1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/intel-family.h>
50 #include <asm/processor.h>
51 #include <asm/traps.h>
52 #include <asm/tlbflush.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/reboot.h>
56
57 #include "internal.h"
58
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64
65 #define SPINUNIT 100 /* 100ns */
66
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
70
71 struct mce_bank {
72 u64 ctl; /* subevents to enable */
73 bool init; /* initialise bank? */
74 };
75 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
76
77 #define ATTR_LEN 16
78 /* One object for each MCE bank, shared by all CPUs */
79 struct mce_bank_dev {
80 struct device_attribute attr; /* device attribute */
81 char attrname[ATTR_LEN]; /* attribute name */
82 u8 bank; /* bank number */
83 };
84 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
85
86 struct mce_vendor_flags mce_flags __read_mostly;
87
88 struct mca_config mca_cfg __read_mostly = {
89 .bootlog = -1,
90 /*
91 * Tolerant levels:
92 * 0: always panic on uncorrected errors, log corrected errors
93 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
94 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
95 * 3: never panic or SIGBUS, log all errors (for testing only)
96 */
97 .tolerant = 1,
98 .monarch_timeout = -1
99 };
100
101 static DEFINE_PER_CPU(struct mce, mces_seen);
102 static unsigned long mce_need_notify;
103 static int cpu_missing;
104
105 /*
106 * MCA banks polled by the period polling timer for corrected events.
107 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
108 */
109 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
110 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
111 };
112
113 /*
114 * MCA banks controlled through firmware first for corrected errors.
115 * This is a global list of banks for which we won't enable CMCI and we
116 * won't poll. Firmware controls these banks and is responsible for
117 * reporting corrected errors through GHES. Uncorrected/recoverable
118 * errors are still notified through a machine check.
119 */
120 mce_banks_t mce_banks_ce_disabled;
121
122 static struct work_struct mce_work;
123 static struct irq_work mce_irq_work;
124
125 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
126
127 /*
128 * CPU/chipset specific EDAC code can register a notifier call here to print
129 * MCE errors in a human-readable form.
130 */
131 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
132
133 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)134 noinstr void mce_setup(struct mce *m)
135 {
136 memset(m, 0, sizeof(struct mce));
137 m->cpu = m->extcpu = smp_processor_id();
138 /* need the internal __ version to avoid deadlocks */
139 m->time = __ktime_get_real_seconds();
140 m->cpuvendor = boot_cpu_data.x86_vendor;
141 m->cpuid = cpuid_eax(1);
142 m->socketid = cpu_data(m->extcpu).phys_proc_id;
143 m->apicid = cpu_data(m->extcpu).initial_apicid;
144 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
145
146 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
147 m->ppin = __rdmsr(MSR_PPIN);
148 else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
149 m->ppin = __rdmsr(MSR_AMD_PPIN);
150
151 m->microcode = boot_cpu_data.microcode;
152 }
153
154 DEFINE_PER_CPU(struct mce, injectm);
155 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
156
mce_log(struct mce * m)157 void mce_log(struct mce *m)
158 {
159 if (!mce_gen_pool_add(m))
160 irq_work_queue(&mce_irq_work);
161 }
162 EXPORT_SYMBOL_GPL(mce_log);
163
mce_register_decode_chain(struct notifier_block * nb)164 void mce_register_decode_chain(struct notifier_block *nb)
165 {
166 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
167 nb->priority > MCE_PRIO_HIGHEST))
168 return;
169
170 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
171 }
172 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
173
mce_unregister_decode_chain(struct notifier_block * nb)174 void mce_unregister_decode_chain(struct notifier_block *nb)
175 {
176 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
177 }
178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
179
mca_msr_reg(int bank,enum mca_msr reg)180 u32 mca_msr_reg(int bank, enum mca_msr reg)
181 {
182 if (mce_flags.smca) {
183 switch (reg) {
184 case MCA_CTL: return MSR_AMD64_SMCA_MCx_CTL(bank);
185 case MCA_ADDR: return MSR_AMD64_SMCA_MCx_ADDR(bank);
186 case MCA_MISC: return MSR_AMD64_SMCA_MCx_MISC(bank);
187 case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
188 }
189 }
190
191 switch (reg) {
192 case MCA_CTL: return MSR_IA32_MCx_CTL(bank);
193 case MCA_ADDR: return MSR_IA32_MCx_ADDR(bank);
194 case MCA_MISC: return MSR_IA32_MCx_MISC(bank);
195 case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
196 }
197
198 return 0;
199 }
200
__print_mce(struct mce * m)201 static void __print_mce(struct mce *m)
202 {
203 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
204 m->extcpu,
205 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
206 m->mcgstatus, m->bank, m->status);
207
208 if (m->ip) {
209 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
210 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
211 m->cs, m->ip);
212
213 if (m->cs == __KERNEL_CS)
214 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
215 pr_cont("\n");
216 }
217
218 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
219 if (m->addr)
220 pr_cont("ADDR %llx ", m->addr);
221 if (m->misc)
222 pr_cont("MISC %llx ", m->misc);
223 if (m->ppin)
224 pr_cont("PPIN %llx ", m->ppin);
225
226 if (mce_flags.smca) {
227 if (m->synd)
228 pr_cont("SYND %llx ", m->synd);
229 if (m->ipid)
230 pr_cont("IPID %llx ", m->ipid);
231 }
232
233 pr_cont("\n");
234
235 /*
236 * Note this output is parsed by external tools and old fields
237 * should not be changed.
238 */
239 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
240 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
241 m->microcode);
242 }
243
print_mce(struct mce * m)244 static void print_mce(struct mce *m)
245 {
246 __print_mce(m);
247
248 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
249 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
250 }
251
252 #define PANIC_TIMEOUT 5 /* 5 seconds */
253
254 static atomic_t mce_panicked;
255
256 static int fake_panic;
257 static atomic_t mce_fake_panicked;
258
259 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)260 static void wait_for_panic(void)
261 {
262 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
263
264 preempt_disable();
265 local_irq_enable();
266 while (timeout-- > 0)
267 udelay(1);
268 if (panic_timeout == 0)
269 panic_timeout = mca_cfg.panic_timeout;
270 panic("Panicing machine check CPU died");
271 }
272
mce_panic(const char * msg,struct mce * final,char * exp)273 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
274 {
275 struct llist_node *pending;
276 struct mce_evt_llist *l;
277 int apei_err = 0;
278 struct page *p;
279
280 /*
281 * Allow instrumentation around external facilities usage. Not that it
282 * matters a whole lot since the machine is going to panic anyway.
283 */
284 instrumentation_begin();
285
286 if (!fake_panic) {
287 /*
288 * Make sure only one CPU runs in machine check panic
289 */
290 if (atomic_inc_return(&mce_panicked) > 1)
291 wait_for_panic();
292 barrier();
293
294 bust_spinlocks(1);
295 console_verbose();
296 } else {
297 /* Don't log too much for fake panic */
298 if (atomic_inc_return(&mce_fake_panicked) > 1)
299 goto out;
300 }
301 pending = mce_gen_pool_prepare_records();
302 /* First print corrected ones that are still unlogged */
303 llist_for_each_entry(l, pending, llnode) {
304 struct mce *m = &l->mce;
305 if (!(m->status & MCI_STATUS_UC)) {
306 print_mce(m);
307 if (!apei_err)
308 apei_err = apei_write_mce(m);
309 }
310 }
311 /* Now print uncorrected but with the final one last */
312 llist_for_each_entry(l, pending, llnode) {
313 struct mce *m = &l->mce;
314 if (!(m->status & MCI_STATUS_UC))
315 continue;
316 if (!final || mce_cmp(m, final)) {
317 print_mce(m);
318 if (!apei_err)
319 apei_err = apei_write_mce(m);
320 }
321 }
322 if (final) {
323 print_mce(final);
324 if (!apei_err)
325 apei_err = apei_write_mce(final);
326 }
327 if (cpu_missing)
328 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
329 if (exp)
330 pr_emerg(HW_ERR "Machine check: %s\n", exp);
331 if (!fake_panic) {
332 if (panic_timeout == 0)
333 panic_timeout = mca_cfg.panic_timeout;
334
335 /*
336 * Kdump skips the poisoned page in order to avoid
337 * touching the error bits again. Poison the page even
338 * if the error is fatal and the machine is about to
339 * panic.
340 */
341 if (kexec_crash_loaded()) {
342 if (final && (final->status & MCI_STATUS_ADDRV)) {
343 p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
344 if (p)
345 SetPageHWPoison(p);
346 }
347 }
348 panic(msg);
349 } else
350 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
351
352 out:
353 instrumentation_end();
354 }
355
356 /* Support code for software error injection */
357
msr_to_offset(u32 msr)358 static int msr_to_offset(u32 msr)
359 {
360 unsigned bank = __this_cpu_read(injectm.bank);
361
362 if (msr == mca_cfg.rip_msr)
363 return offsetof(struct mce, ip);
364 if (msr == mca_msr_reg(bank, MCA_STATUS))
365 return offsetof(struct mce, status);
366 if (msr == mca_msr_reg(bank, MCA_ADDR))
367 return offsetof(struct mce, addr);
368 if (msr == mca_msr_reg(bank, MCA_MISC))
369 return offsetof(struct mce, misc);
370 if (msr == MSR_IA32_MCG_STATUS)
371 return offsetof(struct mce, mcgstatus);
372 return -1;
373 }
374
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)375 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
376 {
377 if (wrmsr) {
378 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
379 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
380 regs->ip, (void *)regs->ip);
381 } else {
382 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
383 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
384 }
385
386 show_stack_regs(regs);
387
388 panic("MCA architectural violation!\n");
389
390 while (true)
391 cpu_relax();
392 }
393
394 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 DECLARE_ARGS(val, low, high);
398
399 if (__this_cpu_read(injectm.finished)) {
400 int offset;
401 u64 ret;
402
403 instrumentation_begin();
404
405 offset = msr_to_offset(msr);
406 if (offset < 0)
407 ret = 0;
408 else
409 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410
411 instrumentation_end();
412
413 return ret;
414 }
415
416 /*
417 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 * architectural violation and needs to be reported to hw vendor. Panic
419 * the box to not allow any further progress.
420 */
421 asm volatile("1: rdmsr\n"
422 "2:\n"
423 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
424 : EAX_EDX_RET(val, low, high) : "c" (msr));
425
426
427 return EAX_EDX_VAL(val, low, high);
428 }
429
mce_wrmsrl(u32 msr,u64 v)430 static noinstr void mce_wrmsrl(u32 msr, u64 v)
431 {
432 u32 low, high;
433
434 if (__this_cpu_read(injectm.finished)) {
435 int offset;
436
437 instrumentation_begin();
438
439 offset = msr_to_offset(msr);
440 if (offset >= 0)
441 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
442
443 instrumentation_end();
444
445 return;
446 }
447
448 low = (u32)v;
449 high = (u32)(v >> 32);
450
451 /* See comment in mce_rdmsrl() */
452 asm volatile("1: wrmsr\n"
453 "2:\n"
454 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
455 : : "c" (msr), "a"(low), "d" (high) : "memory");
456 }
457
458 /*
459 * Collect all global (w.r.t. this processor) status about this machine
460 * check into our "mce" struct so that we can use it later to assess
461 * the severity of the problem as we read per-bank specific details.
462 */
mce_gather_info(struct mce * m,struct pt_regs * regs)463 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
464 {
465 mce_setup(m);
466
467 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
468 if (regs) {
469 /*
470 * Get the address of the instruction at the time of
471 * the machine check error.
472 */
473 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
474 m->ip = regs->ip;
475 m->cs = regs->cs;
476
477 /*
478 * When in VM86 mode make the cs look like ring 3
479 * always. This is a lie, but it's better than passing
480 * the additional vm86 bit around everywhere.
481 */
482 if (v8086_mode(regs))
483 m->cs |= 3;
484 }
485 /* Use accurate RIP reporting if available. */
486 if (mca_cfg.rip_msr)
487 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
488 }
489 }
490
mce_available(struct cpuinfo_x86 * c)491 int mce_available(struct cpuinfo_x86 *c)
492 {
493 if (mca_cfg.disabled)
494 return 0;
495 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
496 }
497
mce_schedule_work(void)498 static void mce_schedule_work(void)
499 {
500 if (!mce_gen_pool_empty())
501 schedule_work(&mce_work);
502 }
503
mce_irq_work_cb(struct irq_work * entry)504 static void mce_irq_work_cb(struct irq_work *entry)
505 {
506 mce_schedule_work();
507 }
508
509 /*
510 * Check if the address reported by the CPU is in a format we can parse.
511 * It would be possible to add code for most other cases, but all would
512 * be somewhat complicated (e.g. segment offset would require an instruction
513 * parser). So only support physical addresses up to page granularity for now.
514 */
mce_usable_address(struct mce * m)515 int mce_usable_address(struct mce *m)
516 {
517 if (!(m->status & MCI_STATUS_ADDRV))
518 return 0;
519
520 /* Checks after this one are Intel/Zhaoxin-specific: */
521 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
522 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
523 return 1;
524
525 if (!(m->status & MCI_STATUS_MISCV))
526 return 0;
527
528 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
529 return 0;
530
531 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
532 return 0;
533
534 return 1;
535 }
536 EXPORT_SYMBOL_GPL(mce_usable_address);
537
mce_is_memory_error(struct mce * m)538 bool mce_is_memory_error(struct mce *m)
539 {
540 switch (m->cpuvendor) {
541 case X86_VENDOR_AMD:
542 case X86_VENDOR_HYGON:
543 return amd_mce_is_memory_error(m);
544
545 case X86_VENDOR_INTEL:
546 case X86_VENDOR_ZHAOXIN:
547 /*
548 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
549 *
550 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
551 * indicating a memory error. Bit 8 is used for indicating a
552 * cache hierarchy error. The combination of bit 2 and bit 3
553 * is used for indicating a `generic' cache hierarchy error
554 * But we can't just blindly check the above bits, because if
555 * bit 11 is set, then it is a bus/interconnect error - and
556 * either way the above bits just gives more detail on what
557 * bus/interconnect error happened. Note that bit 12 can be
558 * ignored, as it's the "filter" bit.
559 */
560 return (m->status & 0xef80) == BIT(7) ||
561 (m->status & 0xef00) == BIT(8) ||
562 (m->status & 0xeffc) == 0xc;
563
564 default:
565 return false;
566 }
567 }
568 EXPORT_SYMBOL_GPL(mce_is_memory_error);
569
whole_page(struct mce * m)570 static bool whole_page(struct mce *m)
571 {
572 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
573 return true;
574
575 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
576 }
577
mce_is_correctable(struct mce * m)578 bool mce_is_correctable(struct mce *m)
579 {
580 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
581 return false;
582
583 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
584 return false;
585
586 if (m->status & MCI_STATUS_UC)
587 return false;
588
589 return true;
590 }
591 EXPORT_SYMBOL_GPL(mce_is_correctable);
592
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)593 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
594 void *data)
595 {
596 struct mce *m = (struct mce *)data;
597
598 if (!m)
599 return NOTIFY_DONE;
600
601 /* Emit the trace record: */
602 trace_mce_record(m);
603
604 set_bit(0, &mce_need_notify);
605
606 mce_notify_irq();
607
608 return NOTIFY_DONE;
609 }
610
611 static struct notifier_block early_nb = {
612 .notifier_call = mce_early_notifier,
613 .priority = MCE_PRIO_EARLY,
614 };
615
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)616 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
617 void *data)
618 {
619 struct mce *mce = (struct mce *)data;
620 unsigned long pfn;
621
622 if (!mce || !mce_usable_address(mce))
623 return NOTIFY_DONE;
624
625 if (mce->severity != MCE_AO_SEVERITY &&
626 mce->severity != MCE_DEFERRED_SEVERITY)
627 return NOTIFY_DONE;
628
629 pfn = mce->addr >> PAGE_SHIFT;
630 if (!memory_failure(pfn, 0)) {
631 set_mce_nospec(pfn, whole_page(mce));
632 mce->kflags |= MCE_HANDLED_UC;
633 }
634
635 return NOTIFY_OK;
636 }
637
638 static struct notifier_block mce_uc_nb = {
639 .notifier_call = uc_decode_notifier,
640 .priority = MCE_PRIO_UC,
641 };
642
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)643 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
644 void *data)
645 {
646 struct mce *m = (struct mce *)data;
647
648 if (!m)
649 return NOTIFY_DONE;
650
651 if (mca_cfg.print_all || !m->kflags)
652 __print_mce(m);
653
654 return NOTIFY_DONE;
655 }
656
657 static struct notifier_block mce_default_nb = {
658 .notifier_call = mce_default_notifier,
659 /* lowest prio, we want it to run last. */
660 .priority = MCE_PRIO_LOWEST,
661 };
662
663 /*
664 * Read ADDR and MISC registers.
665 */
mce_read_aux(struct mce * m,int i)666 static noinstr void mce_read_aux(struct mce *m, int i)
667 {
668 if (m->status & MCI_STATUS_MISCV)
669 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
670
671 if (m->status & MCI_STATUS_ADDRV) {
672 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
673
674 /*
675 * Mask the reported address by the reported granularity.
676 */
677 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
678 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
679 m->addr >>= shift;
680 m->addr <<= shift;
681 }
682
683 /*
684 * Extract [55:<lsb>] where lsb is the least significant
685 * *valid* bit of the address bits.
686 */
687 if (mce_flags.smca) {
688 u8 lsb = (m->addr >> 56) & 0x3f;
689
690 m->addr &= GENMASK_ULL(55, lsb);
691 }
692 }
693
694 if (mce_flags.smca) {
695 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
696
697 if (m->status & MCI_STATUS_SYNDV)
698 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
699 }
700 }
701
702 DEFINE_PER_CPU(unsigned, mce_poll_count);
703
704 /*
705 * Poll for corrected events or events that happened before reset.
706 * Those are just logged through /dev/mcelog.
707 *
708 * This is executed in standard interrupt context.
709 *
710 * Note: spec recommends to panic for fatal unsignalled
711 * errors here. However this would be quite problematic --
712 * we would need to reimplement the Monarch handling and
713 * it would mess up the exclusion between exception handler
714 * and poll handler -- * so we skip this for now.
715 * These cases should not happen anyways, or only when the CPU
716 * is already totally * confused. In this case it's likely it will
717 * not fully execute the machine check handler either.
718 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)719 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
720 {
721 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
722 bool error_seen = false;
723 struct mce m;
724 int i;
725
726 this_cpu_inc(mce_poll_count);
727
728 mce_gather_info(&m, NULL);
729
730 if (flags & MCP_TIMESTAMP)
731 m.tsc = rdtsc();
732
733 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
734 if (!mce_banks[i].ctl || !test_bit(i, *b))
735 continue;
736
737 m.misc = 0;
738 m.addr = 0;
739 m.bank = i;
740
741 barrier();
742 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
743
744 /* If this entry is not valid, ignore it */
745 if (!(m.status & MCI_STATUS_VAL))
746 continue;
747
748 /*
749 * If we are logging everything (at CPU online) or this
750 * is a corrected error, then we must log it.
751 */
752 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
753 goto log_it;
754
755 /*
756 * Newer Intel systems that support software error
757 * recovery need to make additional checks. Other
758 * CPUs should skip over uncorrected errors, but log
759 * everything else.
760 */
761 if (!mca_cfg.ser) {
762 if (m.status & MCI_STATUS_UC)
763 continue;
764 goto log_it;
765 }
766
767 /* Log "not enabled" (speculative) errors */
768 if (!(m.status & MCI_STATUS_EN))
769 goto log_it;
770
771 /*
772 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
773 * UC == 1 && PCC == 0 && S == 0
774 */
775 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
776 goto log_it;
777
778 /*
779 * Skip anything else. Presumption is that our read of this
780 * bank is racing with a machine check. Leave the log alone
781 * for do_machine_check() to deal with it.
782 */
783 continue;
784
785 log_it:
786 error_seen = true;
787
788 if (flags & MCP_DONTLOG)
789 goto clear_it;
790
791 mce_read_aux(&m, i);
792 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
793 /*
794 * Don't get the IP here because it's unlikely to
795 * have anything to do with the actual error location.
796 */
797
798 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
799 goto clear_it;
800
801 if (flags & MCP_QUEUE_LOG)
802 mce_gen_pool_add(&m);
803 else
804 mce_log(&m);
805
806 clear_it:
807 /*
808 * Clear state for this bank.
809 */
810 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
811 }
812
813 /*
814 * Don't clear MCG_STATUS here because it's only defined for
815 * exceptions.
816 */
817
818 sync_core();
819
820 return error_seen;
821 }
822 EXPORT_SYMBOL_GPL(machine_check_poll);
823
824 /*
825 * Do a quick check if any of the events requires a panic.
826 * This decides if we keep the events around or clear them.
827 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)828 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
829 struct pt_regs *regs)
830 {
831 char *tmp = *msg;
832 int i;
833
834 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
835 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
836 if (!(m->status & MCI_STATUS_VAL))
837 continue;
838
839 __set_bit(i, validp);
840 if (quirk_no_way_out)
841 quirk_no_way_out(i, m, regs);
842
843 m->bank = i;
844 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
845 mce_read_aux(m, i);
846 *msg = tmp;
847 return 1;
848 }
849 }
850 return 0;
851 }
852
853 /*
854 * Variable to establish order between CPUs while scanning.
855 * Each CPU spins initially until executing is equal its number.
856 */
857 static atomic_t mce_executing;
858
859 /*
860 * Defines order of CPUs on entry. First CPU becomes Monarch.
861 */
862 static atomic_t mce_callin;
863
864 /*
865 * Track which CPUs entered the MCA broadcast synchronization and which not in
866 * order to print holdouts.
867 */
868 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
869
870 /*
871 * Check if a timeout waiting for other CPUs happened.
872 */
mce_timed_out(u64 * t,const char * msg)873 static int mce_timed_out(u64 *t, const char *msg)
874 {
875 /*
876 * The others already did panic for some reason.
877 * Bail out like in a timeout.
878 * rmb() to tell the compiler that system_state
879 * might have been modified by someone else.
880 */
881 rmb();
882 if (atomic_read(&mce_panicked))
883 wait_for_panic();
884 if (!mca_cfg.monarch_timeout)
885 goto out;
886 if ((s64)*t < SPINUNIT) {
887 if (mca_cfg.tolerant <= 1) {
888 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
889 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
890 cpumask_pr_args(&mce_missing_cpus));
891 mce_panic(msg, NULL, NULL);
892 }
893 cpu_missing = 1;
894 return 1;
895 }
896 *t -= SPINUNIT;
897 out:
898 touch_nmi_watchdog();
899 return 0;
900 }
901
902 /*
903 * The Monarch's reign. The Monarch is the CPU who entered
904 * the machine check handler first. It waits for the others to
905 * raise the exception too and then grades them. When any
906 * error is fatal panic. Only then let the others continue.
907 *
908 * The other CPUs entering the MCE handler will be controlled by the
909 * Monarch. They are called Subjects.
910 *
911 * This way we prevent any potential data corruption in a unrecoverable case
912 * and also makes sure always all CPU's errors are examined.
913 *
914 * Also this detects the case of a machine check event coming from outer
915 * space (not detected by any CPUs) In this case some external agent wants
916 * us to shut down, so panic too.
917 *
918 * The other CPUs might still decide to panic if the handler happens
919 * in a unrecoverable place, but in this case the system is in a semi-stable
920 * state and won't corrupt anything by itself. It's ok to let the others
921 * continue for a bit first.
922 *
923 * All the spin loops have timeouts; when a timeout happens a CPU
924 * typically elects itself to be Monarch.
925 */
mce_reign(void)926 static void mce_reign(void)
927 {
928 int cpu;
929 struct mce *m = NULL;
930 int global_worst = 0;
931 char *msg = NULL;
932
933 /*
934 * This CPU is the Monarch and the other CPUs have run
935 * through their handlers.
936 * Grade the severity of the errors of all the CPUs.
937 */
938 for_each_possible_cpu(cpu) {
939 struct mce *mtmp = &per_cpu(mces_seen, cpu);
940
941 if (mtmp->severity > global_worst) {
942 global_worst = mtmp->severity;
943 m = &per_cpu(mces_seen, cpu);
944 }
945 }
946
947 /*
948 * Cannot recover? Panic here then.
949 * This dumps all the mces in the log buffer and stops the
950 * other CPUs.
951 */
952 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
953 /* call mce_severity() to get "msg" for panic */
954 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
955 mce_panic("Fatal machine check", m, msg);
956 }
957
958 /*
959 * For UC somewhere we let the CPU who detects it handle it.
960 * Also must let continue the others, otherwise the handling
961 * CPU could deadlock on a lock.
962 */
963
964 /*
965 * No machine check event found. Must be some external
966 * source or one CPU is hung. Panic.
967 */
968 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
969 mce_panic("Fatal machine check from unknown source", NULL, NULL);
970
971 /*
972 * Now clear all the mces_seen so that they don't reappear on
973 * the next mce.
974 */
975 for_each_possible_cpu(cpu)
976 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
977 }
978
979 static atomic_t global_nwo;
980
981 /*
982 * Start of Monarch synchronization. This waits until all CPUs have
983 * entered the exception handler and then determines if any of them
984 * saw a fatal event that requires panic. Then it executes them
985 * in the entry order.
986 * TBD double check parallel CPU hotunplug
987 */
mce_start(int * no_way_out)988 static int mce_start(int *no_way_out)
989 {
990 int order;
991 int cpus = num_online_cpus();
992 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
993
994 if (!timeout)
995 return -1;
996
997 atomic_add(*no_way_out, &global_nwo);
998 /*
999 * Rely on the implied barrier below, such that global_nwo
1000 * is updated before mce_callin.
1001 */
1002 order = atomic_inc_return(&mce_callin);
1003 cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1004
1005 /*
1006 * Wait for everyone.
1007 */
1008 while (atomic_read(&mce_callin) != cpus) {
1009 if (mce_timed_out(&timeout,
1010 "Timeout: Not all CPUs entered broadcast exception handler")) {
1011 atomic_set(&global_nwo, 0);
1012 return -1;
1013 }
1014 ndelay(SPINUNIT);
1015 }
1016
1017 /*
1018 * mce_callin should be read before global_nwo
1019 */
1020 smp_rmb();
1021
1022 if (order == 1) {
1023 /*
1024 * Monarch: Starts executing now, the others wait.
1025 */
1026 atomic_set(&mce_executing, 1);
1027 } else {
1028 /*
1029 * Subject: Now start the scanning loop one by one in
1030 * the original callin order.
1031 * This way when there are any shared banks it will be
1032 * only seen by one CPU before cleared, avoiding duplicates.
1033 */
1034 while (atomic_read(&mce_executing) < order) {
1035 if (mce_timed_out(&timeout,
1036 "Timeout: Subject CPUs unable to finish machine check processing")) {
1037 atomic_set(&global_nwo, 0);
1038 return -1;
1039 }
1040 ndelay(SPINUNIT);
1041 }
1042 }
1043
1044 /*
1045 * Cache the global no_way_out state.
1046 */
1047 *no_way_out = atomic_read(&global_nwo);
1048
1049 return order;
1050 }
1051
1052 /*
1053 * Synchronize between CPUs after main scanning loop.
1054 * This invokes the bulk of the Monarch processing.
1055 */
mce_end(int order)1056 static noinstr int mce_end(int order)
1057 {
1058 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1059 int ret = -1;
1060
1061 /* Allow instrumentation around external facilities. */
1062 instrumentation_begin();
1063
1064 if (!timeout)
1065 goto reset;
1066 if (order < 0)
1067 goto reset;
1068
1069 /*
1070 * Allow others to run.
1071 */
1072 atomic_inc(&mce_executing);
1073
1074 if (order == 1) {
1075 /* CHECKME: Can this race with a parallel hotplug? */
1076 int cpus = num_online_cpus();
1077
1078 /*
1079 * Monarch: Wait for everyone to go through their scanning
1080 * loops.
1081 */
1082 while (atomic_read(&mce_executing) <= cpus) {
1083 if (mce_timed_out(&timeout,
1084 "Timeout: Monarch CPU unable to finish machine check processing"))
1085 goto reset;
1086 ndelay(SPINUNIT);
1087 }
1088
1089 mce_reign();
1090 barrier();
1091 ret = 0;
1092 } else {
1093 /*
1094 * Subject: Wait for Monarch to finish.
1095 */
1096 while (atomic_read(&mce_executing) != 0) {
1097 if (mce_timed_out(&timeout,
1098 "Timeout: Monarch CPU did not finish machine check processing"))
1099 goto reset;
1100 ndelay(SPINUNIT);
1101 }
1102
1103 /*
1104 * Don't reset anything. That's done by the Monarch.
1105 */
1106 ret = 0;
1107 goto out;
1108 }
1109
1110 /*
1111 * Reset all global state.
1112 */
1113 reset:
1114 atomic_set(&global_nwo, 0);
1115 atomic_set(&mce_callin, 0);
1116 cpumask_setall(&mce_missing_cpus);
1117 barrier();
1118
1119 /*
1120 * Let others run again.
1121 */
1122 atomic_set(&mce_executing, 0);
1123
1124 out:
1125 instrumentation_end();
1126
1127 return ret;
1128 }
1129
mce_clear_state(unsigned long * toclear)1130 static void mce_clear_state(unsigned long *toclear)
1131 {
1132 int i;
1133
1134 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1135 if (test_bit(i, toclear))
1136 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1137 }
1138 }
1139
1140 /*
1141 * Cases where we avoid rendezvous handler timeout:
1142 * 1) If this CPU is offline.
1143 *
1144 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1145 * skip those CPUs which remain looping in the 1st kernel - see
1146 * crash_nmi_callback().
1147 *
1148 * Note: there still is a small window between kexec-ing and the new,
1149 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1150 * might not get handled properly.
1151 */
mce_check_crashing_cpu(void)1152 static noinstr bool mce_check_crashing_cpu(void)
1153 {
1154 unsigned int cpu = smp_processor_id();
1155
1156 if (arch_cpu_is_offline(cpu) ||
1157 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1158 u64 mcgstatus;
1159
1160 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1161
1162 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1163 if (mcgstatus & MCG_STATUS_LMCES)
1164 return false;
1165 }
1166
1167 if (mcgstatus & MCG_STATUS_RIPV) {
1168 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1169 return true;
1170 }
1171 }
1172 return false;
1173 }
1174
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1175 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1176 unsigned long *toclear, unsigned long *valid_banks,
1177 int no_way_out, int *worst)
1178 {
1179 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1180 struct mca_config *cfg = &mca_cfg;
1181 int severity, i;
1182
1183 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1184 __clear_bit(i, toclear);
1185 if (!test_bit(i, valid_banks))
1186 continue;
1187
1188 if (!mce_banks[i].ctl)
1189 continue;
1190
1191 m->misc = 0;
1192 m->addr = 0;
1193 m->bank = i;
1194
1195 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1196 if (!(m->status & MCI_STATUS_VAL))
1197 continue;
1198
1199 /*
1200 * Corrected or non-signaled errors are handled by
1201 * machine_check_poll(). Leave them alone, unless this panics.
1202 */
1203 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1204 !no_way_out)
1205 continue;
1206
1207 /* Set taint even when machine check was not enabled. */
1208 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1209
1210 severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1211
1212 /*
1213 * When machine check was for corrected/deferred handler don't
1214 * touch, unless we're panicking.
1215 */
1216 if ((severity == MCE_KEEP_SEVERITY ||
1217 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1218 continue;
1219
1220 __set_bit(i, toclear);
1221
1222 /* Machine check event was not enabled. Clear, but ignore. */
1223 if (severity == MCE_NO_SEVERITY)
1224 continue;
1225
1226 mce_read_aux(m, i);
1227
1228 /* assuming valid severity level != 0 */
1229 m->severity = severity;
1230
1231 mce_log(m);
1232
1233 if (severity > *worst) {
1234 *final = *m;
1235 *worst = severity;
1236 }
1237 }
1238
1239 /* mce_clear_state will clear *final, save locally for use later */
1240 *m = *final;
1241 }
1242
kill_me_now(struct callback_head * ch)1243 static void kill_me_now(struct callback_head *ch)
1244 {
1245 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1246
1247 p->mce_count = 0;
1248 force_sig(SIGBUS);
1249 }
1250
kill_me_maybe(struct callback_head * cb)1251 static void kill_me_maybe(struct callback_head *cb)
1252 {
1253 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1254 int flags = MF_ACTION_REQUIRED;
1255 int ret;
1256
1257 p->mce_count = 0;
1258 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1259
1260 if (!p->mce_ripv)
1261 flags |= MF_MUST_KILL;
1262
1263 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1264 if (!ret && !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1265 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1266 sync_core();
1267 return;
1268 }
1269
1270 /*
1271 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1272 * to the current process with the proper error info,
1273 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1274 *
1275 * In both cases, no further processing is required.
1276 */
1277 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1278 return;
1279
1280 if (p->mce_vaddr != (void __user *)-1l) {
1281 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1282 } else {
1283 pr_err("Memory error not recovered");
1284 kill_me_now(cb);
1285 }
1286 }
1287
queue_task_work(struct mce * m,char * msg,int kill_current_task)1288 static void queue_task_work(struct mce *m, char *msg, int kill_current_task)
1289 {
1290 int count = ++current->mce_count;
1291
1292 /* First call, save all the details */
1293 if (count == 1) {
1294 current->mce_addr = m->addr;
1295 current->mce_kflags = m->kflags;
1296 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1297 current->mce_whole_page = whole_page(m);
1298
1299 if (kill_current_task)
1300 current->mce_kill_me.func = kill_me_now;
1301 else
1302 current->mce_kill_me.func = kill_me_maybe;
1303 }
1304
1305 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1306 if (count > 10)
1307 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1308
1309 /* Second or later call, make sure page address matches the one from first call */
1310 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1311 mce_panic("Consecutive machine checks to different user pages", m, msg);
1312
1313 /* Do not call task_work_add() more than once */
1314 if (count > 1)
1315 return;
1316
1317 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1318 }
1319
1320 /*
1321 * The actual machine check handler. This only handles real
1322 * exceptions when something got corrupted coming in through int 18.
1323 *
1324 * This is executed in NMI context not subject to normal locking rules. This
1325 * implies that most kernel services cannot be safely used. Don't even
1326 * think about putting a printk in there!
1327 *
1328 * On Intel systems this is entered on all CPUs in parallel through
1329 * MCE broadcast. However some CPUs might be broken beyond repair,
1330 * so be always careful when synchronizing with others.
1331 *
1332 * Tracing and kprobes are disabled: if we interrupted a kernel context
1333 * with IF=1, we need to minimize stack usage. There are also recursion
1334 * issues: if the machine check was due to a failure of the memory
1335 * backing the user stack, tracing that reads the user stack will cause
1336 * potentially infinite recursion.
1337 */
do_machine_check(struct pt_regs * regs)1338 noinstr void do_machine_check(struct pt_regs *regs)
1339 {
1340 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1341 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1342 struct mca_config *cfg = &mca_cfg;
1343 struct mce m, *final;
1344 char *msg = NULL;
1345 int worst = 0;
1346
1347 /*
1348 * Establish sequential order between the CPUs entering the machine
1349 * check handler.
1350 */
1351 int order = -1;
1352
1353 /*
1354 * If no_way_out gets set, there is no safe way to recover from this
1355 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1356 */
1357 int no_way_out = 0;
1358
1359 /*
1360 * If kill_current_task is not set, there might be a way to recover from this
1361 * error.
1362 */
1363 int kill_current_task = 0;
1364
1365 /*
1366 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1367 * on Intel.
1368 */
1369 int lmce = 1;
1370
1371 this_cpu_inc(mce_exception_count);
1372
1373 mce_gather_info(&m, regs);
1374 m.tsc = rdtsc();
1375
1376 final = this_cpu_ptr(&mces_seen);
1377 *final = m;
1378
1379 memset(valid_banks, 0, sizeof(valid_banks));
1380 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1381
1382 barrier();
1383
1384 /*
1385 * When no restart IP might need to kill or panic.
1386 * Assume the worst for now, but if we find the
1387 * severity is MCE_AR_SEVERITY we have other options.
1388 */
1389 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1390 kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1391 /*
1392 * Check if this MCE is signaled to only this logical processor,
1393 * on Intel, Zhaoxin only.
1394 */
1395 if (m.cpuvendor == X86_VENDOR_INTEL ||
1396 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1397 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1398
1399 /*
1400 * Local machine check may already know that we have to panic.
1401 * Broadcast machine check begins rendezvous in mce_start()
1402 * Go through all banks in exclusion of the other CPUs. This way we
1403 * don't report duplicated events on shared banks because the first one
1404 * to see it will clear it.
1405 */
1406 if (lmce) {
1407 if (no_way_out && cfg->tolerant < 3)
1408 mce_panic("Fatal local machine check", &m, msg);
1409 } else {
1410 order = mce_start(&no_way_out);
1411 }
1412
1413 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1414
1415 if (!no_way_out)
1416 mce_clear_state(toclear);
1417
1418 /*
1419 * Do most of the synchronization with other CPUs.
1420 * When there's any problem use only local no_way_out state.
1421 */
1422 if (!lmce) {
1423 if (mce_end(order) < 0) {
1424 if (!no_way_out)
1425 no_way_out = worst >= MCE_PANIC_SEVERITY;
1426
1427 if (no_way_out && cfg->tolerant < 3)
1428 mce_panic("Fatal machine check on current CPU", &m, msg);
1429 }
1430 } else {
1431 /*
1432 * If there was a fatal machine check we should have
1433 * already called mce_panic earlier in this function.
1434 * Since we re-read the banks, we might have found
1435 * something new. Check again to see if we found a
1436 * fatal error. We call "mce_severity()" again to
1437 * make sure we have the right "msg".
1438 */
1439 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1440 mce_severity(&m, regs, cfg->tolerant, &msg, true);
1441 mce_panic("Local fatal machine check!", &m, msg);
1442 }
1443 }
1444
1445 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1446 goto out;
1447
1448 /*
1449 * Enable instrumentation around the external facilities like
1450 * task_work_add() (via queue_task_work()), fixup_exception() etc.
1451 * For now, that is. Fixing this properly would need a lot more involved
1452 * reorganization.
1453 */
1454 instrumentation_begin();
1455
1456 /* Fault was in user mode and we need to take some action */
1457 if ((m.cs & 3) == 3) {
1458 /* If this triggers there is no way to recover. Die hard. */
1459 BUG_ON(!on_thread_stack() || !user_mode(regs));
1460
1461 queue_task_work(&m, msg, kill_current_task);
1462
1463 } else {
1464 /*
1465 * Handle an MCE which has happened in kernel space but from
1466 * which the kernel can recover: ex_has_fault_handler() has
1467 * already verified that the rIP at which the error happened is
1468 * a rIP from which the kernel can recover (by jumping to
1469 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1470 * corresponding exception handler which would do that is the
1471 * proper one.
1472 */
1473 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1474 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1475 mce_panic("Failed kernel mode recovery", &m, msg);
1476 }
1477
1478 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1479 queue_task_work(&m, msg, kill_current_task);
1480 }
1481
1482 instrumentation_end();
1483
1484 out:
1485 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1486 }
1487 EXPORT_SYMBOL_GPL(do_machine_check);
1488
1489 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1490 int memory_failure(unsigned long pfn, int flags)
1491 {
1492 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1493 BUG_ON(flags & MF_ACTION_REQUIRED);
1494 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1495 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1496 pfn);
1497
1498 return 0;
1499 }
1500 #endif
1501
1502 /*
1503 * Periodic polling timer for "silent" machine check errors. If the
1504 * poller finds an MCE, poll 2x faster. When the poller finds no more
1505 * errors, poll 2x slower (up to check_interval seconds).
1506 */
1507 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1508
1509 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1510 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1511
mce_adjust_timer_default(unsigned long interval)1512 static unsigned long mce_adjust_timer_default(unsigned long interval)
1513 {
1514 return interval;
1515 }
1516
1517 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1518
__start_timer(struct timer_list * t,unsigned long interval)1519 static void __start_timer(struct timer_list *t, unsigned long interval)
1520 {
1521 unsigned long when = jiffies + interval;
1522 unsigned long flags;
1523
1524 local_irq_save(flags);
1525
1526 if (!timer_pending(t) || time_before(when, t->expires))
1527 mod_timer(t, round_jiffies(when));
1528
1529 local_irq_restore(flags);
1530 }
1531
mce_timer_fn(struct timer_list * t)1532 static void mce_timer_fn(struct timer_list *t)
1533 {
1534 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1535 unsigned long iv;
1536
1537 WARN_ON(cpu_t != t);
1538
1539 iv = __this_cpu_read(mce_next_interval);
1540
1541 if (mce_available(this_cpu_ptr(&cpu_info))) {
1542 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1543
1544 if (mce_intel_cmci_poll()) {
1545 iv = mce_adjust_timer(iv);
1546 goto done;
1547 }
1548 }
1549
1550 /*
1551 * Alert userspace if needed. If we logged an MCE, reduce the polling
1552 * interval, otherwise increase the polling interval.
1553 */
1554 if (mce_notify_irq())
1555 iv = max(iv / 2, (unsigned long) HZ/100);
1556 else
1557 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1558
1559 done:
1560 __this_cpu_write(mce_next_interval, iv);
1561 __start_timer(t, iv);
1562 }
1563
1564 /*
1565 * Ensure that the timer is firing in @interval from now.
1566 */
mce_timer_kick(unsigned long interval)1567 void mce_timer_kick(unsigned long interval)
1568 {
1569 struct timer_list *t = this_cpu_ptr(&mce_timer);
1570 unsigned long iv = __this_cpu_read(mce_next_interval);
1571
1572 __start_timer(t, interval);
1573
1574 if (interval < iv)
1575 __this_cpu_write(mce_next_interval, interval);
1576 }
1577
1578 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1579 static void mce_timer_delete_all(void)
1580 {
1581 int cpu;
1582
1583 for_each_online_cpu(cpu)
1584 del_timer_sync(&per_cpu(mce_timer, cpu));
1585 }
1586
1587 /*
1588 * Notify the user(s) about new machine check events.
1589 * Can be called from interrupt context, but not from machine check/NMI
1590 * context.
1591 */
mce_notify_irq(void)1592 int mce_notify_irq(void)
1593 {
1594 /* Not more than two messages every minute */
1595 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1596
1597 if (test_and_clear_bit(0, &mce_need_notify)) {
1598 mce_work_trigger();
1599
1600 if (__ratelimit(&ratelimit))
1601 pr_info(HW_ERR "Machine check events logged\n");
1602
1603 return 1;
1604 }
1605 return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(mce_notify_irq);
1608
__mcheck_cpu_mce_banks_init(void)1609 static void __mcheck_cpu_mce_banks_init(void)
1610 {
1611 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1612 u8 n_banks = this_cpu_read(mce_num_banks);
1613 int i;
1614
1615 for (i = 0; i < n_banks; i++) {
1616 struct mce_bank *b = &mce_banks[i];
1617
1618 /*
1619 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1620 * the required vendor quirks before
1621 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1622 */
1623 b->ctl = -1ULL;
1624 b->init = true;
1625 }
1626 }
1627
1628 /*
1629 * Initialize Machine Checks for a CPU.
1630 */
__mcheck_cpu_cap_init(void)1631 static void __mcheck_cpu_cap_init(void)
1632 {
1633 u64 cap;
1634 u8 b;
1635
1636 rdmsrl(MSR_IA32_MCG_CAP, cap);
1637
1638 b = cap & MCG_BANKCNT_MASK;
1639
1640 if (b > MAX_NR_BANKS) {
1641 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1642 smp_processor_id(), MAX_NR_BANKS, b);
1643 b = MAX_NR_BANKS;
1644 }
1645
1646 this_cpu_write(mce_num_banks, b);
1647
1648 __mcheck_cpu_mce_banks_init();
1649
1650 /* Use accurate RIP reporting if available. */
1651 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1652 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1653
1654 if (cap & MCG_SER_P)
1655 mca_cfg.ser = 1;
1656 }
1657
__mcheck_cpu_init_generic(void)1658 static void __mcheck_cpu_init_generic(void)
1659 {
1660 enum mcp_flags m_fl = 0;
1661 mce_banks_t all_banks;
1662 u64 cap;
1663
1664 if (!mca_cfg.bootlog)
1665 m_fl = MCP_DONTLOG;
1666
1667 /*
1668 * Log the machine checks left over from the previous reset. Log them
1669 * only, do not start processing them. That will happen in mcheck_late_init()
1670 * when all consumers have been registered on the notifier chain.
1671 */
1672 bitmap_fill(all_banks, MAX_NR_BANKS);
1673 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1674
1675 cr4_set_bits(X86_CR4_MCE);
1676
1677 rdmsrl(MSR_IA32_MCG_CAP, cap);
1678 if (cap & MCG_CTL_P)
1679 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1680 }
1681
__mcheck_cpu_init_clear_banks(void)1682 static void __mcheck_cpu_init_clear_banks(void)
1683 {
1684 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1685 int i;
1686
1687 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1688 struct mce_bank *b = &mce_banks[i];
1689
1690 if (!b->init)
1691 continue;
1692 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1693 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1694 }
1695 }
1696
1697 /*
1698 * Do a final check to see if there are any unused/RAZ banks.
1699 *
1700 * This must be done after the banks have been initialized and any quirks have
1701 * been applied.
1702 *
1703 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1704 * Otherwise, a user who disables a bank will not be able to re-enable it
1705 * without a system reboot.
1706 */
__mcheck_cpu_check_banks(void)1707 static void __mcheck_cpu_check_banks(void)
1708 {
1709 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1710 u64 msrval;
1711 int i;
1712
1713 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1714 struct mce_bank *b = &mce_banks[i];
1715
1716 if (!b->init)
1717 continue;
1718
1719 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1720 b->init = !!msrval;
1721 }
1722 }
1723
1724 /*
1725 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1726 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1727 * Vol 3B Table 15-20). But this confuses both the code that determines
1728 * whether the machine check occurred in kernel or user mode, and also
1729 * the severity assessment code. Pretend that EIPV was set, and take the
1730 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1731 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1732 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1733 {
1734 if (bank != 0)
1735 return;
1736 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1737 return;
1738 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1739 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1740 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1741 MCACOD)) !=
1742 (MCI_STATUS_UC|MCI_STATUS_EN|
1743 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1744 MCI_STATUS_AR|MCACOD_INSTR))
1745 return;
1746
1747 m->mcgstatus |= MCG_STATUS_EIPV;
1748 m->ip = regs->ip;
1749 m->cs = regs->cs;
1750 }
1751
1752 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1753 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1754 {
1755 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1756 struct mca_config *cfg = &mca_cfg;
1757
1758 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1759 pr_info("unknown CPU type - not enabling MCE support\n");
1760 return -EOPNOTSUPP;
1761 }
1762
1763 /* This should be disabled by the BIOS, but isn't always */
1764 if (c->x86_vendor == X86_VENDOR_AMD) {
1765 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1766 /*
1767 * disable GART TBL walk error reporting, which
1768 * trips off incorrectly with the IOMMU & 3ware
1769 * & Cerberus:
1770 */
1771 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1772 }
1773 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1774 /*
1775 * Lots of broken BIOS around that don't clear them
1776 * by default and leave crap in there. Don't log:
1777 */
1778 cfg->bootlog = 0;
1779 }
1780 /*
1781 * Various K7s with broken bank 0 around. Always disable
1782 * by default.
1783 */
1784 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1785 mce_banks[0].ctl = 0;
1786
1787 /*
1788 * overflow_recov is supported for F15h Models 00h-0fh
1789 * even though we don't have a CPUID bit for it.
1790 */
1791 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1792 mce_flags.overflow_recov = 1;
1793
1794 }
1795
1796 if (c->x86_vendor == X86_VENDOR_INTEL) {
1797 /*
1798 * SDM documents that on family 6 bank 0 should not be written
1799 * because it aliases to another special BIOS controlled
1800 * register.
1801 * But it's not aliased anymore on model 0x1a+
1802 * Don't ignore bank 0 completely because there could be a
1803 * valid event later, merely don't write CTL0.
1804 */
1805
1806 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1807 mce_banks[0].init = false;
1808
1809 /*
1810 * All newer Intel systems support MCE broadcasting. Enable
1811 * synchronization with a one second timeout.
1812 */
1813 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1814 cfg->monarch_timeout < 0)
1815 cfg->monarch_timeout = USEC_PER_SEC;
1816
1817 /*
1818 * There are also broken BIOSes on some Pentium M and
1819 * earlier systems:
1820 */
1821 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1822 cfg->bootlog = 0;
1823
1824 if (c->x86 == 6 && c->x86_model == 45)
1825 quirk_no_way_out = quirk_sandybridge_ifu;
1826 }
1827
1828 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1829 /*
1830 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1831 * synchronization with a one second timeout.
1832 */
1833 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1834 if (cfg->monarch_timeout < 0)
1835 cfg->monarch_timeout = USEC_PER_SEC;
1836 }
1837 }
1838
1839 if (cfg->monarch_timeout < 0)
1840 cfg->monarch_timeout = 0;
1841 if (cfg->bootlog != 0)
1842 cfg->panic_timeout = 30;
1843
1844 return 0;
1845 }
1846
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1847 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1848 {
1849 if (c->x86 != 5)
1850 return 0;
1851
1852 switch (c->x86_vendor) {
1853 case X86_VENDOR_INTEL:
1854 intel_p5_mcheck_init(c);
1855 return 1;
1856 case X86_VENDOR_CENTAUR:
1857 winchip_mcheck_init(c);
1858 return 1;
1859 default:
1860 return 0;
1861 }
1862
1863 return 0;
1864 }
1865
1866 /*
1867 * Init basic CPU features needed for early decoding of MCEs.
1868 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1869 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1870 {
1871 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1872 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1873 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1874 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1875 mce_flags.amd_threshold = 1;
1876 }
1877 }
1878
mce_centaur_feature_init(struct cpuinfo_x86 * c)1879 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1880 {
1881 struct mca_config *cfg = &mca_cfg;
1882
1883 /*
1884 * All newer Centaur CPUs support MCE broadcasting. Enable
1885 * synchronization with a one second timeout.
1886 */
1887 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1888 c->x86 > 6) {
1889 if (cfg->monarch_timeout < 0)
1890 cfg->monarch_timeout = USEC_PER_SEC;
1891 }
1892 }
1893
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1894 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1895 {
1896 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1897
1898 /*
1899 * These CPUs have MCA bank 8 which reports only one error type called
1900 * SVAD (System View Address Decoder). The reporting of that error is
1901 * controlled by IA32_MC8.CTL.0.
1902 *
1903 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1904 * virtual machines start and result in a system panic. Always disable
1905 * bank 8 SVAD error by default.
1906 */
1907 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1908 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1909 if (this_cpu_read(mce_num_banks) > 8)
1910 mce_banks[8].ctl = 0;
1911 }
1912
1913 intel_init_cmci();
1914 intel_init_lmce();
1915 mce_adjust_timer = cmci_intel_adjust_timer;
1916 }
1917
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1918 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1919 {
1920 intel_clear_lmce();
1921 }
1922
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1923 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1924 {
1925 switch (c->x86_vendor) {
1926 case X86_VENDOR_INTEL:
1927 mce_intel_feature_init(c);
1928 mce_adjust_timer = cmci_intel_adjust_timer;
1929 break;
1930
1931 case X86_VENDOR_AMD: {
1932 mce_amd_feature_init(c);
1933 break;
1934 }
1935
1936 case X86_VENDOR_HYGON:
1937 mce_hygon_feature_init(c);
1938 break;
1939
1940 case X86_VENDOR_CENTAUR:
1941 mce_centaur_feature_init(c);
1942 break;
1943
1944 case X86_VENDOR_ZHAOXIN:
1945 mce_zhaoxin_feature_init(c);
1946 break;
1947
1948 default:
1949 break;
1950 }
1951 }
1952
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1953 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1954 {
1955 switch (c->x86_vendor) {
1956 case X86_VENDOR_INTEL:
1957 mce_intel_feature_clear(c);
1958 break;
1959
1960 case X86_VENDOR_ZHAOXIN:
1961 mce_zhaoxin_feature_clear(c);
1962 break;
1963
1964 default:
1965 break;
1966 }
1967 }
1968
mce_start_timer(struct timer_list * t)1969 static void mce_start_timer(struct timer_list *t)
1970 {
1971 unsigned long iv = check_interval * HZ;
1972
1973 if (mca_cfg.ignore_ce || !iv)
1974 return;
1975
1976 this_cpu_write(mce_next_interval, iv);
1977 __start_timer(t, iv);
1978 }
1979
__mcheck_cpu_setup_timer(void)1980 static void __mcheck_cpu_setup_timer(void)
1981 {
1982 struct timer_list *t = this_cpu_ptr(&mce_timer);
1983
1984 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1985 }
1986
__mcheck_cpu_init_timer(void)1987 static void __mcheck_cpu_init_timer(void)
1988 {
1989 struct timer_list *t = this_cpu_ptr(&mce_timer);
1990
1991 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1992 mce_start_timer(t);
1993 }
1994
filter_mce(struct mce * m)1995 bool filter_mce(struct mce *m)
1996 {
1997 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1998 return amd_filter_mce(m);
1999 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2000 return intel_filter_mce(m);
2001
2002 return false;
2003 }
2004
2005 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)2006 static noinstr void unexpected_machine_check(struct pt_regs *regs)
2007 {
2008 instrumentation_begin();
2009 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
2010 smp_processor_id());
2011 instrumentation_end();
2012 }
2013
2014 /* Call the installed machine check handler for this CPU setup. */
2015 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2016
exc_machine_check_kernel(struct pt_regs * regs)2017 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2018 {
2019 irqentry_state_t irq_state;
2020
2021 WARN_ON_ONCE(user_mode(regs));
2022
2023 /*
2024 * Only required when from kernel mode. See
2025 * mce_check_crashing_cpu() for details.
2026 */
2027 if (machine_check_vector == do_machine_check &&
2028 mce_check_crashing_cpu())
2029 return;
2030
2031 irq_state = irqentry_nmi_enter(regs);
2032 /*
2033 * The call targets are marked noinstr, but objtool can't figure
2034 * that out because it's an indirect call. Annotate it.
2035 */
2036 instrumentation_begin();
2037
2038 machine_check_vector(regs);
2039
2040 instrumentation_end();
2041 irqentry_nmi_exit(regs, irq_state);
2042 }
2043
exc_machine_check_user(struct pt_regs * regs)2044 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2045 {
2046 irqentry_enter_from_user_mode(regs);
2047 instrumentation_begin();
2048
2049 machine_check_vector(regs);
2050
2051 instrumentation_end();
2052 irqentry_exit_to_user_mode(regs);
2053 }
2054
2055 #ifdef CONFIG_X86_64
2056 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2057 DEFINE_IDTENTRY_MCE(exc_machine_check)
2058 {
2059 unsigned long dr7;
2060
2061 dr7 = local_db_save();
2062 exc_machine_check_kernel(regs);
2063 local_db_restore(dr7);
2064 }
2065
2066 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2067 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2068 {
2069 unsigned long dr7;
2070
2071 dr7 = local_db_save();
2072 exc_machine_check_user(regs);
2073 local_db_restore(dr7);
2074 }
2075 #else
2076 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2077 DEFINE_IDTENTRY_RAW(exc_machine_check)
2078 {
2079 unsigned long dr7;
2080
2081 dr7 = local_db_save();
2082 if (user_mode(regs))
2083 exc_machine_check_user(regs);
2084 else
2085 exc_machine_check_kernel(regs);
2086 local_db_restore(dr7);
2087 }
2088 #endif
2089
2090 /*
2091 * Called for each booted CPU to set up machine checks.
2092 * Must be called with preempt off:
2093 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2094 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2095 {
2096 if (mca_cfg.disabled)
2097 return;
2098
2099 if (__mcheck_cpu_ancient_init(c))
2100 return;
2101
2102 if (!mce_available(c))
2103 return;
2104
2105 __mcheck_cpu_cap_init();
2106
2107 if (__mcheck_cpu_apply_quirks(c) < 0) {
2108 mca_cfg.disabled = 1;
2109 return;
2110 }
2111
2112 if (mce_gen_pool_init()) {
2113 mca_cfg.disabled = 1;
2114 pr_emerg("Couldn't allocate MCE records pool!\n");
2115 return;
2116 }
2117
2118 machine_check_vector = do_machine_check;
2119
2120 __mcheck_cpu_init_early(c);
2121 __mcheck_cpu_init_generic();
2122 __mcheck_cpu_init_vendor(c);
2123 __mcheck_cpu_init_clear_banks();
2124 __mcheck_cpu_check_banks();
2125 __mcheck_cpu_setup_timer();
2126 }
2127
2128 /*
2129 * Called for each booted CPU to clear some machine checks opt-ins
2130 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2131 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2132 {
2133 if (mca_cfg.disabled)
2134 return;
2135
2136 if (!mce_available(c))
2137 return;
2138
2139 /*
2140 * Possibly to clear general settings generic to x86
2141 * __mcheck_cpu_clear_generic(c);
2142 */
2143 __mcheck_cpu_clear_vendor(c);
2144
2145 }
2146
__mce_disable_bank(void * arg)2147 static void __mce_disable_bank(void *arg)
2148 {
2149 int bank = *((int *)arg);
2150 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2151 cmci_disable_bank(bank);
2152 }
2153
mce_disable_bank(int bank)2154 void mce_disable_bank(int bank)
2155 {
2156 if (bank >= this_cpu_read(mce_num_banks)) {
2157 pr_warn(FW_BUG
2158 "Ignoring request to disable invalid MCA bank %d.\n",
2159 bank);
2160 return;
2161 }
2162 set_bit(bank, mce_banks_ce_disabled);
2163 on_each_cpu(__mce_disable_bank, &bank, 1);
2164 }
2165
2166 /*
2167 * mce=off Disables machine check
2168 * mce=no_cmci Disables CMCI
2169 * mce=no_lmce Disables LMCE
2170 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2171 * mce=print_all Print all machine check logs to console
2172 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2173 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2174 * monarchtimeout is how long to wait for other CPUs on machine
2175 * check, or 0 to not wait
2176 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2177 and older.
2178 * mce=nobootlog Don't log MCEs from before booting.
2179 * mce=bios_cmci_threshold Don't program the CMCI threshold
2180 * mce=recovery force enable copy_mc_fragile()
2181 */
mcheck_enable(char * str)2182 static int __init mcheck_enable(char *str)
2183 {
2184 struct mca_config *cfg = &mca_cfg;
2185
2186 if (*str == 0) {
2187 enable_p5_mce();
2188 return 1;
2189 }
2190 if (*str == '=')
2191 str++;
2192 if (!strcmp(str, "off"))
2193 cfg->disabled = 1;
2194 else if (!strcmp(str, "no_cmci"))
2195 cfg->cmci_disabled = true;
2196 else if (!strcmp(str, "no_lmce"))
2197 cfg->lmce_disabled = 1;
2198 else if (!strcmp(str, "dont_log_ce"))
2199 cfg->dont_log_ce = true;
2200 else if (!strcmp(str, "print_all"))
2201 cfg->print_all = true;
2202 else if (!strcmp(str, "ignore_ce"))
2203 cfg->ignore_ce = true;
2204 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2205 cfg->bootlog = (str[0] == 'b');
2206 else if (!strcmp(str, "bios_cmci_threshold"))
2207 cfg->bios_cmci_threshold = 1;
2208 else if (!strcmp(str, "recovery"))
2209 cfg->recovery = 1;
2210 else if (isdigit(str[0])) {
2211 if (get_option(&str, &cfg->tolerant) == 2)
2212 get_option(&str, &(cfg->monarch_timeout));
2213 } else {
2214 pr_info("mce argument %s ignored. Please use /sys\n", str);
2215 return 0;
2216 }
2217 return 1;
2218 }
2219 __setup("mce", mcheck_enable);
2220
mcheck_init(void)2221 int __init mcheck_init(void)
2222 {
2223 mce_register_decode_chain(&early_nb);
2224 mce_register_decode_chain(&mce_uc_nb);
2225 mce_register_decode_chain(&mce_default_nb);
2226 mcheck_vendor_init_severity();
2227
2228 INIT_WORK(&mce_work, mce_gen_pool_process);
2229 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2230
2231 return 0;
2232 }
2233
2234 /*
2235 * mce_syscore: PM support
2236 */
2237
2238 /*
2239 * Disable machine checks on suspend and shutdown. We can't really handle
2240 * them later.
2241 */
mce_disable_error_reporting(void)2242 static void mce_disable_error_reporting(void)
2243 {
2244 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2245 int i;
2246
2247 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2248 struct mce_bank *b = &mce_banks[i];
2249
2250 if (b->init)
2251 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2252 }
2253 return;
2254 }
2255
vendor_disable_error_reporting(void)2256 static void vendor_disable_error_reporting(void)
2257 {
2258 /*
2259 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2260 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2261 * is bad, since it will inhibit reporting for all shared resources on
2262 * the socket like the last level cache (LLC), the integrated memory
2263 * controller (iMC), etc.
2264 */
2265 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2266 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2267 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2268 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2269 return;
2270
2271 mce_disable_error_reporting();
2272 }
2273
mce_syscore_suspend(void)2274 static int mce_syscore_suspend(void)
2275 {
2276 vendor_disable_error_reporting();
2277 return 0;
2278 }
2279
mce_syscore_shutdown(void)2280 static void mce_syscore_shutdown(void)
2281 {
2282 vendor_disable_error_reporting();
2283 }
2284
2285 /*
2286 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2287 * Only one CPU is active at this time, the others get re-added later using
2288 * CPU hotplug:
2289 */
mce_syscore_resume(void)2290 static void mce_syscore_resume(void)
2291 {
2292 __mcheck_cpu_init_generic();
2293 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2294 __mcheck_cpu_init_clear_banks();
2295 }
2296
2297 static struct syscore_ops mce_syscore_ops = {
2298 .suspend = mce_syscore_suspend,
2299 .shutdown = mce_syscore_shutdown,
2300 .resume = mce_syscore_resume,
2301 };
2302
2303 /*
2304 * mce_device: Sysfs support
2305 */
2306
mce_cpu_restart(void * data)2307 static void mce_cpu_restart(void *data)
2308 {
2309 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2310 return;
2311 __mcheck_cpu_init_generic();
2312 __mcheck_cpu_init_clear_banks();
2313 __mcheck_cpu_init_timer();
2314 }
2315
2316 /* Reinit MCEs after user configuration changes */
mce_restart(void)2317 static void mce_restart(void)
2318 {
2319 mce_timer_delete_all();
2320 on_each_cpu(mce_cpu_restart, NULL, 1);
2321 mce_schedule_work();
2322 }
2323
2324 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2325 static void mce_disable_cmci(void *data)
2326 {
2327 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2328 return;
2329 cmci_clear();
2330 }
2331
mce_enable_ce(void * all)2332 static void mce_enable_ce(void *all)
2333 {
2334 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2335 return;
2336 cmci_reenable();
2337 cmci_recheck();
2338 if (all)
2339 __mcheck_cpu_init_timer();
2340 }
2341
2342 static struct bus_type mce_subsys = {
2343 .name = "machinecheck",
2344 .dev_name = "machinecheck",
2345 };
2346
2347 DEFINE_PER_CPU(struct device *, mce_device);
2348
attr_to_bank(struct device_attribute * attr)2349 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2350 {
2351 return container_of(attr, struct mce_bank_dev, attr);
2352 }
2353
show_bank(struct device * s,struct device_attribute * attr,char * buf)2354 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2355 char *buf)
2356 {
2357 u8 bank = attr_to_bank(attr)->bank;
2358 struct mce_bank *b;
2359
2360 if (bank >= per_cpu(mce_num_banks, s->id))
2361 return -EINVAL;
2362
2363 b = &per_cpu(mce_banks_array, s->id)[bank];
2364
2365 if (!b->init)
2366 return -ENODEV;
2367
2368 return sprintf(buf, "%llx\n", b->ctl);
2369 }
2370
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2371 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2372 const char *buf, size_t size)
2373 {
2374 u8 bank = attr_to_bank(attr)->bank;
2375 struct mce_bank *b;
2376 u64 new;
2377
2378 if (kstrtou64(buf, 0, &new) < 0)
2379 return -EINVAL;
2380
2381 if (bank >= per_cpu(mce_num_banks, s->id))
2382 return -EINVAL;
2383
2384 b = &per_cpu(mce_banks_array, s->id)[bank];
2385
2386 if (!b->init)
2387 return -ENODEV;
2388
2389 b->ctl = new;
2390 mce_restart();
2391
2392 return size;
2393 }
2394
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2395 static ssize_t set_ignore_ce(struct device *s,
2396 struct device_attribute *attr,
2397 const char *buf, size_t size)
2398 {
2399 u64 new;
2400
2401 if (kstrtou64(buf, 0, &new) < 0)
2402 return -EINVAL;
2403
2404 mutex_lock(&mce_sysfs_mutex);
2405 if (mca_cfg.ignore_ce ^ !!new) {
2406 if (new) {
2407 /* disable ce features */
2408 mce_timer_delete_all();
2409 on_each_cpu(mce_disable_cmci, NULL, 1);
2410 mca_cfg.ignore_ce = true;
2411 } else {
2412 /* enable ce features */
2413 mca_cfg.ignore_ce = false;
2414 on_each_cpu(mce_enable_ce, (void *)1, 1);
2415 }
2416 }
2417 mutex_unlock(&mce_sysfs_mutex);
2418
2419 return size;
2420 }
2421
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2422 static ssize_t set_cmci_disabled(struct device *s,
2423 struct device_attribute *attr,
2424 const char *buf, size_t size)
2425 {
2426 u64 new;
2427
2428 if (kstrtou64(buf, 0, &new) < 0)
2429 return -EINVAL;
2430
2431 mutex_lock(&mce_sysfs_mutex);
2432 if (mca_cfg.cmci_disabled ^ !!new) {
2433 if (new) {
2434 /* disable cmci */
2435 on_each_cpu(mce_disable_cmci, NULL, 1);
2436 mca_cfg.cmci_disabled = true;
2437 } else {
2438 /* enable cmci */
2439 mca_cfg.cmci_disabled = false;
2440 on_each_cpu(mce_enable_ce, NULL, 1);
2441 }
2442 }
2443 mutex_unlock(&mce_sysfs_mutex);
2444
2445 return size;
2446 }
2447
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2448 static ssize_t store_int_with_restart(struct device *s,
2449 struct device_attribute *attr,
2450 const char *buf, size_t size)
2451 {
2452 unsigned long old_check_interval = check_interval;
2453 ssize_t ret = device_store_ulong(s, attr, buf, size);
2454
2455 if (check_interval == old_check_interval)
2456 return ret;
2457
2458 mutex_lock(&mce_sysfs_mutex);
2459 mce_restart();
2460 mutex_unlock(&mce_sysfs_mutex);
2461
2462 return ret;
2463 }
2464
2465 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2466 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2467 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2468 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2469
2470 static struct dev_ext_attribute dev_attr_check_interval = {
2471 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2472 &check_interval
2473 };
2474
2475 static struct dev_ext_attribute dev_attr_ignore_ce = {
2476 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2477 &mca_cfg.ignore_ce
2478 };
2479
2480 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2481 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2482 &mca_cfg.cmci_disabled
2483 };
2484
2485 static struct device_attribute *mce_device_attrs[] = {
2486 &dev_attr_tolerant.attr,
2487 &dev_attr_check_interval.attr,
2488 #ifdef CONFIG_X86_MCELOG_LEGACY
2489 &dev_attr_trigger,
2490 #endif
2491 &dev_attr_monarch_timeout.attr,
2492 &dev_attr_dont_log_ce.attr,
2493 &dev_attr_print_all.attr,
2494 &dev_attr_ignore_ce.attr,
2495 &dev_attr_cmci_disabled.attr,
2496 NULL
2497 };
2498
2499 static cpumask_var_t mce_device_initialized;
2500
mce_device_release(struct device * dev)2501 static void mce_device_release(struct device *dev)
2502 {
2503 kfree(dev);
2504 }
2505
2506 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2507 static int mce_device_create(unsigned int cpu)
2508 {
2509 struct device *dev;
2510 int err;
2511 int i, j;
2512
2513 if (!mce_available(&boot_cpu_data))
2514 return -EIO;
2515
2516 dev = per_cpu(mce_device, cpu);
2517 if (dev)
2518 return 0;
2519
2520 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2521 if (!dev)
2522 return -ENOMEM;
2523 dev->id = cpu;
2524 dev->bus = &mce_subsys;
2525 dev->release = &mce_device_release;
2526
2527 err = device_register(dev);
2528 if (err) {
2529 put_device(dev);
2530 return err;
2531 }
2532
2533 for (i = 0; mce_device_attrs[i]; i++) {
2534 err = device_create_file(dev, mce_device_attrs[i]);
2535 if (err)
2536 goto error;
2537 }
2538 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2539 err = device_create_file(dev, &mce_bank_devs[j].attr);
2540 if (err)
2541 goto error2;
2542 }
2543 cpumask_set_cpu(cpu, mce_device_initialized);
2544 per_cpu(mce_device, cpu) = dev;
2545
2546 return 0;
2547 error2:
2548 while (--j >= 0)
2549 device_remove_file(dev, &mce_bank_devs[j].attr);
2550 error:
2551 while (--i >= 0)
2552 device_remove_file(dev, mce_device_attrs[i]);
2553
2554 device_unregister(dev);
2555
2556 return err;
2557 }
2558
mce_device_remove(unsigned int cpu)2559 static void mce_device_remove(unsigned int cpu)
2560 {
2561 struct device *dev = per_cpu(mce_device, cpu);
2562 int i;
2563
2564 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2565 return;
2566
2567 for (i = 0; mce_device_attrs[i]; i++)
2568 device_remove_file(dev, mce_device_attrs[i]);
2569
2570 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2571 device_remove_file(dev, &mce_bank_devs[i].attr);
2572
2573 device_unregister(dev);
2574 cpumask_clear_cpu(cpu, mce_device_initialized);
2575 per_cpu(mce_device, cpu) = NULL;
2576 }
2577
2578 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2579 static void mce_disable_cpu(void)
2580 {
2581 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2582 return;
2583
2584 if (!cpuhp_tasks_frozen)
2585 cmci_clear();
2586
2587 vendor_disable_error_reporting();
2588 }
2589
mce_reenable_cpu(void)2590 static void mce_reenable_cpu(void)
2591 {
2592 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2593 int i;
2594
2595 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2596 return;
2597
2598 if (!cpuhp_tasks_frozen)
2599 cmci_reenable();
2600 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2601 struct mce_bank *b = &mce_banks[i];
2602
2603 if (b->init)
2604 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2605 }
2606 }
2607
mce_cpu_dead(unsigned int cpu)2608 static int mce_cpu_dead(unsigned int cpu)
2609 {
2610 mce_intel_hcpu_update(cpu);
2611
2612 /* intentionally ignoring frozen here */
2613 if (!cpuhp_tasks_frozen)
2614 cmci_rediscover();
2615 return 0;
2616 }
2617
mce_cpu_online(unsigned int cpu)2618 static int mce_cpu_online(unsigned int cpu)
2619 {
2620 struct timer_list *t = this_cpu_ptr(&mce_timer);
2621 int ret;
2622
2623 mce_device_create(cpu);
2624
2625 ret = mce_threshold_create_device(cpu);
2626 if (ret) {
2627 mce_device_remove(cpu);
2628 return ret;
2629 }
2630 mce_reenable_cpu();
2631 mce_start_timer(t);
2632 return 0;
2633 }
2634
mce_cpu_pre_down(unsigned int cpu)2635 static int mce_cpu_pre_down(unsigned int cpu)
2636 {
2637 struct timer_list *t = this_cpu_ptr(&mce_timer);
2638
2639 mce_disable_cpu();
2640 del_timer_sync(t);
2641 mce_threshold_remove_device(cpu);
2642 mce_device_remove(cpu);
2643 return 0;
2644 }
2645
mce_init_banks(void)2646 static __init void mce_init_banks(void)
2647 {
2648 int i;
2649
2650 for (i = 0; i < MAX_NR_BANKS; i++) {
2651 struct mce_bank_dev *b = &mce_bank_devs[i];
2652 struct device_attribute *a = &b->attr;
2653
2654 b->bank = i;
2655
2656 sysfs_attr_init(&a->attr);
2657 a->attr.name = b->attrname;
2658 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2659
2660 a->attr.mode = 0644;
2661 a->show = show_bank;
2662 a->store = set_bank;
2663 }
2664 }
2665
2666 /*
2667 * When running on XEN, this initcall is ordered against the XEN mcelog
2668 * initcall:
2669 *
2670 * device_initcall(xen_late_init_mcelog);
2671 * device_initcall_sync(mcheck_init_device);
2672 */
mcheck_init_device(void)2673 static __init int mcheck_init_device(void)
2674 {
2675 int err;
2676
2677 /*
2678 * Check if we have a spare virtual bit. This will only become
2679 * a problem if/when we move beyond 5-level page tables.
2680 */
2681 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2682
2683 if (!mce_available(&boot_cpu_data)) {
2684 err = -EIO;
2685 goto err_out;
2686 }
2687
2688 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2689 err = -ENOMEM;
2690 goto err_out;
2691 }
2692
2693 mce_init_banks();
2694
2695 err = subsys_system_register(&mce_subsys, NULL);
2696 if (err)
2697 goto err_out_mem;
2698
2699 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2700 mce_cpu_dead);
2701 if (err)
2702 goto err_out_mem;
2703
2704 /*
2705 * Invokes mce_cpu_online() on all CPUs which are online when
2706 * the state is installed.
2707 */
2708 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2709 mce_cpu_online, mce_cpu_pre_down);
2710 if (err < 0)
2711 goto err_out_online;
2712
2713 register_syscore_ops(&mce_syscore_ops);
2714
2715 return 0;
2716
2717 err_out_online:
2718 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2719
2720 err_out_mem:
2721 free_cpumask_var(mce_device_initialized);
2722
2723 err_out:
2724 pr_err("Unable to init MCE device (rc: %d)\n", err);
2725
2726 return err;
2727 }
2728 device_initcall_sync(mcheck_init_device);
2729
2730 /*
2731 * Old style boot options parsing. Only for compatibility.
2732 */
mcheck_disable(char * str)2733 static int __init mcheck_disable(char *str)
2734 {
2735 mca_cfg.disabled = 1;
2736 return 1;
2737 }
2738 __setup("nomce", mcheck_disable);
2739
2740 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2741 struct dentry *mce_get_debugfs_dir(void)
2742 {
2743 static struct dentry *dmce;
2744
2745 if (!dmce)
2746 dmce = debugfs_create_dir("mce", NULL);
2747
2748 return dmce;
2749 }
2750
mce_reset(void)2751 static void mce_reset(void)
2752 {
2753 cpu_missing = 0;
2754 atomic_set(&mce_fake_panicked, 0);
2755 atomic_set(&mce_executing, 0);
2756 atomic_set(&mce_callin, 0);
2757 atomic_set(&global_nwo, 0);
2758 cpumask_setall(&mce_missing_cpus);
2759 }
2760
fake_panic_get(void * data,u64 * val)2761 static int fake_panic_get(void *data, u64 *val)
2762 {
2763 *val = fake_panic;
2764 return 0;
2765 }
2766
fake_panic_set(void * data,u64 val)2767 static int fake_panic_set(void *data, u64 val)
2768 {
2769 mce_reset();
2770 fake_panic = val;
2771 return 0;
2772 }
2773
2774 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2775 "%llu\n");
2776
mcheck_debugfs_init(void)2777 static void __init mcheck_debugfs_init(void)
2778 {
2779 struct dentry *dmce;
2780
2781 dmce = mce_get_debugfs_dir();
2782 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2783 &fake_panic_fops);
2784 }
2785 #else
mcheck_debugfs_init(void)2786 static void __init mcheck_debugfs_init(void) { }
2787 #endif
2788
mcheck_late_init(void)2789 static int __init mcheck_late_init(void)
2790 {
2791 if (mca_cfg.recovery)
2792 enable_copy_mc_fragile();
2793
2794 mcheck_debugfs_init();
2795
2796 /*
2797 * Flush out everything that has been logged during early boot, now that
2798 * everything has been initialized (workqueues, decoders, ...).
2799 */
2800 mce_schedule_work();
2801
2802 return 0;
2803 }
2804 late_initcall(mcheck_late_init);
2805