1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38
39 #include <linux/ctype.h>
40 #include <symbol/kallsyms.h>
41 #include <linux/mman.h>
42 #include <linux/string.h>
43 #include <linux/zalloc.h>
44
45 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
46
machine__kernel_dso(struct machine * machine)47 static struct dso *machine__kernel_dso(struct machine *machine)
48 {
49 return machine->vmlinux_map->dso;
50 }
51
dsos__init(struct dsos * dsos)52 static void dsos__init(struct dsos *dsos)
53 {
54 INIT_LIST_HEAD(&dsos->head);
55 dsos->root = RB_ROOT;
56 init_rwsem(&dsos->lock);
57 }
58
machine__threads_init(struct machine * machine)59 static void machine__threads_init(struct machine *machine)
60 {
61 int i;
62
63 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
64 struct threads *threads = &machine->threads[i];
65 threads->entries = RB_ROOT_CACHED;
66 init_rwsem(&threads->lock);
67 threads->nr = 0;
68 INIT_LIST_HEAD(&threads->dead);
69 threads->last_match = NULL;
70 }
71 }
72
machine__set_mmap_name(struct machine * machine)73 static int machine__set_mmap_name(struct machine *machine)
74 {
75 if (machine__is_host(machine))
76 machine->mmap_name = strdup("[kernel.kallsyms]");
77 else if (machine__is_default_guest(machine))
78 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
79 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
80 machine->pid) < 0)
81 machine->mmap_name = NULL;
82
83 return machine->mmap_name ? 0 : -ENOMEM;
84 }
85
machine__init(struct machine * machine,const char * root_dir,pid_t pid)86 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
87 {
88 int err = -ENOMEM;
89
90 memset(machine, 0, sizeof(*machine));
91 maps__init(&machine->kmaps, machine);
92 RB_CLEAR_NODE(&machine->rb_node);
93 dsos__init(&machine->dsos);
94
95 machine__threads_init(machine);
96
97 machine->vdso_info = NULL;
98 machine->env = NULL;
99
100 machine->pid = pid;
101
102 machine->id_hdr_size = 0;
103 machine->kptr_restrict_warned = false;
104 machine->comm_exec = false;
105 machine->kernel_start = 0;
106 machine->vmlinux_map = NULL;
107
108 machine->root_dir = strdup(root_dir);
109 if (machine->root_dir == NULL)
110 return -ENOMEM;
111
112 if (machine__set_mmap_name(machine))
113 goto out;
114
115 if (pid != HOST_KERNEL_ID) {
116 struct thread *thread = machine__findnew_thread(machine, -1,
117 pid);
118 char comm[64];
119
120 if (thread == NULL)
121 goto out;
122
123 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
124 thread__set_comm(thread, comm, 0);
125 thread__put(thread);
126 }
127
128 machine->current_tid = NULL;
129 err = 0;
130
131 out:
132 if (err) {
133 zfree(&machine->root_dir);
134 zfree(&machine->mmap_name);
135 }
136 return 0;
137 }
138
machine__new_host(void)139 struct machine *machine__new_host(void)
140 {
141 struct machine *machine = malloc(sizeof(*machine));
142
143 if (machine != NULL) {
144 machine__init(machine, "", HOST_KERNEL_ID);
145
146 if (machine__create_kernel_maps(machine) < 0)
147 goto out_delete;
148 }
149
150 return machine;
151 out_delete:
152 free(machine);
153 return NULL;
154 }
155
machine__new_kallsyms(void)156 struct machine *machine__new_kallsyms(void)
157 {
158 struct machine *machine = machine__new_host();
159 /*
160 * FIXME:
161 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
162 * ask for not using the kcore parsing code, once this one is fixed
163 * to create a map per module.
164 */
165 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
166 machine__delete(machine);
167 machine = NULL;
168 }
169
170 return machine;
171 }
172
dsos__purge(struct dsos * dsos)173 static void dsos__purge(struct dsos *dsos)
174 {
175 struct dso *pos, *n;
176
177 down_write(&dsos->lock);
178
179 list_for_each_entry_safe(pos, n, &dsos->head, node) {
180 RB_CLEAR_NODE(&pos->rb_node);
181 pos->root = NULL;
182 list_del_init(&pos->node);
183 dso__put(pos);
184 }
185
186 up_write(&dsos->lock);
187 }
188
dsos__exit(struct dsos * dsos)189 static void dsos__exit(struct dsos *dsos)
190 {
191 dsos__purge(dsos);
192 exit_rwsem(&dsos->lock);
193 }
194
machine__delete_threads(struct machine * machine)195 void machine__delete_threads(struct machine *machine)
196 {
197 struct rb_node *nd;
198 int i;
199
200 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
201 struct threads *threads = &machine->threads[i];
202 down_write(&threads->lock);
203 nd = rb_first_cached(&threads->entries);
204 while (nd) {
205 struct thread *t = rb_entry(nd, struct thread, rb_node);
206
207 nd = rb_next(nd);
208 __machine__remove_thread(machine, t, false);
209 }
210 up_write(&threads->lock);
211 }
212 }
213
machine__exit(struct machine * machine)214 void machine__exit(struct machine *machine)
215 {
216 int i;
217
218 if (machine == NULL)
219 return;
220
221 machine__destroy_kernel_maps(machine);
222 maps__exit(&machine->kmaps);
223 dsos__exit(&machine->dsos);
224 machine__exit_vdso(machine);
225 zfree(&machine->root_dir);
226 zfree(&machine->mmap_name);
227 zfree(&machine->current_tid);
228
229 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
230 struct threads *threads = &machine->threads[i];
231 struct thread *thread, *n;
232 /*
233 * Forget about the dead, at this point whatever threads were
234 * left in the dead lists better have a reference count taken
235 * by who is using them, and then, when they drop those references
236 * and it finally hits zero, thread__put() will check and see that
237 * its not in the dead threads list and will not try to remove it
238 * from there, just calling thread__delete() straight away.
239 */
240 list_for_each_entry_safe(thread, n, &threads->dead, node)
241 list_del_init(&thread->node);
242
243 exit_rwsem(&threads->lock);
244 }
245 }
246
machine__delete(struct machine * machine)247 void machine__delete(struct machine *machine)
248 {
249 if (machine) {
250 machine__exit(machine);
251 free(machine);
252 }
253 }
254
machines__init(struct machines * machines)255 void machines__init(struct machines *machines)
256 {
257 machine__init(&machines->host, "", HOST_KERNEL_ID);
258 machines->guests = RB_ROOT_CACHED;
259 }
260
machines__exit(struct machines * machines)261 void machines__exit(struct machines *machines)
262 {
263 machine__exit(&machines->host);
264 /* XXX exit guest */
265 }
266
machines__add(struct machines * machines,pid_t pid,const char * root_dir)267 struct machine *machines__add(struct machines *machines, pid_t pid,
268 const char *root_dir)
269 {
270 struct rb_node **p = &machines->guests.rb_root.rb_node;
271 struct rb_node *parent = NULL;
272 struct machine *pos, *machine = malloc(sizeof(*machine));
273 bool leftmost = true;
274
275 if (machine == NULL)
276 return NULL;
277
278 if (machine__init(machine, root_dir, pid) != 0) {
279 free(machine);
280 return NULL;
281 }
282
283 while (*p != NULL) {
284 parent = *p;
285 pos = rb_entry(parent, struct machine, rb_node);
286 if (pid < pos->pid)
287 p = &(*p)->rb_left;
288 else {
289 p = &(*p)->rb_right;
290 leftmost = false;
291 }
292 }
293
294 rb_link_node(&machine->rb_node, parent, p);
295 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
296
297 return machine;
298 }
299
machines__set_comm_exec(struct machines * machines,bool comm_exec)300 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
301 {
302 struct rb_node *nd;
303
304 machines->host.comm_exec = comm_exec;
305
306 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
307 struct machine *machine = rb_entry(nd, struct machine, rb_node);
308
309 machine->comm_exec = comm_exec;
310 }
311 }
312
machines__find(struct machines * machines,pid_t pid)313 struct machine *machines__find(struct machines *machines, pid_t pid)
314 {
315 struct rb_node **p = &machines->guests.rb_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct machine *machine;
318 struct machine *default_machine = NULL;
319
320 if (pid == HOST_KERNEL_ID)
321 return &machines->host;
322
323 while (*p != NULL) {
324 parent = *p;
325 machine = rb_entry(parent, struct machine, rb_node);
326 if (pid < machine->pid)
327 p = &(*p)->rb_left;
328 else if (pid > machine->pid)
329 p = &(*p)->rb_right;
330 else
331 return machine;
332 if (!machine->pid)
333 default_machine = machine;
334 }
335
336 return default_machine;
337 }
338
machines__findnew(struct machines * machines,pid_t pid)339 struct machine *machines__findnew(struct machines *machines, pid_t pid)
340 {
341 char path[PATH_MAX];
342 const char *root_dir = "";
343 struct machine *machine = machines__find(machines, pid);
344
345 if (machine && (machine->pid == pid))
346 goto out;
347
348 if ((pid != HOST_KERNEL_ID) &&
349 (pid != DEFAULT_GUEST_KERNEL_ID) &&
350 (symbol_conf.guestmount)) {
351 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
352 if (access(path, R_OK)) {
353 static struct strlist *seen;
354
355 if (!seen)
356 seen = strlist__new(NULL, NULL);
357
358 if (!strlist__has_entry(seen, path)) {
359 pr_err("Can't access file %s\n", path);
360 strlist__add(seen, path);
361 }
362 machine = NULL;
363 goto out;
364 }
365 root_dir = path;
366 }
367
368 machine = machines__add(machines, pid, root_dir);
369 out:
370 return machine;
371 }
372
machines__find_guest(struct machines * machines,pid_t pid)373 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
374 {
375 struct machine *machine = machines__find(machines, pid);
376
377 if (!machine)
378 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
379 return machine;
380 }
381
machines__process_guests(struct machines * machines,machine__process_t process,void * data)382 void machines__process_guests(struct machines *machines,
383 machine__process_t process, void *data)
384 {
385 struct rb_node *nd;
386
387 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
388 struct machine *pos = rb_entry(nd, struct machine, rb_node);
389 process(pos, data);
390 }
391 }
392
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)393 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
394 {
395 struct rb_node *node;
396 struct machine *machine;
397
398 machines->host.id_hdr_size = id_hdr_size;
399
400 for (node = rb_first_cached(&machines->guests); node;
401 node = rb_next(node)) {
402 machine = rb_entry(node, struct machine, rb_node);
403 machine->id_hdr_size = id_hdr_size;
404 }
405
406 return;
407 }
408
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)409 static void machine__update_thread_pid(struct machine *machine,
410 struct thread *th, pid_t pid)
411 {
412 struct thread *leader;
413
414 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
415 return;
416
417 th->pid_ = pid;
418
419 if (th->pid_ == th->tid)
420 return;
421
422 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
423 if (!leader)
424 goto out_err;
425
426 if (!leader->maps)
427 leader->maps = maps__new(machine);
428
429 if (!leader->maps)
430 goto out_err;
431
432 if (th->maps == leader->maps)
433 return;
434
435 if (th->maps) {
436 /*
437 * Maps are created from MMAP events which provide the pid and
438 * tid. Consequently there never should be any maps on a thread
439 * with an unknown pid. Just print an error if there are.
440 */
441 if (!maps__empty(th->maps))
442 pr_err("Discarding thread maps for %d:%d\n",
443 th->pid_, th->tid);
444 maps__put(th->maps);
445 }
446
447 th->maps = maps__get(leader->maps);
448 out_put:
449 thread__put(leader);
450 return;
451 out_err:
452 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
453 goto out_put;
454 }
455
456 /*
457 * Front-end cache - TID lookups come in blocks,
458 * so most of the time we dont have to look up
459 * the full rbtree:
460 */
461 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)462 __threads__get_last_match(struct threads *threads, struct machine *machine,
463 int pid, int tid)
464 {
465 struct thread *th;
466
467 th = threads->last_match;
468 if (th != NULL) {
469 if (th->tid == tid) {
470 machine__update_thread_pid(machine, th, pid);
471 return thread__get(th);
472 }
473
474 threads->last_match = NULL;
475 }
476
477 return NULL;
478 }
479
480 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)481 threads__get_last_match(struct threads *threads, struct machine *machine,
482 int pid, int tid)
483 {
484 struct thread *th = NULL;
485
486 if (perf_singlethreaded)
487 th = __threads__get_last_match(threads, machine, pid, tid);
488
489 return th;
490 }
491
492 static void
__threads__set_last_match(struct threads * threads,struct thread * th)493 __threads__set_last_match(struct threads *threads, struct thread *th)
494 {
495 threads->last_match = th;
496 }
497
498 static void
threads__set_last_match(struct threads * threads,struct thread * th)499 threads__set_last_match(struct threads *threads, struct thread *th)
500 {
501 if (perf_singlethreaded)
502 __threads__set_last_match(threads, th);
503 }
504
505 /*
506 * Caller must eventually drop thread->refcnt returned with a successful
507 * lookup/new thread inserted.
508 */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)509 static struct thread *____machine__findnew_thread(struct machine *machine,
510 struct threads *threads,
511 pid_t pid, pid_t tid,
512 bool create)
513 {
514 struct rb_node **p = &threads->entries.rb_root.rb_node;
515 struct rb_node *parent = NULL;
516 struct thread *th;
517 bool leftmost = true;
518
519 th = threads__get_last_match(threads, machine, pid, tid);
520 if (th)
521 return th;
522
523 while (*p != NULL) {
524 parent = *p;
525 th = rb_entry(parent, struct thread, rb_node);
526
527 if (th->tid == tid) {
528 threads__set_last_match(threads, th);
529 machine__update_thread_pid(machine, th, pid);
530 return thread__get(th);
531 }
532
533 if (tid < th->tid)
534 p = &(*p)->rb_left;
535 else {
536 p = &(*p)->rb_right;
537 leftmost = false;
538 }
539 }
540
541 if (!create)
542 return NULL;
543
544 th = thread__new(pid, tid);
545 if (th != NULL) {
546 rb_link_node(&th->rb_node, parent, p);
547 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
548
549 /*
550 * We have to initialize maps separately after rb tree is updated.
551 *
552 * The reason is that we call machine__findnew_thread
553 * within thread__init_maps to find the thread
554 * leader and that would screwed the rb tree.
555 */
556 if (thread__init_maps(th, machine)) {
557 rb_erase_cached(&th->rb_node, &threads->entries);
558 RB_CLEAR_NODE(&th->rb_node);
559 thread__put(th);
560 return NULL;
561 }
562 /*
563 * It is now in the rbtree, get a ref
564 */
565 thread__get(th);
566 threads__set_last_match(threads, th);
567 ++threads->nr;
568 }
569
570 return th;
571 }
572
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)573 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
574 {
575 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
576 }
577
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)578 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
579 pid_t tid)
580 {
581 struct threads *threads = machine__threads(machine, tid);
582 struct thread *th;
583
584 down_write(&threads->lock);
585 th = __machine__findnew_thread(machine, pid, tid);
586 up_write(&threads->lock);
587 return th;
588 }
589
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)590 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
591 pid_t tid)
592 {
593 struct threads *threads = machine__threads(machine, tid);
594 struct thread *th;
595
596 down_read(&threads->lock);
597 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
598 up_read(&threads->lock);
599 return th;
600 }
601
602 /*
603 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
604 * So here a single thread is created for that, but actually there is a separate
605 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
606 * is only 1. That causes problems for some tools, requiring workarounds. For
607 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
608 */
machine__idle_thread(struct machine * machine)609 struct thread *machine__idle_thread(struct machine *machine)
610 {
611 struct thread *thread = machine__findnew_thread(machine, 0, 0);
612
613 if (!thread || thread__set_comm(thread, "swapper", 0) ||
614 thread__set_namespaces(thread, 0, NULL))
615 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
616
617 return thread;
618 }
619
machine__thread_exec_comm(struct machine * machine,struct thread * thread)620 struct comm *machine__thread_exec_comm(struct machine *machine,
621 struct thread *thread)
622 {
623 if (machine->comm_exec)
624 return thread__exec_comm(thread);
625 else
626 return thread__comm(thread);
627 }
628
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)629 int machine__process_comm_event(struct machine *machine, union perf_event *event,
630 struct perf_sample *sample)
631 {
632 struct thread *thread = machine__findnew_thread(machine,
633 event->comm.pid,
634 event->comm.tid);
635 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
636 int err = 0;
637
638 if (exec)
639 machine->comm_exec = true;
640
641 if (dump_trace)
642 perf_event__fprintf_comm(event, stdout);
643
644 if (thread == NULL ||
645 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
646 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
647 err = -1;
648 }
649
650 thread__put(thread);
651
652 return err;
653 }
654
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)655 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
656 union perf_event *event,
657 struct perf_sample *sample __maybe_unused)
658 {
659 struct thread *thread = machine__findnew_thread(machine,
660 event->namespaces.pid,
661 event->namespaces.tid);
662 int err = 0;
663
664 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
665 "\nWARNING: kernel seems to support more namespaces than perf"
666 " tool.\nTry updating the perf tool..\n\n");
667
668 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
669 "\nWARNING: perf tool seems to support more namespaces than"
670 " the kernel.\nTry updating the kernel..\n\n");
671
672 if (dump_trace)
673 perf_event__fprintf_namespaces(event, stdout);
674
675 if (thread == NULL ||
676 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
677 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
678 err = -1;
679 }
680
681 thread__put(thread);
682
683 return err;
684 }
685
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)686 int machine__process_cgroup_event(struct machine *machine,
687 union perf_event *event,
688 struct perf_sample *sample __maybe_unused)
689 {
690 struct cgroup *cgrp;
691
692 if (dump_trace)
693 perf_event__fprintf_cgroup(event, stdout);
694
695 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
696 if (cgrp == NULL)
697 return -ENOMEM;
698
699 return 0;
700 }
701
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)702 int machine__process_lost_event(struct machine *machine __maybe_unused,
703 union perf_event *event, struct perf_sample *sample __maybe_unused)
704 {
705 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
706 event->lost.id, event->lost.lost);
707 return 0;
708 }
709
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)710 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
711 union perf_event *event, struct perf_sample *sample)
712 {
713 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
714 sample->id, event->lost_samples.lost);
715 return 0;
716 }
717
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)718 static struct dso *machine__findnew_module_dso(struct machine *machine,
719 struct kmod_path *m,
720 const char *filename)
721 {
722 struct dso *dso;
723
724 down_write(&machine->dsos.lock);
725
726 dso = __dsos__find(&machine->dsos, m->name, true);
727 if (!dso) {
728 dso = __dsos__addnew(&machine->dsos, m->name);
729 if (dso == NULL)
730 goto out_unlock;
731
732 dso__set_module_info(dso, m, machine);
733 dso__set_long_name(dso, strdup(filename), true);
734 dso->kernel = DSO_SPACE__KERNEL;
735 }
736
737 dso__get(dso);
738 out_unlock:
739 up_write(&machine->dsos.lock);
740 return dso;
741 }
742
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)743 int machine__process_aux_event(struct machine *machine __maybe_unused,
744 union perf_event *event)
745 {
746 if (dump_trace)
747 perf_event__fprintf_aux(event, stdout);
748 return 0;
749 }
750
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)751 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
752 union perf_event *event)
753 {
754 if (dump_trace)
755 perf_event__fprintf_itrace_start(event, stdout);
756 return 0;
757 }
758
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)759 int machine__process_switch_event(struct machine *machine __maybe_unused,
760 union perf_event *event)
761 {
762 if (dump_trace)
763 perf_event__fprintf_switch(event, stdout);
764 return 0;
765 }
766
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)767 static int machine__process_ksymbol_register(struct machine *machine,
768 union perf_event *event,
769 struct perf_sample *sample __maybe_unused)
770 {
771 struct symbol *sym;
772 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
773
774 if (!map) {
775 struct dso *dso = dso__new(event->ksymbol.name);
776
777 if (dso) {
778 dso->kernel = DSO_SPACE__KERNEL;
779 map = map__new2(0, dso);
780 dso__put(dso);
781 }
782
783 if (!dso || !map) {
784 return -ENOMEM;
785 }
786
787 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
788 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
789 map->dso->data.file_size = event->ksymbol.len;
790 dso__set_loaded(map->dso);
791 }
792
793 map->start = event->ksymbol.addr;
794 map->end = map->start + event->ksymbol.len;
795 maps__insert(&machine->kmaps, map);
796 map__put(map);
797 dso__set_loaded(dso);
798
799 if (is_bpf_image(event->ksymbol.name)) {
800 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
801 dso__set_long_name(dso, "", false);
802 }
803 }
804
805 sym = symbol__new(map->map_ip(map, map->start),
806 event->ksymbol.len,
807 0, 0, event->ksymbol.name);
808 if (!sym)
809 return -ENOMEM;
810 dso__insert_symbol(map->dso, sym);
811 return 0;
812 }
813
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)814 static int machine__process_ksymbol_unregister(struct machine *machine,
815 union perf_event *event,
816 struct perf_sample *sample __maybe_unused)
817 {
818 struct symbol *sym;
819 struct map *map;
820
821 map = maps__find(&machine->kmaps, event->ksymbol.addr);
822 if (!map)
823 return 0;
824
825 if (map != machine->vmlinux_map)
826 maps__remove(&machine->kmaps, map);
827 else {
828 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
829 if (sym)
830 dso__delete_symbol(map->dso, sym);
831 }
832
833 return 0;
834 }
835
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)836 int machine__process_ksymbol(struct machine *machine __maybe_unused,
837 union perf_event *event,
838 struct perf_sample *sample)
839 {
840 if (dump_trace)
841 perf_event__fprintf_ksymbol(event, stdout);
842
843 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
844 return machine__process_ksymbol_unregister(machine, event,
845 sample);
846 return machine__process_ksymbol_register(machine, event, sample);
847 }
848
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)849 int machine__process_text_poke(struct machine *machine, union perf_event *event,
850 struct perf_sample *sample __maybe_unused)
851 {
852 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
853 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
854
855 if (dump_trace)
856 perf_event__fprintf_text_poke(event, machine, stdout);
857
858 if (!event->text_poke.new_len)
859 return 0;
860
861 if (cpumode != PERF_RECORD_MISC_KERNEL) {
862 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
863 return 0;
864 }
865
866 if (map && map->dso) {
867 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
868 int ret;
869
870 /*
871 * Kernel maps might be changed when loading symbols so loading
872 * must be done prior to using kernel maps.
873 */
874 map__load(map);
875 ret = dso__data_write_cache_addr(map->dso, map, machine,
876 event->text_poke.addr,
877 new_bytes,
878 event->text_poke.new_len);
879 if (ret != event->text_poke.new_len)
880 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
881 event->text_poke.addr);
882 } else {
883 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
884 event->text_poke.addr);
885 }
886
887 return 0;
888 }
889
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)890 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
891 const char *filename)
892 {
893 struct map *map = NULL;
894 struct kmod_path m;
895 struct dso *dso;
896
897 if (kmod_path__parse_name(&m, filename))
898 return NULL;
899
900 dso = machine__findnew_module_dso(machine, &m, filename);
901 if (dso == NULL)
902 goto out;
903
904 map = map__new2(start, dso);
905 if (map == NULL)
906 goto out;
907
908 maps__insert(&machine->kmaps, map);
909
910 /* Put the map here because maps__insert already got it */
911 map__put(map);
912 out:
913 /* put the dso here, corresponding to machine__findnew_module_dso */
914 dso__put(dso);
915 zfree(&m.name);
916 return map;
917 }
918
machines__fprintf_dsos(struct machines * machines,FILE * fp)919 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
920 {
921 struct rb_node *nd;
922 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
923
924 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
925 struct machine *pos = rb_entry(nd, struct machine, rb_node);
926 ret += __dsos__fprintf(&pos->dsos.head, fp);
927 }
928
929 return ret;
930 }
931
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)932 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
933 bool (skip)(struct dso *dso, int parm), int parm)
934 {
935 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
936 }
937
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)938 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
939 bool (skip)(struct dso *dso, int parm), int parm)
940 {
941 struct rb_node *nd;
942 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
943
944 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
945 struct machine *pos = rb_entry(nd, struct machine, rb_node);
946 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
947 }
948 return ret;
949 }
950
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)951 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
952 {
953 int i;
954 size_t printed = 0;
955 struct dso *kdso = machine__kernel_dso(machine);
956
957 if (kdso->has_build_id) {
958 char filename[PATH_MAX];
959 if (dso__build_id_filename(kdso, filename, sizeof(filename),
960 false))
961 printed += fprintf(fp, "[0] %s\n", filename);
962 }
963
964 for (i = 0; i < vmlinux_path__nr_entries; ++i)
965 printed += fprintf(fp, "[%d] %s\n",
966 i + kdso->has_build_id, vmlinux_path[i]);
967
968 return printed;
969 }
970
machine__fprintf(struct machine * machine,FILE * fp)971 size_t machine__fprintf(struct machine *machine, FILE *fp)
972 {
973 struct rb_node *nd;
974 size_t ret;
975 int i;
976
977 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
978 struct threads *threads = &machine->threads[i];
979
980 down_read(&threads->lock);
981
982 ret = fprintf(fp, "Threads: %u\n", threads->nr);
983
984 for (nd = rb_first_cached(&threads->entries); nd;
985 nd = rb_next(nd)) {
986 struct thread *pos = rb_entry(nd, struct thread, rb_node);
987
988 ret += thread__fprintf(pos, fp);
989 }
990
991 up_read(&threads->lock);
992 }
993 return ret;
994 }
995
machine__get_kernel(struct machine * machine)996 static struct dso *machine__get_kernel(struct machine *machine)
997 {
998 const char *vmlinux_name = machine->mmap_name;
999 struct dso *kernel;
1000
1001 if (machine__is_host(machine)) {
1002 if (symbol_conf.vmlinux_name)
1003 vmlinux_name = symbol_conf.vmlinux_name;
1004
1005 kernel = machine__findnew_kernel(machine, vmlinux_name,
1006 "[kernel]", DSO_SPACE__KERNEL);
1007 } else {
1008 if (symbol_conf.default_guest_vmlinux_name)
1009 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1010
1011 kernel = machine__findnew_kernel(machine, vmlinux_name,
1012 "[guest.kernel]",
1013 DSO_SPACE__KERNEL_GUEST);
1014 }
1015
1016 if (kernel != NULL && (!kernel->has_build_id))
1017 dso__read_running_kernel_build_id(kernel, machine);
1018
1019 return kernel;
1020 }
1021
1022 struct process_args {
1023 u64 start;
1024 };
1025
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)1026 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1027 size_t bufsz)
1028 {
1029 if (machine__is_default_guest(machine))
1030 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1031 else
1032 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1033 }
1034
1035 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1036
1037 /* Figure out the start address of kernel map from /proc/kallsyms.
1038 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1039 * symbol_name if it's not that important.
1040 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1041 static int machine__get_running_kernel_start(struct machine *machine,
1042 const char **symbol_name,
1043 u64 *start, u64 *end)
1044 {
1045 char filename[PATH_MAX];
1046 int i, err = -1;
1047 const char *name;
1048 u64 addr = 0;
1049
1050 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1051
1052 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1053 return 0;
1054
1055 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1056 err = kallsyms__get_function_start(filename, name, &addr);
1057 if (!err)
1058 break;
1059 }
1060
1061 if (err)
1062 return -1;
1063
1064 if (symbol_name)
1065 *symbol_name = name;
1066
1067 *start = addr;
1068
1069 err = kallsyms__get_function_start(filename, "_etext", &addr);
1070 if (!err)
1071 *end = addr;
1072
1073 return 0;
1074 }
1075
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1076 int machine__create_extra_kernel_map(struct machine *machine,
1077 struct dso *kernel,
1078 struct extra_kernel_map *xm)
1079 {
1080 struct kmap *kmap;
1081 struct map *map;
1082
1083 map = map__new2(xm->start, kernel);
1084 if (!map)
1085 return -1;
1086
1087 map->end = xm->end;
1088 map->pgoff = xm->pgoff;
1089
1090 kmap = map__kmap(map);
1091
1092 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1093
1094 maps__insert(&machine->kmaps, map);
1095
1096 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1097 kmap->name, map->start, map->end);
1098
1099 map__put(map);
1100
1101 return 0;
1102 }
1103
find_entry_trampoline(struct dso * dso)1104 static u64 find_entry_trampoline(struct dso *dso)
1105 {
1106 /* Duplicates are removed so lookup all aliases */
1107 const char *syms[] = {
1108 "_entry_trampoline",
1109 "__entry_trampoline_start",
1110 "entry_SYSCALL_64_trampoline",
1111 };
1112 struct symbol *sym = dso__first_symbol(dso);
1113 unsigned int i;
1114
1115 for (; sym; sym = dso__next_symbol(sym)) {
1116 if (sym->binding != STB_GLOBAL)
1117 continue;
1118 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1119 if (!strcmp(sym->name, syms[i]))
1120 return sym->start;
1121 }
1122 }
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * These values can be used for kernels that do not have symbols for the entry
1129 * trampolines in kallsyms.
1130 */
1131 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1132 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1133 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1134
1135 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1136 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1137 struct dso *kernel)
1138 {
1139 struct maps *kmaps = &machine->kmaps;
1140 int nr_cpus_avail, cpu;
1141 bool found = false;
1142 struct map *map;
1143 u64 pgoff;
1144
1145 /*
1146 * In the vmlinux case, pgoff is a virtual address which must now be
1147 * mapped to a vmlinux offset.
1148 */
1149 maps__for_each_entry(kmaps, map) {
1150 struct kmap *kmap = __map__kmap(map);
1151 struct map *dest_map;
1152
1153 if (!kmap || !is_entry_trampoline(kmap->name))
1154 continue;
1155
1156 dest_map = maps__find(kmaps, map->pgoff);
1157 if (dest_map != map)
1158 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1159 found = true;
1160 }
1161 if (found || machine->trampolines_mapped)
1162 return 0;
1163
1164 pgoff = find_entry_trampoline(kernel);
1165 if (!pgoff)
1166 return 0;
1167
1168 nr_cpus_avail = machine__nr_cpus_avail(machine);
1169
1170 /* Add a 1 page map for each CPU's entry trampoline */
1171 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1172 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1173 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1174 X86_64_ENTRY_TRAMPOLINE;
1175 struct extra_kernel_map xm = {
1176 .start = va,
1177 .end = va + page_size,
1178 .pgoff = pgoff,
1179 };
1180
1181 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1182
1183 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1184 return -1;
1185 }
1186
1187 machine->trampolines_mapped = nr_cpus_avail;
1188
1189 return 0;
1190 }
1191
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1192 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1193 struct dso *kernel __maybe_unused)
1194 {
1195 return 0;
1196 }
1197
1198 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1199 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1200 {
1201 /* In case of renewal the kernel map, destroy previous one */
1202 machine__destroy_kernel_maps(machine);
1203
1204 machine->vmlinux_map = map__new2(0, kernel);
1205 if (machine->vmlinux_map == NULL)
1206 return -1;
1207
1208 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1209 maps__insert(&machine->kmaps, machine->vmlinux_map);
1210 return 0;
1211 }
1212
machine__destroy_kernel_maps(struct machine * machine)1213 void machine__destroy_kernel_maps(struct machine *machine)
1214 {
1215 struct kmap *kmap;
1216 struct map *map = machine__kernel_map(machine);
1217
1218 if (map == NULL)
1219 return;
1220
1221 kmap = map__kmap(map);
1222 maps__remove(&machine->kmaps, map);
1223 if (kmap && kmap->ref_reloc_sym) {
1224 zfree((char **)&kmap->ref_reloc_sym->name);
1225 zfree(&kmap->ref_reloc_sym);
1226 }
1227
1228 map__zput(machine->vmlinux_map);
1229 }
1230
machines__create_guest_kernel_maps(struct machines * machines)1231 int machines__create_guest_kernel_maps(struct machines *machines)
1232 {
1233 int ret = 0;
1234 struct dirent **namelist = NULL;
1235 int i, items = 0;
1236 char path[PATH_MAX];
1237 pid_t pid;
1238 char *endp;
1239
1240 if (symbol_conf.default_guest_vmlinux_name ||
1241 symbol_conf.default_guest_modules ||
1242 symbol_conf.default_guest_kallsyms) {
1243 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1244 }
1245
1246 if (symbol_conf.guestmount) {
1247 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1248 if (items <= 0)
1249 return -ENOENT;
1250 for (i = 0; i < items; i++) {
1251 if (!isdigit(namelist[i]->d_name[0])) {
1252 /* Filter out . and .. */
1253 continue;
1254 }
1255 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1256 if ((*endp != '\0') ||
1257 (endp == namelist[i]->d_name) ||
1258 (errno == ERANGE)) {
1259 pr_debug("invalid directory (%s). Skipping.\n",
1260 namelist[i]->d_name);
1261 continue;
1262 }
1263 sprintf(path, "%s/%s/proc/kallsyms",
1264 symbol_conf.guestmount,
1265 namelist[i]->d_name);
1266 ret = access(path, R_OK);
1267 if (ret) {
1268 pr_debug("Can't access file %s\n", path);
1269 goto failure;
1270 }
1271 machines__create_kernel_maps(machines, pid);
1272 }
1273 failure:
1274 free(namelist);
1275 }
1276
1277 return ret;
1278 }
1279
machines__destroy_kernel_maps(struct machines * machines)1280 void machines__destroy_kernel_maps(struct machines *machines)
1281 {
1282 struct rb_node *next = rb_first_cached(&machines->guests);
1283
1284 machine__destroy_kernel_maps(&machines->host);
1285
1286 while (next) {
1287 struct machine *pos = rb_entry(next, struct machine, rb_node);
1288
1289 next = rb_next(&pos->rb_node);
1290 rb_erase_cached(&pos->rb_node, &machines->guests);
1291 machine__delete(pos);
1292 }
1293 }
1294
machines__create_kernel_maps(struct machines * machines,pid_t pid)1295 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1296 {
1297 struct machine *machine = machines__findnew(machines, pid);
1298
1299 if (machine == NULL)
1300 return -1;
1301
1302 return machine__create_kernel_maps(machine);
1303 }
1304
machine__load_kallsyms(struct machine * machine,const char * filename)1305 int machine__load_kallsyms(struct machine *machine, const char *filename)
1306 {
1307 struct map *map = machine__kernel_map(machine);
1308 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1309
1310 if (ret > 0) {
1311 dso__set_loaded(map->dso);
1312 /*
1313 * Since /proc/kallsyms will have multiple sessions for the
1314 * kernel, with modules between them, fixup the end of all
1315 * sections.
1316 */
1317 maps__fixup_end(&machine->kmaps);
1318 }
1319
1320 return ret;
1321 }
1322
machine__load_vmlinux_path(struct machine * machine)1323 int machine__load_vmlinux_path(struct machine *machine)
1324 {
1325 struct map *map = machine__kernel_map(machine);
1326 int ret = dso__load_vmlinux_path(map->dso, map);
1327
1328 if (ret > 0)
1329 dso__set_loaded(map->dso);
1330
1331 return ret;
1332 }
1333
get_kernel_version(const char * root_dir)1334 static char *get_kernel_version(const char *root_dir)
1335 {
1336 char version[PATH_MAX];
1337 FILE *file;
1338 char *name, *tmp;
1339 const char *prefix = "Linux version ";
1340
1341 sprintf(version, "%s/proc/version", root_dir);
1342 file = fopen(version, "r");
1343 if (!file)
1344 return NULL;
1345
1346 tmp = fgets(version, sizeof(version), file);
1347 fclose(file);
1348 if (!tmp)
1349 return NULL;
1350
1351 name = strstr(version, prefix);
1352 if (!name)
1353 return NULL;
1354 name += strlen(prefix);
1355 tmp = strchr(name, ' ');
1356 if (tmp)
1357 *tmp = '\0';
1358
1359 return strdup(name);
1360 }
1361
is_kmod_dso(struct dso * dso)1362 static bool is_kmod_dso(struct dso *dso)
1363 {
1364 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1365 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1366 }
1367
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1368 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1369 {
1370 char *long_name;
1371 struct map *map = maps__find_by_name(maps, m->name);
1372
1373 if (map == NULL)
1374 return 0;
1375
1376 long_name = strdup(path);
1377 if (long_name == NULL)
1378 return -ENOMEM;
1379
1380 dso__set_long_name(map->dso, long_name, true);
1381 dso__kernel_module_get_build_id(map->dso, "");
1382
1383 /*
1384 * Full name could reveal us kmod compression, so
1385 * we need to update the symtab_type if needed.
1386 */
1387 if (m->comp && is_kmod_dso(map->dso)) {
1388 map->dso->symtab_type++;
1389 map->dso->comp = m->comp;
1390 }
1391
1392 return 0;
1393 }
1394
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1395 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1396 {
1397 struct dirent *dent;
1398 DIR *dir = opendir(dir_name);
1399 int ret = 0;
1400
1401 if (!dir) {
1402 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1403 return -1;
1404 }
1405
1406 while ((dent = readdir(dir)) != NULL) {
1407 char path[PATH_MAX];
1408 struct stat st;
1409
1410 /*sshfs might return bad dent->d_type, so we have to stat*/
1411 path__join(path, sizeof(path), dir_name, dent->d_name);
1412 if (stat(path, &st))
1413 continue;
1414
1415 if (S_ISDIR(st.st_mode)) {
1416 if (!strcmp(dent->d_name, ".") ||
1417 !strcmp(dent->d_name, ".."))
1418 continue;
1419
1420 /* Do not follow top-level source and build symlinks */
1421 if (depth == 0) {
1422 if (!strcmp(dent->d_name, "source") ||
1423 !strcmp(dent->d_name, "build"))
1424 continue;
1425 }
1426
1427 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1428 if (ret < 0)
1429 goto out;
1430 } else {
1431 struct kmod_path m;
1432
1433 ret = kmod_path__parse_name(&m, dent->d_name);
1434 if (ret)
1435 goto out;
1436
1437 if (m.kmod)
1438 ret = maps__set_module_path(maps, path, &m);
1439
1440 zfree(&m.name);
1441
1442 if (ret)
1443 goto out;
1444 }
1445 }
1446
1447 out:
1448 closedir(dir);
1449 return ret;
1450 }
1451
machine__set_modules_path(struct machine * machine)1452 static int machine__set_modules_path(struct machine *machine)
1453 {
1454 char *version;
1455 char modules_path[PATH_MAX];
1456
1457 version = get_kernel_version(machine->root_dir);
1458 if (!version)
1459 return -1;
1460
1461 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1462 machine->root_dir, version);
1463 free(version);
1464
1465 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1466 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1467 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1468 u64 *size __maybe_unused,
1469 const char *name __maybe_unused)
1470 {
1471 return 0;
1472 }
1473
machine__create_module(void * arg,const char * name,u64 start,u64 size)1474 static int machine__create_module(void *arg, const char *name, u64 start,
1475 u64 size)
1476 {
1477 struct machine *machine = arg;
1478 struct map *map;
1479
1480 if (arch__fix_module_text_start(&start, &size, name) < 0)
1481 return -1;
1482
1483 map = machine__addnew_module_map(machine, start, name);
1484 if (map == NULL)
1485 return -1;
1486 map->end = start + size;
1487
1488 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1489
1490 return 0;
1491 }
1492
machine__create_modules(struct machine * machine)1493 static int machine__create_modules(struct machine *machine)
1494 {
1495 const char *modules;
1496 char path[PATH_MAX];
1497
1498 if (machine__is_default_guest(machine)) {
1499 modules = symbol_conf.default_guest_modules;
1500 } else {
1501 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1502 modules = path;
1503 }
1504
1505 if (symbol__restricted_filename(modules, "/proc/modules"))
1506 return -1;
1507
1508 if (modules__parse(modules, machine, machine__create_module))
1509 return -1;
1510
1511 if (!machine__set_modules_path(machine))
1512 return 0;
1513
1514 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1515
1516 return 0;
1517 }
1518
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1519 static void machine__set_kernel_mmap(struct machine *machine,
1520 u64 start, u64 end)
1521 {
1522 machine->vmlinux_map->start = start;
1523 machine->vmlinux_map->end = end;
1524 /*
1525 * Be a bit paranoid here, some perf.data file came with
1526 * a zero sized synthesized MMAP event for the kernel.
1527 */
1528 if (start == 0 && end == 0)
1529 machine->vmlinux_map->end = ~0ULL;
1530 }
1531
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1532 static void machine__update_kernel_mmap(struct machine *machine,
1533 u64 start, u64 end)
1534 {
1535 struct map *map = machine__kernel_map(machine);
1536
1537 map__get(map);
1538 maps__remove(&machine->kmaps, map);
1539
1540 machine__set_kernel_mmap(machine, start, end);
1541
1542 maps__insert(&machine->kmaps, map);
1543 map__put(map);
1544 }
1545
machine__create_kernel_maps(struct machine * machine)1546 int machine__create_kernel_maps(struct machine *machine)
1547 {
1548 struct dso *kernel = machine__get_kernel(machine);
1549 const char *name = NULL;
1550 struct map *map;
1551 u64 start = 0, end = ~0ULL;
1552 int ret;
1553
1554 if (kernel == NULL)
1555 return -1;
1556
1557 ret = __machine__create_kernel_maps(machine, kernel);
1558 if (ret < 0)
1559 goto out_put;
1560
1561 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1562 if (machine__is_host(machine))
1563 pr_debug("Problems creating module maps, "
1564 "continuing anyway...\n");
1565 else
1566 pr_debug("Problems creating module maps for guest %d, "
1567 "continuing anyway...\n", machine->pid);
1568 }
1569
1570 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1571 if (name &&
1572 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1573 machine__destroy_kernel_maps(machine);
1574 ret = -1;
1575 goto out_put;
1576 }
1577
1578 /*
1579 * we have a real start address now, so re-order the kmaps
1580 * assume it's the last in the kmaps
1581 */
1582 machine__update_kernel_mmap(machine, start, end);
1583 }
1584
1585 if (machine__create_extra_kernel_maps(machine, kernel))
1586 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1587
1588 if (end == ~0ULL) {
1589 /* update end address of the kernel map using adjacent module address */
1590 map = map__next(machine__kernel_map(machine));
1591 if (map)
1592 machine__set_kernel_mmap(machine, start, map->start);
1593 }
1594
1595 out_put:
1596 dso__put(kernel);
1597 return ret;
1598 }
1599
machine__uses_kcore(struct machine * machine)1600 static bool machine__uses_kcore(struct machine *machine)
1601 {
1602 struct dso *dso;
1603
1604 list_for_each_entry(dso, &machine->dsos.head, node) {
1605 if (dso__is_kcore(dso))
1606 return true;
1607 }
1608
1609 return false;
1610 }
1611
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1612 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1613 struct extra_kernel_map *xm)
1614 {
1615 return machine__is(machine, "x86_64") &&
1616 is_entry_trampoline(xm->name);
1617 }
1618
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1619 static int machine__process_extra_kernel_map(struct machine *machine,
1620 struct extra_kernel_map *xm)
1621 {
1622 struct dso *kernel = machine__kernel_dso(machine);
1623
1624 if (kernel == NULL)
1625 return -1;
1626
1627 return machine__create_extra_kernel_map(machine, kernel, xm);
1628 }
1629
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1630 static int machine__process_kernel_mmap_event(struct machine *machine,
1631 struct extra_kernel_map *xm,
1632 struct build_id *bid)
1633 {
1634 struct map *map;
1635 enum dso_space_type dso_space;
1636 bool is_kernel_mmap;
1637
1638 /* If we have maps from kcore then we do not need or want any others */
1639 if (machine__uses_kcore(machine))
1640 return 0;
1641
1642 if (machine__is_host(machine))
1643 dso_space = DSO_SPACE__KERNEL;
1644 else
1645 dso_space = DSO_SPACE__KERNEL_GUEST;
1646
1647 is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1648 strlen(machine->mmap_name) - 1) == 0;
1649 if (xm->name[0] == '/' ||
1650 (!is_kernel_mmap && xm->name[0] == '[')) {
1651 map = machine__addnew_module_map(machine, xm->start,
1652 xm->name);
1653 if (map == NULL)
1654 goto out_problem;
1655
1656 map->end = map->start + xm->end - xm->start;
1657
1658 if (build_id__is_defined(bid))
1659 dso__set_build_id(map->dso, bid);
1660
1661 } else if (is_kernel_mmap) {
1662 const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1663 /*
1664 * Should be there already, from the build-id table in
1665 * the header.
1666 */
1667 struct dso *kernel = NULL;
1668 struct dso *dso;
1669
1670 down_read(&machine->dsos.lock);
1671
1672 list_for_each_entry(dso, &machine->dsos.head, node) {
1673
1674 /*
1675 * The cpumode passed to is_kernel_module is not the
1676 * cpumode of *this* event. If we insist on passing
1677 * correct cpumode to is_kernel_module, we should
1678 * record the cpumode when we adding this dso to the
1679 * linked list.
1680 *
1681 * However we don't really need passing correct
1682 * cpumode. We know the correct cpumode must be kernel
1683 * mode (if not, we should not link it onto kernel_dsos
1684 * list).
1685 *
1686 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1687 * is_kernel_module() treats it as a kernel cpumode.
1688 */
1689
1690 if (!dso->kernel ||
1691 is_kernel_module(dso->long_name,
1692 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1693 continue;
1694
1695
1696 kernel = dso;
1697 break;
1698 }
1699
1700 up_read(&machine->dsos.lock);
1701
1702 if (kernel == NULL)
1703 kernel = machine__findnew_dso(machine, machine->mmap_name);
1704 if (kernel == NULL)
1705 goto out_problem;
1706
1707 kernel->kernel = dso_space;
1708 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1709 dso__put(kernel);
1710 goto out_problem;
1711 }
1712
1713 if (strstr(kernel->long_name, "vmlinux"))
1714 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1715
1716 machine__update_kernel_mmap(machine, xm->start, xm->end);
1717
1718 if (build_id__is_defined(bid))
1719 dso__set_build_id(kernel, bid);
1720
1721 /*
1722 * Avoid using a zero address (kptr_restrict) for the ref reloc
1723 * symbol. Effectively having zero here means that at record
1724 * time /proc/sys/kernel/kptr_restrict was non zero.
1725 */
1726 if (xm->pgoff != 0) {
1727 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1728 symbol_name,
1729 xm->pgoff);
1730 }
1731
1732 if (machine__is_default_guest(machine)) {
1733 /*
1734 * preload dso of guest kernel and modules
1735 */
1736 dso__load(kernel, machine__kernel_map(machine));
1737 }
1738 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1739 return machine__process_extra_kernel_map(machine, xm);
1740 }
1741 return 0;
1742 out_problem:
1743 return -1;
1744 }
1745
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1746 int machine__process_mmap2_event(struct machine *machine,
1747 union perf_event *event,
1748 struct perf_sample *sample)
1749 {
1750 struct thread *thread;
1751 struct map *map;
1752 struct dso_id dso_id = {
1753 .maj = event->mmap2.maj,
1754 .min = event->mmap2.min,
1755 .ino = event->mmap2.ino,
1756 .ino_generation = event->mmap2.ino_generation,
1757 };
1758 struct build_id __bid, *bid = NULL;
1759 int ret = 0;
1760
1761 if (dump_trace)
1762 perf_event__fprintf_mmap2(event, stdout);
1763
1764 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1765 bid = &__bid;
1766 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1767 }
1768
1769 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1770 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1771 struct extra_kernel_map xm = {
1772 .start = event->mmap2.start,
1773 .end = event->mmap2.start + event->mmap2.len,
1774 .pgoff = event->mmap2.pgoff,
1775 };
1776
1777 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1778 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1779 if (ret < 0)
1780 goto out_problem;
1781 return 0;
1782 }
1783
1784 thread = machine__findnew_thread(machine, event->mmap2.pid,
1785 event->mmap2.tid);
1786 if (thread == NULL)
1787 goto out_problem;
1788
1789 map = map__new(machine, event->mmap2.start,
1790 event->mmap2.len, event->mmap2.pgoff,
1791 &dso_id, event->mmap2.prot,
1792 event->mmap2.flags, bid,
1793 event->mmap2.filename, thread);
1794
1795 if (map == NULL)
1796 goto out_problem_map;
1797
1798 ret = thread__insert_map(thread, map);
1799 if (ret)
1800 goto out_problem_insert;
1801
1802 thread__put(thread);
1803 map__put(map);
1804 return 0;
1805
1806 out_problem_insert:
1807 map__put(map);
1808 out_problem_map:
1809 thread__put(thread);
1810 out_problem:
1811 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1812 return 0;
1813 }
1814
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1815 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1816 struct perf_sample *sample)
1817 {
1818 struct thread *thread;
1819 struct map *map;
1820 u32 prot = 0;
1821 int ret = 0;
1822
1823 if (dump_trace)
1824 perf_event__fprintf_mmap(event, stdout);
1825
1826 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1827 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1828 struct extra_kernel_map xm = {
1829 .start = event->mmap.start,
1830 .end = event->mmap.start + event->mmap.len,
1831 .pgoff = event->mmap.pgoff,
1832 };
1833
1834 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1835 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1836 if (ret < 0)
1837 goto out_problem;
1838 return 0;
1839 }
1840
1841 thread = machine__findnew_thread(machine, event->mmap.pid,
1842 event->mmap.tid);
1843 if (thread == NULL)
1844 goto out_problem;
1845
1846 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1847 prot = PROT_EXEC;
1848
1849 map = map__new(machine, event->mmap.start,
1850 event->mmap.len, event->mmap.pgoff,
1851 NULL, prot, 0, NULL, event->mmap.filename, thread);
1852
1853 if (map == NULL)
1854 goto out_problem_map;
1855
1856 ret = thread__insert_map(thread, map);
1857 if (ret)
1858 goto out_problem_insert;
1859
1860 thread__put(thread);
1861 map__put(map);
1862 return 0;
1863
1864 out_problem_insert:
1865 map__put(map);
1866 out_problem_map:
1867 thread__put(thread);
1868 out_problem:
1869 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1870 return 0;
1871 }
1872
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1873 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1874 {
1875 struct threads *threads = machine__threads(machine, th->tid);
1876
1877 if (threads->last_match == th)
1878 threads__set_last_match(threads, NULL);
1879
1880 if (lock)
1881 down_write(&threads->lock);
1882
1883 BUG_ON(refcount_read(&th->refcnt) == 0);
1884
1885 rb_erase_cached(&th->rb_node, &threads->entries);
1886 RB_CLEAR_NODE(&th->rb_node);
1887 --threads->nr;
1888 /*
1889 * Move it first to the dead_threads list, then drop the reference,
1890 * if this is the last reference, then the thread__delete destructor
1891 * will be called and we will remove it from the dead_threads list.
1892 */
1893 list_add_tail(&th->node, &threads->dead);
1894
1895 /*
1896 * We need to do the put here because if this is the last refcount,
1897 * then we will be touching the threads->dead head when removing the
1898 * thread.
1899 */
1900 thread__put(th);
1901
1902 if (lock)
1903 up_write(&threads->lock);
1904 }
1905
machine__remove_thread(struct machine * machine,struct thread * th)1906 void machine__remove_thread(struct machine *machine, struct thread *th)
1907 {
1908 return __machine__remove_thread(machine, th, true);
1909 }
1910
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1911 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1912 struct perf_sample *sample)
1913 {
1914 struct thread *thread = machine__find_thread(machine,
1915 event->fork.pid,
1916 event->fork.tid);
1917 struct thread *parent = machine__findnew_thread(machine,
1918 event->fork.ppid,
1919 event->fork.ptid);
1920 bool do_maps_clone = true;
1921 int err = 0;
1922
1923 if (dump_trace)
1924 perf_event__fprintf_task(event, stdout);
1925
1926 /*
1927 * There may be an existing thread that is not actually the parent,
1928 * either because we are processing events out of order, or because the
1929 * (fork) event that would have removed the thread was lost. Assume the
1930 * latter case and continue on as best we can.
1931 */
1932 if (parent->pid_ != (pid_t)event->fork.ppid) {
1933 dump_printf("removing erroneous parent thread %d/%d\n",
1934 parent->pid_, parent->tid);
1935 machine__remove_thread(machine, parent);
1936 thread__put(parent);
1937 parent = machine__findnew_thread(machine, event->fork.ppid,
1938 event->fork.ptid);
1939 }
1940
1941 /* if a thread currently exists for the thread id remove it */
1942 if (thread != NULL) {
1943 machine__remove_thread(machine, thread);
1944 thread__put(thread);
1945 }
1946
1947 thread = machine__findnew_thread(machine, event->fork.pid,
1948 event->fork.tid);
1949 /*
1950 * When synthesizing FORK events, we are trying to create thread
1951 * objects for the already running tasks on the machine.
1952 *
1953 * Normally, for a kernel FORK event, we want to clone the parent's
1954 * maps because that is what the kernel just did.
1955 *
1956 * But when synthesizing, this should not be done. If we do, we end up
1957 * with overlapping maps as we process the synthesized MMAP2 events that
1958 * get delivered shortly thereafter.
1959 *
1960 * Use the FORK event misc flags in an internal way to signal this
1961 * situation, so we can elide the map clone when appropriate.
1962 */
1963 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1964 do_maps_clone = false;
1965
1966 if (thread == NULL || parent == NULL ||
1967 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1968 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1969 err = -1;
1970 }
1971 thread__put(thread);
1972 thread__put(parent);
1973
1974 return err;
1975 }
1976
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1977 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1978 struct perf_sample *sample __maybe_unused)
1979 {
1980 struct thread *thread = machine__find_thread(machine,
1981 event->fork.pid,
1982 event->fork.tid);
1983
1984 if (dump_trace)
1985 perf_event__fprintf_task(event, stdout);
1986
1987 if (thread != NULL) {
1988 thread__exited(thread);
1989 thread__put(thread);
1990 }
1991
1992 return 0;
1993 }
1994
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1995 int machine__process_event(struct machine *machine, union perf_event *event,
1996 struct perf_sample *sample)
1997 {
1998 int ret;
1999
2000 switch (event->header.type) {
2001 case PERF_RECORD_COMM:
2002 ret = machine__process_comm_event(machine, event, sample); break;
2003 case PERF_RECORD_MMAP:
2004 ret = machine__process_mmap_event(machine, event, sample); break;
2005 case PERF_RECORD_NAMESPACES:
2006 ret = machine__process_namespaces_event(machine, event, sample); break;
2007 case PERF_RECORD_CGROUP:
2008 ret = machine__process_cgroup_event(machine, event, sample); break;
2009 case PERF_RECORD_MMAP2:
2010 ret = machine__process_mmap2_event(machine, event, sample); break;
2011 case PERF_RECORD_FORK:
2012 ret = machine__process_fork_event(machine, event, sample); break;
2013 case PERF_RECORD_EXIT:
2014 ret = machine__process_exit_event(machine, event, sample); break;
2015 case PERF_RECORD_LOST:
2016 ret = machine__process_lost_event(machine, event, sample); break;
2017 case PERF_RECORD_AUX:
2018 ret = machine__process_aux_event(machine, event); break;
2019 case PERF_RECORD_ITRACE_START:
2020 ret = machine__process_itrace_start_event(machine, event); break;
2021 case PERF_RECORD_LOST_SAMPLES:
2022 ret = machine__process_lost_samples_event(machine, event, sample); break;
2023 case PERF_RECORD_SWITCH:
2024 case PERF_RECORD_SWITCH_CPU_WIDE:
2025 ret = machine__process_switch_event(machine, event); break;
2026 case PERF_RECORD_KSYMBOL:
2027 ret = machine__process_ksymbol(machine, event, sample); break;
2028 case PERF_RECORD_BPF_EVENT:
2029 ret = machine__process_bpf(machine, event, sample); break;
2030 case PERF_RECORD_TEXT_POKE:
2031 ret = machine__process_text_poke(machine, event, sample); break;
2032 default:
2033 ret = -1;
2034 break;
2035 }
2036
2037 return ret;
2038 }
2039
symbol__match_regex(struct symbol * sym,regex_t * regex)2040 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2041 {
2042 if (!regexec(regex, sym->name, 0, NULL, 0))
2043 return true;
2044 return false;
2045 }
2046
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2047 static void ip__resolve_ams(struct thread *thread,
2048 struct addr_map_symbol *ams,
2049 u64 ip)
2050 {
2051 struct addr_location al;
2052
2053 memset(&al, 0, sizeof(al));
2054 /*
2055 * We cannot use the header.misc hint to determine whether a
2056 * branch stack address is user, kernel, guest, hypervisor.
2057 * Branches may straddle the kernel/user/hypervisor boundaries.
2058 * Thus, we have to try consecutively until we find a match
2059 * or else, the symbol is unknown
2060 */
2061 thread__find_cpumode_addr_location(thread, ip, &al);
2062
2063 ams->addr = ip;
2064 ams->al_addr = al.addr;
2065 ams->ms.maps = al.maps;
2066 ams->ms.sym = al.sym;
2067 ams->ms.map = al.map;
2068 ams->phys_addr = 0;
2069 ams->data_page_size = 0;
2070 }
2071
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2072 static void ip__resolve_data(struct thread *thread,
2073 u8 m, struct addr_map_symbol *ams,
2074 u64 addr, u64 phys_addr, u64 daddr_page_size)
2075 {
2076 struct addr_location al;
2077
2078 memset(&al, 0, sizeof(al));
2079
2080 thread__find_symbol(thread, m, addr, &al);
2081
2082 ams->addr = addr;
2083 ams->al_addr = al.addr;
2084 ams->ms.maps = al.maps;
2085 ams->ms.sym = al.sym;
2086 ams->ms.map = al.map;
2087 ams->phys_addr = phys_addr;
2088 ams->data_page_size = daddr_page_size;
2089 }
2090
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2091 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2092 struct addr_location *al)
2093 {
2094 struct mem_info *mi = mem_info__new();
2095
2096 if (!mi)
2097 return NULL;
2098
2099 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2100 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2101 sample->addr, sample->phys_addr,
2102 sample->data_page_size);
2103 mi->data_src.val = sample->data_src;
2104
2105 return mi;
2106 }
2107
callchain_srcline(struct map_symbol * ms,u64 ip)2108 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2109 {
2110 struct map *map = ms->map;
2111 char *srcline = NULL;
2112
2113 if (!map || callchain_param.key == CCKEY_FUNCTION)
2114 return srcline;
2115
2116 srcline = srcline__tree_find(&map->dso->srclines, ip);
2117 if (!srcline) {
2118 bool show_sym = false;
2119 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2120
2121 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2122 ms->sym, show_sym, show_addr, ip);
2123 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2124 }
2125
2126 return srcline;
2127 }
2128
2129 struct iterations {
2130 int nr_loop_iter;
2131 u64 cycles;
2132 };
2133
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2134 static int add_callchain_ip(struct thread *thread,
2135 struct callchain_cursor *cursor,
2136 struct symbol **parent,
2137 struct addr_location *root_al,
2138 u8 *cpumode,
2139 u64 ip,
2140 bool branch,
2141 struct branch_flags *flags,
2142 struct iterations *iter,
2143 u64 branch_from)
2144 {
2145 struct map_symbol ms;
2146 struct addr_location al;
2147 int nr_loop_iter = 0;
2148 u64 iter_cycles = 0;
2149 const char *srcline = NULL;
2150
2151 al.filtered = 0;
2152 al.sym = NULL;
2153 al.srcline = NULL;
2154 if (!cpumode) {
2155 thread__find_cpumode_addr_location(thread, ip, &al);
2156 } else {
2157 if (ip >= PERF_CONTEXT_MAX) {
2158 switch (ip) {
2159 case PERF_CONTEXT_HV:
2160 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2161 break;
2162 case PERF_CONTEXT_KERNEL:
2163 *cpumode = PERF_RECORD_MISC_KERNEL;
2164 break;
2165 case PERF_CONTEXT_USER:
2166 *cpumode = PERF_RECORD_MISC_USER;
2167 break;
2168 default:
2169 pr_debug("invalid callchain context: "
2170 "%"PRId64"\n", (s64) ip);
2171 /*
2172 * It seems the callchain is corrupted.
2173 * Discard all.
2174 */
2175 callchain_cursor_reset(cursor);
2176 return 1;
2177 }
2178 return 0;
2179 }
2180 thread__find_symbol(thread, *cpumode, ip, &al);
2181 }
2182
2183 if (al.sym != NULL) {
2184 if (perf_hpp_list.parent && !*parent &&
2185 symbol__match_regex(al.sym, &parent_regex))
2186 *parent = al.sym;
2187 else if (have_ignore_callees && root_al &&
2188 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2189 /* Treat this symbol as the root,
2190 forgetting its callees. */
2191 *root_al = al;
2192 callchain_cursor_reset(cursor);
2193 }
2194 }
2195
2196 if (symbol_conf.hide_unresolved && al.sym == NULL)
2197 return 0;
2198
2199 if (iter) {
2200 nr_loop_iter = iter->nr_loop_iter;
2201 iter_cycles = iter->cycles;
2202 }
2203
2204 ms.maps = al.maps;
2205 ms.map = al.map;
2206 ms.sym = al.sym;
2207 srcline = callchain_srcline(&ms, al.addr);
2208 return callchain_cursor_append(cursor, ip, &ms,
2209 branch, flags, nr_loop_iter,
2210 iter_cycles, branch_from, srcline);
2211 }
2212
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2213 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2214 struct addr_location *al)
2215 {
2216 unsigned int i;
2217 const struct branch_stack *bs = sample->branch_stack;
2218 struct branch_entry *entries = perf_sample__branch_entries(sample);
2219 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2220
2221 if (!bi)
2222 return NULL;
2223
2224 for (i = 0; i < bs->nr; i++) {
2225 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2226 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2227 bi[i].flags = entries[i].flags;
2228 }
2229 return bi;
2230 }
2231
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2232 static void save_iterations(struct iterations *iter,
2233 struct branch_entry *be, int nr)
2234 {
2235 int i;
2236
2237 iter->nr_loop_iter++;
2238 iter->cycles = 0;
2239
2240 for (i = 0; i < nr; i++)
2241 iter->cycles += be[i].flags.cycles;
2242 }
2243
2244 #define CHASHSZ 127
2245 #define CHASHBITS 7
2246 #define NO_ENTRY 0xff
2247
2248 #define PERF_MAX_BRANCH_DEPTH 127
2249
2250 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2251 static int remove_loops(struct branch_entry *l, int nr,
2252 struct iterations *iter)
2253 {
2254 int i, j, off;
2255 unsigned char chash[CHASHSZ];
2256
2257 memset(chash, NO_ENTRY, sizeof(chash));
2258
2259 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2260
2261 for (i = 0; i < nr; i++) {
2262 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2263
2264 /* no collision handling for now */
2265 if (chash[h] == NO_ENTRY) {
2266 chash[h] = i;
2267 } else if (l[chash[h]].from == l[i].from) {
2268 bool is_loop = true;
2269 /* check if it is a real loop */
2270 off = 0;
2271 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2272 if (l[j].from != l[i + off].from) {
2273 is_loop = false;
2274 break;
2275 }
2276 if (is_loop) {
2277 j = nr - (i + off);
2278 if (j > 0) {
2279 save_iterations(iter + i + off,
2280 l + i, off);
2281
2282 memmove(iter + i, iter + i + off,
2283 j * sizeof(*iter));
2284
2285 memmove(l + i, l + i + off,
2286 j * sizeof(*l));
2287 }
2288
2289 nr -= off;
2290 }
2291 }
2292 }
2293 return nr;
2294 }
2295
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2296 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2297 struct callchain_cursor *cursor,
2298 struct perf_sample *sample,
2299 struct symbol **parent,
2300 struct addr_location *root_al,
2301 u64 branch_from,
2302 bool callee, int end)
2303 {
2304 struct ip_callchain *chain = sample->callchain;
2305 u8 cpumode = PERF_RECORD_MISC_USER;
2306 int err, i;
2307
2308 if (callee) {
2309 for (i = 0; i < end + 1; i++) {
2310 err = add_callchain_ip(thread, cursor, parent,
2311 root_al, &cpumode, chain->ips[i],
2312 false, NULL, NULL, branch_from);
2313 if (err)
2314 return err;
2315 }
2316 return 0;
2317 }
2318
2319 for (i = end; i >= 0; i--) {
2320 err = add_callchain_ip(thread, cursor, parent,
2321 root_al, &cpumode, chain->ips[i],
2322 false, NULL, NULL, branch_from);
2323 if (err)
2324 return err;
2325 }
2326
2327 return 0;
2328 }
2329
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2330 static void save_lbr_cursor_node(struct thread *thread,
2331 struct callchain_cursor *cursor,
2332 int idx)
2333 {
2334 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2335
2336 if (!lbr_stitch)
2337 return;
2338
2339 if (cursor->pos == cursor->nr) {
2340 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2341 return;
2342 }
2343
2344 if (!cursor->curr)
2345 cursor->curr = cursor->first;
2346 else
2347 cursor->curr = cursor->curr->next;
2348 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2349 sizeof(struct callchain_cursor_node));
2350
2351 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2352 cursor->pos++;
2353 }
2354
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2355 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2356 struct callchain_cursor *cursor,
2357 struct perf_sample *sample,
2358 struct symbol **parent,
2359 struct addr_location *root_al,
2360 u64 *branch_from,
2361 bool callee)
2362 {
2363 struct branch_stack *lbr_stack = sample->branch_stack;
2364 struct branch_entry *entries = perf_sample__branch_entries(sample);
2365 u8 cpumode = PERF_RECORD_MISC_USER;
2366 int lbr_nr = lbr_stack->nr;
2367 struct branch_flags *flags;
2368 int err, i;
2369 u64 ip;
2370
2371 /*
2372 * The curr and pos are not used in writing session. They are cleared
2373 * in callchain_cursor_commit() when the writing session is closed.
2374 * Using curr and pos to track the current cursor node.
2375 */
2376 if (thread->lbr_stitch) {
2377 cursor->curr = NULL;
2378 cursor->pos = cursor->nr;
2379 if (cursor->nr) {
2380 cursor->curr = cursor->first;
2381 for (i = 0; i < (int)(cursor->nr - 1); i++)
2382 cursor->curr = cursor->curr->next;
2383 }
2384 }
2385
2386 if (callee) {
2387 /* Add LBR ip from first entries.to */
2388 ip = entries[0].to;
2389 flags = &entries[0].flags;
2390 *branch_from = entries[0].from;
2391 err = add_callchain_ip(thread, cursor, parent,
2392 root_al, &cpumode, ip,
2393 true, flags, NULL,
2394 *branch_from);
2395 if (err)
2396 return err;
2397
2398 /*
2399 * The number of cursor node increases.
2400 * Move the current cursor node.
2401 * But does not need to save current cursor node for entry 0.
2402 * It's impossible to stitch the whole LBRs of previous sample.
2403 */
2404 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2405 if (!cursor->curr)
2406 cursor->curr = cursor->first;
2407 else
2408 cursor->curr = cursor->curr->next;
2409 cursor->pos++;
2410 }
2411
2412 /* Add LBR ip from entries.from one by one. */
2413 for (i = 0; i < lbr_nr; i++) {
2414 ip = entries[i].from;
2415 flags = &entries[i].flags;
2416 err = add_callchain_ip(thread, cursor, parent,
2417 root_al, &cpumode, ip,
2418 true, flags, NULL,
2419 *branch_from);
2420 if (err)
2421 return err;
2422 save_lbr_cursor_node(thread, cursor, i);
2423 }
2424 return 0;
2425 }
2426
2427 /* Add LBR ip from entries.from one by one. */
2428 for (i = lbr_nr - 1; i >= 0; i--) {
2429 ip = entries[i].from;
2430 flags = &entries[i].flags;
2431 err = add_callchain_ip(thread, cursor, parent,
2432 root_al, &cpumode, ip,
2433 true, flags, NULL,
2434 *branch_from);
2435 if (err)
2436 return err;
2437 save_lbr_cursor_node(thread, cursor, i);
2438 }
2439
2440 if (lbr_nr > 0) {
2441 /* Add LBR ip from first entries.to */
2442 ip = entries[0].to;
2443 flags = &entries[0].flags;
2444 *branch_from = entries[0].from;
2445 err = add_callchain_ip(thread, cursor, parent,
2446 root_al, &cpumode, ip,
2447 true, flags, NULL,
2448 *branch_from);
2449 if (err)
2450 return err;
2451 }
2452
2453 return 0;
2454 }
2455
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2456 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2457 struct callchain_cursor *cursor)
2458 {
2459 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2460 struct callchain_cursor_node *cnode;
2461 struct stitch_list *stitch_node;
2462 int err;
2463
2464 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2465 cnode = &stitch_node->cursor;
2466
2467 err = callchain_cursor_append(cursor, cnode->ip,
2468 &cnode->ms,
2469 cnode->branch,
2470 &cnode->branch_flags,
2471 cnode->nr_loop_iter,
2472 cnode->iter_cycles,
2473 cnode->branch_from,
2474 cnode->srcline);
2475 if (err)
2476 return err;
2477 }
2478 return 0;
2479 }
2480
get_stitch_node(struct thread * thread)2481 static struct stitch_list *get_stitch_node(struct thread *thread)
2482 {
2483 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2484 struct stitch_list *stitch_node;
2485
2486 if (!list_empty(&lbr_stitch->free_lists)) {
2487 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2488 struct stitch_list, node);
2489 list_del(&stitch_node->node);
2490
2491 return stitch_node;
2492 }
2493
2494 return malloc(sizeof(struct stitch_list));
2495 }
2496
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2497 static bool has_stitched_lbr(struct thread *thread,
2498 struct perf_sample *cur,
2499 struct perf_sample *prev,
2500 unsigned int max_lbr,
2501 bool callee)
2502 {
2503 struct branch_stack *cur_stack = cur->branch_stack;
2504 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2505 struct branch_stack *prev_stack = prev->branch_stack;
2506 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2507 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2508 int i, j, nr_identical_branches = 0;
2509 struct stitch_list *stitch_node;
2510 u64 cur_base, distance;
2511
2512 if (!cur_stack || !prev_stack)
2513 return false;
2514
2515 /* Find the physical index of the base-of-stack for current sample. */
2516 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2517
2518 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2519 (max_lbr + prev_stack->hw_idx - cur_base);
2520 /* Previous sample has shorter stack. Nothing can be stitched. */
2521 if (distance + 1 > prev_stack->nr)
2522 return false;
2523
2524 /*
2525 * Check if there are identical LBRs between two samples.
2526 * Identical LBRs must have same from, to and flags values. Also,
2527 * they have to be saved in the same LBR registers (same physical
2528 * index).
2529 *
2530 * Starts from the base-of-stack of current sample.
2531 */
2532 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2533 if ((prev_entries[i].from != cur_entries[j].from) ||
2534 (prev_entries[i].to != cur_entries[j].to) ||
2535 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2536 break;
2537 nr_identical_branches++;
2538 }
2539
2540 if (!nr_identical_branches)
2541 return false;
2542
2543 /*
2544 * Save the LBRs between the base-of-stack of previous sample
2545 * and the base-of-stack of current sample into lbr_stitch->lists.
2546 * These LBRs will be stitched later.
2547 */
2548 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2549
2550 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2551 continue;
2552
2553 stitch_node = get_stitch_node(thread);
2554 if (!stitch_node)
2555 return false;
2556
2557 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2558 sizeof(struct callchain_cursor_node));
2559
2560 if (callee)
2561 list_add(&stitch_node->node, &lbr_stitch->lists);
2562 else
2563 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2564 }
2565
2566 return true;
2567 }
2568
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2569 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2570 {
2571 if (thread->lbr_stitch)
2572 return true;
2573
2574 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2575 if (!thread->lbr_stitch)
2576 goto err;
2577
2578 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2579 if (!thread->lbr_stitch->prev_lbr_cursor)
2580 goto free_lbr_stitch;
2581
2582 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2583 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2584
2585 return true;
2586
2587 free_lbr_stitch:
2588 zfree(&thread->lbr_stitch);
2589 err:
2590 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2591 thread->lbr_stitch_enable = false;
2592 return false;
2593 }
2594
2595 /*
2596 * Resolve LBR callstack chain sample
2597 * Return:
2598 * 1 on success get LBR callchain information
2599 * 0 no available LBR callchain information, should try fp
2600 * negative error code on other errors.
2601 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2602 static int resolve_lbr_callchain_sample(struct thread *thread,
2603 struct callchain_cursor *cursor,
2604 struct perf_sample *sample,
2605 struct symbol **parent,
2606 struct addr_location *root_al,
2607 int max_stack,
2608 unsigned int max_lbr)
2609 {
2610 bool callee = (callchain_param.order == ORDER_CALLEE);
2611 struct ip_callchain *chain = sample->callchain;
2612 int chain_nr = min(max_stack, (int)chain->nr), i;
2613 struct lbr_stitch *lbr_stitch;
2614 bool stitched_lbr = false;
2615 u64 branch_from = 0;
2616 int err;
2617
2618 for (i = 0; i < chain_nr; i++) {
2619 if (chain->ips[i] == PERF_CONTEXT_USER)
2620 break;
2621 }
2622
2623 /* LBR only affects the user callchain */
2624 if (i == chain_nr)
2625 return 0;
2626
2627 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2628 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2629 lbr_stitch = thread->lbr_stitch;
2630
2631 stitched_lbr = has_stitched_lbr(thread, sample,
2632 &lbr_stitch->prev_sample,
2633 max_lbr, callee);
2634
2635 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2636 list_replace_init(&lbr_stitch->lists,
2637 &lbr_stitch->free_lists);
2638 }
2639 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2640 }
2641
2642 if (callee) {
2643 /* Add kernel ip */
2644 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2645 parent, root_al, branch_from,
2646 true, i);
2647 if (err)
2648 goto error;
2649
2650 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2651 root_al, &branch_from, true);
2652 if (err)
2653 goto error;
2654
2655 if (stitched_lbr) {
2656 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2657 if (err)
2658 goto error;
2659 }
2660
2661 } else {
2662 if (stitched_lbr) {
2663 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2664 if (err)
2665 goto error;
2666 }
2667 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2668 root_al, &branch_from, false);
2669 if (err)
2670 goto error;
2671
2672 /* Add kernel ip */
2673 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2674 parent, root_al, branch_from,
2675 false, i);
2676 if (err)
2677 goto error;
2678 }
2679 return 1;
2680
2681 error:
2682 return (err < 0) ? err : 0;
2683 }
2684
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2685 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2686 struct callchain_cursor *cursor,
2687 struct symbol **parent,
2688 struct addr_location *root_al,
2689 u8 *cpumode, int ent)
2690 {
2691 int err = 0;
2692
2693 while (--ent >= 0) {
2694 u64 ip = chain->ips[ent];
2695
2696 if (ip >= PERF_CONTEXT_MAX) {
2697 err = add_callchain_ip(thread, cursor, parent,
2698 root_al, cpumode, ip,
2699 false, NULL, NULL, 0);
2700 break;
2701 }
2702 }
2703 return err;
2704 }
2705
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2706 static int thread__resolve_callchain_sample(struct thread *thread,
2707 struct callchain_cursor *cursor,
2708 struct evsel *evsel,
2709 struct perf_sample *sample,
2710 struct symbol **parent,
2711 struct addr_location *root_al,
2712 int max_stack)
2713 {
2714 struct branch_stack *branch = sample->branch_stack;
2715 struct branch_entry *entries = perf_sample__branch_entries(sample);
2716 struct ip_callchain *chain = sample->callchain;
2717 int chain_nr = 0;
2718 u8 cpumode = PERF_RECORD_MISC_USER;
2719 int i, j, err, nr_entries;
2720 int skip_idx = -1;
2721 int first_call = 0;
2722
2723 if (chain)
2724 chain_nr = chain->nr;
2725
2726 if (evsel__has_branch_callstack(evsel)) {
2727 struct perf_env *env = evsel__env(evsel);
2728
2729 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2730 root_al, max_stack,
2731 !env ? 0 : env->max_branches);
2732 if (err)
2733 return (err < 0) ? err : 0;
2734 }
2735
2736 /*
2737 * Based on DWARF debug information, some architectures skip
2738 * a callchain entry saved by the kernel.
2739 */
2740 skip_idx = arch_skip_callchain_idx(thread, chain);
2741
2742 /*
2743 * Add branches to call stack for easier browsing. This gives
2744 * more context for a sample than just the callers.
2745 *
2746 * This uses individual histograms of paths compared to the
2747 * aggregated histograms the normal LBR mode uses.
2748 *
2749 * Limitations for now:
2750 * - No extra filters
2751 * - No annotations (should annotate somehow)
2752 */
2753
2754 if (branch && callchain_param.branch_callstack) {
2755 int nr = min(max_stack, (int)branch->nr);
2756 struct branch_entry be[nr];
2757 struct iterations iter[nr];
2758
2759 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2760 pr_warning("corrupted branch chain. skipping...\n");
2761 goto check_calls;
2762 }
2763
2764 for (i = 0; i < nr; i++) {
2765 if (callchain_param.order == ORDER_CALLEE) {
2766 be[i] = entries[i];
2767
2768 if (chain == NULL)
2769 continue;
2770
2771 /*
2772 * Check for overlap into the callchain.
2773 * The return address is one off compared to
2774 * the branch entry. To adjust for this
2775 * assume the calling instruction is not longer
2776 * than 8 bytes.
2777 */
2778 if (i == skip_idx ||
2779 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2780 first_call++;
2781 else if (be[i].from < chain->ips[first_call] &&
2782 be[i].from >= chain->ips[first_call] - 8)
2783 first_call++;
2784 } else
2785 be[i] = entries[branch->nr - i - 1];
2786 }
2787
2788 memset(iter, 0, sizeof(struct iterations) * nr);
2789 nr = remove_loops(be, nr, iter);
2790
2791 for (i = 0; i < nr; i++) {
2792 err = add_callchain_ip(thread, cursor, parent,
2793 root_al,
2794 NULL, be[i].to,
2795 true, &be[i].flags,
2796 NULL, be[i].from);
2797
2798 if (!err)
2799 err = add_callchain_ip(thread, cursor, parent, root_al,
2800 NULL, be[i].from,
2801 true, &be[i].flags,
2802 &iter[i], 0);
2803 if (err == -EINVAL)
2804 break;
2805 if (err)
2806 return err;
2807 }
2808
2809 if (chain_nr == 0)
2810 return 0;
2811
2812 chain_nr -= nr;
2813 }
2814
2815 check_calls:
2816 if (chain && callchain_param.order != ORDER_CALLEE) {
2817 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2818 &cpumode, chain->nr - first_call);
2819 if (err)
2820 return (err < 0) ? err : 0;
2821 }
2822 for (i = first_call, nr_entries = 0;
2823 i < chain_nr && nr_entries < max_stack; i++) {
2824 u64 ip;
2825
2826 if (callchain_param.order == ORDER_CALLEE)
2827 j = i;
2828 else
2829 j = chain->nr - i - 1;
2830
2831 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2832 if (j == skip_idx)
2833 continue;
2834 #endif
2835 ip = chain->ips[j];
2836 if (ip < PERF_CONTEXT_MAX)
2837 ++nr_entries;
2838 else if (callchain_param.order != ORDER_CALLEE) {
2839 err = find_prev_cpumode(chain, thread, cursor, parent,
2840 root_al, &cpumode, j);
2841 if (err)
2842 return (err < 0) ? err : 0;
2843 continue;
2844 }
2845
2846 err = add_callchain_ip(thread, cursor, parent,
2847 root_al, &cpumode, ip,
2848 false, NULL, NULL, 0);
2849
2850 if (err)
2851 return (err < 0) ? err : 0;
2852 }
2853
2854 return 0;
2855 }
2856
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2857 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2858 {
2859 struct symbol *sym = ms->sym;
2860 struct map *map = ms->map;
2861 struct inline_node *inline_node;
2862 struct inline_list *ilist;
2863 u64 addr;
2864 int ret = 1;
2865
2866 if (!symbol_conf.inline_name || !map || !sym)
2867 return ret;
2868
2869 addr = map__map_ip(map, ip);
2870 addr = map__rip_2objdump(map, addr);
2871
2872 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2873 if (!inline_node) {
2874 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2875 if (!inline_node)
2876 return ret;
2877 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2878 }
2879
2880 list_for_each_entry(ilist, &inline_node->val, list) {
2881 struct map_symbol ilist_ms = {
2882 .maps = ms->maps,
2883 .map = map,
2884 .sym = ilist->symbol,
2885 };
2886 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2887 NULL, 0, 0, 0, ilist->srcline);
2888
2889 if (ret != 0)
2890 return ret;
2891 }
2892
2893 return ret;
2894 }
2895
unwind_entry(struct unwind_entry * entry,void * arg)2896 static int unwind_entry(struct unwind_entry *entry, void *arg)
2897 {
2898 struct callchain_cursor *cursor = arg;
2899 const char *srcline = NULL;
2900 u64 addr = entry->ip;
2901
2902 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2903 return 0;
2904
2905 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2906 return 0;
2907
2908 /*
2909 * Convert entry->ip from a virtual address to an offset in
2910 * its corresponding binary.
2911 */
2912 if (entry->ms.map)
2913 addr = map__map_ip(entry->ms.map, entry->ip);
2914
2915 srcline = callchain_srcline(&entry->ms, addr);
2916 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2917 false, NULL, 0, 0, 0, srcline);
2918 }
2919
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2920 static int thread__resolve_callchain_unwind(struct thread *thread,
2921 struct callchain_cursor *cursor,
2922 struct evsel *evsel,
2923 struct perf_sample *sample,
2924 int max_stack)
2925 {
2926 /* Can we do dwarf post unwind? */
2927 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2928 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2929 return 0;
2930
2931 /* Bail out if nothing was captured. */
2932 if ((!sample->user_regs.regs) ||
2933 (!sample->user_stack.size))
2934 return 0;
2935
2936 return unwind__get_entries(unwind_entry, cursor,
2937 thread, sample, max_stack);
2938 }
2939
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2940 int thread__resolve_callchain(struct thread *thread,
2941 struct callchain_cursor *cursor,
2942 struct evsel *evsel,
2943 struct perf_sample *sample,
2944 struct symbol **parent,
2945 struct addr_location *root_al,
2946 int max_stack)
2947 {
2948 int ret = 0;
2949
2950 callchain_cursor_reset(cursor);
2951
2952 if (callchain_param.order == ORDER_CALLEE) {
2953 ret = thread__resolve_callchain_sample(thread, cursor,
2954 evsel, sample,
2955 parent, root_al,
2956 max_stack);
2957 if (ret)
2958 return ret;
2959 ret = thread__resolve_callchain_unwind(thread, cursor,
2960 evsel, sample,
2961 max_stack);
2962 } else {
2963 ret = thread__resolve_callchain_unwind(thread, cursor,
2964 evsel, sample,
2965 max_stack);
2966 if (ret)
2967 return ret;
2968 ret = thread__resolve_callchain_sample(thread, cursor,
2969 evsel, sample,
2970 parent, root_al,
2971 max_stack);
2972 }
2973
2974 return ret;
2975 }
2976
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2977 int machine__for_each_thread(struct machine *machine,
2978 int (*fn)(struct thread *thread, void *p),
2979 void *priv)
2980 {
2981 struct threads *threads;
2982 struct rb_node *nd;
2983 struct thread *thread;
2984 int rc = 0;
2985 int i;
2986
2987 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2988 threads = &machine->threads[i];
2989 for (nd = rb_first_cached(&threads->entries); nd;
2990 nd = rb_next(nd)) {
2991 thread = rb_entry(nd, struct thread, rb_node);
2992 rc = fn(thread, priv);
2993 if (rc != 0)
2994 return rc;
2995 }
2996
2997 list_for_each_entry(thread, &threads->dead, node) {
2998 rc = fn(thread, priv);
2999 if (rc != 0)
3000 return rc;
3001 }
3002 }
3003 return rc;
3004 }
3005
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3006 int machines__for_each_thread(struct machines *machines,
3007 int (*fn)(struct thread *thread, void *p),
3008 void *priv)
3009 {
3010 struct rb_node *nd;
3011 int rc = 0;
3012
3013 rc = machine__for_each_thread(&machines->host, fn, priv);
3014 if (rc != 0)
3015 return rc;
3016
3017 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3018 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3019
3020 rc = machine__for_each_thread(machine, fn, priv);
3021 if (rc != 0)
3022 return rc;
3023 }
3024 return rc;
3025 }
3026
machine__get_current_tid(struct machine * machine,int cpu)3027 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3028 {
3029 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3030
3031 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3032 return -1;
3033
3034 return machine->current_tid[cpu];
3035 }
3036
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3037 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3038 pid_t tid)
3039 {
3040 struct thread *thread;
3041 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3042
3043 if (cpu < 0)
3044 return -EINVAL;
3045
3046 if (!machine->current_tid) {
3047 int i;
3048
3049 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3050 if (!machine->current_tid)
3051 return -ENOMEM;
3052 for (i = 0; i < nr_cpus; i++)
3053 machine->current_tid[i] = -1;
3054 }
3055
3056 if (cpu >= nr_cpus) {
3057 pr_err("Requested CPU %d too large. ", cpu);
3058 pr_err("Consider raising MAX_NR_CPUS\n");
3059 return -EINVAL;
3060 }
3061
3062 machine->current_tid[cpu] = tid;
3063
3064 thread = machine__findnew_thread(machine, pid, tid);
3065 if (!thread)
3066 return -ENOMEM;
3067
3068 thread->cpu = cpu;
3069 thread__put(thread);
3070
3071 return 0;
3072 }
3073
3074 /*
3075 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3076 * normalized arch is needed.
3077 */
machine__is(struct machine * machine,const char * arch)3078 bool machine__is(struct machine *machine, const char *arch)
3079 {
3080 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3081 }
3082
machine__nr_cpus_avail(struct machine * machine)3083 int machine__nr_cpus_avail(struct machine *machine)
3084 {
3085 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3086 }
3087
machine__get_kernel_start(struct machine * machine)3088 int machine__get_kernel_start(struct machine *machine)
3089 {
3090 struct map *map = machine__kernel_map(machine);
3091 int err = 0;
3092
3093 /*
3094 * The only addresses above 2^63 are kernel addresses of a 64-bit
3095 * kernel. Note that addresses are unsigned so that on a 32-bit system
3096 * all addresses including kernel addresses are less than 2^32. In
3097 * that case (32-bit system), if the kernel mapping is unknown, all
3098 * addresses will be assumed to be in user space - see
3099 * machine__kernel_ip().
3100 */
3101 machine->kernel_start = 1ULL << 63;
3102 if (map) {
3103 err = map__load(map);
3104 /*
3105 * On x86_64, PTI entry trampolines are less than the
3106 * start of kernel text, but still above 2^63. So leave
3107 * kernel_start = 1ULL << 63 for x86_64.
3108 */
3109 if (!err && !machine__is(machine, "x86_64"))
3110 machine->kernel_start = map->start;
3111 }
3112 return err;
3113 }
3114
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3115 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3116 {
3117 u8 addr_cpumode = cpumode;
3118 bool kernel_ip;
3119
3120 if (!machine->single_address_space)
3121 goto out;
3122
3123 kernel_ip = machine__kernel_ip(machine, addr);
3124 switch (cpumode) {
3125 case PERF_RECORD_MISC_KERNEL:
3126 case PERF_RECORD_MISC_USER:
3127 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3128 PERF_RECORD_MISC_USER;
3129 break;
3130 case PERF_RECORD_MISC_GUEST_KERNEL:
3131 case PERF_RECORD_MISC_GUEST_USER:
3132 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3133 PERF_RECORD_MISC_GUEST_USER;
3134 break;
3135 default:
3136 break;
3137 }
3138 out:
3139 return addr_cpumode;
3140 }
3141
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3142 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3143 {
3144 return dsos__findnew_id(&machine->dsos, filename, id);
3145 }
3146
machine__findnew_dso(struct machine * machine,const char * filename)3147 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3148 {
3149 return machine__findnew_dso_id(machine, filename, NULL);
3150 }
3151
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3152 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3153 {
3154 struct machine *machine = vmachine;
3155 struct map *map;
3156 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3157
3158 if (sym == NULL)
3159 return NULL;
3160
3161 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3162 *addrp = map->unmap_ip(map, sym->start);
3163 return sym->name;
3164 }
3165
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3166 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3167 {
3168 struct dso *pos;
3169 int err = 0;
3170
3171 list_for_each_entry(pos, &machine->dsos.head, node) {
3172 if (fn(pos, machine, priv))
3173 err = -1;
3174 }
3175 return err;
3176 }
3177