  * @cq_event: pointer to the completion queue event to be freed.
11378  *
11379  * This routine is the lock free version of the API invoked to release a
11380  * completion-queue event back into the free pool.
11381  **/
11382 void
__lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11383 __lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11384 			     struct lpfc_cq_event *cq_event)
11385 {
11386 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool);
11387 }
11388 
11389 /**
11390  * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool
11391  * @phba: pointer to lpfc hba data structure.
11392  * @cq_event: pointer to the completion queue event to be freed.
11393  *
11394  * This routine is the lock version of the API invoked to release a
11395  * completion-queue event back into the free pool.
11396  **/
11397 void
lpfc_sli4_cq_event_release(struct lpfc_hba * phba,struct lpfc_cq_event * cq_event)11398 lpfc_sli4_cq_event_release(struct lpfc_hba *phba,
11399 			   struct lpfc_cq_event *cq_event)
11400 {
11401 	unsigned long iflags;
11402 	spin_lock_irqsave(&phba->hbalock, iflags);
11403 	__lpfc_sli4_cq_event_release(phba, cq_event);
11404 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11405 }
11406 
11407 /**
11408  * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool
11409  * @phba: pointer to lpfc hba data structure.
11410  *
11411  * This routine is to free all the pending completion-queue events to the
11412  * back into the free pool for device reset.
11413  **/
11414 static void
lpfc_sli4_cq_event_release_all(struct lpfc_hba * phba)11415 lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba)
11416 {
11417 	LIST_HEAD(cq_event_list);
11418 	struct lpfc_cq_event *cq_event;
11419 	unsigned long iflags;
11420 
11421 	/* Retrieve all the pending WCQEs from pending WCQE lists */
11422 
11423 	/* Pending ELS XRI abort events */
11424 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11425 	list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
11426 			 &cq_event_list);
11427 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
11428 
11429 	/* Pending asynnc events */
11430 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
11431 	list_splice_init(&phba->sli4_hba.sp_asynce_work_queue,
11432 			 &cq_event_list);
11433 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
11434 
11435 	while (!list_empty(&cq_event_list)) {
11436 		list_remove_head(&cq_event_list, cq_event,
11437 				 struct lpfc_cq_event, list);
11438 		lpfc_sli4_cq_event_release(phba, cq_event);
11439 	}
11440 }
11441 
11442 /**
11443  * lpfc_pci_function_reset - Reset pci function.
11444  * @phba: pointer to lpfc hba data structure.
11445  *
11446  * This routine is invoked to request a PCI function reset. It will destroys
11447  * all resources assigned to the PCI function which originates this request.
11448  *
11449  * Return codes
11450  *      0 - successful
11451  *      -ENOMEM - No available memory
11452  *      -EIO - The mailbox failed to complete successfully.
11453  **/
11454 int
lpfc_pci_function_reset(struct lpfc_hba * phba)11455 lpfc_pci_function_reset(struct lpfc_hba *phba)
11456 {
11457 	LPFC_MBOXQ_t *mboxq;
11458 	uint32_t rc = 0, if_type;
11459 	uint32_t shdr_status, shdr_add_status;
11460 	uint32_t rdy_chk;
11461 	uint32_t port_reset = 0;
11462 	union lpfc_sli4_cfg_shdr *shdr;
11463 	struct lpfc_register reg_data;
11464 	uint16_t devid;
11465 
11466 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11467 	switch (if_type) {
11468 	case LPFC_SLI_INTF_IF_TYPE_0:
11469 		mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool,
11470 						       GFP_KERNEL);
11471 		if (!mboxq) {
11472 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11473 					"0494 Unable to allocate memory for "
11474 					"issuing SLI_FUNCTION_RESET mailbox "
11475 					"command\n");
11476 			return -ENOMEM;
11477 		}
11478 
11479 		/* Setup PCI function reset mailbox-ioctl command */
11480 		lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
11481 				 LPFC_MBOX_OPCODE_FUNCTION_RESET, 0,
11482 				 LPFC_SLI4_MBX_EMBED);
11483 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
11484 		shdr = (union lpfc_sli4_cfg_shdr *)
11485 			&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
11486 		shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11487 		shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
11488 					 &shdr->response);
11489 		mempool_free(mboxq, phba->mbox_mem_pool);
11490 		if (shdr_status || shdr_add_status || rc) {
11491 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11492 					"0495 SLI_FUNCTION_RESET mailbox "
11493 					"failed with status x%x add_status x%x,"
11494 					" mbx status x%x\n",
11495 					shdr_status, shdr_add_status, rc);
11496 			rc = -ENXIO;
11497 		}
11498 		break;
11499 	case LPFC_SLI_INTF_IF_TYPE_2:
11500 	case LPFC_SLI_INTF_IF_TYPE_6:
11501 wait:
11502 		/*
11503 		 * Poll the Port Status Register and wait for RDY for
11504 		 * up to 30 seconds. If the port doesn't respond, treat
11505 		 * it as an error.
11506 		 */
11507 		for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) {
11508 			if (lpfc_readl(phba->sli4_hba.u.if_type2.
11509 				STATUSregaddr, &reg_data.word0)) {
11510 				rc = -ENODEV;
11511 				goto out;
11512 			}
11513 			if (bf_get(lpfc_sliport_status_rdy, &reg_data))
11514 				break;
11515 			msleep(20);
11516 		}
11517 
11518 		if (!bf_get(lpfc_sliport_status_rdy, &reg_data)) {
11519 			phba->work_status[0] = readl(
11520 				phba->sli4_hba.u.if_type2.ERR1regaddr);
11521 			phba->work_status[1] = readl(
11522 				phba->sli4_hba.u.if_type2.ERR2regaddr);
11523 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11524 					"2890 Port not ready, port status reg "
11525 					"0x%x error 1=0x%x, error 2=0x%x\n",
11526 					reg_data.word0,
11527 					phba->work_status[0],
11528 					phba->work_status[1]);
11529 			rc = -ENODEV;
11530 			goto out;
11531 		}
11532 
11533 		if (!port_reset) {
11534 			/*
11535 			 * Reset the port now
11536 			 */
11537 			reg_data.word0 = 0;
11538 			bf_set(lpfc_sliport_ctrl_end, &reg_data,
11539 			       LPFC_SLIPORT_LITTLE_ENDIAN);
11540 			bf_set(lpfc_sliport_ctrl_ip, &reg_data,
11541 			       LPFC_SLIPORT_INIT_PORT);
11542 			writel(reg_data.word0, phba->sli4_hba.u.if_type2.
11543 			       CTRLregaddr);
11544 			/* flush */
11545 			pci_read_config_word(phba->pcidev,
11546 					     PCI_DEVICE_ID, &devid);
11547 
11548 			port_reset = 1;
11549 			msleep(20);
11550 			goto wait;
11551 		} else if (bf_get(lpfc_sliport_status_rn, &reg_data)) {
11552 			rc = -ENODEV;
11553 			goto out;
11554 		}
11555 		break;
11556 
11557 	case LPFC_SLI_INTF_IF_TYPE_1:
11558 	default:
11559 		break;
11560 	}
11561 
11562 out:
11563 	/* Catch the not-ready port failure after a port reset. */
11564 	if (rc) {
11565 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11566 				"3317 HBA not functional: IP Reset Failed "
11567 				"try: echo fw_reset > board_mode\n");
11568 		rc = -ENODEV;
11569 	}
11570 
11571 	return rc;
11572 }
11573 
11574 /**
11575  * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space.
11576  * @phba: pointer to lpfc hba data structure.
11577  *
11578  * This routine is invoked to set up the PCI device memory space for device
11579  * with SLI-4 interface spec.
11580  *
11581  * Return codes
11582  * 	0 - successful
11583  * 	other values - error
11584  **/
11585 static int
lpfc_sli4_pci_mem_setup(struct lpfc_hba * phba)11586 lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba)
11587 {
11588 	struct pci_dev *pdev = phba->pcidev;
11589 	unsigned long bar0map_len, bar1map_len, bar2map_len;
11590 	int error;
11591 	uint32_t if_type;
11592 
11593 	if (!pdev)
11594 		return -ENODEV;
11595 
11596 	/* Set the device DMA mask size */
11597 	error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11598 	if (error)
11599 		error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11600 	if (error)
11601 		return error;
11602 
11603 	/*
11604 	 * The BARs and register set definitions and offset locations are
11605 	 * dependent on the if_type.
11606 	 */
11607 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF,
11608 				  &phba->sli4_hba.sli_intf.word0)) {
11609 		return -ENODEV;
11610 	}
11611 
11612 	/* There is no SLI3 failback for SLI4 devices. */
11613 	if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) !=
11614 	    LPFC_SLI_INTF_VALID) {
11615 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11616 				"2894 SLI_INTF reg contents invalid "
11617 				"sli_intf reg 0x%x\n",
11618 				phba->sli4_hba.sli_intf.word0);
11619 		return -ENODEV;
11620 	}
11621 
11622 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11623 	/*
11624 	 * Get the bus address of SLI4 device Bar regions and the
11625 	 * number of bytes required by each mapping. The mapping of the
11626 	 * particular PCI BARs regions is dependent on the type of
11627 	 * SLI4 device.
11628 	 */
11629 	if (pci_resource_start(pdev, PCI_64BIT_BAR0)) {
11630 		phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0);
11631 		bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0);
11632 
11633 		/*
11634 		 * Map SLI4 PCI Config Space Register base to a kernel virtual
11635 		 * addr
11636 		 */
11637 		phba->sli4_hba.conf_regs_memmap_p =
11638 			ioremap(phba->pci_bar0_map, bar0map_len);
11639 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11640 			dev_printk(KERN_ERR, &pdev->dev,
11641 				   "ioremap failed for SLI4 PCI config "
11642 				   "registers.\n");
11643 			return -ENODEV;
11644 		}
11645 		phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p;
11646 		/* Set up BAR0 PCI config space register memory map */
11647 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11648 	} else {
11649 		phba->pci_bar0_map = pci_resource_start(pdev, 1);
11650 		bar0map_len = pci_resource_len(pdev, 1);
11651 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
11652 			dev_printk(KERN_ERR, &pdev->dev,
11653 			   "FATAL - No BAR0 mapping for SLI4, if_type 2\n");
11654 			return -ENODEV;
11655 		}
11656 		phba->sli4_hba.conf_regs_memmap_p =
11657 				ioremap(phba->pci_bar0_map, bar0map_len);
11658 		if (!phba->sli4_hba.conf_regs_memmap_p) {
11659 			dev_printk(KERN_ERR, &pdev->dev,
11660 				"ioremap failed for SLI4 PCI config "
11661 				"registers.\n");
11662 			return -ENODEV;
11663 		}
11664 		lpfc_sli4_bar0_register_memmap(phba, if_type);
11665 	}
11666 
11667 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11668 		if (pci_resource_start(pdev, PCI_64BIT_BAR2)) {
11669 			/*
11670 			 * Map SLI4 if type 0 HBA Control Register base to a
11671 			 * kernel virtual address and setup the registers.
11672 			 */
11673 			phba->pci_bar1_map = pci_resource_start(pdev,
11674 								PCI_64BIT_BAR2);
11675 			bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11676 			phba->sli4_hba.ctrl_regs_memmap_p =
11677 					ioremap(phba->pci_bar1_map,
11678 						bar1map_len);
11679 			if (!phba->sli4_hba.ctrl_regs_memmap_p) {
11680 				dev_err(&pdev->dev,
11681 					   "ioremap failed for SLI4 HBA "
11682 					    "control registers.\n");
11683 				error = -ENOMEM;
11684 				goto out_iounmap_conf;
11685 			}
11686 			phba->pci_bar2_memmap_p =
11687 					 phba->sli4_hba.ctrl_regs_memmap_p;
11688 			lpfc_sli4_bar1_register_memmap(phba, if_type);
11689 		} else {
11690 			error = -ENOMEM;
11691 			goto out_iounmap_conf;
11692 		}
11693 	}
11694 
11695 	if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) &&
11696 	    (pci_resource_start(pdev, PCI_64BIT_BAR2))) {
11697 		/*
11698 		 * Map SLI4 if type 6 HBA Doorbell Register base to a kernel
11699 		 * virtual address and setup the registers.
11700 		 */
11701 		phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2);
11702 		bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2);
11703 		phba->sli4_hba.drbl_regs_memmap_p =
11704 				ioremap(phba->pci_bar1_map, bar1map_len);
11705 		if (!phba->sli4_hba.drbl_regs_memmap_p) {
11706 			dev_err(&pdev->dev,
11707 			   "ioremap failed for SLI4 HBA doorbell registers.\n");
11708 			error = -ENOMEM;
11709 			goto out_iounmap_conf;
11710 		}
11711 		phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p;
11712 		lpfc_sli4_bar1_register_memmap(phba, if_type);
11713 	}
11714 
11715 	if (if_type == LPFC_SLI_INTF_IF_TYPE_0) {
11716 		if (pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11717 			/*
11718 			 * Map SLI4 if type 0 HBA Doorbell Register base to
11719 			 * a kernel virtual address and setup the registers.
11720 			 */
11721 			phba->pci_bar2_map = pci_resource_start(pdev,
11722 								PCI_64BIT_BAR4);
11723 			bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11724 			phba->sli4_hba.drbl_regs_memmap_p =
11725 					ioremap(phba->pci_bar2_map,
11726 						bar2map_len);
11727 			if (!phba->sli4_hba.drbl_regs_memmap_p) {
11728 				dev_err(&pdev->dev,
11729 					   "ioremap failed for SLI4 HBA"
11730 					   " doorbell registers.\n");
11731 				error = -ENOMEM;
11732 				goto out_iounmap_ctrl;
11733 			}
11734 			phba->pci_bar4_memmap_p =
11735 					phba->sli4_hba.drbl_regs_memmap_p;
11736 			error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0);
11737 			if (error)
11738 				goto out_iounmap_all;
11739 		} else {
11740 			error = -ENOMEM;
11741 			goto out_iounmap_ctrl;
11742 		}
11743 	}
11744 
11745 	if (if_type == LPFC_SLI_INTF_IF_TYPE_6 &&
11746 	    pci_resource_start(pdev, PCI_64BIT_BAR4)) {
11747 		/*
11748 		 * Map SLI4 if type 6 HBA DPP Register base to a kernel
11749 		 * virtual address and setup the registers.
11750 		 */
11751 		phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4);
11752 		bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4);
11753 		phba->sli4_hba.dpp_regs_memmap_p =
11754 				ioremap(phba->pci_bar2_map, bar2map_len);
11755 		if (!phba->sli4_hba.dpp_regs_memmap_p) {
11756 			dev_err(&pdev->dev,
11757 			   "ioremap failed for SLI4 HBA dpp registers.\n");
11758 			error = -ENOMEM;
11759 			goto out_iounmap_all;
11760 		}
11761 		phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p;
11762 	}
11763 
11764 	/* Set up the EQ/CQ register handeling functions now */
11765 	switch (if_type) {
11766 	case LPFC_SLI_INTF_IF_TYPE_0:
11767 	case LPFC_SLI_INTF_IF_TYPE_2:
11768 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr;
11769 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db;
11770 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db;
11771 		break;
11772 	case LPFC_SLI_INTF_IF_TYPE_6:
11773 		phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr;
11774 		phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db;
11775 		phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db;
11776 		break;
11777 	default:
11778 		break;
11779 	}
11780 
11781 	return 0;
11782 
11783 out_iounmap_all:
11784 	if (phba->sli4_hba.drbl_regs_memmap_p)
11785 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11786 out_iounmap_ctrl:
11787 	if (phba->sli4_hba.ctrl_regs_memmap_p)
11788 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11789 out_iounmap_conf:
11790 	iounmap(phba->sli4_hba.conf_regs_memmap_p);
11791 
11792 	return error;
11793 }
11794 
11795 /**
11796  * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space.
11797  * @phba: pointer to lpfc hba data structure.
11798  *
11799  * This routine is invoked to unset the PCI device memory space for device
11800  * with SLI-4 interface spec.
11801  **/
11802 static void
lpfc_sli4_pci_mem_unset(struct lpfc_hba * phba)11803 lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba)
11804 {
11805 	uint32_t if_type;
11806 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
11807 
11808 	switch (if_type) {
11809 	case LPFC_SLI_INTF_IF_TYPE_0:
11810 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11811 		iounmap(phba->sli4_hba.ctrl_regs_memmap_p);
11812 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11813 		break;
11814 	case LPFC_SLI_INTF_IF_TYPE_2:
11815 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11816 		break;
11817 	case LPFC_SLI_INTF_IF_TYPE_6:
11818 		iounmap(phba->sli4_hba.drbl_regs_memmap_p);
11819 		iounmap(phba->sli4_hba.conf_regs_memmap_p);
11820 		if (phba->sli4_hba.dpp_regs_memmap_p)
11821 			iounmap(phba->sli4_hba.dpp_regs_memmap_p);
11822 		break;
11823 	case LPFC_SLI_INTF_IF_TYPE_1:
11824 	default:
11825 		dev_printk(KERN_ERR, &phba->pcidev->dev,
11826 			   "FATAL - unsupported SLI4 interface type - %d\n",
11827 			   if_type);
11828 		break;
11829 	}
11830 }
11831 
11832 /**
11833  * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device
11834  * @phba: pointer to lpfc hba data structure.
11835  *
11836  * This routine is invoked to enable the MSI-X interrupt vectors to device
11837  * with SLI-3 interface specs.
11838  *
11839  * Return codes
11840  *   0 - successful
11841  *   other values - error
11842  **/
11843 static int
lpfc_sli_enable_msix(struct lpfc_hba * phba)11844 lpfc_sli_enable_msix(struct lpfc_hba *phba)
11845 {
11846 	int rc;
11847 	LPFC_MBOXQ_t *pmb;
11848 
11849 	/* Set up MSI-X multi-message vectors */
11850 	rc = pci_alloc_irq_vectors(phba->pcidev,
11851 			LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX);
11852 	if (rc < 0) {
11853 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11854 				"0420 PCI enable MSI-X failed (%d)\n", rc);
11855 		goto vec_fail_out;
11856 	}
11857 
11858 	/*
11859 	 * Assign MSI-X vectors to interrupt handlers
11860 	 */
11861 
11862 	/* vector-0 is associated to slow-path handler */
11863 	rc = request_irq(pci_irq_vector(phba->pcidev, 0),
11864 			 &lpfc_sli_sp_intr_handler, 0,
11865 			 LPFC_SP_DRIVER_HANDLER_NAME, phba);
11866 	if (rc) {
11867 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11868 				"0421 MSI-X slow-path request_irq failed "
11869 				"(%d)\n", rc);
11870 		goto msi_fail_out;
11871 	}
11872 
11873 	/* vector-1 is associated to fast-path handler */
11874 	rc = request_irq(pci_irq_vector(phba->pcidev, 1),
11875 			 &lpfc_sli_fp_intr_handler, 0,
11876 			 LPFC_FP_DRIVER_HANDLER_NAME, phba);
11877 
11878 	if (rc) {
11879 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11880 				"0429 MSI-X fast-path request_irq failed "
11881 				"(%d)\n", rc);
11882 		goto irq_fail_out;
11883 	}
11884 
11885 	/*
11886 	 * Configure HBA MSI-X attention conditions to messages
11887 	 */
11888 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11889 
11890 	if (!pmb) {
11891 		rc = -ENOMEM;
11892 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11893 				"0474 Unable to allocate memory for issuing "
11894 				"MBOX_CONFIG_MSI command\n");
11895 		goto mem_fail_out;
11896 	}
11897 	rc = lpfc_config_msi(phba, pmb);
11898 	if (rc)
11899 		goto mbx_fail_out;
11900 	rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
11901 	if (rc != MBX_SUCCESS) {
11902 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
11903 				"0351 Config MSI mailbox command failed, "
11904 				"mbxCmd x%x, mbxStatus x%x\n",
11905 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus);
11906 		goto mbx_fail_out;
11907 	}
11908 
11909 	/* Free memory allocated for mailbox command */
11910 	mempool_free(pmb, phba->mbox_mem_pool);
11911 	return rc;
11912 
11913 mbx_fail_out:
11914 	/* Free memory allocated for mailbox command */
11915 	mempool_free(pmb, phba->mbox_mem_pool);
11916 
11917 mem_fail_out:
11918 	/* free the irq already requested */
11919 	free_irq(pci_irq_vector(phba->pcidev, 1), phba);
11920 
11921 irq_fail_out:
11922 	/* free the irq already requested */
11923 	free_irq(pci_irq_vector(phba->pcidev, 0), phba);
11924 
11925 msi_fail_out:
11926 	/* Unconfigure MSI-X capability structure */
11927 	pci_free_irq_vectors(phba->pcidev);
11928 
11929 vec_fail_out:
11930 	return rc;
11931 }
11932 
11933 /**
11934  * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device.
11935  * @phba: pointer to lpfc hba data structure.
11936  *
11937  * This routine is invoked to enable the MSI interrupt mode to device with
11938  * SLI-3 interface spec. The kernel function pci_enable_msi() is called to
11939  * enable the MSI vector. The device driver is responsible for calling the
11940  * request_irq() to register MSI vector with a interrupt the handler, which
11941  * is done in this function.
11942  *
11943  * Return codes
11944  * 	0 - successful
11945  * 	other values - error
11946  */
11947 static int
lpfc_sli_enable_msi(struct lpfc_hba * phba)11948 lpfc_sli_enable_msi(struct lpfc_hba *phba)
11949 {
11950 	int rc;
11951 
11952 	rc = pci_enable_msi(phba->pcidev);
11953 	if (!rc)
11954 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11955 				"0462 PCI enable MSI mode success.\n");
11956 	else {
11957 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
11958 				"0471 PCI enable MSI mode failed (%d)\n", rc);
11959 		return rc;
11960 	}
11961 
11962 	rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
11963 			 0, LPFC_DRIVER_NAME, phba);
11964 	if (rc) {
11965 		pci_disable_msi(phba->pcidev);
11966 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
11967 				"0478 MSI request_irq failed (%d)\n", rc);
11968 	}
11969 	return rc;
11970 }
11971 
11972 /**
11973  * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device.
11974  * @phba: pointer to lpfc hba data structure.
11975  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
11976  *
11977  * This routine is invoked to enable device interrupt and associate driver's
11978  * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface
11979  * spec. Depends on the interrupt mode configured to the driver, the driver
11980  * will try to fallback from the configured interrupt mode to an interrupt
11981  * mode which is supported by the platform, kernel, and device in the order
11982  * of:
11983  * MSI-X -> MSI -> IRQ.
11984  *
11985  * Return codes
11986  *   0 - successful
11987  *   other values - error
11988  **/
11989 static uint32_t
lpfc_sli_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)11990 lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
11991 {
11992 	uint32_t intr_mode = LPFC_INTR_ERROR;
11993 	int retval;
11994 
11995 	/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
11996 	retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
11997 	if (retval)
11998 		return intr_mode;
11999 	phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
12000 
12001 	if (cfg_mode == 2) {
12002 		/* Now, try to enable MSI-X interrupt mode */
12003 		retval = lpfc_sli_enable_msix(phba);
12004 		if (!retval) {
12005 			/* Indicate initialization to MSI-X mode */
12006 			phba->intr_type = MSIX;
12007 			intr_mode = 2;
12008 		}
12009 	}
12010 
12011 	/* Fallback to MSI if MSI-X initialization failed */
12012 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
12013 		retval = lpfc_sli_enable_msi(phba);
12014 		if (!retval) {
12015 			/* Indicate initialization to MSI mode */
12016 			phba->intr_type = MSI;
12017 			intr_mode = 1;
12018 		}
12019 	}
12020 
12021 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
12022 	if (phba->intr_type == NONE) {
12023 		retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler,
12024 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
12025 		if (!retval) {
12026 			/* Indicate initialization to INTx mode */
12027 			phba->intr_type = INTx;
12028 			intr_mode = 0;
12029 		}
12030 	}
12031 	return intr_mode;
12032 }
12033 
12034 /**
12035  * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device.
12036  * @phba: pointer to lpfc hba data structure.
12037  *
12038  * This routine is invoked to disable device interrupt and disassociate the
12039  * driver's interrupt handler(s) from interrupt vector(s) to device with
12040  * SLI-3 interface spec. Depending on the interrupt mode, the driver will
12041  * release the interrupt vector(s) for the message signaled interrupt.
12042  **/
12043 static void
lpfc_sli_disable_intr(struct lpfc_hba * phba)12044 lpfc_sli_disable_intr(struct lpfc_hba *phba)
12045 {
12046 	int nr_irqs, i;
12047 
12048 	if (phba->intr_type == MSIX)
12049 		nr_irqs = LPFC_MSIX_VECTORS;
12050 	else
12051 		nr_irqs = 1;
12052 
12053 	for (i = 0; i < nr_irqs; i++)
12054 		free_irq(pci_irq_vector(phba->pcidev, i), phba);
12055 	pci_free_irq_vectors(phba->pcidev);
12056 
12057 	/* Reset interrupt management states */
12058 	phba->intr_type = NONE;
12059 	phba->sli.slistat.sli_intr = 0;
12060 }
12061 
12062 /**
12063  * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue
12064  * @phba: pointer to lpfc hba data structure.
12065  * @id: EQ vector index or Hardware Queue index
12066  * @match: LPFC_FIND_BY_EQ = match by EQ
12067  *         LPFC_FIND_BY_HDWQ = match by Hardware Queue
12068  * Return the CPU that matches the selection criteria
12069  */
12070 static uint16_t
lpfc_find_cpu_handle(struct lpfc_hba * phba,uint16_t id,int match)12071 lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match)
12072 {
12073 	struct lpfc_vector_map_info *cpup;
12074 	int cpu;
12075 
12076 	/* Loop through all CPUs */
12077 	for_each_present_cpu(cpu) {
12078 		cpup = &phba->sli4_hba.cpu_map[cpu];
12079 
12080 		/* If we are matching by EQ, there may be multiple CPUs using
12081 		 * using the same vector, so select the one with
12082 		 * LPFC_CPU_FIRST_IRQ set.
12083 		 */
12084 		if ((match == LPFC_FIND_BY_EQ) &&
12085 		    (cpup->flag & LPFC_CPU_FIRST_IRQ) &&
12086 		    (cpup->eq == id))
12087 			return cpu;
12088 
12089 		/* If matching by HDWQ, select the first CPU that matches */
12090 		if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id))
12091 			return cpu;
12092 	}
12093 	return 0;
12094 }
12095 
12096 #ifdef CONFIG_X86
12097 /**
12098  * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded
12099  * @phba: pointer to lpfc hba data structure.
12100  * @cpu: CPU map index
12101  * @phys_id: CPU package physical id
12102  * @core_id: CPU core id
12103  */
12104 static int
lpfc_find_hyper(struct lpfc_hba * phba,int cpu,uint16_t phys_id,uint16_t core_id)12105 lpfc_find_hyper(struct lpfc_hba *phba, int cpu,
12106 		uint16_t phys_id, uint16_t core_id)
12107 {
12108 	struct lpfc_vector_map_info *cpup;
12109 	int idx;
12110 
12111 	for_each_present_cpu(idx) {
12112 		cpup = &phba->sli4_hba.cpu_map[idx];
12113 		/* Does the cpup match the one we are looking for */
12114 		if ((cpup->phys_id == phys_id) &&
12115 		    (cpup->core_id == core_id) &&
12116 		    (cpu != idx))
12117 			return 1;
12118 	}
12119 	return 0;
12120 }
12121 #endif
12122 
12123 /*
12124  * lpfc_assign_eq_map_info - Assigns eq for vector_map structure
12125  * @phba: pointer to lpfc hba data structure.
12126  * @eqidx: index for eq and irq vector
12127  * @flag: flags to set for vector_map structure
12128  * @cpu: cpu used to index vector_map structure
12129  *
12130  * The routine assigns eq info into vector_map structure
12131  */
12132 static inline void
lpfc_assign_eq_map_info(struct lpfc_hba * phba,uint16_t eqidx,uint16_t flag,unsigned int cpu)12133 lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag,
12134 			unsigned int cpu)
12135 {
12136 	struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu];
12137 	struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx);
12138 
12139 	cpup->eq = eqidx;
12140 	cpup->flag |= flag;
12141 
12142 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12143 			"3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n",
12144 			cpu, eqhdl->irq, cpup->eq, cpup->flag);
12145 }
12146 
12147 /**
12148  * lpfc_cpu_map_array_init - Initialize cpu_map structure
12149  * @phba: pointer to lpfc hba data structure.
12150  *
12151  * The routine initializes the cpu_map array structure
12152  */
12153 static void
lpfc_cpu_map_array_init(struct lpfc_hba * phba)12154 lpfc_cpu_map_array_init(struct lpfc_hba *phba)
12155 {
12156 	struct lpfc_vector_map_info *cpup;
12157 	struct lpfc_eq_intr_info *eqi;
12158 	int cpu;
12159 
12160 	for_each_possible_cpu(cpu) {
12161 		cpup = &phba->sli4_hba.cpu_map[cpu];
12162 		cpup->phys_id = LPFC_VECTOR_MAP_EMPTY;
12163 		cpup->core_id = LPFC_VECTOR_MAP_EMPTY;
12164 		cpup->hdwq = LPFC_VECTOR_MAP_EMPTY;
12165 		cpup->eq = LPFC_VECTOR_MAP_EMPTY;
12166 		cpup->flag = 0;
12167 		eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu);
12168 		INIT_LIST_HEAD(&eqi->list);
12169 		eqi->icnt = 0;
12170 	}
12171 }
12172 
12173 /**
12174  * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure
12175  * @phba: pointer to lpfc hba data structure.
12176  *
12177  * The routine initializes the hba_eq_hdl array structure
12178  */
12179 static void
lpfc_hba_eq_hdl_array_init(struct lpfc_hba * phba)12180 lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba)
12181 {
12182 	struct lpfc_hba_eq_hdl *eqhdl;
12183 	int i;
12184 
12185 	for (i = 0; i < phba->cfg_irq_chann; i++) {
12186 		eqhdl = lpfc_get_eq_hdl(i);
12187 		eqhdl->irq = LPFC_VECTOR_MAP_EMPTY;
12188 		eqhdl->phba = phba;
12189 	}
12190 }
12191 
12192 /**
12193  * lpfc_cpu_affinity_check - Check vector CPU affinity mappings
12194  * @phba: pointer to lpfc hba data structure.
12195  * @vectors: number of msix vectors allocated.
12196  *
12197  * The routine will figure out the CPU affinity assignment for every
12198  * MSI-X vector allocated for the HBA.
12199  * In addition, the CPU to IO channel mapping will be calculated
12200  * and the phba->sli4_hba.cpu_map array will reflect this.
12201  */
12202 static void
lpfc_cpu_affinity_check(struct lpfc_hba * phba,int vectors)12203 lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors)
12204 {
12205 	int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu;
12206 	int max_phys_id, min_phys_id;
12207 	int max_core_id, min_core_id;
12208 	struct lpfc_vector_map_info *cpup;
12209 	struct lpfc_vector_map_info *new_cpup;
12210 #ifdef CONFIG_X86
12211 	struct cpuinfo_x86 *cpuinfo;
12212 #endif
12213 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12214 	struct lpfc_hdwq_stat *c_stat;
12215 #endif
12216 
12217 	max_phys_id = 0;
12218 	min_phys_id = LPFC_VECTOR_MAP_EMPTY;
12219 	max_core_id = 0;
12220 	min_core_id = LPFC_VECTOR_MAP_EMPTY;
12221 
12222 	/* Update CPU map with physical id and core id of each CPU */
12223 	for_each_present_cpu(cpu) {
12224 		cpup = &phba->sli4_hba.cpu_map[cpu];
12225 #ifdef CONFIG_X86
12226 		cpuinfo = &cpu_data(cpu);
12227 		cpup->phys_id = cpuinfo->phys_proc_id;
12228 		cpup->core_id = cpuinfo->cpu_core_id;
12229 		if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id))
12230 			cpup->flag |= LPFC_CPU_MAP_HYPER;
12231 #else
12232 		/* No distinction between CPUs for other platforms */
12233 		cpup->phys_id = 0;
12234 		cpup->core_id = cpu;
12235 #endif
12236 
12237 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12238 				"3328 CPU %d physid %d coreid %d flag x%x\n",
12239 				cpu, cpup->phys_id, cpup->core_id, cpup->flag);
12240 
12241 		if (cpup->phys_id > max_phys_id)
12242 			max_phys_id = cpup->phys_id;
12243 		if (cpup->phys_id < min_phys_id)
12244 			min_phys_id = cpup->phys_id;
12245 
12246 		if (cpup->core_id > max_core_id)
12247 			max_core_id = cpup->core_id;
12248 		if (cpup->core_id < min_core_id)
12249 			min_core_id = cpup->core_id;
12250 	}
12251 
12252 	/* After looking at each irq vector assigned to this pcidev, its
12253 	 * possible to see that not ALL CPUs have been accounted for.
12254 	 * Next we will set any unassigned (unaffinitized) cpu map
12255 	 * entries to a IRQ on the same phys_id.
12256 	 */
12257 	first_cpu = cpumask_first(cpu_present_mask);
12258 	start_cpu = first_cpu;
12259 
12260 	for_each_present_cpu(cpu) {
12261 		cpup = &phba->sli4_hba.cpu_map[cpu];
12262 
12263 		/* Is this CPU entry unassigned */
12264 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12265 			/* Mark CPU as IRQ not assigned by the kernel */
12266 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12267 
12268 			/* If so, find a new_cpup thats on the the SAME
12269 			 * phys_id as cpup. start_cpu will start where we
12270 			 * left off so all unassigned entries don't get assgined
12271 			 * the IRQ of the first entry.
12272 			 */
12273 			new_cpu = start_cpu;
12274 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12275 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12276 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12277 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) &&
12278 				    (new_cpup->phys_id == cpup->phys_id))
12279 					goto found_same;
12280 				new_cpu = cpumask_next(
12281 					new_cpu, cpu_present_mask);
12282 				if (new_cpu == nr_cpumask_bits)
12283 					new_cpu = first_cpu;
12284 			}
12285 			/* At this point, we leave the CPU as unassigned */
12286 			continue;
12287 found_same:
12288 			/* We found a matching phys_id, so copy the IRQ info */
12289 			cpup->eq = new_cpup->eq;
12290 
12291 			/* Bump start_cpu to the next slot to minmize the
12292 			 * chance of having multiple unassigned CPU entries
12293 			 * selecting the same IRQ.
12294 			 */
12295 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12296 			if (start_cpu == nr_cpumask_bits)
12297 				start_cpu = first_cpu;
12298 
12299 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12300 					"3337 Set Affinity: CPU %d "
12301 					"eq %d from peer cpu %d same "
12302 					"phys_id (%d)\n",
12303 					cpu, cpup->eq, new_cpu,
12304 					cpup->phys_id);
12305 		}
12306 	}
12307 
12308 	/* Set any unassigned cpu map entries to a IRQ on any phys_id */
12309 	start_cpu = first_cpu;
12310 
12311 	for_each_present_cpu(cpu) {
12312 		cpup = &phba->sli4_hba.cpu_map[cpu];
12313 
12314 		/* Is this entry unassigned */
12315 		if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) {
12316 			/* Mark it as IRQ not assigned by the kernel */
12317 			cpup->flag |= LPFC_CPU_MAP_UNASSIGN;
12318 
12319 			/* If so, find a new_cpup thats on ANY phys_id
12320 			 * as the cpup. start_cpu will start where we
12321 			 * left off so all unassigned entries don't get
12322 			 * assigned the IRQ of the first entry.
12323 			 */
12324 			new_cpu = start_cpu;
12325 			for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12326 				new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12327 				if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) &&
12328 				    (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY))
12329 					goto found_any;
12330 				new_cpu = cpumask_next(
12331 					new_cpu, cpu_present_mask);
12332 				if (new_cpu == nr_cpumask_bits)
12333 					new_cpu = first_cpu;
12334 			}
12335 			/* We should never leave an entry unassigned */
12336 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12337 					"3339 Set Affinity: CPU %d "
12338 					"eq %d UNASSIGNED\n",
12339 					cpup->hdwq, cpup->eq);
12340 			continue;
12341 found_any:
12342 			/* We found an available entry, copy the IRQ info */
12343 			cpup->eq = new_cpup->eq;
12344 
12345 			/* Bump start_cpu to the next slot to minmize the
12346 			 * chance of having multiple unassigned CPU entries
12347 			 * selecting the same IRQ.
12348 			 */
12349 			start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12350 			if (start_cpu == nr_cpumask_bits)
12351 				start_cpu = first_cpu;
12352 
12353 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12354 					"3338 Set Affinity: CPU %d "
12355 					"eq %d from peer cpu %d (%d/%d)\n",
12356 					cpu, cpup->eq, new_cpu,
12357 					new_cpup->phys_id, new_cpup->core_id);
12358 		}
12359 	}
12360 
12361 	/* Assign hdwq indices that are unique across all cpus in the map
12362 	 * that are also FIRST_CPUs.
12363 	 */
12364 	idx = 0;
12365 	for_each_present_cpu(cpu) {
12366 		cpup = &phba->sli4_hba.cpu_map[cpu];
12367 
12368 		/* Only FIRST IRQs get a hdwq index assignment. */
12369 		if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12370 			continue;
12371 
12372 		/* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */
12373 		cpup->hdwq = idx;
12374 		idx++;
12375 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12376 				"3333 Set Affinity: CPU %d (phys %d core %d): "
12377 				"hdwq %d eq %d flg x%x\n",
12378 				cpu, cpup->phys_id, cpup->core_id,
12379 				cpup->hdwq, cpup->eq, cpup->flag);
12380 	}
12381 	/* Associate a hdwq with each cpu_map entry
12382 	 * This will be 1 to 1 - hdwq to cpu, unless there are less
12383 	 * hardware queues then CPUs. For that case we will just round-robin
12384 	 * the available hardware queues as they get assigned to CPUs.
12385 	 * The next_idx is the idx from the FIRST_CPU loop above to account
12386 	 * for irq_chann < hdwq.  The idx is used for round-robin assignments
12387 	 * and needs to start at 0.
12388 	 */
12389 	next_idx = idx;
12390 	start_cpu = 0;
12391 	idx = 0;
12392 	for_each_present_cpu(cpu) {
12393 		cpup = &phba->sli4_hba.cpu_map[cpu];
12394 
12395 		/* FIRST cpus are already mapped. */
12396 		if (cpup->flag & LPFC_CPU_FIRST_IRQ)
12397 			continue;
12398 
12399 		/* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq
12400 		 * of the unassigned cpus to the next idx so that all
12401 		 * hdw queues are fully utilized.
12402 		 */
12403 		if (next_idx < phba->cfg_hdw_queue) {
12404 			cpup->hdwq = next_idx;
12405 			next_idx++;
12406 			continue;
12407 		}
12408 
12409 		/* Not a First CPU and all hdw_queues are used.  Reuse a
12410 		 * Hardware Queue for another CPU, so be smart about it
12411 		 * and pick one that has its IRQ/EQ mapped to the same phys_id
12412 		 * (CPU package) and core_id.
12413 		 */
12414 		new_cpu = start_cpu;
12415 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12416 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12417 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12418 			    new_cpup->phys_id == cpup->phys_id &&
12419 			    new_cpup->core_id == cpup->core_id) {
12420 				goto found_hdwq;
12421 			}
12422 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12423 			if (new_cpu == nr_cpumask_bits)
12424 				new_cpu = first_cpu;
12425 		}
12426 
12427 		/* If we can't match both phys_id and core_id,
12428 		 * settle for just a phys_id match.
12429 		 */
12430 		new_cpu = start_cpu;
12431 		for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
12432 			new_cpup = &phba->sli4_hba.cpu_map[new_cpu];
12433 			if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY &&
12434 			    new_cpup->phys_id == cpup->phys_id)
12435 				goto found_hdwq;
12436 
12437 			new_cpu = cpumask_next(new_cpu, cpu_present_mask);
12438 			if (new_cpu == nr_cpumask_bits)
12439 				new_cpu = first_cpu;
12440 		}
12441 
12442 		/* Otherwise just round robin on cfg_hdw_queue */
12443 		cpup->hdwq = idx % phba->cfg_hdw_queue;
12444 		idx++;
12445 		goto logit;
12446  found_hdwq:
12447 		/* We found an available entry, copy the IRQ info */
12448 		start_cpu = cpumask_next(new_cpu, cpu_present_mask);
12449 		if (start_cpu == nr_cpumask_bits)
12450 			start_cpu = first_cpu;
12451 		cpup->hdwq = new_cpup->hdwq;
12452  logit:
12453 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12454 				"3335 Set Affinity: CPU %d (phys %d core %d): "
12455 				"hdwq %d eq %d flg x%x\n",
12456 				cpu, cpup->phys_id, cpup->core_id,
12457 				cpup->hdwq, cpup->eq, cpup->flag);
12458 	}
12459 
12460 	/*
12461 	 * Initialize the cpu_map slots for not-present cpus in case
12462 	 * a cpu is hot-added. Perform a simple hdwq round robin assignment.
12463 	 */
12464 	idx = 0;
12465 	for_each_possible_cpu(cpu) {
12466 		cpup = &phba->sli4_hba.cpu_map[cpu];
12467 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12468 		c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu);
12469 		c_stat->hdwq_no = cpup->hdwq;
12470 #endif
12471 		if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY)
12472 			continue;
12473 
12474 		cpup->hdwq = idx++ % phba->cfg_hdw_queue;
12475 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
12476 		c_stat->hdwq_no = cpup->hdwq;
12477 #endif
12478 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12479 				"3340 Set Affinity: not present "
12480 				"CPU %d hdwq %d\n",
12481 				cpu, cpup->hdwq);
12482 	}
12483 
12484 	/* The cpu_map array will be used later during initialization
12485 	 * when EQ / CQ / WQs are allocated and configured.
12486 	 */
12487 	return;
12488 }
12489 
12490 /**
12491  * lpfc_cpuhp_get_eq
12492  *
12493  * @phba:   pointer to lpfc hba data structure.
12494  * @cpu:    cpu going offline
12495  * @eqlist: eq list to append to
12496  */
12497 static int
lpfc_cpuhp_get_eq(struct lpfc_hba * phba,unsigned int cpu,struct list_head * eqlist)12498 lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu,
12499 		  struct list_head *eqlist)
12500 {
12501 	const struct cpumask *maskp;
12502 	struct lpfc_queue *eq;
12503 	struct cpumask *tmp;
12504 	u16 idx;
12505 
12506 	tmp = kzalloc(cpumask_size(), GFP_KERNEL);
12507 	if (!tmp)
12508 		return -ENOMEM;
12509 
12510 	for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12511 		maskp = pci_irq_get_affinity(phba->pcidev, idx);
12512 		if (!maskp)
12513 			continue;
12514 		/*
12515 		 * if irq is not affinitized to the cpu going
12516 		 * then we don't need to poll the eq attached
12517 		 * to it.
12518 		 */
12519 		if (!cpumask_and(tmp, maskp, cpumask_of(cpu)))
12520 			continue;
12521 		/* get the cpus that are online and are affini-
12522 		 * tized to this irq vector.  If the count is
12523 		 * more than 1 then cpuhp is not going to shut-
12524 		 * down this vector.  Since this cpu has not
12525 		 * gone offline yet, we need >1.
12526 		 */
12527 		cpumask_and(tmp, maskp, cpu_online_mask);
12528 		if (cpumask_weight(tmp) > 1)
12529 			continue;
12530 
12531 		/* Now that we have an irq to shutdown, get the eq
12532 		 * mapped to this irq.  Note: multiple hdwq's in
12533 		 * the software can share an eq, but eventually
12534 		 * only eq will be mapped to this vector
12535 		 */
12536 		eq = phba->sli4_hba.hba_eq_hdl[idx].eq;
12537 		list_add(&eq->_poll_list, eqlist);
12538 	}
12539 	kfree(tmp);
12540 	return 0;
12541 }
12542 
__lpfc_cpuhp_remove(struct lpfc_hba * phba)12543 static void __lpfc_cpuhp_remove(struct lpfc_hba *phba)
12544 {
12545 	if (phba->sli_rev != LPFC_SLI_REV4)
12546 		return;
12547 
12548 	cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state,
12549 					    &phba->cpuhp);
12550 	/*
12551 	 * unregistering the instance doesn't stop the polling
12552 	 * timer. Wait for the poll timer to retire.
12553 	 */
12554 	synchronize_rcu();
12555 	del_timer_sync(&phba->cpuhp_poll_timer);
12556 }
12557 
lpfc_cpuhp_remove(struct lpfc_hba * phba)12558 static void lpfc_cpuhp_remove(struct lpfc_hba *phba)
12559 {
12560 	if (phba->pport->fc_flag & FC_OFFLINE_MODE)
12561 		return;
12562 
12563 	__lpfc_cpuhp_remove(phba);
12564 }
12565 
lpfc_cpuhp_add(struct lpfc_hba * phba)12566 static void lpfc_cpuhp_add(struct lpfc_hba *phba)
12567 {
12568 	if (phba->sli_rev != LPFC_SLI_REV4)
12569 		return;
12570 
12571 	rcu_read_lock();
12572 
12573 	if (!list_empty(&phba->poll_list))
12574 		mod_timer(&phba->cpuhp_poll_timer,
12575 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
12576 
12577 	rcu_read_unlock();
12578 
12579 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state,
12580 					 &phba->cpuhp);
12581 }
12582 
__lpfc_cpuhp_checks(struct lpfc_hba * phba,int * retval)12583 static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval)
12584 {
12585 	if (phba->pport->load_flag & FC_UNLOADING) {
12586 		*retval = -EAGAIN;
12587 		return true;
12588 	}
12589 
12590 	if (phba->sli_rev != LPFC_SLI_REV4) {
12591 		*retval = 0;
12592 		return true;
12593 	}
12594 
12595 	/* proceed with the hotplug */
12596 	return false;
12597 }
12598 
12599 /**
12600  * lpfc_irq_set_aff - set IRQ affinity
12601  * @eqhdl: EQ handle
12602  * @cpu: cpu to set affinity
12603  *
12604  **/
12605 static inline void
lpfc_irq_set_aff(struct lpfc_hba_eq_hdl * eqhdl,unsigned int cpu)12606 lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu)
12607 {
12608 	cpumask_clear(&eqhdl->aff_mask);
12609 	cpumask_set_cpu(cpu, &eqhdl->aff_mask);
12610 	irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12611 	irq_set_affinity_hint(eqhdl->irq, &eqhdl->aff_mask);
12612 }
12613 
12614 /**
12615  * lpfc_irq_clear_aff - clear IRQ affinity
12616  * @eqhdl: EQ handle
12617  *
12618  **/
12619 static inline void
lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl * eqhdl)12620 lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl)
12621 {
12622 	cpumask_clear(&eqhdl->aff_mask);
12623 	irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING);
12624 }
12625 
12626 /**
12627  * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event
12628  * @phba: pointer to HBA context object.
12629  * @cpu: cpu going offline/online
12630  * @offline: true, cpu is going offline. false, cpu is coming online.
12631  *
12632  * If cpu is going offline, we'll try our best effort to find the next
12633  * online cpu on the phba's original_mask and migrate all offlining IRQ
12634  * affinities.
12635  *
12636  * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu.
12637  *
12638  * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on
12639  *	 PCI_IRQ_AFFINITY to auto-manage IRQ affinity.
12640  *
12641  **/
12642 static void
lpfc_irq_rebalance(struct lpfc_hba * phba,unsigned int cpu,bool offline)12643 lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline)
12644 {
12645 	struct lpfc_vector_map_info *cpup;
12646 	struct cpumask *aff_mask;
12647 	unsigned int cpu_select, cpu_next, idx;
12648 	const struct cpumask *orig_mask;
12649 
12650 	if (phba->irq_chann_mode == NORMAL_MODE)
12651 		return;
12652 
12653 	orig_mask = &phba->sli4_hba.irq_aff_mask;
12654 
12655 	if (!cpumask_test_cpu(cpu, orig_mask))
12656 		return;
12657 
12658 	cpup = &phba->sli4_hba.cpu_map[cpu];
12659 
12660 	if (!(cpup->flag & LPFC_CPU_FIRST_IRQ))
12661 		return;
12662 
12663 	if (offline) {
12664 		/* Find next online CPU on original mask */
12665 		cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true);
12666 		cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next);
12667 
12668 		/* Found a valid CPU */
12669 		if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) {
12670 			/* Go through each eqhdl and ensure offlining
12671 			 * cpu aff_mask is migrated
12672 			 */
12673 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
12674 				aff_mask = lpfc_get_aff_mask(idx);
12675 
12676 				/* Migrate affinity */
12677 				if (cpumask_test_cpu(cpu, aff_mask))
12678 					lpfc_irq_set_aff(lpfc_get_eq_hdl(idx),
12679 							 cpu_select);
12680 			}
12681 		} else {
12682 			/* Rely on irqbalance if no online CPUs left on NUMA */
12683 			for (idx = 0; idx < phba->cfg_irq_chann; idx++)
12684 				lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx));
12685 		}
12686 	} else {
12687 		/* Migrate affinity back to this CPU */
12688 		lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu);
12689 	}
12690 }
12691 
lpfc_cpu_offline(unsigned int cpu,struct hlist_node * node)12692 static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node)
12693 {
12694 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12695 	struct lpfc_queue *eq, *next;
12696 	LIST_HEAD(eqlist);
12697 	int retval;
12698 
12699 	if (!phba) {
12700 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12701 		return 0;
12702 	}
12703 
12704 	if (__lpfc_cpuhp_checks(phba, &retval))
12705 		return retval;
12706 
12707 	lpfc_irq_rebalance(phba, cpu, true);
12708 
12709 	retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist);
12710 	if (retval)
12711 		return retval;
12712 
12713 	/* start polling on these eq's */
12714 	list_for_each_entry_safe(eq, next, &eqlist, _poll_list) {
12715 		list_del_init(&eq->_poll_list);
12716 		lpfc_sli4_start_polling(eq);
12717 	}
12718 
12719 	return 0;
12720 }
12721 
lpfc_cpu_online(unsigned int cpu,struct hlist_node * node)12722 static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node)
12723 {
12724 	struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp);
12725 	struct lpfc_queue *eq, *next;
12726 	unsigned int n;
12727 	int retval;
12728 
12729 	if (!phba) {
12730 		WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id());
12731 		return 0;
12732 	}
12733 
12734 	if (__lpfc_cpuhp_checks(phba, &retval))
12735 		return retval;
12736 
12737 	lpfc_irq_rebalance(phba, cpu, false);
12738 
12739 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) {
12740 		n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ);
12741 		if (n == cpu)
12742 			lpfc_sli4_stop_polling(eq);
12743 	}
12744 
12745 	return 0;
12746 }
12747 
12748 /**
12749  * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device
12750  * @phba: pointer to lpfc hba data structure.
12751  *
12752  * This routine is invoked to enable the MSI-X interrupt vectors to device
12753  * with SLI-4 interface spec.  It also allocates MSI-X vectors and maps them
12754  * to cpus on the system.
12755  *
12756  * When cfg_irq_numa is enabled, the adapter will only allocate vectors for
12757  * the number of cpus on the same numa node as this adapter.  The vectors are
12758  * allocated without requesting OS affinity mapping.  A vector will be
12759  * allocated and assigned to each online and offline cpu.  If the cpu is
12760  * online, then affinity will be set to that cpu.  If the cpu is offline, then
12761  * affinity will be set to the nearest peer cpu within the numa node that is
12762  * online.  If there are no online cpus within the numa node, affinity is not
12763  * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping
12764  * is consistent with the way cpu online/offline is handled when cfg_irq_numa is
12765  * configured.
12766  *
12767  * If numa mode is not enabled and there is more than 1 vector allocated, then
12768  * the driver relies on the managed irq interface where the OS assigns vector to
12769  * cpu affinity.  The driver will then use that affinity mapping to setup its
12770  * cpu mapping table.
12771  *
12772  * Return codes
12773  * 0 - successful
12774  * other values - error
12775  **/
12776 static int
lpfc_sli4_enable_msix(struct lpfc_hba * phba)12777 lpfc_sli4_enable_msix(struct lpfc_hba *phba)
12778 {
12779 	int vectors, rc, index;
12780 	char *name;
12781 	const struct cpumask *aff_mask = NULL;
12782 	unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids;
12783 	struct lpfc_vector_map_info *cpup;
12784 	struct lpfc_hba_eq_hdl *eqhdl;
12785 	const struct cpumask *maskp;
12786 	unsigned int flags = PCI_IRQ_MSIX;
12787 
12788 	/* Set up MSI-X multi-message vectors */
12789 	vectors = phba->cfg_irq_chann;
12790 
12791 	if (phba->irq_chann_mode != NORMAL_MODE)
12792 		aff_mask = &phba->sli4_hba.irq_aff_mask;
12793 
12794 	if (aff_mask) {
12795 		cpu_cnt = cpumask_weight(aff_mask);
12796 		vectors = min(phba->cfg_irq_chann, cpu_cnt);
12797 
12798 		/* cpu: iterates over aff_mask including offline or online
12799 		 * cpu_select: iterates over online aff_mask to set affinity
12800 		 */
12801 		cpu = cpumask_first(aff_mask);
12802 		cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12803 	} else {
12804 		flags |= PCI_IRQ_AFFINITY;
12805 	}
12806 
12807 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags);
12808 	if (rc < 0) {
12809 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12810 				"0484 PCI enable MSI-X failed (%d)\n", rc);
12811 		goto vec_fail_out;
12812 	}
12813 	vectors = rc;
12814 
12815 	/* Assign MSI-X vectors to interrupt handlers */
12816 	for (index = 0; index < vectors; index++) {
12817 		eqhdl = lpfc_get_eq_hdl(index);
12818 		name = eqhdl->handler_name;
12819 		memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ);
12820 		snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ,
12821 			 LPFC_DRIVER_HANDLER_NAME"%d", index);
12822 
12823 		eqhdl->idx = index;
12824 		rc = request_irq(pci_irq_vector(phba->pcidev, index),
12825 			 &lpfc_sli4_hba_intr_handler, 0,
12826 			 name, eqhdl);
12827 		if (rc) {
12828 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12829 					"0486 MSI-X fast-path (%d) "
12830 					"request_irq failed (%d)\n", index, rc);
12831 			goto cfg_fail_out;
12832 		}
12833 
12834 		eqhdl->irq = pci_irq_vector(phba->pcidev, index);
12835 
12836 		if (aff_mask) {
12837 			/* If found a neighboring online cpu, set affinity */
12838 			if (cpu_select < nr_cpu_ids)
12839 				lpfc_irq_set_aff(eqhdl, cpu_select);
12840 
12841 			/* Assign EQ to cpu_map */
12842 			lpfc_assign_eq_map_info(phba, index,
12843 						LPFC_CPU_FIRST_IRQ,
12844 						cpu);
12845 
12846 			/* Iterate to next offline or online cpu in aff_mask */
12847 			cpu = cpumask_next(cpu, aff_mask);
12848 
12849 			/* Find next online cpu in aff_mask to set affinity */
12850 			cpu_select = lpfc_next_online_cpu(aff_mask, cpu);
12851 		} else if (vectors == 1) {
12852 			cpu = cpumask_first(cpu_present_mask);
12853 			lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ,
12854 						cpu);
12855 		} else {
12856 			maskp = pci_irq_get_affinity(phba->pcidev, index);
12857 
12858 			/* Loop through all CPUs associated with vector index */
12859 			for_each_cpu_and(cpu, maskp, cpu_present_mask) {
12860 				cpup = &phba->sli4_hba.cpu_map[cpu];
12861 
12862 				/* If this is the first CPU thats assigned to
12863 				 * this vector, set LPFC_CPU_FIRST_IRQ.
12864 				 *
12865 				 * With certain platforms its possible that irq
12866 				 * vectors are affinitized to all the cpu's.
12867 				 * This can result in each cpu_map.eq to be set
12868 				 * to the last vector, resulting in overwrite
12869 				 * of all the previous cpu_map.eq.  Ensure that
12870 				 * each vector receives a place in cpu_map.
12871 				 * Later call to lpfc_cpu_affinity_check will
12872 				 * ensure we are nicely balanced out.
12873 				 */
12874 				if (cpup->eq != LPFC_VECTOR_MAP_EMPTY)
12875 					continue;
12876 				lpfc_assign_eq_map_info(phba, index,
12877 							LPFC_CPU_FIRST_IRQ,
12878 							cpu);
12879 				break;
12880 			}
12881 		}
12882 	}
12883 
12884 	if (vectors != phba->cfg_irq_chann) {
12885 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12886 				"3238 Reducing IO channels to match number of "
12887 				"MSI-X vectors, requested %d got %d\n",
12888 				phba->cfg_irq_chann, vectors);
12889 		if (phba->cfg_irq_chann > vectors)
12890 			phba->cfg_irq_chann = vectors;
12891 	}
12892 
12893 	return rc;
12894 
12895 cfg_fail_out:
12896 	/* free the irq already requested */
12897 	for (--index; index >= 0; index--) {
12898 		eqhdl = lpfc_get_eq_hdl(index);
12899 		lpfc_irq_clear_aff(eqhdl);
12900 		irq_set_affinity_hint(eqhdl->irq, NULL);
12901 		free_irq(eqhdl->irq, eqhdl);
12902 	}
12903 
12904 	/* Unconfigure MSI-X capability structure */
12905 	pci_free_irq_vectors(phba->pcidev);
12906 
12907 vec_fail_out:
12908 	return rc;
12909 }
12910 
12911 /**
12912  * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device
12913  * @phba: pointer to lpfc hba data structure.
12914  *
12915  * This routine is invoked to enable the MSI interrupt mode to device with
12916  * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is
12917  * called to enable the MSI vector. The device driver is responsible for
12918  * calling the request_irq() to register MSI vector with a interrupt the
12919  * handler, which is done in this function.
12920  *
12921  * Return codes
12922  * 	0 - successful
12923  * 	other values - error
12924  **/
12925 static int
lpfc_sli4_enable_msi(struct lpfc_hba * phba)12926 lpfc_sli4_enable_msi(struct lpfc_hba *phba)
12927 {
12928 	int rc, index;
12929 	unsigned int cpu;
12930 	struct lpfc_hba_eq_hdl *eqhdl;
12931 
12932 	rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1,
12933 				   PCI_IRQ_MSI | PCI_IRQ_AFFINITY);
12934 	if (rc > 0)
12935 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12936 				"0487 PCI enable MSI mode success.\n");
12937 	else {
12938 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12939 				"0488 PCI enable MSI mode failed (%d)\n", rc);
12940 		return rc ? rc : -1;
12941 	}
12942 
12943 	rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
12944 			 0, LPFC_DRIVER_NAME, phba);
12945 	if (rc) {
12946 		pci_free_irq_vectors(phba->pcidev);
12947 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
12948 				"0490 MSI request_irq failed (%d)\n", rc);
12949 		return rc;
12950 	}
12951 
12952 	eqhdl = lpfc_get_eq_hdl(0);
12953 	eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
12954 
12955 	cpu = cpumask_first(cpu_present_mask);
12956 	lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu);
12957 
12958 	for (index = 0; index < phba->cfg_irq_chann; index++) {
12959 		eqhdl = lpfc_get_eq_hdl(index);
12960 		eqhdl->idx = index;
12961 	}
12962 
12963 	return 0;
12964 }
12965 
12966 /**
12967  * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device
12968  * @phba: pointer to lpfc hba data structure.
12969  * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X).
12970  *
12971  * This routine is invoked to enable device interrupt and associate driver's
12972  * interrupt handler(s) to interrupt vector(s) to device with SLI-4
12973  * interface spec. Depends on the interrupt mode configured to the driver,
12974  * the driver will try to fallback from the configured interrupt mode to an
12975  * interrupt mode which is supported by the platform, kernel, and device in
12976  * the order of:
12977  * MSI-X -> MSI -> IRQ.
12978  *
12979  * Return codes
12980  * 	0 - successful
12981  * 	other values - error
12982  **/
12983 static uint32_t
lpfc_sli4_enable_intr(struct lpfc_hba * phba,uint32_t cfg_mode)12984 lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
12985 {
12986 	uint32_t intr_mode = LPFC_INTR_ERROR;
12987 	int retval, idx;
12988 
12989 	if (cfg_mode == 2) {
12990 		/* Preparation before conf_msi mbox cmd */
12991 		retval = 0;
12992 		if (!retval) {
12993 			/* Now, try to enable MSI-X interrupt mode */
12994 			retval = lpfc_sli4_enable_msix(phba);
12995 			if (!retval) {
12996 				/* Indicate initialization to MSI-X mode */
12997 				phba->intr_type = MSIX;
12998 				intr_mode = 2;
12999 			}
13000 		}
13001 	}
13002 
13003 	/* Fallback to MSI if MSI-X initialization failed */
13004 	if (cfg_mode >= 1 && phba->intr_type == NONE) {
13005 		retval = lpfc_sli4_enable_msi(phba);
13006 		if (!retval) {
13007 			/* Indicate initialization to MSI mode */
13008 			phba->intr_type = MSI;
13009 			intr_mode = 1;
13010 		}
13011 	}
13012 
13013 	/* Fallback to INTx if both MSI-X/MSI initalization failed */
13014 	if (phba->intr_type == NONE) {
13015 		retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler,
13016 				     IRQF_SHARED, LPFC_DRIVER_NAME, phba);
13017 		if (!retval) {
13018 			struct lpfc_hba_eq_hdl *eqhdl;
13019 			unsigned int cpu;
13020 
13021 			/* Indicate initialization to INTx mode */
13022 			phba->intr_type = INTx;
13023 			intr_mode = 0;
13024 
13025 			eqhdl = lpfc_get_eq_hdl(0);
13026 			eqhdl->irq = pci_irq_vector(phba->pcidev, 0);
13027 
13028 			cpu = cpumask_first(cpu_present_mask);
13029 			lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ,
13030 						cpu);
13031 			for (idx = 0; idx < phba->cfg_irq_chann; idx++) {
13032 				eqhdl = lpfc_get_eq_hdl(idx);
13033 				eqhdl->idx = idx;
13034 			}
13035 		}
13036 	}
13037 	return intr_mode;
13038 }
13039 
13040 /**
13041  * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device
13042  * @phba: pointer to lpfc hba data structure.
13043  *
13044  * This routine is invoked to disable device interrupt and disassociate
13045  * the driver's interrupt handler(s) from interrupt vector(s) to device
13046  * with SLI-4 interface spec. Depending on the interrupt mode, the driver
13047  * will release the interrupt vector(s) for the message signaled interrupt.
13048  **/
13049 static void
lpfc_sli4_disable_intr(struct lpfc_hba * phba)13050 lpfc_sli4_disable_intr(struct lpfc_hba *phba)
13051 {
13052 	/* Disable the currently initialized interrupt mode */
13053 	if (phba->intr_type == MSIX) {
13054 		int index;
13055 		struct lpfc_hba_eq_hdl *eqhdl;
13056 
13057 		/* Free up MSI-X multi-message vectors */
13058 		for (index = 0; index < phba->cfg_irq_chann; index++) {
13059 			eqhdl = lpfc_get_eq_hdl(index);
13060 			lpfc_irq_clear_aff(eqhdl);
13061 			irq_set_affinity_hint(eqhdl->irq, NULL);
13062 			free_irq(eqhdl->irq, eqhdl);
13063 		}
13064 	} else {
13065 		free_irq(phba->pcidev->irq, phba);
13066 	}
13067 
13068 	pci_free_irq_vectors(phba->pcidev);
13069 
13070 	/* Reset interrupt management states */
13071 	phba->intr_type = NONE;
13072 	phba->sli.slistat.sli_intr = 0;
13073 }
13074 
13075 /**
13076  * lpfc_unset_hba - Unset SLI3 hba device initialization
13077  * @phba: pointer to lpfc hba data structure.
13078  *
13079  * This routine is invoked to unset the HBA device initialization steps to
13080  * a device with SLI-3 interface spec.
13081  **/
13082 static void
lpfc_unset_hba(struct lpfc_hba * phba)13083 lpfc_unset_hba(struct lpfc_hba *phba)
13084 {
13085 	struct lpfc_vport *vport = phba->pport;
13086 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
13087 
13088 	spin_lock_irq(shost->host_lock);
13089 	vport->load_flag |= FC_UNLOADING;
13090 	spin_unlock_irq(shost->host_lock);
13091 
13092 	kfree(phba->vpi_bmask);
13093 	kfree(phba->vpi_ids);
13094 
13095 	lpfc_stop_hba_timers(phba);
13096 
13097 	phba->pport->work_port_events = 0;
13098 
13099 	lpfc_sli_hba_down(phba);
13100 
13101 	lpfc_sli_brdrestart(phba);
13102 
13103 	lpfc_sli_disable_intr(phba);
13104 
13105 	return;
13106 }
13107 
13108 /**
13109  * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy
13110  * @phba: Pointer to HBA context object.
13111  *
13112  * This function is called in the SLI4 code path to wait for completion
13113  * of device's XRIs exchange busy. It will check the XRI exchange busy
13114  * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after
13115  * that, it will check the XRI exchange busy on outstanding FCP and ELS
13116  * I/Os every 30 seconds, log error message, and wait forever. Only when
13117  * all XRI exchange busy complete, the driver unload shall proceed with
13118  * invoking the function reset ioctl mailbox command to the CNA and the
13119  * the rest of the driver unload resource release.
13120  **/
13121 static void
lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba * phba)13122 lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba)
13123 {
13124 	struct lpfc_sli4_hdw_queue *qp;
13125 	int idx, ccnt;
13126 	int wait_time = 0;
13127 	int io_xri_cmpl = 1;
13128 	int nvmet_xri_cmpl = 1;
13129 	int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13130 
13131 	/* Driver just aborted IOs during the hba_unset process.  Pause
13132 	 * here to give the HBA time to complete the IO and get entries
13133 	 * into the abts lists.
13134 	 */
13135 	msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5);
13136 
13137 	/* Wait for NVME pending IO to flush back to transport. */
13138 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13139 		lpfc_nvme_wait_for_io_drain(phba);
13140 
13141 	ccnt = 0;
13142 	for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13143 		qp = &phba->sli4_hba.hdwq[idx];
13144 		io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list);
13145 		if (!io_xri_cmpl) /* if list is NOT empty */
13146 			ccnt++;
13147 	}
13148 	if (ccnt)
13149 		io_xri_cmpl = 0;
13150 
13151 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13152 		nvmet_xri_cmpl =
13153 			list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13154 	}
13155 
13156 	while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) {
13157 		if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) {
13158 			if (!nvmet_xri_cmpl)
13159 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13160 						"6424 NVMET XRI exchange busy "
13161 						"wait time: %d seconds.\n",
13162 						wait_time/1000);
13163 			if (!io_xri_cmpl)
13164 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13165 						"6100 IO XRI exchange busy "
13166 						"wait time: %d seconds.\n",
13167 						wait_time/1000);
13168 			if (!els_xri_cmpl)
13169 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13170 						"2878 ELS XRI exchange busy "
13171 						"wait time: %d seconds.\n",
13172 						wait_time/1000);
13173 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2);
13174 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2;
13175 		} else {
13176 			msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
13177 			wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1;
13178 		}
13179 
13180 		ccnt = 0;
13181 		for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
13182 			qp = &phba->sli4_hba.hdwq[idx];
13183 			io_xri_cmpl = list_empty(
13184 			    &qp->lpfc_abts_io_buf_list);
13185 			if (!io_xri_cmpl) /* if list is NOT empty */
13186 				ccnt++;
13187 		}
13188 		if (ccnt)
13189 			io_xri_cmpl = 0;
13190 
13191 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13192 			nvmet_xri_cmpl = list_empty(
13193 				&phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
13194 		}
13195 		els_xri_cmpl =
13196 			list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list);
13197 
13198 	}
13199 }
13200 
13201 /**
13202  * lpfc_sli4_hba_unset - Unset the fcoe hba
13203  * @phba: Pointer to HBA context object.
13204  *
13205  * This function is called in the SLI4 code path to reset the HBA's FCoE
13206  * function. The caller is not required to hold any lock. This routine
13207  * issues PCI function reset mailbox command to reset the FCoE function.
13208  * At the end of the function, it calls lpfc_hba_down_post function to
13209  * free any pending commands.
13210  **/
13211 static void
lpfc_sli4_hba_unset(struct lpfc_hba * phba)13212 lpfc_sli4_hba_unset(struct lpfc_hba *phba)
13213 {
13214 	int wait_cnt = 0;
13215 	LPFC_MBOXQ_t *mboxq;
13216 	struct pci_dev *pdev = phba->pcidev;
13217 
13218 	lpfc_stop_hba_timers(phba);
13219 	hrtimer_cancel(&phba->cmf_timer);
13220 
13221 	if (phba->pport)
13222 		phba->sli4_hba.intr_enable = 0;
13223 
13224 	/*
13225 	 * Gracefully wait out the potential current outstanding asynchronous
13226 	 * mailbox command.
13227 	 */
13228 
13229 	/* First, block any pending async mailbox command from posted */
13230 	spin_lock_irq(&phba->hbalock);
13231 	phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13232 	spin_unlock_irq(&phba->hbalock);
13233 	/* Now, trying to wait it out if we can */
13234 	while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13235 		msleep(10);
13236 		if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT)
13237 			break;
13238 	}
13239 	/* Forcefully release the outstanding mailbox command if timed out */
13240 	if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) {
13241 		spin_lock_irq(&phba->hbalock);
13242 		mboxq = phba->sli.mbox_active;
13243 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
13244 		__lpfc_mbox_cmpl_put(phba, mboxq);
13245 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13246 		phba->sli.mbox_active = NULL;
13247 		spin_unlock_irq(&phba->hbalock);
13248 	}
13249 
13250 	/* Abort all iocbs associated with the hba */
13251 	lpfc_sli_hba_iocb_abort(phba);
13252 
13253 	/* Wait for completion of device XRI exchange busy */
13254 	lpfc_sli4_xri_exchange_busy_wait(phba);
13255 
13256 	/* per-phba callback de-registration for hotplug event */
13257 	if (phba->pport)
13258 		lpfc_cpuhp_remove(phba);
13259 
13260 	/* Disable PCI subsystem interrupt */
13261 	lpfc_sli4_disable_intr(phba);
13262 
13263 	/* Disable SR-IOV if enabled */
13264 	if (phba->cfg_sriov_nr_virtfn)
13265 		pci_disable_sriov(pdev);
13266 
13267 	/* Stop kthread signal shall trigger work_done one more time */
13268 	kthread_stop(phba->worker_thread);
13269 
13270 	/* Disable FW logging to host memory */
13271 	lpfc_ras_stop_fwlog(phba);
13272 
13273 	/* Unset the queues shared with the hardware then release all
13274 	 * allocated resources.
13275 	 */
13276 	lpfc_sli4_queue_unset(phba);
13277 	lpfc_sli4_queue_destroy(phba);
13278 
13279 	/* Reset SLI4 HBA FCoE function */
13280 	lpfc_pci_function_reset(phba);
13281 
13282 	/* Free RAS DMA memory */
13283 	if (phba->ras_fwlog.ras_enabled)
13284 		lpfc_sli4_ras_dma_free(phba);
13285 
13286 	/* Stop the SLI4 device port */
13287 	if (phba->pport)
13288 		phba->pport->work_port_events = 0;
13289 }
13290 
13291 static uint32_t
lpfc_cgn_crc32(uint32_t crc,u8 byte)13292 lpfc_cgn_crc32(uint32_t crc, u8 byte)
13293 {
13294 	uint32_t msb = 0;
13295 	uint32_t bit;
13296 
13297 	for (bit = 0; bit < 8; bit++) {
13298 		msb = (crc >> 31) & 1;
13299 		crc <<= 1;
13300 
13301 		if (msb ^ (byte & 1)) {
13302 			crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER;
13303 			crc |= 1;
13304 		}
13305 		byte >>= 1;
13306 	}
13307 	return crc;
13308 }
13309 
13310 static uint32_t
lpfc_cgn_reverse_bits(uint32_t wd)13311 lpfc_cgn_reverse_bits(uint32_t wd)
13312 {
13313 	uint32_t result = 0;
13314 	uint32_t i;
13315 
13316 	for (i = 0; i < 32; i++) {
13317 		result <<= 1;
13318 		result |= (1 & (wd >> i));
13319 	}
13320 	return result;
13321 }
13322 
13323 /*
13324  * The routine corresponds with the algorithm the HBA firmware
13325  * uses to validate the data integrity.
13326  */
13327 uint32_t
lpfc_cgn_calc_crc32(void * ptr,uint32_t byteLen,uint32_t crc)13328 lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc)
13329 {
13330 	uint32_t  i;
13331 	uint32_t result;
13332 	uint8_t  *data = (uint8_t *)ptr;
13333 
13334 	for (i = 0; i < byteLen; ++i)
13335 		crc = lpfc_cgn_crc32(crc, data[i]);
13336 
13337 	result = ~lpfc_cgn_reverse_bits(crc);
13338 	return result;
13339 }
13340 
13341 void
lpfc_init_congestion_buf(struct lpfc_hba * phba)13342 lpfc_init_congestion_buf(struct lpfc_hba *phba)
13343 {
13344 	struct lpfc_cgn_info *cp;
13345 	struct timespec64 cmpl_time;
13346 	struct tm broken;
13347 	uint16_t size;
13348 	uint32_t crc;
13349 
13350 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13351 			"6235 INIT Congestion Buffer %p\n", phba->cgn_i);
13352 
13353 	if (!phba->cgn_i)
13354 		return;
13355 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13356 
13357 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
13358 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
13359 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
13360 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
13361 
13362 	atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
13363 	atomic64_set(&phba->cgn_acqe_stat.warn, 0);
13364 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
13365 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
13366 	atomic64_set(&phba->cgn_latency_evt, 0);
13367 	phba->cgn_evt_minute = 0;
13368 	phba->hba_flag &= ~HBA_CGN_DAY_WRAP;
13369 
13370 	memset(cp, 0xff, LPFC_CGN_DATA_SIZE);
13371 	cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ);
13372 	cp->cgn_info_version = LPFC_CGN_INFO_V3;
13373 
13374 	/* cgn parameters */
13375 	cp->cgn_info_mode = phba->cgn_p.cgn_param_mode;
13376 	cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0;
13377 	cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1;
13378 	cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2;
13379 
13380 	ktime_get_real_ts64(&cmpl_time);
13381 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13382 
13383 	cp->cgn_info_month = broken.tm_mon + 1;
13384 	cp->cgn_info_day = broken.tm_mday;
13385 	cp->cgn_info_year = broken.tm_year - 100; /* relative to 2000 */
13386 	cp->cgn_info_hour = broken.tm_hour;
13387 	cp->cgn_info_minute = broken.tm_min;
13388 	cp->cgn_info_second = broken.tm_sec;
13389 
13390 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13391 			"2643 CGNInfo Init: Start Time "
13392 			"%d/%d/%d %d:%d:%d\n",
13393 			cp->cgn_info_day, cp->cgn_info_month,
13394 			cp->cgn_info_year, cp->cgn_info_hour,
13395 			cp->cgn_info_minute, cp->cgn_info_second);
13396 
13397 	/* Fill in default LUN qdepth */
13398 	if (phba->pport) {
13399 		size = (uint16_t)(phba->pport->cfg_lun_queue_depth);
13400 		cp->cgn_lunq = cpu_to_le16(size);
13401 	}
13402 
13403 	/* last used Index initialized to 0xff already */
13404 
13405 	cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13406 	cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ);
13407 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13408 	cp->cgn_info_crc = cpu_to_le32(crc);
13409 
13410 	phba->cgn_evt_timestamp = jiffies +
13411 		msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN);
13412 }
13413 
13414 void
lpfc_init_congestion_stat(struct lpfc_hba * phba)13415 lpfc_init_congestion_stat(struct lpfc_hba *phba)
13416 {
13417 	struct lpfc_cgn_info *cp;
13418 	struct timespec64 cmpl_time;
13419 	struct tm broken;
13420 	uint32_t crc;
13421 
13422 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
13423 			"6236 INIT Congestion Stat %p\n", phba->cgn_i);
13424 
13425 	if (!phba->cgn_i)
13426 		return;
13427 
13428 	cp = (struct lpfc_cgn_info *)phba->cgn_i->virt;
13429 	memset(&cp->cgn_stat_npm, 0, LPFC_CGN_STAT_SIZE);
13430 
13431 	ktime_get_real_ts64(&cmpl_time);
13432 	time64_to_tm(cmpl_time.tv_sec, 0, &broken);
13433 
13434 	cp->cgn_stat_month = broken.tm_mon + 1;
13435 	cp->cgn_stat_day = broken.tm_mday;
13436 	cp->cgn_stat_year = broken.tm_year - 100; /* relative to 2000 */
13437 	cp->cgn_stat_hour = broken.tm_hour;
13438 	cp->cgn_stat_minute = broken.tm_min;
13439 
13440 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT,
13441 			"2647 CGNstat Init: Start Time "
13442 			"%d/%d/%d %d:%d\n",
13443 			cp->cgn_stat_day, cp->cgn_stat_month,
13444 			cp->cgn_stat_year, cp->cgn_stat_hour,
13445 			cp->cgn_stat_minute);
13446 
13447 	crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED);
13448 	cp->cgn_info_crc = cpu_to_le32(crc);
13449 }
13450 
13451 /**
13452  * __lpfc_reg_congestion_buf - register congestion info buffer with HBA
13453  * @phba: Pointer to hba context object.
13454  * @reg: flag to determine register or unregister.
13455  */
13456 static int
__lpfc_reg_congestion_buf(struct lpfc_hba * phba,int reg)13457 __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg)
13458 {
13459 	struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf;
13460 	union  lpfc_sli4_cfg_shdr *shdr;
13461 	uint32_t shdr_status, shdr_add_status;
13462 	LPFC_MBOXQ_t *mboxq;
13463 	int length, rc;
13464 
13465 	if (!phba->cgn_i)
13466 		return -ENXIO;
13467 
13468 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13469 	if (!mboxq) {
13470 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13471 				"2641 REG_CONGESTION_BUF mbox allocation fail: "
13472 				"HBA state x%x reg %d\n",
13473 				phba->pport->port_state, reg);
13474 		return -ENOMEM;
13475 	}
13476 
13477 	length = (sizeof(struct lpfc_mbx_reg_congestion_buf) -
13478 		sizeof(struct lpfc_sli4_cfg_mhdr));
13479 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13480 			 LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length,
13481 			 LPFC_SLI4_MBX_EMBED);
13482 	reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf;
13483 	bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1);
13484 	if (reg > 0)
13485 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1);
13486 	else
13487 		bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0);
13488 	reg_congestion_buf->length = sizeof(struct lpfc_cgn_info);
13489 	reg_congestion_buf->addr_lo =
13490 		putPaddrLow(phba->cgn_i->phys);
13491 	reg_congestion_buf->addr_hi =
13492 		putPaddrHigh(phba->cgn_i->phys);
13493 
13494 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13495 	shdr = (union lpfc_sli4_cfg_shdr *)
13496 		&mboxq->u.mqe.un.sli4_config.header.cfg_shdr;
13497 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13498 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13499 				 &shdr->response);
13500 	mempool_free(mboxq, phba->mbox_mem_pool);
13501 	if (shdr_status || shdr_add_status || rc) {
13502 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13503 				"2642 REG_CONGESTION_BUF mailbox "
13504 				"failed with status x%x add_status x%x,"
13505 				" mbx status x%x reg %d\n",
13506 				shdr_status, shdr_add_status, rc, reg);
13507 		return -ENXIO;
13508 	}
13509 	return 0;
13510 }
13511 
13512 int
lpfc_unreg_congestion_buf(struct lpfc_hba * phba)13513 lpfc_unreg_congestion_buf(struct lpfc_hba *phba)
13514 {
13515 	lpfc_cmf_stop(phba);
13516 	return __lpfc_reg_congestion_buf(phba, 0);
13517 }
13518 
13519 int
lpfc_reg_congestion_buf(struct lpfc_hba * phba)13520 lpfc_reg_congestion_buf(struct lpfc_hba *phba)
13521 {
13522 	return __lpfc_reg_congestion_buf(phba, 1);
13523 }
13524 
13525 /**
13526  * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS.
13527  * @phba: Pointer to HBA context object.
13528  * @mboxq: Pointer to the mailboxq memory for the mailbox command response.
13529  *
13530  * This function is called in the SLI4 code path to read the port's
13531  * sli4 capabilities.
13532  *
13533  * This function may be be called from any context that can block-wait
13534  * for the completion.  The expectation is that this routine is called
13535  * typically from probe_one or from the online routine.
13536  **/
13537 int
lpfc_get_sli4_parameters(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)13538 lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
13539 {
13540 	int rc;
13541 	struct lpfc_mqe *mqe = &mboxq->u.mqe;
13542 	struct lpfc_pc_sli4_params *sli4_params;
13543 	uint32_t mbox_tmo;
13544 	int length;
13545 	bool exp_wqcq_pages = true;
13546 	struct lpfc_sli4_parameters *mbx_sli4_parameters;
13547 
13548 	/*
13549 	 * By default, the driver assumes the SLI4 port requires RPI
13550 	 * header postings.  The SLI4_PARAM response will correct this
13551 	 * assumption.
13552 	 */
13553 	phba->sli4_hba.rpi_hdrs_in_use = 1;
13554 
13555 	/* Read the port's SLI4 Config Parameters */
13556 	length = (sizeof(struct lpfc_mbx_get_sli4_parameters) -
13557 		  sizeof(struct lpfc_sli4_cfg_mhdr));
13558 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
13559 			 LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS,
13560 			 length, LPFC_SLI4_MBX_EMBED);
13561 	if (!phba->sli4_hba.intr_enable)
13562 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
13563 	else {
13564 		mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
13565 		rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
13566 	}
13567 	if (unlikely(rc))
13568 		return rc;
13569 	sli4_params = &phba->sli4_hba.pc_sli4_params;
13570 	mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters;
13571 	sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters);
13572 	sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters);
13573 	sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters);
13574 	sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1,
13575 					     mbx_sli4_parameters);
13576 	sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2,
13577 					     mbx_sli4_parameters);
13578 	if (bf_get(cfg_phwq, mbx_sli4_parameters))
13579 		phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED;
13580 	else
13581 		phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED;
13582 	sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len;
13583 	sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope,
13584 					   mbx_sli4_parameters);
13585 	sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters);
13586 	sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters);
13587 	sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters);
13588 	sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters);
13589 	sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters);
13590 	sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters);
13591 	sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters);
13592 	sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters);
13593 	sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters);
13594 	sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters);
13595 	sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt,
13596 					    mbx_sli4_parameters);
13597 	sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters);
13598 	sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align,
13599 					   mbx_sli4_parameters);
13600 	phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters);
13601 	phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters);
13602 
13603 	/* Check for Extended Pre-Registered SGL support */
13604 	phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters);
13605 
13606 	/* Check for firmware nvme support */
13607 	rc = (bf_get(cfg_nvme, mbx_sli4_parameters) &&
13608 		     bf_get(cfg_xib, mbx_sli4_parameters));
13609 
13610 	if (rc) {
13611 		/* Save this to indicate the Firmware supports NVME */
13612 		sli4_params->nvme = 1;
13613 
13614 		/* Firmware NVME support, check driver FC4 NVME support */
13615 		if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) {
13616 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13617 					"6133 Disabling NVME support: "
13618 					"FC4 type not supported: x%x\n",
13619 					phba->cfg_enable_fc4_type);
13620 			goto fcponly;
13621 		}
13622 	} else {
13623 		/* No firmware NVME support, check driver FC4 NVME support */
13624 		sli4_params->nvme = 0;
13625 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13626 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME,
13627 					"6101 Disabling NVME support: Not "
13628 					"supported by firmware (%d %d) x%x\n",
13629 					bf_get(cfg_nvme, mbx_sli4_parameters),
13630 					bf_get(cfg_xib, mbx_sli4_parameters),
13631 					phba->cfg_enable_fc4_type);
13632 fcponly:
13633 			phba->nvmet_support = 0;
13634 			phba->cfg_nvmet_mrq = 0;
13635 			phba->cfg_nvme_seg_cnt = 0;
13636 
13637 			/* If no FC4 type support, move to just SCSI support */
13638 			if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
13639 				return -ENODEV;
13640 			phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP;
13641 		}
13642 	}
13643 
13644 	/* If the NVME FC4 type is enabled, scale the sg_seg_cnt to
13645 	 * accommodate 512K and 1M IOs in a single nvme buf.
13646 	 */
13647 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)
13648 		phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
13649 
13650 	/* Enable embedded Payload BDE if support is indicated */
13651 	if (bf_get(cfg_pbde, mbx_sli4_parameters))
13652 		phba->cfg_enable_pbde = 1;
13653 	else
13654 		phba->cfg_enable_pbde = 0;
13655 
13656 	/*
13657 	 * To support Suppress Response feature we must satisfy 3 conditions.
13658 	 * lpfc_suppress_rsp module parameter must be set (default).
13659 	 * In SLI4-Parameters Descriptor:
13660 	 * Extended Inline Buffers (XIB) must be supported.
13661 	 * Suppress Response IU Not Supported (SRIUNS) must NOT be supported
13662 	 * (double negative).
13663 	 */
13664 	if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) &&
13665 	    !(bf_get(cfg_nosr, mbx_sli4_parameters)))
13666 		phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP;
13667 	else
13668 		phba->cfg_suppress_rsp = 0;
13669 
13670 	if (bf_get(cfg_eqdr, mbx_sli4_parameters))
13671 		phba->sli.sli_flag |= LPFC_SLI_USE_EQDR;
13672 
13673 	/* Make sure that sge_supp_len can be handled by the driver */
13674 	if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE)
13675 		sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE;
13676 
13677 	/*
13678 	 * Check whether the adapter supports an embedded copy of the
13679 	 * FCP CMD IU within the WQE for FCP_Ixxx commands. In order
13680 	 * to use this option, 128-byte WQEs must be used.
13681 	 */
13682 	if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters))
13683 		phba->fcp_embed_io = 1;
13684 	else
13685 		phba->fcp_embed_io = 0;
13686 
13687 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME,
13688 			"6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n",
13689 			bf_get(cfg_xib, mbx_sli4_parameters),
13690 			phba->cfg_enable_pbde,
13691 			phba->fcp_embed_io, sli4_params->nvme,
13692 			phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp);
13693 
13694 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
13695 	    LPFC_SLI_INTF_IF_TYPE_2) &&
13696 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
13697 		 LPFC_SLI_INTF_FAMILY_LNCR_A0))
13698 		exp_wqcq_pages = false;
13699 
13700 	if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) &&
13701 	    (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) &&
13702 	    exp_wqcq_pages &&
13703 	    (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT))
13704 		phba->enab_exp_wqcq_pages = 1;
13705 	else
13706 		phba->enab_exp_wqcq_pages = 0;
13707 	/*
13708 	 * Check if the SLI port supports MDS Diagnostics
13709 	 */
13710 	if (bf_get(cfg_mds_diags, mbx_sli4_parameters))
13711 		phba->mds_diags_support = 1;
13712 	else
13713 		phba->mds_diags_support = 0;
13714 
13715 	/*
13716 	 * Check if the SLI port supports NSLER
13717 	 */
13718 	if (bf_get(cfg_nsler, mbx_sli4_parameters))
13719 		phba->nsler = 1;
13720 	else
13721 		phba->nsler = 0;
13722 
13723 	return 0;
13724 }
13725 
13726 /**
13727  * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem.
13728  * @pdev: pointer to PCI device
13729  * @pid: pointer to PCI device identifier
13730  *
13731  * This routine is to be called to attach a device with SLI-3 interface spec
13732  * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13733  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
13734  * information of the device and driver to see if the driver state that it can
13735  * support this kind of device. If the match is successful, the driver core
13736  * invokes this routine. If this routine determines it can claim the HBA, it
13737  * does all the initialization that it needs to do to handle the HBA properly.
13738  *
13739  * Return code
13740  * 	0 - driver can claim the device
13741  * 	negative value - driver can not claim the device
13742  **/
13743 static int
lpfc_pci_probe_one_s3(struct pci_dev * pdev,const struct pci_device_id * pid)13744 lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid)
13745 {
13746 	struct lpfc_hba   *phba;
13747 	struct lpfc_vport *vport = NULL;
13748 	struct Scsi_Host  *shost = NULL;
13749 	int error;
13750 	uint32_t cfg_mode, intr_mode;
13751 
13752 	/* Allocate memory for HBA structure */
13753 	phba = lpfc_hba_alloc(pdev);
13754 	if (!phba)
13755 		return -ENOMEM;
13756 
13757 	/* Perform generic PCI device enabling operation */
13758 	error = lpfc_enable_pci_dev(phba);
13759 	if (error)
13760 		goto out_free_phba;
13761 
13762 	/* Set up SLI API function jump table for PCI-device group-0 HBAs */
13763 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP);
13764 	if (error)
13765 		goto out_disable_pci_dev;
13766 
13767 	/* Set up SLI-3 specific device PCI memory space */
13768 	error = lpfc_sli_pci_mem_setup(phba);
13769 	if (error) {
13770 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13771 				"1402 Failed to set up pci memory space.\n");
13772 		goto out_disable_pci_dev;
13773 	}
13774 
13775 	/* Set up SLI-3 specific device driver resources */
13776 	error = lpfc_sli_driver_resource_setup(phba);
13777 	if (error) {
13778 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13779 				"1404 Failed to set up driver resource.\n");
13780 		goto out_unset_pci_mem_s3;
13781 	}
13782 
13783 	/* Initialize and populate the iocb list per host */
13784 
13785 	error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT);
13786 	if (error) {
13787 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13788 				"1405 Failed to initialize iocb list.\n");
13789 		goto out_unset_driver_resource_s3;
13790 	}
13791 
13792 	/* Set up common device driver resources */
13793 	error = lpfc_setup_driver_resource_phase2(phba);
13794 	if (error) {
13795 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13796 				"1406 Failed to set up driver resource.\n");
13797 		goto out_free_iocb_list;
13798 	}
13799 
13800 	/* Get the default values for Model Name and Description */
13801 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
13802 
13803 	/* Create SCSI host to the physical port */
13804 	error = lpfc_create_shost(phba);
13805 	if (error) {
13806 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13807 				"1407 Failed to create scsi host.\n");
13808 		goto out_unset_driver_resource;
13809 	}
13810 
13811 	/* Configure sysfs attributes */
13812 	vport = phba->pport;
13813 	error = lpfc_alloc_sysfs_attr(vport);
13814 	if (error) {
13815 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13816 				"1476 Failed to allocate sysfs attr\n");
13817 		goto out_destroy_shost;
13818 	}
13819 
13820 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
13821 	/* Now, trying to enable interrupt and bring up the device */
13822 	cfg_mode = phba->cfg_use_msi;
13823 	while (true) {
13824 		/* Put device to a known state before enabling interrupt */
13825 		lpfc_stop_port(phba);
13826 		/* Configure and enable interrupt */
13827 		intr_mode = lpfc_sli_enable_intr(phba, cfg_mode);
13828 		if (intr_mode == LPFC_INTR_ERROR) {
13829 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13830 					"0431 Failed to enable interrupt.\n");
13831 			error = -ENODEV;
13832 			goto out_free_sysfs_attr;
13833 		}
13834 		/* SLI-3 HBA setup */
13835 		if (lpfc_sli_hba_setup(phba)) {
13836 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13837 					"1477 Failed to set up hba\n");
13838 			error = -ENODEV;
13839 			goto out_remove_device;
13840 		}
13841 
13842 		/* Wait 50ms for the interrupts of previous mailbox commands */
13843 		msleep(50);
13844 		/* Check active interrupts on message signaled interrupts */
13845 		if (intr_mode == 0 ||
13846 		    phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
13847 			/* Log the current active interrupt mode */
13848 			phba->intr_mode = intr_mode;
13849 			lpfc_log_intr_mode(phba, intr_mode);
13850 			break;
13851 		} else {
13852 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13853 					"0447 Configure interrupt mode (%d) "
13854 					"failed active interrupt test.\n",
13855 					intr_mode);
13856 			/* Disable the current interrupt mode */
13857 			lpfc_sli_disable_intr(phba);
13858 			/* Try next level of interrupt mode */
13859 			cfg_mode = --intr_mode;
13860 		}
13861 	}
13862 
13863 	/* Perform post initialization setup */
13864 	lpfc_post_init_setup(phba);
13865 
13866 	/* Check if there are static vports to be created. */
13867 	lpfc_create_static_vport(phba);
13868 
13869 	return 0;
13870 
13871 out_remove_device:
13872 	lpfc_unset_hba(phba);
13873 out_free_sysfs_attr:
13874 	lpfc_free_sysfs_attr(vport);
13875 out_destroy_shost:
13876 	lpfc_destroy_shost(phba);
13877 out_unset_driver_resource:
13878 	lpfc_unset_driver_resource_phase2(phba);
13879 out_free_iocb_list:
13880 	lpfc_free_iocb_list(phba);
13881 out_unset_driver_resource_s3:
13882 	lpfc_sli_driver_resource_unset(phba);
13883 out_unset_pci_mem_s3:
13884 	lpfc_sli_pci_mem_unset(phba);
13885 out_disable_pci_dev:
13886 	lpfc_disable_pci_dev(phba);
13887 	if (shost)
13888 		scsi_host_put(shost);
13889 out_free_phba:
13890 	lpfc_hba_free(phba);
13891 	return error;
13892 }
13893 
13894 /**
13895  * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem.
13896  * @pdev: pointer to PCI device
13897  *
13898  * This routine is to be called to disattach a device with SLI-3 interface
13899  * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is
13900  * removed from PCI bus, it performs all the necessary cleanup for the HBA
13901  * device to be removed from the PCI subsystem properly.
13902  **/
13903 static void
lpfc_pci_remove_one_s3(struct pci_dev * pdev)13904 lpfc_pci_remove_one_s3(struct pci_dev *pdev)
13905 {
13906 	struct Scsi_Host  *shost = pci_get_drvdata(pdev);
13907 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
13908 	struct lpfc_vport **vports;
13909 	struct lpfc_hba   *phba = vport->phba;
13910 	int i;
13911 
13912 	spin_lock_irq(&phba->hbalock);
13913 	vport->load_flag |= FC_UNLOADING;
13914 	spin_unlock_irq(&phba->hbalock);
13915 
13916 	lpfc_free_sysfs_attr(vport);
13917 
13918 	/* Release all the vports against this physical port */
13919 	vports = lpfc_create_vport_work_array(phba);
13920 	if (vports != NULL)
13921 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
13922 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
13923 				continue;
13924 			fc_vport_terminate(vports[i]->fc_vport);
13925 		}
13926 	lpfc_destroy_vport_work_array(phba, vports);
13927 
13928 	/* Remove FC host with the physical port */
13929 	fc_remove_host(shost);
13930 	scsi_remove_host(shost);
13931 
13932 	/* Clean up all nodes, mailboxes and IOs. */
13933 	lpfc_cleanup(vport);
13934 
13935 	/*
13936 	 * Bring down the SLI Layer. This step disable all interrupts,
13937 	 * clears the rings, discards all mailbox commands, and resets
13938 	 * the HBA.
13939 	 */
13940 
13941 	/* HBA interrupt will be disabled after this call */
13942 	lpfc_sli_hba_down(phba);
13943 	/* Stop kthread signal shall trigger work_done one more time */
13944 	kthread_stop(phba->worker_thread);
13945 	/* Final cleanup of txcmplq and reset the HBA */
13946 	lpfc_sli_brdrestart(phba);
13947 
13948 	kfree(phba->vpi_bmask);
13949 	kfree(phba->vpi_ids);
13950 
13951 	lpfc_stop_hba_timers(phba);
13952 	spin_lock_irq(&phba->port_list_lock);
13953 	list_del_init(&vport->listentry);
13954 	spin_unlock_irq(&phba->port_list_lock);
13955 
13956 	lpfc_debugfs_terminate(vport);
13957 
13958 	/* Disable SR-IOV if enabled */
13959 	if (phba->cfg_sriov_nr_virtfn)
13960 		pci_disable_sriov(pdev);
13961 
13962 	/* Disable interrupt */
13963 	lpfc_sli_disable_intr(phba);
13964 
13965 	scsi_host_put(shost);
13966 
13967 	/*
13968 	 * Call scsi_free before mem_free since scsi bufs are released to their
13969 	 * corresponding pools here.
13970 	 */
13971 	lpfc_scsi_free(phba);
13972 	lpfc_free_iocb_list(phba);
13973 
13974 	lpfc_mem_free_all(phba);
13975 
13976 	dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
13977 			  phba->hbqslimp.virt, phba->hbqslimp.phys);
13978 
13979 	/* Free resources associated with SLI2 interface */
13980 	dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
13981 			  phba->slim2p.virt, phba->slim2p.phys);
13982 
13983 	/* unmap adapter SLIM and Control Registers */
13984 	iounmap(phba->ctrl_regs_memmap_p);
13985 	iounmap(phba->slim_memmap_p);
13986 
13987 	lpfc_hba_free(phba);
13988 
13989 	pci_release_mem_regions(pdev);
13990 	pci_disable_device(pdev);
13991 }
13992 
13993 /**
13994  * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt
13995  * @dev_d: pointer to device
13996  *
13997  * This routine is to be called from the kernel's PCI subsystem to support
13998  * system Power Management (PM) to device with SLI-3 interface spec. When
13999  * PM invokes this method, it quiesces the device by stopping the driver's
14000  * worker thread for the device, turning off device's interrupt and DMA,
14001  * and bring the device offline. Note that as the driver implements the
14002  * minimum PM requirements to a power-aware driver's PM support for the
14003  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14004  * to the suspend() method call will be treated as SUSPEND and the driver will
14005  * fully reinitialize its device during resume() method call, the driver will
14006  * set device to PCI_D3hot state in PCI config space instead of setting it
14007  * according to the @msg provided by the PM.
14008  *
14009  * Return code
14010  * 	0 - driver suspended the device
14011  * 	Error otherwise
14012  **/
14013 static int __maybe_unused
lpfc_pci_suspend_one_s3(struct device * dev_d)14014 lpfc_pci_suspend_one_s3(struct device *dev_d)
14015 {
14016 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14017 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14018 
14019 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14020 			"0473 PCI device Power Management suspend.\n");
14021 
14022 	/* Bring down the device */
14023 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14024 	lpfc_offline(phba);
14025 	kthread_stop(phba->worker_thread);
14026 
14027 	/* Disable interrupt from device */
14028 	lpfc_sli_disable_intr(phba);
14029 
14030 	return 0;
14031 }
14032 
14033 /**
14034  * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt
14035  * @dev_d: pointer to device
14036  *
14037  * This routine is to be called from the kernel's PCI subsystem to support
14038  * system Power Management (PM) to device with SLI-3 interface spec. When PM
14039  * invokes this method, it restores the device's PCI config space state and
14040  * fully reinitializes the device and brings it online. Note that as the
14041  * driver implements the minimum PM requirements to a power-aware driver's
14042  * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE,
14043  * FREEZE) to the suspend() method call will be treated as SUSPEND and the
14044  * driver will fully reinitialize its device during resume() method call,
14045  * the device will be set to PCI_D0 directly in PCI config space before
14046  * restoring the state.
14047  *
14048  * Return code
14049  * 	0 - driver suspended the device
14050  * 	Error otherwise
14051  **/
14052 static int __maybe_unused
lpfc_pci_resume_one_s3(struct device * dev_d)14053 lpfc_pci_resume_one_s3(struct device *dev_d)
14054 {
14055 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14056 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14057 	uint32_t intr_mode;
14058 	int error;
14059 
14060 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14061 			"0452 PCI device Power Management resume.\n");
14062 
14063 	/* Startup the kernel thread for this host adapter. */
14064 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14065 					"lpfc_worker_%d", phba->brd_no);
14066 	if (IS_ERR(phba->worker_thread)) {
14067 		error = PTR_ERR(phba->worker_thread);
14068 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14069 				"0434 PM resume failed to start worker "
14070 				"thread: error=x%x.\n", error);
14071 		return error;
14072 	}
14073 
14074 	/* Init cpu_map array */
14075 	lpfc_cpu_map_array_init(phba);
14076 	/* Init hba_eq_hdl array */
14077 	lpfc_hba_eq_hdl_array_init(phba);
14078 	/* Configure and enable interrupt */
14079 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14080 	if (intr_mode == LPFC_INTR_ERROR) {
14081 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14082 				"0430 PM resume Failed to enable interrupt\n");
14083 		return -EIO;
14084 	} else
14085 		phba->intr_mode = intr_mode;
14086 
14087 	/* Restart HBA and bring it online */
14088 	lpfc_sli_brdrestart(phba);
14089 	lpfc_online(phba);
14090 
14091 	/* Log the current active interrupt mode */
14092 	lpfc_log_intr_mode(phba, phba->intr_mode);
14093 
14094 	return 0;
14095 }
14096 
14097 /**
14098  * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover
14099  * @phba: pointer to lpfc hba data structure.
14100  *
14101  * This routine is called to prepare the SLI3 device for PCI slot recover. It
14102  * aborts all the outstanding SCSI I/Os to the pci device.
14103  **/
14104 static void
lpfc_sli_prep_dev_for_recover(struct lpfc_hba * phba)14105 lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba)
14106 {
14107 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14108 			"2723 PCI channel I/O abort preparing for recovery\n");
14109 
14110 	/*
14111 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14112 	 * and let the SCSI mid-layer to retry them to recover.
14113 	 */
14114 	lpfc_sli_abort_fcp_rings(phba);
14115 }
14116 
14117 /**
14118  * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset
14119  * @phba: pointer to lpfc hba data structure.
14120  *
14121  * This routine is called to prepare the SLI3 device for PCI slot reset. It
14122  * disables the device interrupt and pci device, and aborts the internal FCP
14123  * pending I/Os.
14124  **/
14125 static void
lpfc_sli_prep_dev_for_reset(struct lpfc_hba * phba)14126 lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba)
14127 {
14128 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14129 			"2710 PCI channel disable preparing for reset\n");
14130 
14131 	/* Block any management I/Os to the device */
14132 	lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT);
14133 
14134 	/* Block all SCSI devices' I/Os on the host */
14135 	lpfc_scsi_dev_block(phba);
14136 
14137 	/* Flush all driver's outstanding SCSI I/Os as we are to reset */
14138 	lpfc_sli_flush_io_rings(phba);
14139 
14140 	/* stop all timers */
14141 	lpfc_stop_hba_timers(phba);
14142 
14143 	/* Disable interrupt and pci device */
14144 	lpfc_sli_disable_intr(phba);
14145 	pci_disable_device(phba->pcidev);
14146 }
14147 
14148 /**
14149  * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable
14150  * @phba: pointer to lpfc hba data structure.
14151  *
14152  * This routine is called to prepare the SLI3 device for PCI slot permanently
14153  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14154  * pending I/Os.
14155  **/
14156 static void
lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba * phba)14157 lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14158 {
14159 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14160 			"2711 PCI channel permanent disable for failure\n");
14161 	/* Block all SCSI devices' I/Os on the host */
14162 	lpfc_scsi_dev_block(phba);
14163 
14164 	/* stop all timers */
14165 	lpfc_stop_hba_timers(phba);
14166 
14167 	/* Clean up all driver's outstanding SCSI I/Os */
14168 	lpfc_sli_flush_io_rings(phba);
14169 }
14170 
14171 /**
14172  * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error
14173  * @pdev: pointer to PCI device.
14174  * @state: the current PCI connection state.
14175  *
14176  * This routine is called from the PCI subsystem for I/O error handling to
14177  * device with SLI-3 interface spec. This function is called by the PCI
14178  * subsystem after a PCI bus error affecting this device has been detected.
14179  * When this function is invoked, it will need to stop all the I/Os and
14180  * interrupt(s) to the device. Once that is done, it will return
14181  * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery
14182  * as desired.
14183  *
14184  * Return codes
14185  * 	PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link
14186  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
14187  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14188  **/
14189 static pci_ers_result_t
lpfc_io_error_detected_s3(struct pci_dev * pdev,pci_channel_state_t state)14190 lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state)
14191 {
14192 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14193 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14194 
14195 	switch (state) {
14196 	case pci_channel_io_normal:
14197 		/* Non-fatal error, prepare for recovery */
14198 		lpfc_sli_prep_dev_for_recover(phba);
14199 		return PCI_ERS_RESULT_CAN_RECOVER;
14200 	case pci_channel_io_frozen:
14201 		/* Fatal error, prepare for slot reset */
14202 		lpfc_sli_prep_dev_for_reset(phba);
14203 		return PCI_ERS_RESULT_NEED_RESET;
14204 	case pci_channel_io_perm_failure:
14205 		/* Permanent failure, prepare for device down */
14206 		lpfc_sli_prep_dev_for_perm_failure(phba);
14207 		return PCI_ERS_RESULT_DISCONNECT;
14208 	default:
14209 		/* Unknown state, prepare and request slot reset */
14210 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14211 				"0472 Unknown PCI error state: x%x\n", state);
14212 		lpfc_sli_prep_dev_for_reset(phba);
14213 		return PCI_ERS_RESULT_NEED_RESET;
14214 	}
14215 }
14216 
14217 /**
14218  * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch.
14219  * @pdev: pointer to PCI device.
14220  *
14221  * This routine is called from the PCI subsystem for error handling to
14222  * device with SLI-3 interface spec. This is called after PCI bus has been
14223  * reset to restart the PCI card from scratch, as if from a cold-boot.
14224  * During the PCI subsystem error recovery, after driver returns
14225  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
14226  * recovery and then call this routine before calling the .resume method
14227  * to recover the device. This function will initialize the HBA device,
14228  * enable the interrupt, but it will just put the HBA to offline state
14229  * without passing any I/O traffic.
14230  *
14231  * Return codes
14232  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
14233  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
14234  */
14235 static pci_ers_result_t
lpfc_io_slot_reset_s3(struct pci_dev * pdev)14236 lpfc_io_slot_reset_s3(struct pci_dev *pdev)
14237 {
14238 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14239 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14240 	struct lpfc_sli *psli = &phba->sli;
14241 	uint32_t intr_mode;
14242 
14243 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
14244 	if (pci_enable_device_mem(pdev)) {
14245 		printk(KERN_ERR "lpfc: Cannot re-enable "
14246 			"PCI device after reset.\n");
14247 		return PCI_ERS_RESULT_DISCONNECT;
14248 	}
14249 
14250 	pci_restore_state(pdev);
14251 
14252 	/*
14253 	 * As the new kernel behavior of pci_restore_state() API call clears
14254 	 * device saved_state flag, need to save the restored state again.
14255 	 */
14256 	pci_save_state(pdev);
14257 
14258 	if (pdev->is_busmaster)
14259 		pci_set_master(pdev);
14260 
14261 	spin_lock_irq(&phba->hbalock);
14262 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
14263 	spin_unlock_irq(&phba->hbalock);
14264 
14265 	/* Configure and enable interrupt */
14266 	intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode);
14267 	if (intr_mode == LPFC_INTR_ERROR) {
14268 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14269 				"0427 Cannot re-enable interrupt after "
14270 				"slot reset.\n");
14271 		return PCI_ERS_RESULT_DISCONNECT;
14272 	} else
14273 		phba->intr_mode = intr_mode;
14274 
14275 	/* Take device offline, it will perform cleanup */
14276 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14277 	lpfc_offline(phba);
14278 	lpfc_sli_brdrestart(phba);
14279 
14280 	/* Log the current active interrupt mode */
14281 	lpfc_log_intr_mode(phba, phba->intr_mode);
14282 
14283 	return PCI_ERS_RESULT_RECOVERED;
14284 }
14285 
14286 /**
14287  * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device.
14288  * @pdev: pointer to PCI device
14289  *
14290  * This routine is called from the PCI subsystem for error handling to device
14291  * with SLI-3 interface spec. It is called when kernel error recovery tells
14292  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
14293  * error recovery. After this call, traffic can start to flow from this device
14294  * again.
14295  */
14296 static void
lpfc_io_resume_s3(struct pci_dev * pdev)14297 lpfc_io_resume_s3(struct pci_dev *pdev)
14298 {
14299 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14300 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14301 
14302 	/* Bring device online, it will be no-op for non-fatal error resume */
14303 	lpfc_online(phba);
14304 }
14305 
14306 /**
14307  * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve
14308  * @phba: pointer to lpfc hba data structure.
14309  *
14310  * returns the number of ELS/CT IOCBs to reserve
14311  **/
14312 int
lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba * phba)14313 lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba)
14314 {
14315 	int max_xri = phba->sli4_hba.max_cfg_param.max_xri;
14316 
14317 	if (phba->sli_rev == LPFC_SLI_REV4) {
14318 		if (max_xri <= 100)
14319 			return 10;
14320 		else if (max_xri <= 256)
14321 			return 25;
14322 		else if (max_xri <= 512)
14323 			return 50;
14324 		else if (max_xri <= 1024)
14325 			return 100;
14326 		else if (max_xri <= 1536)
14327 			return 150;
14328 		else if (max_xri <= 2048)
14329 			return 200;
14330 		else
14331 			return 250;
14332 	} else
14333 		return 0;
14334 }
14335 
14336 /**
14337  * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve
14338  * @phba: pointer to lpfc hba data structure.
14339  *
14340  * returns the number of ELS/CT + NVMET IOCBs to reserve
14341  **/
14342 int
lpfc_sli4_get_iocb_cnt(struct lpfc_hba * phba)14343 lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba)
14344 {
14345 	int max_xri = lpfc_sli4_get_els_iocb_cnt(phba);
14346 
14347 	if (phba->nvmet_support)
14348 		max_xri += LPFC_NVMET_BUF_POST;
14349 	return max_xri;
14350 }
14351 
14352 
14353 static int
lpfc_log_write_firmware_error(struct lpfc_hba * phba,uint32_t offset,uint32_t magic_number,uint32_t ftype,uint32_t fid,uint32_t fsize,const struct firmware * fw)14354 lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset,
14355 	uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize,
14356 	const struct firmware *fw)
14357 {
14358 	int rc;
14359 	u8 sli_family;
14360 
14361 	sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf);
14362 	/* Three cases:  (1) FW was not supported on the detected adapter.
14363 	 * (2) FW update has been locked out administratively.
14364 	 * (3) Some other error during FW update.
14365 	 * In each case, an unmaskable message is written to the console
14366 	 * for admin diagnosis.
14367 	 */
14368 	if (offset == ADD_STATUS_FW_NOT_SUPPORTED ||
14369 	    (sli_family == LPFC_SLI_INTF_FAMILY_G6 &&
14370 	     magic_number != MAGIC_NUMBER_G6) ||
14371 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7 &&
14372 	     magic_number != MAGIC_NUMBER_G7) ||
14373 	    (sli_family == LPFC_SLI_INTF_FAMILY_G7P &&
14374 	     magic_number != MAGIC_NUMBER_G7P)) {
14375 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14376 				"3030 This firmware version is not supported on"
14377 				" this HBA model. Device:%x Magic:%x Type:%x "
14378 				"ID:%x Size %d %zd\n",
14379 				phba->pcidev->device, magic_number, ftype, fid,
14380 				fsize, fw->size);
14381 		rc = -EINVAL;
14382 	} else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) {
14383 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14384 				"3021 Firmware downloads have been prohibited "
14385 				"by a system configuration setting on "
14386 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14387 				"%zd\n",
14388 				phba->pcidev->device, magic_number, ftype, fid,
14389 				fsize, fw->size);
14390 		rc = -EACCES;
14391 	} else {
14392 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14393 				"3022 FW Download failed. Add Status x%x "
14394 				"Device:%x Magic:%x Type:%x ID:%x Size %d "
14395 				"%zd\n",
14396 				offset, phba->pcidev->device, magic_number,
14397 				ftype, fid, fsize, fw->size);
14398 		rc = -EIO;
14399 	}
14400 	return rc;
14401 }
14402 
14403 /**
14404  * lpfc_write_firmware - attempt to write a firmware image to the port
14405  * @fw: pointer to firmware image returned from request_firmware.
14406  * @context: pointer to firmware image returned from request_firmware.
14407  *
14408  **/
14409 static void
lpfc_write_firmware(const struct firmware * fw,void * context)14410 lpfc_write_firmware(const struct firmware *fw, void *context)
14411 {
14412 	struct lpfc_hba *phba = (struct lpfc_hba *)context;
14413 	char fwrev[FW_REV_STR_SIZE];
14414 	struct lpfc_grp_hdr *image;
14415 	struct list_head dma_buffer_list;
14416 	int i, rc = 0;
14417 	struct lpfc_dmabuf *dmabuf, *next;
14418 	uint32_t offset = 0, temp_offset = 0;
14419 	uint32_t magic_number, ftype, fid, fsize;
14420 
14421 	/* It can be null in no-wait mode, sanity check */
14422 	if (!fw) {
14423 		rc = -ENXIO;
14424 		goto out;
14425 	}
14426 	image = (struct lpfc_grp_hdr *)fw->data;
14427 
14428 	magic_number = be32_to_cpu(image->magic_number);
14429 	ftype = bf_get_be32(lpfc_grp_hdr_file_type, image);
14430 	fid = bf_get_be32(lpfc_grp_hdr_id, image);
14431 	fsize = be32_to_cpu(image->size);
14432 
14433 	INIT_LIST_HEAD(&dma_buffer_list);
14434 	lpfc_decode_firmware_rev(phba, fwrev, 1);
14435 	if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) {
14436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14437 				"3023 Updating Firmware, Current Version:%s "
14438 				"New Version:%s\n",
14439 				fwrev, image->revision);
14440 		for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) {
14441 			dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
14442 					 GFP_KERNEL);
14443 			if (!dmabuf) {
14444 				rc = -ENOMEM;
14445 				goto release_out;
14446 			}
14447 			dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14448 							  SLI4_PAGE_SIZE,
14449 							  &dmabuf->phys,
14450 							  GFP_KERNEL);
14451 			if (!dmabuf->virt) {
14452 				kfree(dmabuf);
14453 				rc = -ENOMEM;
14454 				goto release_out;
14455 			}
14456 			list_add_tail(&dmabuf->list, &dma_buffer_list);
14457 		}
14458 		while (offset < fw->size) {
14459 			temp_offset = offset;
14460 			list_for_each_entry(dmabuf, &dma_buffer_list, list) {
14461 				if (temp_offset + SLI4_PAGE_SIZE > fw->size) {
14462 					memcpy(dmabuf->virt,
14463 					       fw->data + temp_offset,
14464 					       fw->size - temp_offset);
14465 					temp_offset = fw->size;
14466 					break;
14467 				}
14468 				memcpy(dmabuf->virt, fw->data + temp_offset,
14469 				       SLI4_PAGE_SIZE);
14470 				temp_offset += SLI4_PAGE_SIZE;
14471 			}
14472 			rc = lpfc_wr_object(phba, &dma_buffer_list,
14473 				    (fw->size - offset), &offset);
14474 			if (rc) {
14475 				rc = lpfc_log_write_firmware_error(phba, offset,
14476 								   magic_number,
14477 								   ftype,
14478 								   fid,
14479 								   fsize,
14480 								   fw);
14481 				goto release_out;
14482 			}
14483 		}
14484 		rc = offset;
14485 	} else
14486 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14487 				"3029 Skipped Firmware update, Current "
14488 				"Version:%s New Version:%s\n",
14489 				fwrev, image->revision);
14490 
14491 release_out:
14492 	list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) {
14493 		list_del(&dmabuf->list);
14494 		dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE,
14495 				  dmabuf->virt, dmabuf->phys);
14496 		kfree(dmabuf);
14497 	}
14498 	release_firmware(fw);
14499 out:
14500 	if (rc < 0)
14501 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14502 				"3062 Firmware update error, status %d.\n", rc);
14503 	else
14504 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14505 				"3024 Firmware update success: size %d.\n", rc);
14506 }
14507 
14508 /**
14509  * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade
14510  * @phba: pointer to lpfc hba data structure.
14511  * @fw_upgrade: which firmware to update.
14512  *
14513  * This routine is called to perform Linux generic firmware upgrade on device
14514  * that supports such feature.
14515  **/
14516 int
lpfc_sli4_request_firmware_update(struct lpfc_hba * phba,uint8_t fw_upgrade)14517 lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade)
14518 {
14519 	char file_name[ELX_FW_NAME_SIZE] = {0};
14520 	int ret;
14521 	const struct firmware *fw;
14522 
14523 	/* Only supported on SLI4 interface type 2 for now */
14524 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) <
14525 	    LPFC_SLI_INTF_IF_TYPE_2)
14526 		return -EPERM;
14527 
14528 	scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName);
14529 
14530 	if (fw_upgrade == INT_FW_UPGRADE) {
14531 		ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
14532 					file_name, &phba->pcidev->dev,
14533 					GFP_KERNEL, (void *)phba,
14534 					lpfc_write_firmware);
14535 	} else if (fw_upgrade == RUN_FW_UPGRADE) {
14536 		ret = request_firmware(&fw, file_name, &phba->pcidev->dev);
14537 		if (!ret)
14538 			lpfc_write_firmware(fw, (void *)phba);
14539 	} else {
14540 		ret = -EINVAL;
14541 	}
14542 
14543 	return ret;
14544 }
14545 
14546 /**
14547  * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys
14548  * @pdev: pointer to PCI device
14549  * @pid: pointer to PCI device identifier
14550  *
14551  * This routine is called from the kernel's PCI subsystem to device with
14552  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14553  * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific
14554  * information of the device and driver to see if the driver state that it
14555  * can support this kind of device. If the match is successful, the driver
14556  * core invokes this routine. If this routine determines it can claim the HBA,
14557  * it does all the initialization that it needs to do to handle the HBA
14558  * properly.
14559  *
14560  * Return code
14561  * 	0 - driver can claim the device
14562  * 	negative value - driver can not claim the device
14563  **/
14564 static int
lpfc_pci_probe_one_s4(struct pci_dev * pdev,const struct pci_device_id * pid)14565 lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid)
14566 {
14567 	struct lpfc_hba   *phba;
14568 	struct lpfc_vport *vport = NULL;
14569 	struct Scsi_Host  *shost = NULL;
14570 	int error;
14571 	uint32_t cfg_mode, intr_mode;
14572 
14573 	/* Allocate memory for HBA structure */
14574 	phba = lpfc_hba_alloc(pdev);
14575 	if (!phba)
14576 		return -ENOMEM;
14577 
14578 	INIT_LIST_HEAD(&phba->poll_list);
14579 
14580 	/* Perform generic PCI device enabling operation */
14581 	error = lpfc_enable_pci_dev(phba);
14582 	if (error)
14583 		goto out_free_phba;
14584 
14585 	/* Set up SLI API function jump table for PCI-device group-1 HBAs */
14586 	error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC);
14587 	if (error)
14588 		goto out_disable_pci_dev;
14589 
14590 	/* Set up SLI-4 specific device PCI memory space */
14591 	error = lpfc_sli4_pci_mem_setup(phba);
14592 	if (error) {
14593 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14594 				"1410 Failed to set up pci memory space.\n");
14595 		goto out_disable_pci_dev;
14596 	}
14597 
14598 	/* Set up SLI-4 Specific device driver resources */
14599 	error = lpfc_sli4_driver_resource_setup(phba);
14600 	if (error) {
14601 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14602 				"1412 Failed to set up driver resource.\n");
14603 		goto out_unset_pci_mem_s4;
14604 	}
14605 
14606 	INIT_LIST_HEAD(&phba->active_rrq_list);
14607 	INIT_LIST_HEAD(&phba->fcf.fcf_pri_list);
14608 
14609 	/* Set up common device driver resources */
14610 	error = lpfc_setup_driver_resource_phase2(phba);
14611 	if (error) {
14612 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14613 				"1414 Failed to set up driver resource.\n");
14614 		goto out_unset_driver_resource_s4;
14615 	}
14616 
14617 	/* Get the default values for Model Name and Description */
14618 	lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
14619 
14620 	/* Now, trying to enable interrupt and bring up the device */
14621 	cfg_mode = phba->cfg_use_msi;
14622 
14623 	/* Put device to a known state before enabling interrupt */
14624 	phba->pport = NULL;
14625 	lpfc_stop_port(phba);
14626 
14627 	/* Init cpu_map array */
14628 	lpfc_cpu_map_array_init(phba);
14629 
14630 	/* Init hba_eq_hdl array */
14631 	lpfc_hba_eq_hdl_array_init(phba);
14632 
14633 	/* Configure and enable interrupt */
14634 	intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode);
14635 	if (intr_mode == LPFC_INTR_ERROR) {
14636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14637 				"0426 Failed to enable interrupt.\n");
14638 		error = -ENODEV;
14639 		goto out_unset_driver_resource;
14640 	}
14641 	/* Default to single EQ for non-MSI-X */
14642 	if (phba->intr_type != MSIX) {
14643 		phba->cfg_irq_chann = 1;
14644 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14645 			if (phba->nvmet_support)
14646 				phba->cfg_nvmet_mrq = 1;
14647 		}
14648 	}
14649 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
14650 
14651 	/* Create SCSI host to the physical port */
14652 	error = lpfc_create_shost(phba);
14653 	if (error) {
14654 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14655 				"1415 Failed to create scsi host.\n");
14656 		goto out_disable_intr;
14657 	}
14658 	vport = phba->pport;
14659 	shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */
14660 
14661 	/* Configure sysfs attributes */
14662 	error = lpfc_alloc_sysfs_attr(vport);
14663 	if (error) {
14664 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14665 				"1416 Failed to allocate sysfs attr\n");
14666 		goto out_destroy_shost;
14667 	}
14668 
14669 	/* Set up SLI-4 HBA */
14670 	if (lpfc_sli4_hba_setup(phba)) {
14671 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14672 				"1421 Failed to set up hba\n");
14673 		error = -ENODEV;
14674 		goto out_free_sysfs_attr;
14675 	}
14676 
14677 	/* Log the current active interrupt mode */
14678 	phba->intr_mode = intr_mode;
14679 	lpfc_log_intr_mode(phba, intr_mode);
14680 
14681 	/* Perform post initialization setup */
14682 	lpfc_post_init_setup(phba);
14683 
14684 	/* NVME support in FW earlier in the driver load corrects the
14685 	 * FC4 type making a check for nvme_support unnecessary.
14686 	 */
14687 	if (phba->nvmet_support == 0) {
14688 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14689 			/* Create NVME binding with nvme_fc_transport. This
14690 			 * ensures the vport is initialized.  If the localport
14691 			 * create fails, it should not unload the driver to
14692 			 * support field issues.
14693 			 */
14694 			error = lpfc_nvme_create_localport(vport);
14695 			if (error) {
14696 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14697 						"6004 NVME registration "
14698 						"failed, error x%x\n",
14699 						error);
14700 			}
14701 		}
14702 	}
14703 
14704 	/* check for firmware upgrade or downgrade */
14705 	if (phba->cfg_request_firmware_upgrade)
14706 		lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE);
14707 
14708 	/* Check if there are static vports to be created. */
14709 	lpfc_create_static_vport(phba);
14710 
14711 	/* Enable RAS FW log support */
14712 	lpfc_sli4_ras_setup(phba);
14713 
14714 	timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14715 	cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp);
14716 
14717 	return 0;
14718 
14719 out_free_sysfs_attr:
14720 	lpfc_free_sysfs_attr(vport);
14721 out_destroy_shost:
14722 	lpfc_destroy_shost(phba);
14723 out_disable_intr:
14724 	lpfc_sli4_disable_intr(phba);
14725 out_unset_driver_resource:
14726 	lpfc_unset_driver_resource_phase2(phba);
14727 out_unset_driver_resource_s4:
14728 	lpfc_sli4_driver_resource_unset(phba);
14729 out_unset_pci_mem_s4:
14730 	lpfc_sli4_pci_mem_unset(phba);
14731 out_disable_pci_dev:
14732 	lpfc_disable_pci_dev(phba);
14733 	if (shost)
14734 		scsi_host_put(shost);
14735 out_free_phba:
14736 	lpfc_hba_free(phba);
14737 	return error;
14738 }
14739 
14740 /**
14741  * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem
14742  * @pdev: pointer to PCI device
14743  *
14744  * This routine is called from the kernel's PCI subsystem to device with
14745  * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is
14746  * removed from PCI bus, it performs all the necessary cleanup for the HBA
14747  * device to be removed from the PCI subsystem properly.
14748  **/
14749 static void
lpfc_pci_remove_one_s4(struct pci_dev * pdev)14750 lpfc_pci_remove_one_s4(struct pci_dev *pdev)
14751 {
14752 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
14753 	struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
14754 	struct lpfc_vport **vports;
14755 	struct lpfc_hba *phba = vport->phba;
14756 	int i;
14757 
14758 	/* Mark the device unloading flag */
14759 	spin_lock_irq(&phba->hbalock);
14760 	vport->load_flag |= FC_UNLOADING;
14761 	spin_unlock_irq(&phba->hbalock);
14762 	if (phba->cgn_i)
14763 		lpfc_unreg_congestion_buf(phba);
14764 
14765 	lpfc_free_sysfs_attr(vport);
14766 
14767 	/* Release all the vports against this physical port */
14768 	vports = lpfc_create_vport_work_array(phba);
14769 	if (vports != NULL)
14770 		for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
14771 			if (vports[i]->port_type == LPFC_PHYSICAL_PORT)
14772 				continue;
14773 			fc_vport_terminate(vports[i]->fc_vport);
14774 		}
14775 	lpfc_destroy_vport_work_array(phba, vports);
14776 
14777 	/* Remove FC host with the physical port */
14778 	fc_remove_host(shost);
14779 	scsi_remove_host(shost);
14780 
14781 	/* Perform ndlp cleanup on the physical port.  The nvme and nvmet
14782 	 * localports are destroyed after to cleanup all transport memory.
14783 	 */
14784 	lpfc_cleanup(vport);
14785 	lpfc_nvmet_destroy_targetport(phba);
14786 	lpfc_nvme_destroy_localport(vport);
14787 
14788 	/* De-allocate multi-XRI pools */
14789 	if (phba->cfg_xri_rebalancing)
14790 		lpfc_destroy_multixri_pools(phba);
14791 
14792 	/*
14793 	 * Bring down the SLI Layer. This step disables all interrupts,
14794 	 * clears the rings, discards all mailbox commands, and resets
14795 	 * the HBA FCoE function.
14796 	 */
14797 	lpfc_debugfs_terminate(vport);
14798 
14799 	lpfc_stop_hba_timers(phba);
14800 	spin_lock_irq(&phba->port_list_lock);
14801 	list_del_init(&vport->listentry);
14802 	spin_unlock_irq(&phba->port_list_lock);
14803 
14804 	/* Perform scsi free before driver resource_unset since scsi
14805 	 * buffers are released to their corresponding pools here.
14806 	 */
14807 	lpfc_io_free(phba);
14808 	lpfc_free_iocb_list(phba);
14809 	lpfc_sli4_hba_unset(phba);
14810 
14811 	lpfc_unset_driver_resource_phase2(phba);
14812 	lpfc_sli4_driver_resource_unset(phba);
14813 
14814 	/* Unmap adapter Control and Doorbell registers */
14815 	lpfc_sli4_pci_mem_unset(phba);
14816 
14817 	/* Release PCI resources and disable device's PCI function */
14818 	scsi_host_put(shost);
14819 	lpfc_disable_pci_dev(phba);
14820 
14821 	/* Finally, free the driver's device data structure */
14822 	lpfc_hba_free(phba);
14823 
14824 	return;
14825 }
14826 
14827 /**
14828  * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt
14829  * @dev_d: pointer to device
14830  *
14831  * This routine is called from the kernel's PCI subsystem to support system
14832  * Power Management (PM) to device with SLI-4 interface spec. When PM invokes
14833  * this method, it quiesces the device by stopping the driver's worker
14834  * thread for the device, turning off device's interrupt and DMA, and bring
14835  * the device offline. Note that as the driver implements the minimum PM
14836  * requirements to a power-aware driver's PM support for suspend/resume -- all
14837  * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
14838  * method call will be treated as SUSPEND and the driver will fully
14839  * reinitialize its device during resume() method call, the driver will set
14840  * device to PCI_D3hot state in PCI config space instead of setting it
14841  * according to the @msg provided by the PM.
14842  *
14843  * Return code
14844  * 	0 - driver suspended the device
14845  * 	Error otherwise
14846  **/
14847 static int __maybe_unused
lpfc_pci_suspend_one_s4(struct device * dev_d)14848 lpfc_pci_suspend_one_s4(struct device *dev_d)
14849 {
14850 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14851 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14852 
14853 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14854 			"2843 PCI device Power Management suspend.\n");
14855 
14856 	/* Bring down the device */
14857 	lpfc_offline_prep(phba, LPFC_MBX_WAIT);
14858 	lpfc_offline(phba);
14859 	kthread_stop(phba->worker_thread);
14860 
14861 	/* Disable interrupt from device */
14862 	lpfc_sli4_disable_intr(phba);
14863 	lpfc_sli4_queue_destroy(phba);
14864 
14865 	return 0;
14866 }
14867 
14868 /**
14869  * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt
14870  * @dev_d: pointer to device
14871  *
14872  * This routine is called from the kernel's PCI subsystem to support system
14873  * Power Management (PM) to device with SLI-4 interface spac. When PM invokes
14874  * this method, it restores the device's PCI config space state and fully
14875  * reinitializes the device and brings it online. Note that as the driver
14876  * implements the minimum PM requirements to a power-aware driver's PM for
14877  * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE)
14878  * to the suspend() method call will be treated as SUSPEND and the driver
14879  * will fully reinitialize its device during resume() method call, the device
14880  * will be set to PCI_D0 directly in PCI config space before restoring the
14881  * state.
14882  *
14883  * Return code
14884  * 	0 - driver suspended the device
14885  * 	Error otherwise
14886  **/
14887 static int __maybe_unused
lpfc_pci_resume_one_s4(struct device * dev_d)14888 lpfc_pci_resume_one_s4(struct device *dev_d)
14889 {
14890 	struct Scsi_Host *shost = dev_get_drvdata(dev_d);
14891 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
14892 	uint32_t intr_mode;
14893 	int error;
14894 
14895 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
14896 			"0292 PCI device Power Management resume.\n");
14897 
14898 	 /* Startup the kernel thread for this host adapter. */
14899 	phba->worker_thread = kthread_run(lpfc_do_work, phba,
14900 					"lpfc_worker_%d", phba->brd_no);
14901 	if (IS_ERR(phba->worker_thread)) {
14902 		error = PTR_ERR(phba->worker_thread);
14903 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14904 				"0293 PM resume failed to start worker "
14905 				"thread: error=x%x.\n", error);
14906 		return error;
14907 	}
14908 
14909 	/* Configure and enable interrupt */
14910 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
14911 	if (intr_mode == LPFC_INTR_ERROR) {
14912 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14913 				"0294 PM resume Failed to enable interrupt\n");
14914 		return -EIO;
14915 	} else
14916 		phba->intr_mode = intr_mode;
14917 
14918 	/* Restart HBA and bring it online */
14919 	lpfc_sli_brdrestart(phba);
14920 	lpfc_online(phba);
14921 
14922 	/* Log the current active interrupt mode */
14923 	lpfc_log_intr_mode(phba, phba->intr_mode);
14924 
14925 	return 0;
14926 }
14927 
14928 /**
14929  * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover
14930  * @phba: pointer to lpfc hba data structure.
14931  *
14932  * This routine is called to prepare the SLI4 device for PCI slot recover. It
14933  * aborts all the outstanding SCSI I/Os to the pci device.
14934  **/
14935 static void
lpfc_sli4_prep_dev_for_recover(struct lpfc_hba * phba)14936 lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba)
14937 {
14938 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14939 			"2828 PCI channel I/O abort preparing for recovery\n");
14940 	/*
14941 	 * There may be errored I/Os through HBA, abort all I/Os on txcmplq
14942 	 * and let the SCSI mid-layer to retry them to recover.
14943 	 */
14944 	lpfc_sli_abort_fcp_rings(phba);
14945 }
14946 
14947 /**
14948  * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset
14949  * @phba: pointer to lpfc hba data structure.
14950  *
14951  * This routine is called to prepare the SLI4 device for PCI slot reset. It
14952  * disables the device interrupt and pci device, and aborts the internal FCP
14953  * pending I/Os.
14954  **/
14955 static void
lpfc_sli4_prep_dev_for_reset(struct lpfc_hba * phba)14956 lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba)
14957 {
14958 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14959 			"2826 PCI channel disable preparing for reset\n");
14960 
14961 	/* Block any management I/Os to the device */
14962 	lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT);
14963 
14964 	/* Block all SCSI devices' I/Os on the host */
14965 	lpfc_scsi_dev_block(phba);
14966 
14967 	/* Flush all driver's outstanding I/Os as we are to reset */
14968 	lpfc_sli_flush_io_rings(phba);
14969 
14970 	/* stop all timers */
14971 	lpfc_stop_hba_timers(phba);
14972 
14973 	/* Disable interrupt and pci device */
14974 	lpfc_sli4_disable_intr(phba);
14975 	lpfc_sli4_queue_destroy(phba);
14976 	pci_disable_device(phba->pcidev);
14977 }
14978 
14979 /**
14980  * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable
14981  * @phba: pointer to lpfc hba data structure.
14982  *
14983  * This routine is called to prepare the SLI4 device for PCI slot permanently
14984  * disabling. It blocks the SCSI transport layer traffic and flushes the FCP
14985  * pending I/Os.
14986  **/
14987 static void
lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba * phba)14988 lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba)
14989 {
14990 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14991 			"2827 PCI channel permanent disable for failure\n");
14992 
14993 	/* Block all SCSI devices' I/Os on the host */
14994 	lpfc_scsi_dev_block(phba);
14995 
14996 	/* stop all timers */
14997 	lpfc_stop_hba_timers(phba);
14998 
14999 	/* Clean up all driver's outstanding I/Os */
15000 	lpfc_sli_flush_io_rings(phba);
15001 }
15002 
15003 /**
15004  * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device
15005  * @pdev: pointer to PCI device.
15006  * @state: the current PCI connection state.
15007  *
15008  * This routine is called from the PCI subsystem for error handling to device
15009  * with SLI-4 interface spec. This function is called by the PCI subsystem
15010  * after a PCI bus error affecting this device has been detected. When this
15011  * function is invoked, it will need to stop all the I/Os and interrupt(s)
15012  * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET
15013  * for the PCI subsystem to perform proper recovery as desired.
15014  *
15015  * Return codes
15016  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15017  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15018  **/
15019 static pci_ers_result_t
lpfc_io_error_detected_s4(struct pci_dev * pdev,pci_channel_state_t state)15020 lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state)
15021 {
15022 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15023 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15024 
15025 	switch (state) {
15026 	case pci_channel_io_normal:
15027 		/* Non-fatal error, prepare for recovery */
15028 		lpfc_sli4_prep_dev_for_recover(phba);
15029 		return PCI_ERS_RESULT_CAN_RECOVER;
15030 	case pci_channel_io_frozen:
15031 		phba->hba_flag |= HBA_PCI_ERR;
15032 		/* Fatal error, prepare for slot reset */
15033 		lpfc_sli4_prep_dev_for_reset(phba);
15034 		return PCI_ERS_RESULT_NEED_RESET;
15035 	case pci_channel_io_perm_failure:
15036 		phba->hba_flag |= HBA_PCI_ERR;
15037 		/* Permanent failure, prepare for device down */
15038 		lpfc_sli4_prep_dev_for_perm_failure(phba);
15039 		return PCI_ERS_RESULT_DISCONNECT;
15040 	default:
15041 		phba->hba_flag |= HBA_PCI_ERR;
15042 		/* Unknown state, prepare and request slot reset */
15043 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15044 				"2825 Unknown PCI error state: x%x\n", state);
15045 		lpfc_sli4_prep_dev_for_reset(phba);
15046 		return PCI_ERS_RESULT_NEED_RESET;
15047 	}
15048 }
15049 
15050 /**
15051  * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch
15052  * @pdev: pointer to PCI device.
15053  *
15054  * This routine is called from the PCI subsystem for error handling to device
15055  * with SLI-4 interface spec. It is called after PCI bus has been reset to
15056  * restart the PCI card from scratch, as if from a cold-boot. During the
15057  * PCI subsystem error recovery, after the driver returns
15058  * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error
15059  * recovery and then call this routine before calling the .resume method to
15060  * recover the device. This function will initialize the HBA device, enable
15061  * the interrupt, but it will just put the HBA to offline state without
15062  * passing any I/O traffic.
15063  *
15064  * Return codes
15065  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15066  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15067  */
15068 static pci_ers_result_t
lpfc_io_slot_reset_s4(struct pci_dev * pdev)15069 lpfc_io_slot_reset_s4(struct pci_dev *pdev)
15070 {
15071 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15072 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15073 	struct lpfc_sli *psli = &phba->sli;
15074 	uint32_t intr_mode;
15075 
15076 	dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
15077 	if (pci_enable_device_mem(pdev)) {
15078 		printk(KERN_ERR "lpfc: Cannot re-enable "
15079 			"PCI device after reset.\n");
15080 		return PCI_ERS_RESULT_DISCONNECT;
15081 	}
15082 
15083 	pci_restore_state(pdev);
15084 
15085 	phba->hba_flag &= ~HBA_PCI_ERR;
15086 	/*
15087 	 * As the new kernel behavior of pci_restore_state() API call clears
15088 	 * device saved_state flag, need to save the restored state again.
15089 	 */
15090 	pci_save_state(pdev);
15091 
15092 	if (pdev->is_busmaster)
15093 		pci_set_master(pdev);
15094 
15095 	spin_lock_irq(&phba->hbalock);
15096 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
15097 	spin_unlock_irq(&phba->hbalock);
15098 
15099 	/* Init cpu_map array */
15100 	lpfc_cpu_map_array_init(phba);
15101 	/* Configure and enable interrupt */
15102 	intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode);
15103 	if (intr_mode == LPFC_INTR_ERROR) {
15104 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15105 				"2824 Cannot re-enable interrupt after "
15106 				"slot reset.\n");
15107 		return PCI_ERS_RESULT_DISCONNECT;
15108 	} else
15109 		phba->intr_mode = intr_mode;
15110 	lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann);
15111 
15112 	/* Log the current active interrupt mode */
15113 	lpfc_log_intr_mode(phba, phba->intr_mode);
15114 
15115 	return PCI_ERS_RESULT_RECOVERED;
15116 }
15117 
15118 /**
15119  * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device
15120  * @pdev: pointer to PCI device
15121  *
15122  * This routine is called from the PCI subsystem for error handling to device
15123  * with SLI-4 interface spec. It is called when kernel error recovery tells
15124  * the lpfc driver that it is ok to resume normal PCI operation after PCI bus
15125  * error recovery. After this call, traffic can start to flow from this device
15126  * again.
15127  **/
15128 static void
lpfc_io_resume_s4(struct pci_dev * pdev)15129 lpfc_io_resume_s4(struct pci_dev *pdev)
15130 {
15131 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15132 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15133 
15134 	/*
15135 	 * In case of slot reset, as function reset is performed through
15136 	 * mailbox command which needs DMA to be enabled, this operation
15137 	 * has to be moved to the io resume phase. Taking device offline
15138 	 * will perform the necessary cleanup.
15139 	 */
15140 	if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) {
15141 		/* Perform device reset */
15142 		lpfc_offline_prep(phba, LPFC_MBX_WAIT);
15143 		lpfc_offline(phba);
15144 		lpfc_sli_brdrestart(phba);
15145 		/* Bring the device back online */
15146 		lpfc_online(phba);
15147 	}
15148 }
15149 
15150 /**
15151  * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem
15152  * @pdev: pointer to PCI device
15153  * @pid: pointer to PCI device identifier
15154  *
15155  * This routine is to be registered to the kernel's PCI subsystem. When an
15156  * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks
15157  * at PCI device-specific information of the device and driver to see if the
15158  * driver state that it can support this kind of device. If the match is
15159  * successful, the driver core invokes this routine. This routine dispatches
15160  * the action to the proper SLI-3 or SLI-4 device probing routine, which will
15161  * do all the initialization that it needs to do to handle the HBA device
15162  * properly.
15163  *
15164  * Return code
15165  * 	0 - driver can claim the device
15166  * 	negative value - driver can not claim the device
15167  **/
15168 static int
lpfc_pci_probe_one(struct pci_dev * pdev,const struct pci_device_id * pid)15169 lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
15170 {
15171 	int rc;
15172 	struct lpfc_sli_intf intf;
15173 
15174 	if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0))
15175 		return -ENODEV;
15176 
15177 	if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) &&
15178 	    (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4))
15179 		rc = lpfc_pci_probe_one_s4(pdev, pid);
15180 	else
15181 		rc = lpfc_pci_probe_one_s3(pdev, pid);
15182 
15183 	return rc;
15184 }
15185 
15186 /**
15187  * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem
15188  * @pdev: pointer to PCI device
15189  *
15190  * This routine is to be registered to the kernel's PCI subsystem. When an
15191  * Emulex HBA is removed from PCI bus, the driver core invokes this routine.
15192  * This routine dispatches the action to the proper SLI-3 or SLI-4 device
15193  * remove routine, which will perform all the necessary cleanup for the
15194  * device to be removed from the PCI subsystem properly.
15195  **/
15196 static void
lpfc_pci_remove_one(struct pci_dev * pdev)15197 lpfc_pci_remove_one(struct pci_dev *pdev)
15198 {
15199 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15200 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15201 
15202 	switch (phba->pci_dev_grp) {
15203 	case LPFC_PCI_DEV_LP:
15204 		lpfc_pci_remove_one_s3(pdev);
15205 		break;
15206 	case LPFC_PCI_DEV_OC:
15207 		lpfc_pci_remove_one_s4(pdev);
15208 		break;
15209 	default:
15210 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15211 				"1424 Invalid PCI device group: 0x%x\n",
15212 				phba->pci_dev_grp);
15213 		break;
15214 	}
15215 	return;
15216 }
15217 
15218 /**
15219  * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management
15220  * @dev: pointer to device
15221  *
15222  * This routine is to be registered to the kernel's PCI subsystem to support
15223  * system Power Management (PM). When PM invokes this method, it dispatches
15224  * the action to the proper SLI-3 or SLI-4 device suspend routine, which will
15225  * suspend the device.
15226  *
15227  * Return code
15228  * 	0 - driver suspended the device
15229  * 	Error otherwise
15230  **/
15231 static int __maybe_unused
lpfc_pci_suspend_one(struct device * dev)15232 lpfc_pci_suspend_one(struct device *dev)
15233 {
15234 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15235 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15236 	int rc = -ENODEV;
15237 
15238 	switch (phba->pci_dev_grp) {
15239 	case LPFC_PCI_DEV_LP:
15240 		rc = lpfc_pci_suspend_one_s3(dev);
15241 		break;
15242 	case LPFC_PCI_DEV_OC:
15243 		rc = lpfc_pci_suspend_one_s4(dev);
15244 		break;
15245 	default:
15246 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15247 				"1425 Invalid PCI device group: 0x%x\n",
15248 				phba->pci_dev_grp);
15249 		break;
15250 	}
15251 	return rc;
15252 }
15253 
15254 /**
15255  * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management
15256  * @dev: pointer to device
15257  *
15258  * This routine is to be registered to the kernel's PCI subsystem to support
15259  * system Power Management (PM). When PM invokes this method, it dispatches
15260  * the action to the proper SLI-3 or SLI-4 device resume routine, which will
15261  * resume the device.
15262  *
15263  * Return code
15264  * 	0 - driver suspended the device
15265  * 	Error otherwise
15266  **/
15267 static int __maybe_unused
lpfc_pci_resume_one(struct device * dev)15268 lpfc_pci_resume_one(struct device *dev)
15269 {
15270 	struct Scsi_Host *shost = dev_get_drvdata(dev);
15271 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15272 	int rc = -ENODEV;
15273 
15274 	switch (phba->pci_dev_grp) {
15275 	case LPFC_PCI_DEV_LP:
15276 		rc = lpfc_pci_resume_one_s3(dev);
15277 		break;
15278 	case LPFC_PCI_DEV_OC:
15279 		rc = lpfc_pci_resume_one_s4(dev);
15280 		break;
15281 	default:
15282 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15283 				"1426 Invalid PCI device group: 0x%x\n",
15284 				phba->pci_dev_grp);
15285 		break;
15286 	}
15287 	return rc;
15288 }
15289 
15290 /**
15291  * lpfc_io_error_detected - lpfc method for handling PCI I/O error
15292  * @pdev: pointer to PCI device.
15293  * @state: the current PCI connection state.
15294  *
15295  * This routine is registered to the PCI subsystem for error handling. This
15296  * function is called by the PCI subsystem after a PCI bus error affecting
15297  * this device has been detected. When this routine is invoked, it dispatches
15298  * the action to the proper SLI-3 or SLI-4 device error detected handling
15299  * routine, which will perform the proper error detected operation.
15300  *
15301  * Return codes
15302  * 	PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
15303  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15304  **/
15305 static pci_ers_result_t
lpfc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)15306 lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
15307 {
15308 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15309 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15310 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15311 
15312 	if (phba->link_state == LPFC_HBA_ERROR &&
15313 	    phba->hba_flag & HBA_IOQ_FLUSH)
15314 		return PCI_ERS_RESULT_NEED_RESET;
15315 
15316 	switch (phba->pci_dev_grp) {
15317 	case LPFC_PCI_DEV_LP:
15318 		rc = lpfc_io_error_detected_s3(pdev, state);
15319 		break;
15320 	case LPFC_PCI_DEV_OC:
15321 		rc = lpfc_io_error_detected_s4(pdev, state);
15322 		break;
15323 	default:
15324 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15325 				"1427 Invalid PCI device group: 0x%x\n",
15326 				phba->pci_dev_grp);
15327 		break;
15328 	}
15329 	return rc;
15330 }
15331 
15332 /**
15333  * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch
15334  * @pdev: pointer to PCI device.
15335  *
15336  * This routine is registered to the PCI subsystem for error handling. This
15337  * function is called after PCI bus has been reset to restart the PCI card
15338  * from scratch, as if from a cold-boot. When this routine is invoked, it
15339  * dispatches the action to the proper SLI-3 or SLI-4 device reset handling
15340  * routine, which will perform the proper device reset.
15341  *
15342  * Return codes
15343  * 	PCI_ERS_RESULT_RECOVERED - the device has been recovered
15344  * 	PCI_ERS_RESULT_DISCONNECT - device could not be recovered
15345  **/
15346 static pci_ers_result_t
lpfc_io_slot_reset(struct pci_dev * pdev)15347 lpfc_io_slot_reset(struct pci_dev *pdev)
15348 {
15349 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15350 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15351 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
15352 
15353 	switch (phba->pci_dev_grp) {
15354 	case LPFC_PCI_DEV_LP:
15355 		rc = lpfc_io_slot_reset_s3(pdev);
15356 		break;
15357 	case LPFC_PCI_DEV_OC:
15358 		rc = lpfc_io_slot_reset_s4(pdev);
15359 		break;
15360 	default:
15361 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15362 				"1428 Invalid PCI device group: 0x%x\n",
15363 				phba->pci_dev_grp);
15364 		break;
15365 	}
15366 	return rc;
15367 }
15368 
15369 /**
15370  * lpfc_io_resume - lpfc method for resuming PCI I/O operation
15371  * @pdev: pointer to PCI device
15372  *
15373  * This routine is registered to the PCI subsystem for error handling. It
15374  * is called when kernel error recovery tells the lpfc driver that it is
15375  * OK to resume normal PCI operation after PCI bus error recovery. When
15376  * this routine is invoked, it dispatches the action to the proper SLI-3
15377  * or SLI-4 device io_resume routine, which will resume the device operation.
15378  **/
15379 static void
lpfc_io_resume(struct pci_dev * pdev)15380 lpfc_io_resume(struct pci_dev *pdev)
15381 {
15382 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
15383 	struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
15384 
15385 	switch (phba->pci_dev_grp) {
15386 	case LPFC_PCI_DEV_LP:
15387 		lpfc_io_resume_s3(pdev);
15388 		break;
15389 	case LPFC_PCI_DEV_OC:
15390 		lpfc_io_resume_s4(pdev);
15391 		break;
15392 	default:
15393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15394 				"1429 Invalid PCI device group: 0x%x\n",
15395 				phba->pci_dev_grp);
15396 		break;
15397 	}
15398 	return;
15399 }
15400 
15401 /**
15402  * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter
15403  * @phba: pointer to lpfc hba data structure.
15404  *
15405  * This routine checks to see if OAS is supported for this adapter. If
15406  * supported, the configure Flash Optimized Fabric flag is set.  Otherwise,
15407  * the enable oas flag is cleared and the pool created for OAS device data
15408  * is destroyed.
15409  *
15410  **/
15411 static void
lpfc_sli4_oas_verify(struct lpfc_hba * phba)15412 lpfc_sli4_oas_verify(struct lpfc_hba *phba)
15413 {
15414 
15415 	if (!phba->cfg_EnableXLane)
15416 		return;
15417 
15418 	if (phba->sli4_hba.pc_sli4_params.oas_supported) {
15419 		phba->cfg_fof = 1;
15420 	} else {
15421 		phba->cfg_fof = 0;
15422 		mempool_destroy(phba->device_data_mem_pool);
15423 		phba->device_data_mem_pool = NULL;
15424 	}
15425 
15426 	return;
15427 }
15428 
15429 /**
15430  * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter
15431  * @phba: pointer to lpfc hba data structure.
15432  *
15433  * This routine checks to see if RAS is supported by the adapter. Check the
15434  * function through which RAS support enablement is to be done.
15435  **/
15436 void
lpfc_sli4_ras_init(struct lpfc_hba * phba)15437 lpfc_sli4_ras_init(struct lpfc_hba *phba)
15438 {
15439 	/* if ASIC_GEN_NUM >= 0xC) */
15440 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
15441 		    LPFC_SLI_INTF_IF_TYPE_6) ||
15442 	    (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) ==
15443 		    LPFC_SLI_INTF_FAMILY_G6)) {
15444 		phba->ras_fwlog.ras_hwsupport = true;
15445 		if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) &&
15446 		    phba->cfg_ras_fwlog_buffsize)
15447 			phba->ras_fwlog.ras_enabled = true;
15448 		else
15449 			phba->ras_fwlog.ras_enabled = false;
15450 	} else {
15451 		phba->ras_fwlog.ras_hwsupport = false;
15452 	}
15453 }
15454 
15455 
15456 MODULE_DEVICE_TABLE(pci, lpfc_id_table);
15457 
15458 static const struct pci_error_handlers lpfc_err_handler = {
15459 	.error_detected = lpfc_io_error_detected,
15460 	.slot_reset = lpfc_io_slot_reset,
15461 	.resume = lpfc_io_resume,
15462 };
15463 
15464 static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one,
15465 			 lpfc_pci_suspend_one,
15466 			 lpfc_pci_resume_one);
15467 
15468 static struct pci_driver lpfc_driver = {
15469 	.name		= LPFC_DRIVER_NAME,
15470 	.id_table	= lpfc_id_table,
15471 	.probe		= lpfc_pci_probe_one,
15472 	.remove		= lpfc_pci_remove_one,
15473 	.shutdown	= lpfc_pci_remove_one,
15474 	.driver.pm	= &lpfc_pci_pm_ops_one,
15475 	.err_handler    = &lpfc_err_handler,
15476 };
15477 
15478 static const struct file_operations lpfc_mgmt_fop = {
15479 	.owner = THIS_MODULE,
15480 };
15481 
15482 static struct miscdevice lpfc_mgmt_dev = {
15483 	.minor = MISC_DYNAMIC_MINOR,
15484 	.name = "lpfcmgmt",
15485 	.fops = &lpfc_mgmt_fop,
15486 };
15487 
15488 /**
15489  * lpfc_init - lpfc module initialization routine
15490  *
15491  * This routine is to be invoked when the lpfc module is loaded into the
15492  * kernel. The special kernel macro module_init() is used to indicate the
15493  * role of this routine to the kernel as lpfc module entry point.
15494  *
15495  * Return codes
15496  *   0 - successful
15497  *   -ENOMEM - FC attach transport failed
15498  *   all others - failed
15499  */
15500 static int __init
lpfc_init(void)15501 lpfc_init(void)
15502 {
15503 	int error = 0;
15504 
15505 	pr_info(LPFC_MODULE_DESC "\n");
15506 	pr_info(LPFC_COPYRIGHT "\n");
15507 
15508 	error = misc_register(&lpfc_mgmt_dev);
15509 	if (error)
15510 		printk(KERN_ERR "Could not register lpfcmgmt device, "
15511 			"misc_register returned with status %d", error);
15512 
15513 	error = -ENOMEM;
15514 	lpfc_transport_functions.vport_create = lpfc_vport_create;
15515 	lpfc_transport_functions.vport_delete = lpfc_vport_delete;
15516 	lpfc_transport_template =
15517 				fc_attach_transport(&lpfc_transport_functions);
15518 	if (lpfc_transport_template == NULL)
15519 		goto unregister;
15520 	lpfc_vport_transport_template =
15521 		fc_attach_transport(&lpfc_vport_transport_functions);
15522 	if (lpfc_vport_transport_template == NULL) {
15523 		fc_release_transport(lpfc_transport_template);
15524 		goto unregister;
15525 	}
15526 	lpfc_wqe_cmd_template();
15527 	lpfc_nvmet_cmd_template();
15528 
15529 	/* Initialize in case vector mapping is needed */
15530 	lpfc_present_cpu = num_present_cpus();
15531 
15532 	error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
15533 					"lpfc/sli4:online",
15534 					lpfc_cpu_online, lpfc_cpu_offline);
15535 	if (error < 0)
15536 		goto cpuhp_failure;
15537 	lpfc_cpuhp_state = error;
15538 
15539 	error = pci_register_driver(&lpfc_driver);
15540 	if (error)
15541 		goto unwind;
15542 
15543 	return error;
15544 
15545 unwind:
15546 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15547 cpuhp_failure:
15548 	fc_release_transport(lpfc_transport_template);
15549 	fc_release_transport(lpfc_vport_transport_template);
15550 unregister:
15551 	misc_deregister(&lpfc_mgmt_dev);
15552 
15553 	return error;
15554 }
15555 
lpfc_dmp_dbg(struct lpfc_hba * phba)15556 void lpfc_dmp_dbg(struct lpfc_hba *phba)
15557 {
15558 	unsigned int start_idx;
15559 	unsigned int dbg_cnt;
15560 	unsigned int temp_idx;
15561 	int i;
15562 	int j = 0;
15563 	unsigned long rem_nsec;
15564 
15565 	if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0)
15566 		return;
15567 
15568 	start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ;
15569 	dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt);
15570 	if (!dbg_cnt)
15571 		goto out;
15572 	temp_idx = start_idx;
15573 	if (dbg_cnt >= DBG_LOG_SZ) {
15574 		dbg_cnt = DBG_LOG_SZ;
15575 		temp_idx -= 1;
15576 	} else {
15577 		if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) {
15578 			temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ;
15579 		} else {
15580 			if (start_idx < dbg_cnt)
15581 				start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx);
15582 			else
15583 				start_idx -= dbg_cnt;
15584 		}
15585 	}
15586 	dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n",
15587 		 start_idx, temp_idx, dbg_cnt);
15588 
15589 	for (i = 0; i < dbg_cnt; i++) {
15590 		if ((start_idx + i) < DBG_LOG_SZ)
15591 			temp_idx = (start_idx + i) % DBG_LOG_SZ;
15592 		else
15593 			temp_idx = j++;
15594 		rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC);
15595 		dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s",
15596 			 temp_idx,
15597 			 (unsigned long)phba->dbg_log[temp_idx].t_ns,
15598 			 rem_nsec / 1000,
15599 			 phba->dbg_log[temp_idx].log);
15600 	}
15601 out:
15602 	atomic_set(&phba->dbg_log_cnt, 0);
15603 	atomic_set(&phba->dbg_log_dmping, 0);
15604 }
15605 
15606 __printf(2, 3)
lpfc_dbg_print(struct lpfc_hba * phba,const char * fmt,...)15607 void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...)
15608 {
15609 	unsigned int idx;
15610 	va_list args;
15611 	int dbg_dmping = atomic_read(&phba->dbg_log_dmping);
15612 	struct va_format vaf;
15613 
15614 
15615 	va_start(args, fmt);
15616 	if (unlikely(dbg_dmping)) {
15617 		vaf.fmt = fmt;
15618 		vaf.va = &args;
15619 		dev_info(&phba->pcidev->dev, "%pV", &vaf);
15620 		va_end(args);
15621 		return;
15622 	}
15623 	idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) %
15624 		DBG_LOG_SZ;
15625 
15626 	atomic_inc(&phba->dbg_log_cnt);
15627 
15628 	vscnprintf(phba->dbg_log[idx].log,
15629 		   sizeof(phba->dbg_log[idx].log), fmt, args);
15630 	va_end(args);
15631 
15632 	phba->dbg_log[idx].t_ns = local_clock();
15633 }
15634 
15635 /**
15636  * lpfc_exit - lpfc module removal routine
15637  *
15638  * This routine is invoked when the lpfc module is removed from the kernel.
15639  * The special kernel macro module_exit() is used to indicate the role of
15640  * this routine to the kernel as lpfc module exit point.
15641  */
15642 static void __exit
lpfc_exit(void)15643 lpfc_exit(void)
15644 {
15645 	misc_deregister(&lpfc_mgmt_dev);
15646 	pci_unregister_driver(&lpfc_driver);
15647 	cpuhp_remove_multi_state(lpfc_cpuhp_state);
15648 	fc_release_transport(lpfc_transport_template);
15649 	fc_release_transport(lpfc_vport_transport_template);
15650 	idr_destroy(&lpfc_hba_index);
15651 }
15652 
15653 module_init(lpfc_init);
15654 module_exit(lpfc_exit);
15655 MODULE_LICENSE("GPL");
15656 MODULE_DESCRIPTION(LPFC_MODULE_DESC);
15657 MODULE_AUTHOR("Broadcom");
15658 MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
15659