1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101
udf_sb_lvidiu(struct super_block * sb)102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
106 unsigned int offset;
107
108 if (!UDF_SB(sb)->s_lvid_bh)
109 return NULL;
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
116 }
117
118 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
121 {
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124
125 static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
127 .name = "udf",
128 .mount = udf_mount,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133
134 static struct kmem_cache *udf_inode_cachep;
135
udf_alloc_inode(struct super_block * sb)136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 struct udf_inode_info *ei;
139 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
140 if (!ei)
141 return NULL;
142
143 ei->i_unique = 0;
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
148 ei->i_strat4096 = 0;
149 ei->i_streamdir = 0;
150 ei->i_hidden = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154 inode_set_iversion(&ei->vfs_inode, 1);
155
156 return &ei->vfs_inode;
157 }
158
udf_free_in_core_inode(struct inode * inode)159 static void udf_free_in_core_inode(struct inode *inode)
160 {
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
init_once(void * foo)164 static void init_once(void *foo)
165 {
166 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
167
168 ei->i_data = NULL;
169 inode_init_once(&ei->vfs_inode);
170 }
171
init_inodecache(void)172 static int __init init_inodecache(void)
173 {
174 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
175 sizeof(struct udf_inode_info),
176 0, (SLAB_RECLAIM_ACCOUNT |
177 SLAB_MEM_SPREAD |
178 SLAB_ACCOUNT),
179 init_once);
180 if (!udf_inode_cachep)
181 return -ENOMEM;
182 return 0;
183 }
184
destroy_inodecache(void)185 static void destroy_inodecache(void)
186 {
187 /*
188 * Make sure all delayed rcu free inodes are flushed before we
189 * destroy cache.
190 */
191 rcu_barrier();
192 kmem_cache_destroy(udf_inode_cachep);
193 }
194
195 /* Superblock operations */
196 static const struct super_operations udf_sb_ops = {
197 .alloc_inode = udf_alloc_inode,
198 .free_inode = udf_free_in_core_inode,
199 .write_inode = udf_write_inode,
200 .evict_inode = udf_evict_inode,
201 .put_super = udf_put_super,
202 .sync_fs = udf_sync_fs,
203 .statfs = udf_statfs,
204 .remount_fs = udf_remount_fs,
205 .show_options = udf_show_options,
206 };
207
208 struct udf_options {
209 unsigned char novrs;
210 unsigned int blocksize;
211 unsigned int session;
212 unsigned int lastblock;
213 unsigned int anchor;
214 unsigned int flags;
215 umode_t umask;
216 kgid_t gid;
217 kuid_t uid;
218 umode_t fmode;
219 umode_t dmode;
220 struct nls_table *nls_map;
221 };
222
init_udf_fs(void)223 static int __init init_udf_fs(void)
224 {
225 int err;
226
227 err = init_inodecache();
228 if (err)
229 goto out1;
230 err = register_filesystem(&udf_fstype);
231 if (err)
232 goto out;
233
234 return 0;
235
236 out:
237 destroy_inodecache();
238
239 out1:
240 return err;
241 }
242
exit_udf_fs(void)243 static void __exit exit_udf_fs(void)
244 {
245 unregister_filesystem(&udf_fstype);
246 destroy_inodecache();
247 }
248
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)249 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
250 {
251 struct udf_sb_info *sbi = UDF_SB(sb);
252
253 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
254 if (!sbi->s_partmaps) {
255 sbi->s_partitions = 0;
256 return -ENOMEM;
257 }
258
259 sbi->s_partitions = count;
260 return 0;
261 }
262
udf_sb_free_bitmap(struct udf_bitmap * bitmap)263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 int i;
266 int nr_groups = bitmap->s_nr_groups;
267
268 for (i = 0; i < nr_groups; i++)
269 brelse(bitmap->s_block_bitmap[i]);
270
271 kvfree(bitmap);
272 }
273
udf_free_partition(struct udf_part_map * map)274 static void udf_free_partition(struct udf_part_map *map)
275 {
276 int i;
277 struct udf_meta_data *mdata;
278
279 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
280 iput(map->s_uspace.s_table);
281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 if (map->s_partition_type == UDF_SPARABLE_MAP15)
284 for (i = 0; i < 4; i++)
285 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
286 else if (map->s_partition_type == UDF_METADATA_MAP25) {
287 mdata = &map->s_type_specific.s_metadata;
288 iput(mdata->s_metadata_fe);
289 mdata->s_metadata_fe = NULL;
290
291 iput(mdata->s_mirror_fe);
292 mdata->s_mirror_fe = NULL;
293
294 iput(mdata->s_bitmap_fe);
295 mdata->s_bitmap_fe = NULL;
296 }
297 }
298
udf_sb_free_partitions(struct super_block * sb)299 static void udf_sb_free_partitions(struct super_block *sb)
300 {
301 struct udf_sb_info *sbi = UDF_SB(sb);
302 int i;
303
304 if (!sbi->s_partmaps)
305 return;
306 for (i = 0; i < sbi->s_partitions; i++)
307 udf_free_partition(&sbi->s_partmaps[i]);
308 kfree(sbi->s_partmaps);
309 sbi->s_partmaps = NULL;
310 }
311
udf_show_options(struct seq_file * seq,struct dentry * root)312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 struct super_block *sb = root->d_sb;
315 struct udf_sb_info *sbi = UDF_SB(sb);
316
317 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 seq_puts(seq, ",nostrict");
319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 seq_puts(seq, ",unhide");
323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 seq_puts(seq, ",undelete");
325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 seq_puts(seq, ",noadinicb");
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 seq_puts(seq, ",shortad");
329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 seq_puts(seq, ",uid=forget");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
332 seq_puts(seq, ",gid=forget");
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
334 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
336 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
337 if (sbi->s_umask != 0)
338 seq_printf(seq, ",umask=%ho", sbi->s_umask);
339 if (sbi->s_fmode != UDF_INVALID_MODE)
340 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
341 if (sbi->s_dmode != UDF_INVALID_MODE)
342 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
344 seq_printf(seq, ",session=%d", sbi->s_session);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
346 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
347 if (sbi->s_anchor != 0)
348 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
349 if (sbi->s_nls_map)
350 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
351 else
352 seq_puts(seq, ",iocharset=utf8");
353
354 return 0;
355 }
356
357 /*
358 * udf_parse_options
359 *
360 * PURPOSE
361 * Parse mount options.
362 *
363 * DESCRIPTION
364 * The following mount options are supported:
365 *
366 * gid= Set the default group.
367 * umask= Set the default umask.
368 * mode= Set the default file permissions.
369 * dmode= Set the default directory permissions.
370 * uid= Set the default user.
371 * bs= Set the block size.
372 * unhide Show otherwise hidden files.
373 * undelete Show deleted files in lists.
374 * adinicb Embed data in the inode (default)
375 * noadinicb Don't embed data in the inode
376 * shortad Use short ad's
377 * longad Use long ad's (default)
378 * nostrict Unset strict conformance
379 * iocharset= Set the NLS character set
380 *
381 * The remaining are for debugging and disaster recovery:
382 *
383 * novrs Skip volume sequence recognition
384 *
385 * The following expect a offset from 0.
386 *
387 * session= Set the CDROM session (default= last session)
388 * anchor= Override standard anchor location. (default= 256)
389 * volume= Override the VolumeDesc location. (unused)
390 * partition= Override the PartitionDesc location. (unused)
391 * lastblock= Set the last block of the filesystem/
392 *
393 * The following expect a offset from the partition root.
394 *
395 * fileset= Override the fileset block location. (unused)
396 * rootdir= Override the root directory location. (unused)
397 * WARNING: overriding the rootdir to a non-directory may
398 * yield highly unpredictable results.
399 *
400 * PRE-CONDITIONS
401 * options Pointer to mount options string.
402 * uopts Pointer to mount options variable.
403 *
404 * POST-CONDITIONS
405 * <return> 1 Mount options parsed okay.
406 * <return> 0 Error parsing mount options.
407 *
408 * HISTORY
409 * July 1, 1997 - Andrew E. Mileski
410 * Written, tested, and released.
411 */
412
413 enum {
414 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
415 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
416 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
417 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
418 Opt_rootdir, Opt_utf8, Opt_iocharset,
419 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
420 Opt_fmode, Opt_dmode
421 };
422
423 static const match_table_t tokens = {
424 {Opt_novrs, "novrs"},
425 {Opt_nostrict, "nostrict"},
426 {Opt_bs, "bs=%u"},
427 {Opt_unhide, "unhide"},
428 {Opt_undelete, "undelete"},
429 {Opt_noadinicb, "noadinicb"},
430 {Opt_adinicb, "adinicb"},
431 {Opt_shortad, "shortad"},
432 {Opt_longad, "longad"},
433 {Opt_uforget, "uid=forget"},
434 {Opt_uignore, "uid=ignore"},
435 {Opt_gforget, "gid=forget"},
436 {Opt_gignore, "gid=ignore"},
437 {Opt_gid, "gid=%u"},
438 {Opt_uid, "uid=%u"},
439 {Opt_umask, "umask=%o"},
440 {Opt_session, "session=%u"},
441 {Opt_lastblock, "lastblock=%u"},
442 {Opt_anchor, "anchor=%u"},
443 {Opt_volume, "volume=%u"},
444 {Opt_partition, "partition=%u"},
445 {Opt_fileset, "fileset=%u"},
446 {Opt_rootdir, "rootdir=%u"},
447 {Opt_utf8, "utf8"},
448 {Opt_iocharset, "iocharset=%s"},
449 {Opt_fmode, "mode=%o"},
450 {Opt_dmode, "dmode=%o"},
451 {Opt_err, NULL}
452 };
453
udf_parse_options(char * options,struct udf_options * uopt,bool remount)454 static int udf_parse_options(char *options, struct udf_options *uopt,
455 bool remount)
456 {
457 char *p;
458 int option;
459 unsigned int uv;
460
461 uopt->novrs = 0;
462 uopt->session = 0xFFFFFFFF;
463 uopt->lastblock = 0;
464 uopt->anchor = 0;
465
466 if (!options)
467 return 1;
468
469 while ((p = strsep(&options, ",")) != NULL) {
470 substring_t args[MAX_OPT_ARGS];
471 int token;
472 unsigned n;
473 if (!*p)
474 continue;
475
476 token = match_token(p, tokens, args);
477 switch (token) {
478 case Opt_novrs:
479 uopt->novrs = 1;
480 break;
481 case Opt_bs:
482 if (match_int(&args[0], &option))
483 return 0;
484 n = option;
485 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
486 return 0;
487 uopt->blocksize = n;
488 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
489 break;
490 case Opt_unhide:
491 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
492 break;
493 case Opt_undelete:
494 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
495 break;
496 case Opt_noadinicb:
497 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
498 break;
499 case Opt_adinicb:
500 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
501 break;
502 case Opt_shortad:
503 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
504 break;
505 case Opt_longad:
506 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
507 break;
508 case Opt_gid:
509 if (match_uint(args, &uv))
510 return 0;
511 uopt->gid = make_kgid(current_user_ns(), uv);
512 if (!gid_valid(uopt->gid))
513 return 0;
514 uopt->flags |= (1 << UDF_FLAG_GID_SET);
515 break;
516 case Opt_uid:
517 if (match_uint(args, &uv))
518 return 0;
519 uopt->uid = make_kuid(current_user_ns(), uv);
520 if (!uid_valid(uopt->uid))
521 return 0;
522 uopt->flags |= (1 << UDF_FLAG_UID_SET);
523 break;
524 case Opt_umask:
525 if (match_octal(args, &option))
526 return 0;
527 uopt->umask = option;
528 break;
529 case Opt_nostrict:
530 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
531 break;
532 case Opt_session:
533 if (match_int(args, &option))
534 return 0;
535 uopt->session = option;
536 if (!remount)
537 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
538 break;
539 case Opt_lastblock:
540 if (match_int(args, &option))
541 return 0;
542 uopt->lastblock = option;
543 if (!remount)
544 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
545 break;
546 case Opt_anchor:
547 if (match_int(args, &option))
548 return 0;
549 uopt->anchor = option;
550 break;
551 case Opt_volume:
552 case Opt_partition:
553 case Opt_fileset:
554 case Opt_rootdir:
555 /* Ignored (never implemented properly) */
556 break;
557 case Opt_utf8:
558 if (!remount) {
559 unload_nls(uopt->nls_map);
560 uopt->nls_map = NULL;
561 }
562 break;
563 case Opt_iocharset:
564 if (!remount) {
565 unload_nls(uopt->nls_map);
566 uopt->nls_map = NULL;
567 }
568 /* When nls_map is not loaded then UTF-8 is used */
569 if (!remount && strcmp(args[0].from, "utf8") != 0) {
570 uopt->nls_map = load_nls(args[0].from);
571 if (!uopt->nls_map) {
572 pr_err("iocharset %s not found\n",
573 args[0].from);
574 return 0;
575 }
576 }
577 break;
578 case Opt_uforget:
579 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
580 break;
581 case Opt_uignore:
582 case Opt_gignore:
583 /* These options are superseeded by uid=<number> */
584 break;
585 case Opt_gforget:
586 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
587 break;
588 case Opt_fmode:
589 if (match_octal(args, &option))
590 return 0;
591 uopt->fmode = option & 0777;
592 break;
593 case Opt_dmode:
594 if (match_octal(args, &option))
595 return 0;
596 uopt->dmode = option & 0777;
597 break;
598 default:
599 pr_err("bad mount option \"%s\" or missing value\n", p);
600 return 0;
601 }
602 }
603 return 1;
604 }
605
udf_remount_fs(struct super_block * sb,int * flags,char * options)606 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
607 {
608 struct udf_options uopt;
609 struct udf_sb_info *sbi = UDF_SB(sb);
610 int error = 0;
611
612 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
613 return -EACCES;
614
615 sync_filesystem(sb);
616
617 uopt.flags = sbi->s_flags;
618 uopt.uid = sbi->s_uid;
619 uopt.gid = sbi->s_gid;
620 uopt.umask = sbi->s_umask;
621 uopt.fmode = sbi->s_fmode;
622 uopt.dmode = sbi->s_dmode;
623 uopt.nls_map = NULL;
624
625 if (!udf_parse_options(options, &uopt, true))
626 return -EINVAL;
627
628 write_lock(&sbi->s_cred_lock);
629 sbi->s_flags = uopt.flags;
630 sbi->s_uid = uopt.uid;
631 sbi->s_gid = uopt.gid;
632 sbi->s_umask = uopt.umask;
633 sbi->s_fmode = uopt.fmode;
634 sbi->s_dmode = uopt.dmode;
635 write_unlock(&sbi->s_cred_lock);
636
637 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
638 goto out_unlock;
639
640 if (*flags & SB_RDONLY)
641 udf_close_lvid(sb);
642 else
643 udf_open_lvid(sb);
644
645 out_unlock:
646 return error;
647 }
648
649 /*
650 * Check VSD descriptor. Returns -1 in case we are at the end of volume
651 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
652 * we found one of NSR descriptors we are looking for.
653 */
identify_vsd(const struct volStructDesc * vsd)654 static int identify_vsd(const struct volStructDesc *vsd)
655 {
656 int ret = 0;
657
658 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
659 switch (vsd->structType) {
660 case 0:
661 udf_debug("ISO9660 Boot Record found\n");
662 break;
663 case 1:
664 udf_debug("ISO9660 Primary Volume Descriptor found\n");
665 break;
666 case 2:
667 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
668 break;
669 case 3:
670 udf_debug("ISO9660 Volume Partition Descriptor found\n");
671 break;
672 case 255:
673 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
674 break;
675 default:
676 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
677 break;
678 }
679 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
680 ; /* ret = 0 */
681 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
682 ret = 1;
683 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
684 ret = 1;
685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
686 ; /* ret = 0 */
687 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
688 ; /* ret = 0 */
689 else {
690 /* TEA01 or invalid id : end of volume recognition area */
691 ret = -1;
692 }
693
694 return ret;
695 }
696
697 /*
698 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
699 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
700 * @return 1 if NSR02 or NSR03 found,
701 * -1 if first sector read error, 0 otherwise
702 */
udf_check_vsd(struct super_block * sb)703 static int udf_check_vsd(struct super_block *sb)
704 {
705 struct volStructDesc *vsd = NULL;
706 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
707 int sectorsize;
708 struct buffer_head *bh = NULL;
709 int nsr = 0;
710 struct udf_sb_info *sbi;
711 loff_t session_offset;
712
713 sbi = UDF_SB(sb);
714 if (sb->s_blocksize < sizeof(struct volStructDesc))
715 sectorsize = sizeof(struct volStructDesc);
716 else
717 sectorsize = sb->s_blocksize;
718
719 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
720 sector += session_offset;
721
722 udf_debug("Starting at sector %u (%lu byte sectors)\n",
723 (unsigned int)(sector >> sb->s_blocksize_bits),
724 sb->s_blocksize);
725 /* Process the sequence (if applicable). The hard limit on the sector
726 * offset is arbitrary, hopefully large enough so that all valid UDF
727 * filesystems will be recognised. There is no mention of an upper
728 * bound to the size of the volume recognition area in the standard.
729 * The limit will prevent the code to read all the sectors of a
730 * specially crafted image (like a bluray disc full of CD001 sectors),
731 * potentially causing minutes or even hours of uninterruptible I/O
732 * activity. This actually happened with uninitialised SSD partitions
733 * (all 0xFF) before the check for the limit and all valid IDs were
734 * added */
735 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
736 /* Read a block */
737 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
738 if (!bh)
739 break;
740
741 vsd = (struct volStructDesc *)(bh->b_data +
742 (sector & (sb->s_blocksize - 1)));
743 nsr = identify_vsd(vsd);
744 /* Found NSR or end? */
745 if (nsr) {
746 brelse(bh);
747 break;
748 }
749 /*
750 * Special handling for improperly formatted VRS (e.g., Win10)
751 * where components are separated by 2048 bytes even though
752 * sectors are 4K
753 */
754 if (sb->s_blocksize == 4096) {
755 nsr = identify_vsd(vsd + 1);
756 /* Ignore unknown IDs... */
757 if (nsr < 0)
758 nsr = 0;
759 }
760 brelse(bh);
761 }
762
763 if (nsr > 0)
764 return 1;
765 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
766 return -1;
767 else
768 return 0;
769 }
770
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)771 static int udf_verify_domain_identifier(struct super_block *sb,
772 struct regid *ident, char *dname)
773 {
774 struct domainIdentSuffix *suffix;
775
776 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
777 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
778 goto force_ro;
779 }
780 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
781 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
782 dname);
783 goto force_ro;
784 }
785 suffix = (struct domainIdentSuffix *)ident->identSuffix;
786 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
787 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
788 if (!sb_rdonly(sb)) {
789 udf_warn(sb, "Descriptor for %s marked write protected."
790 " Forcing read only mount.\n", dname);
791 }
792 goto force_ro;
793 }
794 return 0;
795
796 force_ro:
797 if (!sb_rdonly(sb))
798 return -EACCES;
799 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
800 return 0;
801 }
802
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)803 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
804 struct kernel_lb_addr *root)
805 {
806 int ret;
807
808 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
809 if (ret < 0)
810 return ret;
811
812 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
813 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
814
815 udf_debug("Rootdir at block=%u, partition=%u\n",
816 root->logicalBlockNum, root->partitionReferenceNum);
817 return 0;
818 }
819
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)820 static int udf_find_fileset(struct super_block *sb,
821 struct kernel_lb_addr *fileset,
822 struct kernel_lb_addr *root)
823 {
824 struct buffer_head *bh = NULL;
825 uint16_t ident;
826 int ret;
827
828 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF)
830 return -EINVAL;
831
832 bh = udf_read_ptagged(sb, fileset, 0, &ident);
833 if (!bh)
834 return -EIO;
835 if (ident != TAG_IDENT_FSD) {
836 brelse(bh);
837 return -EINVAL;
838 }
839
840 udf_debug("Fileset at block=%u, partition=%u\n",
841 fileset->logicalBlockNum, fileset->partitionReferenceNum);
842
843 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
844 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
845 brelse(bh);
846 return ret;
847 }
848
849 /*
850 * Load primary Volume Descriptor Sequence
851 *
852 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
853 * should be tried.
854 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)855 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
856 {
857 struct primaryVolDesc *pvoldesc;
858 uint8_t *outstr;
859 struct buffer_head *bh;
860 uint16_t ident;
861 int ret;
862 struct timestamp *ts;
863
864 outstr = kmalloc(128, GFP_NOFS);
865 if (!outstr)
866 return -ENOMEM;
867
868 bh = udf_read_tagged(sb, block, block, &ident);
869 if (!bh) {
870 ret = -EAGAIN;
871 goto out2;
872 }
873
874 if (ident != TAG_IDENT_PVD) {
875 ret = -EIO;
876 goto out_bh;
877 }
878
879 pvoldesc = (struct primaryVolDesc *)bh->b_data;
880
881 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
882 pvoldesc->recordingDateAndTime);
883 ts = &pvoldesc->recordingDateAndTime;
884 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
885 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
886 ts->minute, le16_to_cpu(ts->typeAndTimezone));
887
888 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
889 if (ret < 0) {
890 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
891 pr_warn("incorrect volume identification, setting to "
892 "'InvalidName'\n");
893 } else {
894 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
895 }
896 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
897
898 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
899 if (ret < 0) {
900 ret = 0;
901 goto out_bh;
902 }
903 outstr[ret] = 0;
904 udf_debug("volSetIdent[] = '%s'\n", outstr);
905
906 ret = 0;
907 out_bh:
908 brelse(bh);
909 out2:
910 kfree(outstr);
911 return ret;
912 }
913
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)914 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
915 u32 meta_file_loc, u32 partition_ref)
916 {
917 struct kernel_lb_addr addr;
918 struct inode *metadata_fe;
919
920 addr.logicalBlockNum = meta_file_loc;
921 addr.partitionReferenceNum = partition_ref;
922
923 metadata_fe = udf_iget_special(sb, &addr);
924
925 if (IS_ERR(metadata_fe)) {
926 udf_warn(sb, "metadata inode efe not found\n");
927 return metadata_fe;
928 }
929 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
930 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
931 iput(metadata_fe);
932 return ERR_PTR(-EIO);
933 }
934
935 return metadata_fe;
936 }
937
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)938 static int udf_load_metadata_files(struct super_block *sb, int partition,
939 int type1_index)
940 {
941 struct udf_sb_info *sbi = UDF_SB(sb);
942 struct udf_part_map *map;
943 struct udf_meta_data *mdata;
944 struct kernel_lb_addr addr;
945 struct inode *fe;
946
947 map = &sbi->s_partmaps[partition];
948 mdata = &map->s_type_specific.s_metadata;
949 mdata->s_phys_partition_ref = type1_index;
950
951 /* metadata address */
952 udf_debug("Metadata file location: block = %u part = %u\n",
953 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
954
955 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
956 mdata->s_phys_partition_ref);
957 if (IS_ERR(fe)) {
958 /* mirror file entry */
959 udf_debug("Mirror metadata file location: block = %u part = %u\n",
960 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
961
962 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
963 mdata->s_phys_partition_ref);
964
965 if (IS_ERR(fe)) {
966 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
967 return PTR_ERR(fe);
968 }
969 mdata->s_mirror_fe = fe;
970 } else
971 mdata->s_metadata_fe = fe;
972
973
974 /*
975 * bitmap file entry
976 * Note:
977 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
978 */
979 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
980 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
981 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
982
983 udf_debug("Bitmap file location: block = %u part = %u\n",
984 addr.logicalBlockNum, addr.partitionReferenceNum);
985
986 fe = udf_iget_special(sb, &addr);
987 if (IS_ERR(fe)) {
988 if (sb_rdonly(sb))
989 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
990 else {
991 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
992 return PTR_ERR(fe);
993 }
994 } else
995 mdata->s_bitmap_fe = fe;
996 }
997
998 udf_debug("udf_load_metadata_files Ok\n");
999 return 0;
1000 }
1001
udf_compute_nr_groups(struct super_block * sb,u32 partition)1002 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1003 {
1004 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1005 return DIV_ROUND_UP(map->s_partition_len +
1006 (sizeof(struct spaceBitmapDesc) << 3),
1007 sb->s_blocksize * 8);
1008 }
1009
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1010 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1011 {
1012 struct udf_bitmap *bitmap;
1013 int nr_groups = udf_compute_nr_groups(sb, index);
1014
1015 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1016 GFP_KERNEL);
1017 if (!bitmap)
1018 return NULL;
1019
1020 bitmap->s_nr_groups = nr_groups;
1021 return bitmap;
1022 }
1023
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1024 static int check_partition_desc(struct super_block *sb,
1025 struct partitionDesc *p,
1026 struct udf_part_map *map)
1027 {
1028 bool umap, utable, fmap, ftable;
1029 struct partitionHeaderDesc *phd;
1030
1031 switch (le32_to_cpu(p->accessType)) {
1032 case PD_ACCESS_TYPE_READ_ONLY:
1033 case PD_ACCESS_TYPE_WRITE_ONCE:
1034 case PD_ACCESS_TYPE_NONE:
1035 goto force_ro;
1036 }
1037
1038 /* No Partition Header Descriptor? */
1039 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1040 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1041 goto force_ro;
1042
1043 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1044 utable = phd->unallocSpaceTable.extLength;
1045 umap = phd->unallocSpaceBitmap.extLength;
1046 ftable = phd->freedSpaceTable.extLength;
1047 fmap = phd->freedSpaceBitmap.extLength;
1048
1049 /* No allocation info? */
1050 if (!utable && !umap && !ftable && !fmap)
1051 goto force_ro;
1052
1053 /* We don't support blocks that require erasing before overwrite */
1054 if (ftable || fmap)
1055 goto force_ro;
1056 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1057 if (utable && umap)
1058 goto force_ro;
1059
1060 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1061 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1062 map->s_partition_type == UDF_METADATA_MAP25)
1063 goto force_ro;
1064
1065 return 0;
1066 force_ro:
1067 if (!sb_rdonly(sb))
1068 return -EACCES;
1069 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1070 return 0;
1071 }
1072
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1073 static int udf_fill_partdesc_info(struct super_block *sb,
1074 struct partitionDesc *p, int p_index)
1075 {
1076 struct udf_part_map *map;
1077 struct udf_sb_info *sbi = UDF_SB(sb);
1078 struct partitionHeaderDesc *phd;
1079 int err;
1080
1081 map = &sbi->s_partmaps[p_index];
1082
1083 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1084 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1085
1086 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1087 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1088 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1089 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1091 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1093 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1094
1095 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1096 p_index, map->s_partition_type,
1097 map->s_partition_root, map->s_partition_len);
1098
1099 err = check_partition_desc(sb, p, map);
1100 if (err)
1101 return err;
1102
1103 /*
1104 * Skip loading allocation info it we cannot ever write to the fs.
1105 * This is a correctness thing as we may have decided to force ro mount
1106 * to avoid allocation info we don't support.
1107 */
1108 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1109 return 0;
1110
1111 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1112 if (phd->unallocSpaceTable.extLength) {
1113 struct kernel_lb_addr loc = {
1114 .logicalBlockNum = le32_to_cpu(
1115 phd->unallocSpaceTable.extPosition),
1116 .partitionReferenceNum = p_index,
1117 };
1118 struct inode *inode;
1119
1120 inode = udf_iget_special(sb, &loc);
1121 if (IS_ERR(inode)) {
1122 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1123 p_index);
1124 return PTR_ERR(inode);
1125 }
1126 map->s_uspace.s_table = inode;
1127 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1128 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1129 p_index, map->s_uspace.s_table->i_ino);
1130 }
1131
1132 if (phd->unallocSpaceBitmap.extLength) {
1133 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1134 if (!bitmap)
1135 return -ENOMEM;
1136 map->s_uspace.s_bitmap = bitmap;
1137 bitmap->s_extPosition = le32_to_cpu(
1138 phd->unallocSpaceBitmap.extPosition);
1139 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1140 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1141 p_index, bitmap->s_extPosition);
1142 }
1143
1144 return 0;
1145 }
1146
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1147 static void udf_find_vat_block(struct super_block *sb, int p_index,
1148 int type1_index, sector_t start_block)
1149 {
1150 struct udf_sb_info *sbi = UDF_SB(sb);
1151 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 sector_t vat_block;
1153 struct kernel_lb_addr ino;
1154 struct inode *inode;
1155
1156 /*
1157 * VAT file entry is in the last recorded block. Some broken disks have
1158 * it a few blocks before so try a bit harder...
1159 */
1160 ino.partitionReferenceNum = type1_index;
1161 for (vat_block = start_block;
1162 vat_block >= map->s_partition_root &&
1163 vat_block >= start_block - 3; vat_block--) {
1164 ino.logicalBlockNum = vat_block - map->s_partition_root;
1165 inode = udf_iget_special(sb, &ino);
1166 if (!IS_ERR(inode)) {
1167 sbi->s_vat_inode = inode;
1168 break;
1169 }
1170 }
1171 }
1172
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1173 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1174 {
1175 struct udf_sb_info *sbi = UDF_SB(sb);
1176 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1177 struct buffer_head *bh = NULL;
1178 struct udf_inode_info *vati;
1179 uint32_t pos;
1180 struct virtualAllocationTable20 *vat20;
1181 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1182 sb->s_blocksize_bits;
1183
1184 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1185 if (!sbi->s_vat_inode &&
1186 sbi->s_last_block != blocks - 1) {
1187 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1188 (unsigned long)sbi->s_last_block,
1189 (unsigned long)blocks - 1);
1190 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1191 }
1192 if (!sbi->s_vat_inode)
1193 return -EIO;
1194
1195 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1196 map->s_type_specific.s_virtual.s_start_offset = 0;
1197 map->s_type_specific.s_virtual.s_num_entries =
1198 (sbi->s_vat_inode->i_size - 36) >> 2;
1199 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1200 vati = UDF_I(sbi->s_vat_inode);
1201 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1202 pos = udf_block_map(sbi->s_vat_inode, 0);
1203 bh = sb_bread(sb, pos);
1204 if (!bh)
1205 return -EIO;
1206 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1207 } else {
1208 vat20 = (struct virtualAllocationTable20 *)
1209 vati->i_data;
1210 }
1211
1212 map->s_type_specific.s_virtual.s_start_offset =
1213 le16_to_cpu(vat20->lengthHeader);
1214 map->s_type_specific.s_virtual.s_num_entries =
1215 (sbi->s_vat_inode->i_size -
1216 map->s_type_specific.s_virtual.
1217 s_start_offset) >> 2;
1218 brelse(bh);
1219 }
1220 return 0;
1221 }
1222
1223 /*
1224 * Load partition descriptor block
1225 *
1226 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1227 * sequence.
1228 */
udf_load_partdesc(struct super_block * sb,sector_t block)1229 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1230 {
1231 struct buffer_head *bh;
1232 struct partitionDesc *p;
1233 struct udf_part_map *map;
1234 struct udf_sb_info *sbi = UDF_SB(sb);
1235 int i, type1_idx;
1236 uint16_t partitionNumber;
1237 uint16_t ident;
1238 int ret;
1239
1240 bh = udf_read_tagged(sb, block, block, &ident);
1241 if (!bh)
1242 return -EAGAIN;
1243 if (ident != TAG_IDENT_PD) {
1244 ret = 0;
1245 goto out_bh;
1246 }
1247
1248 p = (struct partitionDesc *)bh->b_data;
1249 partitionNumber = le16_to_cpu(p->partitionNumber);
1250
1251 /* First scan for TYPE1 and SPARABLE partitions */
1252 for (i = 0; i < sbi->s_partitions; i++) {
1253 map = &sbi->s_partmaps[i];
1254 udf_debug("Searching map: (%u == %u)\n",
1255 map->s_partition_num, partitionNumber);
1256 if (map->s_partition_num == partitionNumber &&
1257 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1258 map->s_partition_type == UDF_SPARABLE_MAP15))
1259 break;
1260 }
1261
1262 if (i >= sbi->s_partitions) {
1263 udf_debug("Partition (%u) not found in partition map\n",
1264 partitionNumber);
1265 ret = 0;
1266 goto out_bh;
1267 }
1268
1269 ret = udf_fill_partdesc_info(sb, p, i);
1270 if (ret < 0)
1271 goto out_bh;
1272
1273 /*
1274 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1275 * PHYSICAL partitions are already set up
1276 */
1277 type1_idx = i;
1278 map = NULL; /* supress 'maybe used uninitialized' warning */
1279 for (i = 0; i < sbi->s_partitions; i++) {
1280 map = &sbi->s_partmaps[i];
1281
1282 if (map->s_partition_num == partitionNumber &&
1283 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1284 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1285 map->s_partition_type == UDF_METADATA_MAP25))
1286 break;
1287 }
1288
1289 if (i >= sbi->s_partitions) {
1290 ret = 0;
1291 goto out_bh;
1292 }
1293
1294 ret = udf_fill_partdesc_info(sb, p, i);
1295 if (ret < 0)
1296 goto out_bh;
1297
1298 if (map->s_partition_type == UDF_METADATA_MAP25) {
1299 ret = udf_load_metadata_files(sb, i, type1_idx);
1300 if (ret < 0) {
1301 udf_err(sb, "error loading MetaData partition map %d\n",
1302 i);
1303 goto out_bh;
1304 }
1305 } else {
1306 /*
1307 * If we have a partition with virtual map, we don't handle
1308 * writing to it (we overwrite blocks instead of relocating
1309 * them).
1310 */
1311 if (!sb_rdonly(sb)) {
1312 ret = -EACCES;
1313 goto out_bh;
1314 }
1315 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1316 ret = udf_load_vat(sb, i, type1_idx);
1317 if (ret < 0)
1318 goto out_bh;
1319 }
1320 ret = 0;
1321 out_bh:
1322 /* In case loading failed, we handle cleanup in udf_fill_super */
1323 brelse(bh);
1324 return ret;
1325 }
1326
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1327 static int udf_load_sparable_map(struct super_block *sb,
1328 struct udf_part_map *map,
1329 struct sparablePartitionMap *spm)
1330 {
1331 uint32_t loc;
1332 uint16_t ident;
1333 struct sparingTable *st;
1334 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1335 int i;
1336 struct buffer_head *bh;
1337
1338 map->s_partition_type = UDF_SPARABLE_MAP15;
1339 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1340 if (!is_power_of_2(sdata->s_packet_len)) {
1341 udf_err(sb, "error loading logical volume descriptor: "
1342 "Invalid packet length %u\n",
1343 (unsigned)sdata->s_packet_len);
1344 return -EIO;
1345 }
1346 if (spm->numSparingTables > 4) {
1347 udf_err(sb, "error loading logical volume descriptor: "
1348 "Too many sparing tables (%d)\n",
1349 (int)spm->numSparingTables);
1350 return -EIO;
1351 }
1352 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1353 udf_err(sb, "error loading logical volume descriptor: "
1354 "Too big sparing table size (%u)\n",
1355 le32_to_cpu(spm->sizeSparingTable));
1356 return -EIO;
1357 }
1358
1359 for (i = 0; i < spm->numSparingTables; i++) {
1360 loc = le32_to_cpu(spm->locSparingTable[i]);
1361 bh = udf_read_tagged(sb, loc, loc, &ident);
1362 if (!bh)
1363 continue;
1364
1365 st = (struct sparingTable *)bh->b_data;
1366 if (ident != 0 ||
1367 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1368 strlen(UDF_ID_SPARING)) ||
1369 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1370 sb->s_blocksize) {
1371 brelse(bh);
1372 continue;
1373 }
1374
1375 sdata->s_spar_map[i] = bh;
1376 }
1377 map->s_partition_func = udf_get_pblock_spar15;
1378 return 0;
1379 }
1380
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1381 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1382 struct kernel_lb_addr *fileset)
1383 {
1384 struct logicalVolDesc *lvd;
1385 int i, offset;
1386 uint8_t type;
1387 struct udf_sb_info *sbi = UDF_SB(sb);
1388 struct genericPartitionMap *gpm;
1389 uint16_t ident;
1390 struct buffer_head *bh;
1391 unsigned int table_len;
1392 int ret;
1393
1394 bh = udf_read_tagged(sb, block, block, &ident);
1395 if (!bh)
1396 return -EAGAIN;
1397 BUG_ON(ident != TAG_IDENT_LVD);
1398 lvd = (struct logicalVolDesc *)bh->b_data;
1399 table_len = le32_to_cpu(lvd->mapTableLength);
1400 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1401 udf_err(sb, "error loading logical volume descriptor: "
1402 "Partition table too long (%u > %lu)\n", table_len,
1403 sb->s_blocksize - sizeof(*lvd));
1404 ret = -EIO;
1405 goto out_bh;
1406 }
1407
1408 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1409 "logical volume");
1410 if (ret)
1411 goto out_bh;
1412 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1413 if (ret)
1414 goto out_bh;
1415
1416 for (i = 0, offset = 0;
1417 i < sbi->s_partitions && offset < table_len;
1418 i++, offset += gpm->partitionMapLength) {
1419 struct udf_part_map *map = &sbi->s_partmaps[i];
1420 gpm = (struct genericPartitionMap *)
1421 &(lvd->partitionMaps[offset]);
1422 type = gpm->partitionMapType;
1423 if (type == 1) {
1424 struct genericPartitionMap1 *gpm1 =
1425 (struct genericPartitionMap1 *)gpm;
1426 map->s_partition_type = UDF_TYPE1_MAP15;
1427 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1428 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1429 map->s_partition_func = NULL;
1430 } else if (type == 2) {
1431 struct udfPartitionMap2 *upm2 =
1432 (struct udfPartitionMap2 *)gpm;
1433 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1434 strlen(UDF_ID_VIRTUAL))) {
1435 u16 suf =
1436 le16_to_cpu(((__le16 *)upm2->partIdent.
1437 identSuffix)[0]);
1438 if (suf < 0x0200) {
1439 map->s_partition_type =
1440 UDF_VIRTUAL_MAP15;
1441 map->s_partition_func =
1442 udf_get_pblock_virt15;
1443 } else {
1444 map->s_partition_type =
1445 UDF_VIRTUAL_MAP20;
1446 map->s_partition_func =
1447 udf_get_pblock_virt20;
1448 }
1449 } else if (!strncmp(upm2->partIdent.ident,
1450 UDF_ID_SPARABLE,
1451 strlen(UDF_ID_SPARABLE))) {
1452 ret = udf_load_sparable_map(sb, map,
1453 (struct sparablePartitionMap *)gpm);
1454 if (ret < 0)
1455 goto out_bh;
1456 } else if (!strncmp(upm2->partIdent.ident,
1457 UDF_ID_METADATA,
1458 strlen(UDF_ID_METADATA))) {
1459 struct udf_meta_data *mdata =
1460 &map->s_type_specific.s_metadata;
1461 struct metadataPartitionMap *mdm =
1462 (struct metadataPartitionMap *)
1463 &(lvd->partitionMaps[offset]);
1464 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1465 i, type, UDF_ID_METADATA);
1466
1467 map->s_partition_type = UDF_METADATA_MAP25;
1468 map->s_partition_func = udf_get_pblock_meta25;
1469
1470 mdata->s_meta_file_loc =
1471 le32_to_cpu(mdm->metadataFileLoc);
1472 mdata->s_mirror_file_loc =
1473 le32_to_cpu(mdm->metadataMirrorFileLoc);
1474 mdata->s_bitmap_file_loc =
1475 le32_to_cpu(mdm->metadataBitmapFileLoc);
1476 mdata->s_alloc_unit_size =
1477 le32_to_cpu(mdm->allocUnitSize);
1478 mdata->s_align_unit_size =
1479 le16_to_cpu(mdm->alignUnitSize);
1480 if (mdm->flags & 0x01)
1481 mdata->s_flags |= MF_DUPLICATE_MD;
1482
1483 udf_debug("Metadata Ident suffix=0x%x\n",
1484 le16_to_cpu(*(__le16 *)
1485 mdm->partIdent.identSuffix));
1486 udf_debug("Metadata part num=%u\n",
1487 le16_to_cpu(mdm->partitionNum));
1488 udf_debug("Metadata part alloc unit size=%u\n",
1489 le32_to_cpu(mdm->allocUnitSize));
1490 udf_debug("Metadata file loc=%u\n",
1491 le32_to_cpu(mdm->metadataFileLoc));
1492 udf_debug("Mirror file loc=%u\n",
1493 le32_to_cpu(mdm->metadataMirrorFileLoc));
1494 udf_debug("Bitmap file loc=%u\n",
1495 le32_to_cpu(mdm->metadataBitmapFileLoc));
1496 udf_debug("Flags: %d %u\n",
1497 mdata->s_flags, mdm->flags);
1498 } else {
1499 udf_debug("Unknown ident: %s\n",
1500 upm2->partIdent.ident);
1501 continue;
1502 }
1503 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1504 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1505 }
1506 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1507 i, map->s_partition_num, type, map->s_volumeseqnum);
1508 }
1509
1510 if (fileset) {
1511 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1512
1513 *fileset = lelb_to_cpu(la->extLocation);
1514 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1515 fileset->logicalBlockNum,
1516 fileset->partitionReferenceNum);
1517 }
1518 if (lvd->integritySeqExt.extLength)
1519 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1520 ret = 0;
1521
1522 if (!sbi->s_lvid_bh) {
1523 /* We can't generate unique IDs without a valid LVID */
1524 if (sb_rdonly(sb)) {
1525 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1526 } else {
1527 udf_warn(sb, "Damaged or missing LVID, forcing "
1528 "readonly mount\n");
1529 ret = -EACCES;
1530 }
1531 }
1532 out_bh:
1533 brelse(bh);
1534 return ret;
1535 }
1536
1537 /*
1538 * Find the prevailing Logical Volume Integrity Descriptor.
1539 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1540 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1541 {
1542 struct buffer_head *bh, *final_bh;
1543 uint16_t ident;
1544 struct udf_sb_info *sbi = UDF_SB(sb);
1545 struct logicalVolIntegrityDesc *lvid;
1546 int indirections = 0;
1547 u32 parts, impuselen;
1548
1549 while (++indirections <= UDF_MAX_LVID_NESTING) {
1550 final_bh = NULL;
1551 while (loc.extLength > 0 &&
1552 (bh = udf_read_tagged(sb, loc.extLocation,
1553 loc.extLocation, &ident))) {
1554 if (ident != TAG_IDENT_LVID) {
1555 brelse(bh);
1556 break;
1557 }
1558
1559 brelse(final_bh);
1560 final_bh = bh;
1561
1562 loc.extLength -= sb->s_blocksize;
1563 loc.extLocation++;
1564 }
1565
1566 if (!final_bh)
1567 return;
1568
1569 brelse(sbi->s_lvid_bh);
1570 sbi->s_lvid_bh = final_bh;
1571
1572 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1573 if (lvid->nextIntegrityExt.extLength == 0)
1574 goto check;
1575
1576 loc = leea_to_cpu(lvid->nextIntegrityExt);
1577 }
1578
1579 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1580 UDF_MAX_LVID_NESTING);
1581 out_err:
1582 brelse(sbi->s_lvid_bh);
1583 sbi->s_lvid_bh = NULL;
1584 return;
1585 check:
1586 parts = le32_to_cpu(lvid->numOfPartitions);
1587 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1588 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1589 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1590 2 * parts * sizeof(u32) > sb->s_blocksize) {
1591 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1592 "ignoring.\n", parts, impuselen);
1593 goto out_err;
1594 }
1595 }
1596
1597 /*
1598 * Step for reallocation of table of partition descriptor sequence numbers.
1599 * Must be power of 2.
1600 */
1601 #define PART_DESC_ALLOC_STEP 32
1602
1603 struct part_desc_seq_scan_data {
1604 struct udf_vds_record rec;
1605 u32 partnum;
1606 };
1607
1608 struct desc_seq_scan_data {
1609 struct udf_vds_record vds[VDS_POS_LENGTH];
1610 unsigned int size_part_descs;
1611 unsigned int num_part_descs;
1612 struct part_desc_seq_scan_data *part_descs_loc;
1613 };
1614
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1615 static struct udf_vds_record *handle_partition_descriptor(
1616 struct buffer_head *bh,
1617 struct desc_seq_scan_data *data)
1618 {
1619 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1620 int partnum;
1621 int i;
1622
1623 partnum = le16_to_cpu(desc->partitionNumber);
1624 for (i = 0; i < data->num_part_descs; i++)
1625 if (partnum == data->part_descs_loc[i].partnum)
1626 return &(data->part_descs_loc[i].rec);
1627 if (data->num_part_descs >= data->size_part_descs) {
1628 struct part_desc_seq_scan_data *new_loc;
1629 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1630
1631 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1632 if (!new_loc)
1633 return ERR_PTR(-ENOMEM);
1634 memcpy(new_loc, data->part_descs_loc,
1635 data->size_part_descs * sizeof(*new_loc));
1636 kfree(data->part_descs_loc);
1637 data->part_descs_loc = new_loc;
1638 data->size_part_descs = new_size;
1639 }
1640 return &(data->part_descs_loc[data->num_part_descs++].rec);
1641 }
1642
1643
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1644 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1645 struct buffer_head *bh, struct desc_seq_scan_data *data)
1646 {
1647 switch (ident) {
1648 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1650 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1651 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1652 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1653 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1654 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1655 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1656 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657 return handle_partition_descriptor(bh, data);
1658 }
1659 return NULL;
1660 }
1661
1662 /*
1663 * Process a main/reserve volume descriptor sequence.
1664 * @block First block of first extent of the sequence.
1665 * @lastblock Lastblock of first extent of the sequence.
1666 * @fileset There we store extent containing root fileset
1667 *
1668 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1669 * sequence
1670 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1671 static noinline int udf_process_sequence(
1672 struct super_block *sb,
1673 sector_t block, sector_t lastblock,
1674 struct kernel_lb_addr *fileset)
1675 {
1676 struct buffer_head *bh = NULL;
1677 struct udf_vds_record *curr;
1678 struct generic_desc *gd;
1679 struct volDescPtr *vdp;
1680 bool done = false;
1681 uint32_t vdsn;
1682 uint16_t ident;
1683 int ret;
1684 unsigned int indirections = 0;
1685 struct desc_seq_scan_data data;
1686 unsigned int i;
1687
1688 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1689 data.size_part_descs = PART_DESC_ALLOC_STEP;
1690 data.num_part_descs = 0;
1691 data.part_descs_loc = kcalloc(data.size_part_descs,
1692 sizeof(*data.part_descs_loc),
1693 GFP_KERNEL);
1694 if (!data.part_descs_loc)
1695 return -ENOMEM;
1696
1697 /*
1698 * Read the main descriptor sequence and find which descriptors
1699 * are in it.
1700 */
1701 for (; (!done && block <= lastblock); block++) {
1702 bh = udf_read_tagged(sb, block, block, &ident);
1703 if (!bh)
1704 break;
1705
1706 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1707 gd = (struct generic_desc *)bh->b_data;
1708 vdsn = le32_to_cpu(gd->volDescSeqNum);
1709 switch (ident) {
1710 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1711 if (++indirections > UDF_MAX_TD_NESTING) {
1712 udf_err(sb, "too many Volume Descriptor "
1713 "Pointers (max %u supported)\n",
1714 UDF_MAX_TD_NESTING);
1715 brelse(bh);
1716 ret = -EIO;
1717 goto out;
1718 }
1719
1720 vdp = (struct volDescPtr *)bh->b_data;
1721 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1722 lastblock = le32_to_cpu(
1723 vdp->nextVolDescSeqExt.extLength) >>
1724 sb->s_blocksize_bits;
1725 lastblock += block - 1;
1726 /* For loop is going to increment 'block' again */
1727 block--;
1728 break;
1729 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1730 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1731 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1732 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1733 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1734 curr = get_volume_descriptor_record(ident, bh, &data);
1735 if (IS_ERR(curr)) {
1736 brelse(bh);
1737 ret = PTR_ERR(curr);
1738 goto out;
1739 }
1740 /* Descriptor we don't care about? */
1741 if (!curr)
1742 break;
1743 if (vdsn >= curr->volDescSeqNum) {
1744 curr->volDescSeqNum = vdsn;
1745 curr->block = block;
1746 }
1747 break;
1748 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1749 done = true;
1750 break;
1751 }
1752 brelse(bh);
1753 }
1754 /*
1755 * Now read interesting descriptors again and process them
1756 * in a suitable order
1757 */
1758 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1759 udf_err(sb, "Primary Volume Descriptor not found!\n");
1760 ret = -EAGAIN;
1761 goto out;
1762 }
1763 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1764 if (ret < 0)
1765 goto out;
1766
1767 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1768 ret = udf_load_logicalvol(sb,
1769 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1770 fileset);
1771 if (ret < 0)
1772 goto out;
1773 }
1774
1775 /* Now handle prevailing Partition Descriptors */
1776 for (i = 0; i < data.num_part_descs; i++) {
1777 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1778 if (ret < 0)
1779 goto out;
1780 }
1781 ret = 0;
1782 out:
1783 kfree(data.part_descs_loc);
1784 return ret;
1785 }
1786
1787 /*
1788 * Load Volume Descriptor Sequence described by anchor in bh
1789 *
1790 * Returns <0 on error, 0 on success
1791 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1792 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1793 struct kernel_lb_addr *fileset)
1794 {
1795 struct anchorVolDescPtr *anchor;
1796 sector_t main_s, main_e, reserve_s, reserve_e;
1797 int ret;
1798
1799 anchor = (struct anchorVolDescPtr *)bh->b_data;
1800
1801 /* Locate the main sequence */
1802 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1803 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1804 main_e = main_e >> sb->s_blocksize_bits;
1805 main_e += main_s - 1;
1806
1807 /* Locate the reserve sequence */
1808 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1809 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1810 reserve_e = reserve_e >> sb->s_blocksize_bits;
1811 reserve_e += reserve_s - 1;
1812
1813 /* Process the main & reserve sequences */
1814 /* responsible for finding the PartitionDesc(s) */
1815 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1816 if (ret != -EAGAIN)
1817 return ret;
1818 udf_sb_free_partitions(sb);
1819 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1820 if (ret < 0) {
1821 udf_sb_free_partitions(sb);
1822 /* No sequence was OK, return -EIO */
1823 if (ret == -EAGAIN)
1824 ret = -EIO;
1825 }
1826 return ret;
1827 }
1828
1829 /*
1830 * Check whether there is an anchor block in the given block and
1831 * load Volume Descriptor Sequence if so.
1832 *
1833 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1834 * block
1835 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1836 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1837 struct kernel_lb_addr *fileset)
1838 {
1839 struct buffer_head *bh;
1840 uint16_t ident;
1841 int ret;
1842
1843 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1844 udf_fixed_to_variable(block) >=
1845 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1846 return -EAGAIN;
1847
1848 bh = udf_read_tagged(sb, block, block, &ident);
1849 if (!bh)
1850 return -EAGAIN;
1851 if (ident != TAG_IDENT_AVDP) {
1852 brelse(bh);
1853 return -EAGAIN;
1854 }
1855 ret = udf_load_sequence(sb, bh, fileset);
1856 brelse(bh);
1857 return ret;
1858 }
1859
1860 /*
1861 * Search for an anchor volume descriptor pointer.
1862 *
1863 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864 * of anchors.
1865 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1866 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1867 struct kernel_lb_addr *fileset)
1868 {
1869 sector_t last[6];
1870 int i;
1871 struct udf_sb_info *sbi = UDF_SB(sb);
1872 int last_count = 0;
1873 int ret;
1874
1875 /* First try user provided anchor */
1876 if (sbi->s_anchor) {
1877 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1878 if (ret != -EAGAIN)
1879 return ret;
1880 }
1881 /*
1882 * according to spec, anchor is in either:
1883 * block 256
1884 * lastblock-256
1885 * lastblock
1886 * however, if the disc isn't closed, it could be 512.
1887 */
1888 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889 if (ret != -EAGAIN)
1890 return ret;
1891 /*
1892 * The trouble is which block is the last one. Drives often misreport
1893 * this so we try various possibilities.
1894 */
1895 last[last_count++] = *lastblock;
1896 if (*lastblock >= 1)
1897 last[last_count++] = *lastblock - 1;
1898 last[last_count++] = *lastblock + 1;
1899 if (*lastblock >= 2)
1900 last[last_count++] = *lastblock - 2;
1901 if (*lastblock >= 150)
1902 last[last_count++] = *lastblock - 150;
1903 if (*lastblock >= 152)
1904 last[last_count++] = *lastblock - 152;
1905
1906 for (i = 0; i < last_count; i++) {
1907 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1908 sb->s_blocksize_bits)
1909 continue;
1910 ret = udf_check_anchor_block(sb, last[i], fileset);
1911 if (ret != -EAGAIN) {
1912 if (!ret)
1913 *lastblock = last[i];
1914 return ret;
1915 }
1916 if (last[i] < 256)
1917 continue;
1918 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1919 if (ret != -EAGAIN) {
1920 if (!ret)
1921 *lastblock = last[i];
1922 return ret;
1923 }
1924 }
1925
1926 /* Finally try block 512 in case media is open */
1927 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1928 }
1929
1930 /*
1931 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1932 * area specified by it. The function expects sbi->s_lastblock to be the last
1933 * block on the media.
1934 *
1935 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1936 * was not found.
1937 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1938 static int udf_find_anchor(struct super_block *sb,
1939 struct kernel_lb_addr *fileset)
1940 {
1941 struct udf_sb_info *sbi = UDF_SB(sb);
1942 sector_t lastblock = sbi->s_last_block;
1943 int ret;
1944
1945 ret = udf_scan_anchors(sb, &lastblock, fileset);
1946 if (ret != -EAGAIN)
1947 goto out;
1948
1949 /* No anchor found? Try VARCONV conversion of block numbers */
1950 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1951 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1952 /* Firstly, we try to not convert number of the last block */
1953 ret = udf_scan_anchors(sb, &lastblock, fileset);
1954 if (ret != -EAGAIN)
1955 goto out;
1956
1957 lastblock = sbi->s_last_block;
1958 /* Secondly, we try with converted number of the last block */
1959 ret = udf_scan_anchors(sb, &lastblock, fileset);
1960 if (ret < 0) {
1961 /* VARCONV didn't help. Clear it. */
1962 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1963 }
1964 out:
1965 if (ret == 0)
1966 sbi->s_last_block = lastblock;
1967 return ret;
1968 }
1969
1970 /*
1971 * Check Volume Structure Descriptor, find Anchor block and load Volume
1972 * Descriptor Sequence.
1973 *
1974 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1975 * block was not found.
1976 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1977 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1978 int silent, struct kernel_lb_addr *fileset)
1979 {
1980 struct udf_sb_info *sbi = UDF_SB(sb);
1981 int nsr = 0;
1982 int ret;
1983
1984 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1985 if (!silent)
1986 udf_warn(sb, "Bad block size\n");
1987 return -EINVAL;
1988 }
1989 sbi->s_last_block = uopt->lastblock;
1990 if (!uopt->novrs) {
1991 /* Check that it is NSR02 compliant */
1992 nsr = udf_check_vsd(sb);
1993 if (!nsr) {
1994 if (!silent)
1995 udf_warn(sb, "No VRS found\n");
1996 return -EINVAL;
1997 }
1998 if (nsr == -1)
1999 udf_debug("Failed to read sector at offset %d. "
2000 "Assuming open disc. Skipping validity "
2001 "check\n", VSD_FIRST_SECTOR_OFFSET);
2002 if (!sbi->s_last_block)
2003 sbi->s_last_block = udf_get_last_block(sb);
2004 } else {
2005 udf_debug("Validity check skipped because of novrs option\n");
2006 }
2007
2008 /* Look for anchor block and load Volume Descriptor Sequence */
2009 sbi->s_anchor = uopt->anchor;
2010 ret = udf_find_anchor(sb, fileset);
2011 if (ret < 0) {
2012 if (!silent && ret == -EAGAIN)
2013 udf_warn(sb, "No anchor found\n");
2014 return ret;
2015 }
2016 return 0;
2017 }
2018
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2019 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2020 {
2021 struct timespec64 ts;
2022
2023 ktime_get_real_ts64(&ts);
2024 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2025 lvid->descTag.descCRC = cpu_to_le16(
2026 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2027 le16_to_cpu(lvid->descTag.descCRCLength)));
2028 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2029 }
2030
udf_open_lvid(struct super_block * sb)2031 static void udf_open_lvid(struct super_block *sb)
2032 {
2033 struct udf_sb_info *sbi = UDF_SB(sb);
2034 struct buffer_head *bh = sbi->s_lvid_bh;
2035 struct logicalVolIntegrityDesc *lvid;
2036 struct logicalVolIntegrityDescImpUse *lvidiu;
2037
2038 if (!bh)
2039 return;
2040 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2041 lvidiu = udf_sb_lvidiu(sb);
2042 if (!lvidiu)
2043 return;
2044
2045 mutex_lock(&sbi->s_alloc_mutex);
2046 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2047 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2048 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2049 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2050 else
2051 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2052
2053 udf_finalize_lvid(lvid);
2054 mark_buffer_dirty(bh);
2055 sbi->s_lvid_dirty = 0;
2056 mutex_unlock(&sbi->s_alloc_mutex);
2057 /* Make opening of filesystem visible on the media immediately */
2058 sync_dirty_buffer(bh);
2059 }
2060
udf_close_lvid(struct super_block * sb)2061 static void udf_close_lvid(struct super_block *sb)
2062 {
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct buffer_head *bh = sbi->s_lvid_bh;
2065 struct logicalVolIntegrityDesc *lvid;
2066 struct logicalVolIntegrityDescImpUse *lvidiu;
2067
2068 if (!bh)
2069 return;
2070 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2071 lvidiu = udf_sb_lvidiu(sb);
2072 if (!lvidiu)
2073 return;
2074
2075 mutex_lock(&sbi->s_alloc_mutex);
2076 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2077 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2078 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2079 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2080 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2081 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2082 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2083 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2084 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2085 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2086
2087 /*
2088 * We set buffer uptodate unconditionally here to avoid spurious
2089 * warnings from mark_buffer_dirty() when previous EIO has marked
2090 * the buffer as !uptodate
2091 */
2092 set_buffer_uptodate(bh);
2093 udf_finalize_lvid(lvid);
2094 mark_buffer_dirty(bh);
2095 sbi->s_lvid_dirty = 0;
2096 mutex_unlock(&sbi->s_alloc_mutex);
2097 /* Make closing of filesystem visible on the media immediately */
2098 sync_dirty_buffer(bh);
2099 }
2100
lvid_get_unique_id(struct super_block * sb)2101 u64 lvid_get_unique_id(struct super_block *sb)
2102 {
2103 struct buffer_head *bh;
2104 struct udf_sb_info *sbi = UDF_SB(sb);
2105 struct logicalVolIntegrityDesc *lvid;
2106 struct logicalVolHeaderDesc *lvhd;
2107 u64 uniqueID;
2108 u64 ret;
2109
2110 bh = sbi->s_lvid_bh;
2111 if (!bh)
2112 return 0;
2113
2114 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2115 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2116
2117 mutex_lock(&sbi->s_alloc_mutex);
2118 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2119 if (!(++uniqueID & 0xFFFFFFFF))
2120 uniqueID += 16;
2121 lvhd->uniqueID = cpu_to_le64(uniqueID);
2122 udf_updated_lvid(sb);
2123 mutex_unlock(&sbi->s_alloc_mutex);
2124
2125 return ret;
2126 }
2127
udf_fill_super(struct super_block * sb,void * options,int silent)2128 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2129 {
2130 int ret = -EINVAL;
2131 struct inode *inode = NULL;
2132 struct udf_options uopt;
2133 struct kernel_lb_addr rootdir, fileset;
2134 struct udf_sb_info *sbi;
2135 bool lvid_open = false;
2136
2137 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2138 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2139 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2140 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2141 uopt.umask = 0;
2142 uopt.fmode = UDF_INVALID_MODE;
2143 uopt.dmode = UDF_INVALID_MODE;
2144 uopt.nls_map = NULL;
2145
2146 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2147 if (!sbi)
2148 return -ENOMEM;
2149
2150 sb->s_fs_info = sbi;
2151
2152 mutex_init(&sbi->s_alloc_mutex);
2153
2154 if (!udf_parse_options((char *)options, &uopt, false))
2155 goto parse_options_failure;
2156
2157 fileset.logicalBlockNum = 0xFFFFFFFF;
2158 fileset.partitionReferenceNum = 0xFFFF;
2159
2160 sbi->s_flags = uopt.flags;
2161 sbi->s_uid = uopt.uid;
2162 sbi->s_gid = uopt.gid;
2163 sbi->s_umask = uopt.umask;
2164 sbi->s_fmode = uopt.fmode;
2165 sbi->s_dmode = uopt.dmode;
2166 sbi->s_nls_map = uopt.nls_map;
2167 rwlock_init(&sbi->s_cred_lock);
2168
2169 if (uopt.session == 0xFFFFFFFF)
2170 sbi->s_session = udf_get_last_session(sb);
2171 else
2172 sbi->s_session = uopt.session;
2173
2174 udf_debug("Multi-session=%d\n", sbi->s_session);
2175
2176 /* Fill in the rest of the superblock */
2177 sb->s_op = &udf_sb_ops;
2178 sb->s_export_op = &udf_export_ops;
2179
2180 sb->s_magic = UDF_SUPER_MAGIC;
2181 sb->s_time_gran = 1000;
2182
2183 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2184 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185 } else {
2186 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2187 while (uopt.blocksize <= 4096) {
2188 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2189 if (ret < 0) {
2190 if (!silent && ret != -EACCES) {
2191 pr_notice("Scanning with blocksize %u failed\n",
2192 uopt.blocksize);
2193 }
2194 brelse(sbi->s_lvid_bh);
2195 sbi->s_lvid_bh = NULL;
2196 /*
2197 * EACCES is special - we want to propagate to
2198 * upper layers that we cannot handle RW mount.
2199 */
2200 if (ret == -EACCES)
2201 break;
2202 } else
2203 break;
2204
2205 uopt.blocksize <<= 1;
2206 }
2207 }
2208 if (ret < 0) {
2209 if (ret == -EAGAIN) {
2210 udf_warn(sb, "No partition found (1)\n");
2211 ret = -EINVAL;
2212 }
2213 goto error_out;
2214 }
2215
2216 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2217
2218 if (sbi->s_lvid_bh) {
2219 struct logicalVolIntegrityDescImpUse *lvidiu =
2220 udf_sb_lvidiu(sb);
2221 uint16_t minUDFReadRev;
2222 uint16_t minUDFWriteRev;
2223
2224 if (!lvidiu) {
2225 ret = -EINVAL;
2226 goto error_out;
2227 }
2228 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2229 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2230 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2231 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2232 minUDFReadRev,
2233 UDF_MAX_READ_VERSION);
2234 ret = -EINVAL;
2235 goto error_out;
2236 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2237 if (!sb_rdonly(sb)) {
2238 ret = -EACCES;
2239 goto error_out;
2240 }
2241 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2242 }
2243
2244 sbi->s_udfrev = minUDFWriteRev;
2245
2246 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2247 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2248 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2249 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2250 }
2251
2252 if (!sbi->s_partitions) {
2253 udf_warn(sb, "No partition found (2)\n");
2254 ret = -EINVAL;
2255 goto error_out;
2256 }
2257
2258 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2259 UDF_PART_FLAG_READ_ONLY) {
2260 if (!sb_rdonly(sb)) {
2261 ret = -EACCES;
2262 goto error_out;
2263 }
2264 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2265 }
2266
2267 ret = udf_find_fileset(sb, &fileset, &rootdir);
2268 if (ret < 0) {
2269 udf_warn(sb, "No fileset found\n");
2270 goto error_out;
2271 }
2272
2273 if (!silent) {
2274 struct timestamp ts;
2275 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2276 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2277 sbi->s_volume_ident,
2278 le16_to_cpu(ts.year), ts.month, ts.day,
2279 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2280 }
2281 if (!sb_rdonly(sb)) {
2282 udf_open_lvid(sb);
2283 lvid_open = true;
2284 }
2285
2286 /* Assign the root inode */
2287 /* assign inodes by physical block number */
2288 /* perhaps it's not extensible enough, but for now ... */
2289 inode = udf_iget(sb, &rootdir);
2290 if (IS_ERR(inode)) {
2291 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2292 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2293 ret = PTR_ERR(inode);
2294 goto error_out;
2295 }
2296
2297 /* Allocate a dentry for the root inode */
2298 sb->s_root = d_make_root(inode);
2299 if (!sb->s_root) {
2300 udf_err(sb, "Couldn't allocate root dentry\n");
2301 ret = -ENOMEM;
2302 goto error_out;
2303 }
2304 sb->s_maxbytes = MAX_LFS_FILESIZE;
2305 sb->s_max_links = UDF_MAX_LINKS;
2306 return 0;
2307
2308 error_out:
2309 iput(sbi->s_vat_inode);
2310 parse_options_failure:
2311 unload_nls(uopt.nls_map);
2312 if (lvid_open)
2313 udf_close_lvid(sb);
2314 brelse(sbi->s_lvid_bh);
2315 udf_sb_free_partitions(sb);
2316 kfree(sbi);
2317 sb->s_fs_info = NULL;
2318
2319 return ret;
2320 }
2321
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2322 void _udf_err(struct super_block *sb, const char *function,
2323 const char *fmt, ...)
2324 {
2325 struct va_format vaf;
2326 va_list args;
2327
2328 va_start(args, fmt);
2329
2330 vaf.fmt = fmt;
2331 vaf.va = &args;
2332
2333 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2334
2335 va_end(args);
2336 }
2337
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2338 void _udf_warn(struct super_block *sb, const char *function,
2339 const char *fmt, ...)
2340 {
2341 struct va_format vaf;
2342 va_list args;
2343
2344 va_start(args, fmt);
2345
2346 vaf.fmt = fmt;
2347 vaf.va = &args;
2348
2349 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2350
2351 va_end(args);
2352 }
2353
udf_put_super(struct super_block * sb)2354 static void udf_put_super(struct super_block *sb)
2355 {
2356 struct udf_sb_info *sbi;
2357
2358 sbi = UDF_SB(sb);
2359
2360 iput(sbi->s_vat_inode);
2361 unload_nls(sbi->s_nls_map);
2362 if (!sb_rdonly(sb))
2363 udf_close_lvid(sb);
2364 brelse(sbi->s_lvid_bh);
2365 udf_sb_free_partitions(sb);
2366 mutex_destroy(&sbi->s_alloc_mutex);
2367 kfree(sb->s_fs_info);
2368 sb->s_fs_info = NULL;
2369 }
2370
udf_sync_fs(struct super_block * sb,int wait)2371 static int udf_sync_fs(struct super_block *sb, int wait)
2372 {
2373 struct udf_sb_info *sbi = UDF_SB(sb);
2374
2375 mutex_lock(&sbi->s_alloc_mutex);
2376 if (sbi->s_lvid_dirty) {
2377 struct buffer_head *bh = sbi->s_lvid_bh;
2378 struct logicalVolIntegrityDesc *lvid;
2379
2380 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2381 udf_finalize_lvid(lvid);
2382
2383 /*
2384 * Blockdevice will be synced later so we don't have to submit
2385 * the buffer for IO
2386 */
2387 mark_buffer_dirty(bh);
2388 sbi->s_lvid_dirty = 0;
2389 }
2390 mutex_unlock(&sbi->s_alloc_mutex);
2391
2392 return 0;
2393 }
2394
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2395 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2396 {
2397 struct super_block *sb = dentry->d_sb;
2398 struct udf_sb_info *sbi = UDF_SB(sb);
2399 struct logicalVolIntegrityDescImpUse *lvidiu;
2400 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2401
2402 lvidiu = udf_sb_lvidiu(sb);
2403 buf->f_type = UDF_SUPER_MAGIC;
2404 buf->f_bsize = sb->s_blocksize;
2405 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2406 buf->f_bfree = udf_count_free(sb);
2407 buf->f_bavail = buf->f_bfree;
2408 /*
2409 * Let's pretend each free block is also a free 'inode' since UDF does
2410 * not have separate preallocated table of inodes.
2411 */
2412 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2413 le32_to_cpu(lvidiu->numDirs)) : 0)
2414 + buf->f_bfree;
2415 buf->f_ffree = buf->f_bfree;
2416 buf->f_namelen = UDF_NAME_LEN;
2417 buf->f_fsid = u64_to_fsid(id);
2418
2419 return 0;
2420 }
2421
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2422 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2423 struct udf_bitmap *bitmap)
2424 {
2425 struct buffer_head *bh = NULL;
2426 unsigned int accum = 0;
2427 int index;
2428 udf_pblk_t block = 0, newblock;
2429 struct kernel_lb_addr loc;
2430 uint32_t bytes;
2431 uint8_t *ptr;
2432 uint16_t ident;
2433 struct spaceBitmapDesc *bm;
2434
2435 loc.logicalBlockNum = bitmap->s_extPosition;
2436 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2437 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2438
2439 if (!bh) {
2440 udf_err(sb, "udf_count_free failed\n");
2441 goto out;
2442 } else if (ident != TAG_IDENT_SBD) {
2443 brelse(bh);
2444 udf_err(sb, "udf_count_free failed\n");
2445 goto out;
2446 }
2447
2448 bm = (struct spaceBitmapDesc *)bh->b_data;
2449 bytes = le32_to_cpu(bm->numOfBytes);
2450 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2451 ptr = (uint8_t *)bh->b_data;
2452
2453 while (bytes > 0) {
2454 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2455 accum += bitmap_weight((const unsigned long *)(ptr + index),
2456 cur_bytes * 8);
2457 bytes -= cur_bytes;
2458 if (bytes) {
2459 brelse(bh);
2460 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2461 bh = udf_tread(sb, newblock);
2462 if (!bh) {
2463 udf_debug("read failed\n");
2464 goto out;
2465 }
2466 index = 0;
2467 ptr = (uint8_t *)bh->b_data;
2468 }
2469 }
2470 brelse(bh);
2471 out:
2472 return accum;
2473 }
2474
udf_count_free_table(struct super_block * sb,struct inode * table)2475 static unsigned int udf_count_free_table(struct super_block *sb,
2476 struct inode *table)
2477 {
2478 unsigned int accum = 0;
2479 uint32_t elen;
2480 struct kernel_lb_addr eloc;
2481 int8_t etype;
2482 struct extent_position epos;
2483
2484 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2485 epos.block = UDF_I(table)->i_location;
2486 epos.offset = sizeof(struct unallocSpaceEntry);
2487 epos.bh = NULL;
2488
2489 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2490 accum += (elen >> table->i_sb->s_blocksize_bits);
2491
2492 brelse(epos.bh);
2493 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2494
2495 return accum;
2496 }
2497
udf_count_free(struct super_block * sb)2498 static unsigned int udf_count_free(struct super_block *sb)
2499 {
2500 unsigned int accum = 0;
2501 struct udf_sb_info *sbi = UDF_SB(sb);
2502 struct udf_part_map *map;
2503 unsigned int part = sbi->s_partition;
2504 int ptype = sbi->s_partmaps[part].s_partition_type;
2505
2506 if (ptype == UDF_METADATA_MAP25) {
2507 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2508 s_phys_partition_ref;
2509 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2510 /*
2511 * Filesystems with VAT are append-only and we cannot write to
2512 * them. Let's just report 0 here.
2513 */
2514 return 0;
2515 }
2516
2517 if (sbi->s_lvid_bh) {
2518 struct logicalVolIntegrityDesc *lvid =
2519 (struct logicalVolIntegrityDesc *)
2520 sbi->s_lvid_bh->b_data;
2521 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2522 accum = le32_to_cpu(
2523 lvid->freeSpaceTable[part]);
2524 if (accum == 0xFFFFFFFF)
2525 accum = 0;
2526 }
2527 }
2528
2529 if (accum)
2530 return accum;
2531
2532 map = &sbi->s_partmaps[part];
2533 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2534 accum += udf_count_free_bitmap(sb,
2535 map->s_uspace.s_bitmap);
2536 }
2537 if (accum)
2538 return accum;
2539
2540 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2541 accum += udf_count_free_table(sb,
2542 map->s_uspace.s_table);
2543 }
2544 return accum;
2545 }
2546
2547 MODULE_AUTHOR("Ben Fennema");
2548 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2549 MODULE_LICENSE("GPL");
2550 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
2551 module_init(init_udf_fs)
2552 module_exit(exit_udf_fs)
2553