• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 
39 #include <linux/ctype.h>
40 #include <symbol/kallsyms.h>
41 #include <linux/mman.h>
42 #include <linux/string.h>
43 #include <linux/zalloc.h>
44 
45 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
46 
machine__kernel_dso(struct machine * machine)47 static struct dso *machine__kernel_dso(struct machine *machine)
48 {
49 	return machine->vmlinux_map->dso;
50 }
51 
dsos__init(struct dsos * dsos)52 static void dsos__init(struct dsos *dsos)
53 {
54 	INIT_LIST_HEAD(&dsos->head);
55 	dsos->root = RB_ROOT;
56 	init_rwsem(&dsos->lock);
57 }
58 
machine__threads_init(struct machine * machine)59 static void machine__threads_init(struct machine *machine)
60 {
61 	int i;
62 
63 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
64 		struct threads *threads = &machine->threads[i];
65 		threads->entries = RB_ROOT_CACHED;
66 		init_rwsem(&threads->lock);
67 		threads->nr = 0;
68 		INIT_LIST_HEAD(&threads->dead);
69 		threads->last_match = NULL;
70 	}
71 }
72 
machine__set_mmap_name(struct machine * machine)73 static int machine__set_mmap_name(struct machine *machine)
74 {
75 	if (machine__is_host(machine))
76 		machine->mmap_name = strdup("[kernel.kallsyms]");
77 	else if (machine__is_default_guest(machine))
78 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
79 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
80 			  machine->pid) < 0)
81 		machine->mmap_name = NULL;
82 
83 	return machine->mmap_name ? 0 : -ENOMEM;
84 }
85 
machine__init(struct machine * machine,const char * root_dir,pid_t pid)86 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
87 {
88 	int err = -ENOMEM;
89 
90 	memset(machine, 0, sizeof(*machine));
91 	maps__init(&machine->kmaps, machine);
92 	RB_CLEAR_NODE(&machine->rb_node);
93 	dsos__init(&machine->dsos);
94 
95 	machine__threads_init(machine);
96 
97 	machine->vdso_info = NULL;
98 	machine->env = NULL;
99 
100 	machine->pid = pid;
101 
102 	machine->id_hdr_size = 0;
103 	machine->kptr_restrict_warned = false;
104 	machine->comm_exec = false;
105 	machine->kernel_start = 0;
106 	machine->vmlinux_map = NULL;
107 
108 	machine->root_dir = strdup(root_dir);
109 	if (machine->root_dir == NULL)
110 		return -ENOMEM;
111 
112 	if (machine__set_mmap_name(machine))
113 		goto out;
114 
115 	if (pid != HOST_KERNEL_ID) {
116 		struct thread *thread = machine__findnew_thread(machine, -1,
117 								pid);
118 		char comm[64];
119 
120 		if (thread == NULL)
121 			goto out;
122 
123 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
124 		thread__set_comm(thread, comm, 0);
125 		thread__put(thread);
126 	}
127 
128 	machine->current_tid = NULL;
129 	err = 0;
130 
131 out:
132 	if (err) {
133 		zfree(&machine->root_dir);
134 		zfree(&machine->mmap_name);
135 	}
136 	return 0;
137 }
138 
machine__new_host(void)139 struct machine *machine__new_host(void)
140 {
141 	struct machine *machine = malloc(sizeof(*machine));
142 
143 	if (machine != NULL) {
144 		machine__init(machine, "", HOST_KERNEL_ID);
145 
146 		if (machine__create_kernel_maps(machine) < 0)
147 			goto out_delete;
148 	}
149 
150 	return machine;
151 out_delete:
152 	free(machine);
153 	return NULL;
154 }
155 
machine__new_kallsyms(void)156 struct machine *machine__new_kallsyms(void)
157 {
158 	struct machine *machine = machine__new_host();
159 	/*
160 	 * FIXME:
161 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
162 	 *    ask for not using the kcore parsing code, once this one is fixed
163 	 *    to create a map per module.
164 	 */
165 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
166 		machine__delete(machine);
167 		machine = NULL;
168 	}
169 
170 	return machine;
171 }
172 
dsos__purge(struct dsos * dsos)173 static void dsos__purge(struct dsos *dsos)
174 {
175 	struct dso *pos, *n;
176 
177 	down_write(&dsos->lock);
178 
179 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
180 		RB_CLEAR_NODE(&pos->rb_node);
181 		pos->root = NULL;
182 		list_del_init(&pos->node);
183 		dso__put(pos);
184 	}
185 
186 	up_write(&dsos->lock);
187 }
188 
dsos__exit(struct dsos * dsos)189 static void dsos__exit(struct dsos *dsos)
190 {
191 	dsos__purge(dsos);
192 	exit_rwsem(&dsos->lock);
193 }
194 
machine__delete_threads(struct machine * machine)195 void machine__delete_threads(struct machine *machine)
196 {
197 	struct rb_node *nd;
198 	int i;
199 
200 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
201 		struct threads *threads = &machine->threads[i];
202 		down_write(&threads->lock);
203 		nd = rb_first_cached(&threads->entries);
204 		while (nd) {
205 			struct thread *t = rb_entry(nd, struct thread, rb_node);
206 
207 			nd = rb_next(nd);
208 			__machine__remove_thread(machine, t, false);
209 		}
210 		up_write(&threads->lock);
211 	}
212 }
213 
machine__exit(struct machine * machine)214 void machine__exit(struct machine *machine)
215 {
216 	int i;
217 
218 	if (machine == NULL)
219 		return;
220 
221 	machine__destroy_kernel_maps(machine);
222 	maps__exit(&machine->kmaps);
223 	dsos__exit(&machine->dsos);
224 	machine__exit_vdso(machine);
225 	zfree(&machine->root_dir);
226 	zfree(&machine->mmap_name);
227 	zfree(&machine->current_tid);
228 
229 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
230 		struct threads *threads = &machine->threads[i];
231 		struct thread *thread, *n;
232 		/*
233 		 * Forget about the dead, at this point whatever threads were
234 		 * left in the dead lists better have a reference count taken
235 		 * by who is using them, and then, when they drop those references
236 		 * and it finally hits zero, thread__put() will check and see that
237 		 * its not in the dead threads list and will not try to remove it
238 		 * from there, just calling thread__delete() straight away.
239 		 */
240 		list_for_each_entry_safe(thread, n, &threads->dead, node)
241 			list_del_init(&thread->node);
242 
243 		exit_rwsem(&threads->lock);
244 	}
245 }
246 
machine__delete(struct machine * machine)247 void machine__delete(struct machine *machine)
248 {
249 	if (machine) {
250 		machine__exit(machine);
251 		free(machine);
252 	}
253 }
254 
machines__init(struct machines * machines)255 void machines__init(struct machines *machines)
256 {
257 	machine__init(&machines->host, "", HOST_KERNEL_ID);
258 	machines->guests = RB_ROOT_CACHED;
259 }
260 
machines__exit(struct machines * machines)261 void machines__exit(struct machines *machines)
262 {
263 	machine__exit(&machines->host);
264 	/* XXX exit guest */
265 }
266 
machines__add(struct machines * machines,pid_t pid,const char * root_dir)267 struct machine *machines__add(struct machines *machines, pid_t pid,
268 			      const char *root_dir)
269 {
270 	struct rb_node **p = &machines->guests.rb_root.rb_node;
271 	struct rb_node *parent = NULL;
272 	struct machine *pos, *machine = malloc(sizeof(*machine));
273 	bool leftmost = true;
274 
275 	if (machine == NULL)
276 		return NULL;
277 
278 	if (machine__init(machine, root_dir, pid) != 0) {
279 		free(machine);
280 		return NULL;
281 	}
282 
283 	while (*p != NULL) {
284 		parent = *p;
285 		pos = rb_entry(parent, struct machine, rb_node);
286 		if (pid < pos->pid)
287 			p = &(*p)->rb_left;
288 		else {
289 			p = &(*p)->rb_right;
290 			leftmost = false;
291 		}
292 	}
293 
294 	rb_link_node(&machine->rb_node, parent, p);
295 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
296 
297 	return machine;
298 }
299 
machines__set_comm_exec(struct machines * machines,bool comm_exec)300 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
301 {
302 	struct rb_node *nd;
303 
304 	machines->host.comm_exec = comm_exec;
305 
306 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
307 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
308 
309 		machine->comm_exec = comm_exec;
310 	}
311 }
312 
machines__find(struct machines * machines,pid_t pid)313 struct machine *machines__find(struct machines *machines, pid_t pid)
314 {
315 	struct rb_node **p = &machines->guests.rb_root.rb_node;
316 	struct rb_node *parent = NULL;
317 	struct machine *machine;
318 	struct machine *default_machine = NULL;
319 
320 	if (pid == HOST_KERNEL_ID)
321 		return &machines->host;
322 
323 	while (*p != NULL) {
324 		parent = *p;
325 		machine = rb_entry(parent, struct machine, rb_node);
326 		if (pid < machine->pid)
327 			p = &(*p)->rb_left;
328 		else if (pid > machine->pid)
329 			p = &(*p)->rb_right;
330 		else
331 			return machine;
332 		if (!machine->pid)
333 			default_machine = machine;
334 	}
335 
336 	return default_machine;
337 }
338 
machines__findnew(struct machines * machines,pid_t pid)339 struct machine *machines__findnew(struct machines *machines, pid_t pid)
340 {
341 	char path[PATH_MAX];
342 	const char *root_dir = "";
343 	struct machine *machine = machines__find(machines, pid);
344 
345 	if (machine && (machine->pid == pid))
346 		goto out;
347 
348 	if ((pid != HOST_KERNEL_ID) &&
349 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
350 	    (symbol_conf.guestmount)) {
351 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
352 		if (access(path, R_OK)) {
353 			static struct strlist *seen;
354 
355 			if (!seen)
356 				seen = strlist__new(NULL, NULL);
357 
358 			if (!strlist__has_entry(seen, path)) {
359 				pr_err("Can't access file %s\n", path);
360 				strlist__add(seen, path);
361 			}
362 			machine = NULL;
363 			goto out;
364 		}
365 		root_dir = path;
366 	}
367 
368 	machine = machines__add(machines, pid, root_dir);
369 out:
370 	return machine;
371 }
372 
machines__find_guest(struct machines * machines,pid_t pid)373 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
374 {
375 	struct machine *machine = machines__find(machines, pid);
376 
377 	if (!machine)
378 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
379 	return machine;
380 }
381 
machines__process_guests(struct machines * machines,machine__process_t process,void * data)382 void machines__process_guests(struct machines *machines,
383 			      machine__process_t process, void *data)
384 {
385 	struct rb_node *nd;
386 
387 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
388 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
389 		process(pos, data);
390 	}
391 }
392 
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)393 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
394 {
395 	struct rb_node *node;
396 	struct machine *machine;
397 
398 	machines->host.id_hdr_size = id_hdr_size;
399 
400 	for (node = rb_first_cached(&machines->guests); node;
401 	     node = rb_next(node)) {
402 		machine = rb_entry(node, struct machine, rb_node);
403 		machine->id_hdr_size = id_hdr_size;
404 	}
405 
406 	return;
407 }
408 
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)409 static void machine__update_thread_pid(struct machine *machine,
410 				       struct thread *th, pid_t pid)
411 {
412 	struct thread *leader;
413 
414 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
415 		return;
416 
417 	th->pid_ = pid;
418 
419 	if (th->pid_ == th->tid)
420 		return;
421 
422 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
423 	if (!leader)
424 		goto out_err;
425 
426 	if (!leader->maps)
427 		leader->maps = maps__new(machine);
428 
429 	if (!leader->maps)
430 		goto out_err;
431 
432 	if (th->maps == leader->maps)
433 		return;
434 
435 	if (th->maps) {
436 		/*
437 		 * Maps are created from MMAP events which provide the pid and
438 		 * tid.  Consequently there never should be any maps on a thread
439 		 * with an unknown pid.  Just print an error if there are.
440 		 */
441 		if (!maps__empty(th->maps))
442 			pr_err("Discarding thread maps for %d:%d\n",
443 			       th->pid_, th->tid);
444 		maps__put(th->maps);
445 	}
446 
447 	th->maps = maps__get(leader->maps);
448 out_put:
449 	thread__put(leader);
450 	return;
451 out_err:
452 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
453 	goto out_put;
454 }
455 
456 /*
457  * Front-end cache - TID lookups come in blocks,
458  * so most of the time we dont have to look up
459  * the full rbtree:
460  */
461 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)462 __threads__get_last_match(struct threads *threads, struct machine *machine,
463 			  int pid, int tid)
464 {
465 	struct thread *th;
466 
467 	th = threads->last_match;
468 	if (th != NULL) {
469 		if (th->tid == tid) {
470 			machine__update_thread_pid(machine, th, pid);
471 			return thread__get(th);
472 		}
473 
474 		threads->last_match = NULL;
475 	}
476 
477 	return NULL;
478 }
479 
480 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)481 threads__get_last_match(struct threads *threads, struct machine *machine,
482 			int pid, int tid)
483 {
484 	struct thread *th = NULL;
485 
486 	if (perf_singlethreaded)
487 		th = __threads__get_last_match(threads, machine, pid, tid);
488 
489 	return th;
490 }
491 
492 static void
__threads__set_last_match(struct threads * threads,struct thread * th)493 __threads__set_last_match(struct threads *threads, struct thread *th)
494 {
495 	threads->last_match = th;
496 }
497 
498 static void
threads__set_last_match(struct threads * threads,struct thread * th)499 threads__set_last_match(struct threads *threads, struct thread *th)
500 {
501 	if (perf_singlethreaded)
502 		__threads__set_last_match(threads, th);
503 }
504 
505 /*
506  * Caller must eventually drop thread->refcnt returned with a successful
507  * lookup/new thread inserted.
508  */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)509 static struct thread *____machine__findnew_thread(struct machine *machine,
510 						  struct threads *threads,
511 						  pid_t pid, pid_t tid,
512 						  bool create)
513 {
514 	struct rb_node **p = &threads->entries.rb_root.rb_node;
515 	struct rb_node *parent = NULL;
516 	struct thread *th;
517 	bool leftmost = true;
518 
519 	th = threads__get_last_match(threads, machine, pid, tid);
520 	if (th)
521 		return th;
522 
523 	while (*p != NULL) {
524 		parent = *p;
525 		th = rb_entry(parent, struct thread, rb_node);
526 
527 		if (th->tid == tid) {
528 			threads__set_last_match(threads, th);
529 			machine__update_thread_pid(machine, th, pid);
530 			return thread__get(th);
531 		}
532 
533 		if (tid < th->tid)
534 			p = &(*p)->rb_left;
535 		else {
536 			p = &(*p)->rb_right;
537 			leftmost = false;
538 		}
539 	}
540 
541 	if (!create)
542 		return NULL;
543 
544 	th = thread__new(pid, tid);
545 	if (th != NULL) {
546 		rb_link_node(&th->rb_node, parent, p);
547 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
548 
549 		/*
550 		 * We have to initialize maps separately after rb tree is updated.
551 		 *
552 		 * The reason is that we call machine__findnew_thread
553 		 * within thread__init_maps to find the thread
554 		 * leader and that would screwed the rb tree.
555 		 */
556 		if (thread__init_maps(th, machine)) {
557 			rb_erase_cached(&th->rb_node, &threads->entries);
558 			RB_CLEAR_NODE(&th->rb_node);
559 			thread__put(th);
560 			return NULL;
561 		}
562 		/*
563 		 * It is now in the rbtree, get a ref
564 		 */
565 		thread__get(th);
566 		threads__set_last_match(threads, th);
567 		++threads->nr;
568 	}
569 
570 	return th;
571 }
572 
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)573 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
574 {
575 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
576 }
577 
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)578 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
579 				       pid_t tid)
580 {
581 	struct threads *threads = machine__threads(machine, tid);
582 	struct thread *th;
583 
584 	down_write(&threads->lock);
585 	th = __machine__findnew_thread(machine, pid, tid);
586 	up_write(&threads->lock);
587 	return th;
588 }
589 
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)590 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
591 				    pid_t tid)
592 {
593 	struct threads *threads = machine__threads(machine, tid);
594 	struct thread *th;
595 
596 	down_read(&threads->lock);
597 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
598 	up_read(&threads->lock);
599 	return th;
600 }
601 
602 /*
603  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
604  * So here a single thread is created for that, but actually there is a separate
605  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
606  * is only 1. That causes problems for some tools, requiring workarounds. For
607  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
608  */
machine__idle_thread(struct machine * machine)609 struct thread *machine__idle_thread(struct machine *machine)
610 {
611 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
612 
613 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
614 	    thread__set_namespaces(thread, 0, NULL))
615 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
616 
617 	return thread;
618 }
619 
machine__thread_exec_comm(struct machine * machine,struct thread * thread)620 struct comm *machine__thread_exec_comm(struct machine *machine,
621 				       struct thread *thread)
622 {
623 	if (machine->comm_exec)
624 		return thread__exec_comm(thread);
625 	else
626 		return thread__comm(thread);
627 }
628 
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)629 int machine__process_comm_event(struct machine *machine, union perf_event *event,
630 				struct perf_sample *sample)
631 {
632 	struct thread *thread = machine__findnew_thread(machine,
633 							event->comm.pid,
634 							event->comm.tid);
635 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
636 	int err = 0;
637 
638 	if (exec)
639 		machine->comm_exec = true;
640 
641 	if (dump_trace)
642 		perf_event__fprintf_comm(event, stdout);
643 
644 	if (thread == NULL ||
645 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
646 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
647 		err = -1;
648 	}
649 
650 	thread__put(thread);
651 
652 	return err;
653 }
654 
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)655 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
656 				      union perf_event *event,
657 				      struct perf_sample *sample __maybe_unused)
658 {
659 	struct thread *thread = machine__findnew_thread(machine,
660 							event->namespaces.pid,
661 							event->namespaces.tid);
662 	int err = 0;
663 
664 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
665 		  "\nWARNING: kernel seems to support more namespaces than perf"
666 		  " tool.\nTry updating the perf tool..\n\n");
667 
668 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
669 		  "\nWARNING: perf tool seems to support more namespaces than"
670 		  " the kernel.\nTry updating the kernel..\n\n");
671 
672 	if (dump_trace)
673 		perf_event__fprintf_namespaces(event, stdout);
674 
675 	if (thread == NULL ||
676 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
677 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
678 		err = -1;
679 	}
680 
681 	thread__put(thread);
682 
683 	return err;
684 }
685 
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)686 int machine__process_cgroup_event(struct machine *machine,
687 				  union perf_event *event,
688 				  struct perf_sample *sample __maybe_unused)
689 {
690 	struct cgroup *cgrp;
691 
692 	if (dump_trace)
693 		perf_event__fprintf_cgroup(event, stdout);
694 
695 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
696 	if (cgrp == NULL)
697 		return -ENOMEM;
698 
699 	return 0;
700 }
701 
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)702 int machine__process_lost_event(struct machine *machine __maybe_unused,
703 				union perf_event *event, struct perf_sample *sample __maybe_unused)
704 {
705 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
706 		    event->lost.id, event->lost.lost);
707 	return 0;
708 }
709 
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)710 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
711 					union perf_event *event, struct perf_sample *sample)
712 {
713 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
714 		    sample->id, event->lost_samples.lost);
715 	return 0;
716 }
717 
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)718 static struct dso *machine__findnew_module_dso(struct machine *machine,
719 					       struct kmod_path *m,
720 					       const char *filename)
721 {
722 	struct dso *dso;
723 
724 	down_write(&machine->dsos.lock);
725 
726 	dso = __dsos__find(&machine->dsos, m->name, true);
727 	if (!dso) {
728 		dso = __dsos__addnew(&machine->dsos, m->name);
729 		if (dso == NULL)
730 			goto out_unlock;
731 
732 		dso__set_module_info(dso, m, machine);
733 		dso__set_long_name(dso, strdup(filename), true);
734 		dso->kernel = DSO_SPACE__KERNEL;
735 	}
736 
737 	dso__get(dso);
738 out_unlock:
739 	up_write(&machine->dsos.lock);
740 	return dso;
741 }
742 
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)743 int machine__process_aux_event(struct machine *machine __maybe_unused,
744 			       union perf_event *event)
745 {
746 	if (dump_trace)
747 		perf_event__fprintf_aux(event, stdout);
748 	return 0;
749 }
750 
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)751 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
752 					union perf_event *event)
753 {
754 	if (dump_trace)
755 		perf_event__fprintf_itrace_start(event, stdout);
756 	return 0;
757 }
758 
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)759 int machine__process_switch_event(struct machine *machine __maybe_unused,
760 				  union perf_event *event)
761 {
762 	if (dump_trace)
763 		perf_event__fprintf_switch(event, stdout);
764 	return 0;
765 }
766 
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)767 static int machine__process_ksymbol_register(struct machine *machine,
768 					     union perf_event *event,
769 					     struct perf_sample *sample __maybe_unused)
770 {
771 	struct symbol *sym;
772 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
773 
774 	if (!map) {
775 		struct dso *dso = dso__new(event->ksymbol.name);
776 
777 		if (dso) {
778 			dso->kernel = DSO_SPACE__KERNEL;
779 			map = map__new2(0, dso);
780 			dso__put(dso);
781 		}
782 
783 		if (!dso || !map) {
784 			return -ENOMEM;
785 		}
786 
787 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
788 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
789 			map->dso->data.file_size = event->ksymbol.len;
790 			dso__set_loaded(map->dso);
791 		}
792 
793 		map->start = event->ksymbol.addr;
794 		map->end = map->start + event->ksymbol.len;
795 		maps__insert(&machine->kmaps, map);
796 		map__put(map);
797 		dso__set_loaded(dso);
798 
799 		if (is_bpf_image(event->ksymbol.name)) {
800 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
801 			dso__set_long_name(dso, "", false);
802 		}
803 	}
804 
805 	sym = symbol__new(map->map_ip(map, map->start),
806 			  event->ksymbol.len,
807 			  0, 0, event->ksymbol.name);
808 	if (!sym)
809 		return -ENOMEM;
810 	dso__insert_symbol(map->dso, sym);
811 	return 0;
812 }
813 
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)814 static int machine__process_ksymbol_unregister(struct machine *machine,
815 					       union perf_event *event,
816 					       struct perf_sample *sample __maybe_unused)
817 {
818 	struct symbol *sym;
819 	struct map *map;
820 
821 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
822 	if (!map)
823 		return 0;
824 
825 	if (map != machine->vmlinux_map)
826 		maps__remove(&machine->kmaps, map);
827 	else {
828 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
829 		if (sym)
830 			dso__delete_symbol(map->dso, sym);
831 	}
832 
833 	return 0;
834 }
835 
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)836 int machine__process_ksymbol(struct machine *machine __maybe_unused,
837 			     union perf_event *event,
838 			     struct perf_sample *sample)
839 {
840 	if (dump_trace)
841 		perf_event__fprintf_ksymbol(event, stdout);
842 
843 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
844 		return machine__process_ksymbol_unregister(machine, event,
845 							   sample);
846 	return machine__process_ksymbol_register(machine, event, sample);
847 }
848 
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)849 int machine__process_text_poke(struct machine *machine, union perf_event *event,
850 			       struct perf_sample *sample __maybe_unused)
851 {
852 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
853 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
854 
855 	if (dump_trace)
856 		perf_event__fprintf_text_poke(event, machine, stdout);
857 
858 	if (!event->text_poke.new_len)
859 		return 0;
860 
861 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
862 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
863 		return 0;
864 	}
865 
866 	if (map && map->dso) {
867 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
868 		int ret;
869 
870 		/*
871 		 * Kernel maps might be changed when loading symbols so loading
872 		 * must be done prior to using kernel maps.
873 		 */
874 		map__load(map);
875 		ret = dso__data_write_cache_addr(map->dso, map, machine,
876 						 event->text_poke.addr,
877 						 new_bytes,
878 						 event->text_poke.new_len);
879 		if (ret != event->text_poke.new_len)
880 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
881 				 event->text_poke.addr);
882 	} else {
883 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
884 			 event->text_poke.addr);
885 	}
886 
887 	return 0;
888 }
889 
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)890 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
891 					      const char *filename)
892 {
893 	struct map *map = NULL;
894 	struct kmod_path m;
895 	struct dso *dso;
896 
897 	if (kmod_path__parse_name(&m, filename))
898 		return NULL;
899 
900 	dso = machine__findnew_module_dso(machine, &m, filename);
901 	if (dso == NULL)
902 		goto out;
903 
904 	map = map__new2(start, dso);
905 	if (map == NULL)
906 		goto out;
907 
908 	maps__insert(&machine->kmaps, map);
909 
910 	/* Put the map here because maps__insert already got it */
911 	map__put(map);
912 out:
913 	/* put the dso here, corresponding to  machine__findnew_module_dso */
914 	dso__put(dso);
915 	zfree(&m.name);
916 	return map;
917 }
918 
machines__fprintf_dsos(struct machines * machines,FILE * fp)919 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
920 {
921 	struct rb_node *nd;
922 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
923 
924 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
925 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
926 		ret += __dsos__fprintf(&pos->dsos.head, fp);
927 	}
928 
929 	return ret;
930 }
931 
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)932 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
933 				     bool (skip)(struct dso *dso, int parm), int parm)
934 {
935 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
936 }
937 
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)938 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
939 				     bool (skip)(struct dso *dso, int parm), int parm)
940 {
941 	struct rb_node *nd;
942 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
943 
944 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
945 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
946 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
947 	}
948 	return ret;
949 }
950 
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)951 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
952 {
953 	int i;
954 	size_t printed = 0;
955 	struct dso *kdso = machine__kernel_dso(machine);
956 
957 	if (kdso->has_build_id) {
958 		char filename[PATH_MAX];
959 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
960 					   false))
961 			printed += fprintf(fp, "[0] %s\n", filename);
962 	}
963 
964 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
965 		printed += fprintf(fp, "[%d] %s\n",
966 				   i + kdso->has_build_id, vmlinux_path[i]);
967 
968 	return printed;
969 }
970 
machine__fprintf(struct machine * machine,FILE * fp)971 size_t machine__fprintf(struct machine *machine, FILE *fp)
972 {
973 	struct rb_node *nd;
974 	size_t ret;
975 	int i;
976 
977 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
978 		struct threads *threads = &machine->threads[i];
979 
980 		down_read(&threads->lock);
981 
982 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
983 
984 		for (nd = rb_first_cached(&threads->entries); nd;
985 		     nd = rb_next(nd)) {
986 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
987 
988 			ret += thread__fprintf(pos, fp);
989 		}
990 
991 		up_read(&threads->lock);
992 	}
993 	return ret;
994 }
995 
machine__get_kernel(struct machine * machine)996 static struct dso *machine__get_kernel(struct machine *machine)
997 {
998 	const char *vmlinux_name = machine->mmap_name;
999 	struct dso *kernel;
1000 
1001 	if (machine__is_host(machine)) {
1002 		if (symbol_conf.vmlinux_name)
1003 			vmlinux_name = symbol_conf.vmlinux_name;
1004 
1005 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1006 						 "[kernel]", DSO_SPACE__KERNEL);
1007 	} else {
1008 		if (symbol_conf.default_guest_vmlinux_name)
1009 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1010 
1011 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1012 						 "[guest.kernel]",
1013 						 DSO_SPACE__KERNEL_GUEST);
1014 	}
1015 
1016 	if (kernel != NULL && (!kernel->has_build_id))
1017 		dso__read_running_kernel_build_id(kernel, machine);
1018 
1019 	return kernel;
1020 }
1021 
1022 struct process_args {
1023 	u64 start;
1024 };
1025 
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)1026 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1027 				    size_t bufsz)
1028 {
1029 	if (machine__is_default_guest(machine))
1030 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1031 	else
1032 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1033 }
1034 
1035 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1036 
1037 /* Figure out the start address of kernel map from /proc/kallsyms.
1038  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1039  * symbol_name if it's not that important.
1040  */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1041 static int machine__get_running_kernel_start(struct machine *machine,
1042 					     const char **symbol_name,
1043 					     u64 *start, u64 *end)
1044 {
1045 	char filename[PATH_MAX];
1046 	int i, err = -1;
1047 	const char *name;
1048 	u64 addr = 0;
1049 
1050 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1051 
1052 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1053 		return 0;
1054 
1055 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1056 		err = kallsyms__get_function_start(filename, name, &addr);
1057 		if (!err)
1058 			break;
1059 	}
1060 
1061 	if (err)
1062 		return -1;
1063 
1064 	if (symbol_name)
1065 		*symbol_name = name;
1066 
1067 	*start = addr;
1068 
1069 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1070 	if (!err)
1071 		*end = addr;
1072 
1073 	return 0;
1074 }
1075 
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1076 int machine__create_extra_kernel_map(struct machine *machine,
1077 				     struct dso *kernel,
1078 				     struct extra_kernel_map *xm)
1079 {
1080 	struct kmap *kmap;
1081 	struct map *map;
1082 
1083 	map = map__new2(xm->start, kernel);
1084 	if (!map)
1085 		return -1;
1086 
1087 	map->end   = xm->end;
1088 	map->pgoff = xm->pgoff;
1089 
1090 	kmap = map__kmap(map);
1091 
1092 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1093 
1094 	maps__insert(&machine->kmaps, map);
1095 
1096 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1097 		  kmap->name, map->start, map->end);
1098 
1099 	map__put(map);
1100 
1101 	return 0;
1102 }
1103 
find_entry_trampoline(struct dso * dso)1104 static u64 find_entry_trampoline(struct dso *dso)
1105 {
1106 	/* Duplicates are removed so lookup all aliases */
1107 	const char *syms[] = {
1108 		"_entry_trampoline",
1109 		"__entry_trampoline_start",
1110 		"entry_SYSCALL_64_trampoline",
1111 	};
1112 	struct symbol *sym = dso__first_symbol(dso);
1113 	unsigned int i;
1114 
1115 	for (; sym; sym = dso__next_symbol(sym)) {
1116 		if (sym->binding != STB_GLOBAL)
1117 			continue;
1118 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1119 			if (!strcmp(sym->name, syms[i]))
1120 				return sym->start;
1121 		}
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 /*
1128  * These values can be used for kernels that do not have symbols for the entry
1129  * trampolines in kallsyms.
1130  */
1131 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1132 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1133 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1134 
1135 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1136 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1137 					  struct dso *kernel)
1138 {
1139 	struct maps *kmaps = &machine->kmaps;
1140 	int nr_cpus_avail, cpu;
1141 	bool found = false;
1142 	struct map *map;
1143 	u64 pgoff;
1144 
1145 	/*
1146 	 * In the vmlinux case, pgoff is a virtual address which must now be
1147 	 * mapped to a vmlinux offset.
1148 	 */
1149 	maps__for_each_entry(kmaps, map) {
1150 		struct kmap *kmap = __map__kmap(map);
1151 		struct map *dest_map;
1152 
1153 		if (!kmap || !is_entry_trampoline(kmap->name))
1154 			continue;
1155 
1156 		dest_map = maps__find(kmaps, map->pgoff);
1157 		if (dest_map != map)
1158 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1159 		found = true;
1160 	}
1161 	if (found || machine->trampolines_mapped)
1162 		return 0;
1163 
1164 	pgoff = find_entry_trampoline(kernel);
1165 	if (!pgoff)
1166 		return 0;
1167 
1168 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1169 
1170 	/* Add a 1 page map for each CPU's entry trampoline */
1171 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1172 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1173 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1174 			 X86_64_ENTRY_TRAMPOLINE;
1175 		struct extra_kernel_map xm = {
1176 			.start = va,
1177 			.end   = va + page_size,
1178 			.pgoff = pgoff,
1179 		};
1180 
1181 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1182 
1183 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1184 			return -1;
1185 	}
1186 
1187 	machine->trampolines_mapped = nr_cpus_avail;
1188 
1189 	return 0;
1190 }
1191 
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1192 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1193 					     struct dso *kernel __maybe_unused)
1194 {
1195 	return 0;
1196 }
1197 
1198 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1199 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1200 {
1201 	/* In case of renewal the kernel map, destroy previous one */
1202 	machine__destroy_kernel_maps(machine);
1203 
1204 	machine->vmlinux_map = map__new2(0, kernel);
1205 	if (machine->vmlinux_map == NULL)
1206 		return -1;
1207 
1208 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1209 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1210 	return 0;
1211 }
1212 
machine__destroy_kernel_maps(struct machine * machine)1213 void machine__destroy_kernel_maps(struct machine *machine)
1214 {
1215 	struct kmap *kmap;
1216 	struct map *map = machine__kernel_map(machine);
1217 
1218 	if (map == NULL)
1219 		return;
1220 
1221 	kmap = map__kmap(map);
1222 	maps__remove(&machine->kmaps, map);
1223 	if (kmap && kmap->ref_reloc_sym) {
1224 		zfree((char **)&kmap->ref_reloc_sym->name);
1225 		zfree(&kmap->ref_reloc_sym);
1226 	}
1227 
1228 	map__zput(machine->vmlinux_map);
1229 }
1230 
machines__create_guest_kernel_maps(struct machines * machines)1231 int machines__create_guest_kernel_maps(struct machines *machines)
1232 {
1233 	int ret = 0;
1234 	struct dirent **namelist = NULL;
1235 	int i, items = 0;
1236 	char path[PATH_MAX];
1237 	pid_t pid;
1238 	char *endp;
1239 
1240 	if (symbol_conf.default_guest_vmlinux_name ||
1241 	    symbol_conf.default_guest_modules ||
1242 	    symbol_conf.default_guest_kallsyms) {
1243 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1244 	}
1245 
1246 	if (symbol_conf.guestmount) {
1247 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1248 		if (items <= 0)
1249 			return -ENOENT;
1250 		for (i = 0; i < items; i++) {
1251 			if (!isdigit(namelist[i]->d_name[0])) {
1252 				/* Filter out . and .. */
1253 				continue;
1254 			}
1255 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1256 			if ((*endp != '\0') ||
1257 			    (endp == namelist[i]->d_name) ||
1258 			    (errno == ERANGE)) {
1259 				pr_debug("invalid directory (%s). Skipping.\n",
1260 					 namelist[i]->d_name);
1261 				continue;
1262 			}
1263 			sprintf(path, "%s/%s/proc/kallsyms",
1264 				symbol_conf.guestmount,
1265 				namelist[i]->d_name);
1266 			ret = access(path, R_OK);
1267 			if (ret) {
1268 				pr_debug("Can't access file %s\n", path);
1269 				goto failure;
1270 			}
1271 			machines__create_kernel_maps(machines, pid);
1272 		}
1273 failure:
1274 		free(namelist);
1275 	}
1276 
1277 	return ret;
1278 }
1279 
machines__destroy_kernel_maps(struct machines * machines)1280 void machines__destroy_kernel_maps(struct machines *machines)
1281 {
1282 	struct rb_node *next = rb_first_cached(&machines->guests);
1283 
1284 	machine__destroy_kernel_maps(&machines->host);
1285 
1286 	while (next) {
1287 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1288 
1289 		next = rb_next(&pos->rb_node);
1290 		rb_erase_cached(&pos->rb_node, &machines->guests);
1291 		machine__delete(pos);
1292 	}
1293 }
1294 
machines__create_kernel_maps(struct machines * machines,pid_t pid)1295 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1296 {
1297 	struct machine *machine = machines__findnew(machines, pid);
1298 
1299 	if (machine == NULL)
1300 		return -1;
1301 
1302 	return machine__create_kernel_maps(machine);
1303 }
1304 
machine__load_kallsyms(struct machine * machine,const char * filename)1305 int machine__load_kallsyms(struct machine *machine, const char *filename)
1306 {
1307 	struct map *map = machine__kernel_map(machine);
1308 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1309 
1310 	if (ret > 0) {
1311 		dso__set_loaded(map->dso);
1312 		/*
1313 		 * Since /proc/kallsyms will have multiple sessions for the
1314 		 * kernel, with modules between them, fixup the end of all
1315 		 * sections.
1316 		 */
1317 		maps__fixup_end(&machine->kmaps);
1318 	}
1319 
1320 	return ret;
1321 }
1322 
machine__load_vmlinux_path(struct machine * machine)1323 int machine__load_vmlinux_path(struct machine *machine)
1324 {
1325 	struct map *map = machine__kernel_map(machine);
1326 	int ret = dso__load_vmlinux_path(map->dso, map);
1327 
1328 	if (ret > 0)
1329 		dso__set_loaded(map->dso);
1330 
1331 	return ret;
1332 }
1333 
get_kernel_version(const char * root_dir)1334 static char *get_kernel_version(const char *root_dir)
1335 {
1336 	char version[PATH_MAX];
1337 	FILE *file;
1338 	char *name, *tmp;
1339 	const char *prefix = "Linux version ";
1340 
1341 	sprintf(version, "%s/proc/version", root_dir);
1342 	file = fopen(version, "r");
1343 	if (!file)
1344 		return NULL;
1345 
1346 	tmp = fgets(version, sizeof(version), file);
1347 	fclose(file);
1348 	if (!tmp)
1349 		return NULL;
1350 
1351 	name = strstr(version, prefix);
1352 	if (!name)
1353 		return NULL;
1354 	name += strlen(prefix);
1355 	tmp = strchr(name, ' ');
1356 	if (tmp)
1357 		*tmp = '\0';
1358 
1359 	return strdup(name);
1360 }
1361 
is_kmod_dso(struct dso * dso)1362 static bool is_kmod_dso(struct dso *dso)
1363 {
1364 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1365 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1366 }
1367 
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1368 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1369 {
1370 	char *long_name;
1371 	struct map *map = maps__find_by_name(maps, m->name);
1372 
1373 	if (map == NULL)
1374 		return 0;
1375 
1376 	long_name = strdup(path);
1377 	if (long_name == NULL)
1378 		return -ENOMEM;
1379 
1380 	dso__set_long_name(map->dso, long_name, true);
1381 	dso__kernel_module_get_build_id(map->dso, "");
1382 
1383 	/*
1384 	 * Full name could reveal us kmod compression, so
1385 	 * we need to update the symtab_type if needed.
1386 	 */
1387 	if (m->comp && is_kmod_dso(map->dso)) {
1388 		map->dso->symtab_type++;
1389 		map->dso->comp = m->comp;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1395 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1396 {
1397 	struct dirent *dent;
1398 	DIR *dir = opendir(dir_name);
1399 	int ret = 0;
1400 
1401 	if (!dir) {
1402 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1403 		return -1;
1404 	}
1405 
1406 	while ((dent = readdir(dir)) != NULL) {
1407 		char path[PATH_MAX];
1408 		struct stat st;
1409 
1410 		/*sshfs might return bad dent->d_type, so we have to stat*/
1411 		path__join(path, sizeof(path), dir_name, dent->d_name);
1412 		if (stat(path, &st))
1413 			continue;
1414 
1415 		if (S_ISDIR(st.st_mode)) {
1416 			if (!strcmp(dent->d_name, ".") ||
1417 			    !strcmp(dent->d_name, ".."))
1418 				continue;
1419 
1420 			/* Do not follow top-level source and build symlinks */
1421 			if (depth == 0) {
1422 				if (!strcmp(dent->d_name, "source") ||
1423 				    !strcmp(dent->d_name, "build"))
1424 					continue;
1425 			}
1426 
1427 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1428 			if (ret < 0)
1429 				goto out;
1430 		} else {
1431 			struct kmod_path m;
1432 
1433 			ret = kmod_path__parse_name(&m, dent->d_name);
1434 			if (ret)
1435 				goto out;
1436 
1437 			if (m.kmod)
1438 				ret = maps__set_module_path(maps, path, &m);
1439 
1440 			zfree(&m.name);
1441 
1442 			if (ret)
1443 				goto out;
1444 		}
1445 	}
1446 
1447 out:
1448 	closedir(dir);
1449 	return ret;
1450 }
1451 
machine__set_modules_path(struct machine * machine)1452 static int machine__set_modules_path(struct machine *machine)
1453 {
1454 	char *version;
1455 	char modules_path[PATH_MAX];
1456 
1457 	version = get_kernel_version(machine->root_dir);
1458 	if (!version)
1459 		return -1;
1460 
1461 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1462 		 machine->root_dir, version);
1463 	free(version);
1464 
1465 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1466 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1467 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1468 				u64 *size __maybe_unused,
1469 				const char *name __maybe_unused)
1470 {
1471 	return 0;
1472 }
1473 
machine__create_module(void * arg,const char * name,u64 start,u64 size)1474 static int machine__create_module(void *arg, const char *name, u64 start,
1475 				  u64 size)
1476 {
1477 	struct machine *machine = arg;
1478 	struct map *map;
1479 
1480 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1481 		return -1;
1482 
1483 	map = machine__addnew_module_map(machine, start, name);
1484 	if (map == NULL)
1485 		return -1;
1486 	map->end = start + size;
1487 
1488 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1489 
1490 	return 0;
1491 }
1492 
machine__create_modules(struct machine * machine)1493 static int machine__create_modules(struct machine *machine)
1494 {
1495 	const char *modules;
1496 	char path[PATH_MAX];
1497 
1498 	if (machine__is_default_guest(machine)) {
1499 		modules = symbol_conf.default_guest_modules;
1500 	} else {
1501 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1502 		modules = path;
1503 	}
1504 
1505 	if (symbol__restricted_filename(modules, "/proc/modules"))
1506 		return -1;
1507 
1508 	if (modules__parse(modules, machine, machine__create_module))
1509 		return -1;
1510 
1511 	if (!machine__set_modules_path(machine))
1512 		return 0;
1513 
1514 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1515 
1516 	return 0;
1517 }
1518 
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1519 static void machine__set_kernel_mmap(struct machine *machine,
1520 				     u64 start, u64 end)
1521 {
1522 	machine->vmlinux_map->start = start;
1523 	machine->vmlinux_map->end   = end;
1524 	/*
1525 	 * Be a bit paranoid here, some perf.data file came with
1526 	 * a zero sized synthesized MMAP event for the kernel.
1527 	 */
1528 	if (start == 0 && end == 0)
1529 		machine->vmlinux_map->end = ~0ULL;
1530 }
1531 
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1532 static void machine__update_kernel_mmap(struct machine *machine,
1533 				     u64 start, u64 end)
1534 {
1535 	struct map *map = machine__kernel_map(machine);
1536 
1537 	map__get(map);
1538 	maps__remove(&machine->kmaps, map);
1539 
1540 	machine__set_kernel_mmap(machine, start, end);
1541 
1542 	maps__insert(&machine->kmaps, map);
1543 	map__put(map);
1544 }
1545 
machine__create_kernel_maps(struct machine * machine)1546 int machine__create_kernel_maps(struct machine *machine)
1547 {
1548 	struct dso *kernel = machine__get_kernel(machine);
1549 	const char *name = NULL;
1550 	struct map *map;
1551 	u64 start = 0, end = ~0ULL;
1552 	int ret;
1553 
1554 	if (kernel == NULL)
1555 		return -1;
1556 
1557 	ret = __machine__create_kernel_maps(machine, kernel);
1558 	if (ret < 0)
1559 		goto out_put;
1560 
1561 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1562 		if (machine__is_host(machine))
1563 			pr_debug("Problems creating module maps, "
1564 				 "continuing anyway...\n");
1565 		else
1566 			pr_debug("Problems creating module maps for guest %d, "
1567 				 "continuing anyway...\n", machine->pid);
1568 	}
1569 
1570 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1571 		if (name &&
1572 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1573 			machine__destroy_kernel_maps(machine);
1574 			ret = -1;
1575 			goto out_put;
1576 		}
1577 
1578 		/*
1579 		 * we have a real start address now, so re-order the kmaps
1580 		 * assume it's the last in the kmaps
1581 		 */
1582 		machine__update_kernel_mmap(machine, start, end);
1583 	}
1584 
1585 	if (machine__create_extra_kernel_maps(machine, kernel))
1586 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1587 
1588 	if (end == ~0ULL) {
1589 		/* update end address of the kernel map using adjacent module address */
1590 		map = map__next(machine__kernel_map(machine));
1591 		if (map)
1592 			machine__set_kernel_mmap(machine, start, map->start);
1593 	}
1594 
1595 out_put:
1596 	dso__put(kernel);
1597 	return ret;
1598 }
1599 
machine__uses_kcore(struct machine * machine)1600 static bool machine__uses_kcore(struct machine *machine)
1601 {
1602 	struct dso *dso;
1603 
1604 	list_for_each_entry(dso, &machine->dsos.head, node) {
1605 		if (dso__is_kcore(dso))
1606 			return true;
1607 	}
1608 
1609 	return false;
1610 }
1611 
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1612 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1613 					     struct extra_kernel_map *xm)
1614 {
1615 	return machine__is(machine, "x86_64") &&
1616 	       is_entry_trampoline(xm->name);
1617 }
1618 
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1619 static int machine__process_extra_kernel_map(struct machine *machine,
1620 					     struct extra_kernel_map *xm)
1621 {
1622 	struct dso *kernel = machine__kernel_dso(machine);
1623 
1624 	if (kernel == NULL)
1625 		return -1;
1626 
1627 	return machine__create_extra_kernel_map(machine, kernel, xm);
1628 }
1629 
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1630 static int machine__process_kernel_mmap_event(struct machine *machine,
1631 					      struct extra_kernel_map *xm,
1632 					      struct build_id *bid)
1633 {
1634 	struct map *map;
1635 	enum dso_space_type dso_space;
1636 	bool is_kernel_mmap;
1637 
1638 	/* If we have maps from kcore then we do not need or want any others */
1639 	if (machine__uses_kcore(machine))
1640 		return 0;
1641 
1642 	if (machine__is_host(machine))
1643 		dso_space = DSO_SPACE__KERNEL;
1644 	else
1645 		dso_space = DSO_SPACE__KERNEL_GUEST;
1646 
1647 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1648 				strlen(machine->mmap_name) - 1) == 0;
1649 	if (xm->name[0] == '/' ||
1650 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1651 		map = machine__addnew_module_map(machine, xm->start,
1652 						 xm->name);
1653 		if (map == NULL)
1654 			goto out_problem;
1655 
1656 		map->end = map->start + xm->end - xm->start;
1657 
1658 		if (build_id__is_defined(bid))
1659 			dso__set_build_id(map->dso, bid);
1660 
1661 	} else if (is_kernel_mmap) {
1662 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1663 		/*
1664 		 * Should be there already, from the build-id table in
1665 		 * the header.
1666 		 */
1667 		struct dso *kernel = NULL;
1668 		struct dso *dso;
1669 
1670 		down_read(&machine->dsos.lock);
1671 
1672 		list_for_each_entry(dso, &machine->dsos.head, node) {
1673 
1674 			/*
1675 			 * The cpumode passed to is_kernel_module is not the
1676 			 * cpumode of *this* event. If we insist on passing
1677 			 * correct cpumode to is_kernel_module, we should
1678 			 * record the cpumode when we adding this dso to the
1679 			 * linked list.
1680 			 *
1681 			 * However we don't really need passing correct
1682 			 * cpumode.  We know the correct cpumode must be kernel
1683 			 * mode (if not, we should not link it onto kernel_dsos
1684 			 * list).
1685 			 *
1686 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1687 			 * is_kernel_module() treats it as a kernel cpumode.
1688 			 */
1689 
1690 			if (!dso->kernel ||
1691 			    is_kernel_module(dso->long_name,
1692 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1693 				continue;
1694 
1695 
1696 			kernel = dso;
1697 			break;
1698 		}
1699 
1700 		up_read(&machine->dsos.lock);
1701 
1702 		if (kernel == NULL)
1703 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1704 		if (kernel == NULL)
1705 			goto out_problem;
1706 
1707 		kernel->kernel = dso_space;
1708 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1709 			dso__put(kernel);
1710 			goto out_problem;
1711 		}
1712 
1713 		if (strstr(kernel->long_name, "vmlinux"))
1714 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1715 
1716 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1717 
1718 		if (build_id__is_defined(bid))
1719 			dso__set_build_id(kernel, bid);
1720 
1721 		/*
1722 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1723 		 * symbol. Effectively having zero here means that at record
1724 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1725 		 */
1726 		if (xm->pgoff != 0) {
1727 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1728 							symbol_name,
1729 							xm->pgoff);
1730 		}
1731 
1732 		if (machine__is_default_guest(machine)) {
1733 			/*
1734 			 * preload dso of guest kernel and modules
1735 			 */
1736 			dso__load(kernel, machine__kernel_map(machine));
1737 		}
1738 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1739 		return machine__process_extra_kernel_map(machine, xm);
1740 	}
1741 	return 0;
1742 out_problem:
1743 	return -1;
1744 }
1745 
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1746 int machine__process_mmap2_event(struct machine *machine,
1747 				 union perf_event *event,
1748 				 struct perf_sample *sample)
1749 {
1750 	struct thread *thread;
1751 	struct map *map;
1752 	struct dso_id dso_id = {
1753 		.maj = event->mmap2.maj,
1754 		.min = event->mmap2.min,
1755 		.ino = event->mmap2.ino,
1756 		.ino_generation = event->mmap2.ino_generation,
1757 	};
1758 	struct build_id __bid, *bid = NULL;
1759 	int ret = 0;
1760 
1761 	if (dump_trace)
1762 		perf_event__fprintf_mmap2(event, stdout);
1763 
1764 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1765 		bid = &__bid;
1766 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1767 	}
1768 
1769 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1770 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1771 		struct extra_kernel_map xm = {
1772 			.start = event->mmap2.start,
1773 			.end   = event->mmap2.start + event->mmap2.len,
1774 			.pgoff = event->mmap2.pgoff,
1775 		};
1776 
1777 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1778 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1779 		if (ret < 0)
1780 			goto out_problem;
1781 		return 0;
1782 	}
1783 
1784 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1785 					event->mmap2.tid);
1786 	if (thread == NULL)
1787 		goto out_problem;
1788 
1789 	map = map__new(machine, event->mmap2.start,
1790 			event->mmap2.len, event->mmap2.pgoff,
1791 			&dso_id, event->mmap2.prot,
1792 			event->mmap2.flags, bid,
1793 			event->mmap2.filename, thread);
1794 
1795 	if (map == NULL)
1796 		goto out_problem_map;
1797 
1798 	ret = thread__insert_map(thread, map);
1799 	if (ret)
1800 		goto out_problem_insert;
1801 
1802 	thread__put(thread);
1803 	map__put(map);
1804 	return 0;
1805 
1806 out_problem_insert:
1807 	map__put(map);
1808 out_problem_map:
1809 	thread__put(thread);
1810 out_problem:
1811 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1812 	return 0;
1813 }
1814 
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1815 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1816 				struct perf_sample *sample)
1817 {
1818 	struct thread *thread;
1819 	struct map *map;
1820 	u32 prot = 0;
1821 	int ret = 0;
1822 
1823 	if (dump_trace)
1824 		perf_event__fprintf_mmap(event, stdout);
1825 
1826 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1827 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1828 		struct extra_kernel_map xm = {
1829 			.start = event->mmap.start,
1830 			.end   = event->mmap.start + event->mmap.len,
1831 			.pgoff = event->mmap.pgoff,
1832 		};
1833 
1834 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1835 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1836 		if (ret < 0)
1837 			goto out_problem;
1838 		return 0;
1839 	}
1840 
1841 	thread = machine__findnew_thread(machine, event->mmap.pid,
1842 					 event->mmap.tid);
1843 	if (thread == NULL)
1844 		goto out_problem;
1845 
1846 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1847 		prot = PROT_EXEC;
1848 
1849 	map = map__new(machine, event->mmap.start,
1850 			event->mmap.len, event->mmap.pgoff,
1851 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1852 
1853 	if (map == NULL)
1854 		goto out_problem_map;
1855 
1856 	ret = thread__insert_map(thread, map);
1857 	if (ret)
1858 		goto out_problem_insert;
1859 
1860 	thread__put(thread);
1861 	map__put(map);
1862 	return 0;
1863 
1864 out_problem_insert:
1865 	map__put(map);
1866 out_problem_map:
1867 	thread__put(thread);
1868 out_problem:
1869 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1870 	return 0;
1871 }
1872 
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1873 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1874 {
1875 	struct threads *threads = machine__threads(machine, th->tid);
1876 
1877 	if (threads->last_match == th)
1878 		threads__set_last_match(threads, NULL);
1879 
1880 	if (lock)
1881 		down_write(&threads->lock);
1882 
1883 	BUG_ON(refcount_read(&th->refcnt) == 0);
1884 
1885 	rb_erase_cached(&th->rb_node, &threads->entries);
1886 	RB_CLEAR_NODE(&th->rb_node);
1887 	--threads->nr;
1888 	/*
1889 	 * Move it first to the dead_threads list, then drop the reference,
1890 	 * if this is the last reference, then the thread__delete destructor
1891 	 * will be called and we will remove it from the dead_threads list.
1892 	 */
1893 	list_add_tail(&th->node, &threads->dead);
1894 
1895 	/*
1896 	 * We need to do the put here because if this is the last refcount,
1897 	 * then we will be touching the threads->dead head when removing the
1898 	 * thread.
1899 	 */
1900 	thread__put(th);
1901 
1902 	if (lock)
1903 		up_write(&threads->lock);
1904 }
1905 
machine__remove_thread(struct machine * machine,struct thread * th)1906 void machine__remove_thread(struct machine *machine, struct thread *th)
1907 {
1908 	return __machine__remove_thread(machine, th, true);
1909 }
1910 
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1911 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1912 				struct perf_sample *sample)
1913 {
1914 	struct thread *thread = machine__find_thread(machine,
1915 						     event->fork.pid,
1916 						     event->fork.tid);
1917 	struct thread *parent = machine__findnew_thread(machine,
1918 							event->fork.ppid,
1919 							event->fork.ptid);
1920 	bool do_maps_clone = true;
1921 	int err = 0;
1922 
1923 	if (dump_trace)
1924 		perf_event__fprintf_task(event, stdout);
1925 
1926 	/*
1927 	 * There may be an existing thread that is not actually the parent,
1928 	 * either because we are processing events out of order, or because the
1929 	 * (fork) event that would have removed the thread was lost. Assume the
1930 	 * latter case and continue on as best we can.
1931 	 */
1932 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1933 		dump_printf("removing erroneous parent thread %d/%d\n",
1934 			    parent->pid_, parent->tid);
1935 		machine__remove_thread(machine, parent);
1936 		thread__put(parent);
1937 		parent = machine__findnew_thread(machine, event->fork.ppid,
1938 						 event->fork.ptid);
1939 	}
1940 
1941 	/* if a thread currently exists for the thread id remove it */
1942 	if (thread != NULL) {
1943 		machine__remove_thread(machine, thread);
1944 		thread__put(thread);
1945 	}
1946 
1947 	thread = machine__findnew_thread(machine, event->fork.pid,
1948 					 event->fork.tid);
1949 	/*
1950 	 * When synthesizing FORK events, we are trying to create thread
1951 	 * objects for the already running tasks on the machine.
1952 	 *
1953 	 * Normally, for a kernel FORK event, we want to clone the parent's
1954 	 * maps because that is what the kernel just did.
1955 	 *
1956 	 * But when synthesizing, this should not be done.  If we do, we end up
1957 	 * with overlapping maps as we process the synthesized MMAP2 events that
1958 	 * get delivered shortly thereafter.
1959 	 *
1960 	 * Use the FORK event misc flags in an internal way to signal this
1961 	 * situation, so we can elide the map clone when appropriate.
1962 	 */
1963 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1964 		do_maps_clone = false;
1965 
1966 	if (thread == NULL || parent == NULL ||
1967 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1968 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1969 		err = -1;
1970 	}
1971 	thread__put(thread);
1972 	thread__put(parent);
1973 
1974 	return err;
1975 }
1976 
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1977 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1978 				struct perf_sample *sample __maybe_unused)
1979 {
1980 	struct thread *thread = machine__find_thread(machine,
1981 						     event->fork.pid,
1982 						     event->fork.tid);
1983 
1984 	if (dump_trace)
1985 		perf_event__fprintf_task(event, stdout);
1986 
1987 	if (thread != NULL) {
1988 		thread__exited(thread);
1989 		thread__put(thread);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1995 int machine__process_event(struct machine *machine, union perf_event *event,
1996 			   struct perf_sample *sample)
1997 {
1998 	int ret;
1999 
2000 	switch (event->header.type) {
2001 	case PERF_RECORD_COMM:
2002 		ret = machine__process_comm_event(machine, event, sample); break;
2003 	case PERF_RECORD_MMAP:
2004 		ret = machine__process_mmap_event(machine, event, sample); break;
2005 	case PERF_RECORD_NAMESPACES:
2006 		ret = machine__process_namespaces_event(machine, event, sample); break;
2007 	case PERF_RECORD_CGROUP:
2008 		ret = machine__process_cgroup_event(machine, event, sample); break;
2009 	case PERF_RECORD_MMAP2:
2010 		ret = machine__process_mmap2_event(machine, event, sample); break;
2011 	case PERF_RECORD_FORK:
2012 		ret = machine__process_fork_event(machine, event, sample); break;
2013 	case PERF_RECORD_EXIT:
2014 		ret = machine__process_exit_event(machine, event, sample); break;
2015 	case PERF_RECORD_LOST:
2016 		ret = machine__process_lost_event(machine, event, sample); break;
2017 	case PERF_RECORD_AUX:
2018 		ret = machine__process_aux_event(machine, event); break;
2019 	case PERF_RECORD_ITRACE_START:
2020 		ret = machine__process_itrace_start_event(machine, event); break;
2021 	case PERF_RECORD_LOST_SAMPLES:
2022 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2023 	case PERF_RECORD_SWITCH:
2024 	case PERF_RECORD_SWITCH_CPU_WIDE:
2025 		ret = machine__process_switch_event(machine, event); break;
2026 	case PERF_RECORD_KSYMBOL:
2027 		ret = machine__process_ksymbol(machine, event, sample); break;
2028 	case PERF_RECORD_BPF_EVENT:
2029 		ret = machine__process_bpf(machine, event, sample); break;
2030 	case PERF_RECORD_TEXT_POKE:
2031 		ret = machine__process_text_poke(machine, event, sample); break;
2032 	default:
2033 		ret = -1;
2034 		break;
2035 	}
2036 
2037 	return ret;
2038 }
2039 
symbol__match_regex(struct symbol * sym,regex_t * regex)2040 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2041 {
2042 	if (!regexec(regex, sym->name, 0, NULL, 0))
2043 		return true;
2044 	return false;
2045 }
2046 
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2047 static void ip__resolve_ams(struct thread *thread,
2048 			    struct addr_map_symbol *ams,
2049 			    u64 ip)
2050 {
2051 	struct addr_location al;
2052 
2053 	memset(&al, 0, sizeof(al));
2054 	/*
2055 	 * We cannot use the header.misc hint to determine whether a
2056 	 * branch stack address is user, kernel, guest, hypervisor.
2057 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2058 	 * Thus, we have to try consecutively until we find a match
2059 	 * or else, the symbol is unknown
2060 	 */
2061 	thread__find_cpumode_addr_location(thread, ip, &al);
2062 
2063 	ams->addr = ip;
2064 	ams->al_addr = al.addr;
2065 	ams->ms.maps = al.maps;
2066 	ams->ms.sym = al.sym;
2067 	ams->ms.map = al.map;
2068 	ams->phys_addr = 0;
2069 	ams->data_page_size = 0;
2070 }
2071 
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2072 static void ip__resolve_data(struct thread *thread,
2073 			     u8 m, struct addr_map_symbol *ams,
2074 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2075 {
2076 	struct addr_location al;
2077 
2078 	memset(&al, 0, sizeof(al));
2079 
2080 	thread__find_symbol(thread, m, addr, &al);
2081 
2082 	ams->addr = addr;
2083 	ams->al_addr = al.addr;
2084 	ams->ms.maps = al.maps;
2085 	ams->ms.sym = al.sym;
2086 	ams->ms.map = al.map;
2087 	ams->phys_addr = phys_addr;
2088 	ams->data_page_size = daddr_page_size;
2089 }
2090 
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2091 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2092 				     struct addr_location *al)
2093 {
2094 	struct mem_info *mi = mem_info__new();
2095 
2096 	if (!mi)
2097 		return NULL;
2098 
2099 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2100 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2101 			 sample->addr, sample->phys_addr,
2102 			 sample->data_page_size);
2103 	mi->data_src.val = sample->data_src;
2104 
2105 	return mi;
2106 }
2107 
callchain_srcline(struct map_symbol * ms,u64 ip)2108 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2109 {
2110 	struct map *map = ms->map;
2111 	char *srcline = NULL;
2112 
2113 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2114 		return srcline;
2115 
2116 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2117 	if (!srcline) {
2118 		bool show_sym = false;
2119 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2120 
2121 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2122 				      ms->sym, show_sym, show_addr, ip);
2123 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2124 	}
2125 
2126 	return srcline;
2127 }
2128 
2129 struct iterations {
2130 	int nr_loop_iter;
2131 	u64 cycles;
2132 };
2133 
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2134 static int add_callchain_ip(struct thread *thread,
2135 			    struct callchain_cursor *cursor,
2136 			    struct symbol **parent,
2137 			    struct addr_location *root_al,
2138 			    u8 *cpumode,
2139 			    u64 ip,
2140 			    bool branch,
2141 			    struct branch_flags *flags,
2142 			    struct iterations *iter,
2143 			    u64 branch_from)
2144 {
2145 	struct map_symbol ms;
2146 	struct addr_location al;
2147 	int nr_loop_iter = 0;
2148 	u64 iter_cycles = 0;
2149 	const char *srcline = NULL;
2150 
2151 	al.filtered = 0;
2152 	al.sym = NULL;
2153 	al.srcline = NULL;
2154 	if (!cpumode) {
2155 		thread__find_cpumode_addr_location(thread, ip, &al);
2156 	} else {
2157 		if (ip >= PERF_CONTEXT_MAX) {
2158 			switch (ip) {
2159 			case PERF_CONTEXT_HV:
2160 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2161 				break;
2162 			case PERF_CONTEXT_KERNEL:
2163 				*cpumode = PERF_RECORD_MISC_KERNEL;
2164 				break;
2165 			case PERF_CONTEXT_USER:
2166 				*cpumode = PERF_RECORD_MISC_USER;
2167 				break;
2168 			default:
2169 				pr_debug("invalid callchain context: "
2170 					 "%"PRId64"\n", (s64) ip);
2171 				/*
2172 				 * It seems the callchain is corrupted.
2173 				 * Discard all.
2174 				 */
2175 				callchain_cursor_reset(cursor);
2176 				return 1;
2177 			}
2178 			return 0;
2179 		}
2180 		thread__find_symbol(thread, *cpumode, ip, &al);
2181 	}
2182 
2183 	if (al.sym != NULL) {
2184 		if (perf_hpp_list.parent && !*parent &&
2185 		    symbol__match_regex(al.sym, &parent_regex))
2186 			*parent = al.sym;
2187 		else if (have_ignore_callees && root_al &&
2188 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2189 			/* Treat this symbol as the root,
2190 			   forgetting its callees. */
2191 			*root_al = al;
2192 			callchain_cursor_reset(cursor);
2193 		}
2194 	}
2195 
2196 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2197 		return 0;
2198 
2199 	if (iter) {
2200 		nr_loop_iter = iter->nr_loop_iter;
2201 		iter_cycles = iter->cycles;
2202 	}
2203 
2204 	ms.maps = al.maps;
2205 	ms.map = al.map;
2206 	ms.sym = al.sym;
2207 	srcline = callchain_srcline(&ms, al.addr);
2208 	return callchain_cursor_append(cursor, ip, &ms,
2209 				       branch, flags, nr_loop_iter,
2210 				       iter_cycles, branch_from, srcline);
2211 }
2212 
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2213 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2214 					   struct addr_location *al)
2215 {
2216 	unsigned int i;
2217 	const struct branch_stack *bs = sample->branch_stack;
2218 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2219 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2220 
2221 	if (!bi)
2222 		return NULL;
2223 
2224 	for (i = 0; i < bs->nr; i++) {
2225 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2226 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2227 		bi[i].flags = entries[i].flags;
2228 	}
2229 	return bi;
2230 }
2231 
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2232 static void save_iterations(struct iterations *iter,
2233 			    struct branch_entry *be, int nr)
2234 {
2235 	int i;
2236 
2237 	iter->nr_loop_iter++;
2238 	iter->cycles = 0;
2239 
2240 	for (i = 0; i < nr; i++)
2241 		iter->cycles += be[i].flags.cycles;
2242 }
2243 
2244 #define CHASHSZ 127
2245 #define CHASHBITS 7
2246 #define NO_ENTRY 0xff
2247 
2248 #define PERF_MAX_BRANCH_DEPTH 127
2249 
2250 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2251 static int remove_loops(struct branch_entry *l, int nr,
2252 			struct iterations *iter)
2253 {
2254 	int i, j, off;
2255 	unsigned char chash[CHASHSZ];
2256 
2257 	memset(chash, NO_ENTRY, sizeof(chash));
2258 
2259 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2260 
2261 	for (i = 0; i < nr; i++) {
2262 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2263 
2264 		/* no collision handling for now */
2265 		if (chash[h] == NO_ENTRY) {
2266 			chash[h] = i;
2267 		} else if (l[chash[h]].from == l[i].from) {
2268 			bool is_loop = true;
2269 			/* check if it is a real loop */
2270 			off = 0;
2271 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2272 				if (l[j].from != l[i + off].from) {
2273 					is_loop = false;
2274 					break;
2275 				}
2276 			if (is_loop) {
2277 				j = nr - (i + off);
2278 				if (j > 0) {
2279 					save_iterations(iter + i + off,
2280 						l + i, off);
2281 
2282 					memmove(iter + i, iter + i + off,
2283 						j * sizeof(*iter));
2284 
2285 					memmove(l + i, l + i + off,
2286 						j * sizeof(*l));
2287 				}
2288 
2289 				nr -= off;
2290 			}
2291 		}
2292 	}
2293 	return nr;
2294 }
2295 
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2296 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2297 				       struct callchain_cursor *cursor,
2298 				       struct perf_sample *sample,
2299 				       struct symbol **parent,
2300 				       struct addr_location *root_al,
2301 				       u64 branch_from,
2302 				       bool callee, int end)
2303 {
2304 	struct ip_callchain *chain = sample->callchain;
2305 	u8 cpumode = PERF_RECORD_MISC_USER;
2306 	int err, i;
2307 
2308 	if (callee) {
2309 		for (i = 0; i < end + 1; i++) {
2310 			err = add_callchain_ip(thread, cursor, parent,
2311 					       root_al, &cpumode, chain->ips[i],
2312 					       false, NULL, NULL, branch_from);
2313 			if (err)
2314 				return err;
2315 		}
2316 		return 0;
2317 	}
2318 
2319 	for (i = end; i >= 0; i--) {
2320 		err = add_callchain_ip(thread, cursor, parent,
2321 				       root_al, &cpumode, chain->ips[i],
2322 				       false, NULL, NULL, branch_from);
2323 		if (err)
2324 			return err;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2330 static void save_lbr_cursor_node(struct thread *thread,
2331 				 struct callchain_cursor *cursor,
2332 				 int idx)
2333 {
2334 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2335 
2336 	if (!lbr_stitch)
2337 		return;
2338 
2339 	if (cursor->pos == cursor->nr) {
2340 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2341 		return;
2342 	}
2343 
2344 	if (!cursor->curr)
2345 		cursor->curr = cursor->first;
2346 	else
2347 		cursor->curr = cursor->curr->next;
2348 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2349 	       sizeof(struct callchain_cursor_node));
2350 
2351 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2352 	cursor->pos++;
2353 }
2354 
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2355 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2356 				    struct callchain_cursor *cursor,
2357 				    struct perf_sample *sample,
2358 				    struct symbol **parent,
2359 				    struct addr_location *root_al,
2360 				    u64 *branch_from,
2361 				    bool callee)
2362 {
2363 	struct branch_stack *lbr_stack = sample->branch_stack;
2364 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2365 	u8 cpumode = PERF_RECORD_MISC_USER;
2366 	int lbr_nr = lbr_stack->nr;
2367 	struct branch_flags *flags;
2368 	int err, i;
2369 	u64 ip;
2370 
2371 	/*
2372 	 * The curr and pos are not used in writing session. They are cleared
2373 	 * in callchain_cursor_commit() when the writing session is closed.
2374 	 * Using curr and pos to track the current cursor node.
2375 	 */
2376 	if (thread->lbr_stitch) {
2377 		cursor->curr = NULL;
2378 		cursor->pos = cursor->nr;
2379 		if (cursor->nr) {
2380 			cursor->curr = cursor->first;
2381 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2382 				cursor->curr = cursor->curr->next;
2383 		}
2384 	}
2385 
2386 	if (callee) {
2387 		/* Add LBR ip from first entries.to */
2388 		ip = entries[0].to;
2389 		flags = &entries[0].flags;
2390 		*branch_from = entries[0].from;
2391 		err = add_callchain_ip(thread, cursor, parent,
2392 				       root_al, &cpumode, ip,
2393 				       true, flags, NULL,
2394 				       *branch_from);
2395 		if (err)
2396 			return err;
2397 
2398 		/*
2399 		 * The number of cursor node increases.
2400 		 * Move the current cursor node.
2401 		 * But does not need to save current cursor node for entry 0.
2402 		 * It's impossible to stitch the whole LBRs of previous sample.
2403 		 */
2404 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2405 			if (!cursor->curr)
2406 				cursor->curr = cursor->first;
2407 			else
2408 				cursor->curr = cursor->curr->next;
2409 			cursor->pos++;
2410 		}
2411 
2412 		/* Add LBR ip from entries.from one by one. */
2413 		for (i = 0; i < lbr_nr; i++) {
2414 			ip = entries[i].from;
2415 			flags = &entries[i].flags;
2416 			err = add_callchain_ip(thread, cursor, parent,
2417 					       root_al, &cpumode, ip,
2418 					       true, flags, NULL,
2419 					       *branch_from);
2420 			if (err)
2421 				return err;
2422 			save_lbr_cursor_node(thread, cursor, i);
2423 		}
2424 		return 0;
2425 	}
2426 
2427 	/* Add LBR ip from entries.from one by one. */
2428 	for (i = lbr_nr - 1; i >= 0; i--) {
2429 		ip = entries[i].from;
2430 		flags = &entries[i].flags;
2431 		err = add_callchain_ip(thread, cursor, parent,
2432 				       root_al, &cpumode, ip,
2433 				       true, flags, NULL,
2434 				       *branch_from);
2435 		if (err)
2436 			return err;
2437 		save_lbr_cursor_node(thread, cursor, i);
2438 	}
2439 
2440 	if (lbr_nr > 0) {
2441 		/* Add LBR ip from first entries.to */
2442 		ip = entries[0].to;
2443 		flags = &entries[0].flags;
2444 		*branch_from = entries[0].from;
2445 		err = add_callchain_ip(thread, cursor, parent,
2446 				root_al, &cpumode, ip,
2447 				true, flags, NULL,
2448 				*branch_from);
2449 		if (err)
2450 			return err;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2456 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2457 					     struct callchain_cursor *cursor)
2458 {
2459 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2460 	struct callchain_cursor_node *cnode;
2461 	struct stitch_list *stitch_node;
2462 	int err;
2463 
2464 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2465 		cnode = &stitch_node->cursor;
2466 
2467 		err = callchain_cursor_append(cursor, cnode->ip,
2468 					      &cnode->ms,
2469 					      cnode->branch,
2470 					      &cnode->branch_flags,
2471 					      cnode->nr_loop_iter,
2472 					      cnode->iter_cycles,
2473 					      cnode->branch_from,
2474 					      cnode->srcline);
2475 		if (err)
2476 			return err;
2477 	}
2478 	return 0;
2479 }
2480 
get_stitch_node(struct thread * thread)2481 static struct stitch_list *get_stitch_node(struct thread *thread)
2482 {
2483 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2484 	struct stitch_list *stitch_node;
2485 
2486 	if (!list_empty(&lbr_stitch->free_lists)) {
2487 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2488 					       struct stitch_list, node);
2489 		list_del(&stitch_node->node);
2490 
2491 		return stitch_node;
2492 	}
2493 
2494 	return malloc(sizeof(struct stitch_list));
2495 }
2496 
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2497 static bool has_stitched_lbr(struct thread *thread,
2498 			     struct perf_sample *cur,
2499 			     struct perf_sample *prev,
2500 			     unsigned int max_lbr,
2501 			     bool callee)
2502 {
2503 	struct branch_stack *cur_stack = cur->branch_stack;
2504 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2505 	struct branch_stack *prev_stack = prev->branch_stack;
2506 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2507 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2508 	int i, j, nr_identical_branches = 0;
2509 	struct stitch_list *stitch_node;
2510 	u64 cur_base, distance;
2511 
2512 	if (!cur_stack || !prev_stack)
2513 		return false;
2514 
2515 	/* Find the physical index of the base-of-stack for current sample. */
2516 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2517 
2518 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2519 						     (max_lbr + prev_stack->hw_idx - cur_base);
2520 	/* Previous sample has shorter stack. Nothing can be stitched. */
2521 	if (distance + 1 > prev_stack->nr)
2522 		return false;
2523 
2524 	/*
2525 	 * Check if there are identical LBRs between two samples.
2526 	 * Identical LBRs must have same from, to and flags values. Also,
2527 	 * they have to be saved in the same LBR registers (same physical
2528 	 * index).
2529 	 *
2530 	 * Starts from the base-of-stack of current sample.
2531 	 */
2532 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2533 		if ((prev_entries[i].from != cur_entries[j].from) ||
2534 		    (prev_entries[i].to != cur_entries[j].to) ||
2535 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2536 			break;
2537 		nr_identical_branches++;
2538 	}
2539 
2540 	if (!nr_identical_branches)
2541 		return false;
2542 
2543 	/*
2544 	 * Save the LBRs between the base-of-stack of previous sample
2545 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2546 	 * These LBRs will be stitched later.
2547 	 */
2548 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2549 
2550 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2551 			continue;
2552 
2553 		stitch_node = get_stitch_node(thread);
2554 		if (!stitch_node)
2555 			return false;
2556 
2557 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2558 		       sizeof(struct callchain_cursor_node));
2559 
2560 		if (callee)
2561 			list_add(&stitch_node->node, &lbr_stitch->lists);
2562 		else
2563 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2564 	}
2565 
2566 	return true;
2567 }
2568 
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2569 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2570 {
2571 	if (thread->lbr_stitch)
2572 		return true;
2573 
2574 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2575 	if (!thread->lbr_stitch)
2576 		goto err;
2577 
2578 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2579 	if (!thread->lbr_stitch->prev_lbr_cursor)
2580 		goto free_lbr_stitch;
2581 
2582 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2583 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2584 
2585 	return true;
2586 
2587 free_lbr_stitch:
2588 	zfree(&thread->lbr_stitch);
2589 err:
2590 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2591 	thread->lbr_stitch_enable = false;
2592 	return false;
2593 }
2594 
2595 /*
2596  * Resolve LBR callstack chain sample
2597  * Return:
2598  * 1 on success get LBR callchain information
2599  * 0 no available LBR callchain information, should try fp
2600  * negative error code on other errors.
2601  */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2602 static int resolve_lbr_callchain_sample(struct thread *thread,
2603 					struct callchain_cursor *cursor,
2604 					struct perf_sample *sample,
2605 					struct symbol **parent,
2606 					struct addr_location *root_al,
2607 					int max_stack,
2608 					unsigned int max_lbr)
2609 {
2610 	bool callee = (callchain_param.order == ORDER_CALLEE);
2611 	struct ip_callchain *chain = sample->callchain;
2612 	int chain_nr = min(max_stack, (int)chain->nr), i;
2613 	struct lbr_stitch *lbr_stitch;
2614 	bool stitched_lbr = false;
2615 	u64 branch_from = 0;
2616 	int err;
2617 
2618 	for (i = 0; i < chain_nr; i++) {
2619 		if (chain->ips[i] == PERF_CONTEXT_USER)
2620 			break;
2621 	}
2622 
2623 	/* LBR only affects the user callchain */
2624 	if (i == chain_nr)
2625 		return 0;
2626 
2627 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2628 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2629 		lbr_stitch = thread->lbr_stitch;
2630 
2631 		stitched_lbr = has_stitched_lbr(thread, sample,
2632 						&lbr_stitch->prev_sample,
2633 						max_lbr, callee);
2634 
2635 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2636 			list_replace_init(&lbr_stitch->lists,
2637 					  &lbr_stitch->free_lists);
2638 		}
2639 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2640 	}
2641 
2642 	if (callee) {
2643 		/* Add kernel ip */
2644 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2645 						  parent, root_al, branch_from,
2646 						  true, i);
2647 		if (err)
2648 			goto error;
2649 
2650 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2651 					       root_al, &branch_from, true);
2652 		if (err)
2653 			goto error;
2654 
2655 		if (stitched_lbr) {
2656 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2657 			if (err)
2658 				goto error;
2659 		}
2660 
2661 	} else {
2662 		if (stitched_lbr) {
2663 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2664 			if (err)
2665 				goto error;
2666 		}
2667 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2668 					       root_al, &branch_from, false);
2669 		if (err)
2670 			goto error;
2671 
2672 		/* Add kernel ip */
2673 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2674 						  parent, root_al, branch_from,
2675 						  false, i);
2676 		if (err)
2677 			goto error;
2678 	}
2679 	return 1;
2680 
2681 error:
2682 	return (err < 0) ? err : 0;
2683 }
2684 
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2685 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2686 			     struct callchain_cursor *cursor,
2687 			     struct symbol **parent,
2688 			     struct addr_location *root_al,
2689 			     u8 *cpumode, int ent)
2690 {
2691 	int err = 0;
2692 
2693 	while (--ent >= 0) {
2694 		u64 ip = chain->ips[ent];
2695 
2696 		if (ip >= PERF_CONTEXT_MAX) {
2697 			err = add_callchain_ip(thread, cursor, parent,
2698 					       root_al, cpumode, ip,
2699 					       false, NULL, NULL, 0);
2700 			break;
2701 		}
2702 	}
2703 	return err;
2704 }
2705 
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2706 static int thread__resolve_callchain_sample(struct thread *thread,
2707 					    struct callchain_cursor *cursor,
2708 					    struct evsel *evsel,
2709 					    struct perf_sample *sample,
2710 					    struct symbol **parent,
2711 					    struct addr_location *root_al,
2712 					    int max_stack)
2713 {
2714 	struct branch_stack *branch = sample->branch_stack;
2715 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2716 	struct ip_callchain *chain = sample->callchain;
2717 	int chain_nr = 0;
2718 	u8 cpumode = PERF_RECORD_MISC_USER;
2719 	int i, j, err, nr_entries;
2720 	int skip_idx = -1;
2721 	int first_call = 0;
2722 
2723 	if (chain)
2724 		chain_nr = chain->nr;
2725 
2726 	if (evsel__has_branch_callstack(evsel)) {
2727 		struct perf_env *env = evsel__env(evsel);
2728 
2729 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2730 						   root_al, max_stack,
2731 						   !env ? 0 : env->max_branches);
2732 		if (err)
2733 			return (err < 0) ? err : 0;
2734 	}
2735 
2736 	/*
2737 	 * Based on DWARF debug information, some architectures skip
2738 	 * a callchain entry saved by the kernel.
2739 	 */
2740 	skip_idx = arch_skip_callchain_idx(thread, chain);
2741 
2742 	/*
2743 	 * Add branches to call stack for easier browsing. This gives
2744 	 * more context for a sample than just the callers.
2745 	 *
2746 	 * This uses individual histograms of paths compared to the
2747 	 * aggregated histograms the normal LBR mode uses.
2748 	 *
2749 	 * Limitations for now:
2750 	 * - No extra filters
2751 	 * - No annotations (should annotate somehow)
2752 	 */
2753 
2754 	if (branch && callchain_param.branch_callstack) {
2755 		int nr = min(max_stack, (int)branch->nr);
2756 		struct branch_entry be[nr];
2757 		struct iterations iter[nr];
2758 
2759 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2760 			pr_warning("corrupted branch chain. skipping...\n");
2761 			goto check_calls;
2762 		}
2763 
2764 		for (i = 0; i < nr; i++) {
2765 			if (callchain_param.order == ORDER_CALLEE) {
2766 				be[i] = entries[i];
2767 
2768 				if (chain == NULL)
2769 					continue;
2770 
2771 				/*
2772 				 * Check for overlap into the callchain.
2773 				 * The return address is one off compared to
2774 				 * the branch entry. To adjust for this
2775 				 * assume the calling instruction is not longer
2776 				 * than 8 bytes.
2777 				 */
2778 				if (i == skip_idx ||
2779 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2780 					first_call++;
2781 				else if (be[i].from < chain->ips[first_call] &&
2782 				    be[i].from >= chain->ips[first_call] - 8)
2783 					first_call++;
2784 			} else
2785 				be[i] = entries[branch->nr - i - 1];
2786 		}
2787 
2788 		memset(iter, 0, sizeof(struct iterations) * nr);
2789 		nr = remove_loops(be, nr, iter);
2790 
2791 		for (i = 0; i < nr; i++) {
2792 			err = add_callchain_ip(thread, cursor, parent,
2793 					       root_al,
2794 					       NULL, be[i].to,
2795 					       true, &be[i].flags,
2796 					       NULL, be[i].from);
2797 
2798 			if (!err)
2799 				err = add_callchain_ip(thread, cursor, parent, root_al,
2800 						       NULL, be[i].from,
2801 						       true, &be[i].flags,
2802 						       &iter[i], 0);
2803 			if (err == -EINVAL)
2804 				break;
2805 			if (err)
2806 				return err;
2807 		}
2808 
2809 		if (chain_nr == 0)
2810 			return 0;
2811 
2812 		chain_nr -= nr;
2813 	}
2814 
2815 check_calls:
2816 	if (chain && callchain_param.order != ORDER_CALLEE) {
2817 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2818 					&cpumode, chain->nr - first_call);
2819 		if (err)
2820 			return (err < 0) ? err : 0;
2821 	}
2822 	for (i = first_call, nr_entries = 0;
2823 	     i < chain_nr && nr_entries < max_stack; i++) {
2824 		u64 ip;
2825 
2826 		if (callchain_param.order == ORDER_CALLEE)
2827 			j = i;
2828 		else
2829 			j = chain->nr - i - 1;
2830 
2831 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2832 		if (j == skip_idx)
2833 			continue;
2834 #endif
2835 		ip = chain->ips[j];
2836 		if (ip < PERF_CONTEXT_MAX)
2837                        ++nr_entries;
2838 		else if (callchain_param.order != ORDER_CALLEE) {
2839 			err = find_prev_cpumode(chain, thread, cursor, parent,
2840 						root_al, &cpumode, j);
2841 			if (err)
2842 				return (err < 0) ? err : 0;
2843 			continue;
2844 		}
2845 
2846 		err = add_callchain_ip(thread, cursor, parent,
2847 				       root_al, &cpumode, ip,
2848 				       false, NULL, NULL, 0);
2849 
2850 		if (err)
2851 			return (err < 0) ? err : 0;
2852 	}
2853 
2854 	return 0;
2855 }
2856 
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2857 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2858 {
2859 	struct symbol *sym = ms->sym;
2860 	struct map *map = ms->map;
2861 	struct inline_node *inline_node;
2862 	struct inline_list *ilist;
2863 	u64 addr;
2864 	int ret = 1;
2865 
2866 	if (!symbol_conf.inline_name || !map || !sym)
2867 		return ret;
2868 
2869 	addr = map__map_ip(map, ip);
2870 	addr = map__rip_2objdump(map, addr);
2871 
2872 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2873 	if (!inline_node) {
2874 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2875 		if (!inline_node)
2876 			return ret;
2877 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2878 	}
2879 
2880 	list_for_each_entry(ilist, &inline_node->val, list) {
2881 		struct map_symbol ilist_ms = {
2882 			.maps = ms->maps,
2883 			.map = map,
2884 			.sym = ilist->symbol,
2885 		};
2886 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2887 					      NULL, 0, 0, 0, ilist->srcline);
2888 
2889 		if (ret != 0)
2890 			return ret;
2891 	}
2892 
2893 	return ret;
2894 }
2895 
unwind_entry(struct unwind_entry * entry,void * arg)2896 static int unwind_entry(struct unwind_entry *entry, void *arg)
2897 {
2898 	struct callchain_cursor *cursor = arg;
2899 	const char *srcline = NULL;
2900 	u64 addr = entry->ip;
2901 
2902 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2903 		return 0;
2904 
2905 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2906 		return 0;
2907 
2908 	/*
2909 	 * Convert entry->ip from a virtual address to an offset in
2910 	 * its corresponding binary.
2911 	 */
2912 	if (entry->ms.map)
2913 		addr = map__map_ip(entry->ms.map, entry->ip);
2914 
2915 	srcline = callchain_srcline(&entry->ms, addr);
2916 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2917 				       false, NULL, 0, 0, 0, srcline);
2918 }
2919 
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2920 static int thread__resolve_callchain_unwind(struct thread *thread,
2921 					    struct callchain_cursor *cursor,
2922 					    struct evsel *evsel,
2923 					    struct perf_sample *sample,
2924 					    int max_stack)
2925 {
2926 	/* Can we do dwarf post unwind? */
2927 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2928 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2929 		return 0;
2930 
2931 	/* Bail out if nothing was captured. */
2932 	if ((!sample->user_regs.regs) ||
2933 	    (!sample->user_stack.size))
2934 		return 0;
2935 
2936 	return unwind__get_entries(unwind_entry, cursor,
2937 				   thread, sample, max_stack);
2938 }
2939 
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2940 int thread__resolve_callchain(struct thread *thread,
2941 			      struct callchain_cursor *cursor,
2942 			      struct evsel *evsel,
2943 			      struct perf_sample *sample,
2944 			      struct symbol **parent,
2945 			      struct addr_location *root_al,
2946 			      int max_stack)
2947 {
2948 	int ret = 0;
2949 
2950 	callchain_cursor_reset(cursor);
2951 
2952 	if (callchain_param.order == ORDER_CALLEE) {
2953 		ret = thread__resolve_callchain_sample(thread, cursor,
2954 						       evsel, sample,
2955 						       parent, root_al,
2956 						       max_stack);
2957 		if (ret)
2958 			return ret;
2959 		ret = thread__resolve_callchain_unwind(thread, cursor,
2960 						       evsel, sample,
2961 						       max_stack);
2962 	} else {
2963 		ret = thread__resolve_callchain_unwind(thread, cursor,
2964 						       evsel, sample,
2965 						       max_stack);
2966 		if (ret)
2967 			return ret;
2968 		ret = thread__resolve_callchain_sample(thread, cursor,
2969 						       evsel, sample,
2970 						       parent, root_al,
2971 						       max_stack);
2972 	}
2973 
2974 	return ret;
2975 }
2976 
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2977 int machine__for_each_thread(struct machine *machine,
2978 			     int (*fn)(struct thread *thread, void *p),
2979 			     void *priv)
2980 {
2981 	struct threads *threads;
2982 	struct rb_node *nd;
2983 	struct thread *thread;
2984 	int rc = 0;
2985 	int i;
2986 
2987 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2988 		threads = &machine->threads[i];
2989 		for (nd = rb_first_cached(&threads->entries); nd;
2990 		     nd = rb_next(nd)) {
2991 			thread = rb_entry(nd, struct thread, rb_node);
2992 			rc = fn(thread, priv);
2993 			if (rc != 0)
2994 				return rc;
2995 		}
2996 
2997 		list_for_each_entry(thread, &threads->dead, node) {
2998 			rc = fn(thread, priv);
2999 			if (rc != 0)
3000 				return rc;
3001 		}
3002 	}
3003 	return rc;
3004 }
3005 
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3006 int machines__for_each_thread(struct machines *machines,
3007 			      int (*fn)(struct thread *thread, void *p),
3008 			      void *priv)
3009 {
3010 	struct rb_node *nd;
3011 	int rc = 0;
3012 
3013 	rc = machine__for_each_thread(&machines->host, fn, priv);
3014 	if (rc != 0)
3015 		return rc;
3016 
3017 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3018 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3019 
3020 		rc = machine__for_each_thread(machine, fn, priv);
3021 		if (rc != 0)
3022 			return rc;
3023 	}
3024 	return rc;
3025 }
3026 
machine__get_current_tid(struct machine * machine,int cpu)3027 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3028 {
3029 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3030 
3031 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3032 		return -1;
3033 
3034 	return machine->current_tid[cpu];
3035 }
3036 
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3037 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3038 			     pid_t tid)
3039 {
3040 	struct thread *thread;
3041 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3042 
3043 	if (cpu < 0)
3044 		return -EINVAL;
3045 
3046 	if (!machine->current_tid) {
3047 		int i;
3048 
3049 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3050 		if (!machine->current_tid)
3051 			return -ENOMEM;
3052 		for (i = 0; i < nr_cpus; i++)
3053 			machine->current_tid[i] = -1;
3054 	}
3055 
3056 	if (cpu >= nr_cpus) {
3057 		pr_err("Requested CPU %d too large. ", cpu);
3058 		pr_err("Consider raising MAX_NR_CPUS\n");
3059 		return -EINVAL;
3060 	}
3061 
3062 	machine->current_tid[cpu] = tid;
3063 
3064 	thread = machine__findnew_thread(machine, pid, tid);
3065 	if (!thread)
3066 		return -ENOMEM;
3067 
3068 	thread->cpu = cpu;
3069 	thread__put(thread);
3070 
3071 	return 0;
3072 }
3073 
3074 /*
3075  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3076  * normalized arch is needed.
3077  */
machine__is(struct machine * machine,const char * arch)3078 bool machine__is(struct machine *machine, const char *arch)
3079 {
3080 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3081 }
3082 
machine__nr_cpus_avail(struct machine * machine)3083 int machine__nr_cpus_avail(struct machine *machine)
3084 {
3085 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3086 }
3087 
machine__get_kernel_start(struct machine * machine)3088 int machine__get_kernel_start(struct machine *machine)
3089 {
3090 	struct map *map = machine__kernel_map(machine);
3091 	int err = 0;
3092 
3093 	/*
3094 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3095 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3096 	 * all addresses including kernel addresses are less than 2^32.  In
3097 	 * that case (32-bit system), if the kernel mapping is unknown, all
3098 	 * addresses will be assumed to be in user space - see
3099 	 * machine__kernel_ip().
3100 	 */
3101 	machine->kernel_start = 1ULL << 63;
3102 	if (map) {
3103 		err = map__load(map);
3104 		/*
3105 		 * On x86_64, PTI entry trampolines are less than the
3106 		 * start of kernel text, but still above 2^63. So leave
3107 		 * kernel_start = 1ULL << 63 for x86_64.
3108 		 */
3109 		if (!err && !machine__is(machine, "x86_64"))
3110 			machine->kernel_start = map->start;
3111 	}
3112 	return err;
3113 }
3114 
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3115 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3116 {
3117 	u8 addr_cpumode = cpumode;
3118 	bool kernel_ip;
3119 
3120 	if (!machine->single_address_space)
3121 		goto out;
3122 
3123 	kernel_ip = machine__kernel_ip(machine, addr);
3124 	switch (cpumode) {
3125 	case PERF_RECORD_MISC_KERNEL:
3126 	case PERF_RECORD_MISC_USER:
3127 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3128 					   PERF_RECORD_MISC_USER;
3129 		break;
3130 	case PERF_RECORD_MISC_GUEST_KERNEL:
3131 	case PERF_RECORD_MISC_GUEST_USER:
3132 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3133 					   PERF_RECORD_MISC_GUEST_USER;
3134 		break;
3135 	default:
3136 		break;
3137 	}
3138 out:
3139 	return addr_cpumode;
3140 }
3141 
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3142 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3143 {
3144 	return dsos__findnew_id(&machine->dsos, filename, id);
3145 }
3146 
machine__findnew_dso(struct machine * machine,const char * filename)3147 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3148 {
3149 	return machine__findnew_dso_id(machine, filename, NULL);
3150 }
3151 
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3152 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3153 {
3154 	struct machine *machine = vmachine;
3155 	struct map *map;
3156 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3157 
3158 	if (sym == NULL)
3159 		return NULL;
3160 
3161 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3162 	*addrp = map->unmap_ip(map, sym->start);
3163 	return sym->name;
3164 }
3165 
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3166 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3167 {
3168 	struct dso *pos;
3169 	int err = 0;
3170 
3171 	list_for_each_entry(pos, &machine->dsos.head, node) {
3172 		if (fn(pos, machine, priv))
3173 			err = -1;
3174 	}
3175 	return err;
3176 }
3177