• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/crash_dump.h>
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmi.h>
13 #include <linux/efi.h>
14 #include <linux/init_ohci1394_dma.h>
15 #include <linux/initrd.h>
16 #include <linux/iscsi_ibft.h>
17 #include <linux/memblock.h>
18 #include <linux/panic_notifier.h>
19 #include <linux/pci.h>
20 #include <linux/root_dev.h>
21 #include <linux/hugetlb.h>
22 #include <linux/tboot.h>
23 #include <linux/usb/xhci-dbgp.h>
24 #include <linux/static_call.h>
25 #include <linux/swiotlb.h>
26 
27 #include <uapi/linux/mount.h>
28 
29 #include <xen/xen.h>
30 
31 #include <asm/apic.h>
32 #include <asm/numa.h>
33 #include <asm/bios_ebda.h>
34 #include <asm/bugs.h>
35 #include <asm/cpu.h>
36 #include <asm/efi.h>
37 #include <asm/gart.h>
38 #include <asm/hypervisor.h>
39 #include <asm/io_apic.h>
40 #include <asm/kasan.h>
41 #include <asm/kaslr.h>
42 #include <asm/mce.h>
43 #include <asm/mtrr.h>
44 #include <asm/realmode.h>
45 #include <asm/olpc_ofw.h>
46 #include <asm/pci-direct.h>
47 #include <asm/prom.h>
48 #include <asm/proto.h>
49 #include <asm/thermal.h>
50 #include <asm/unwind.h>
51 #include <asm/vsyscall.h>
52 #include <linux/vmalloc.h>
53 
54 /*
55  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
56  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
57  *
58  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
59  * represented by pfn_mapped[].
60  */
61 unsigned long max_low_pfn_mapped;
62 unsigned long max_pfn_mapped;
63 
64 #ifdef CONFIG_DMI
65 RESERVE_BRK(dmi_alloc, 65536);
66 #endif
67 
68 
69 unsigned long _brk_start = (unsigned long)__brk_base;
70 unsigned long _brk_end   = (unsigned long)__brk_base;
71 
72 struct boot_params boot_params;
73 
74 /*
75  * These are the four main kernel memory regions, we put them into
76  * the resource tree so that kdump tools and other debugging tools
77  * recover it:
78  */
79 
80 static struct resource rodata_resource = {
81 	.name	= "Kernel rodata",
82 	.start	= 0,
83 	.end	= 0,
84 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
85 };
86 
87 static struct resource data_resource = {
88 	.name	= "Kernel data",
89 	.start	= 0,
90 	.end	= 0,
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
92 };
93 
94 static struct resource code_resource = {
95 	.name	= "Kernel code",
96 	.start	= 0,
97 	.end	= 0,
98 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
99 };
100 
101 static struct resource bss_resource = {
102 	.name	= "Kernel bss",
103 	.start	= 0,
104 	.end	= 0,
105 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
106 };
107 
108 
109 #ifdef CONFIG_X86_32
110 /* CPU data as detected by the assembly code in head_32.S */
111 struct cpuinfo_x86 new_cpu_data;
112 
113 /* Common CPU data for all CPUs */
114 struct cpuinfo_x86 boot_cpu_data __read_mostly;
115 EXPORT_SYMBOL(boot_cpu_data);
116 
117 unsigned int def_to_bigsmp;
118 
119 struct apm_info apm_info;
120 EXPORT_SYMBOL(apm_info);
121 
122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124 struct ist_info ist_info;
125 EXPORT_SYMBOL(ist_info);
126 #else
127 struct ist_info ist_info;
128 #endif
129 
130 #else
131 struct cpuinfo_x86 boot_cpu_data __read_mostly;
132 EXPORT_SYMBOL(boot_cpu_data);
133 #endif
134 
135 
136 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
137 __visible unsigned long mmu_cr4_features __ro_after_init;
138 #else
139 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
140 #endif
141 
142 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
143 int bootloader_type, bootloader_version;
144 
145 /*
146  * Setup options
147  */
148 struct screen_info screen_info;
149 EXPORT_SYMBOL(screen_info);
150 struct edid_info edid_info;
151 EXPORT_SYMBOL_GPL(edid_info);
152 
153 extern int root_mountflags;
154 
155 unsigned long saved_video_mode;
156 
157 #define RAMDISK_IMAGE_START_MASK	0x07FF
158 #define RAMDISK_PROMPT_FLAG		0x8000
159 #define RAMDISK_LOAD_FLAG		0x4000
160 
161 static char __initdata command_line[COMMAND_LINE_SIZE];
162 #ifdef CONFIG_CMDLINE_BOOL
163 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
164 #endif
165 
166 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
167 struct edd edd;
168 #ifdef CONFIG_EDD_MODULE
169 EXPORT_SYMBOL(edd);
170 #endif
171 /**
172  * copy_edd() - Copy the BIOS EDD information
173  *              from boot_params into a safe place.
174  *
175  */
copy_edd(void)176 static inline void __init copy_edd(void)
177 {
178      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
179 	    sizeof(edd.mbr_signature));
180      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
181      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
182      edd.edd_info_nr = boot_params.eddbuf_entries;
183 }
184 #else
copy_edd(void)185 static inline void __init copy_edd(void)
186 {
187 }
188 #endif
189 
extend_brk(size_t size,size_t align)190 void * __init extend_brk(size_t size, size_t align)
191 {
192 	size_t mask = align - 1;
193 	void *ret;
194 
195 	BUG_ON(_brk_start == 0);
196 	BUG_ON(align & mask);
197 
198 	_brk_end = (_brk_end + mask) & ~mask;
199 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
200 
201 	ret = (void *)_brk_end;
202 	_brk_end += size;
203 
204 	memset(ret, 0, size);
205 
206 	return ret;
207 }
208 
209 #ifdef CONFIG_X86_32
cleanup_highmap(void)210 static void __init cleanup_highmap(void)
211 {
212 }
213 #endif
214 
reserve_brk(void)215 static void __init reserve_brk(void)
216 {
217 	if (_brk_end > _brk_start)
218 		memblock_reserve(__pa_symbol(_brk_start),
219 				 _brk_end - _brk_start);
220 
221 	/* Mark brk area as locked down and no longer taking any
222 	   new allocations */
223 	_brk_start = 0;
224 }
225 
226 u64 relocated_ramdisk;
227 
228 #ifdef CONFIG_BLK_DEV_INITRD
229 
get_ramdisk_image(void)230 static u64 __init get_ramdisk_image(void)
231 {
232 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
233 
234 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
235 
236 	if (ramdisk_image == 0)
237 		ramdisk_image = phys_initrd_start;
238 
239 	return ramdisk_image;
240 }
get_ramdisk_size(void)241 static u64 __init get_ramdisk_size(void)
242 {
243 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
244 
245 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
246 
247 	if (ramdisk_size == 0)
248 		ramdisk_size = phys_initrd_size;
249 
250 	return ramdisk_size;
251 }
252 
relocate_initrd(void)253 static void __init relocate_initrd(void)
254 {
255 	/* Assume only end is not page aligned */
256 	u64 ramdisk_image = get_ramdisk_image();
257 	u64 ramdisk_size  = get_ramdisk_size();
258 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
259 
260 	/* We need to move the initrd down into directly mapped mem */
261 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
262 						      PFN_PHYS(max_pfn_mapped));
263 	if (!relocated_ramdisk)
264 		panic("Cannot find place for new RAMDISK of size %lld\n",
265 		      ramdisk_size);
266 
267 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
268 	initrd_end   = initrd_start + ramdisk_size;
269 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
270 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
271 
272 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
273 
274 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
275 		" [mem %#010llx-%#010llx]\n",
276 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
277 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
278 }
279 
early_reserve_initrd(void)280 static void __init early_reserve_initrd(void)
281 {
282 	/* Assume only end is not page aligned */
283 	u64 ramdisk_image = get_ramdisk_image();
284 	u64 ramdisk_size  = get_ramdisk_size();
285 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
286 
287 	if (!boot_params.hdr.type_of_loader ||
288 	    !ramdisk_image || !ramdisk_size)
289 		return;		/* No initrd provided by bootloader */
290 
291 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
292 }
293 
reserve_initrd(void)294 static void __init reserve_initrd(void)
295 {
296 	/* Assume only end is not page aligned */
297 	u64 ramdisk_image = get_ramdisk_image();
298 	u64 ramdisk_size  = get_ramdisk_size();
299 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
300 
301 	if (!boot_params.hdr.type_of_loader ||
302 	    !ramdisk_image || !ramdisk_size)
303 		return;		/* No initrd provided by bootloader */
304 
305 	initrd_start = 0;
306 
307 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
308 			ramdisk_end - 1);
309 
310 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
311 				PFN_DOWN(ramdisk_end))) {
312 		/* All are mapped, easy case */
313 		initrd_start = ramdisk_image + PAGE_OFFSET;
314 		initrd_end = initrd_start + ramdisk_size;
315 		return;
316 	}
317 
318 	relocate_initrd();
319 
320 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
321 }
322 
323 #else
early_reserve_initrd(void)324 static void __init early_reserve_initrd(void)
325 {
326 }
reserve_initrd(void)327 static void __init reserve_initrd(void)
328 {
329 }
330 #endif /* CONFIG_BLK_DEV_INITRD */
331 
parse_setup_data(void)332 static void __init parse_setup_data(void)
333 {
334 	struct setup_data *data;
335 	u64 pa_data, pa_next;
336 
337 	pa_data = boot_params.hdr.setup_data;
338 	while (pa_data) {
339 		u32 data_len, data_type;
340 
341 		data = early_memremap(pa_data, sizeof(*data));
342 		data_len = data->len + sizeof(struct setup_data);
343 		data_type = data->type;
344 		pa_next = data->next;
345 		early_memunmap(data, sizeof(*data));
346 
347 		switch (data_type) {
348 		case SETUP_E820_EXT:
349 			e820__memory_setup_extended(pa_data, data_len);
350 			break;
351 		case SETUP_DTB:
352 			add_dtb(pa_data);
353 			break;
354 		case SETUP_EFI:
355 			parse_efi_setup(pa_data, data_len);
356 			break;
357 		default:
358 			break;
359 		}
360 		pa_data = pa_next;
361 	}
362 }
363 
memblock_x86_reserve_range_setup_data(void)364 static void __init memblock_x86_reserve_range_setup_data(void)
365 {
366 	struct setup_indirect *indirect;
367 	struct setup_data *data;
368 	u64 pa_data, pa_next;
369 	u32 len;
370 
371 	pa_data = boot_params.hdr.setup_data;
372 	while (pa_data) {
373 		data = early_memremap(pa_data, sizeof(*data));
374 		if (!data) {
375 			pr_warn("setup: failed to memremap setup_data entry\n");
376 			return;
377 		}
378 
379 		len = sizeof(*data);
380 		pa_next = data->next;
381 
382 		memblock_reserve(pa_data, sizeof(*data) + data->len);
383 
384 		if (data->type == SETUP_INDIRECT) {
385 			len += data->len;
386 			early_memunmap(data, sizeof(*data));
387 			data = early_memremap(pa_data, len);
388 			if (!data) {
389 				pr_warn("setup: failed to memremap indirect setup_data\n");
390 				return;
391 			}
392 
393 			indirect = (struct setup_indirect *)data->data;
394 
395 			if (indirect->type != SETUP_INDIRECT)
396 				memblock_reserve(indirect->addr, indirect->len);
397 		}
398 
399 		pa_data = pa_next;
400 		early_memunmap(data, len);
401 	}
402 }
403 
404 /*
405  * --------- Crashkernel reservation ------------------------------
406  */
407 
408 #ifdef CONFIG_KEXEC_CORE
409 
410 /* 16M alignment for crash kernel regions */
411 #define CRASH_ALIGN		SZ_16M
412 
413 /*
414  * Keep the crash kernel below this limit.
415  *
416  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
417  * due to mapping restrictions.
418  *
419  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
420  * the upper limit of system RAM in 4-level paging mode. Since the kdump
421  * jump could be from 5-level paging to 4-level paging, the jump will fail if
422  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
423  * no good way to detect the paging mode of the target kernel which will be
424  * loaded for dumping.
425  */
426 #ifdef CONFIG_X86_32
427 # define CRASH_ADDR_LOW_MAX	SZ_512M
428 # define CRASH_ADDR_HIGH_MAX	SZ_512M
429 #else
430 # define CRASH_ADDR_LOW_MAX	SZ_4G
431 # define CRASH_ADDR_HIGH_MAX	SZ_64T
432 #endif
433 
reserve_crashkernel_low(void)434 static int __init reserve_crashkernel_low(void)
435 {
436 #ifdef CONFIG_X86_64
437 	unsigned long long base, low_base = 0, low_size = 0;
438 	unsigned long low_mem_limit;
439 	int ret;
440 
441 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
442 
443 	/* crashkernel=Y,low */
444 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
445 	if (ret) {
446 		/*
447 		 * two parts from kernel/dma/swiotlb.c:
448 		 * -swiotlb size: user-specified with swiotlb= or default.
449 		 *
450 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
451 		 * to 8M for other buffers that may need to stay low too. Also
452 		 * make sure we allocate enough extra low memory so that we
453 		 * don't run out of DMA buffers for 32-bit devices.
454 		 */
455 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
456 	} else {
457 		/* passed with crashkernel=0,low ? */
458 		if (!low_size)
459 			return 0;
460 	}
461 
462 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
463 	if (!low_base) {
464 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
465 		       (unsigned long)(low_size >> 20));
466 		return -ENOMEM;
467 	}
468 
469 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
470 		(unsigned long)(low_size >> 20),
471 		(unsigned long)(low_base >> 20),
472 		(unsigned long)(low_mem_limit >> 20));
473 
474 	crashk_low_res.start = low_base;
475 	crashk_low_res.end   = low_base + low_size - 1;
476 	insert_resource(&iomem_resource, &crashk_low_res);
477 #endif
478 	return 0;
479 }
480 
reserve_crashkernel(void)481 static void __init reserve_crashkernel(void)
482 {
483 	unsigned long long crash_size, crash_base, total_mem;
484 	bool high = false;
485 	int ret;
486 
487 	total_mem = memblock_phys_mem_size();
488 
489 	/* crashkernel=XM */
490 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
491 	if (ret != 0 || crash_size <= 0) {
492 		/* crashkernel=X,high */
493 		ret = parse_crashkernel_high(boot_command_line, total_mem,
494 					     &crash_size, &crash_base);
495 		if (ret != 0 || crash_size <= 0)
496 			return;
497 		high = true;
498 	}
499 
500 	if (xen_pv_domain()) {
501 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
502 		return;
503 	}
504 
505 	/* 0 means: find the address automatically */
506 	if (!crash_base) {
507 		/*
508 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
509 		 * crashkernel=x,high reserves memory over 4G, also allocates
510 		 * 256M extra low memory for DMA buffers and swiotlb.
511 		 * But the extra memory is not required for all machines.
512 		 * So try low memory first and fall back to high memory
513 		 * unless "crashkernel=size[KMG],high" is specified.
514 		 */
515 		if (!high)
516 			crash_base = memblock_phys_alloc_range(crash_size,
517 						CRASH_ALIGN, CRASH_ALIGN,
518 						CRASH_ADDR_LOW_MAX);
519 		if (!crash_base)
520 			crash_base = memblock_phys_alloc_range(crash_size,
521 						CRASH_ALIGN, CRASH_ALIGN,
522 						CRASH_ADDR_HIGH_MAX);
523 		if (!crash_base) {
524 			pr_info("crashkernel reservation failed - No suitable area found.\n");
525 			return;
526 		}
527 	} else {
528 		unsigned long long start;
529 
530 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
531 						  crash_base + crash_size);
532 		if (start != crash_base) {
533 			pr_info("crashkernel reservation failed - memory is in use.\n");
534 			return;
535 		}
536 	}
537 
538 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
539 		memblock_free(crash_base, crash_size);
540 		return;
541 	}
542 
543 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
544 		(unsigned long)(crash_size >> 20),
545 		(unsigned long)(crash_base >> 20),
546 		(unsigned long)(total_mem >> 20));
547 
548 	crashk_res.start = crash_base;
549 	crashk_res.end   = crash_base + crash_size - 1;
550 	insert_resource(&iomem_resource, &crashk_res);
551 }
552 #else
reserve_crashkernel(void)553 static void __init reserve_crashkernel(void)
554 {
555 }
556 #endif
557 
558 static struct resource standard_io_resources[] = {
559 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
560 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
561 	{ .name = "pic1", .start = 0x20, .end = 0x21,
562 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
563 	{ .name = "timer0", .start = 0x40, .end = 0x43,
564 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
565 	{ .name = "timer1", .start = 0x50, .end = 0x53,
566 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
567 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
568 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
569 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
570 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
571 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
572 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
573 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
574 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
575 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
576 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
577 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
578 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
579 };
580 
reserve_standard_io_resources(void)581 void __init reserve_standard_io_resources(void)
582 {
583 	int i;
584 
585 	/* request I/O space for devices used on all i[345]86 PCs */
586 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
587 		request_resource(&ioport_resource, &standard_io_resources[i]);
588 
589 }
590 
snb_gfx_workaround_needed(void)591 static bool __init snb_gfx_workaround_needed(void)
592 {
593 #ifdef CONFIG_PCI
594 	int i;
595 	u16 vendor, devid;
596 	static const __initconst u16 snb_ids[] = {
597 		0x0102,
598 		0x0112,
599 		0x0122,
600 		0x0106,
601 		0x0116,
602 		0x0126,
603 		0x010a,
604 	};
605 
606 	/* Assume no if something weird is going on with PCI */
607 	if (!early_pci_allowed())
608 		return false;
609 
610 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
611 	if (vendor != 0x8086)
612 		return false;
613 
614 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
615 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
616 		if (devid == snb_ids[i])
617 			return true;
618 #endif
619 
620 	return false;
621 }
622 
623 /*
624  * Sandy Bridge graphics has trouble with certain ranges, exclude
625  * them from allocation.
626  */
trim_snb_memory(void)627 static void __init trim_snb_memory(void)
628 {
629 	static const __initconst unsigned long bad_pages[] = {
630 		0x20050000,
631 		0x20110000,
632 		0x20130000,
633 		0x20138000,
634 		0x40004000,
635 	};
636 	int i;
637 
638 	if (!snb_gfx_workaround_needed())
639 		return;
640 
641 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
642 
643 	/*
644 	 * SandyBridge integrated graphics devices have a bug that prevents
645 	 * them from accessing certain memory ranges, namely anything below
646 	 * 1M and in the pages listed in bad_pages[] above.
647 	 *
648 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
649 	 * bad_pages that have not already been reserved at boot time.
650 	 * All memory below the 1 MB mark is anyway reserved later during
651 	 * setup_arch(), so there is no need to reserve it here.
652 	 */
653 
654 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
655 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
656 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
657 			       bad_pages[i]);
658 	}
659 }
660 
trim_bios_range(void)661 static void __init trim_bios_range(void)
662 {
663 	/*
664 	 * A special case is the first 4Kb of memory;
665 	 * This is a BIOS owned area, not kernel ram, but generally
666 	 * not listed as such in the E820 table.
667 	 *
668 	 * This typically reserves additional memory (64KiB by default)
669 	 * since some BIOSes are known to corrupt low memory.  See the
670 	 * Kconfig help text for X86_RESERVE_LOW.
671 	 */
672 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
673 
674 	/*
675 	 * special case: Some BIOSes report the PC BIOS
676 	 * area (640Kb -> 1Mb) as RAM even though it is not.
677 	 * take them out.
678 	 */
679 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
680 
681 	e820__update_table(e820_table);
682 }
683 
684 /* called before trim_bios_range() to spare extra sanitize */
e820_add_kernel_range(void)685 static void __init e820_add_kernel_range(void)
686 {
687 	u64 start = __pa_symbol(_text);
688 	u64 size = __pa_symbol(_end) - start;
689 
690 	/*
691 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
692 	 * attempt to fix it by adding the range. We may have a confused BIOS,
693 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
694 	 * exclude kernel range. If we really are running on top non-RAM,
695 	 * we will crash later anyways.
696 	 */
697 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
698 		return;
699 
700 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
701 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
702 	e820__range_add(start, size, E820_TYPE_RAM);
703 }
704 
early_reserve_memory(void)705 static void __init early_reserve_memory(void)
706 {
707 	/*
708 	 * Reserve the memory occupied by the kernel between _text and
709 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
710 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
711 	 * separate memblock_reserve() or they will be discarded.
712 	 */
713 	memblock_reserve(__pa_symbol(_text),
714 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
715 
716 	/*
717 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
718 	 * not listed as such in the E820 table.
719 	 *
720 	 * Reserve the first 64K of memory since some BIOSes are known to
721 	 * corrupt low memory. After the real mode trampoline is allocated the
722 	 * rest of the memory below 640k is reserved.
723 	 *
724 	 * In addition, make sure page 0 is always reserved because on
725 	 * systems with L1TF its contents can be leaked to user processes.
726 	 */
727 	memblock_reserve(0, SZ_64K);
728 
729 	early_reserve_initrd();
730 
731 	memblock_x86_reserve_range_setup_data();
732 
733 	reserve_ibft_region();
734 	reserve_bios_regions();
735 	trim_snb_memory();
736 }
737 
738 /*
739  * Dump out kernel offset information on panic.
740  */
741 static int
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)742 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
743 {
744 	if (kaslr_enabled()) {
745 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
746 			 kaslr_offset(),
747 			 __START_KERNEL,
748 			 __START_KERNEL_map,
749 			 MODULES_VADDR-1);
750 	} else {
751 		pr_emerg("Kernel Offset: disabled\n");
752 	}
753 
754 	return 0;
755 }
756 
757 /*
758  * Determine if we were loaded by an EFI loader.  If so, then we have also been
759  * passed the efi memmap, systab, etc., so we should use these data structures
760  * for initialization.  Note, the efi init code path is determined by the
761  * global efi_enabled. This allows the same kernel image to be used on existing
762  * systems (with a traditional BIOS) as well as on EFI systems.
763  */
764 /*
765  * setup_arch - architecture-specific boot-time initializations
766  *
767  * Note: On x86_64, fixmaps are ready for use even before this is called.
768  */
769 
setup_arch(char ** cmdline_p)770 void __init setup_arch(char **cmdline_p)
771 {
772 #ifdef CONFIG_X86_32
773 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
774 
775 	/*
776 	 * copy kernel address range established so far and switch
777 	 * to the proper swapper page table
778 	 */
779 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
780 			initial_page_table + KERNEL_PGD_BOUNDARY,
781 			KERNEL_PGD_PTRS);
782 
783 	load_cr3(swapper_pg_dir);
784 	/*
785 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
786 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
787 	 * will not flush anything because the CPU quirk which clears
788 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
789 	 * load_cr3() above the TLB has been flushed already. The
790 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
791 	 * so proper operation is guaranteed.
792 	 */
793 	__flush_tlb_all();
794 #else
795 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
796 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
797 #endif
798 
799 	/*
800 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
801 	 * reserve_top(), so do this before touching the ioremap area.
802 	 */
803 	olpc_ofw_detect();
804 
805 	idt_setup_early_traps();
806 	early_cpu_init();
807 	jump_label_init();
808 	static_call_init();
809 	early_ioremap_init();
810 
811 	setup_olpc_ofw_pgd();
812 
813 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
814 	screen_info = boot_params.screen_info;
815 	edid_info = boot_params.edid_info;
816 #ifdef CONFIG_X86_32
817 	apm_info.bios = boot_params.apm_bios_info;
818 	ist_info = boot_params.ist_info;
819 #endif
820 	saved_video_mode = boot_params.hdr.vid_mode;
821 	bootloader_type = boot_params.hdr.type_of_loader;
822 	if ((bootloader_type >> 4) == 0xe) {
823 		bootloader_type &= 0xf;
824 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
825 	}
826 	bootloader_version  = bootloader_type & 0xf;
827 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
828 
829 #ifdef CONFIG_BLK_DEV_RAM
830 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
831 #endif
832 #ifdef CONFIG_EFI
833 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
834 		     EFI32_LOADER_SIGNATURE, 4)) {
835 		set_bit(EFI_BOOT, &efi.flags);
836 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
837 		     EFI64_LOADER_SIGNATURE, 4)) {
838 		set_bit(EFI_BOOT, &efi.flags);
839 		set_bit(EFI_64BIT, &efi.flags);
840 	}
841 #endif
842 
843 	x86_init.oem.arch_setup();
844 
845 	/*
846 	 * Do some memory reservations *before* memory is added to memblock, so
847 	 * memblock allocations won't overwrite it.
848 	 *
849 	 * After this point, everything still needed from the boot loader or
850 	 * firmware or kernel text should be early reserved or marked not RAM in
851 	 * e820. All other memory is free game.
852 	 *
853 	 * This call needs to happen before e820__memory_setup() which calls the
854 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
855 	 * early reservations have happened already.
856 	 */
857 	early_reserve_memory();
858 
859 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
860 	e820__memory_setup();
861 	parse_setup_data();
862 
863 	copy_edd();
864 
865 	if (!boot_params.hdr.root_flags)
866 		root_mountflags &= ~MS_RDONLY;
867 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
868 
869 	code_resource.start = __pa_symbol(_text);
870 	code_resource.end = __pa_symbol(_etext)-1;
871 	rodata_resource.start = __pa_symbol(__start_rodata);
872 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
873 	data_resource.start = __pa_symbol(_sdata);
874 	data_resource.end = __pa_symbol(_edata)-1;
875 	bss_resource.start = __pa_symbol(__bss_start);
876 	bss_resource.end = __pa_symbol(__bss_stop)-1;
877 
878 #ifdef CONFIG_CMDLINE_BOOL
879 #ifdef CONFIG_CMDLINE_OVERRIDE
880 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
881 #else
882 	if (builtin_cmdline[0]) {
883 		/* append boot loader cmdline to builtin */
884 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
885 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
886 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
887 	}
888 #endif
889 #endif
890 
891 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
892 	*cmdline_p = command_line;
893 
894 	/*
895 	 * x86_configure_nx() is called before parse_early_param() to detect
896 	 * whether hardware doesn't support NX (so that the early EHCI debug
897 	 * console setup can safely call set_fixmap()). It may then be called
898 	 * again from within noexec_setup() during parsing early parameters
899 	 * to honor the respective command line option.
900 	 */
901 	x86_configure_nx();
902 
903 	parse_early_param();
904 
905 	if (efi_enabled(EFI_BOOT))
906 		efi_memblock_x86_reserve_range();
907 
908 #ifdef CONFIG_MEMORY_HOTPLUG
909 	/*
910 	 * Memory used by the kernel cannot be hot-removed because Linux
911 	 * cannot migrate the kernel pages. When memory hotplug is
912 	 * enabled, we should prevent memblock from allocating memory
913 	 * for the kernel.
914 	 *
915 	 * ACPI SRAT records all hotpluggable memory ranges. But before
916 	 * SRAT is parsed, we don't know about it.
917 	 *
918 	 * The kernel image is loaded into memory at very early time. We
919 	 * cannot prevent this anyway. So on NUMA system, we set any
920 	 * node the kernel resides in as un-hotpluggable.
921 	 *
922 	 * Since on modern servers, one node could have double-digit
923 	 * gigabytes memory, we can assume the memory around the kernel
924 	 * image is also un-hotpluggable. So before SRAT is parsed, just
925 	 * allocate memory near the kernel image to try the best to keep
926 	 * the kernel away from hotpluggable memory.
927 	 */
928 	if (movable_node_is_enabled())
929 		memblock_set_bottom_up(true);
930 #endif
931 
932 	x86_report_nx();
933 
934 	if (acpi_mps_check()) {
935 #ifdef CONFIG_X86_LOCAL_APIC
936 		disable_apic = 1;
937 #endif
938 		setup_clear_cpu_cap(X86_FEATURE_APIC);
939 	}
940 
941 	e820__reserve_setup_data();
942 	e820__finish_early_params();
943 
944 	if (efi_enabled(EFI_BOOT))
945 		efi_init();
946 
947 	dmi_setup();
948 
949 	/*
950 	 * VMware detection requires dmi to be available, so this
951 	 * needs to be done after dmi_setup(), for the boot CPU.
952 	 */
953 	init_hypervisor_platform();
954 
955 	tsc_early_init();
956 	x86_init.resources.probe_roms();
957 
958 	/* after parse_early_param, so could debug it */
959 	insert_resource(&iomem_resource, &code_resource);
960 	insert_resource(&iomem_resource, &rodata_resource);
961 	insert_resource(&iomem_resource, &data_resource);
962 	insert_resource(&iomem_resource, &bss_resource);
963 
964 	e820_add_kernel_range();
965 	trim_bios_range();
966 #ifdef CONFIG_X86_32
967 	if (ppro_with_ram_bug()) {
968 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
969 				  E820_TYPE_RESERVED);
970 		e820__update_table(e820_table);
971 		printk(KERN_INFO "fixed physical RAM map:\n");
972 		e820__print_table("bad_ppro");
973 	}
974 #else
975 	early_gart_iommu_check();
976 #endif
977 
978 	/*
979 	 * partially used pages are not usable - thus
980 	 * we are rounding upwards:
981 	 */
982 	max_pfn = e820__end_of_ram_pfn();
983 
984 	/* update e820 for memory not covered by WB MTRRs */
985 	mtrr_bp_init();
986 	if (mtrr_trim_uncached_memory(max_pfn))
987 		max_pfn = e820__end_of_ram_pfn();
988 
989 	max_possible_pfn = max_pfn;
990 
991 	/*
992 	 * This call is required when the CPU does not support PAT. If
993 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
994 	 * effect.
995 	 */
996 	init_cache_modes();
997 
998 	/*
999 	 * Define random base addresses for memory sections after max_pfn is
1000 	 * defined and before each memory section base is used.
1001 	 */
1002 	kernel_randomize_memory();
1003 
1004 #ifdef CONFIG_X86_32
1005 	/* max_low_pfn get updated here */
1006 	find_low_pfn_range();
1007 #else
1008 	check_x2apic();
1009 
1010 	/* How many end-of-memory variables you have, grandma! */
1011 	/* need this before calling reserve_initrd */
1012 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1013 		max_low_pfn = e820__end_of_low_ram_pfn();
1014 	else
1015 		max_low_pfn = max_pfn;
1016 
1017 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1018 #endif
1019 
1020 	/*
1021 	 * Find and reserve possible boot-time SMP configuration:
1022 	 */
1023 	find_smp_config();
1024 
1025 	early_alloc_pgt_buf();
1026 
1027 	/*
1028 	 * Need to conclude brk, before e820__memblock_setup()
1029 	 * it could use memblock_find_in_range, could overlap with
1030 	 * brk area.
1031 	 */
1032 	reserve_brk();
1033 
1034 	cleanup_highmap();
1035 
1036 	memblock_set_current_limit(ISA_END_ADDRESS);
1037 	e820__memblock_setup();
1038 
1039 	/*
1040 	 * Needs to run after memblock setup because it needs the physical
1041 	 * memory size.
1042 	 */
1043 	sev_setup_arch();
1044 
1045 	efi_fake_memmap();
1046 	efi_find_mirror();
1047 	efi_esrt_init();
1048 	efi_mokvar_table_init();
1049 
1050 	/*
1051 	 * The EFI specification says that boot service code won't be
1052 	 * called after ExitBootServices(). This is, in fact, a lie.
1053 	 */
1054 	efi_reserve_boot_services();
1055 
1056 	/* preallocate 4k for mptable mpc */
1057 	e820__memblock_alloc_reserved_mpc_new();
1058 
1059 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1060 	setup_bios_corruption_check();
1061 #endif
1062 
1063 #ifdef CONFIG_X86_32
1064 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1065 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1066 #endif
1067 
1068 	/*
1069 	 * Find free memory for the real mode trampoline and place it there. If
1070 	 * there is not enough free memory under 1M, on EFI-enabled systems
1071 	 * there will be additional attempt to reclaim the memory for the real
1072 	 * mode trampoline at efi_free_boot_services().
1073 	 *
1074 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1075 	 * are known to corrupt low memory and several hundred kilobytes are not
1076 	 * worth complex detection what memory gets clobbered. Windows does the
1077 	 * same thing for very similar reasons.
1078 	 *
1079 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1080 	 * crashkernel the entire 1M is reserved anyway.
1081 	 */
1082 	reserve_real_mode();
1083 
1084 	init_mem_mapping();
1085 
1086 	idt_setup_early_pf();
1087 
1088 	/*
1089 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1090 	 * with the current CR4 value.  This may not be necessary, but
1091 	 * auditing all the early-boot CR4 manipulation would be needed to
1092 	 * rule it out.
1093 	 *
1094 	 * Mask off features that don't work outside long mode (just
1095 	 * PCIDE for now).
1096 	 */
1097 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1098 
1099 	memblock_set_current_limit(get_max_mapped());
1100 
1101 	/*
1102 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1103 	 */
1104 
1105 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1106 	if (init_ohci1394_dma_early)
1107 		init_ohci1394_dma_on_all_controllers();
1108 #endif
1109 	/* Allocate bigger log buffer */
1110 	setup_log_buf(1);
1111 
1112 	if (efi_enabled(EFI_BOOT)) {
1113 		switch (boot_params.secure_boot) {
1114 		case efi_secureboot_mode_disabled:
1115 			pr_info("Secure boot disabled\n");
1116 			break;
1117 		case efi_secureboot_mode_enabled:
1118 			pr_info("Secure boot enabled\n");
1119 			break;
1120 		default:
1121 			pr_info("Secure boot could not be determined\n");
1122 			break;
1123 		}
1124 	}
1125 
1126 	reserve_initrd();
1127 
1128 	acpi_table_upgrade();
1129 	/* Look for ACPI tables and reserve memory occupied by them. */
1130 	acpi_boot_table_init();
1131 
1132 	vsmp_init();
1133 
1134 	io_delay_init();
1135 
1136 	early_platform_quirks();
1137 
1138 	early_acpi_boot_init();
1139 
1140 	initmem_init();
1141 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1142 
1143 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1144 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1145 
1146 	/*
1147 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1148 	 * won't consume hotpluggable memory.
1149 	 */
1150 	reserve_crashkernel();
1151 
1152 	memblock_find_dma_reserve();
1153 
1154 	if (!early_xdbc_setup_hardware())
1155 		early_xdbc_register_console();
1156 
1157 	x86_init.paging.pagetable_init();
1158 
1159 	kasan_init();
1160 
1161 	/*
1162 	 * Sync back kernel address range.
1163 	 *
1164 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1165 	 * this call?
1166 	 */
1167 	sync_initial_page_table();
1168 
1169 	tboot_probe();
1170 
1171 	map_vsyscall();
1172 
1173 	generic_apic_probe();
1174 
1175 	early_quirks();
1176 
1177 	/*
1178 	 * Read APIC and some other early information from ACPI tables.
1179 	 */
1180 	acpi_boot_init();
1181 	x86_dtb_init();
1182 
1183 	/*
1184 	 * get boot-time SMP configuration:
1185 	 */
1186 	get_smp_config();
1187 
1188 	/*
1189 	 * Systems w/o ACPI and mptables might not have it mapped the local
1190 	 * APIC yet, but prefill_possible_map() might need to access it.
1191 	 */
1192 	init_apic_mappings();
1193 
1194 	prefill_possible_map();
1195 
1196 	init_cpu_to_node();
1197 	init_gi_nodes();
1198 
1199 	io_apic_init_mappings();
1200 
1201 	x86_init.hyper.guest_late_init();
1202 
1203 	e820__reserve_resources();
1204 	e820__register_nosave_regions(max_pfn);
1205 
1206 	x86_init.resources.reserve_resources();
1207 
1208 	e820__setup_pci_gap();
1209 
1210 #ifdef CONFIG_VT
1211 #if defined(CONFIG_VGA_CONSOLE)
1212 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1213 		conswitchp = &vga_con;
1214 #endif
1215 #endif
1216 	x86_init.oem.banner();
1217 
1218 	x86_init.timers.wallclock_init();
1219 
1220 	/*
1221 	 * This needs to run before setup_local_APIC() which soft-disables the
1222 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1223 	 * leading to softlockups on machines which have configured SMI
1224 	 * interrupt delivery.
1225 	 */
1226 	therm_lvt_init();
1227 
1228 	mcheck_init();
1229 
1230 	register_refined_jiffies(CLOCK_TICK_RATE);
1231 
1232 #ifdef CONFIG_EFI
1233 	if (efi_enabled(EFI_BOOT))
1234 		efi_apply_memmap_quirks();
1235 #endif
1236 
1237 	unwind_init();
1238 }
1239 
1240 #ifdef CONFIG_X86_32
1241 
1242 static struct resource video_ram_resource = {
1243 	.name	= "Video RAM area",
1244 	.start	= 0xa0000,
1245 	.end	= 0xbffff,
1246 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1247 };
1248 
i386_reserve_resources(void)1249 void __init i386_reserve_resources(void)
1250 {
1251 	request_resource(&iomem_resource, &video_ram_resource);
1252 	reserve_standard_io_resources();
1253 }
1254 
1255 #endif /* CONFIG_X86_32 */
1256 
1257 static struct notifier_block kernel_offset_notifier = {
1258 	.notifier_call = dump_kernel_offset
1259 };
1260 
register_kernel_offset_dumper(void)1261 static int __init register_kernel_offset_dumper(void)
1262 {
1263 	atomic_notifier_chain_register(&panic_notifier_list,
1264 					&kernel_offset_notifier);
1265 	return 0;
1266 }
1267 __initcall(register_kernel_offset_dumper);
1268