1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/major.h>
55 #include <linux/module.h>
56 #include <linux/reboot.h>
57 #include <linux/file.h>
58 #include <linux/compat.h>
59 #include <linux/delay.h>
60 #include <linux/raid/md_p.h>
61 #include <linux/raid/md_u.h>
62 #include <linux/raid/detect.h>
63 #include <linux/slab.h>
64 #include <linux/percpu-refcount.h>
65 #include <linux/part_stat.h>
66
67 #include <trace/events/block.h>
68 #include "md.h"
69 #include "md-bitmap.h"
70 #include "md-cluster.h"
71
72 /* pers_list is a list of registered personalities protected
73 * by pers_lock.
74 * pers_lock does extra service to protect accesses to
75 * mddev->thread when the mutex cannot be held.
76 */
77 static LIST_HEAD(pers_list);
78 static DEFINE_SPINLOCK(pers_lock);
79
80 static struct kobj_type md_ktype;
81
82 struct md_cluster_operations *md_cluster_ops;
83 EXPORT_SYMBOL(md_cluster_ops);
84 static struct module *md_cluster_mod;
85
86 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
87 static struct workqueue_struct *md_wq;
88 static struct workqueue_struct *md_misc_wq;
89 static struct workqueue_struct *md_rdev_misc_wq;
90
91 static int remove_and_add_spares(struct mddev *mddev,
92 struct md_rdev *this);
93 static void mddev_detach(struct mddev *mddev);
94
95 enum md_ro_state {
96 MD_RDWR,
97 MD_RDONLY,
98 MD_AUTO_READ,
99 MD_MAX_STATE
100 };
101
md_is_rdwr(struct mddev * mddev)102 static bool md_is_rdwr(struct mddev *mddev)
103 {
104 return (mddev->ro == MD_RDWR);
105 }
106
107 /*
108 * Default number of read corrections we'll attempt on an rdev
109 * before ejecting it from the array. We divide the read error
110 * count by 2 for every hour elapsed between read errors.
111 */
112 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
113 /* Default safemode delay: 200 msec */
114 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
115 /*
116 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
117 * is 1000 KB/sec, so the extra system load does not show up that much.
118 * Increase it if you want to have more _guaranteed_ speed. Note that
119 * the RAID driver will use the maximum available bandwidth if the IO
120 * subsystem is idle. There is also an 'absolute maximum' reconstruction
121 * speed limit - in case reconstruction slows down your system despite
122 * idle IO detection.
123 *
124 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
125 * or /sys/block/mdX/md/sync_speed_{min,max}
126 */
127
128 static int sysctl_speed_limit_min = 1000;
129 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)130 static inline int speed_min(struct mddev *mddev)
131 {
132 return mddev->sync_speed_min ?
133 mddev->sync_speed_min : sysctl_speed_limit_min;
134 }
135
speed_max(struct mddev * mddev)136 static inline int speed_max(struct mddev *mddev)
137 {
138 return mddev->sync_speed_max ?
139 mddev->sync_speed_max : sysctl_speed_limit_max;
140 }
141
rdev_uninit_serial(struct md_rdev * rdev)142 static void rdev_uninit_serial(struct md_rdev *rdev)
143 {
144 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
145 return;
146
147 kvfree(rdev->serial);
148 rdev->serial = NULL;
149 }
150
rdevs_uninit_serial(struct mddev * mddev)151 static void rdevs_uninit_serial(struct mddev *mddev)
152 {
153 struct md_rdev *rdev;
154
155 rdev_for_each(rdev, mddev)
156 rdev_uninit_serial(rdev);
157 }
158
rdev_init_serial(struct md_rdev * rdev)159 static int rdev_init_serial(struct md_rdev *rdev)
160 {
161 /* serial_nums equals with BARRIER_BUCKETS_NR */
162 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
163 struct serial_in_rdev *serial = NULL;
164
165 if (test_bit(CollisionCheck, &rdev->flags))
166 return 0;
167
168 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
169 GFP_KERNEL);
170 if (!serial)
171 return -ENOMEM;
172
173 for (i = 0; i < serial_nums; i++) {
174 struct serial_in_rdev *serial_tmp = &serial[i];
175
176 spin_lock_init(&serial_tmp->serial_lock);
177 serial_tmp->serial_rb = RB_ROOT_CACHED;
178 init_waitqueue_head(&serial_tmp->serial_io_wait);
179 }
180
181 rdev->serial = serial;
182 set_bit(CollisionCheck, &rdev->flags);
183
184 return 0;
185 }
186
rdevs_init_serial(struct mddev * mddev)187 static int rdevs_init_serial(struct mddev *mddev)
188 {
189 struct md_rdev *rdev;
190 int ret = 0;
191
192 rdev_for_each(rdev, mddev) {
193 ret = rdev_init_serial(rdev);
194 if (ret)
195 break;
196 }
197
198 /* Free all resources if pool is not existed */
199 if (ret && !mddev->serial_info_pool)
200 rdevs_uninit_serial(mddev);
201
202 return ret;
203 }
204
205 /*
206 * rdev needs to enable serial stuffs if it meets the conditions:
207 * 1. it is multi-queue device flaged with writemostly.
208 * 2. the write-behind mode is enabled.
209 */
rdev_need_serial(struct md_rdev * rdev)210 static int rdev_need_serial(struct md_rdev *rdev)
211 {
212 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
213 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
214 test_bit(WriteMostly, &rdev->flags));
215 }
216
217 /*
218 * Init resource for rdev(s), then create serial_info_pool if:
219 * 1. rdev is the first device which return true from rdev_enable_serial.
220 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
221 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)222 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
223 bool is_suspend)
224 {
225 int ret = 0;
226
227 if (rdev && !rdev_need_serial(rdev) &&
228 !test_bit(CollisionCheck, &rdev->flags))
229 return;
230
231 if (!is_suspend)
232 mddev_suspend(mddev);
233
234 if (!rdev)
235 ret = rdevs_init_serial(mddev);
236 else
237 ret = rdev_init_serial(rdev);
238 if (ret)
239 goto abort;
240
241 if (mddev->serial_info_pool == NULL) {
242 /*
243 * already in memalloc noio context by
244 * mddev_suspend()
245 */
246 mddev->serial_info_pool =
247 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
248 sizeof(struct serial_info));
249 if (!mddev->serial_info_pool) {
250 rdevs_uninit_serial(mddev);
251 pr_err("can't alloc memory pool for serialization\n");
252 }
253 }
254
255 abort:
256 if (!is_suspend)
257 mddev_resume(mddev);
258 }
259
260 /*
261 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
262 * 1. rdev is the last device flaged with CollisionCheck.
263 * 2. when bitmap is destroyed while policy is not enabled.
264 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
265 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)266 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
267 bool is_suspend)
268 {
269 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
270 return;
271
272 if (mddev->serial_info_pool) {
273 struct md_rdev *temp;
274 int num = 0; /* used to track if other rdevs need the pool */
275
276 if (!is_suspend)
277 mddev_suspend(mddev);
278 rdev_for_each(temp, mddev) {
279 if (!rdev) {
280 if (!mddev->serialize_policy ||
281 !rdev_need_serial(temp))
282 rdev_uninit_serial(temp);
283 else
284 num++;
285 } else if (temp != rdev &&
286 test_bit(CollisionCheck, &temp->flags))
287 num++;
288 }
289
290 if (rdev)
291 rdev_uninit_serial(rdev);
292
293 if (num)
294 pr_info("The mempool could be used by other devices\n");
295 else {
296 mempool_destroy(mddev->serial_info_pool);
297 mddev->serial_info_pool = NULL;
298 }
299 if (!is_suspend)
300 mddev_resume(mddev);
301 }
302 }
303
304 static struct ctl_table_header *raid_table_header;
305
306 static struct ctl_table raid_table[] = {
307 {
308 .procname = "speed_limit_min",
309 .data = &sysctl_speed_limit_min,
310 .maxlen = sizeof(int),
311 .mode = S_IRUGO|S_IWUSR,
312 .proc_handler = proc_dointvec,
313 },
314 {
315 .procname = "speed_limit_max",
316 .data = &sysctl_speed_limit_max,
317 .maxlen = sizeof(int),
318 .mode = S_IRUGO|S_IWUSR,
319 .proc_handler = proc_dointvec,
320 },
321 { }
322 };
323
324 static struct ctl_table raid_dir_table[] = {
325 {
326 .procname = "raid",
327 .maxlen = 0,
328 .mode = S_IRUGO|S_IXUGO,
329 .child = raid_table,
330 },
331 { }
332 };
333
334 static struct ctl_table raid_root_table[] = {
335 {
336 .procname = "dev",
337 .maxlen = 0,
338 .mode = 0555,
339 .child = raid_dir_table,
340 },
341 { }
342 };
343
344 static int start_readonly;
345
346 /*
347 * The original mechanism for creating an md device is to create
348 * a device node in /dev and to open it. This causes races with device-close.
349 * The preferred method is to write to the "new_array" module parameter.
350 * This can avoid races.
351 * Setting create_on_open to false disables the original mechanism
352 * so all the races disappear.
353 */
354 static bool create_on_open = true;
355
356 /*
357 * We have a system wide 'event count' that is incremented
358 * on any 'interesting' event, and readers of /proc/mdstat
359 * can use 'poll' or 'select' to find out when the event
360 * count increases.
361 *
362 * Events are:
363 * start array, stop array, error, add device, remove device,
364 * start build, activate spare
365 */
366 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
367 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)368 void md_new_event(struct mddev *mddev)
369 {
370 atomic_inc(&md_event_count);
371 wake_up(&md_event_waiters);
372 }
373 EXPORT_SYMBOL_GPL(md_new_event);
374
375 /*
376 * Enables to iterate over all existing md arrays
377 * all_mddevs_lock protects this list.
378 */
379 static LIST_HEAD(all_mddevs);
380 static DEFINE_SPINLOCK(all_mddevs_lock);
381
382 /*
383 * iterates through all used mddevs in the system.
384 * We take care to grab the all_mddevs_lock whenever navigating
385 * the list, and to always hold a refcount when unlocked.
386 * Any code which breaks out of this loop while own
387 * a reference to the current mddev and must mddev_put it.
388 */
389 #define for_each_mddev(_mddev,_tmp) \
390 \
391 for (({ spin_lock(&all_mddevs_lock); \
392 _tmp = all_mddevs.next; \
393 _mddev = NULL;}); \
394 ({ if (_tmp != &all_mddevs) \
395 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
396 spin_unlock(&all_mddevs_lock); \
397 if (_mddev) mddev_put(_mddev); \
398 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
399 _tmp != &all_mddevs;}); \
400 ({ spin_lock(&all_mddevs_lock); \
401 _tmp = _tmp->next;}) \
402 )
403
404 /* Rather than calling directly into the personality make_request function,
405 * IO requests come here first so that we can check if the device is
406 * being suspended pending a reconfiguration.
407 * We hold a refcount over the call to ->make_request. By the time that
408 * call has finished, the bio has been linked into some internal structure
409 * and so is visible to ->quiesce(), so we don't need the refcount any more.
410 */
is_suspended(struct mddev * mddev,struct bio * bio)411 static bool is_suspended(struct mddev *mddev, struct bio *bio)
412 {
413 if (mddev->suspended)
414 return true;
415 if (bio_data_dir(bio) != WRITE)
416 return false;
417 if (mddev->suspend_lo >= mddev->suspend_hi)
418 return false;
419 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
420 return false;
421 if (bio_end_sector(bio) < mddev->suspend_lo)
422 return false;
423 return true;
424 }
425
md_handle_request(struct mddev * mddev,struct bio * bio)426 void md_handle_request(struct mddev *mddev, struct bio *bio)
427 {
428 check_suspended:
429 rcu_read_lock();
430 if (is_suspended(mddev, bio)) {
431 DEFINE_WAIT(__wait);
432 for (;;) {
433 prepare_to_wait(&mddev->sb_wait, &__wait,
434 TASK_UNINTERRUPTIBLE);
435 if (!is_suspended(mddev, bio))
436 break;
437 rcu_read_unlock();
438 schedule();
439 rcu_read_lock();
440 }
441 finish_wait(&mddev->sb_wait, &__wait);
442 }
443 atomic_inc(&mddev->active_io);
444 rcu_read_unlock();
445
446 if (!mddev->pers->make_request(mddev, bio)) {
447 atomic_dec(&mddev->active_io);
448 wake_up(&mddev->sb_wait);
449 goto check_suspended;
450 }
451
452 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
453 wake_up(&mddev->sb_wait);
454 }
455 EXPORT_SYMBOL(md_handle_request);
456
md_submit_bio(struct bio * bio)457 static blk_qc_t md_submit_bio(struct bio *bio)
458 {
459 const int rw = bio_data_dir(bio);
460 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
461
462 if (mddev == NULL || mddev->pers == NULL) {
463 bio_io_error(bio);
464 return BLK_QC_T_NONE;
465 }
466
467 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
468 bio_io_error(bio);
469 return BLK_QC_T_NONE;
470 }
471
472 blk_queue_split(&bio);
473 if (!bio)
474 return BLK_QC_T_NONE;
475
476 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
477 if (bio_sectors(bio) != 0)
478 bio->bi_status = BLK_STS_IOERR;
479 bio_endio(bio);
480 return BLK_QC_T_NONE;
481 }
482
483 /* bio could be mergeable after passing to underlayer */
484 bio->bi_opf &= ~REQ_NOMERGE;
485
486 md_handle_request(mddev, bio);
487
488 return BLK_QC_T_NONE;
489 }
490
491 /* mddev_suspend makes sure no new requests are submitted
492 * to the device, and that any requests that have been submitted
493 * are completely handled.
494 * Once mddev_detach() is called and completes, the module will be
495 * completely unused.
496 */
mddev_suspend(struct mddev * mddev)497 void mddev_suspend(struct mddev *mddev)
498 {
499 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
500 lockdep_assert_held(&mddev->reconfig_mutex);
501 if (mddev->suspended++)
502 return;
503 synchronize_rcu();
504 wake_up(&mddev->sb_wait);
505 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
506 smp_mb__after_atomic();
507 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
508 mddev->pers->quiesce(mddev, 1);
509 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
510 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
511
512 del_timer_sync(&mddev->safemode_timer);
513 /* restrict memory reclaim I/O during raid array is suspend */
514 mddev->noio_flag = memalloc_noio_save();
515 }
516 EXPORT_SYMBOL_GPL(mddev_suspend);
517
mddev_resume(struct mddev * mddev)518 void mddev_resume(struct mddev *mddev)
519 {
520 /* entred the memalloc scope from mddev_suspend() */
521 memalloc_noio_restore(mddev->noio_flag);
522 lockdep_assert_held(&mddev->reconfig_mutex);
523 if (--mddev->suspended)
524 return;
525 wake_up(&mddev->sb_wait);
526 mddev->pers->quiesce(mddev, 0);
527
528 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
529 md_wakeup_thread(mddev->thread);
530 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
531 }
532 EXPORT_SYMBOL_GPL(mddev_resume);
533
534 /*
535 * Generic flush handling for md
536 */
537
md_end_flush(struct bio * bio)538 static void md_end_flush(struct bio *bio)
539 {
540 struct md_rdev *rdev = bio->bi_private;
541 struct mddev *mddev = rdev->mddev;
542
543 bio_put(bio);
544
545 rdev_dec_pending(rdev, mddev);
546
547 if (atomic_dec_and_test(&mddev->flush_pending)) {
548 /* The pre-request flush has finished */
549 queue_work(md_wq, &mddev->flush_work);
550 }
551 }
552
553 static void md_submit_flush_data(struct work_struct *ws);
554
submit_flushes(struct work_struct * ws)555 static void submit_flushes(struct work_struct *ws)
556 {
557 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
558 struct md_rdev *rdev;
559
560 mddev->start_flush = ktime_get_boottime();
561 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
562 atomic_set(&mddev->flush_pending, 1);
563 rcu_read_lock();
564 rdev_for_each_rcu(rdev, mddev)
565 if (rdev->raid_disk >= 0 &&
566 !test_bit(Faulty, &rdev->flags)) {
567 /* Take two references, one is dropped
568 * when request finishes, one after
569 * we reclaim rcu_read_lock
570 */
571 struct bio *bi;
572 atomic_inc(&rdev->nr_pending);
573 atomic_inc(&rdev->nr_pending);
574 rcu_read_unlock();
575 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
576 bi->bi_end_io = md_end_flush;
577 bi->bi_private = rdev;
578 bio_set_dev(bi, rdev->bdev);
579 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
580 atomic_inc(&mddev->flush_pending);
581 submit_bio(bi);
582 rcu_read_lock();
583 rdev_dec_pending(rdev, mddev);
584 }
585 rcu_read_unlock();
586 if (atomic_dec_and_test(&mddev->flush_pending))
587 queue_work(md_wq, &mddev->flush_work);
588 }
589
md_submit_flush_data(struct work_struct * ws)590 static void md_submit_flush_data(struct work_struct *ws)
591 {
592 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
593 struct bio *bio = mddev->flush_bio;
594
595 /*
596 * must reset flush_bio before calling into md_handle_request to avoid a
597 * deadlock, because other bios passed md_handle_request suspend check
598 * could wait for this and below md_handle_request could wait for those
599 * bios because of suspend check
600 */
601 spin_lock_irq(&mddev->lock);
602 mddev->prev_flush_start = mddev->start_flush;
603 mddev->flush_bio = NULL;
604 spin_unlock_irq(&mddev->lock);
605 wake_up(&mddev->sb_wait);
606
607 if (bio->bi_iter.bi_size == 0) {
608 /* an empty barrier - all done */
609 bio_endio(bio);
610 } else {
611 bio->bi_opf &= ~REQ_PREFLUSH;
612 md_handle_request(mddev, bio);
613 }
614 }
615
616 /*
617 * Manages consolidation of flushes and submitting any flushes needed for
618 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
619 * being finished in another context. Returns false if the flushing is
620 * complete but still needs the I/O portion of the bio to be processed.
621 */
md_flush_request(struct mddev * mddev,struct bio * bio)622 bool md_flush_request(struct mddev *mddev, struct bio *bio)
623 {
624 ktime_t req_start = ktime_get_boottime();
625 spin_lock_irq(&mddev->lock);
626 /* flush requests wait until ongoing flush completes,
627 * hence coalescing all the pending requests.
628 */
629 wait_event_lock_irq(mddev->sb_wait,
630 !mddev->flush_bio ||
631 ktime_before(req_start, mddev->prev_flush_start),
632 mddev->lock);
633 /* new request after previous flush is completed */
634 if (ktime_after(req_start, mddev->prev_flush_start)) {
635 WARN_ON(mddev->flush_bio);
636 mddev->flush_bio = bio;
637 bio = NULL;
638 }
639 spin_unlock_irq(&mddev->lock);
640
641 if (!bio) {
642 INIT_WORK(&mddev->flush_work, submit_flushes);
643 queue_work(md_wq, &mddev->flush_work);
644 } else {
645 /* flush was performed for some other bio while we waited. */
646 if (bio->bi_iter.bi_size == 0)
647 /* an empty barrier - all done */
648 bio_endio(bio);
649 else {
650 bio->bi_opf &= ~REQ_PREFLUSH;
651 return false;
652 }
653 }
654 return true;
655 }
656 EXPORT_SYMBOL(md_flush_request);
657
mddev_get(struct mddev * mddev)658 static inline struct mddev *mddev_get(struct mddev *mddev)
659 {
660 atomic_inc(&mddev->active);
661 return mddev;
662 }
663
664 static void mddev_delayed_delete(struct work_struct *ws);
665
mddev_put(struct mddev * mddev)666 static void mddev_put(struct mddev *mddev)
667 {
668 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
669 return;
670 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
671 mddev->ctime == 0 && !mddev->hold_active) {
672 /* Array is not configured at all, and not held active,
673 * so destroy it */
674 list_del_init(&mddev->all_mddevs);
675
676 /*
677 * Call queue_work inside the spinlock so that
678 * flush_workqueue() after mddev_find will succeed in waiting
679 * for the work to be done.
680 */
681 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
682 queue_work(md_misc_wq, &mddev->del_work);
683 }
684 spin_unlock(&all_mddevs_lock);
685 }
686
687 static void md_safemode_timeout(struct timer_list *t);
688
mddev_init(struct mddev * mddev)689 void mddev_init(struct mddev *mddev)
690 {
691 kobject_init(&mddev->kobj, &md_ktype);
692 mutex_init(&mddev->open_mutex);
693 mutex_init(&mddev->reconfig_mutex);
694 mutex_init(&mddev->bitmap_info.mutex);
695 INIT_LIST_HEAD(&mddev->disks);
696 INIT_LIST_HEAD(&mddev->all_mddevs);
697 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
698 atomic_set(&mddev->active, 1);
699 atomic_set(&mddev->openers, 0);
700 atomic_set(&mddev->active_io, 0);
701 spin_lock_init(&mddev->lock);
702 atomic_set(&mddev->flush_pending, 0);
703 init_waitqueue_head(&mddev->sb_wait);
704 init_waitqueue_head(&mddev->recovery_wait);
705 mddev->reshape_position = MaxSector;
706 mddev->reshape_backwards = 0;
707 mddev->last_sync_action = "none";
708 mddev->resync_min = 0;
709 mddev->resync_max = MaxSector;
710 mddev->level = LEVEL_NONE;
711 }
712 EXPORT_SYMBOL_GPL(mddev_init);
713
mddev_find_locked(dev_t unit)714 static struct mddev *mddev_find_locked(dev_t unit)
715 {
716 struct mddev *mddev;
717
718 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
719 if (mddev->unit == unit)
720 return mddev;
721
722 return NULL;
723 }
724
725 /* find an unused unit number */
mddev_alloc_unit(void)726 static dev_t mddev_alloc_unit(void)
727 {
728 static int next_minor = 512;
729 int start = next_minor;
730 bool is_free = 0;
731 dev_t dev = 0;
732
733 while (!is_free) {
734 dev = MKDEV(MD_MAJOR, next_minor);
735 next_minor++;
736 if (next_minor > MINORMASK)
737 next_minor = 0;
738 if (next_minor == start)
739 return 0; /* Oh dear, all in use. */
740 is_free = !mddev_find_locked(dev);
741 }
742
743 return dev;
744 }
745
mddev_find(dev_t unit)746 static struct mddev *mddev_find(dev_t unit)
747 {
748 struct mddev *mddev;
749
750 if (MAJOR(unit) != MD_MAJOR)
751 unit &= ~((1 << MdpMinorShift) - 1);
752
753 spin_lock(&all_mddevs_lock);
754 mddev = mddev_find_locked(unit);
755 if (mddev)
756 mddev_get(mddev);
757 spin_unlock(&all_mddevs_lock);
758
759 return mddev;
760 }
761
mddev_alloc(dev_t unit)762 static struct mddev *mddev_alloc(dev_t unit)
763 {
764 struct mddev *new;
765 int error;
766
767 if (unit && MAJOR(unit) != MD_MAJOR)
768 unit &= ~((1 << MdpMinorShift) - 1);
769
770 new = kzalloc(sizeof(*new), GFP_KERNEL);
771 if (!new)
772 return ERR_PTR(-ENOMEM);
773 mddev_init(new);
774
775 spin_lock(&all_mddevs_lock);
776 if (unit) {
777 error = -EEXIST;
778 if (mddev_find_locked(unit))
779 goto out_free_new;
780 new->unit = unit;
781 if (MAJOR(unit) == MD_MAJOR)
782 new->md_minor = MINOR(unit);
783 else
784 new->md_minor = MINOR(unit) >> MdpMinorShift;
785 new->hold_active = UNTIL_IOCTL;
786 } else {
787 error = -ENODEV;
788 new->unit = mddev_alloc_unit();
789 if (!new->unit)
790 goto out_free_new;
791 new->md_minor = MINOR(new->unit);
792 new->hold_active = UNTIL_STOP;
793 }
794
795 list_add(&new->all_mddevs, &all_mddevs);
796 spin_unlock(&all_mddevs_lock);
797 return new;
798 out_free_new:
799 spin_unlock(&all_mddevs_lock);
800 kfree(new);
801 return ERR_PTR(error);
802 }
803
804 static const struct attribute_group md_redundancy_group;
805
mddev_unlock(struct mddev * mddev)806 void mddev_unlock(struct mddev *mddev)
807 {
808 if (mddev->to_remove) {
809 /* These cannot be removed under reconfig_mutex as
810 * an access to the files will try to take reconfig_mutex
811 * while holding the file unremovable, which leads to
812 * a deadlock.
813 * So hold set sysfs_active while the remove in happeing,
814 * and anything else which might set ->to_remove or my
815 * otherwise change the sysfs namespace will fail with
816 * -EBUSY if sysfs_active is still set.
817 * We set sysfs_active under reconfig_mutex and elsewhere
818 * test it under the same mutex to ensure its correct value
819 * is seen.
820 */
821 const struct attribute_group *to_remove = mddev->to_remove;
822 mddev->to_remove = NULL;
823 mddev->sysfs_active = 1;
824 mutex_unlock(&mddev->reconfig_mutex);
825
826 if (mddev->kobj.sd) {
827 if (to_remove != &md_redundancy_group)
828 sysfs_remove_group(&mddev->kobj, to_remove);
829 if (mddev->pers == NULL ||
830 mddev->pers->sync_request == NULL) {
831 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
832 if (mddev->sysfs_action)
833 sysfs_put(mddev->sysfs_action);
834 if (mddev->sysfs_completed)
835 sysfs_put(mddev->sysfs_completed);
836 if (mddev->sysfs_degraded)
837 sysfs_put(mddev->sysfs_degraded);
838 mddev->sysfs_action = NULL;
839 mddev->sysfs_completed = NULL;
840 mddev->sysfs_degraded = NULL;
841 }
842 }
843 mddev->sysfs_active = 0;
844 } else
845 mutex_unlock(&mddev->reconfig_mutex);
846
847 /* As we've dropped the mutex we need a spinlock to
848 * make sure the thread doesn't disappear
849 */
850 spin_lock(&pers_lock);
851 md_wakeup_thread(mddev->thread);
852 wake_up(&mddev->sb_wait);
853 spin_unlock(&pers_lock);
854 }
855 EXPORT_SYMBOL_GPL(mddev_unlock);
856
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)857 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
858 {
859 struct md_rdev *rdev;
860
861 rdev_for_each_rcu(rdev, mddev)
862 if (rdev->desc_nr == nr)
863 return rdev;
864
865 return NULL;
866 }
867 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
868
find_rdev(struct mddev * mddev,dev_t dev)869 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
870 {
871 struct md_rdev *rdev;
872
873 rdev_for_each(rdev, mddev)
874 if (rdev->bdev->bd_dev == dev)
875 return rdev;
876
877 return NULL;
878 }
879
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)880 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
881 {
882 struct md_rdev *rdev;
883
884 rdev_for_each_rcu(rdev, mddev)
885 if (rdev->bdev->bd_dev == dev)
886 return rdev;
887
888 return NULL;
889 }
890 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
891
find_pers(int level,char * clevel)892 static struct md_personality *find_pers(int level, char *clevel)
893 {
894 struct md_personality *pers;
895 list_for_each_entry(pers, &pers_list, list) {
896 if (level != LEVEL_NONE && pers->level == level)
897 return pers;
898 if (strcmp(pers->name, clevel)==0)
899 return pers;
900 }
901 return NULL;
902 }
903
904 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)905 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
906 {
907 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
908 return MD_NEW_SIZE_SECTORS(num_sectors);
909 }
910
alloc_disk_sb(struct md_rdev * rdev)911 static int alloc_disk_sb(struct md_rdev *rdev)
912 {
913 rdev->sb_page = alloc_page(GFP_KERNEL);
914 if (!rdev->sb_page)
915 return -ENOMEM;
916 return 0;
917 }
918
md_rdev_clear(struct md_rdev * rdev)919 void md_rdev_clear(struct md_rdev *rdev)
920 {
921 if (rdev->sb_page) {
922 put_page(rdev->sb_page);
923 rdev->sb_loaded = 0;
924 rdev->sb_page = NULL;
925 rdev->sb_start = 0;
926 rdev->sectors = 0;
927 }
928 if (rdev->bb_page) {
929 put_page(rdev->bb_page);
930 rdev->bb_page = NULL;
931 }
932 badblocks_exit(&rdev->badblocks);
933 }
934 EXPORT_SYMBOL_GPL(md_rdev_clear);
935
super_written(struct bio * bio)936 static void super_written(struct bio *bio)
937 {
938 struct md_rdev *rdev = bio->bi_private;
939 struct mddev *mddev = rdev->mddev;
940
941 if (bio->bi_status) {
942 pr_err("md: %s gets error=%d\n", __func__,
943 blk_status_to_errno(bio->bi_status));
944 md_error(mddev, rdev);
945 if (!test_bit(Faulty, &rdev->flags)
946 && (bio->bi_opf & MD_FAILFAST)) {
947 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
948 set_bit(LastDev, &rdev->flags);
949 }
950 } else
951 clear_bit(LastDev, &rdev->flags);
952
953 bio_put(bio);
954
955 rdev_dec_pending(rdev, mddev);
956
957 if (atomic_dec_and_test(&mddev->pending_writes))
958 wake_up(&mddev->sb_wait);
959 }
960
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)961 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
962 sector_t sector, int size, struct page *page)
963 {
964 /* write first size bytes of page to sector of rdev
965 * Increment mddev->pending_writes before returning
966 * and decrement it on completion, waking up sb_wait
967 * if zero is reached.
968 * If an error occurred, call md_error
969 */
970 struct bio *bio;
971 int ff = 0;
972
973 if (!page)
974 return;
975
976 if (test_bit(Faulty, &rdev->flags))
977 return;
978
979 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
980
981 atomic_inc(&rdev->nr_pending);
982
983 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
984 bio->bi_iter.bi_sector = sector;
985 bio_add_page(bio, page, size, 0);
986 bio->bi_private = rdev;
987 bio->bi_end_io = super_written;
988
989 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
990 test_bit(FailFast, &rdev->flags) &&
991 !test_bit(LastDev, &rdev->flags))
992 ff = MD_FAILFAST;
993 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
994
995 atomic_inc(&mddev->pending_writes);
996 submit_bio(bio);
997 }
998
md_super_wait(struct mddev * mddev)999 int md_super_wait(struct mddev *mddev)
1000 {
1001 /* wait for all superblock writes that were scheduled to complete */
1002 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1003 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1004 return -EAGAIN;
1005 return 0;
1006 }
1007
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)1008 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1009 struct page *page, int op, int op_flags, bool metadata_op)
1010 {
1011 struct bio bio;
1012 struct bio_vec bvec;
1013
1014 bio_init(&bio, &bvec, 1);
1015
1016 if (metadata_op && rdev->meta_bdev)
1017 bio_set_dev(&bio, rdev->meta_bdev);
1018 else
1019 bio_set_dev(&bio, rdev->bdev);
1020 bio.bi_opf = op | op_flags;
1021 if (metadata_op)
1022 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1023 else if (rdev->mddev->reshape_position != MaxSector &&
1024 (rdev->mddev->reshape_backwards ==
1025 (sector >= rdev->mddev->reshape_position)))
1026 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1027 else
1028 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1029 bio_add_page(&bio, page, size, 0);
1030
1031 submit_bio_wait(&bio);
1032
1033 return !bio.bi_status;
1034 }
1035 EXPORT_SYMBOL_GPL(sync_page_io);
1036
read_disk_sb(struct md_rdev * rdev,int size)1037 static int read_disk_sb(struct md_rdev *rdev, int size)
1038 {
1039 char b[BDEVNAME_SIZE];
1040
1041 if (rdev->sb_loaded)
1042 return 0;
1043
1044 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1045 goto fail;
1046 rdev->sb_loaded = 1;
1047 return 0;
1048
1049 fail:
1050 pr_err("md: disabled device %s, could not read superblock.\n",
1051 bdevname(rdev->bdev,b));
1052 return -EINVAL;
1053 }
1054
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1055 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1056 {
1057 return sb1->set_uuid0 == sb2->set_uuid0 &&
1058 sb1->set_uuid1 == sb2->set_uuid1 &&
1059 sb1->set_uuid2 == sb2->set_uuid2 &&
1060 sb1->set_uuid3 == sb2->set_uuid3;
1061 }
1062
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1063 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1064 {
1065 int ret;
1066 mdp_super_t *tmp1, *tmp2;
1067
1068 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1069 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1070
1071 if (!tmp1 || !tmp2) {
1072 ret = 0;
1073 goto abort;
1074 }
1075
1076 *tmp1 = *sb1;
1077 *tmp2 = *sb2;
1078
1079 /*
1080 * nr_disks is not constant
1081 */
1082 tmp1->nr_disks = 0;
1083 tmp2->nr_disks = 0;
1084
1085 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1086 abort:
1087 kfree(tmp1);
1088 kfree(tmp2);
1089 return ret;
1090 }
1091
md_csum_fold(u32 csum)1092 static u32 md_csum_fold(u32 csum)
1093 {
1094 csum = (csum & 0xffff) + (csum >> 16);
1095 return (csum & 0xffff) + (csum >> 16);
1096 }
1097
calc_sb_csum(mdp_super_t * sb)1098 static unsigned int calc_sb_csum(mdp_super_t *sb)
1099 {
1100 u64 newcsum = 0;
1101 u32 *sb32 = (u32*)sb;
1102 int i;
1103 unsigned int disk_csum, csum;
1104
1105 disk_csum = sb->sb_csum;
1106 sb->sb_csum = 0;
1107
1108 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1109 newcsum += sb32[i];
1110 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1111
1112 #ifdef CONFIG_ALPHA
1113 /* This used to use csum_partial, which was wrong for several
1114 * reasons including that different results are returned on
1115 * different architectures. It isn't critical that we get exactly
1116 * the same return value as before (we always csum_fold before
1117 * testing, and that removes any differences). However as we
1118 * know that csum_partial always returned a 16bit value on
1119 * alphas, do a fold to maximise conformity to previous behaviour.
1120 */
1121 sb->sb_csum = md_csum_fold(disk_csum);
1122 #else
1123 sb->sb_csum = disk_csum;
1124 #endif
1125 return csum;
1126 }
1127
1128 /*
1129 * Handle superblock details.
1130 * We want to be able to handle multiple superblock formats
1131 * so we have a common interface to them all, and an array of
1132 * different handlers.
1133 * We rely on user-space to write the initial superblock, and support
1134 * reading and updating of superblocks.
1135 * Interface methods are:
1136 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1137 * loads and validates a superblock on dev.
1138 * if refdev != NULL, compare superblocks on both devices
1139 * Return:
1140 * 0 - dev has a superblock that is compatible with refdev
1141 * 1 - dev has a superblock that is compatible and newer than refdev
1142 * so dev should be used as the refdev in future
1143 * -EINVAL superblock incompatible or invalid
1144 * -othererror e.g. -EIO
1145 *
1146 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1147 * Verify that dev is acceptable into mddev.
1148 * The first time, mddev->raid_disks will be 0, and data from
1149 * dev should be merged in. Subsequent calls check that dev
1150 * is new enough. Return 0 or -EINVAL
1151 *
1152 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1153 * Update the superblock for rdev with data in mddev
1154 * This does not write to disc.
1155 *
1156 */
1157
1158 struct super_type {
1159 char *name;
1160 struct module *owner;
1161 int (*load_super)(struct md_rdev *rdev,
1162 struct md_rdev *refdev,
1163 int minor_version);
1164 int (*validate_super)(struct mddev *mddev,
1165 struct md_rdev *freshest,
1166 struct md_rdev *rdev);
1167 void (*sync_super)(struct mddev *mddev,
1168 struct md_rdev *rdev);
1169 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1170 sector_t num_sectors);
1171 int (*allow_new_offset)(struct md_rdev *rdev,
1172 unsigned long long new_offset);
1173 };
1174
1175 /*
1176 * Check that the given mddev has no bitmap.
1177 *
1178 * This function is called from the run method of all personalities that do not
1179 * support bitmaps. It prints an error message and returns non-zero if mddev
1180 * has a bitmap. Otherwise, it returns 0.
1181 *
1182 */
md_check_no_bitmap(struct mddev * mddev)1183 int md_check_no_bitmap(struct mddev *mddev)
1184 {
1185 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1186 return 0;
1187 pr_warn("%s: bitmaps are not supported for %s\n",
1188 mdname(mddev), mddev->pers->name);
1189 return 1;
1190 }
1191 EXPORT_SYMBOL(md_check_no_bitmap);
1192
1193 /*
1194 * load_super for 0.90.0
1195 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1196 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1197 {
1198 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1199 mdp_super_t *sb;
1200 int ret;
1201 bool spare_disk = true;
1202
1203 /*
1204 * Calculate the position of the superblock (512byte sectors),
1205 * it's at the end of the disk.
1206 *
1207 * It also happens to be a multiple of 4Kb.
1208 */
1209 rdev->sb_start = calc_dev_sboffset(rdev);
1210
1211 ret = read_disk_sb(rdev, MD_SB_BYTES);
1212 if (ret)
1213 return ret;
1214
1215 ret = -EINVAL;
1216
1217 bdevname(rdev->bdev, b);
1218 sb = page_address(rdev->sb_page);
1219
1220 if (sb->md_magic != MD_SB_MAGIC) {
1221 pr_warn("md: invalid raid superblock magic on %s\n", b);
1222 goto abort;
1223 }
1224
1225 if (sb->major_version != 0 ||
1226 sb->minor_version < 90 ||
1227 sb->minor_version > 91) {
1228 pr_warn("Bad version number %d.%d on %s\n",
1229 sb->major_version, sb->minor_version, b);
1230 goto abort;
1231 }
1232
1233 if (sb->raid_disks <= 0)
1234 goto abort;
1235
1236 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1237 pr_warn("md: invalid superblock checksum on %s\n", b);
1238 goto abort;
1239 }
1240
1241 rdev->preferred_minor = sb->md_minor;
1242 rdev->data_offset = 0;
1243 rdev->new_data_offset = 0;
1244 rdev->sb_size = MD_SB_BYTES;
1245 rdev->badblocks.shift = -1;
1246
1247 if (sb->level == LEVEL_MULTIPATH)
1248 rdev->desc_nr = -1;
1249 else
1250 rdev->desc_nr = sb->this_disk.number;
1251
1252 /* not spare disk, or LEVEL_MULTIPATH */
1253 if (sb->level == LEVEL_MULTIPATH ||
1254 (rdev->desc_nr >= 0 &&
1255 rdev->desc_nr < MD_SB_DISKS &&
1256 sb->disks[rdev->desc_nr].state &
1257 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1258 spare_disk = false;
1259
1260 if (!refdev) {
1261 if (!spare_disk)
1262 ret = 1;
1263 else
1264 ret = 0;
1265 } else {
1266 __u64 ev1, ev2;
1267 mdp_super_t *refsb = page_address(refdev->sb_page);
1268 if (!md_uuid_equal(refsb, sb)) {
1269 pr_warn("md: %s has different UUID to %s\n",
1270 b, bdevname(refdev->bdev,b2));
1271 goto abort;
1272 }
1273 if (!md_sb_equal(refsb, sb)) {
1274 pr_warn("md: %s has same UUID but different superblock to %s\n",
1275 b, bdevname(refdev->bdev, b2));
1276 goto abort;
1277 }
1278 ev1 = md_event(sb);
1279 ev2 = md_event(refsb);
1280
1281 if (!spare_disk && ev1 > ev2)
1282 ret = 1;
1283 else
1284 ret = 0;
1285 }
1286 rdev->sectors = rdev->sb_start;
1287 /* Limit to 4TB as metadata cannot record more than that.
1288 * (not needed for Linear and RAID0 as metadata doesn't
1289 * record this size)
1290 */
1291 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1292 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1293
1294 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1295 /* "this cannot possibly happen" ... */
1296 ret = -EINVAL;
1297
1298 abort:
1299 return ret;
1300 }
1301
1302 /*
1303 * validate_super for 0.90.0
1304 * note: we are not using "freshest" for 0.9 superblock
1305 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1306 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1307 {
1308 mdp_disk_t *desc;
1309 mdp_super_t *sb = page_address(rdev->sb_page);
1310 __u64 ev1 = md_event(sb);
1311
1312 rdev->raid_disk = -1;
1313 clear_bit(Faulty, &rdev->flags);
1314 clear_bit(In_sync, &rdev->flags);
1315 clear_bit(Bitmap_sync, &rdev->flags);
1316 clear_bit(WriteMostly, &rdev->flags);
1317
1318 if (mddev->raid_disks == 0) {
1319 mddev->major_version = 0;
1320 mddev->minor_version = sb->minor_version;
1321 mddev->patch_version = sb->patch_version;
1322 mddev->external = 0;
1323 mddev->chunk_sectors = sb->chunk_size >> 9;
1324 mddev->ctime = sb->ctime;
1325 mddev->utime = sb->utime;
1326 mddev->level = sb->level;
1327 mddev->clevel[0] = 0;
1328 mddev->layout = sb->layout;
1329 mddev->raid_disks = sb->raid_disks;
1330 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1331 mddev->events = ev1;
1332 mddev->bitmap_info.offset = 0;
1333 mddev->bitmap_info.space = 0;
1334 /* bitmap can use 60 K after the 4K superblocks */
1335 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1336 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1337 mddev->reshape_backwards = 0;
1338
1339 if (mddev->minor_version >= 91) {
1340 mddev->reshape_position = sb->reshape_position;
1341 mddev->delta_disks = sb->delta_disks;
1342 mddev->new_level = sb->new_level;
1343 mddev->new_layout = sb->new_layout;
1344 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1345 if (mddev->delta_disks < 0)
1346 mddev->reshape_backwards = 1;
1347 } else {
1348 mddev->reshape_position = MaxSector;
1349 mddev->delta_disks = 0;
1350 mddev->new_level = mddev->level;
1351 mddev->new_layout = mddev->layout;
1352 mddev->new_chunk_sectors = mddev->chunk_sectors;
1353 }
1354 if (mddev->level == 0)
1355 mddev->layout = -1;
1356
1357 if (sb->state & (1<<MD_SB_CLEAN))
1358 mddev->recovery_cp = MaxSector;
1359 else {
1360 if (sb->events_hi == sb->cp_events_hi &&
1361 sb->events_lo == sb->cp_events_lo) {
1362 mddev->recovery_cp = sb->recovery_cp;
1363 } else
1364 mddev->recovery_cp = 0;
1365 }
1366
1367 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1368 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1369 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1370 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1371
1372 mddev->max_disks = MD_SB_DISKS;
1373
1374 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1375 mddev->bitmap_info.file == NULL) {
1376 mddev->bitmap_info.offset =
1377 mddev->bitmap_info.default_offset;
1378 mddev->bitmap_info.space =
1379 mddev->bitmap_info.default_space;
1380 }
1381
1382 } else if (mddev->pers == NULL) {
1383 /* Insist on good event counter while assembling, except
1384 * for spares (which don't need an event count) */
1385 ++ev1;
1386 if (sb->disks[rdev->desc_nr].state & (
1387 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1388 if (ev1 < mddev->events)
1389 return -EINVAL;
1390 } else if (mddev->bitmap) {
1391 /* if adding to array with a bitmap, then we can accept an
1392 * older device ... but not too old.
1393 */
1394 if (ev1 < mddev->bitmap->events_cleared)
1395 return 0;
1396 if (ev1 < mddev->events)
1397 set_bit(Bitmap_sync, &rdev->flags);
1398 } else {
1399 if (ev1 < mddev->events)
1400 /* just a hot-add of a new device, leave raid_disk at -1 */
1401 return 0;
1402 }
1403
1404 if (mddev->level != LEVEL_MULTIPATH) {
1405 desc = sb->disks + rdev->desc_nr;
1406
1407 if (desc->state & (1<<MD_DISK_FAULTY))
1408 set_bit(Faulty, &rdev->flags);
1409 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1410 desc->raid_disk < mddev->raid_disks */) {
1411 set_bit(In_sync, &rdev->flags);
1412 rdev->raid_disk = desc->raid_disk;
1413 rdev->saved_raid_disk = desc->raid_disk;
1414 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1415 /* active but not in sync implies recovery up to
1416 * reshape position. We don't know exactly where
1417 * that is, so set to zero for now */
1418 if (mddev->minor_version >= 91) {
1419 rdev->recovery_offset = 0;
1420 rdev->raid_disk = desc->raid_disk;
1421 }
1422 }
1423 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1424 set_bit(WriteMostly, &rdev->flags);
1425 if (desc->state & (1<<MD_DISK_FAILFAST))
1426 set_bit(FailFast, &rdev->flags);
1427 } else /* MULTIPATH are always insync */
1428 set_bit(In_sync, &rdev->flags);
1429 return 0;
1430 }
1431
1432 /*
1433 * sync_super for 0.90.0
1434 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1435 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1436 {
1437 mdp_super_t *sb;
1438 struct md_rdev *rdev2;
1439 int next_spare = mddev->raid_disks;
1440
1441 /* make rdev->sb match mddev data..
1442 *
1443 * 1/ zero out disks
1444 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1445 * 3/ any empty disks < next_spare become removed
1446 *
1447 * disks[0] gets initialised to REMOVED because
1448 * we cannot be sure from other fields if it has
1449 * been initialised or not.
1450 */
1451 int i;
1452 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1453
1454 rdev->sb_size = MD_SB_BYTES;
1455
1456 sb = page_address(rdev->sb_page);
1457
1458 memset(sb, 0, sizeof(*sb));
1459
1460 sb->md_magic = MD_SB_MAGIC;
1461 sb->major_version = mddev->major_version;
1462 sb->patch_version = mddev->patch_version;
1463 sb->gvalid_words = 0; /* ignored */
1464 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1465 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1466 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1467 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1468
1469 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1470 sb->level = mddev->level;
1471 sb->size = mddev->dev_sectors / 2;
1472 sb->raid_disks = mddev->raid_disks;
1473 sb->md_minor = mddev->md_minor;
1474 sb->not_persistent = 0;
1475 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1476 sb->state = 0;
1477 sb->events_hi = (mddev->events>>32);
1478 sb->events_lo = (u32)mddev->events;
1479
1480 if (mddev->reshape_position == MaxSector)
1481 sb->minor_version = 90;
1482 else {
1483 sb->minor_version = 91;
1484 sb->reshape_position = mddev->reshape_position;
1485 sb->new_level = mddev->new_level;
1486 sb->delta_disks = mddev->delta_disks;
1487 sb->new_layout = mddev->new_layout;
1488 sb->new_chunk = mddev->new_chunk_sectors << 9;
1489 }
1490 mddev->minor_version = sb->minor_version;
1491 if (mddev->in_sync)
1492 {
1493 sb->recovery_cp = mddev->recovery_cp;
1494 sb->cp_events_hi = (mddev->events>>32);
1495 sb->cp_events_lo = (u32)mddev->events;
1496 if (mddev->recovery_cp == MaxSector)
1497 sb->state = (1<< MD_SB_CLEAN);
1498 } else
1499 sb->recovery_cp = 0;
1500
1501 sb->layout = mddev->layout;
1502 sb->chunk_size = mddev->chunk_sectors << 9;
1503
1504 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1505 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1506
1507 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1508 rdev_for_each(rdev2, mddev) {
1509 mdp_disk_t *d;
1510 int desc_nr;
1511 int is_active = test_bit(In_sync, &rdev2->flags);
1512
1513 if (rdev2->raid_disk >= 0 &&
1514 sb->minor_version >= 91)
1515 /* we have nowhere to store the recovery_offset,
1516 * but if it is not below the reshape_position,
1517 * we can piggy-back on that.
1518 */
1519 is_active = 1;
1520 if (rdev2->raid_disk < 0 ||
1521 test_bit(Faulty, &rdev2->flags))
1522 is_active = 0;
1523 if (is_active)
1524 desc_nr = rdev2->raid_disk;
1525 else
1526 desc_nr = next_spare++;
1527 rdev2->desc_nr = desc_nr;
1528 d = &sb->disks[rdev2->desc_nr];
1529 nr_disks++;
1530 d->number = rdev2->desc_nr;
1531 d->major = MAJOR(rdev2->bdev->bd_dev);
1532 d->minor = MINOR(rdev2->bdev->bd_dev);
1533 if (is_active)
1534 d->raid_disk = rdev2->raid_disk;
1535 else
1536 d->raid_disk = rdev2->desc_nr; /* compatibility */
1537 if (test_bit(Faulty, &rdev2->flags))
1538 d->state = (1<<MD_DISK_FAULTY);
1539 else if (is_active) {
1540 d->state = (1<<MD_DISK_ACTIVE);
1541 if (test_bit(In_sync, &rdev2->flags))
1542 d->state |= (1<<MD_DISK_SYNC);
1543 active++;
1544 working++;
1545 } else {
1546 d->state = 0;
1547 spare++;
1548 working++;
1549 }
1550 if (test_bit(WriteMostly, &rdev2->flags))
1551 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1552 if (test_bit(FailFast, &rdev2->flags))
1553 d->state |= (1<<MD_DISK_FAILFAST);
1554 }
1555 /* now set the "removed" and "faulty" bits on any missing devices */
1556 for (i=0 ; i < mddev->raid_disks ; i++) {
1557 mdp_disk_t *d = &sb->disks[i];
1558 if (d->state == 0 && d->number == 0) {
1559 d->number = i;
1560 d->raid_disk = i;
1561 d->state = (1<<MD_DISK_REMOVED);
1562 d->state |= (1<<MD_DISK_FAULTY);
1563 failed++;
1564 }
1565 }
1566 sb->nr_disks = nr_disks;
1567 sb->active_disks = active;
1568 sb->working_disks = working;
1569 sb->failed_disks = failed;
1570 sb->spare_disks = spare;
1571
1572 sb->this_disk = sb->disks[rdev->desc_nr];
1573 sb->sb_csum = calc_sb_csum(sb);
1574 }
1575
1576 /*
1577 * rdev_size_change for 0.90.0
1578 */
1579 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1580 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1581 {
1582 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1583 return 0; /* component must fit device */
1584 if (rdev->mddev->bitmap_info.offset)
1585 return 0; /* can't move bitmap */
1586 rdev->sb_start = calc_dev_sboffset(rdev);
1587 if (!num_sectors || num_sectors > rdev->sb_start)
1588 num_sectors = rdev->sb_start;
1589 /* Limit to 4TB as metadata cannot record more than that.
1590 * 4TB == 2^32 KB, or 2*2^32 sectors.
1591 */
1592 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1593 num_sectors = (sector_t)(2ULL << 32) - 2;
1594 do {
1595 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1596 rdev->sb_page);
1597 } while (md_super_wait(rdev->mddev) < 0);
1598 return num_sectors;
1599 }
1600
1601 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1602 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1603 {
1604 /* non-zero offset changes not possible with v0.90 */
1605 return new_offset == 0;
1606 }
1607
1608 /*
1609 * version 1 superblock
1610 */
1611
calc_sb_1_csum(struct mdp_superblock_1 * sb)1612 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1613 {
1614 __le32 disk_csum;
1615 u32 csum;
1616 unsigned long long newcsum;
1617 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1618 __le32 *isuper = (__le32*)sb;
1619
1620 disk_csum = sb->sb_csum;
1621 sb->sb_csum = 0;
1622 newcsum = 0;
1623 for (; size >= 4; size -= 4)
1624 newcsum += le32_to_cpu(*isuper++);
1625
1626 if (size == 2)
1627 newcsum += le16_to_cpu(*(__le16*) isuper);
1628
1629 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1630 sb->sb_csum = disk_csum;
1631 return cpu_to_le32(csum);
1632 }
1633
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1634 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1635 {
1636 struct mdp_superblock_1 *sb;
1637 int ret;
1638 sector_t sb_start;
1639 sector_t sectors;
1640 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1641 int bmask;
1642 bool spare_disk = true;
1643
1644 /*
1645 * Calculate the position of the superblock in 512byte sectors.
1646 * It is always aligned to a 4K boundary and
1647 * depeding on minor_version, it can be:
1648 * 0: At least 8K, but less than 12K, from end of device
1649 * 1: At start of device
1650 * 2: 4K from start of device.
1651 */
1652 switch(minor_version) {
1653 case 0:
1654 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1655 sb_start -= 8*2;
1656 sb_start &= ~(sector_t)(4*2-1);
1657 break;
1658 case 1:
1659 sb_start = 0;
1660 break;
1661 case 2:
1662 sb_start = 8;
1663 break;
1664 default:
1665 return -EINVAL;
1666 }
1667 rdev->sb_start = sb_start;
1668
1669 /* superblock is rarely larger than 1K, but it can be larger,
1670 * and it is safe to read 4k, so we do that
1671 */
1672 ret = read_disk_sb(rdev, 4096);
1673 if (ret) return ret;
1674
1675 sb = page_address(rdev->sb_page);
1676
1677 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1678 sb->major_version != cpu_to_le32(1) ||
1679 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1680 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1681 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1682 return -EINVAL;
1683
1684 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1685 pr_warn("md: invalid superblock checksum on %s\n",
1686 bdevname(rdev->bdev,b));
1687 return -EINVAL;
1688 }
1689 if (le64_to_cpu(sb->data_size) < 10) {
1690 pr_warn("md: data_size too small on %s\n",
1691 bdevname(rdev->bdev,b));
1692 return -EINVAL;
1693 }
1694 if (sb->pad0 ||
1695 sb->pad3[0] ||
1696 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1697 /* Some padding is non-zero, might be a new feature */
1698 return -EINVAL;
1699
1700 rdev->preferred_minor = 0xffff;
1701 rdev->data_offset = le64_to_cpu(sb->data_offset);
1702 rdev->new_data_offset = rdev->data_offset;
1703 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1704 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1705 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1706 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1707
1708 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1709 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1710 if (rdev->sb_size & bmask)
1711 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1712
1713 if (minor_version
1714 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1715 return -EINVAL;
1716 if (minor_version
1717 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1718 return -EINVAL;
1719
1720 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1721 rdev->desc_nr = -1;
1722 else
1723 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1724
1725 if (!rdev->bb_page) {
1726 rdev->bb_page = alloc_page(GFP_KERNEL);
1727 if (!rdev->bb_page)
1728 return -ENOMEM;
1729 }
1730 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1731 rdev->badblocks.count == 0) {
1732 /* need to load the bad block list.
1733 * Currently we limit it to one page.
1734 */
1735 s32 offset;
1736 sector_t bb_sector;
1737 __le64 *bbp;
1738 int i;
1739 int sectors = le16_to_cpu(sb->bblog_size);
1740 if (sectors > (PAGE_SIZE / 512))
1741 return -EINVAL;
1742 offset = le32_to_cpu(sb->bblog_offset);
1743 if (offset == 0)
1744 return -EINVAL;
1745 bb_sector = (long long)offset;
1746 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1747 rdev->bb_page, REQ_OP_READ, 0, true))
1748 return -EIO;
1749 bbp = (__le64 *)page_address(rdev->bb_page);
1750 rdev->badblocks.shift = sb->bblog_shift;
1751 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1752 u64 bb = le64_to_cpu(*bbp);
1753 int count = bb & (0x3ff);
1754 u64 sector = bb >> 10;
1755 sector <<= sb->bblog_shift;
1756 count <<= sb->bblog_shift;
1757 if (bb + 1 == 0)
1758 break;
1759 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1760 return -EINVAL;
1761 }
1762 } else if (sb->bblog_offset != 0)
1763 rdev->badblocks.shift = 0;
1764
1765 if ((le32_to_cpu(sb->feature_map) &
1766 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1767 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1768 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1769 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1770 }
1771
1772 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1773 sb->level != 0)
1774 return -EINVAL;
1775
1776 /* not spare disk, or LEVEL_MULTIPATH */
1777 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1778 (rdev->desc_nr >= 0 &&
1779 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1780 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1781 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1782 spare_disk = false;
1783
1784 if (!refdev) {
1785 if (!spare_disk)
1786 ret = 1;
1787 else
1788 ret = 0;
1789 } else {
1790 __u64 ev1, ev2;
1791 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1792
1793 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1794 sb->level != refsb->level ||
1795 sb->layout != refsb->layout ||
1796 sb->chunksize != refsb->chunksize) {
1797 pr_warn("md: %s has strangely different superblock to %s\n",
1798 bdevname(rdev->bdev,b),
1799 bdevname(refdev->bdev,b2));
1800 return -EINVAL;
1801 }
1802 ev1 = le64_to_cpu(sb->events);
1803 ev2 = le64_to_cpu(refsb->events);
1804
1805 if (!spare_disk && ev1 > ev2)
1806 ret = 1;
1807 else
1808 ret = 0;
1809 }
1810 if (minor_version) {
1811 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1812 sectors -= rdev->data_offset;
1813 } else
1814 sectors = rdev->sb_start;
1815 if (sectors < le64_to_cpu(sb->data_size))
1816 return -EINVAL;
1817 rdev->sectors = le64_to_cpu(sb->data_size);
1818 return ret;
1819 }
1820
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1821 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1822 {
1823 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1824 __u64 ev1 = le64_to_cpu(sb->events);
1825
1826 rdev->raid_disk = -1;
1827 clear_bit(Faulty, &rdev->flags);
1828 clear_bit(In_sync, &rdev->flags);
1829 clear_bit(Bitmap_sync, &rdev->flags);
1830 clear_bit(WriteMostly, &rdev->flags);
1831
1832 if (mddev->raid_disks == 0) {
1833 mddev->major_version = 1;
1834 mddev->patch_version = 0;
1835 mddev->external = 0;
1836 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1837 mddev->ctime = le64_to_cpu(sb->ctime);
1838 mddev->utime = le64_to_cpu(sb->utime);
1839 mddev->level = le32_to_cpu(sb->level);
1840 mddev->clevel[0] = 0;
1841 mddev->layout = le32_to_cpu(sb->layout);
1842 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1843 mddev->dev_sectors = le64_to_cpu(sb->size);
1844 mddev->events = ev1;
1845 mddev->bitmap_info.offset = 0;
1846 mddev->bitmap_info.space = 0;
1847 /* Default location for bitmap is 1K after superblock
1848 * using 3K - total of 4K
1849 */
1850 mddev->bitmap_info.default_offset = 1024 >> 9;
1851 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1852 mddev->reshape_backwards = 0;
1853
1854 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1855 memcpy(mddev->uuid, sb->set_uuid, 16);
1856
1857 mddev->max_disks = (4096-256)/2;
1858
1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1860 mddev->bitmap_info.file == NULL) {
1861 mddev->bitmap_info.offset =
1862 (__s32)le32_to_cpu(sb->bitmap_offset);
1863 /* Metadata doesn't record how much space is available.
1864 * For 1.0, we assume we can use up to the superblock
1865 * if before, else to 4K beyond superblock.
1866 * For others, assume no change is possible.
1867 */
1868 if (mddev->minor_version > 0)
1869 mddev->bitmap_info.space = 0;
1870 else if (mddev->bitmap_info.offset > 0)
1871 mddev->bitmap_info.space =
1872 8 - mddev->bitmap_info.offset;
1873 else
1874 mddev->bitmap_info.space =
1875 -mddev->bitmap_info.offset;
1876 }
1877
1878 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1879 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1880 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1881 mddev->new_level = le32_to_cpu(sb->new_level);
1882 mddev->new_layout = le32_to_cpu(sb->new_layout);
1883 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1884 if (mddev->delta_disks < 0 ||
1885 (mddev->delta_disks == 0 &&
1886 (le32_to_cpu(sb->feature_map)
1887 & MD_FEATURE_RESHAPE_BACKWARDS)))
1888 mddev->reshape_backwards = 1;
1889 } else {
1890 mddev->reshape_position = MaxSector;
1891 mddev->delta_disks = 0;
1892 mddev->new_level = mddev->level;
1893 mddev->new_layout = mddev->layout;
1894 mddev->new_chunk_sectors = mddev->chunk_sectors;
1895 }
1896
1897 if (mddev->level == 0 &&
1898 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1899 mddev->layout = -1;
1900
1901 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1902 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1903
1904 if (le32_to_cpu(sb->feature_map) &
1905 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1906 if (le32_to_cpu(sb->feature_map) &
1907 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1908 return -EINVAL;
1909 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1910 (le32_to_cpu(sb->feature_map) &
1911 MD_FEATURE_MULTIPLE_PPLS))
1912 return -EINVAL;
1913 set_bit(MD_HAS_PPL, &mddev->flags);
1914 }
1915 } else if (mddev->pers == NULL) {
1916 /* Insist of good event counter while assembling, except for
1917 * spares (which don't need an event count).
1918 * Similar to mdadm, we allow event counter difference of 1
1919 * from the freshest device.
1920 */
1921 if (rdev->desc_nr >= 0 &&
1922 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1923 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1924 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1925 if (ev1 + 1 < mddev->events)
1926 return -EINVAL;
1927 } else if (mddev->bitmap) {
1928 /* If adding to array with a bitmap, then we can accept an
1929 * older device, but not too old.
1930 */
1931 if (ev1 < mddev->bitmap->events_cleared)
1932 return 0;
1933 if (ev1 < mddev->events)
1934 set_bit(Bitmap_sync, &rdev->flags);
1935 } else {
1936 if (ev1 < mddev->events)
1937 /* just a hot-add of a new device, leave raid_disk at -1 */
1938 return 0;
1939 }
1940 if (mddev->level != LEVEL_MULTIPATH) {
1941 int role;
1942 if (rdev->desc_nr < 0 ||
1943 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1944 role = MD_DISK_ROLE_SPARE;
1945 rdev->desc_nr = -1;
1946 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
1947 /*
1948 * If we are assembling, and our event counter is smaller than the
1949 * highest event counter, we cannot trust our superblock about the role.
1950 * It could happen that our rdev was marked as Faulty, and all other
1951 * superblocks were updated with +1 event counter.
1952 * Then, before the next superblock update, which typically happens when
1953 * remove_and_add_spares() removes the device from the array, there was
1954 * a crash or reboot.
1955 * If we allow current rdev without consulting the freshest superblock,
1956 * we could cause data corruption.
1957 * Note that in this case our event counter is smaller by 1 than the
1958 * highest, otherwise, this rdev would not be allowed into array;
1959 * both kernel and mdadm allow event counter difference of 1.
1960 */
1961 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
1962 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
1963
1964 if (rdev->desc_nr >= freshest_max_dev) {
1965 /* this is unexpected, better not proceed */
1966 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
1967 mdname(mddev), rdev->bdev, rdev->desc_nr,
1968 freshest->bdev, freshest_max_dev);
1969 return -EUCLEAN;
1970 }
1971
1972 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
1973 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
1974 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
1975 } else {
1976 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1977 }
1978 switch(role) {
1979 case MD_DISK_ROLE_SPARE: /* spare */
1980 break;
1981 case MD_DISK_ROLE_FAULTY: /* faulty */
1982 set_bit(Faulty, &rdev->flags);
1983 break;
1984 case MD_DISK_ROLE_JOURNAL: /* journal device */
1985 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1986 /* journal device without journal feature */
1987 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1988 return -EINVAL;
1989 }
1990 set_bit(Journal, &rdev->flags);
1991 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1992 rdev->raid_disk = 0;
1993 break;
1994 default:
1995 rdev->saved_raid_disk = role;
1996 if ((le32_to_cpu(sb->feature_map) &
1997 MD_FEATURE_RECOVERY_OFFSET)) {
1998 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1999 if (!(le32_to_cpu(sb->feature_map) &
2000 MD_FEATURE_RECOVERY_BITMAP))
2001 rdev->saved_raid_disk = -1;
2002 } else {
2003 /*
2004 * If the array is FROZEN, then the device can't
2005 * be in_sync with rest of array.
2006 */
2007 if (!test_bit(MD_RECOVERY_FROZEN,
2008 &mddev->recovery))
2009 set_bit(In_sync, &rdev->flags);
2010 }
2011 rdev->raid_disk = role;
2012 break;
2013 }
2014 if (sb->devflags & WriteMostly1)
2015 set_bit(WriteMostly, &rdev->flags);
2016 if (sb->devflags & FailFast1)
2017 set_bit(FailFast, &rdev->flags);
2018 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2019 set_bit(Replacement, &rdev->flags);
2020 } else /* MULTIPATH are always insync */
2021 set_bit(In_sync, &rdev->flags);
2022
2023 return 0;
2024 }
2025
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2026 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2027 {
2028 struct mdp_superblock_1 *sb;
2029 struct md_rdev *rdev2;
2030 int max_dev, i;
2031 /* make rdev->sb match mddev and rdev data. */
2032
2033 sb = page_address(rdev->sb_page);
2034
2035 sb->feature_map = 0;
2036 sb->pad0 = 0;
2037 sb->recovery_offset = cpu_to_le64(0);
2038 memset(sb->pad3, 0, sizeof(sb->pad3));
2039
2040 sb->utime = cpu_to_le64((__u64)mddev->utime);
2041 sb->events = cpu_to_le64(mddev->events);
2042 if (mddev->in_sync)
2043 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2044 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2045 sb->resync_offset = cpu_to_le64(MaxSector);
2046 else
2047 sb->resync_offset = cpu_to_le64(0);
2048
2049 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2050
2051 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2052 sb->size = cpu_to_le64(mddev->dev_sectors);
2053 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2054 sb->level = cpu_to_le32(mddev->level);
2055 sb->layout = cpu_to_le32(mddev->layout);
2056 if (test_bit(FailFast, &rdev->flags))
2057 sb->devflags |= FailFast1;
2058 else
2059 sb->devflags &= ~FailFast1;
2060
2061 if (test_bit(WriteMostly, &rdev->flags))
2062 sb->devflags |= WriteMostly1;
2063 else
2064 sb->devflags &= ~WriteMostly1;
2065 sb->data_offset = cpu_to_le64(rdev->data_offset);
2066 sb->data_size = cpu_to_le64(rdev->sectors);
2067
2068 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2069 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2070 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2071 }
2072
2073 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2074 !test_bit(In_sync, &rdev->flags)) {
2075 sb->feature_map |=
2076 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2077 sb->recovery_offset =
2078 cpu_to_le64(rdev->recovery_offset);
2079 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2080 sb->feature_map |=
2081 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2082 }
2083 /* Note: recovery_offset and journal_tail share space */
2084 if (test_bit(Journal, &rdev->flags))
2085 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2086 if (test_bit(Replacement, &rdev->flags))
2087 sb->feature_map |=
2088 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2089
2090 if (mddev->reshape_position != MaxSector) {
2091 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2092 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2093 sb->new_layout = cpu_to_le32(mddev->new_layout);
2094 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2095 sb->new_level = cpu_to_le32(mddev->new_level);
2096 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2097 if (mddev->delta_disks == 0 &&
2098 mddev->reshape_backwards)
2099 sb->feature_map
2100 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2101 if (rdev->new_data_offset != rdev->data_offset) {
2102 sb->feature_map
2103 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2104 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2105 - rdev->data_offset));
2106 }
2107 }
2108
2109 if (mddev_is_clustered(mddev))
2110 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2111
2112 if (rdev->badblocks.count == 0)
2113 /* Nothing to do for bad blocks*/ ;
2114 else if (sb->bblog_offset == 0)
2115 /* Cannot record bad blocks on this device */
2116 md_error(mddev, rdev);
2117 else {
2118 struct badblocks *bb = &rdev->badblocks;
2119 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2120 u64 *p = bb->page;
2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2122 if (bb->changed) {
2123 unsigned seq;
2124
2125 retry:
2126 seq = read_seqbegin(&bb->lock);
2127
2128 memset(bbp, 0xff, PAGE_SIZE);
2129
2130 for (i = 0 ; i < bb->count ; i++) {
2131 u64 internal_bb = p[i];
2132 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2133 | BB_LEN(internal_bb));
2134 bbp[i] = cpu_to_le64(store_bb);
2135 }
2136 bb->changed = 0;
2137 if (read_seqretry(&bb->lock, seq))
2138 goto retry;
2139
2140 bb->sector = (rdev->sb_start +
2141 (int)le32_to_cpu(sb->bblog_offset));
2142 bb->size = le16_to_cpu(sb->bblog_size);
2143 }
2144 }
2145
2146 max_dev = 0;
2147 rdev_for_each(rdev2, mddev)
2148 if (rdev2->desc_nr+1 > max_dev)
2149 max_dev = rdev2->desc_nr+1;
2150
2151 if (max_dev > le32_to_cpu(sb->max_dev)) {
2152 int bmask;
2153 sb->max_dev = cpu_to_le32(max_dev);
2154 rdev->sb_size = max_dev * 2 + 256;
2155 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2156 if (rdev->sb_size & bmask)
2157 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2158 } else
2159 max_dev = le32_to_cpu(sb->max_dev);
2160
2161 for (i=0; i<max_dev;i++)
2162 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2163
2164 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2165 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2166
2167 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2168 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2169 sb->feature_map |=
2170 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2171 else
2172 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2173 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2174 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2175 }
2176
2177 rdev_for_each(rdev2, mddev) {
2178 i = rdev2->desc_nr;
2179 if (test_bit(Faulty, &rdev2->flags))
2180 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2181 else if (test_bit(In_sync, &rdev2->flags))
2182 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2183 else if (test_bit(Journal, &rdev2->flags))
2184 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2185 else if (rdev2->raid_disk >= 0)
2186 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2187 else
2188 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2189 }
2190
2191 sb->sb_csum = calc_sb_1_csum(sb);
2192 }
2193
super_1_choose_bm_space(sector_t dev_size)2194 static sector_t super_1_choose_bm_space(sector_t dev_size)
2195 {
2196 sector_t bm_space;
2197
2198 /* if the device is bigger than 8Gig, save 64k for bitmap
2199 * usage, if bigger than 200Gig, save 128k
2200 */
2201 if (dev_size < 64*2)
2202 bm_space = 0;
2203 else if (dev_size - 64*2 >= 200*1024*1024*2)
2204 bm_space = 128*2;
2205 else if (dev_size - 4*2 > 8*1024*1024*2)
2206 bm_space = 64*2;
2207 else
2208 bm_space = 4*2;
2209 return bm_space;
2210 }
2211
2212 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2213 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2214 {
2215 struct mdp_superblock_1 *sb;
2216 sector_t max_sectors;
2217 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2218 return 0; /* component must fit device */
2219 if (rdev->data_offset != rdev->new_data_offset)
2220 return 0; /* too confusing */
2221 if (rdev->sb_start < rdev->data_offset) {
2222 /* minor versions 1 and 2; superblock before data */
2223 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2224 max_sectors -= rdev->data_offset;
2225 if (!num_sectors || num_sectors > max_sectors)
2226 num_sectors = max_sectors;
2227 } else if (rdev->mddev->bitmap_info.offset) {
2228 /* minor version 0 with bitmap we can't move */
2229 return 0;
2230 } else {
2231 /* minor version 0; superblock after data */
2232 sector_t sb_start, bm_space;
2233 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2234
2235 /* 8K is for superblock */
2236 sb_start = dev_size - 8*2;
2237 sb_start &= ~(sector_t)(4*2 - 1);
2238
2239 bm_space = super_1_choose_bm_space(dev_size);
2240
2241 /* Space that can be used to store date needs to decrease
2242 * superblock bitmap space and bad block space(4K)
2243 */
2244 max_sectors = sb_start - bm_space - 4*2;
2245
2246 if (!num_sectors || num_sectors > max_sectors)
2247 num_sectors = max_sectors;
2248 rdev->sb_start = sb_start;
2249 }
2250 sb = page_address(rdev->sb_page);
2251 sb->data_size = cpu_to_le64(num_sectors);
2252 sb->super_offset = cpu_to_le64(rdev->sb_start);
2253 sb->sb_csum = calc_sb_1_csum(sb);
2254 do {
2255 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2256 rdev->sb_page);
2257 } while (md_super_wait(rdev->mddev) < 0);
2258 return num_sectors;
2259
2260 }
2261
2262 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2263 super_1_allow_new_offset(struct md_rdev *rdev,
2264 unsigned long long new_offset)
2265 {
2266 /* All necessary checks on new >= old have been done */
2267 struct bitmap *bitmap;
2268 if (new_offset >= rdev->data_offset)
2269 return 1;
2270
2271 /* with 1.0 metadata, there is no metadata to tread on
2272 * so we can always move back */
2273 if (rdev->mddev->minor_version == 0)
2274 return 1;
2275
2276 /* otherwise we must be sure not to step on
2277 * any metadata, so stay:
2278 * 36K beyond start of superblock
2279 * beyond end of badblocks
2280 * beyond write-intent bitmap
2281 */
2282 if (rdev->sb_start + (32+4)*2 > new_offset)
2283 return 0;
2284 bitmap = rdev->mddev->bitmap;
2285 if (bitmap && !rdev->mddev->bitmap_info.file &&
2286 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2287 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2288 return 0;
2289 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2290 return 0;
2291
2292 return 1;
2293 }
2294
2295 static struct super_type super_types[] = {
2296 [0] = {
2297 .name = "0.90.0",
2298 .owner = THIS_MODULE,
2299 .load_super = super_90_load,
2300 .validate_super = super_90_validate,
2301 .sync_super = super_90_sync,
2302 .rdev_size_change = super_90_rdev_size_change,
2303 .allow_new_offset = super_90_allow_new_offset,
2304 },
2305 [1] = {
2306 .name = "md-1",
2307 .owner = THIS_MODULE,
2308 .load_super = super_1_load,
2309 .validate_super = super_1_validate,
2310 .sync_super = super_1_sync,
2311 .rdev_size_change = super_1_rdev_size_change,
2312 .allow_new_offset = super_1_allow_new_offset,
2313 },
2314 };
2315
sync_super(struct mddev * mddev,struct md_rdev * rdev)2316 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2317 {
2318 if (mddev->sync_super) {
2319 mddev->sync_super(mddev, rdev);
2320 return;
2321 }
2322
2323 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2324
2325 super_types[mddev->major_version].sync_super(mddev, rdev);
2326 }
2327
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2328 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2329 {
2330 struct md_rdev *rdev, *rdev2;
2331
2332 rcu_read_lock();
2333 rdev_for_each_rcu(rdev, mddev1) {
2334 if (test_bit(Faulty, &rdev->flags) ||
2335 test_bit(Journal, &rdev->flags) ||
2336 rdev->raid_disk == -1)
2337 continue;
2338 rdev_for_each_rcu(rdev2, mddev2) {
2339 if (test_bit(Faulty, &rdev2->flags) ||
2340 test_bit(Journal, &rdev2->flags) ||
2341 rdev2->raid_disk == -1)
2342 continue;
2343 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2344 rcu_read_unlock();
2345 return 1;
2346 }
2347 }
2348 }
2349 rcu_read_unlock();
2350 return 0;
2351 }
2352
2353 static LIST_HEAD(pending_raid_disks);
2354
2355 /*
2356 * Try to register data integrity profile for an mddev
2357 *
2358 * This is called when an array is started and after a disk has been kicked
2359 * from the array. It only succeeds if all working and active component devices
2360 * are integrity capable with matching profiles.
2361 */
md_integrity_register(struct mddev * mddev)2362 int md_integrity_register(struct mddev *mddev)
2363 {
2364 struct md_rdev *rdev, *reference = NULL;
2365
2366 if (list_empty(&mddev->disks))
2367 return 0; /* nothing to do */
2368 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2369 return 0; /* shouldn't register, or already is */
2370 rdev_for_each(rdev, mddev) {
2371 /* skip spares and non-functional disks */
2372 if (test_bit(Faulty, &rdev->flags))
2373 continue;
2374 if (rdev->raid_disk < 0)
2375 continue;
2376 if (!reference) {
2377 /* Use the first rdev as the reference */
2378 reference = rdev;
2379 continue;
2380 }
2381 /* does this rdev's profile match the reference profile? */
2382 if (blk_integrity_compare(reference->bdev->bd_disk,
2383 rdev->bdev->bd_disk) < 0)
2384 return -EINVAL;
2385 }
2386 if (!reference || !bdev_get_integrity(reference->bdev))
2387 return 0;
2388 /*
2389 * All component devices are integrity capable and have matching
2390 * profiles, register the common profile for the md device.
2391 */
2392 blk_integrity_register(mddev->gendisk,
2393 bdev_get_integrity(reference->bdev));
2394
2395 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2396 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2397 (mddev->level != 1 && mddev->level != 10 &&
2398 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2399 /*
2400 * No need to handle the failure of bioset_integrity_create,
2401 * because the function is called by md_run() -> pers->run(),
2402 * md_run calls bioset_exit -> bioset_integrity_free in case
2403 * of failure case.
2404 */
2405 pr_err("md: failed to create integrity pool for %s\n",
2406 mdname(mddev));
2407 return -EINVAL;
2408 }
2409 return 0;
2410 }
2411 EXPORT_SYMBOL(md_integrity_register);
2412
2413 /*
2414 * Attempt to add an rdev, but only if it is consistent with the current
2415 * integrity profile
2416 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2417 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2418 {
2419 struct blk_integrity *bi_mddev;
2420 char name[BDEVNAME_SIZE];
2421
2422 if (!mddev->gendisk)
2423 return 0;
2424
2425 bi_mddev = blk_get_integrity(mddev->gendisk);
2426
2427 if (!bi_mddev) /* nothing to do */
2428 return 0;
2429
2430 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2431 pr_err("%s: incompatible integrity profile for %s\n",
2432 mdname(mddev), bdevname(rdev->bdev, name));
2433 return -ENXIO;
2434 }
2435
2436 return 0;
2437 }
2438 EXPORT_SYMBOL(md_integrity_add_rdev);
2439
rdev_read_only(struct md_rdev * rdev)2440 static bool rdev_read_only(struct md_rdev *rdev)
2441 {
2442 return bdev_read_only(rdev->bdev) ||
2443 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2444 }
2445
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2446 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2447 {
2448 char b[BDEVNAME_SIZE];
2449 int err;
2450
2451 /* prevent duplicates */
2452 if (find_rdev(mddev, rdev->bdev->bd_dev))
2453 return -EEXIST;
2454
2455 if (rdev_read_only(rdev) && mddev->pers)
2456 return -EROFS;
2457
2458 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2459 if (!test_bit(Journal, &rdev->flags) &&
2460 rdev->sectors &&
2461 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2462 if (mddev->pers) {
2463 /* Cannot change size, so fail
2464 * If mddev->level <= 0, then we don't care
2465 * about aligning sizes (e.g. linear)
2466 */
2467 if (mddev->level > 0)
2468 return -ENOSPC;
2469 } else
2470 mddev->dev_sectors = rdev->sectors;
2471 }
2472
2473 /* Verify rdev->desc_nr is unique.
2474 * If it is -1, assign a free number, else
2475 * check number is not in use
2476 */
2477 rcu_read_lock();
2478 if (rdev->desc_nr < 0) {
2479 int choice = 0;
2480 if (mddev->pers)
2481 choice = mddev->raid_disks;
2482 while (md_find_rdev_nr_rcu(mddev, choice))
2483 choice++;
2484 rdev->desc_nr = choice;
2485 } else {
2486 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2487 rcu_read_unlock();
2488 return -EBUSY;
2489 }
2490 }
2491 rcu_read_unlock();
2492 if (!test_bit(Journal, &rdev->flags) &&
2493 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2494 pr_warn("md: %s: array is limited to %d devices\n",
2495 mdname(mddev), mddev->max_disks);
2496 return -EBUSY;
2497 }
2498 bdevname(rdev->bdev,b);
2499 strreplace(b, '/', '!');
2500
2501 rdev->mddev = mddev;
2502 pr_debug("md: bind<%s>\n", b);
2503
2504 if (mddev->raid_disks)
2505 mddev_create_serial_pool(mddev, rdev, false);
2506
2507 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2508 goto fail;
2509
2510 /* failure here is OK */
2511 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2512 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2513 rdev->sysfs_unack_badblocks =
2514 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2515 rdev->sysfs_badblocks =
2516 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2517
2518 list_add_rcu(&rdev->same_set, &mddev->disks);
2519 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2520
2521 /* May as well allow recovery to be retried once */
2522 mddev->recovery_disabled++;
2523
2524 return 0;
2525
2526 fail:
2527 pr_warn("md: failed to register dev-%s for %s\n",
2528 b, mdname(mddev));
2529 return err;
2530 }
2531
rdev_delayed_delete(struct work_struct * ws)2532 static void rdev_delayed_delete(struct work_struct *ws)
2533 {
2534 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2535 kobject_del(&rdev->kobj);
2536 kobject_put(&rdev->kobj);
2537 }
2538
unbind_rdev_from_array(struct md_rdev * rdev)2539 static void unbind_rdev_from_array(struct md_rdev *rdev)
2540 {
2541 char b[BDEVNAME_SIZE];
2542
2543 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2544 list_del_rcu(&rdev->same_set);
2545 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2546 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2547 rdev->mddev = NULL;
2548 sysfs_remove_link(&rdev->kobj, "block");
2549 sysfs_put(rdev->sysfs_state);
2550 sysfs_put(rdev->sysfs_unack_badblocks);
2551 sysfs_put(rdev->sysfs_badblocks);
2552 rdev->sysfs_state = NULL;
2553 rdev->sysfs_unack_badblocks = NULL;
2554 rdev->sysfs_badblocks = NULL;
2555 rdev->badblocks.count = 0;
2556 /* We need to delay this, otherwise we can deadlock when
2557 * writing to 'remove' to "dev/state". We also need
2558 * to delay it due to rcu usage.
2559 */
2560 synchronize_rcu();
2561 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2562 kobject_get(&rdev->kobj);
2563 queue_work(md_rdev_misc_wq, &rdev->del_work);
2564 }
2565
2566 /*
2567 * prevent the device from being mounted, repartitioned or
2568 * otherwise reused by a RAID array (or any other kernel
2569 * subsystem), by bd_claiming the device.
2570 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2571 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2572 {
2573 int err = 0;
2574 struct block_device *bdev;
2575
2576 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2577 shared ? (struct md_rdev *)lock_rdev : rdev);
2578 if (IS_ERR(bdev)) {
2579 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2580 MAJOR(dev), MINOR(dev));
2581 return PTR_ERR(bdev);
2582 }
2583 rdev->bdev = bdev;
2584 return err;
2585 }
2586
unlock_rdev(struct md_rdev * rdev)2587 static void unlock_rdev(struct md_rdev *rdev)
2588 {
2589 struct block_device *bdev = rdev->bdev;
2590 rdev->bdev = NULL;
2591 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2592 }
2593
2594 void md_autodetect_dev(dev_t dev);
2595
export_rdev(struct md_rdev * rdev)2596 static void export_rdev(struct md_rdev *rdev)
2597 {
2598 char b[BDEVNAME_SIZE];
2599
2600 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2601 md_rdev_clear(rdev);
2602 #ifndef MODULE
2603 if (test_bit(AutoDetected, &rdev->flags))
2604 md_autodetect_dev(rdev->bdev->bd_dev);
2605 #endif
2606 unlock_rdev(rdev);
2607 kobject_put(&rdev->kobj);
2608 }
2609
md_kick_rdev_from_array(struct md_rdev * rdev)2610 void md_kick_rdev_from_array(struct md_rdev *rdev)
2611 {
2612 unbind_rdev_from_array(rdev);
2613 export_rdev(rdev);
2614 }
2615 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2616
export_array(struct mddev * mddev)2617 static void export_array(struct mddev *mddev)
2618 {
2619 struct md_rdev *rdev;
2620
2621 while (!list_empty(&mddev->disks)) {
2622 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2623 same_set);
2624 md_kick_rdev_from_array(rdev);
2625 }
2626 mddev->raid_disks = 0;
2627 mddev->major_version = 0;
2628 }
2629
set_in_sync(struct mddev * mddev)2630 static bool set_in_sync(struct mddev *mddev)
2631 {
2632 lockdep_assert_held(&mddev->lock);
2633 if (!mddev->in_sync) {
2634 mddev->sync_checkers++;
2635 spin_unlock(&mddev->lock);
2636 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2637 spin_lock(&mddev->lock);
2638 if (!mddev->in_sync &&
2639 percpu_ref_is_zero(&mddev->writes_pending)) {
2640 mddev->in_sync = 1;
2641 /*
2642 * Ensure ->in_sync is visible before we clear
2643 * ->sync_checkers.
2644 */
2645 smp_mb();
2646 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2647 sysfs_notify_dirent_safe(mddev->sysfs_state);
2648 }
2649 if (--mddev->sync_checkers == 0)
2650 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2651 }
2652 if (mddev->safemode == 1)
2653 mddev->safemode = 0;
2654 return mddev->in_sync;
2655 }
2656
sync_sbs(struct mddev * mddev,int nospares)2657 static void sync_sbs(struct mddev *mddev, int nospares)
2658 {
2659 /* Update each superblock (in-memory image), but
2660 * if we are allowed to, skip spares which already
2661 * have the right event counter, or have one earlier
2662 * (which would mean they aren't being marked as dirty
2663 * with the rest of the array)
2664 */
2665 struct md_rdev *rdev;
2666 rdev_for_each(rdev, mddev) {
2667 if (rdev->sb_events == mddev->events ||
2668 (nospares &&
2669 rdev->raid_disk < 0 &&
2670 rdev->sb_events+1 == mddev->events)) {
2671 /* Don't update this superblock */
2672 rdev->sb_loaded = 2;
2673 } else {
2674 sync_super(mddev, rdev);
2675 rdev->sb_loaded = 1;
2676 }
2677 }
2678 }
2679
does_sb_need_changing(struct mddev * mddev)2680 static bool does_sb_need_changing(struct mddev *mddev)
2681 {
2682 struct md_rdev *rdev = NULL, *iter;
2683 struct mdp_superblock_1 *sb;
2684 int role;
2685
2686 /* Find a good rdev */
2687 rdev_for_each(iter, mddev)
2688 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2689 rdev = iter;
2690 break;
2691 }
2692
2693 /* No good device found. */
2694 if (!rdev)
2695 return false;
2696
2697 sb = page_address(rdev->sb_page);
2698 /* Check if a device has become faulty or a spare become active */
2699 rdev_for_each(rdev, mddev) {
2700 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2701 /* Device activated? */
2702 if (role == 0xffff && rdev->raid_disk >=0 &&
2703 !test_bit(Faulty, &rdev->flags))
2704 return true;
2705 /* Device turned faulty? */
2706 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2707 return true;
2708 }
2709
2710 /* Check if any mddev parameters have changed */
2711 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2712 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2713 (mddev->layout != le32_to_cpu(sb->layout)) ||
2714 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2715 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2716 return true;
2717
2718 return false;
2719 }
2720
md_update_sb(struct mddev * mddev,int force_change)2721 void md_update_sb(struct mddev *mddev, int force_change)
2722 {
2723 struct md_rdev *rdev;
2724 int sync_req;
2725 int nospares = 0;
2726 int any_badblocks_changed = 0;
2727 int ret = -1;
2728
2729 if (!md_is_rdwr(mddev)) {
2730 if (force_change)
2731 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2732 return;
2733 }
2734
2735 repeat:
2736 if (mddev_is_clustered(mddev)) {
2737 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2738 force_change = 1;
2739 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2740 nospares = 1;
2741 ret = md_cluster_ops->metadata_update_start(mddev);
2742 /* Has someone else has updated the sb */
2743 if (!does_sb_need_changing(mddev)) {
2744 if (ret == 0)
2745 md_cluster_ops->metadata_update_cancel(mddev);
2746 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2747 BIT(MD_SB_CHANGE_DEVS) |
2748 BIT(MD_SB_CHANGE_CLEAN));
2749 return;
2750 }
2751 }
2752
2753 /*
2754 * First make sure individual recovery_offsets are correct
2755 * curr_resync_completed can only be used during recovery.
2756 * During reshape/resync it might use array-addresses rather
2757 * that device addresses.
2758 */
2759 rdev_for_each(rdev, mddev) {
2760 if (rdev->raid_disk >= 0 &&
2761 mddev->delta_disks >= 0 &&
2762 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2763 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2764 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2765 !test_bit(Journal, &rdev->flags) &&
2766 !test_bit(In_sync, &rdev->flags) &&
2767 mddev->curr_resync_completed > rdev->recovery_offset)
2768 rdev->recovery_offset = mddev->curr_resync_completed;
2769
2770 }
2771 if (!mddev->persistent) {
2772 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2773 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2774 if (!mddev->external) {
2775 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2776 rdev_for_each(rdev, mddev) {
2777 if (rdev->badblocks.changed) {
2778 rdev->badblocks.changed = 0;
2779 ack_all_badblocks(&rdev->badblocks);
2780 md_error(mddev, rdev);
2781 }
2782 clear_bit(Blocked, &rdev->flags);
2783 clear_bit(BlockedBadBlocks, &rdev->flags);
2784 wake_up(&rdev->blocked_wait);
2785 }
2786 }
2787 wake_up(&mddev->sb_wait);
2788 return;
2789 }
2790
2791 spin_lock(&mddev->lock);
2792
2793 mddev->utime = ktime_get_real_seconds();
2794
2795 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2796 force_change = 1;
2797 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2798 /* just a clean<-> dirty transition, possibly leave spares alone,
2799 * though if events isn't the right even/odd, we will have to do
2800 * spares after all
2801 */
2802 nospares = 1;
2803 if (force_change)
2804 nospares = 0;
2805 if (mddev->degraded)
2806 /* If the array is degraded, then skipping spares is both
2807 * dangerous and fairly pointless.
2808 * Dangerous because a device that was removed from the array
2809 * might have a event_count that still looks up-to-date,
2810 * so it can be re-added without a resync.
2811 * Pointless because if there are any spares to skip,
2812 * then a recovery will happen and soon that array won't
2813 * be degraded any more and the spare can go back to sleep then.
2814 */
2815 nospares = 0;
2816
2817 sync_req = mddev->in_sync;
2818
2819 /* If this is just a dirty<->clean transition, and the array is clean
2820 * and 'events' is odd, we can roll back to the previous clean state */
2821 if (nospares
2822 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2823 && mddev->can_decrease_events
2824 && mddev->events != 1) {
2825 mddev->events--;
2826 mddev->can_decrease_events = 0;
2827 } else {
2828 /* otherwise we have to go forward and ... */
2829 mddev->events ++;
2830 mddev->can_decrease_events = nospares;
2831 }
2832
2833 /*
2834 * This 64-bit counter should never wrap.
2835 * Either we are in around ~1 trillion A.C., assuming
2836 * 1 reboot per second, or we have a bug...
2837 */
2838 WARN_ON(mddev->events == 0);
2839
2840 rdev_for_each(rdev, mddev) {
2841 if (rdev->badblocks.changed)
2842 any_badblocks_changed++;
2843 if (test_bit(Faulty, &rdev->flags))
2844 set_bit(FaultRecorded, &rdev->flags);
2845 }
2846
2847 sync_sbs(mddev, nospares);
2848 spin_unlock(&mddev->lock);
2849
2850 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2851 mdname(mddev), mddev->in_sync);
2852
2853 if (mddev->queue)
2854 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2855 rewrite:
2856 md_bitmap_update_sb(mddev->bitmap);
2857 rdev_for_each(rdev, mddev) {
2858 char b[BDEVNAME_SIZE];
2859
2860 if (rdev->sb_loaded != 1)
2861 continue; /* no noise on spare devices */
2862
2863 if (!test_bit(Faulty, &rdev->flags)) {
2864 md_super_write(mddev,rdev,
2865 rdev->sb_start, rdev->sb_size,
2866 rdev->sb_page);
2867 pr_debug("md: (write) %s's sb offset: %llu\n",
2868 bdevname(rdev->bdev, b),
2869 (unsigned long long)rdev->sb_start);
2870 rdev->sb_events = mddev->events;
2871 if (rdev->badblocks.size) {
2872 md_super_write(mddev, rdev,
2873 rdev->badblocks.sector,
2874 rdev->badblocks.size << 9,
2875 rdev->bb_page);
2876 rdev->badblocks.size = 0;
2877 }
2878
2879 } else
2880 pr_debug("md: %s (skipping faulty)\n",
2881 bdevname(rdev->bdev, b));
2882
2883 if (mddev->level == LEVEL_MULTIPATH)
2884 /* only need to write one superblock... */
2885 break;
2886 }
2887 if (md_super_wait(mddev) < 0)
2888 goto rewrite;
2889 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2890
2891 if (mddev_is_clustered(mddev) && ret == 0)
2892 md_cluster_ops->metadata_update_finish(mddev);
2893
2894 if (mddev->in_sync != sync_req ||
2895 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2896 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2897 /* have to write it out again */
2898 goto repeat;
2899 wake_up(&mddev->sb_wait);
2900 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2901 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2902
2903 rdev_for_each(rdev, mddev) {
2904 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2905 clear_bit(Blocked, &rdev->flags);
2906
2907 if (any_badblocks_changed)
2908 ack_all_badblocks(&rdev->badblocks);
2909 clear_bit(BlockedBadBlocks, &rdev->flags);
2910 wake_up(&rdev->blocked_wait);
2911 }
2912 }
2913 EXPORT_SYMBOL(md_update_sb);
2914
add_bound_rdev(struct md_rdev * rdev)2915 static int add_bound_rdev(struct md_rdev *rdev)
2916 {
2917 struct mddev *mddev = rdev->mddev;
2918 int err = 0;
2919 bool add_journal = test_bit(Journal, &rdev->flags);
2920
2921 if (!mddev->pers->hot_remove_disk || add_journal) {
2922 /* If there is hot_add_disk but no hot_remove_disk
2923 * then added disks for geometry changes,
2924 * and should be added immediately.
2925 */
2926 super_types[mddev->major_version].
2927 validate_super(mddev, NULL/*freshest*/, rdev);
2928 if (add_journal)
2929 mddev_suspend(mddev);
2930 err = mddev->pers->hot_add_disk(mddev, rdev);
2931 if (add_journal)
2932 mddev_resume(mddev);
2933 if (err) {
2934 md_kick_rdev_from_array(rdev);
2935 return err;
2936 }
2937 }
2938 sysfs_notify_dirent_safe(rdev->sysfs_state);
2939
2940 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2941 if (mddev->degraded)
2942 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2943 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2944 md_new_event(mddev);
2945 md_wakeup_thread(mddev->thread);
2946 return 0;
2947 }
2948
2949 /* words written to sysfs files may, or may not, be \n terminated.
2950 * We want to accept with case. For this we use cmd_match.
2951 */
cmd_match(const char * cmd,const char * str)2952 static int cmd_match(const char *cmd, const char *str)
2953 {
2954 /* See if cmd, written into a sysfs file, matches
2955 * str. They must either be the same, or cmd can
2956 * have a trailing newline
2957 */
2958 while (*cmd && *str && *cmd == *str) {
2959 cmd++;
2960 str++;
2961 }
2962 if (*cmd == '\n')
2963 cmd++;
2964 if (*str || *cmd)
2965 return 0;
2966 return 1;
2967 }
2968
2969 struct rdev_sysfs_entry {
2970 struct attribute attr;
2971 ssize_t (*show)(struct md_rdev *, char *);
2972 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2973 };
2974
2975 static ssize_t
state_show(struct md_rdev * rdev,char * page)2976 state_show(struct md_rdev *rdev, char *page)
2977 {
2978 char *sep = ",";
2979 size_t len = 0;
2980 unsigned long flags = READ_ONCE(rdev->flags);
2981
2982 if (test_bit(Faulty, &flags) ||
2983 (!test_bit(ExternalBbl, &flags) &&
2984 rdev->badblocks.unacked_exist))
2985 len += sprintf(page+len, "faulty%s", sep);
2986 if (test_bit(In_sync, &flags))
2987 len += sprintf(page+len, "in_sync%s", sep);
2988 if (test_bit(Journal, &flags))
2989 len += sprintf(page+len, "journal%s", sep);
2990 if (test_bit(WriteMostly, &flags))
2991 len += sprintf(page+len, "write_mostly%s", sep);
2992 if (test_bit(Blocked, &flags) ||
2993 (rdev->badblocks.unacked_exist
2994 && !test_bit(Faulty, &flags)))
2995 len += sprintf(page+len, "blocked%s", sep);
2996 if (!test_bit(Faulty, &flags) &&
2997 !test_bit(Journal, &flags) &&
2998 !test_bit(In_sync, &flags))
2999 len += sprintf(page+len, "spare%s", sep);
3000 if (test_bit(WriteErrorSeen, &flags))
3001 len += sprintf(page+len, "write_error%s", sep);
3002 if (test_bit(WantReplacement, &flags))
3003 len += sprintf(page+len, "want_replacement%s", sep);
3004 if (test_bit(Replacement, &flags))
3005 len += sprintf(page+len, "replacement%s", sep);
3006 if (test_bit(ExternalBbl, &flags))
3007 len += sprintf(page+len, "external_bbl%s", sep);
3008 if (test_bit(FailFast, &flags))
3009 len += sprintf(page+len, "failfast%s", sep);
3010
3011 if (len)
3012 len -= strlen(sep);
3013
3014 return len+sprintf(page+len, "\n");
3015 }
3016
3017 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)3018 state_store(struct md_rdev *rdev, const char *buf, size_t len)
3019 {
3020 /* can write
3021 * faulty - simulates an error
3022 * remove - disconnects the device
3023 * writemostly - sets write_mostly
3024 * -writemostly - clears write_mostly
3025 * blocked - sets the Blocked flags
3026 * -blocked - clears the Blocked and possibly simulates an error
3027 * insync - sets Insync providing device isn't active
3028 * -insync - clear Insync for a device with a slot assigned,
3029 * so that it gets rebuilt based on bitmap
3030 * write_error - sets WriteErrorSeen
3031 * -write_error - clears WriteErrorSeen
3032 * {,-}failfast - set/clear FailFast
3033 */
3034
3035 struct mddev *mddev = rdev->mddev;
3036 int err = -EINVAL;
3037 bool need_update_sb = false;
3038
3039 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3040 md_error(rdev->mddev, rdev);
3041
3042 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
3043 err = -EBUSY;
3044 else
3045 err = 0;
3046 } else if (cmd_match(buf, "remove")) {
3047 if (rdev->mddev->pers) {
3048 clear_bit(Blocked, &rdev->flags);
3049 remove_and_add_spares(rdev->mddev, rdev);
3050 }
3051 if (rdev->raid_disk >= 0)
3052 err = -EBUSY;
3053 else {
3054 err = 0;
3055 if (mddev_is_clustered(mddev))
3056 err = md_cluster_ops->remove_disk(mddev, rdev);
3057
3058 if (err == 0) {
3059 md_kick_rdev_from_array(rdev);
3060 if (mddev->pers) {
3061 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3062 md_wakeup_thread(mddev->thread);
3063 }
3064 md_new_event(mddev);
3065 }
3066 }
3067 } else if (cmd_match(buf, "writemostly")) {
3068 set_bit(WriteMostly, &rdev->flags);
3069 mddev_create_serial_pool(rdev->mddev, rdev, false);
3070 need_update_sb = true;
3071 err = 0;
3072 } else if (cmd_match(buf, "-writemostly")) {
3073 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3074 clear_bit(WriteMostly, &rdev->flags);
3075 need_update_sb = true;
3076 err = 0;
3077 } else if (cmd_match(buf, "blocked")) {
3078 set_bit(Blocked, &rdev->flags);
3079 err = 0;
3080 } else if (cmd_match(buf, "-blocked")) {
3081 if (!test_bit(Faulty, &rdev->flags) &&
3082 !test_bit(ExternalBbl, &rdev->flags) &&
3083 rdev->badblocks.unacked_exist) {
3084 /* metadata handler doesn't understand badblocks,
3085 * so we need to fail the device
3086 */
3087 md_error(rdev->mddev, rdev);
3088 }
3089 clear_bit(Blocked, &rdev->flags);
3090 clear_bit(BlockedBadBlocks, &rdev->flags);
3091 wake_up(&rdev->blocked_wait);
3092 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3093 md_wakeup_thread(rdev->mddev->thread);
3094
3095 err = 0;
3096 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3097 set_bit(In_sync, &rdev->flags);
3098 err = 0;
3099 } else if (cmd_match(buf, "failfast")) {
3100 set_bit(FailFast, &rdev->flags);
3101 need_update_sb = true;
3102 err = 0;
3103 } else if (cmd_match(buf, "-failfast")) {
3104 clear_bit(FailFast, &rdev->flags);
3105 need_update_sb = true;
3106 err = 0;
3107 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3108 !test_bit(Journal, &rdev->flags)) {
3109 if (rdev->mddev->pers == NULL) {
3110 clear_bit(In_sync, &rdev->flags);
3111 rdev->saved_raid_disk = rdev->raid_disk;
3112 rdev->raid_disk = -1;
3113 err = 0;
3114 }
3115 } else if (cmd_match(buf, "write_error")) {
3116 set_bit(WriteErrorSeen, &rdev->flags);
3117 err = 0;
3118 } else if (cmd_match(buf, "-write_error")) {
3119 clear_bit(WriteErrorSeen, &rdev->flags);
3120 err = 0;
3121 } else if (cmd_match(buf, "want_replacement")) {
3122 /* Any non-spare device that is not a replacement can
3123 * become want_replacement at any time, but we then need to
3124 * check if recovery is needed.
3125 */
3126 if (rdev->raid_disk >= 0 &&
3127 !test_bit(Journal, &rdev->flags) &&
3128 !test_bit(Replacement, &rdev->flags))
3129 set_bit(WantReplacement, &rdev->flags);
3130 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3131 md_wakeup_thread(rdev->mddev->thread);
3132 err = 0;
3133 } else if (cmd_match(buf, "-want_replacement")) {
3134 /* Clearing 'want_replacement' is always allowed.
3135 * Once replacements starts it is too late though.
3136 */
3137 err = 0;
3138 clear_bit(WantReplacement, &rdev->flags);
3139 } else if (cmd_match(buf, "replacement")) {
3140 /* Can only set a device as a replacement when array has not
3141 * yet been started. Once running, replacement is automatic
3142 * from spares, or by assigning 'slot'.
3143 */
3144 if (rdev->mddev->pers)
3145 err = -EBUSY;
3146 else {
3147 set_bit(Replacement, &rdev->flags);
3148 err = 0;
3149 }
3150 } else if (cmd_match(buf, "-replacement")) {
3151 /* Similarly, can only clear Replacement before start */
3152 if (rdev->mddev->pers)
3153 err = -EBUSY;
3154 else {
3155 clear_bit(Replacement, &rdev->flags);
3156 err = 0;
3157 }
3158 } else if (cmd_match(buf, "re-add")) {
3159 if (!rdev->mddev->pers)
3160 err = -EINVAL;
3161 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3162 rdev->saved_raid_disk >= 0) {
3163 /* clear_bit is performed _after_ all the devices
3164 * have their local Faulty bit cleared. If any writes
3165 * happen in the meantime in the local node, they
3166 * will land in the local bitmap, which will be synced
3167 * by this node eventually
3168 */
3169 if (!mddev_is_clustered(rdev->mddev) ||
3170 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3171 clear_bit(Faulty, &rdev->flags);
3172 err = add_bound_rdev(rdev);
3173 }
3174 } else
3175 err = -EBUSY;
3176 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3177 set_bit(ExternalBbl, &rdev->flags);
3178 rdev->badblocks.shift = 0;
3179 err = 0;
3180 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3181 clear_bit(ExternalBbl, &rdev->flags);
3182 err = 0;
3183 }
3184 if (need_update_sb)
3185 md_update_sb(mddev, 1);
3186 if (!err)
3187 sysfs_notify_dirent_safe(rdev->sysfs_state);
3188 return err ? err : len;
3189 }
3190 static struct rdev_sysfs_entry rdev_state =
3191 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3192
3193 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3194 errors_show(struct md_rdev *rdev, char *page)
3195 {
3196 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3197 }
3198
3199 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3200 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3201 {
3202 unsigned int n;
3203 int rv;
3204
3205 rv = kstrtouint(buf, 10, &n);
3206 if (rv < 0)
3207 return rv;
3208 atomic_set(&rdev->corrected_errors, n);
3209 return len;
3210 }
3211 static struct rdev_sysfs_entry rdev_errors =
3212 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3213
3214 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3215 slot_show(struct md_rdev *rdev, char *page)
3216 {
3217 if (test_bit(Journal, &rdev->flags))
3218 return sprintf(page, "journal\n");
3219 else if (rdev->raid_disk < 0)
3220 return sprintf(page, "none\n");
3221 else
3222 return sprintf(page, "%d\n", rdev->raid_disk);
3223 }
3224
3225 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3226 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3227 {
3228 int slot;
3229 int err;
3230
3231 if (test_bit(Journal, &rdev->flags))
3232 return -EBUSY;
3233 if (strncmp(buf, "none", 4)==0)
3234 slot = -1;
3235 else {
3236 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3237 if (err < 0)
3238 return err;
3239 if (slot < 0)
3240 /* overflow */
3241 return -ENOSPC;
3242 }
3243 if (rdev->mddev->pers && slot == -1) {
3244 /* Setting 'slot' on an active array requires also
3245 * updating the 'rd%d' link, and communicating
3246 * with the personality with ->hot_*_disk.
3247 * For now we only support removing
3248 * failed/spare devices. This normally happens automatically,
3249 * but not when the metadata is externally managed.
3250 */
3251 if (rdev->raid_disk == -1)
3252 return -EEXIST;
3253 /* personality does all needed checks */
3254 if (rdev->mddev->pers->hot_remove_disk == NULL)
3255 return -EINVAL;
3256 clear_bit(Blocked, &rdev->flags);
3257 remove_and_add_spares(rdev->mddev, rdev);
3258 if (rdev->raid_disk >= 0)
3259 return -EBUSY;
3260 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3261 md_wakeup_thread(rdev->mddev->thread);
3262 } else if (rdev->mddev->pers) {
3263 /* Activating a spare .. or possibly reactivating
3264 * if we ever get bitmaps working here.
3265 */
3266 int err;
3267
3268 if (rdev->raid_disk != -1)
3269 return -EBUSY;
3270
3271 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3272 return -EBUSY;
3273
3274 if (rdev->mddev->pers->hot_add_disk == NULL)
3275 return -EINVAL;
3276
3277 if (slot >= rdev->mddev->raid_disks &&
3278 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3279 return -ENOSPC;
3280
3281 rdev->raid_disk = slot;
3282 if (test_bit(In_sync, &rdev->flags))
3283 rdev->saved_raid_disk = slot;
3284 else
3285 rdev->saved_raid_disk = -1;
3286 clear_bit(In_sync, &rdev->flags);
3287 clear_bit(Bitmap_sync, &rdev->flags);
3288 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3289 if (err) {
3290 rdev->raid_disk = -1;
3291 return err;
3292 } else
3293 sysfs_notify_dirent_safe(rdev->sysfs_state);
3294 /* failure here is OK */;
3295 sysfs_link_rdev(rdev->mddev, rdev);
3296 /* don't wakeup anyone, leave that to userspace. */
3297 } else {
3298 if (slot >= rdev->mddev->raid_disks &&
3299 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3300 return -ENOSPC;
3301 rdev->raid_disk = slot;
3302 /* assume it is working */
3303 clear_bit(Faulty, &rdev->flags);
3304 clear_bit(WriteMostly, &rdev->flags);
3305 set_bit(In_sync, &rdev->flags);
3306 sysfs_notify_dirent_safe(rdev->sysfs_state);
3307 }
3308 return len;
3309 }
3310
3311 static struct rdev_sysfs_entry rdev_slot =
3312 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3313
3314 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3315 offset_show(struct md_rdev *rdev, char *page)
3316 {
3317 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3318 }
3319
3320 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3321 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3322 {
3323 unsigned long long offset;
3324 if (kstrtoull(buf, 10, &offset) < 0)
3325 return -EINVAL;
3326 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3327 return -EBUSY;
3328 if (rdev->sectors && rdev->mddev->external)
3329 /* Must set offset before size, so overlap checks
3330 * can be sane */
3331 return -EBUSY;
3332 rdev->data_offset = offset;
3333 rdev->new_data_offset = offset;
3334 return len;
3335 }
3336
3337 static struct rdev_sysfs_entry rdev_offset =
3338 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3339
new_offset_show(struct md_rdev * rdev,char * page)3340 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3341 {
3342 return sprintf(page, "%llu\n",
3343 (unsigned long long)rdev->new_data_offset);
3344 }
3345
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3346 static ssize_t new_offset_store(struct md_rdev *rdev,
3347 const char *buf, size_t len)
3348 {
3349 unsigned long long new_offset;
3350 struct mddev *mddev = rdev->mddev;
3351
3352 if (kstrtoull(buf, 10, &new_offset) < 0)
3353 return -EINVAL;
3354
3355 if (mddev->sync_thread ||
3356 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3357 return -EBUSY;
3358 if (new_offset == rdev->data_offset)
3359 /* reset is always permitted */
3360 ;
3361 else if (new_offset > rdev->data_offset) {
3362 /* must not push array size beyond rdev_sectors */
3363 if (new_offset - rdev->data_offset
3364 + mddev->dev_sectors > rdev->sectors)
3365 return -E2BIG;
3366 }
3367 /* Metadata worries about other space details. */
3368
3369 /* decreasing the offset is inconsistent with a backwards
3370 * reshape.
3371 */
3372 if (new_offset < rdev->data_offset &&
3373 mddev->reshape_backwards)
3374 return -EINVAL;
3375 /* Increasing offset is inconsistent with forwards
3376 * reshape. reshape_direction should be set to
3377 * 'backwards' first.
3378 */
3379 if (new_offset > rdev->data_offset &&
3380 !mddev->reshape_backwards)
3381 return -EINVAL;
3382
3383 if (mddev->pers && mddev->persistent &&
3384 !super_types[mddev->major_version]
3385 .allow_new_offset(rdev, new_offset))
3386 return -E2BIG;
3387 rdev->new_data_offset = new_offset;
3388 if (new_offset > rdev->data_offset)
3389 mddev->reshape_backwards = 1;
3390 else if (new_offset < rdev->data_offset)
3391 mddev->reshape_backwards = 0;
3392
3393 return len;
3394 }
3395 static struct rdev_sysfs_entry rdev_new_offset =
3396 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3397
3398 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3399 rdev_size_show(struct md_rdev *rdev, char *page)
3400 {
3401 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3402 }
3403
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3404 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3405 {
3406 /* check if two start/length pairs overlap */
3407 if (s1+l1 <= s2)
3408 return 0;
3409 if (s2+l2 <= s1)
3410 return 0;
3411 return 1;
3412 }
3413
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3414 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3415 {
3416 unsigned long long blocks;
3417 sector_t new;
3418
3419 if (kstrtoull(buf, 10, &blocks) < 0)
3420 return -EINVAL;
3421
3422 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3423 return -EINVAL; /* sector conversion overflow */
3424
3425 new = blocks * 2;
3426 if (new != blocks * 2)
3427 return -EINVAL; /* unsigned long long to sector_t overflow */
3428
3429 *sectors = new;
3430 return 0;
3431 }
3432
3433 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3434 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3435 {
3436 struct mddev *my_mddev = rdev->mddev;
3437 sector_t oldsectors = rdev->sectors;
3438 sector_t sectors;
3439
3440 if (test_bit(Journal, &rdev->flags))
3441 return -EBUSY;
3442 if (strict_blocks_to_sectors(buf, §ors) < 0)
3443 return -EINVAL;
3444 if (rdev->data_offset != rdev->new_data_offset)
3445 return -EINVAL; /* too confusing */
3446 if (my_mddev->pers && rdev->raid_disk >= 0) {
3447 if (my_mddev->persistent) {
3448 sectors = super_types[my_mddev->major_version].
3449 rdev_size_change(rdev, sectors);
3450 if (!sectors)
3451 return -EBUSY;
3452 } else if (!sectors)
3453 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3454 rdev->data_offset;
3455 if (!my_mddev->pers->resize)
3456 /* Cannot change size for RAID0 or Linear etc */
3457 return -EINVAL;
3458 }
3459 if (sectors < my_mddev->dev_sectors)
3460 return -EINVAL; /* component must fit device */
3461
3462 rdev->sectors = sectors;
3463 if (sectors > oldsectors && my_mddev->external) {
3464 /* Need to check that all other rdevs with the same
3465 * ->bdev do not overlap. 'rcu' is sufficient to walk
3466 * the rdev lists safely.
3467 * This check does not provide a hard guarantee, it
3468 * just helps avoid dangerous mistakes.
3469 */
3470 struct mddev *mddev;
3471 int overlap = 0;
3472 struct list_head *tmp;
3473
3474 rcu_read_lock();
3475 for_each_mddev(mddev, tmp) {
3476 struct md_rdev *rdev2;
3477
3478 rdev_for_each(rdev2, mddev)
3479 if (rdev->bdev == rdev2->bdev &&
3480 rdev != rdev2 &&
3481 overlaps(rdev->data_offset, rdev->sectors,
3482 rdev2->data_offset,
3483 rdev2->sectors)) {
3484 overlap = 1;
3485 break;
3486 }
3487 if (overlap) {
3488 mddev_put(mddev);
3489 break;
3490 }
3491 }
3492 rcu_read_unlock();
3493 if (overlap) {
3494 /* Someone else could have slipped in a size
3495 * change here, but doing so is just silly.
3496 * We put oldsectors back because we *know* it is
3497 * safe, and trust userspace not to race with
3498 * itself
3499 */
3500 rdev->sectors = oldsectors;
3501 return -EBUSY;
3502 }
3503 }
3504 return len;
3505 }
3506
3507 static struct rdev_sysfs_entry rdev_size =
3508 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3509
recovery_start_show(struct md_rdev * rdev,char * page)3510 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3511 {
3512 unsigned long long recovery_start = rdev->recovery_offset;
3513
3514 if (test_bit(In_sync, &rdev->flags) ||
3515 recovery_start == MaxSector)
3516 return sprintf(page, "none\n");
3517
3518 return sprintf(page, "%llu\n", recovery_start);
3519 }
3520
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3521 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3522 {
3523 unsigned long long recovery_start;
3524
3525 if (cmd_match(buf, "none"))
3526 recovery_start = MaxSector;
3527 else if (kstrtoull(buf, 10, &recovery_start))
3528 return -EINVAL;
3529
3530 if (rdev->mddev->pers &&
3531 rdev->raid_disk >= 0)
3532 return -EBUSY;
3533
3534 rdev->recovery_offset = recovery_start;
3535 if (recovery_start == MaxSector)
3536 set_bit(In_sync, &rdev->flags);
3537 else
3538 clear_bit(In_sync, &rdev->flags);
3539 return len;
3540 }
3541
3542 static struct rdev_sysfs_entry rdev_recovery_start =
3543 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3544
3545 /* sysfs access to bad-blocks list.
3546 * We present two files.
3547 * 'bad-blocks' lists sector numbers and lengths of ranges that
3548 * are recorded as bad. The list is truncated to fit within
3549 * the one-page limit of sysfs.
3550 * Writing "sector length" to this file adds an acknowledged
3551 * bad block list.
3552 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3553 * been acknowledged. Writing to this file adds bad blocks
3554 * without acknowledging them. This is largely for testing.
3555 */
bb_show(struct md_rdev * rdev,char * page)3556 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3557 {
3558 return badblocks_show(&rdev->badblocks, page, 0);
3559 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3560 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3561 {
3562 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3563 /* Maybe that ack was all we needed */
3564 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3565 wake_up(&rdev->blocked_wait);
3566 return rv;
3567 }
3568 static struct rdev_sysfs_entry rdev_bad_blocks =
3569 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3570
ubb_show(struct md_rdev * rdev,char * page)3571 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3572 {
3573 return badblocks_show(&rdev->badblocks, page, 1);
3574 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3575 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3576 {
3577 return badblocks_store(&rdev->badblocks, page, len, 1);
3578 }
3579 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3580 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3581
3582 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3583 ppl_sector_show(struct md_rdev *rdev, char *page)
3584 {
3585 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3586 }
3587
3588 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3589 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3590 {
3591 unsigned long long sector;
3592
3593 if (kstrtoull(buf, 10, §or) < 0)
3594 return -EINVAL;
3595 if (sector != (sector_t)sector)
3596 return -EINVAL;
3597
3598 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3599 rdev->raid_disk >= 0)
3600 return -EBUSY;
3601
3602 if (rdev->mddev->persistent) {
3603 if (rdev->mddev->major_version == 0)
3604 return -EINVAL;
3605 if ((sector > rdev->sb_start &&
3606 sector - rdev->sb_start > S16_MAX) ||
3607 (sector < rdev->sb_start &&
3608 rdev->sb_start - sector > -S16_MIN))
3609 return -EINVAL;
3610 rdev->ppl.offset = sector - rdev->sb_start;
3611 } else if (!rdev->mddev->external) {
3612 return -EBUSY;
3613 }
3614 rdev->ppl.sector = sector;
3615 return len;
3616 }
3617
3618 static struct rdev_sysfs_entry rdev_ppl_sector =
3619 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3620
3621 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3622 ppl_size_show(struct md_rdev *rdev, char *page)
3623 {
3624 return sprintf(page, "%u\n", rdev->ppl.size);
3625 }
3626
3627 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3628 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3629 {
3630 unsigned int size;
3631
3632 if (kstrtouint(buf, 10, &size) < 0)
3633 return -EINVAL;
3634
3635 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3636 rdev->raid_disk >= 0)
3637 return -EBUSY;
3638
3639 if (rdev->mddev->persistent) {
3640 if (rdev->mddev->major_version == 0)
3641 return -EINVAL;
3642 if (size > U16_MAX)
3643 return -EINVAL;
3644 } else if (!rdev->mddev->external) {
3645 return -EBUSY;
3646 }
3647 rdev->ppl.size = size;
3648 return len;
3649 }
3650
3651 static struct rdev_sysfs_entry rdev_ppl_size =
3652 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3653
3654 static struct attribute *rdev_default_attrs[] = {
3655 &rdev_state.attr,
3656 &rdev_errors.attr,
3657 &rdev_slot.attr,
3658 &rdev_offset.attr,
3659 &rdev_new_offset.attr,
3660 &rdev_size.attr,
3661 &rdev_recovery_start.attr,
3662 &rdev_bad_blocks.attr,
3663 &rdev_unack_bad_blocks.attr,
3664 &rdev_ppl_sector.attr,
3665 &rdev_ppl_size.attr,
3666 NULL,
3667 };
3668 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3669 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3670 {
3671 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3672 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3673
3674 if (!entry->show)
3675 return -EIO;
3676 if (!rdev->mddev)
3677 return -ENODEV;
3678 return entry->show(rdev, page);
3679 }
3680
3681 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3682 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3683 const char *page, size_t length)
3684 {
3685 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3686 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3687 ssize_t rv;
3688 struct mddev *mddev = rdev->mddev;
3689
3690 if (!entry->store)
3691 return -EIO;
3692 if (!capable(CAP_SYS_ADMIN))
3693 return -EACCES;
3694 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3695 if (!rv) {
3696 if (rdev->mddev == NULL)
3697 rv = -ENODEV;
3698 else
3699 rv = entry->store(rdev, page, length);
3700 mddev_unlock(mddev);
3701 }
3702 return rv;
3703 }
3704
rdev_free(struct kobject * ko)3705 static void rdev_free(struct kobject *ko)
3706 {
3707 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3708 kfree(rdev);
3709 }
3710 static const struct sysfs_ops rdev_sysfs_ops = {
3711 .show = rdev_attr_show,
3712 .store = rdev_attr_store,
3713 };
3714 static struct kobj_type rdev_ktype = {
3715 .release = rdev_free,
3716 .sysfs_ops = &rdev_sysfs_ops,
3717 .default_attrs = rdev_default_attrs,
3718 };
3719
md_rdev_init(struct md_rdev * rdev)3720 int md_rdev_init(struct md_rdev *rdev)
3721 {
3722 rdev->desc_nr = -1;
3723 rdev->saved_raid_disk = -1;
3724 rdev->raid_disk = -1;
3725 rdev->flags = 0;
3726 rdev->data_offset = 0;
3727 rdev->new_data_offset = 0;
3728 rdev->sb_events = 0;
3729 rdev->last_read_error = 0;
3730 rdev->sb_loaded = 0;
3731 rdev->bb_page = NULL;
3732 atomic_set(&rdev->nr_pending, 0);
3733 atomic_set(&rdev->read_errors, 0);
3734 atomic_set(&rdev->corrected_errors, 0);
3735
3736 INIT_LIST_HEAD(&rdev->same_set);
3737 init_waitqueue_head(&rdev->blocked_wait);
3738
3739 /* Add space to store bad block list.
3740 * This reserves the space even on arrays where it cannot
3741 * be used - I wonder if that matters
3742 */
3743 return badblocks_init(&rdev->badblocks, 0);
3744 }
3745 EXPORT_SYMBOL_GPL(md_rdev_init);
3746 /*
3747 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3748 *
3749 * mark the device faulty if:
3750 *
3751 * - the device is nonexistent (zero size)
3752 * - the device has no valid superblock
3753 *
3754 * a faulty rdev _never_ has rdev->sb set.
3755 */
md_import_device(dev_t newdev,int super_format,int super_minor)3756 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3757 {
3758 char b[BDEVNAME_SIZE];
3759 int err;
3760 struct md_rdev *rdev;
3761 sector_t size;
3762
3763 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3764 if (!rdev)
3765 return ERR_PTR(-ENOMEM);
3766
3767 err = md_rdev_init(rdev);
3768 if (err)
3769 goto abort_free;
3770 err = alloc_disk_sb(rdev);
3771 if (err)
3772 goto abort_free;
3773
3774 err = lock_rdev(rdev, newdev, super_format == -2);
3775 if (err)
3776 goto abort_free;
3777
3778 kobject_init(&rdev->kobj, &rdev_ktype);
3779
3780 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3781 if (!size) {
3782 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3783 bdevname(rdev->bdev,b));
3784 err = -EINVAL;
3785 goto abort_free;
3786 }
3787
3788 if (super_format >= 0) {
3789 err = super_types[super_format].
3790 load_super(rdev, NULL, super_minor);
3791 if (err == -EINVAL) {
3792 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3793 bdevname(rdev->bdev,b),
3794 super_format, super_minor);
3795 goto abort_free;
3796 }
3797 if (err < 0) {
3798 pr_warn("md: could not read %s's sb, not importing!\n",
3799 bdevname(rdev->bdev,b));
3800 goto abort_free;
3801 }
3802 }
3803
3804 return rdev;
3805
3806 abort_free:
3807 if (rdev->bdev)
3808 unlock_rdev(rdev);
3809 md_rdev_clear(rdev);
3810 kfree(rdev);
3811 return ERR_PTR(err);
3812 }
3813
3814 /*
3815 * Check a full RAID array for plausibility
3816 */
3817
analyze_sbs(struct mddev * mddev)3818 static int analyze_sbs(struct mddev *mddev)
3819 {
3820 int i;
3821 struct md_rdev *rdev, *freshest, *tmp;
3822 char b[BDEVNAME_SIZE];
3823
3824 freshest = NULL;
3825 rdev_for_each_safe(rdev, tmp, mddev)
3826 switch (super_types[mddev->major_version].
3827 load_super(rdev, freshest, mddev->minor_version)) {
3828 case 1:
3829 freshest = rdev;
3830 break;
3831 case 0:
3832 break;
3833 default:
3834 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3835 bdevname(rdev->bdev,b));
3836 md_kick_rdev_from_array(rdev);
3837 }
3838
3839 /* Cannot find a valid fresh disk */
3840 if (!freshest) {
3841 pr_warn("md: cannot find a valid disk\n");
3842 return -EINVAL;
3843 }
3844
3845 super_types[mddev->major_version].
3846 validate_super(mddev, NULL/*freshest*/, freshest);
3847
3848 i = 0;
3849 rdev_for_each_safe(rdev, tmp, mddev) {
3850 if (mddev->max_disks &&
3851 (rdev->desc_nr >= mddev->max_disks ||
3852 i > mddev->max_disks)) {
3853 pr_warn("md: %s: %s: only %d devices permitted\n",
3854 mdname(mddev), bdevname(rdev->bdev, b),
3855 mddev->max_disks);
3856 md_kick_rdev_from_array(rdev);
3857 continue;
3858 }
3859 if (rdev != freshest) {
3860 if (super_types[mddev->major_version].
3861 validate_super(mddev, freshest, rdev)) {
3862 pr_warn("md: kicking non-fresh %s from array!\n",
3863 bdevname(rdev->bdev,b));
3864 md_kick_rdev_from_array(rdev);
3865 continue;
3866 }
3867 }
3868 if (mddev->level == LEVEL_MULTIPATH) {
3869 rdev->desc_nr = i++;
3870 rdev->raid_disk = rdev->desc_nr;
3871 set_bit(In_sync, &rdev->flags);
3872 } else if (rdev->raid_disk >=
3873 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3874 !test_bit(Journal, &rdev->flags)) {
3875 rdev->raid_disk = -1;
3876 clear_bit(In_sync, &rdev->flags);
3877 }
3878 }
3879
3880 return 0;
3881 }
3882
3883 /* Read a fixed-point number.
3884 * Numbers in sysfs attributes should be in "standard" units where
3885 * possible, so time should be in seconds.
3886 * However we internally use a a much smaller unit such as
3887 * milliseconds or jiffies.
3888 * This function takes a decimal number with a possible fractional
3889 * component, and produces an integer which is the result of
3890 * multiplying that number by 10^'scale'.
3891 * all without any floating-point arithmetic.
3892 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3893 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3894 {
3895 unsigned long result = 0;
3896 long decimals = -1;
3897 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3898 if (*cp == '.')
3899 decimals = 0;
3900 else if (decimals < scale) {
3901 unsigned int value;
3902 value = *cp - '0';
3903 result = result * 10 + value;
3904 if (decimals >= 0)
3905 decimals++;
3906 }
3907 cp++;
3908 }
3909 if (*cp == '\n')
3910 cp++;
3911 if (*cp)
3912 return -EINVAL;
3913 if (decimals < 0)
3914 decimals = 0;
3915 *res = result * int_pow(10, scale - decimals);
3916 return 0;
3917 }
3918
3919 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3920 safe_delay_show(struct mddev *mddev, char *page)
3921 {
3922 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3923
3924 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3925 }
3926 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3927 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3928 {
3929 unsigned long msec;
3930
3931 if (mddev_is_clustered(mddev)) {
3932 pr_warn("md: Safemode is disabled for clustered mode\n");
3933 return -EINVAL;
3934 }
3935
3936 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3937 return -EINVAL;
3938 if (msec == 0)
3939 mddev->safemode_delay = 0;
3940 else {
3941 unsigned long old_delay = mddev->safemode_delay;
3942 unsigned long new_delay = (msec*HZ)/1000;
3943
3944 if (new_delay == 0)
3945 new_delay = 1;
3946 mddev->safemode_delay = new_delay;
3947 if (new_delay < old_delay || old_delay == 0)
3948 mod_timer(&mddev->safemode_timer, jiffies+1);
3949 }
3950 return len;
3951 }
3952 static struct md_sysfs_entry md_safe_delay =
3953 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3954
3955 static ssize_t
level_show(struct mddev * mddev,char * page)3956 level_show(struct mddev *mddev, char *page)
3957 {
3958 struct md_personality *p;
3959 int ret;
3960 spin_lock(&mddev->lock);
3961 p = mddev->pers;
3962 if (p)
3963 ret = sprintf(page, "%s\n", p->name);
3964 else if (mddev->clevel[0])
3965 ret = sprintf(page, "%s\n", mddev->clevel);
3966 else if (mddev->level != LEVEL_NONE)
3967 ret = sprintf(page, "%d\n", mddev->level);
3968 else
3969 ret = 0;
3970 spin_unlock(&mddev->lock);
3971 return ret;
3972 }
3973
3974 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3975 level_store(struct mddev *mddev, const char *buf, size_t len)
3976 {
3977 char clevel[16];
3978 ssize_t rv;
3979 size_t slen = len;
3980 struct md_personality *pers, *oldpers;
3981 long level;
3982 void *priv, *oldpriv;
3983 struct md_rdev *rdev;
3984
3985 if (slen == 0 || slen >= sizeof(clevel))
3986 return -EINVAL;
3987
3988 rv = mddev_lock(mddev);
3989 if (rv)
3990 return rv;
3991
3992 if (mddev->pers == NULL) {
3993 strncpy(mddev->clevel, buf, slen);
3994 if (mddev->clevel[slen-1] == '\n')
3995 slen--;
3996 mddev->clevel[slen] = 0;
3997 mddev->level = LEVEL_NONE;
3998 rv = len;
3999 goto out_unlock;
4000 }
4001 rv = -EROFS;
4002 if (!md_is_rdwr(mddev))
4003 goto out_unlock;
4004
4005 /* request to change the personality. Need to ensure:
4006 * - array is not engaged in resync/recovery/reshape
4007 * - old personality can be suspended
4008 * - new personality will access other array.
4009 */
4010
4011 rv = -EBUSY;
4012 if (mddev->sync_thread ||
4013 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4014 mddev->reshape_position != MaxSector ||
4015 mddev->sysfs_active)
4016 goto out_unlock;
4017
4018 rv = -EINVAL;
4019 if (!mddev->pers->quiesce) {
4020 pr_warn("md: %s: %s does not support online personality change\n",
4021 mdname(mddev), mddev->pers->name);
4022 goto out_unlock;
4023 }
4024
4025 /* Now find the new personality */
4026 strncpy(clevel, buf, slen);
4027 if (clevel[slen-1] == '\n')
4028 slen--;
4029 clevel[slen] = 0;
4030 if (kstrtol(clevel, 10, &level))
4031 level = LEVEL_NONE;
4032
4033 if (request_module("md-%s", clevel) != 0)
4034 request_module("md-level-%s", clevel);
4035 spin_lock(&pers_lock);
4036 pers = find_pers(level, clevel);
4037 if (!pers || !try_module_get(pers->owner)) {
4038 spin_unlock(&pers_lock);
4039 pr_warn("md: personality %s not loaded\n", clevel);
4040 rv = -EINVAL;
4041 goto out_unlock;
4042 }
4043 spin_unlock(&pers_lock);
4044
4045 if (pers == mddev->pers) {
4046 /* Nothing to do! */
4047 module_put(pers->owner);
4048 rv = len;
4049 goto out_unlock;
4050 }
4051 if (!pers->takeover) {
4052 module_put(pers->owner);
4053 pr_warn("md: %s: %s does not support personality takeover\n",
4054 mdname(mddev), clevel);
4055 rv = -EINVAL;
4056 goto out_unlock;
4057 }
4058
4059 rdev_for_each(rdev, mddev)
4060 rdev->new_raid_disk = rdev->raid_disk;
4061
4062 /* ->takeover must set new_* and/or delta_disks
4063 * if it succeeds, and may set them when it fails.
4064 */
4065 priv = pers->takeover(mddev);
4066 if (IS_ERR(priv)) {
4067 mddev->new_level = mddev->level;
4068 mddev->new_layout = mddev->layout;
4069 mddev->new_chunk_sectors = mddev->chunk_sectors;
4070 mddev->raid_disks -= mddev->delta_disks;
4071 mddev->delta_disks = 0;
4072 mddev->reshape_backwards = 0;
4073 module_put(pers->owner);
4074 pr_warn("md: %s: %s would not accept array\n",
4075 mdname(mddev), clevel);
4076 rv = PTR_ERR(priv);
4077 goto out_unlock;
4078 }
4079
4080 /* Looks like we have a winner */
4081 mddev_suspend(mddev);
4082 mddev_detach(mddev);
4083
4084 spin_lock(&mddev->lock);
4085 oldpers = mddev->pers;
4086 oldpriv = mddev->private;
4087 mddev->pers = pers;
4088 mddev->private = priv;
4089 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4090 mddev->level = mddev->new_level;
4091 mddev->layout = mddev->new_layout;
4092 mddev->chunk_sectors = mddev->new_chunk_sectors;
4093 mddev->delta_disks = 0;
4094 mddev->reshape_backwards = 0;
4095 mddev->degraded = 0;
4096 spin_unlock(&mddev->lock);
4097
4098 if (oldpers->sync_request == NULL &&
4099 mddev->external) {
4100 /* We are converting from a no-redundancy array
4101 * to a redundancy array and metadata is managed
4102 * externally so we need to be sure that writes
4103 * won't block due to a need to transition
4104 * clean->dirty
4105 * until external management is started.
4106 */
4107 mddev->in_sync = 0;
4108 mddev->safemode_delay = 0;
4109 mddev->safemode = 0;
4110 }
4111
4112 oldpers->free(mddev, oldpriv);
4113
4114 if (oldpers->sync_request == NULL &&
4115 pers->sync_request != NULL) {
4116 /* need to add the md_redundancy_group */
4117 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4118 pr_warn("md: cannot register extra attributes for %s\n",
4119 mdname(mddev));
4120 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4121 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4122 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4123 }
4124 if (oldpers->sync_request != NULL &&
4125 pers->sync_request == NULL) {
4126 /* need to remove the md_redundancy_group */
4127 if (mddev->to_remove == NULL)
4128 mddev->to_remove = &md_redundancy_group;
4129 }
4130
4131 module_put(oldpers->owner);
4132
4133 rdev_for_each(rdev, mddev) {
4134 if (rdev->raid_disk < 0)
4135 continue;
4136 if (rdev->new_raid_disk >= mddev->raid_disks)
4137 rdev->new_raid_disk = -1;
4138 if (rdev->new_raid_disk == rdev->raid_disk)
4139 continue;
4140 sysfs_unlink_rdev(mddev, rdev);
4141 }
4142 rdev_for_each(rdev, mddev) {
4143 if (rdev->raid_disk < 0)
4144 continue;
4145 if (rdev->new_raid_disk == rdev->raid_disk)
4146 continue;
4147 rdev->raid_disk = rdev->new_raid_disk;
4148 if (rdev->raid_disk < 0)
4149 clear_bit(In_sync, &rdev->flags);
4150 else {
4151 if (sysfs_link_rdev(mddev, rdev))
4152 pr_warn("md: cannot register rd%d for %s after level change\n",
4153 rdev->raid_disk, mdname(mddev));
4154 }
4155 }
4156
4157 if (pers->sync_request == NULL) {
4158 /* this is now an array without redundancy, so
4159 * it must always be in_sync
4160 */
4161 mddev->in_sync = 1;
4162 del_timer_sync(&mddev->safemode_timer);
4163 }
4164 blk_set_stacking_limits(&mddev->queue->limits);
4165 pers->run(mddev);
4166 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4167 mddev_resume(mddev);
4168 if (!mddev->thread)
4169 md_update_sb(mddev, 1);
4170 sysfs_notify_dirent_safe(mddev->sysfs_level);
4171 md_new_event(mddev);
4172 rv = len;
4173 out_unlock:
4174 mddev_unlock(mddev);
4175 return rv;
4176 }
4177
4178 static struct md_sysfs_entry md_level =
4179 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4180
4181 static ssize_t
layout_show(struct mddev * mddev,char * page)4182 layout_show(struct mddev *mddev, char *page)
4183 {
4184 /* just a number, not meaningful for all levels */
4185 if (mddev->reshape_position != MaxSector &&
4186 mddev->layout != mddev->new_layout)
4187 return sprintf(page, "%d (%d)\n",
4188 mddev->new_layout, mddev->layout);
4189 return sprintf(page, "%d\n", mddev->layout);
4190 }
4191
4192 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4193 layout_store(struct mddev *mddev, const char *buf, size_t len)
4194 {
4195 unsigned int n;
4196 int err;
4197
4198 err = kstrtouint(buf, 10, &n);
4199 if (err < 0)
4200 return err;
4201 err = mddev_lock(mddev);
4202 if (err)
4203 return err;
4204
4205 if (mddev->pers) {
4206 if (mddev->pers->check_reshape == NULL)
4207 err = -EBUSY;
4208 else if (!md_is_rdwr(mddev))
4209 err = -EROFS;
4210 else {
4211 mddev->new_layout = n;
4212 err = mddev->pers->check_reshape(mddev);
4213 if (err)
4214 mddev->new_layout = mddev->layout;
4215 }
4216 } else {
4217 mddev->new_layout = n;
4218 if (mddev->reshape_position == MaxSector)
4219 mddev->layout = n;
4220 }
4221 mddev_unlock(mddev);
4222 return err ?: len;
4223 }
4224 static struct md_sysfs_entry md_layout =
4225 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4226
4227 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4228 raid_disks_show(struct mddev *mddev, char *page)
4229 {
4230 if (mddev->raid_disks == 0)
4231 return 0;
4232 if (mddev->reshape_position != MaxSector &&
4233 mddev->delta_disks != 0)
4234 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4235 mddev->raid_disks - mddev->delta_disks);
4236 return sprintf(page, "%d\n", mddev->raid_disks);
4237 }
4238
4239 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4240
4241 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4242 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4243 {
4244 unsigned int n;
4245 int err;
4246
4247 err = kstrtouint(buf, 10, &n);
4248 if (err < 0)
4249 return err;
4250
4251 err = mddev_lock(mddev);
4252 if (err)
4253 return err;
4254 if (mddev->pers)
4255 err = update_raid_disks(mddev, n);
4256 else if (mddev->reshape_position != MaxSector) {
4257 struct md_rdev *rdev;
4258 int olddisks = mddev->raid_disks - mddev->delta_disks;
4259
4260 err = -EINVAL;
4261 rdev_for_each(rdev, mddev) {
4262 if (olddisks < n &&
4263 rdev->data_offset < rdev->new_data_offset)
4264 goto out_unlock;
4265 if (olddisks > n &&
4266 rdev->data_offset > rdev->new_data_offset)
4267 goto out_unlock;
4268 }
4269 err = 0;
4270 mddev->delta_disks = n - olddisks;
4271 mddev->raid_disks = n;
4272 mddev->reshape_backwards = (mddev->delta_disks < 0);
4273 } else
4274 mddev->raid_disks = n;
4275 out_unlock:
4276 mddev_unlock(mddev);
4277 return err ? err : len;
4278 }
4279 static struct md_sysfs_entry md_raid_disks =
4280 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4281
4282 static ssize_t
uuid_show(struct mddev * mddev,char * page)4283 uuid_show(struct mddev *mddev, char *page)
4284 {
4285 return sprintf(page, "%pU\n", mddev->uuid);
4286 }
4287 static struct md_sysfs_entry md_uuid =
4288 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4289
4290 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4291 chunk_size_show(struct mddev *mddev, char *page)
4292 {
4293 if (mddev->reshape_position != MaxSector &&
4294 mddev->chunk_sectors != mddev->new_chunk_sectors)
4295 return sprintf(page, "%d (%d)\n",
4296 mddev->new_chunk_sectors << 9,
4297 mddev->chunk_sectors << 9);
4298 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4299 }
4300
4301 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4302 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4303 {
4304 unsigned long n;
4305 int err;
4306
4307 err = kstrtoul(buf, 10, &n);
4308 if (err < 0)
4309 return err;
4310
4311 err = mddev_lock(mddev);
4312 if (err)
4313 return err;
4314 if (mddev->pers) {
4315 if (mddev->pers->check_reshape == NULL)
4316 err = -EBUSY;
4317 else if (!md_is_rdwr(mddev))
4318 err = -EROFS;
4319 else {
4320 mddev->new_chunk_sectors = n >> 9;
4321 err = mddev->pers->check_reshape(mddev);
4322 if (err)
4323 mddev->new_chunk_sectors = mddev->chunk_sectors;
4324 }
4325 } else {
4326 mddev->new_chunk_sectors = n >> 9;
4327 if (mddev->reshape_position == MaxSector)
4328 mddev->chunk_sectors = n >> 9;
4329 }
4330 mddev_unlock(mddev);
4331 return err ?: len;
4332 }
4333 static struct md_sysfs_entry md_chunk_size =
4334 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4335
4336 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4337 resync_start_show(struct mddev *mddev, char *page)
4338 {
4339 if (mddev->recovery_cp == MaxSector)
4340 return sprintf(page, "none\n");
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4342 }
4343
4344 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4345 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4346 {
4347 unsigned long long n;
4348 int err;
4349
4350 if (cmd_match(buf, "none"))
4351 n = MaxSector;
4352 else {
4353 err = kstrtoull(buf, 10, &n);
4354 if (err < 0)
4355 return err;
4356 if (n != (sector_t)n)
4357 return -EINVAL;
4358 }
4359
4360 err = mddev_lock(mddev);
4361 if (err)
4362 return err;
4363 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4364 err = -EBUSY;
4365
4366 if (!err) {
4367 mddev->recovery_cp = n;
4368 if (mddev->pers)
4369 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4370 }
4371 mddev_unlock(mddev);
4372 return err ?: len;
4373 }
4374 static struct md_sysfs_entry md_resync_start =
4375 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4376 resync_start_show, resync_start_store);
4377
4378 /*
4379 * The array state can be:
4380 *
4381 * clear
4382 * No devices, no size, no level
4383 * Equivalent to STOP_ARRAY ioctl
4384 * inactive
4385 * May have some settings, but array is not active
4386 * all IO results in error
4387 * When written, doesn't tear down array, but just stops it
4388 * suspended (not supported yet)
4389 * All IO requests will block. The array can be reconfigured.
4390 * Writing this, if accepted, will block until array is quiescent
4391 * readonly
4392 * no resync can happen. no superblocks get written.
4393 * write requests fail
4394 * read-auto
4395 * like readonly, but behaves like 'clean' on a write request.
4396 *
4397 * clean - no pending writes, but otherwise active.
4398 * When written to inactive array, starts without resync
4399 * If a write request arrives then
4400 * if metadata is known, mark 'dirty' and switch to 'active'.
4401 * if not known, block and switch to write-pending
4402 * If written to an active array that has pending writes, then fails.
4403 * active
4404 * fully active: IO and resync can be happening.
4405 * When written to inactive array, starts with resync
4406 *
4407 * write-pending
4408 * clean, but writes are blocked waiting for 'active' to be written.
4409 *
4410 * active-idle
4411 * like active, but no writes have been seen for a while (100msec).
4412 *
4413 * broken
4414 * Array is failed. It's useful because mounted-arrays aren't stopped
4415 * when array is failed, so this state will at least alert the user that
4416 * something is wrong.
4417 */
4418 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4419 write_pending, active_idle, broken, bad_word};
4420 static char *array_states[] = {
4421 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4422 "write-pending", "active-idle", "broken", NULL };
4423
match_word(const char * word,char ** list)4424 static int match_word(const char *word, char **list)
4425 {
4426 int n;
4427 for (n=0; list[n]; n++)
4428 if (cmd_match(word, list[n]))
4429 break;
4430 return n;
4431 }
4432
4433 static ssize_t
array_state_show(struct mddev * mddev,char * page)4434 array_state_show(struct mddev *mddev, char *page)
4435 {
4436 enum array_state st = inactive;
4437
4438 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4439 switch(mddev->ro) {
4440 case MD_RDONLY:
4441 st = readonly;
4442 break;
4443 case MD_AUTO_READ:
4444 st = read_auto;
4445 break;
4446 case MD_RDWR:
4447 spin_lock(&mddev->lock);
4448 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4449 st = write_pending;
4450 else if (mddev->in_sync)
4451 st = clean;
4452 else if (mddev->safemode)
4453 st = active_idle;
4454 else
4455 st = active;
4456 spin_unlock(&mddev->lock);
4457 }
4458
4459 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4460 st = broken;
4461 } else {
4462 if (list_empty(&mddev->disks) &&
4463 mddev->raid_disks == 0 &&
4464 mddev->dev_sectors == 0)
4465 st = clear;
4466 else
4467 st = inactive;
4468 }
4469 return sprintf(page, "%s\n", array_states[st]);
4470 }
4471
4472 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4473 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4474 static int restart_array(struct mddev *mddev);
4475
4476 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4477 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4478 {
4479 int err = 0;
4480 enum array_state st = match_word(buf, array_states);
4481
4482 if (mddev->pers && (st == active || st == clean) &&
4483 mddev->ro != MD_RDONLY) {
4484 /* don't take reconfig_mutex when toggling between
4485 * clean and active
4486 */
4487 spin_lock(&mddev->lock);
4488 if (st == active) {
4489 restart_array(mddev);
4490 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4491 md_wakeup_thread(mddev->thread);
4492 wake_up(&mddev->sb_wait);
4493 } else /* st == clean */ {
4494 restart_array(mddev);
4495 if (!set_in_sync(mddev))
4496 err = -EBUSY;
4497 }
4498 if (!err)
4499 sysfs_notify_dirent_safe(mddev->sysfs_state);
4500 spin_unlock(&mddev->lock);
4501 return err ?: len;
4502 }
4503 err = mddev_lock(mddev);
4504 if (err)
4505 return err;
4506 err = -EINVAL;
4507 switch(st) {
4508 case bad_word:
4509 break;
4510 case clear:
4511 /* stopping an active array */
4512 err = do_md_stop(mddev, 0, NULL);
4513 break;
4514 case inactive:
4515 /* stopping an active array */
4516 if (mddev->pers)
4517 err = do_md_stop(mddev, 2, NULL);
4518 else
4519 err = 0; /* already inactive */
4520 break;
4521 case suspended:
4522 break; /* not supported yet */
4523 case readonly:
4524 if (mddev->pers)
4525 err = md_set_readonly(mddev, NULL);
4526 else {
4527 mddev->ro = MD_RDONLY;
4528 set_disk_ro(mddev->gendisk, 1);
4529 err = do_md_run(mddev);
4530 }
4531 break;
4532 case read_auto:
4533 if (mddev->pers) {
4534 if (md_is_rdwr(mddev))
4535 err = md_set_readonly(mddev, NULL);
4536 else if (mddev->ro == MD_RDONLY)
4537 err = restart_array(mddev);
4538 if (err == 0) {
4539 mddev->ro = MD_AUTO_READ;
4540 set_disk_ro(mddev->gendisk, 0);
4541 }
4542 } else {
4543 mddev->ro = MD_AUTO_READ;
4544 err = do_md_run(mddev);
4545 }
4546 break;
4547 case clean:
4548 if (mddev->pers) {
4549 err = restart_array(mddev);
4550 if (err)
4551 break;
4552 spin_lock(&mddev->lock);
4553 if (!set_in_sync(mddev))
4554 err = -EBUSY;
4555 spin_unlock(&mddev->lock);
4556 } else
4557 err = -EINVAL;
4558 break;
4559 case active:
4560 if (mddev->pers) {
4561 err = restart_array(mddev);
4562 if (err)
4563 break;
4564 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4565 wake_up(&mddev->sb_wait);
4566 err = 0;
4567 } else {
4568 mddev->ro = MD_RDWR;
4569 set_disk_ro(mddev->gendisk, 0);
4570 err = do_md_run(mddev);
4571 }
4572 break;
4573 case write_pending:
4574 case active_idle:
4575 case broken:
4576 /* these cannot be set */
4577 break;
4578 }
4579
4580 if (!err) {
4581 if (mddev->hold_active == UNTIL_IOCTL)
4582 mddev->hold_active = 0;
4583 sysfs_notify_dirent_safe(mddev->sysfs_state);
4584 }
4585 mddev_unlock(mddev);
4586 return err ?: len;
4587 }
4588 static struct md_sysfs_entry md_array_state =
4589 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4590
4591 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4592 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4593 return sprintf(page, "%d\n",
4594 atomic_read(&mddev->max_corr_read_errors));
4595 }
4596
4597 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4598 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4599 {
4600 unsigned int n;
4601 int rv;
4602
4603 rv = kstrtouint(buf, 10, &n);
4604 if (rv < 0)
4605 return rv;
4606 if (n > INT_MAX)
4607 return -EINVAL;
4608 atomic_set(&mddev->max_corr_read_errors, n);
4609 return len;
4610 }
4611
4612 static struct md_sysfs_entry max_corr_read_errors =
4613 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4614 max_corrected_read_errors_store);
4615
4616 static ssize_t
null_show(struct mddev * mddev,char * page)4617 null_show(struct mddev *mddev, char *page)
4618 {
4619 return -EINVAL;
4620 }
4621
4622 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4623 static void flush_rdev_wq(struct mddev *mddev)
4624 {
4625 struct md_rdev *rdev;
4626
4627 rcu_read_lock();
4628 rdev_for_each_rcu(rdev, mddev)
4629 if (work_pending(&rdev->del_work)) {
4630 flush_workqueue(md_rdev_misc_wq);
4631 break;
4632 }
4633 rcu_read_unlock();
4634 }
4635
4636 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4637 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639 /* buf must be %d:%d\n? giving major and minor numbers */
4640 /* The new device is added to the array.
4641 * If the array has a persistent superblock, we read the
4642 * superblock to initialise info and check validity.
4643 * Otherwise, only checking done is that in bind_rdev_to_array,
4644 * which mainly checks size.
4645 */
4646 char *e;
4647 int major = simple_strtoul(buf, &e, 10);
4648 int minor;
4649 dev_t dev;
4650 struct md_rdev *rdev;
4651 int err;
4652
4653 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4654 return -EINVAL;
4655 minor = simple_strtoul(e+1, &e, 10);
4656 if (*e && *e != '\n')
4657 return -EINVAL;
4658 dev = MKDEV(major, minor);
4659 if (major != MAJOR(dev) ||
4660 minor != MINOR(dev))
4661 return -EOVERFLOW;
4662
4663 flush_rdev_wq(mddev);
4664 err = mddev_lock(mddev);
4665 if (err)
4666 return err;
4667 if (mddev->persistent) {
4668 rdev = md_import_device(dev, mddev->major_version,
4669 mddev->minor_version);
4670 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4671 struct md_rdev *rdev0
4672 = list_entry(mddev->disks.next,
4673 struct md_rdev, same_set);
4674 err = super_types[mddev->major_version]
4675 .load_super(rdev, rdev0, mddev->minor_version);
4676 if (err < 0)
4677 goto out;
4678 }
4679 } else if (mddev->external)
4680 rdev = md_import_device(dev, -2, -1);
4681 else
4682 rdev = md_import_device(dev, -1, -1);
4683
4684 if (IS_ERR(rdev)) {
4685 mddev_unlock(mddev);
4686 return PTR_ERR(rdev);
4687 }
4688 err = bind_rdev_to_array(rdev, mddev);
4689 out:
4690 if (err)
4691 export_rdev(rdev);
4692 mddev_unlock(mddev);
4693 if (!err)
4694 md_new_event(mddev);
4695 return err ? err : len;
4696 }
4697
4698 static struct md_sysfs_entry md_new_device =
4699 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4700
4701 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4702 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4703 {
4704 char *end;
4705 unsigned long chunk, end_chunk;
4706 int err;
4707
4708 err = mddev_lock(mddev);
4709 if (err)
4710 return err;
4711 if (!mddev->bitmap)
4712 goto out;
4713 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4714 while (*buf) {
4715 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4716 if (buf == end) break;
4717 if (*end == '-') { /* range */
4718 buf = end + 1;
4719 end_chunk = simple_strtoul(buf, &end, 0);
4720 if (buf == end) break;
4721 }
4722 if (*end && !isspace(*end)) break;
4723 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4724 buf = skip_spaces(end);
4725 }
4726 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4727 out:
4728 mddev_unlock(mddev);
4729 return len;
4730 }
4731
4732 static struct md_sysfs_entry md_bitmap =
4733 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4734
4735 static ssize_t
size_show(struct mddev * mddev,char * page)4736 size_show(struct mddev *mddev, char *page)
4737 {
4738 return sprintf(page, "%llu\n",
4739 (unsigned long long)mddev->dev_sectors / 2);
4740 }
4741
4742 static int update_size(struct mddev *mddev, sector_t num_sectors);
4743
4744 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4745 size_store(struct mddev *mddev, const char *buf, size_t len)
4746 {
4747 /* If array is inactive, we can reduce the component size, but
4748 * not increase it (except from 0).
4749 * If array is active, we can try an on-line resize
4750 */
4751 sector_t sectors;
4752 int err = strict_blocks_to_sectors(buf, §ors);
4753
4754 if (err < 0)
4755 return err;
4756 err = mddev_lock(mddev);
4757 if (err)
4758 return err;
4759 if (mddev->pers) {
4760 err = update_size(mddev, sectors);
4761 if (err == 0)
4762 md_update_sb(mddev, 1);
4763 } else {
4764 if (mddev->dev_sectors == 0 ||
4765 mddev->dev_sectors > sectors)
4766 mddev->dev_sectors = sectors;
4767 else
4768 err = -ENOSPC;
4769 }
4770 mddev_unlock(mddev);
4771 return err ? err : len;
4772 }
4773
4774 static struct md_sysfs_entry md_size =
4775 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4776
4777 /* Metadata version.
4778 * This is one of
4779 * 'none' for arrays with no metadata (good luck...)
4780 * 'external' for arrays with externally managed metadata,
4781 * or N.M for internally known formats
4782 */
4783 static ssize_t
metadata_show(struct mddev * mddev,char * page)4784 metadata_show(struct mddev *mddev, char *page)
4785 {
4786 if (mddev->persistent)
4787 return sprintf(page, "%d.%d\n",
4788 mddev->major_version, mddev->minor_version);
4789 else if (mddev->external)
4790 return sprintf(page, "external:%s\n", mddev->metadata_type);
4791 else
4792 return sprintf(page, "none\n");
4793 }
4794
4795 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4796 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4797 {
4798 int major, minor;
4799 char *e;
4800 int err;
4801 /* Changing the details of 'external' metadata is
4802 * always permitted. Otherwise there must be
4803 * no devices attached to the array.
4804 */
4805
4806 err = mddev_lock(mddev);
4807 if (err)
4808 return err;
4809 err = -EBUSY;
4810 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4811 ;
4812 else if (!list_empty(&mddev->disks))
4813 goto out_unlock;
4814
4815 err = 0;
4816 if (cmd_match(buf, "none")) {
4817 mddev->persistent = 0;
4818 mddev->external = 0;
4819 mddev->major_version = 0;
4820 mddev->minor_version = 90;
4821 goto out_unlock;
4822 }
4823 if (strncmp(buf, "external:", 9) == 0) {
4824 size_t namelen = len-9;
4825 if (namelen >= sizeof(mddev->metadata_type))
4826 namelen = sizeof(mddev->metadata_type)-1;
4827 strncpy(mddev->metadata_type, buf+9, namelen);
4828 mddev->metadata_type[namelen] = 0;
4829 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4830 mddev->metadata_type[--namelen] = 0;
4831 mddev->persistent = 0;
4832 mddev->external = 1;
4833 mddev->major_version = 0;
4834 mddev->minor_version = 90;
4835 goto out_unlock;
4836 }
4837 major = simple_strtoul(buf, &e, 10);
4838 err = -EINVAL;
4839 if (e==buf || *e != '.')
4840 goto out_unlock;
4841 buf = e+1;
4842 minor = simple_strtoul(buf, &e, 10);
4843 if (e==buf || (*e && *e != '\n') )
4844 goto out_unlock;
4845 err = -ENOENT;
4846 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4847 goto out_unlock;
4848 mddev->major_version = major;
4849 mddev->minor_version = minor;
4850 mddev->persistent = 1;
4851 mddev->external = 0;
4852 err = 0;
4853 out_unlock:
4854 mddev_unlock(mddev);
4855 return err ?: len;
4856 }
4857
4858 static struct md_sysfs_entry md_metadata =
4859 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4860
4861 static ssize_t
action_show(struct mddev * mddev,char * page)4862 action_show(struct mddev *mddev, char *page)
4863 {
4864 char *type = "idle";
4865 unsigned long recovery = mddev->recovery;
4866 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4867 type = "frozen";
4868 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4869 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4870 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4871 type = "reshape";
4872 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4873 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4874 type = "resync";
4875 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4876 type = "check";
4877 else
4878 type = "repair";
4879 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4880 type = "recover";
4881 else if (mddev->reshape_position != MaxSector)
4882 type = "reshape";
4883 }
4884 return sprintf(page, "%s\n", type);
4885 }
4886
4887 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4888 action_store(struct mddev *mddev, const char *page, size_t len)
4889 {
4890 if (!mddev->pers || !mddev->pers->sync_request)
4891 return -EINVAL;
4892
4893
4894 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4895 if (cmd_match(page, "frozen"))
4896 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4897 else
4898 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4899 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4900 mddev_lock(mddev) == 0) {
4901 if (work_pending(&mddev->del_work))
4902 flush_workqueue(md_misc_wq);
4903 if (mddev->sync_thread) {
4904 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4905 md_reap_sync_thread(mddev);
4906 }
4907 mddev_unlock(mddev);
4908 }
4909 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4910 return -EBUSY;
4911 else if (cmd_match(page, "resync"))
4912 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4913 else if (cmd_match(page, "recover")) {
4914 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4915 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4916 } else if (cmd_match(page, "reshape")) {
4917 int err;
4918 if (mddev->pers->start_reshape == NULL)
4919 return -EINVAL;
4920 err = mddev_lock(mddev);
4921 if (!err) {
4922 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4923 err = -EBUSY;
4924 else {
4925 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4926 err = mddev->pers->start_reshape(mddev);
4927 }
4928 mddev_unlock(mddev);
4929 }
4930 if (err)
4931 return err;
4932 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4933 } else {
4934 if (cmd_match(page, "check"))
4935 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4936 else if (!cmd_match(page, "repair"))
4937 return -EINVAL;
4938 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4939 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4940 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4941 }
4942 if (mddev->ro == MD_AUTO_READ) {
4943 /* A write to sync_action is enough to justify
4944 * canceling read-auto mode
4945 */
4946 mddev->ro = MD_RDWR;
4947 md_wakeup_thread(mddev->sync_thread);
4948 }
4949 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4950 md_wakeup_thread(mddev->thread);
4951 sysfs_notify_dirent_safe(mddev->sysfs_action);
4952 return len;
4953 }
4954
4955 static struct md_sysfs_entry md_scan_mode =
4956 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4957
4958 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4959 last_sync_action_show(struct mddev *mddev, char *page)
4960 {
4961 return sprintf(page, "%s\n", mddev->last_sync_action);
4962 }
4963
4964 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4965
4966 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4967 mismatch_cnt_show(struct mddev *mddev, char *page)
4968 {
4969 return sprintf(page, "%llu\n",
4970 (unsigned long long)
4971 atomic64_read(&mddev->resync_mismatches));
4972 }
4973
4974 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4975
4976 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4977 sync_min_show(struct mddev *mddev, char *page)
4978 {
4979 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4980 mddev->sync_speed_min ? "local": "system");
4981 }
4982
4983 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4984 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4985 {
4986 unsigned int min;
4987 int rv;
4988
4989 if (strncmp(buf, "system", 6)==0) {
4990 min = 0;
4991 } else {
4992 rv = kstrtouint(buf, 10, &min);
4993 if (rv < 0)
4994 return rv;
4995 if (min == 0)
4996 return -EINVAL;
4997 }
4998 mddev->sync_speed_min = min;
4999 return len;
5000 }
5001
5002 static struct md_sysfs_entry md_sync_min =
5003 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
5004
5005 static ssize_t
sync_max_show(struct mddev * mddev,char * page)5006 sync_max_show(struct mddev *mddev, char *page)
5007 {
5008 return sprintf(page, "%d (%s)\n", speed_max(mddev),
5009 mddev->sync_speed_max ? "local": "system");
5010 }
5011
5012 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)5013 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
5014 {
5015 unsigned int max;
5016 int rv;
5017
5018 if (strncmp(buf, "system", 6)==0) {
5019 max = 0;
5020 } else {
5021 rv = kstrtouint(buf, 10, &max);
5022 if (rv < 0)
5023 return rv;
5024 if (max == 0)
5025 return -EINVAL;
5026 }
5027 mddev->sync_speed_max = max;
5028 return len;
5029 }
5030
5031 static struct md_sysfs_entry md_sync_max =
5032 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5033
5034 static ssize_t
degraded_show(struct mddev * mddev,char * page)5035 degraded_show(struct mddev *mddev, char *page)
5036 {
5037 return sprintf(page, "%d\n", mddev->degraded);
5038 }
5039 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5040
5041 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5042 sync_force_parallel_show(struct mddev *mddev, char *page)
5043 {
5044 return sprintf(page, "%d\n", mddev->parallel_resync);
5045 }
5046
5047 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5048 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5049 {
5050 long n;
5051
5052 if (kstrtol(buf, 10, &n))
5053 return -EINVAL;
5054
5055 if (n != 0 && n != 1)
5056 return -EINVAL;
5057
5058 mddev->parallel_resync = n;
5059
5060 if (mddev->sync_thread)
5061 wake_up(&resync_wait);
5062
5063 return len;
5064 }
5065
5066 /* force parallel resync, even with shared block devices */
5067 static struct md_sysfs_entry md_sync_force_parallel =
5068 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5069 sync_force_parallel_show, sync_force_parallel_store);
5070
5071 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5072 sync_speed_show(struct mddev *mddev, char *page)
5073 {
5074 unsigned long resync, dt, db;
5075 if (mddev->curr_resync == 0)
5076 return sprintf(page, "none\n");
5077 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5078 dt = (jiffies - mddev->resync_mark) / HZ;
5079 if (!dt) dt++;
5080 db = resync - mddev->resync_mark_cnt;
5081 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5082 }
5083
5084 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5085
5086 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5087 sync_completed_show(struct mddev *mddev, char *page)
5088 {
5089 unsigned long long max_sectors, resync;
5090
5091 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5092 return sprintf(page, "none\n");
5093
5094 if (mddev->curr_resync == 1 ||
5095 mddev->curr_resync == 2)
5096 return sprintf(page, "delayed\n");
5097
5098 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5099 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5100 max_sectors = mddev->resync_max_sectors;
5101 else
5102 max_sectors = mddev->dev_sectors;
5103
5104 resync = mddev->curr_resync_completed;
5105 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5106 }
5107
5108 static struct md_sysfs_entry md_sync_completed =
5109 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5110
5111 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5112 min_sync_show(struct mddev *mddev, char *page)
5113 {
5114 return sprintf(page, "%llu\n",
5115 (unsigned long long)mddev->resync_min);
5116 }
5117 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5118 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5119 {
5120 unsigned long long min;
5121 int err;
5122
5123 if (kstrtoull(buf, 10, &min))
5124 return -EINVAL;
5125
5126 spin_lock(&mddev->lock);
5127 err = -EINVAL;
5128 if (min > mddev->resync_max)
5129 goto out_unlock;
5130
5131 err = -EBUSY;
5132 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5133 goto out_unlock;
5134
5135 /* Round down to multiple of 4K for safety */
5136 mddev->resync_min = round_down(min, 8);
5137 err = 0;
5138
5139 out_unlock:
5140 spin_unlock(&mddev->lock);
5141 return err ?: len;
5142 }
5143
5144 static struct md_sysfs_entry md_min_sync =
5145 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5146
5147 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5148 max_sync_show(struct mddev *mddev, char *page)
5149 {
5150 if (mddev->resync_max == MaxSector)
5151 return sprintf(page, "max\n");
5152 else
5153 return sprintf(page, "%llu\n",
5154 (unsigned long long)mddev->resync_max);
5155 }
5156 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5157 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5158 {
5159 int err;
5160 spin_lock(&mddev->lock);
5161 if (strncmp(buf, "max", 3) == 0)
5162 mddev->resync_max = MaxSector;
5163 else {
5164 unsigned long long max;
5165 int chunk;
5166
5167 err = -EINVAL;
5168 if (kstrtoull(buf, 10, &max))
5169 goto out_unlock;
5170 if (max < mddev->resync_min)
5171 goto out_unlock;
5172
5173 err = -EBUSY;
5174 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5175 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5176 goto out_unlock;
5177
5178 /* Must be a multiple of chunk_size */
5179 chunk = mddev->chunk_sectors;
5180 if (chunk) {
5181 sector_t temp = max;
5182
5183 err = -EINVAL;
5184 if (sector_div(temp, chunk))
5185 goto out_unlock;
5186 }
5187 mddev->resync_max = max;
5188 }
5189 wake_up(&mddev->recovery_wait);
5190 err = 0;
5191 out_unlock:
5192 spin_unlock(&mddev->lock);
5193 return err ?: len;
5194 }
5195
5196 static struct md_sysfs_entry md_max_sync =
5197 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5198
5199 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5200 suspend_lo_show(struct mddev *mddev, char *page)
5201 {
5202 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5203 }
5204
5205 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5206 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5207 {
5208 unsigned long long new;
5209 int err;
5210
5211 err = kstrtoull(buf, 10, &new);
5212 if (err < 0)
5213 return err;
5214 if (new != (sector_t)new)
5215 return -EINVAL;
5216
5217 err = mddev_lock(mddev);
5218 if (err)
5219 return err;
5220 err = -EINVAL;
5221 if (mddev->pers == NULL ||
5222 mddev->pers->quiesce == NULL)
5223 goto unlock;
5224 mddev_suspend(mddev);
5225 mddev->suspend_lo = new;
5226 mddev_resume(mddev);
5227
5228 err = 0;
5229 unlock:
5230 mddev_unlock(mddev);
5231 return err ?: len;
5232 }
5233 static struct md_sysfs_entry md_suspend_lo =
5234 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5235
5236 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5237 suspend_hi_show(struct mddev *mddev, char *page)
5238 {
5239 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5240 }
5241
5242 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5243 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5244 {
5245 unsigned long long new;
5246 int err;
5247
5248 err = kstrtoull(buf, 10, &new);
5249 if (err < 0)
5250 return err;
5251 if (new != (sector_t)new)
5252 return -EINVAL;
5253
5254 err = mddev_lock(mddev);
5255 if (err)
5256 return err;
5257 err = -EINVAL;
5258 if (mddev->pers == NULL)
5259 goto unlock;
5260
5261 mddev_suspend(mddev);
5262 mddev->suspend_hi = new;
5263 mddev_resume(mddev);
5264
5265 err = 0;
5266 unlock:
5267 mddev_unlock(mddev);
5268 return err ?: len;
5269 }
5270 static struct md_sysfs_entry md_suspend_hi =
5271 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5272
5273 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5274 reshape_position_show(struct mddev *mddev, char *page)
5275 {
5276 if (mddev->reshape_position != MaxSector)
5277 return sprintf(page, "%llu\n",
5278 (unsigned long long)mddev->reshape_position);
5279 strcpy(page, "none\n");
5280 return 5;
5281 }
5282
5283 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5284 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5285 {
5286 struct md_rdev *rdev;
5287 unsigned long long new;
5288 int err;
5289
5290 err = kstrtoull(buf, 10, &new);
5291 if (err < 0)
5292 return err;
5293 if (new != (sector_t)new)
5294 return -EINVAL;
5295 err = mddev_lock(mddev);
5296 if (err)
5297 return err;
5298 err = -EBUSY;
5299 if (mddev->pers)
5300 goto unlock;
5301 mddev->reshape_position = new;
5302 mddev->delta_disks = 0;
5303 mddev->reshape_backwards = 0;
5304 mddev->new_level = mddev->level;
5305 mddev->new_layout = mddev->layout;
5306 mddev->new_chunk_sectors = mddev->chunk_sectors;
5307 rdev_for_each(rdev, mddev)
5308 rdev->new_data_offset = rdev->data_offset;
5309 err = 0;
5310 unlock:
5311 mddev_unlock(mddev);
5312 return err ?: len;
5313 }
5314
5315 static struct md_sysfs_entry md_reshape_position =
5316 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5317 reshape_position_store);
5318
5319 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5320 reshape_direction_show(struct mddev *mddev, char *page)
5321 {
5322 return sprintf(page, "%s\n",
5323 mddev->reshape_backwards ? "backwards" : "forwards");
5324 }
5325
5326 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5327 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5328 {
5329 int backwards = 0;
5330 int err;
5331
5332 if (cmd_match(buf, "forwards"))
5333 backwards = 0;
5334 else if (cmd_match(buf, "backwards"))
5335 backwards = 1;
5336 else
5337 return -EINVAL;
5338 if (mddev->reshape_backwards == backwards)
5339 return len;
5340
5341 err = mddev_lock(mddev);
5342 if (err)
5343 return err;
5344 /* check if we are allowed to change */
5345 if (mddev->delta_disks)
5346 err = -EBUSY;
5347 else if (mddev->persistent &&
5348 mddev->major_version == 0)
5349 err = -EINVAL;
5350 else
5351 mddev->reshape_backwards = backwards;
5352 mddev_unlock(mddev);
5353 return err ?: len;
5354 }
5355
5356 static struct md_sysfs_entry md_reshape_direction =
5357 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5358 reshape_direction_store);
5359
5360 static ssize_t
array_size_show(struct mddev * mddev,char * page)5361 array_size_show(struct mddev *mddev, char *page)
5362 {
5363 if (mddev->external_size)
5364 return sprintf(page, "%llu\n",
5365 (unsigned long long)mddev->array_sectors/2);
5366 else
5367 return sprintf(page, "default\n");
5368 }
5369
5370 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5371 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5372 {
5373 sector_t sectors;
5374 int err;
5375
5376 err = mddev_lock(mddev);
5377 if (err)
5378 return err;
5379
5380 /* cluster raid doesn't support change array_sectors */
5381 if (mddev_is_clustered(mddev)) {
5382 mddev_unlock(mddev);
5383 return -EINVAL;
5384 }
5385
5386 if (strncmp(buf, "default", 7) == 0) {
5387 if (mddev->pers)
5388 sectors = mddev->pers->size(mddev, 0, 0);
5389 else
5390 sectors = mddev->array_sectors;
5391
5392 mddev->external_size = 0;
5393 } else {
5394 if (strict_blocks_to_sectors(buf, §ors) < 0)
5395 err = -EINVAL;
5396 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5397 err = -E2BIG;
5398 else
5399 mddev->external_size = 1;
5400 }
5401
5402 if (!err) {
5403 mddev->array_sectors = sectors;
5404 if (mddev->pers)
5405 set_capacity_and_notify(mddev->gendisk,
5406 mddev->array_sectors);
5407 }
5408 mddev_unlock(mddev);
5409 return err ?: len;
5410 }
5411
5412 static struct md_sysfs_entry md_array_size =
5413 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5414 array_size_store);
5415
5416 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5417 consistency_policy_show(struct mddev *mddev, char *page)
5418 {
5419 int ret;
5420
5421 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5422 ret = sprintf(page, "journal\n");
5423 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5424 ret = sprintf(page, "ppl\n");
5425 } else if (mddev->bitmap) {
5426 ret = sprintf(page, "bitmap\n");
5427 } else if (mddev->pers) {
5428 if (mddev->pers->sync_request)
5429 ret = sprintf(page, "resync\n");
5430 else
5431 ret = sprintf(page, "none\n");
5432 } else {
5433 ret = sprintf(page, "unknown\n");
5434 }
5435
5436 return ret;
5437 }
5438
5439 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5440 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5441 {
5442 int err = 0;
5443
5444 if (mddev->pers) {
5445 if (mddev->pers->change_consistency_policy)
5446 err = mddev->pers->change_consistency_policy(mddev, buf);
5447 else
5448 err = -EBUSY;
5449 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5450 set_bit(MD_HAS_PPL, &mddev->flags);
5451 } else {
5452 err = -EINVAL;
5453 }
5454
5455 return err ? err : len;
5456 }
5457
5458 static struct md_sysfs_entry md_consistency_policy =
5459 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5460 consistency_policy_store);
5461
fail_last_dev_show(struct mddev * mddev,char * page)5462 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5463 {
5464 return sprintf(page, "%d\n", mddev->fail_last_dev);
5465 }
5466
5467 /*
5468 * Setting fail_last_dev to true to allow last device to be forcibly removed
5469 * from RAID1/RAID10.
5470 */
5471 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5472 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5473 {
5474 int ret;
5475 bool value;
5476
5477 ret = kstrtobool(buf, &value);
5478 if (ret)
5479 return ret;
5480
5481 if (value != mddev->fail_last_dev)
5482 mddev->fail_last_dev = value;
5483
5484 return len;
5485 }
5486 static struct md_sysfs_entry md_fail_last_dev =
5487 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5488 fail_last_dev_store);
5489
serialize_policy_show(struct mddev * mddev,char * page)5490 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5491 {
5492 if (mddev->pers == NULL || (mddev->pers->level != 1))
5493 return sprintf(page, "n/a\n");
5494 else
5495 return sprintf(page, "%d\n", mddev->serialize_policy);
5496 }
5497
5498 /*
5499 * Setting serialize_policy to true to enforce write IO is not reordered
5500 * for raid1.
5501 */
5502 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5503 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5504 {
5505 int err;
5506 bool value;
5507
5508 err = kstrtobool(buf, &value);
5509 if (err)
5510 return err;
5511
5512 if (value == mddev->serialize_policy)
5513 return len;
5514
5515 err = mddev_lock(mddev);
5516 if (err)
5517 return err;
5518 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5519 pr_err("md: serialize_policy is only effective for raid1\n");
5520 err = -EINVAL;
5521 goto unlock;
5522 }
5523
5524 mddev_suspend(mddev);
5525 if (value)
5526 mddev_create_serial_pool(mddev, NULL, true);
5527 else
5528 mddev_destroy_serial_pool(mddev, NULL, true);
5529 mddev->serialize_policy = value;
5530 mddev_resume(mddev);
5531 unlock:
5532 mddev_unlock(mddev);
5533 return err ?: len;
5534 }
5535
5536 static struct md_sysfs_entry md_serialize_policy =
5537 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5538 serialize_policy_store);
5539
5540
5541 static struct attribute *md_default_attrs[] = {
5542 &md_level.attr,
5543 &md_layout.attr,
5544 &md_raid_disks.attr,
5545 &md_uuid.attr,
5546 &md_chunk_size.attr,
5547 &md_size.attr,
5548 &md_resync_start.attr,
5549 &md_metadata.attr,
5550 &md_new_device.attr,
5551 &md_safe_delay.attr,
5552 &md_array_state.attr,
5553 &md_reshape_position.attr,
5554 &md_reshape_direction.attr,
5555 &md_array_size.attr,
5556 &max_corr_read_errors.attr,
5557 &md_consistency_policy.attr,
5558 &md_fail_last_dev.attr,
5559 &md_serialize_policy.attr,
5560 NULL,
5561 };
5562
5563 static struct attribute *md_redundancy_attrs[] = {
5564 &md_scan_mode.attr,
5565 &md_last_scan_mode.attr,
5566 &md_mismatches.attr,
5567 &md_sync_min.attr,
5568 &md_sync_max.attr,
5569 &md_sync_speed.attr,
5570 &md_sync_force_parallel.attr,
5571 &md_sync_completed.attr,
5572 &md_min_sync.attr,
5573 &md_max_sync.attr,
5574 &md_suspend_lo.attr,
5575 &md_suspend_hi.attr,
5576 &md_bitmap.attr,
5577 &md_degraded.attr,
5578 NULL,
5579 };
5580 static const struct attribute_group md_redundancy_group = {
5581 .name = NULL,
5582 .attrs = md_redundancy_attrs,
5583 };
5584
5585 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5586 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5587 {
5588 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5589 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5590 ssize_t rv;
5591
5592 if (!entry->show)
5593 return -EIO;
5594 spin_lock(&all_mddevs_lock);
5595 if (list_empty(&mddev->all_mddevs)) {
5596 spin_unlock(&all_mddevs_lock);
5597 return -EBUSY;
5598 }
5599 mddev_get(mddev);
5600 spin_unlock(&all_mddevs_lock);
5601
5602 rv = entry->show(mddev, page);
5603 mddev_put(mddev);
5604 return rv;
5605 }
5606
5607 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5608 md_attr_store(struct kobject *kobj, struct attribute *attr,
5609 const char *page, size_t length)
5610 {
5611 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5612 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5613 ssize_t rv;
5614
5615 if (!entry->store)
5616 return -EIO;
5617 if (!capable(CAP_SYS_ADMIN))
5618 return -EACCES;
5619 spin_lock(&all_mddevs_lock);
5620 if (list_empty(&mddev->all_mddevs)) {
5621 spin_unlock(&all_mddevs_lock);
5622 return -EBUSY;
5623 }
5624 mddev_get(mddev);
5625 spin_unlock(&all_mddevs_lock);
5626 rv = entry->store(mddev, page, length);
5627 mddev_put(mddev);
5628 return rv;
5629 }
5630
md_free(struct kobject * ko)5631 static void md_free(struct kobject *ko)
5632 {
5633 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5634
5635 if (mddev->sysfs_state)
5636 sysfs_put(mddev->sysfs_state);
5637 if (mddev->sysfs_level)
5638 sysfs_put(mddev->sysfs_level);
5639
5640 if (mddev->gendisk) {
5641 del_gendisk(mddev->gendisk);
5642 blk_cleanup_disk(mddev->gendisk);
5643 }
5644 percpu_ref_exit(&mddev->writes_pending);
5645
5646 bioset_exit(&mddev->bio_set);
5647 bioset_exit(&mddev->sync_set);
5648 kfree(mddev);
5649 }
5650
5651 static const struct sysfs_ops md_sysfs_ops = {
5652 .show = md_attr_show,
5653 .store = md_attr_store,
5654 };
5655 static struct kobj_type md_ktype = {
5656 .release = md_free,
5657 .sysfs_ops = &md_sysfs_ops,
5658 .default_attrs = md_default_attrs,
5659 };
5660
5661 int mdp_major = 0;
5662
mddev_delayed_delete(struct work_struct * ws)5663 static void mddev_delayed_delete(struct work_struct *ws)
5664 {
5665 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5666
5667 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5668 kobject_del(&mddev->kobj);
5669 kobject_put(&mddev->kobj);
5670 }
5671
no_op(struct percpu_ref * r)5672 static void no_op(struct percpu_ref *r) {}
5673
mddev_init_writes_pending(struct mddev * mddev)5674 int mddev_init_writes_pending(struct mddev *mddev)
5675 {
5676 if (mddev->writes_pending.percpu_count_ptr)
5677 return 0;
5678 if (percpu_ref_init(&mddev->writes_pending, no_op,
5679 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5680 return -ENOMEM;
5681 /* We want to start with the refcount at zero */
5682 percpu_ref_put(&mddev->writes_pending);
5683 return 0;
5684 }
5685 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5686
md_alloc(dev_t dev,char * name)5687 static int md_alloc(dev_t dev, char *name)
5688 {
5689 /*
5690 * If dev is zero, name is the name of a device to allocate with
5691 * an arbitrary minor number. It will be "md_???"
5692 * If dev is non-zero it must be a device number with a MAJOR of
5693 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5694 * the device is being created by opening a node in /dev.
5695 * If "name" is not NULL, the device is being created by
5696 * writing to /sys/module/md_mod/parameters/new_array.
5697 */
5698 static DEFINE_MUTEX(disks_mutex);
5699 struct mddev *mddev;
5700 struct gendisk *disk;
5701 int partitioned;
5702 int shift;
5703 int unit;
5704 int error ;
5705
5706 /*
5707 * Wait for any previous instance of this device to be completely
5708 * removed (mddev_delayed_delete).
5709 */
5710 flush_workqueue(md_misc_wq);
5711 flush_workqueue(md_rdev_misc_wq);
5712
5713 mutex_lock(&disks_mutex);
5714 mddev = mddev_alloc(dev);
5715 if (IS_ERR(mddev)) {
5716 mutex_unlock(&disks_mutex);
5717 return PTR_ERR(mddev);
5718 }
5719
5720 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5721 shift = partitioned ? MdpMinorShift : 0;
5722 unit = MINOR(mddev->unit) >> shift;
5723
5724 if (name && !dev) {
5725 /* Need to ensure that 'name' is not a duplicate.
5726 */
5727 struct mddev *mddev2;
5728 spin_lock(&all_mddevs_lock);
5729
5730 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5731 if (mddev2->gendisk &&
5732 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5733 spin_unlock(&all_mddevs_lock);
5734 error = -EEXIST;
5735 goto abort;
5736 }
5737 spin_unlock(&all_mddevs_lock);
5738 }
5739 if (name && dev)
5740 /*
5741 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5742 */
5743 mddev->hold_active = UNTIL_STOP;
5744
5745 error = -ENOMEM;
5746 disk = blk_alloc_disk(NUMA_NO_NODE);
5747 if (!disk)
5748 goto abort;
5749
5750 disk->major = MAJOR(mddev->unit);
5751 disk->first_minor = unit << shift;
5752 disk->minors = 1 << shift;
5753 if (name)
5754 strcpy(disk->disk_name, name);
5755 else if (partitioned)
5756 sprintf(disk->disk_name, "md_d%d", unit);
5757 else
5758 sprintf(disk->disk_name, "md%d", unit);
5759 disk->fops = &md_fops;
5760 disk->private_data = mddev;
5761
5762 mddev->queue = disk->queue;
5763 blk_set_stacking_limits(&mddev->queue->limits);
5764 blk_queue_write_cache(mddev->queue, true, true);
5765 /* Allow extended partitions. This makes the
5766 * 'mdp' device redundant, but we can't really
5767 * remove it now.
5768 */
5769 disk->flags |= GENHD_FL_EXT_DEVT;
5770 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5771 mddev->gendisk = disk;
5772 add_disk(disk);
5773
5774 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5775 if (error) {
5776 /* This isn't possible, but as kobject_init_and_add is marked
5777 * __must_check, we must do something with the result
5778 */
5779 pr_debug("md: cannot register %s/md - name in use\n",
5780 disk->disk_name);
5781 error = 0;
5782 }
5783 if (mddev->kobj.sd &&
5784 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5785 pr_debug("pointless warning\n");
5786 abort:
5787 mutex_unlock(&disks_mutex);
5788 if (!error && mddev->kobj.sd) {
5789 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5790 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5791 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5792 }
5793 mddev_put(mddev);
5794 return error;
5795 }
5796
md_probe(dev_t dev)5797 static void md_probe(dev_t dev)
5798 {
5799 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5800 return;
5801 if (create_on_open)
5802 md_alloc(dev, NULL);
5803 }
5804
add_named_array(const char * val,const struct kernel_param * kp)5805 static int add_named_array(const char *val, const struct kernel_param *kp)
5806 {
5807 /*
5808 * val must be "md_*" or "mdNNN".
5809 * For "md_*" we allocate an array with a large free minor number, and
5810 * set the name to val. val must not already be an active name.
5811 * For "mdNNN" we allocate an array with the minor number NNN
5812 * which must not already be in use.
5813 */
5814 int len = strlen(val);
5815 char buf[DISK_NAME_LEN];
5816 unsigned long devnum;
5817
5818 while (len && val[len-1] == '\n')
5819 len--;
5820 if (len >= DISK_NAME_LEN)
5821 return -E2BIG;
5822 strlcpy(buf, val, len+1);
5823 if (strncmp(buf, "md_", 3) == 0)
5824 return md_alloc(0, buf);
5825 if (strncmp(buf, "md", 2) == 0 &&
5826 isdigit(buf[2]) &&
5827 kstrtoul(buf+2, 10, &devnum) == 0 &&
5828 devnum <= MINORMASK)
5829 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5830
5831 return -EINVAL;
5832 }
5833
md_safemode_timeout(struct timer_list * t)5834 static void md_safemode_timeout(struct timer_list *t)
5835 {
5836 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5837
5838 mddev->safemode = 1;
5839 if (mddev->external)
5840 sysfs_notify_dirent_safe(mddev->sysfs_state);
5841
5842 md_wakeup_thread(mddev->thread);
5843 }
5844
5845 static int start_dirty_degraded;
5846
md_run(struct mddev * mddev)5847 int md_run(struct mddev *mddev)
5848 {
5849 int err;
5850 struct md_rdev *rdev;
5851 struct md_personality *pers;
5852
5853 if (list_empty(&mddev->disks))
5854 /* cannot run an array with no devices.. */
5855 return -EINVAL;
5856
5857 if (mddev->pers)
5858 return -EBUSY;
5859 /* Cannot run until previous stop completes properly */
5860 if (mddev->sysfs_active)
5861 return -EBUSY;
5862
5863 /*
5864 * Analyze all RAID superblock(s)
5865 */
5866 if (!mddev->raid_disks) {
5867 if (!mddev->persistent)
5868 return -EINVAL;
5869 err = analyze_sbs(mddev);
5870 if (err)
5871 return -EINVAL;
5872 }
5873
5874 if (mddev->level != LEVEL_NONE)
5875 request_module("md-level-%d", mddev->level);
5876 else if (mddev->clevel[0])
5877 request_module("md-%s", mddev->clevel);
5878
5879 /*
5880 * Drop all container device buffers, from now on
5881 * the only valid external interface is through the md
5882 * device.
5883 */
5884 mddev->has_superblocks = false;
5885 rdev_for_each(rdev, mddev) {
5886 if (test_bit(Faulty, &rdev->flags))
5887 continue;
5888 sync_blockdev(rdev->bdev);
5889 invalidate_bdev(rdev->bdev);
5890 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5891 mddev->ro = MD_RDONLY;
5892 if (mddev->gendisk)
5893 set_disk_ro(mddev->gendisk, 1);
5894 }
5895
5896 if (rdev->sb_page)
5897 mddev->has_superblocks = true;
5898
5899 /* perform some consistency tests on the device.
5900 * We don't want the data to overlap the metadata,
5901 * Internal Bitmap issues have been handled elsewhere.
5902 */
5903 if (rdev->meta_bdev) {
5904 /* Nothing to check */;
5905 } else if (rdev->data_offset < rdev->sb_start) {
5906 if (mddev->dev_sectors &&
5907 rdev->data_offset + mddev->dev_sectors
5908 > rdev->sb_start) {
5909 pr_warn("md: %s: data overlaps metadata\n",
5910 mdname(mddev));
5911 return -EINVAL;
5912 }
5913 } else {
5914 if (rdev->sb_start + rdev->sb_size/512
5915 > rdev->data_offset) {
5916 pr_warn("md: %s: metadata overlaps data\n",
5917 mdname(mddev));
5918 return -EINVAL;
5919 }
5920 }
5921 sysfs_notify_dirent_safe(rdev->sysfs_state);
5922 }
5923
5924 if (!bioset_initialized(&mddev->bio_set)) {
5925 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5926 if (err)
5927 return err;
5928 }
5929 if (!bioset_initialized(&mddev->sync_set)) {
5930 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5931 if (err)
5932 goto exit_bio_set;
5933 }
5934
5935 spin_lock(&pers_lock);
5936 pers = find_pers(mddev->level, mddev->clevel);
5937 if (!pers || !try_module_get(pers->owner)) {
5938 spin_unlock(&pers_lock);
5939 if (mddev->level != LEVEL_NONE)
5940 pr_warn("md: personality for level %d is not loaded!\n",
5941 mddev->level);
5942 else
5943 pr_warn("md: personality for level %s is not loaded!\n",
5944 mddev->clevel);
5945 err = -EINVAL;
5946 goto abort;
5947 }
5948 spin_unlock(&pers_lock);
5949 if (mddev->level != pers->level) {
5950 mddev->level = pers->level;
5951 mddev->new_level = pers->level;
5952 }
5953 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5954
5955 if (mddev->reshape_position != MaxSector &&
5956 pers->start_reshape == NULL) {
5957 /* This personality cannot handle reshaping... */
5958 module_put(pers->owner);
5959 err = -EINVAL;
5960 goto abort;
5961 }
5962
5963 if (pers->sync_request) {
5964 /* Warn if this is a potentially silly
5965 * configuration.
5966 */
5967 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5968 struct md_rdev *rdev2;
5969 int warned = 0;
5970
5971 rdev_for_each(rdev, mddev)
5972 rdev_for_each(rdev2, mddev) {
5973 if (rdev < rdev2 &&
5974 rdev->bdev->bd_disk ==
5975 rdev2->bdev->bd_disk) {
5976 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5977 mdname(mddev),
5978 bdevname(rdev->bdev,b),
5979 bdevname(rdev2->bdev,b2));
5980 warned = 1;
5981 }
5982 }
5983
5984 if (warned)
5985 pr_warn("True protection against single-disk failure might be compromised.\n");
5986 }
5987
5988 mddev->recovery = 0;
5989 /* may be over-ridden by personality */
5990 mddev->resync_max_sectors = mddev->dev_sectors;
5991
5992 mddev->ok_start_degraded = start_dirty_degraded;
5993
5994 if (start_readonly && md_is_rdwr(mddev))
5995 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
5996
5997 err = pers->run(mddev);
5998 if (err)
5999 pr_warn("md: pers->run() failed ...\n");
6000 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6001 WARN_ONCE(!mddev->external_size,
6002 "%s: default size too small, but 'external_size' not in effect?\n",
6003 __func__);
6004 pr_warn("md: invalid array_size %llu > default size %llu\n",
6005 (unsigned long long)mddev->array_sectors / 2,
6006 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6007 err = -EINVAL;
6008 }
6009 if (err == 0 && pers->sync_request &&
6010 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6011 struct bitmap *bitmap;
6012
6013 bitmap = md_bitmap_create(mddev, -1);
6014 if (IS_ERR(bitmap)) {
6015 err = PTR_ERR(bitmap);
6016 pr_warn("%s: failed to create bitmap (%d)\n",
6017 mdname(mddev), err);
6018 } else
6019 mddev->bitmap = bitmap;
6020
6021 }
6022 if (err)
6023 goto bitmap_abort;
6024
6025 if (mddev->bitmap_info.max_write_behind > 0) {
6026 bool create_pool = false;
6027
6028 rdev_for_each(rdev, mddev) {
6029 if (test_bit(WriteMostly, &rdev->flags) &&
6030 rdev_init_serial(rdev))
6031 create_pool = true;
6032 }
6033 if (create_pool && mddev->serial_info_pool == NULL) {
6034 mddev->serial_info_pool =
6035 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6036 sizeof(struct serial_info));
6037 if (!mddev->serial_info_pool) {
6038 err = -ENOMEM;
6039 goto bitmap_abort;
6040 }
6041 }
6042 }
6043
6044 if (mddev->queue) {
6045 bool nonrot = true;
6046
6047 rdev_for_each(rdev, mddev) {
6048 if (rdev->raid_disk >= 0 &&
6049 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6050 nonrot = false;
6051 break;
6052 }
6053 }
6054 if (mddev->degraded)
6055 nonrot = false;
6056 if (nonrot)
6057 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6058 else
6059 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6060 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6061 }
6062 if (pers->sync_request) {
6063 if (mddev->kobj.sd &&
6064 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6065 pr_warn("md: cannot register extra attributes for %s\n",
6066 mdname(mddev));
6067 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6068 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6069 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6070 } else if (mddev->ro == MD_AUTO_READ)
6071 mddev->ro = MD_RDWR;
6072
6073 atomic_set(&mddev->max_corr_read_errors,
6074 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6075 mddev->safemode = 0;
6076 if (mddev_is_clustered(mddev))
6077 mddev->safemode_delay = 0;
6078 else
6079 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6080 mddev->in_sync = 1;
6081 smp_wmb();
6082 spin_lock(&mddev->lock);
6083 mddev->pers = pers;
6084 spin_unlock(&mddev->lock);
6085 rdev_for_each(rdev, mddev)
6086 if (rdev->raid_disk >= 0)
6087 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6088
6089 if (mddev->degraded && md_is_rdwr(mddev))
6090 /* This ensures that recovering status is reported immediately
6091 * via sysfs - until a lack of spares is confirmed.
6092 */
6093 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6094 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6095
6096 if (mddev->sb_flags)
6097 md_update_sb(mddev, 0);
6098
6099 md_new_event(mddev);
6100 return 0;
6101
6102 bitmap_abort:
6103 mddev_detach(mddev);
6104 if (mddev->private)
6105 pers->free(mddev, mddev->private);
6106 mddev->private = NULL;
6107 module_put(pers->owner);
6108 md_bitmap_destroy(mddev);
6109 abort:
6110 bioset_exit(&mddev->sync_set);
6111 exit_bio_set:
6112 bioset_exit(&mddev->bio_set);
6113 return err;
6114 }
6115 EXPORT_SYMBOL_GPL(md_run);
6116
do_md_run(struct mddev * mddev)6117 int do_md_run(struct mddev *mddev)
6118 {
6119 int err;
6120
6121 set_bit(MD_NOT_READY, &mddev->flags);
6122 err = md_run(mddev);
6123 if (err)
6124 goto out;
6125 err = md_bitmap_load(mddev);
6126 if (err) {
6127 md_bitmap_destroy(mddev);
6128 goto out;
6129 }
6130
6131 if (mddev_is_clustered(mddev))
6132 md_allow_write(mddev);
6133
6134 /* run start up tasks that require md_thread */
6135 md_start(mddev);
6136
6137 md_wakeup_thread(mddev->thread);
6138 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6139
6140 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6141 clear_bit(MD_NOT_READY, &mddev->flags);
6142 mddev->changed = 1;
6143 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6144 sysfs_notify_dirent_safe(mddev->sysfs_state);
6145 sysfs_notify_dirent_safe(mddev->sysfs_action);
6146 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6147 out:
6148 clear_bit(MD_NOT_READY, &mddev->flags);
6149 return err;
6150 }
6151
md_start(struct mddev * mddev)6152 int md_start(struct mddev *mddev)
6153 {
6154 int ret = 0;
6155
6156 if (mddev->pers->start) {
6157 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6158 md_wakeup_thread(mddev->thread);
6159 ret = mddev->pers->start(mddev);
6160 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6161 md_wakeup_thread(mddev->sync_thread);
6162 }
6163 return ret;
6164 }
6165 EXPORT_SYMBOL_GPL(md_start);
6166
restart_array(struct mddev * mddev)6167 static int restart_array(struct mddev *mddev)
6168 {
6169 struct gendisk *disk = mddev->gendisk;
6170 struct md_rdev *rdev;
6171 bool has_journal = false;
6172 bool has_readonly = false;
6173
6174 /* Complain if it has no devices */
6175 if (list_empty(&mddev->disks))
6176 return -ENXIO;
6177 if (!mddev->pers)
6178 return -EINVAL;
6179 if (md_is_rdwr(mddev))
6180 return -EBUSY;
6181
6182 rcu_read_lock();
6183 rdev_for_each_rcu(rdev, mddev) {
6184 if (test_bit(Journal, &rdev->flags) &&
6185 !test_bit(Faulty, &rdev->flags))
6186 has_journal = true;
6187 if (rdev_read_only(rdev))
6188 has_readonly = true;
6189 }
6190 rcu_read_unlock();
6191 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6192 /* Don't restart rw with journal missing/faulty */
6193 return -EINVAL;
6194 if (has_readonly)
6195 return -EROFS;
6196
6197 mddev->safemode = 0;
6198 mddev->ro = MD_RDWR;
6199 set_disk_ro(disk, 0);
6200 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6201 /* Kick recovery or resync if necessary */
6202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6203 md_wakeup_thread(mddev->thread);
6204 md_wakeup_thread(mddev->sync_thread);
6205 sysfs_notify_dirent_safe(mddev->sysfs_state);
6206 return 0;
6207 }
6208
md_clean(struct mddev * mddev)6209 static void md_clean(struct mddev *mddev)
6210 {
6211 mddev->array_sectors = 0;
6212 mddev->external_size = 0;
6213 mddev->dev_sectors = 0;
6214 mddev->raid_disks = 0;
6215 mddev->recovery_cp = 0;
6216 mddev->resync_min = 0;
6217 mddev->resync_max = MaxSector;
6218 mddev->reshape_position = MaxSector;
6219 mddev->external = 0;
6220 mddev->persistent = 0;
6221 mddev->level = LEVEL_NONE;
6222 mddev->clevel[0] = 0;
6223 mddev->flags = 0;
6224 mddev->sb_flags = 0;
6225 mddev->ro = MD_RDWR;
6226 mddev->metadata_type[0] = 0;
6227 mddev->chunk_sectors = 0;
6228 mddev->ctime = mddev->utime = 0;
6229 mddev->layout = 0;
6230 mddev->max_disks = 0;
6231 mddev->events = 0;
6232 mddev->can_decrease_events = 0;
6233 mddev->delta_disks = 0;
6234 mddev->reshape_backwards = 0;
6235 mddev->new_level = LEVEL_NONE;
6236 mddev->new_layout = 0;
6237 mddev->new_chunk_sectors = 0;
6238 mddev->curr_resync = 0;
6239 atomic64_set(&mddev->resync_mismatches, 0);
6240 mddev->suspend_lo = mddev->suspend_hi = 0;
6241 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6242 mddev->recovery = 0;
6243 mddev->in_sync = 0;
6244 mddev->changed = 0;
6245 mddev->degraded = 0;
6246 mddev->safemode = 0;
6247 mddev->private = NULL;
6248 mddev->cluster_info = NULL;
6249 mddev->bitmap_info.offset = 0;
6250 mddev->bitmap_info.default_offset = 0;
6251 mddev->bitmap_info.default_space = 0;
6252 mddev->bitmap_info.chunksize = 0;
6253 mddev->bitmap_info.daemon_sleep = 0;
6254 mddev->bitmap_info.max_write_behind = 0;
6255 mddev->bitmap_info.nodes = 0;
6256 }
6257
__md_stop_writes(struct mddev * mddev)6258 static void __md_stop_writes(struct mddev *mddev)
6259 {
6260 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6261 if (work_pending(&mddev->del_work))
6262 flush_workqueue(md_misc_wq);
6263 if (mddev->sync_thread) {
6264 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6265 md_reap_sync_thread(mddev);
6266 }
6267
6268 del_timer_sync(&mddev->safemode_timer);
6269
6270 if (mddev->pers && mddev->pers->quiesce) {
6271 mddev->pers->quiesce(mddev, 1);
6272 mddev->pers->quiesce(mddev, 0);
6273 }
6274 md_bitmap_flush(mddev);
6275
6276 if (md_is_rdwr(mddev) &&
6277 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6278 mddev->sb_flags)) {
6279 /* mark array as shutdown cleanly */
6280 if (!mddev_is_clustered(mddev))
6281 mddev->in_sync = 1;
6282 md_update_sb(mddev, 1);
6283 }
6284 /* disable policy to guarantee rdevs free resources for serialization */
6285 mddev->serialize_policy = 0;
6286 mddev_destroy_serial_pool(mddev, NULL, true);
6287 }
6288
md_stop_writes(struct mddev * mddev)6289 void md_stop_writes(struct mddev *mddev)
6290 {
6291 mddev_lock_nointr(mddev);
6292 __md_stop_writes(mddev);
6293 mddev_unlock(mddev);
6294 }
6295 EXPORT_SYMBOL_GPL(md_stop_writes);
6296
mddev_detach(struct mddev * mddev)6297 static void mddev_detach(struct mddev *mddev)
6298 {
6299 md_bitmap_wait_behind_writes(mddev);
6300 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6301 mddev->pers->quiesce(mddev, 1);
6302 mddev->pers->quiesce(mddev, 0);
6303 }
6304 md_unregister_thread(&mddev->thread);
6305 if (mddev->queue)
6306 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6307 }
6308
__md_stop(struct mddev * mddev)6309 static void __md_stop(struct mddev *mddev)
6310 {
6311 struct md_personality *pers = mddev->pers;
6312 md_bitmap_destroy(mddev);
6313 mddev_detach(mddev);
6314 /* Ensure ->event_work is done */
6315 if (mddev->event_work.func)
6316 flush_workqueue(md_misc_wq);
6317 spin_lock(&mddev->lock);
6318 mddev->pers = NULL;
6319 spin_unlock(&mddev->lock);
6320 pers->free(mddev, mddev->private);
6321 mddev->private = NULL;
6322 if (pers->sync_request && mddev->to_remove == NULL)
6323 mddev->to_remove = &md_redundancy_group;
6324 module_put(pers->owner);
6325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6326 }
6327
md_stop(struct mddev * mddev)6328 void md_stop(struct mddev *mddev)
6329 {
6330 lockdep_assert_held(&mddev->reconfig_mutex);
6331
6332 /* stop the array and free an attached data structures.
6333 * This is called from dm-raid
6334 */
6335 __md_stop_writes(mddev);
6336 __md_stop(mddev);
6337 bioset_exit(&mddev->bio_set);
6338 bioset_exit(&mddev->sync_set);
6339 }
6340
6341 EXPORT_SYMBOL_GPL(md_stop);
6342
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6343 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6344 {
6345 int err = 0;
6346 int did_freeze = 0;
6347
6348 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6349 return -EBUSY;
6350
6351 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6352 did_freeze = 1;
6353 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6354 md_wakeup_thread(mddev->thread);
6355 }
6356 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6357 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6358 if (mddev->sync_thread)
6359 /* Thread might be blocked waiting for metadata update
6360 * which will now never happen */
6361 wake_up_process(mddev->sync_thread->tsk);
6362
6363 mddev_unlock(mddev);
6364 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6365 &mddev->recovery));
6366 wait_event(mddev->sb_wait,
6367 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6368 mddev_lock_nointr(mddev);
6369
6370 mutex_lock(&mddev->open_mutex);
6371 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6372 mddev->sync_thread ||
6373 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6374 pr_warn("md: %s still in use.\n",mdname(mddev));
6375 err = -EBUSY;
6376 goto out;
6377 }
6378
6379 if (mddev->pers) {
6380 __md_stop_writes(mddev);
6381
6382 if (mddev->ro == MD_RDONLY) {
6383 err = -ENXIO;
6384 goto out;
6385 }
6386
6387 mddev->ro = MD_RDONLY;
6388 set_disk_ro(mddev->gendisk, 1);
6389 }
6390
6391 out:
6392 if ((mddev->pers && !err) || did_freeze) {
6393 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6394 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6395 md_wakeup_thread(mddev->thread);
6396 sysfs_notify_dirent_safe(mddev->sysfs_state);
6397 }
6398
6399 mutex_unlock(&mddev->open_mutex);
6400 return err;
6401 }
6402
6403 /* mode:
6404 * 0 - completely stop and dis-assemble array
6405 * 2 - stop but do not disassemble array
6406 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6407 static int do_md_stop(struct mddev *mddev, int mode,
6408 struct block_device *bdev)
6409 {
6410 struct gendisk *disk = mddev->gendisk;
6411 struct md_rdev *rdev;
6412 int did_freeze = 0;
6413
6414 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6415 did_freeze = 1;
6416 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6417 md_wakeup_thread(mddev->thread);
6418 }
6419 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6420 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6421 if (mddev->sync_thread)
6422 /* Thread might be blocked waiting for metadata update
6423 * which will now never happen */
6424 wake_up_process(mddev->sync_thread->tsk);
6425
6426 mddev_unlock(mddev);
6427 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6428 !test_bit(MD_RECOVERY_RUNNING,
6429 &mddev->recovery)));
6430 mddev_lock_nointr(mddev);
6431
6432 mutex_lock(&mddev->open_mutex);
6433 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6434 mddev->sysfs_active ||
6435 mddev->sync_thread ||
6436 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6437 pr_warn("md: %s still in use.\n",mdname(mddev));
6438 mutex_unlock(&mddev->open_mutex);
6439 if (did_freeze) {
6440 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6441 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6442 md_wakeup_thread(mddev->thread);
6443 }
6444 return -EBUSY;
6445 }
6446 if (mddev->pers) {
6447 if (!md_is_rdwr(mddev))
6448 set_disk_ro(disk, 0);
6449
6450 __md_stop_writes(mddev);
6451 __md_stop(mddev);
6452
6453 /* tell userspace to handle 'inactive' */
6454 sysfs_notify_dirent_safe(mddev->sysfs_state);
6455
6456 rdev_for_each(rdev, mddev)
6457 if (rdev->raid_disk >= 0)
6458 sysfs_unlink_rdev(mddev, rdev);
6459
6460 set_capacity_and_notify(disk, 0);
6461 mutex_unlock(&mddev->open_mutex);
6462 mddev->changed = 1;
6463
6464 if (!md_is_rdwr(mddev))
6465 mddev->ro = MD_RDWR;
6466 } else
6467 mutex_unlock(&mddev->open_mutex);
6468 /*
6469 * Free resources if final stop
6470 */
6471 if (mode == 0) {
6472 pr_info("md: %s stopped.\n", mdname(mddev));
6473
6474 if (mddev->bitmap_info.file) {
6475 struct file *f = mddev->bitmap_info.file;
6476 spin_lock(&mddev->lock);
6477 mddev->bitmap_info.file = NULL;
6478 spin_unlock(&mddev->lock);
6479 fput(f);
6480 }
6481 mddev->bitmap_info.offset = 0;
6482
6483 export_array(mddev);
6484
6485 md_clean(mddev);
6486 if (mddev->hold_active == UNTIL_STOP)
6487 mddev->hold_active = 0;
6488 }
6489 md_new_event(mddev);
6490 sysfs_notify_dirent_safe(mddev->sysfs_state);
6491 return 0;
6492 }
6493
6494 #ifndef MODULE
autorun_array(struct mddev * mddev)6495 static void autorun_array(struct mddev *mddev)
6496 {
6497 struct md_rdev *rdev;
6498 int err;
6499
6500 if (list_empty(&mddev->disks))
6501 return;
6502
6503 pr_info("md: running: ");
6504
6505 rdev_for_each(rdev, mddev) {
6506 char b[BDEVNAME_SIZE];
6507 pr_cont("<%s>", bdevname(rdev->bdev,b));
6508 }
6509 pr_cont("\n");
6510
6511 err = do_md_run(mddev);
6512 if (err) {
6513 pr_warn("md: do_md_run() returned %d\n", err);
6514 do_md_stop(mddev, 0, NULL);
6515 }
6516 }
6517
6518 /*
6519 * lets try to run arrays based on all disks that have arrived
6520 * until now. (those are in pending_raid_disks)
6521 *
6522 * the method: pick the first pending disk, collect all disks with
6523 * the same UUID, remove all from the pending list and put them into
6524 * the 'same_array' list. Then order this list based on superblock
6525 * update time (freshest comes first), kick out 'old' disks and
6526 * compare superblocks. If everything's fine then run it.
6527 *
6528 * If "unit" is allocated, then bump its reference count
6529 */
autorun_devices(int part)6530 static void autorun_devices(int part)
6531 {
6532 struct md_rdev *rdev0, *rdev, *tmp;
6533 struct mddev *mddev;
6534 char b[BDEVNAME_SIZE];
6535
6536 pr_info("md: autorun ...\n");
6537 while (!list_empty(&pending_raid_disks)) {
6538 int unit;
6539 dev_t dev;
6540 LIST_HEAD(candidates);
6541 rdev0 = list_entry(pending_raid_disks.next,
6542 struct md_rdev, same_set);
6543
6544 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6545 INIT_LIST_HEAD(&candidates);
6546 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6547 if (super_90_load(rdev, rdev0, 0) >= 0) {
6548 pr_debug("md: adding %s ...\n",
6549 bdevname(rdev->bdev,b));
6550 list_move(&rdev->same_set, &candidates);
6551 }
6552 /*
6553 * now we have a set of devices, with all of them having
6554 * mostly sane superblocks. It's time to allocate the
6555 * mddev.
6556 */
6557 if (part) {
6558 dev = MKDEV(mdp_major,
6559 rdev0->preferred_minor << MdpMinorShift);
6560 unit = MINOR(dev) >> MdpMinorShift;
6561 } else {
6562 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6563 unit = MINOR(dev);
6564 }
6565 if (rdev0->preferred_minor != unit) {
6566 pr_warn("md: unit number in %s is bad: %d\n",
6567 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6568 break;
6569 }
6570
6571 md_probe(dev);
6572 mddev = mddev_find(dev);
6573 if (!mddev)
6574 break;
6575
6576 if (mddev_lock(mddev))
6577 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6578 else if (mddev->raid_disks || mddev->major_version
6579 || !list_empty(&mddev->disks)) {
6580 pr_warn("md: %s already running, cannot run %s\n",
6581 mdname(mddev), bdevname(rdev0->bdev,b));
6582 mddev_unlock(mddev);
6583 } else {
6584 pr_debug("md: created %s\n", mdname(mddev));
6585 mddev->persistent = 1;
6586 rdev_for_each_list(rdev, tmp, &candidates) {
6587 list_del_init(&rdev->same_set);
6588 if (bind_rdev_to_array(rdev, mddev))
6589 export_rdev(rdev);
6590 }
6591 autorun_array(mddev);
6592 mddev_unlock(mddev);
6593 }
6594 /* on success, candidates will be empty, on error
6595 * it won't...
6596 */
6597 rdev_for_each_list(rdev, tmp, &candidates) {
6598 list_del_init(&rdev->same_set);
6599 export_rdev(rdev);
6600 }
6601 mddev_put(mddev);
6602 }
6603 pr_info("md: ... autorun DONE.\n");
6604 }
6605 #endif /* !MODULE */
6606
get_version(void __user * arg)6607 static int get_version(void __user *arg)
6608 {
6609 mdu_version_t ver;
6610
6611 ver.major = MD_MAJOR_VERSION;
6612 ver.minor = MD_MINOR_VERSION;
6613 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6614
6615 if (copy_to_user(arg, &ver, sizeof(ver)))
6616 return -EFAULT;
6617
6618 return 0;
6619 }
6620
get_array_info(struct mddev * mddev,void __user * arg)6621 static int get_array_info(struct mddev *mddev, void __user *arg)
6622 {
6623 mdu_array_info_t info;
6624 int nr,working,insync,failed,spare;
6625 struct md_rdev *rdev;
6626
6627 nr = working = insync = failed = spare = 0;
6628 rcu_read_lock();
6629 rdev_for_each_rcu(rdev, mddev) {
6630 nr++;
6631 if (test_bit(Faulty, &rdev->flags))
6632 failed++;
6633 else {
6634 working++;
6635 if (test_bit(In_sync, &rdev->flags))
6636 insync++;
6637 else if (test_bit(Journal, &rdev->flags))
6638 /* TODO: add journal count to md_u.h */
6639 ;
6640 else
6641 spare++;
6642 }
6643 }
6644 rcu_read_unlock();
6645
6646 info.major_version = mddev->major_version;
6647 info.minor_version = mddev->minor_version;
6648 info.patch_version = MD_PATCHLEVEL_VERSION;
6649 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6650 info.level = mddev->level;
6651 info.size = mddev->dev_sectors / 2;
6652 if (info.size != mddev->dev_sectors / 2) /* overflow */
6653 info.size = -1;
6654 info.nr_disks = nr;
6655 info.raid_disks = mddev->raid_disks;
6656 info.md_minor = mddev->md_minor;
6657 info.not_persistent= !mddev->persistent;
6658
6659 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6660 info.state = 0;
6661 if (mddev->in_sync)
6662 info.state = (1<<MD_SB_CLEAN);
6663 if (mddev->bitmap && mddev->bitmap_info.offset)
6664 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6665 if (mddev_is_clustered(mddev))
6666 info.state |= (1<<MD_SB_CLUSTERED);
6667 info.active_disks = insync;
6668 info.working_disks = working;
6669 info.failed_disks = failed;
6670 info.spare_disks = spare;
6671
6672 info.layout = mddev->layout;
6673 info.chunk_size = mddev->chunk_sectors << 9;
6674
6675 if (copy_to_user(arg, &info, sizeof(info)))
6676 return -EFAULT;
6677
6678 return 0;
6679 }
6680
get_bitmap_file(struct mddev * mddev,void __user * arg)6681 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6682 {
6683 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6684 char *ptr;
6685 int err;
6686
6687 file = kzalloc(sizeof(*file), GFP_NOIO);
6688 if (!file)
6689 return -ENOMEM;
6690
6691 err = 0;
6692 spin_lock(&mddev->lock);
6693 /* bitmap enabled */
6694 if (mddev->bitmap_info.file) {
6695 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6696 sizeof(file->pathname));
6697 if (IS_ERR(ptr))
6698 err = PTR_ERR(ptr);
6699 else
6700 memmove(file->pathname, ptr,
6701 sizeof(file->pathname)-(ptr-file->pathname));
6702 }
6703 spin_unlock(&mddev->lock);
6704
6705 if (err == 0 &&
6706 copy_to_user(arg, file, sizeof(*file)))
6707 err = -EFAULT;
6708
6709 kfree(file);
6710 return err;
6711 }
6712
get_disk_info(struct mddev * mddev,void __user * arg)6713 static int get_disk_info(struct mddev *mddev, void __user * arg)
6714 {
6715 mdu_disk_info_t info;
6716 struct md_rdev *rdev;
6717
6718 if (copy_from_user(&info, arg, sizeof(info)))
6719 return -EFAULT;
6720
6721 rcu_read_lock();
6722 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6723 if (rdev) {
6724 info.major = MAJOR(rdev->bdev->bd_dev);
6725 info.minor = MINOR(rdev->bdev->bd_dev);
6726 info.raid_disk = rdev->raid_disk;
6727 info.state = 0;
6728 if (test_bit(Faulty, &rdev->flags))
6729 info.state |= (1<<MD_DISK_FAULTY);
6730 else if (test_bit(In_sync, &rdev->flags)) {
6731 info.state |= (1<<MD_DISK_ACTIVE);
6732 info.state |= (1<<MD_DISK_SYNC);
6733 }
6734 if (test_bit(Journal, &rdev->flags))
6735 info.state |= (1<<MD_DISK_JOURNAL);
6736 if (test_bit(WriteMostly, &rdev->flags))
6737 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6738 if (test_bit(FailFast, &rdev->flags))
6739 info.state |= (1<<MD_DISK_FAILFAST);
6740 } else {
6741 info.major = info.minor = 0;
6742 info.raid_disk = -1;
6743 info.state = (1<<MD_DISK_REMOVED);
6744 }
6745 rcu_read_unlock();
6746
6747 if (copy_to_user(arg, &info, sizeof(info)))
6748 return -EFAULT;
6749
6750 return 0;
6751 }
6752
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6753 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6754 {
6755 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6756 struct md_rdev *rdev;
6757 dev_t dev = MKDEV(info->major,info->minor);
6758
6759 if (mddev_is_clustered(mddev) &&
6760 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6761 pr_warn("%s: Cannot add to clustered mddev.\n",
6762 mdname(mddev));
6763 return -EINVAL;
6764 }
6765
6766 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6767 return -EOVERFLOW;
6768
6769 if (!mddev->raid_disks) {
6770 int err;
6771 /* expecting a device which has a superblock */
6772 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6773 if (IS_ERR(rdev)) {
6774 pr_warn("md: md_import_device returned %ld\n",
6775 PTR_ERR(rdev));
6776 return PTR_ERR(rdev);
6777 }
6778 if (!list_empty(&mddev->disks)) {
6779 struct md_rdev *rdev0
6780 = list_entry(mddev->disks.next,
6781 struct md_rdev, same_set);
6782 err = super_types[mddev->major_version]
6783 .load_super(rdev, rdev0, mddev->minor_version);
6784 if (err < 0) {
6785 pr_warn("md: %s has different UUID to %s\n",
6786 bdevname(rdev->bdev,b),
6787 bdevname(rdev0->bdev,b2));
6788 export_rdev(rdev);
6789 return -EINVAL;
6790 }
6791 }
6792 err = bind_rdev_to_array(rdev, mddev);
6793 if (err)
6794 export_rdev(rdev);
6795 return err;
6796 }
6797
6798 /*
6799 * md_add_new_disk can be used once the array is assembled
6800 * to add "hot spares". They must already have a superblock
6801 * written
6802 */
6803 if (mddev->pers) {
6804 int err;
6805 if (!mddev->pers->hot_add_disk) {
6806 pr_warn("%s: personality does not support diskops!\n",
6807 mdname(mddev));
6808 return -EINVAL;
6809 }
6810 if (mddev->persistent)
6811 rdev = md_import_device(dev, mddev->major_version,
6812 mddev->minor_version);
6813 else
6814 rdev = md_import_device(dev, -1, -1);
6815 if (IS_ERR(rdev)) {
6816 pr_warn("md: md_import_device returned %ld\n",
6817 PTR_ERR(rdev));
6818 return PTR_ERR(rdev);
6819 }
6820 /* set saved_raid_disk if appropriate */
6821 if (!mddev->persistent) {
6822 if (info->state & (1<<MD_DISK_SYNC) &&
6823 info->raid_disk < mddev->raid_disks) {
6824 rdev->raid_disk = info->raid_disk;
6825 set_bit(In_sync, &rdev->flags);
6826 clear_bit(Bitmap_sync, &rdev->flags);
6827 } else
6828 rdev->raid_disk = -1;
6829 rdev->saved_raid_disk = rdev->raid_disk;
6830 } else
6831 super_types[mddev->major_version].
6832 validate_super(mddev, NULL/*freshest*/, rdev);
6833 if ((info->state & (1<<MD_DISK_SYNC)) &&
6834 rdev->raid_disk != info->raid_disk) {
6835 /* This was a hot-add request, but events doesn't
6836 * match, so reject it.
6837 */
6838 export_rdev(rdev);
6839 return -EINVAL;
6840 }
6841
6842 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6843 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6844 set_bit(WriteMostly, &rdev->flags);
6845 else
6846 clear_bit(WriteMostly, &rdev->flags);
6847 if (info->state & (1<<MD_DISK_FAILFAST))
6848 set_bit(FailFast, &rdev->flags);
6849 else
6850 clear_bit(FailFast, &rdev->flags);
6851
6852 if (info->state & (1<<MD_DISK_JOURNAL)) {
6853 struct md_rdev *rdev2;
6854 bool has_journal = false;
6855
6856 /* make sure no existing journal disk */
6857 rdev_for_each(rdev2, mddev) {
6858 if (test_bit(Journal, &rdev2->flags)) {
6859 has_journal = true;
6860 break;
6861 }
6862 }
6863 if (has_journal || mddev->bitmap) {
6864 export_rdev(rdev);
6865 return -EBUSY;
6866 }
6867 set_bit(Journal, &rdev->flags);
6868 }
6869 /*
6870 * check whether the device shows up in other nodes
6871 */
6872 if (mddev_is_clustered(mddev)) {
6873 if (info->state & (1 << MD_DISK_CANDIDATE))
6874 set_bit(Candidate, &rdev->flags);
6875 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6876 /* --add initiated by this node */
6877 err = md_cluster_ops->add_new_disk(mddev, rdev);
6878 if (err) {
6879 export_rdev(rdev);
6880 return err;
6881 }
6882 }
6883 }
6884
6885 rdev->raid_disk = -1;
6886 err = bind_rdev_to_array(rdev, mddev);
6887
6888 if (err)
6889 export_rdev(rdev);
6890
6891 if (mddev_is_clustered(mddev)) {
6892 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6893 if (!err) {
6894 err = md_cluster_ops->new_disk_ack(mddev,
6895 err == 0);
6896 if (err)
6897 md_kick_rdev_from_array(rdev);
6898 }
6899 } else {
6900 if (err)
6901 md_cluster_ops->add_new_disk_cancel(mddev);
6902 else
6903 err = add_bound_rdev(rdev);
6904 }
6905
6906 } else if (!err)
6907 err = add_bound_rdev(rdev);
6908
6909 return err;
6910 }
6911
6912 /* otherwise, md_add_new_disk is only allowed
6913 * for major_version==0 superblocks
6914 */
6915 if (mddev->major_version != 0) {
6916 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6917 return -EINVAL;
6918 }
6919
6920 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6921 int err;
6922 rdev = md_import_device(dev, -1, 0);
6923 if (IS_ERR(rdev)) {
6924 pr_warn("md: error, md_import_device() returned %ld\n",
6925 PTR_ERR(rdev));
6926 return PTR_ERR(rdev);
6927 }
6928 rdev->desc_nr = info->number;
6929 if (info->raid_disk < mddev->raid_disks)
6930 rdev->raid_disk = info->raid_disk;
6931 else
6932 rdev->raid_disk = -1;
6933
6934 if (rdev->raid_disk < mddev->raid_disks)
6935 if (info->state & (1<<MD_DISK_SYNC))
6936 set_bit(In_sync, &rdev->flags);
6937
6938 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6939 set_bit(WriteMostly, &rdev->flags);
6940 if (info->state & (1<<MD_DISK_FAILFAST))
6941 set_bit(FailFast, &rdev->flags);
6942
6943 if (!mddev->persistent) {
6944 pr_debug("md: nonpersistent superblock ...\n");
6945 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6946 } else
6947 rdev->sb_start = calc_dev_sboffset(rdev);
6948 rdev->sectors = rdev->sb_start;
6949
6950 err = bind_rdev_to_array(rdev, mddev);
6951 if (err) {
6952 export_rdev(rdev);
6953 return err;
6954 }
6955 }
6956
6957 return 0;
6958 }
6959
hot_remove_disk(struct mddev * mddev,dev_t dev)6960 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6961 {
6962 char b[BDEVNAME_SIZE];
6963 struct md_rdev *rdev;
6964
6965 if (!mddev->pers)
6966 return -ENODEV;
6967
6968 rdev = find_rdev(mddev, dev);
6969 if (!rdev)
6970 return -ENXIO;
6971
6972 if (rdev->raid_disk < 0)
6973 goto kick_rdev;
6974
6975 clear_bit(Blocked, &rdev->flags);
6976 remove_and_add_spares(mddev, rdev);
6977
6978 if (rdev->raid_disk >= 0)
6979 goto busy;
6980
6981 kick_rdev:
6982 if (mddev_is_clustered(mddev)) {
6983 if (md_cluster_ops->remove_disk(mddev, rdev))
6984 goto busy;
6985 }
6986
6987 md_kick_rdev_from_array(rdev);
6988 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6989 if (mddev->thread)
6990 md_wakeup_thread(mddev->thread);
6991 else
6992 md_update_sb(mddev, 1);
6993 md_new_event(mddev);
6994
6995 return 0;
6996 busy:
6997 pr_debug("md: cannot remove active disk %s from %s ...\n",
6998 bdevname(rdev->bdev,b), mdname(mddev));
6999 return -EBUSY;
7000 }
7001
hot_add_disk(struct mddev * mddev,dev_t dev)7002 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7003 {
7004 char b[BDEVNAME_SIZE];
7005 int err;
7006 struct md_rdev *rdev;
7007
7008 if (!mddev->pers)
7009 return -ENODEV;
7010
7011 if (mddev->major_version != 0) {
7012 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7013 mdname(mddev));
7014 return -EINVAL;
7015 }
7016 if (!mddev->pers->hot_add_disk) {
7017 pr_warn("%s: personality does not support diskops!\n",
7018 mdname(mddev));
7019 return -EINVAL;
7020 }
7021
7022 rdev = md_import_device(dev, -1, 0);
7023 if (IS_ERR(rdev)) {
7024 pr_warn("md: error, md_import_device() returned %ld\n",
7025 PTR_ERR(rdev));
7026 return -EINVAL;
7027 }
7028
7029 if (mddev->persistent)
7030 rdev->sb_start = calc_dev_sboffset(rdev);
7031 else
7032 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7033
7034 rdev->sectors = rdev->sb_start;
7035
7036 if (test_bit(Faulty, &rdev->flags)) {
7037 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7038 bdevname(rdev->bdev,b), mdname(mddev));
7039 err = -EINVAL;
7040 goto abort_export;
7041 }
7042
7043 clear_bit(In_sync, &rdev->flags);
7044 rdev->desc_nr = -1;
7045 rdev->saved_raid_disk = -1;
7046 err = bind_rdev_to_array(rdev, mddev);
7047 if (err)
7048 goto abort_export;
7049
7050 /*
7051 * The rest should better be atomic, we can have disk failures
7052 * noticed in interrupt contexts ...
7053 */
7054
7055 rdev->raid_disk = -1;
7056
7057 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7058 if (!mddev->thread)
7059 md_update_sb(mddev, 1);
7060 /*
7061 * Kick recovery, maybe this spare has to be added to the
7062 * array immediately.
7063 */
7064 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7065 md_wakeup_thread(mddev->thread);
7066 md_new_event(mddev);
7067 return 0;
7068
7069 abort_export:
7070 export_rdev(rdev);
7071 return err;
7072 }
7073
set_bitmap_file(struct mddev * mddev,int fd)7074 static int set_bitmap_file(struct mddev *mddev, int fd)
7075 {
7076 int err = 0;
7077
7078 if (mddev->pers) {
7079 if (!mddev->pers->quiesce || !mddev->thread)
7080 return -EBUSY;
7081 if (mddev->recovery || mddev->sync_thread)
7082 return -EBUSY;
7083 /* we should be able to change the bitmap.. */
7084 }
7085
7086 if (fd >= 0) {
7087 struct inode *inode;
7088 struct file *f;
7089
7090 if (mddev->bitmap || mddev->bitmap_info.file)
7091 return -EEXIST; /* cannot add when bitmap is present */
7092 f = fget(fd);
7093
7094 if (f == NULL) {
7095 pr_warn("%s: error: failed to get bitmap file\n",
7096 mdname(mddev));
7097 return -EBADF;
7098 }
7099
7100 inode = f->f_mapping->host;
7101 if (!S_ISREG(inode->i_mode)) {
7102 pr_warn("%s: error: bitmap file must be a regular file\n",
7103 mdname(mddev));
7104 err = -EBADF;
7105 } else if (!(f->f_mode & FMODE_WRITE)) {
7106 pr_warn("%s: error: bitmap file must open for write\n",
7107 mdname(mddev));
7108 err = -EBADF;
7109 } else if (atomic_read(&inode->i_writecount) != 1) {
7110 pr_warn("%s: error: bitmap file is already in use\n",
7111 mdname(mddev));
7112 err = -EBUSY;
7113 }
7114 if (err) {
7115 fput(f);
7116 return err;
7117 }
7118 mddev->bitmap_info.file = f;
7119 mddev->bitmap_info.offset = 0; /* file overrides offset */
7120 } else if (mddev->bitmap == NULL)
7121 return -ENOENT; /* cannot remove what isn't there */
7122 err = 0;
7123 if (mddev->pers) {
7124 if (fd >= 0) {
7125 struct bitmap *bitmap;
7126
7127 bitmap = md_bitmap_create(mddev, -1);
7128 mddev_suspend(mddev);
7129 if (!IS_ERR(bitmap)) {
7130 mddev->bitmap = bitmap;
7131 err = md_bitmap_load(mddev);
7132 } else
7133 err = PTR_ERR(bitmap);
7134 if (err) {
7135 md_bitmap_destroy(mddev);
7136 fd = -1;
7137 }
7138 mddev_resume(mddev);
7139 } else if (fd < 0) {
7140 mddev_suspend(mddev);
7141 md_bitmap_destroy(mddev);
7142 mddev_resume(mddev);
7143 }
7144 }
7145 if (fd < 0) {
7146 struct file *f = mddev->bitmap_info.file;
7147 if (f) {
7148 spin_lock(&mddev->lock);
7149 mddev->bitmap_info.file = NULL;
7150 spin_unlock(&mddev->lock);
7151 fput(f);
7152 }
7153 }
7154
7155 return err;
7156 }
7157
7158 /*
7159 * md_set_array_info is used two different ways
7160 * The original usage is when creating a new array.
7161 * In this usage, raid_disks is > 0 and it together with
7162 * level, size, not_persistent,layout,chunksize determine the
7163 * shape of the array.
7164 * This will always create an array with a type-0.90.0 superblock.
7165 * The newer usage is when assembling an array.
7166 * In this case raid_disks will be 0, and the major_version field is
7167 * use to determine which style super-blocks are to be found on the devices.
7168 * The minor and patch _version numbers are also kept incase the
7169 * super_block handler wishes to interpret them.
7170 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7171 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7172 {
7173 if (info->raid_disks == 0) {
7174 /* just setting version number for superblock loading */
7175 if (info->major_version < 0 ||
7176 info->major_version >= ARRAY_SIZE(super_types) ||
7177 super_types[info->major_version].name == NULL) {
7178 /* maybe try to auto-load a module? */
7179 pr_warn("md: superblock version %d not known\n",
7180 info->major_version);
7181 return -EINVAL;
7182 }
7183 mddev->major_version = info->major_version;
7184 mddev->minor_version = info->minor_version;
7185 mddev->patch_version = info->patch_version;
7186 mddev->persistent = !info->not_persistent;
7187 /* ensure mddev_put doesn't delete this now that there
7188 * is some minimal configuration.
7189 */
7190 mddev->ctime = ktime_get_real_seconds();
7191 return 0;
7192 }
7193 mddev->major_version = MD_MAJOR_VERSION;
7194 mddev->minor_version = MD_MINOR_VERSION;
7195 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7196 mddev->ctime = ktime_get_real_seconds();
7197
7198 mddev->level = info->level;
7199 mddev->clevel[0] = 0;
7200 mddev->dev_sectors = 2 * (sector_t)info->size;
7201 mddev->raid_disks = info->raid_disks;
7202 /* don't set md_minor, it is determined by which /dev/md* was
7203 * openned
7204 */
7205 if (info->state & (1<<MD_SB_CLEAN))
7206 mddev->recovery_cp = MaxSector;
7207 else
7208 mddev->recovery_cp = 0;
7209 mddev->persistent = ! info->not_persistent;
7210 mddev->external = 0;
7211
7212 mddev->layout = info->layout;
7213 if (mddev->level == 0)
7214 /* Cannot trust RAID0 layout info here */
7215 mddev->layout = -1;
7216 mddev->chunk_sectors = info->chunk_size >> 9;
7217
7218 if (mddev->persistent) {
7219 mddev->max_disks = MD_SB_DISKS;
7220 mddev->flags = 0;
7221 mddev->sb_flags = 0;
7222 }
7223 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7224
7225 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7226 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7227 mddev->bitmap_info.offset = 0;
7228
7229 mddev->reshape_position = MaxSector;
7230
7231 /*
7232 * Generate a 128 bit UUID
7233 */
7234 get_random_bytes(mddev->uuid, 16);
7235
7236 mddev->new_level = mddev->level;
7237 mddev->new_chunk_sectors = mddev->chunk_sectors;
7238 mddev->new_layout = mddev->layout;
7239 mddev->delta_disks = 0;
7240 mddev->reshape_backwards = 0;
7241
7242 return 0;
7243 }
7244
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7245 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7246 {
7247 lockdep_assert_held(&mddev->reconfig_mutex);
7248
7249 if (mddev->external_size)
7250 return;
7251
7252 mddev->array_sectors = array_sectors;
7253 }
7254 EXPORT_SYMBOL(md_set_array_sectors);
7255
update_size(struct mddev * mddev,sector_t num_sectors)7256 static int update_size(struct mddev *mddev, sector_t num_sectors)
7257 {
7258 struct md_rdev *rdev;
7259 int rv;
7260 int fit = (num_sectors == 0);
7261 sector_t old_dev_sectors = mddev->dev_sectors;
7262
7263 if (mddev->pers->resize == NULL)
7264 return -EINVAL;
7265 /* The "num_sectors" is the number of sectors of each device that
7266 * is used. This can only make sense for arrays with redundancy.
7267 * linear and raid0 always use whatever space is available. We can only
7268 * consider changing this number if no resync or reconstruction is
7269 * happening, and if the new size is acceptable. It must fit before the
7270 * sb_start or, if that is <data_offset, it must fit before the size
7271 * of each device. If num_sectors is zero, we find the largest size
7272 * that fits.
7273 */
7274 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7275 mddev->sync_thread)
7276 return -EBUSY;
7277 if (!md_is_rdwr(mddev))
7278 return -EROFS;
7279
7280 rdev_for_each(rdev, mddev) {
7281 sector_t avail = rdev->sectors;
7282
7283 if (fit && (num_sectors == 0 || num_sectors > avail))
7284 num_sectors = avail;
7285 if (avail < num_sectors)
7286 return -ENOSPC;
7287 }
7288 rv = mddev->pers->resize(mddev, num_sectors);
7289 if (!rv) {
7290 if (mddev_is_clustered(mddev))
7291 md_cluster_ops->update_size(mddev, old_dev_sectors);
7292 else if (mddev->queue) {
7293 set_capacity_and_notify(mddev->gendisk,
7294 mddev->array_sectors);
7295 }
7296 }
7297 return rv;
7298 }
7299
update_raid_disks(struct mddev * mddev,int raid_disks)7300 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7301 {
7302 int rv;
7303 struct md_rdev *rdev;
7304 /* change the number of raid disks */
7305 if (mddev->pers->check_reshape == NULL)
7306 return -EINVAL;
7307 if (!md_is_rdwr(mddev))
7308 return -EROFS;
7309 if (raid_disks <= 0 ||
7310 (mddev->max_disks && raid_disks >= mddev->max_disks))
7311 return -EINVAL;
7312 if (mddev->sync_thread ||
7313 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7314 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7315 mddev->reshape_position != MaxSector)
7316 return -EBUSY;
7317
7318 rdev_for_each(rdev, mddev) {
7319 if (mddev->raid_disks < raid_disks &&
7320 rdev->data_offset < rdev->new_data_offset)
7321 return -EINVAL;
7322 if (mddev->raid_disks > raid_disks &&
7323 rdev->data_offset > rdev->new_data_offset)
7324 return -EINVAL;
7325 }
7326
7327 mddev->delta_disks = raid_disks - mddev->raid_disks;
7328 if (mddev->delta_disks < 0)
7329 mddev->reshape_backwards = 1;
7330 else if (mddev->delta_disks > 0)
7331 mddev->reshape_backwards = 0;
7332
7333 rv = mddev->pers->check_reshape(mddev);
7334 if (rv < 0) {
7335 mddev->delta_disks = 0;
7336 mddev->reshape_backwards = 0;
7337 }
7338 return rv;
7339 }
7340
7341 /*
7342 * update_array_info is used to change the configuration of an
7343 * on-line array.
7344 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7345 * fields in the info are checked against the array.
7346 * Any differences that cannot be handled will cause an error.
7347 * Normally, only one change can be managed at a time.
7348 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7349 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7350 {
7351 int rv = 0;
7352 int cnt = 0;
7353 int state = 0;
7354
7355 /* calculate expected state,ignoring low bits */
7356 if (mddev->bitmap && mddev->bitmap_info.offset)
7357 state |= (1 << MD_SB_BITMAP_PRESENT);
7358
7359 if (mddev->major_version != info->major_version ||
7360 mddev->minor_version != info->minor_version ||
7361 /* mddev->patch_version != info->patch_version || */
7362 mddev->ctime != info->ctime ||
7363 mddev->level != info->level ||
7364 /* mddev->layout != info->layout || */
7365 mddev->persistent != !info->not_persistent ||
7366 mddev->chunk_sectors != info->chunk_size >> 9 ||
7367 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7368 ((state^info->state) & 0xfffffe00)
7369 )
7370 return -EINVAL;
7371 /* Check there is only one change */
7372 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7373 cnt++;
7374 if (mddev->raid_disks != info->raid_disks)
7375 cnt++;
7376 if (mddev->layout != info->layout)
7377 cnt++;
7378 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7379 cnt++;
7380 if (cnt == 0)
7381 return 0;
7382 if (cnt > 1)
7383 return -EINVAL;
7384
7385 if (mddev->layout != info->layout) {
7386 /* Change layout
7387 * we don't need to do anything at the md level, the
7388 * personality will take care of it all.
7389 */
7390 if (mddev->pers->check_reshape == NULL)
7391 return -EINVAL;
7392 else {
7393 mddev->new_layout = info->layout;
7394 rv = mddev->pers->check_reshape(mddev);
7395 if (rv)
7396 mddev->new_layout = mddev->layout;
7397 return rv;
7398 }
7399 }
7400 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7401 rv = update_size(mddev, (sector_t)info->size * 2);
7402
7403 if (mddev->raid_disks != info->raid_disks)
7404 rv = update_raid_disks(mddev, info->raid_disks);
7405
7406 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7407 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7408 rv = -EINVAL;
7409 goto err;
7410 }
7411 if (mddev->recovery || mddev->sync_thread) {
7412 rv = -EBUSY;
7413 goto err;
7414 }
7415 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7416 struct bitmap *bitmap;
7417 /* add the bitmap */
7418 if (mddev->bitmap) {
7419 rv = -EEXIST;
7420 goto err;
7421 }
7422 if (mddev->bitmap_info.default_offset == 0) {
7423 rv = -EINVAL;
7424 goto err;
7425 }
7426 mddev->bitmap_info.offset =
7427 mddev->bitmap_info.default_offset;
7428 mddev->bitmap_info.space =
7429 mddev->bitmap_info.default_space;
7430 bitmap = md_bitmap_create(mddev, -1);
7431 mddev_suspend(mddev);
7432 if (!IS_ERR(bitmap)) {
7433 mddev->bitmap = bitmap;
7434 rv = md_bitmap_load(mddev);
7435 } else
7436 rv = PTR_ERR(bitmap);
7437 if (rv)
7438 md_bitmap_destroy(mddev);
7439 mddev_resume(mddev);
7440 } else {
7441 /* remove the bitmap */
7442 if (!mddev->bitmap) {
7443 rv = -ENOENT;
7444 goto err;
7445 }
7446 if (mddev->bitmap->storage.file) {
7447 rv = -EINVAL;
7448 goto err;
7449 }
7450 if (mddev->bitmap_info.nodes) {
7451 /* hold PW on all the bitmap lock */
7452 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7453 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7454 rv = -EPERM;
7455 md_cluster_ops->unlock_all_bitmaps(mddev);
7456 goto err;
7457 }
7458
7459 mddev->bitmap_info.nodes = 0;
7460 md_cluster_ops->leave(mddev);
7461 module_put(md_cluster_mod);
7462 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7463 }
7464 mddev_suspend(mddev);
7465 md_bitmap_destroy(mddev);
7466 mddev_resume(mddev);
7467 mddev->bitmap_info.offset = 0;
7468 }
7469 }
7470 md_update_sb(mddev, 1);
7471 return rv;
7472 err:
7473 return rv;
7474 }
7475
set_disk_faulty(struct mddev * mddev,dev_t dev)7476 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7477 {
7478 struct md_rdev *rdev;
7479 int err = 0;
7480
7481 if (mddev->pers == NULL)
7482 return -ENODEV;
7483
7484 rcu_read_lock();
7485 rdev = md_find_rdev_rcu(mddev, dev);
7486 if (!rdev)
7487 err = -ENODEV;
7488 else {
7489 md_error(mddev, rdev);
7490 if (test_bit(MD_BROKEN, &mddev->flags))
7491 err = -EBUSY;
7492 }
7493 rcu_read_unlock();
7494 return err;
7495 }
7496
7497 /*
7498 * We have a problem here : there is no easy way to give a CHS
7499 * virtual geometry. We currently pretend that we have a 2 heads
7500 * 4 sectors (with a BIG number of cylinders...). This drives
7501 * dosfs just mad... ;-)
7502 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7503 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7504 {
7505 struct mddev *mddev = bdev->bd_disk->private_data;
7506
7507 geo->heads = 2;
7508 geo->sectors = 4;
7509 geo->cylinders = mddev->array_sectors / 8;
7510 return 0;
7511 }
7512
md_ioctl_valid(unsigned int cmd)7513 static inline bool md_ioctl_valid(unsigned int cmd)
7514 {
7515 switch (cmd) {
7516 case ADD_NEW_DISK:
7517 case GET_ARRAY_INFO:
7518 case GET_BITMAP_FILE:
7519 case GET_DISK_INFO:
7520 case HOT_ADD_DISK:
7521 case HOT_REMOVE_DISK:
7522 case RAID_VERSION:
7523 case RESTART_ARRAY_RW:
7524 case RUN_ARRAY:
7525 case SET_ARRAY_INFO:
7526 case SET_BITMAP_FILE:
7527 case SET_DISK_FAULTY:
7528 case STOP_ARRAY:
7529 case STOP_ARRAY_RO:
7530 case CLUSTERED_DISK_NACK:
7531 return true;
7532 default:
7533 return false;
7534 }
7535 }
7536
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7537 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7538 unsigned int cmd, unsigned long arg)
7539 {
7540 int err = 0;
7541 void __user *argp = (void __user *)arg;
7542 struct mddev *mddev = NULL;
7543 bool did_set_md_closing = false;
7544
7545 if (!md_ioctl_valid(cmd))
7546 return -ENOTTY;
7547
7548 switch (cmd) {
7549 case RAID_VERSION:
7550 case GET_ARRAY_INFO:
7551 case GET_DISK_INFO:
7552 break;
7553 default:
7554 if (!capable(CAP_SYS_ADMIN))
7555 return -EACCES;
7556 }
7557
7558 /*
7559 * Commands dealing with the RAID driver but not any
7560 * particular array:
7561 */
7562 switch (cmd) {
7563 case RAID_VERSION:
7564 err = get_version(argp);
7565 goto out;
7566 default:;
7567 }
7568
7569 /*
7570 * Commands creating/starting a new array:
7571 */
7572
7573 mddev = bdev->bd_disk->private_data;
7574
7575 if (!mddev) {
7576 BUG();
7577 goto out;
7578 }
7579
7580 /* Some actions do not requires the mutex */
7581 switch (cmd) {
7582 case GET_ARRAY_INFO:
7583 if (!mddev->raid_disks && !mddev->external)
7584 err = -ENODEV;
7585 else
7586 err = get_array_info(mddev, argp);
7587 goto out;
7588
7589 case GET_DISK_INFO:
7590 if (!mddev->raid_disks && !mddev->external)
7591 err = -ENODEV;
7592 else
7593 err = get_disk_info(mddev, argp);
7594 goto out;
7595
7596 case SET_DISK_FAULTY:
7597 err = set_disk_faulty(mddev, new_decode_dev(arg));
7598 goto out;
7599
7600 case GET_BITMAP_FILE:
7601 err = get_bitmap_file(mddev, argp);
7602 goto out;
7603
7604 }
7605
7606 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7607 flush_rdev_wq(mddev);
7608
7609 if (cmd == HOT_REMOVE_DISK)
7610 /* need to ensure recovery thread has run */
7611 wait_event_interruptible_timeout(mddev->sb_wait,
7612 !test_bit(MD_RECOVERY_NEEDED,
7613 &mddev->recovery),
7614 msecs_to_jiffies(5000));
7615 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7616 /* Need to flush page cache, and ensure no-one else opens
7617 * and writes
7618 */
7619 mutex_lock(&mddev->open_mutex);
7620 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7621 mutex_unlock(&mddev->open_mutex);
7622 err = -EBUSY;
7623 goto out;
7624 }
7625 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7626 mutex_unlock(&mddev->open_mutex);
7627 err = -EBUSY;
7628 goto out;
7629 }
7630 did_set_md_closing = true;
7631 mutex_unlock(&mddev->open_mutex);
7632 sync_blockdev(bdev);
7633 }
7634 err = mddev_lock(mddev);
7635 if (err) {
7636 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7637 err, cmd);
7638 goto out;
7639 }
7640
7641 if (cmd == SET_ARRAY_INFO) {
7642 mdu_array_info_t info;
7643 if (!arg)
7644 memset(&info, 0, sizeof(info));
7645 else if (copy_from_user(&info, argp, sizeof(info))) {
7646 err = -EFAULT;
7647 goto unlock;
7648 }
7649 if (mddev->pers) {
7650 err = update_array_info(mddev, &info);
7651 if (err) {
7652 pr_warn("md: couldn't update array info. %d\n", err);
7653 goto unlock;
7654 }
7655 goto unlock;
7656 }
7657 if (!list_empty(&mddev->disks)) {
7658 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7659 err = -EBUSY;
7660 goto unlock;
7661 }
7662 if (mddev->raid_disks) {
7663 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7664 err = -EBUSY;
7665 goto unlock;
7666 }
7667 err = md_set_array_info(mddev, &info);
7668 if (err) {
7669 pr_warn("md: couldn't set array info. %d\n", err);
7670 goto unlock;
7671 }
7672 goto unlock;
7673 }
7674
7675 /*
7676 * Commands querying/configuring an existing array:
7677 */
7678 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7679 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7680 if ((!mddev->raid_disks && !mddev->external)
7681 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7682 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7683 && cmd != GET_BITMAP_FILE) {
7684 err = -ENODEV;
7685 goto unlock;
7686 }
7687
7688 /*
7689 * Commands even a read-only array can execute:
7690 */
7691 switch (cmd) {
7692 case RESTART_ARRAY_RW:
7693 err = restart_array(mddev);
7694 goto unlock;
7695
7696 case STOP_ARRAY:
7697 err = do_md_stop(mddev, 0, bdev);
7698 goto unlock;
7699
7700 case STOP_ARRAY_RO:
7701 err = md_set_readonly(mddev, bdev);
7702 goto unlock;
7703
7704 case HOT_REMOVE_DISK:
7705 err = hot_remove_disk(mddev, new_decode_dev(arg));
7706 goto unlock;
7707
7708 case ADD_NEW_DISK:
7709 /* We can support ADD_NEW_DISK on read-only arrays
7710 * only if we are re-adding a preexisting device.
7711 * So require mddev->pers and MD_DISK_SYNC.
7712 */
7713 if (mddev->pers) {
7714 mdu_disk_info_t info;
7715 if (copy_from_user(&info, argp, sizeof(info)))
7716 err = -EFAULT;
7717 else if (!(info.state & (1<<MD_DISK_SYNC)))
7718 /* Need to clear read-only for this */
7719 break;
7720 else
7721 err = md_add_new_disk(mddev, &info);
7722 goto unlock;
7723 }
7724 break;
7725 }
7726
7727 /*
7728 * The remaining ioctls are changing the state of the
7729 * superblock, so we do not allow them on read-only arrays.
7730 */
7731 if (!md_is_rdwr(mddev) && mddev->pers) {
7732 if (mddev->ro != MD_AUTO_READ) {
7733 err = -EROFS;
7734 goto unlock;
7735 }
7736 mddev->ro = MD_RDWR;
7737 sysfs_notify_dirent_safe(mddev->sysfs_state);
7738 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7739 /* mddev_unlock will wake thread */
7740 /* If a device failed while we were read-only, we
7741 * need to make sure the metadata is updated now.
7742 */
7743 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7744 mddev_unlock(mddev);
7745 wait_event(mddev->sb_wait,
7746 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7747 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7748 mddev_lock_nointr(mddev);
7749 }
7750 }
7751
7752 switch (cmd) {
7753 case ADD_NEW_DISK:
7754 {
7755 mdu_disk_info_t info;
7756 if (copy_from_user(&info, argp, sizeof(info)))
7757 err = -EFAULT;
7758 else
7759 err = md_add_new_disk(mddev, &info);
7760 goto unlock;
7761 }
7762
7763 case CLUSTERED_DISK_NACK:
7764 if (mddev_is_clustered(mddev))
7765 md_cluster_ops->new_disk_ack(mddev, false);
7766 else
7767 err = -EINVAL;
7768 goto unlock;
7769
7770 case HOT_ADD_DISK:
7771 err = hot_add_disk(mddev, new_decode_dev(arg));
7772 goto unlock;
7773
7774 case RUN_ARRAY:
7775 err = do_md_run(mddev);
7776 goto unlock;
7777
7778 case SET_BITMAP_FILE:
7779 err = set_bitmap_file(mddev, (int)arg);
7780 goto unlock;
7781
7782 default:
7783 err = -EINVAL;
7784 goto unlock;
7785 }
7786
7787 unlock:
7788 if (mddev->hold_active == UNTIL_IOCTL &&
7789 err != -EINVAL)
7790 mddev->hold_active = 0;
7791 mddev_unlock(mddev);
7792 out:
7793 if(did_set_md_closing)
7794 clear_bit(MD_CLOSING, &mddev->flags);
7795 return err;
7796 }
7797 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7798 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7799 unsigned int cmd, unsigned long arg)
7800 {
7801 switch (cmd) {
7802 case HOT_REMOVE_DISK:
7803 case HOT_ADD_DISK:
7804 case SET_DISK_FAULTY:
7805 case SET_BITMAP_FILE:
7806 /* These take in integer arg, do not convert */
7807 break;
7808 default:
7809 arg = (unsigned long)compat_ptr(arg);
7810 break;
7811 }
7812
7813 return md_ioctl(bdev, mode, cmd, arg);
7814 }
7815 #endif /* CONFIG_COMPAT */
7816
md_set_read_only(struct block_device * bdev,bool ro)7817 static int md_set_read_only(struct block_device *bdev, bool ro)
7818 {
7819 struct mddev *mddev = bdev->bd_disk->private_data;
7820 int err;
7821
7822 err = mddev_lock(mddev);
7823 if (err)
7824 return err;
7825
7826 if (!mddev->raid_disks && !mddev->external) {
7827 err = -ENODEV;
7828 goto out_unlock;
7829 }
7830
7831 /*
7832 * Transitioning to read-auto need only happen for arrays that call
7833 * md_write_start and which are not ready for writes yet.
7834 */
7835 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7836 err = restart_array(mddev);
7837 if (err)
7838 goto out_unlock;
7839 mddev->ro = MD_AUTO_READ;
7840 }
7841
7842 out_unlock:
7843 mddev_unlock(mddev);
7844 return err;
7845 }
7846
md_open(struct block_device * bdev,fmode_t mode)7847 static int md_open(struct block_device *bdev, fmode_t mode)
7848 {
7849 /*
7850 * Succeed if we can lock the mddev, which confirms that
7851 * it isn't being stopped right now.
7852 */
7853 struct mddev *mddev = mddev_find(bdev->bd_dev);
7854 int err;
7855
7856 if (!mddev)
7857 return -ENODEV;
7858
7859 if (mddev->gendisk != bdev->bd_disk) {
7860 /* we are racing with mddev_put which is discarding this
7861 * bd_disk.
7862 */
7863 mddev_put(mddev);
7864 /* Wait until bdev->bd_disk is definitely gone */
7865 if (work_pending(&mddev->del_work))
7866 flush_workqueue(md_misc_wq);
7867 return -EBUSY;
7868 }
7869 BUG_ON(mddev != bdev->bd_disk->private_data);
7870
7871 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7872 goto out;
7873
7874 if (test_bit(MD_CLOSING, &mddev->flags)) {
7875 mutex_unlock(&mddev->open_mutex);
7876 err = -ENODEV;
7877 goto out;
7878 }
7879
7880 err = 0;
7881 atomic_inc(&mddev->openers);
7882 mutex_unlock(&mddev->open_mutex);
7883
7884 bdev_check_media_change(bdev);
7885 out:
7886 if (err)
7887 mddev_put(mddev);
7888 return err;
7889 }
7890
md_release(struct gendisk * disk,fmode_t mode)7891 static void md_release(struct gendisk *disk, fmode_t mode)
7892 {
7893 struct mddev *mddev = disk->private_data;
7894
7895 BUG_ON(!mddev);
7896 atomic_dec(&mddev->openers);
7897 mddev_put(mddev);
7898 }
7899
md_check_events(struct gendisk * disk,unsigned int clearing)7900 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7901 {
7902 struct mddev *mddev = disk->private_data;
7903 unsigned int ret = 0;
7904
7905 if (mddev->changed)
7906 ret = DISK_EVENT_MEDIA_CHANGE;
7907 mddev->changed = 0;
7908 return ret;
7909 }
7910
7911 const struct block_device_operations md_fops =
7912 {
7913 .owner = THIS_MODULE,
7914 .submit_bio = md_submit_bio,
7915 .open = md_open,
7916 .release = md_release,
7917 .ioctl = md_ioctl,
7918 #ifdef CONFIG_COMPAT
7919 .compat_ioctl = md_compat_ioctl,
7920 #endif
7921 .getgeo = md_getgeo,
7922 .check_events = md_check_events,
7923 .set_read_only = md_set_read_only,
7924 };
7925
md_thread(void * arg)7926 static int md_thread(void *arg)
7927 {
7928 struct md_thread *thread = arg;
7929
7930 /*
7931 * md_thread is a 'system-thread', it's priority should be very
7932 * high. We avoid resource deadlocks individually in each
7933 * raid personality. (RAID5 does preallocation) We also use RR and
7934 * the very same RT priority as kswapd, thus we will never get
7935 * into a priority inversion deadlock.
7936 *
7937 * we definitely have to have equal or higher priority than
7938 * bdflush, otherwise bdflush will deadlock if there are too
7939 * many dirty RAID5 blocks.
7940 */
7941
7942 allow_signal(SIGKILL);
7943 while (!kthread_should_stop()) {
7944
7945 /* We need to wait INTERRUPTIBLE so that
7946 * we don't add to the load-average.
7947 * That means we need to be sure no signals are
7948 * pending
7949 */
7950 if (signal_pending(current))
7951 flush_signals(current);
7952
7953 wait_event_interruptible_timeout
7954 (thread->wqueue,
7955 test_bit(THREAD_WAKEUP, &thread->flags)
7956 || kthread_should_stop() || kthread_should_park(),
7957 thread->timeout);
7958
7959 clear_bit(THREAD_WAKEUP, &thread->flags);
7960 if (kthread_should_park())
7961 kthread_parkme();
7962 if (!kthread_should_stop())
7963 thread->run(thread);
7964 }
7965
7966 return 0;
7967 }
7968
md_wakeup_thread(struct md_thread * thread)7969 void md_wakeup_thread(struct md_thread *thread)
7970 {
7971 if (thread) {
7972 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7973 set_bit(THREAD_WAKEUP, &thread->flags);
7974 wake_up(&thread->wqueue);
7975 }
7976 }
7977 EXPORT_SYMBOL(md_wakeup_thread);
7978
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7979 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7980 struct mddev *mddev, const char *name)
7981 {
7982 struct md_thread *thread;
7983
7984 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7985 if (!thread)
7986 return NULL;
7987
7988 init_waitqueue_head(&thread->wqueue);
7989
7990 thread->run = run;
7991 thread->mddev = mddev;
7992 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7993 thread->tsk = kthread_run(md_thread, thread,
7994 "%s_%s",
7995 mdname(thread->mddev),
7996 name);
7997 if (IS_ERR(thread->tsk)) {
7998 kfree(thread);
7999 return NULL;
8000 }
8001 return thread;
8002 }
8003 EXPORT_SYMBOL(md_register_thread);
8004
md_unregister_thread(struct md_thread ** threadp)8005 void md_unregister_thread(struct md_thread **threadp)
8006 {
8007 struct md_thread *thread;
8008
8009 /*
8010 * Locking ensures that mddev_unlock does not wake_up a
8011 * non-existent thread
8012 */
8013 spin_lock(&pers_lock);
8014 thread = *threadp;
8015 if (!thread) {
8016 spin_unlock(&pers_lock);
8017 return;
8018 }
8019 *threadp = NULL;
8020 spin_unlock(&pers_lock);
8021
8022 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8023 kthread_stop(thread->tsk);
8024 kfree(thread);
8025 }
8026 EXPORT_SYMBOL(md_unregister_thread);
8027
md_error(struct mddev * mddev,struct md_rdev * rdev)8028 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8029 {
8030 if (!rdev || test_bit(Faulty, &rdev->flags))
8031 return;
8032
8033 if (!mddev->pers || !mddev->pers->error_handler)
8034 return;
8035 mddev->pers->error_handler(mddev, rdev);
8036
8037 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8038 return;
8039
8040 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8041 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8042 sysfs_notify_dirent_safe(rdev->sysfs_state);
8043 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8044 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8046 md_wakeup_thread(mddev->thread);
8047 }
8048 if (mddev->event_work.func)
8049 queue_work(md_misc_wq, &mddev->event_work);
8050 md_new_event(mddev);
8051 }
8052 EXPORT_SYMBOL(md_error);
8053
8054 /* seq_file implementation /proc/mdstat */
8055
status_unused(struct seq_file * seq)8056 static void status_unused(struct seq_file *seq)
8057 {
8058 int i = 0;
8059 struct md_rdev *rdev;
8060
8061 seq_printf(seq, "unused devices: ");
8062
8063 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8064 char b[BDEVNAME_SIZE];
8065 i++;
8066 seq_printf(seq, "%s ",
8067 bdevname(rdev->bdev,b));
8068 }
8069 if (!i)
8070 seq_printf(seq, "<none>");
8071
8072 seq_printf(seq, "\n");
8073 }
8074
status_resync(struct seq_file * seq,struct mddev * mddev)8075 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8076 {
8077 sector_t max_sectors, resync, res;
8078 unsigned long dt, db = 0;
8079 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8080 int scale, recovery_active;
8081 unsigned int per_milli;
8082
8083 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8084 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8085 max_sectors = mddev->resync_max_sectors;
8086 else
8087 max_sectors = mddev->dev_sectors;
8088
8089 resync = mddev->curr_resync;
8090 if (resync <= 3) {
8091 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8092 /* Still cleaning up */
8093 resync = max_sectors;
8094 } else if (resync > max_sectors)
8095 resync = max_sectors;
8096 else
8097 resync -= atomic_read(&mddev->recovery_active);
8098
8099 if (resync == 0) {
8100 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8101 struct md_rdev *rdev;
8102
8103 rdev_for_each(rdev, mddev)
8104 if (rdev->raid_disk >= 0 &&
8105 !test_bit(Faulty, &rdev->flags) &&
8106 rdev->recovery_offset != MaxSector &&
8107 rdev->recovery_offset) {
8108 seq_printf(seq, "\trecover=REMOTE");
8109 return 1;
8110 }
8111 if (mddev->reshape_position != MaxSector)
8112 seq_printf(seq, "\treshape=REMOTE");
8113 else
8114 seq_printf(seq, "\tresync=REMOTE");
8115 return 1;
8116 }
8117 if (mddev->recovery_cp < MaxSector) {
8118 seq_printf(seq, "\tresync=PENDING");
8119 return 1;
8120 }
8121 return 0;
8122 }
8123 if (resync < 3) {
8124 seq_printf(seq, "\tresync=DELAYED");
8125 return 1;
8126 }
8127
8128 WARN_ON(max_sectors == 0);
8129 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8130 * in a sector_t, and (max_sectors>>scale) will fit in a
8131 * u32, as those are the requirements for sector_div.
8132 * Thus 'scale' must be at least 10
8133 */
8134 scale = 10;
8135 if (sizeof(sector_t) > sizeof(unsigned long)) {
8136 while ( max_sectors/2 > (1ULL<<(scale+32)))
8137 scale++;
8138 }
8139 res = (resync>>scale)*1000;
8140 sector_div(res, (u32)((max_sectors>>scale)+1));
8141
8142 per_milli = res;
8143 {
8144 int i, x = per_milli/50, y = 20-x;
8145 seq_printf(seq, "[");
8146 for (i = 0; i < x; i++)
8147 seq_printf(seq, "=");
8148 seq_printf(seq, ">");
8149 for (i = 0; i < y; i++)
8150 seq_printf(seq, ".");
8151 seq_printf(seq, "] ");
8152 }
8153 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8154 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8155 "reshape" :
8156 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8157 "check" :
8158 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8159 "resync" : "recovery"))),
8160 per_milli/10, per_milli % 10,
8161 (unsigned long long) resync/2,
8162 (unsigned long long) max_sectors/2);
8163
8164 /*
8165 * dt: time from mark until now
8166 * db: blocks written from mark until now
8167 * rt: remaining time
8168 *
8169 * rt is a sector_t, which is always 64bit now. We are keeping
8170 * the original algorithm, but it is not really necessary.
8171 *
8172 * Original algorithm:
8173 * So we divide before multiply in case it is 32bit and close
8174 * to the limit.
8175 * We scale the divisor (db) by 32 to avoid losing precision
8176 * near the end of resync when the number of remaining sectors
8177 * is close to 'db'.
8178 * We then divide rt by 32 after multiplying by db to compensate.
8179 * The '+1' avoids division by zero if db is very small.
8180 */
8181 dt = ((jiffies - mddev->resync_mark) / HZ);
8182 if (!dt) dt++;
8183
8184 curr_mark_cnt = mddev->curr_mark_cnt;
8185 recovery_active = atomic_read(&mddev->recovery_active);
8186 resync_mark_cnt = mddev->resync_mark_cnt;
8187
8188 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8189 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8190
8191 rt = max_sectors - resync; /* number of remaining sectors */
8192 rt = div64_u64(rt, db/32+1);
8193 rt *= dt;
8194 rt >>= 5;
8195
8196 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8197 ((unsigned long)rt % 60)/6);
8198
8199 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8200 return 1;
8201 }
8202
md_seq_start(struct seq_file * seq,loff_t * pos)8203 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8204 {
8205 struct list_head *tmp;
8206 loff_t l = *pos;
8207 struct mddev *mddev;
8208
8209 if (l == 0x10000) {
8210 ++*pos;
8211 return (void *)2;
8212 }
8213 if (l > 0x10000)
8214 return NULL;
8215 if (!l--)
8216 /* header */
8217 return (void*)1;
8218
8219 spin_lock(&all_mddevs_lock);
8220 list_for_each(tmp,&all_mddevs)
8221 if (!l--) {
8222 mddev = list_entry(tmp, struct mddev, all_mddevs);
8223 mddev_get(mddev);
8224 spin_unlock(&all_mddevs_lock);
8225 return mddev;
8226 }
8227 spin_unlock(&all_mddevs_lock);
8228 if (!l--)
8229 return (void*)2;/* tail */
8230 return NULL;
8231 }
8232
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8233 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8234 {
8235 struct list_head *tmp;
8236 struct mddev *next_mddev, *mddev = v;
8237
8238 ++*pos;
8239 if (v == (void*)2)
8240 return NULL;
8241
8242 spin_lock(&all_mddevs_lock);
8243 if (v == (void*)1)
8244 tmp = all_mddevs.next;
8245 else
8246 tmp = mddev->all_mddevs.next;
8247 if (tmp != &all_mddevs)
8248 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8249 else {
8250 next_mddev = (void*)2;
8251 *pos = 0x10000;
8252 }
8253 spin_unlock(&all_mddevs_lock);
8254
8255 if (v != (void*)1)
8256 mddev_put(mddev);
8257 return next_mddev;
8258
8259 }
8260
md_seq_stop(struct seq_file * seq,void * v)8261 static void md_seq_stop(struct seq_file *seq, void *v)
8262 {
8263 struct mddev *mddev = v;
8264
8265 if (mddev && v != (void*)1 && v != (void*)2)
8266 mddev_put(mddev);
8267 }
8268
md_seq_show(struct seq_file * seq,void * v)8269 static int md_seq_show(struct seq_file *seq, void *v)
8270 {
8271 struct mddev *mddev = v;
8272 sector_t sectors;
8273 struct md_rdev *rdev;
8274
8275 if (v == (void*)1) {
8276 struct md_personality *pers;
8277 seq_printf(seq, "Personalities : ");
8278 spin_lock(&pers_lock);
8279 list_for_each_entry(pers, &pers_list, list)
8280 seq_printf(seq, "[%s] ", pers->name);
8281
8282 spin_unlock(&pers_lock);
8283 seq_printf(seq, "\n");
8284 seq->poll_event = atomic_read(&md_event_count);
8285 return 0;
8286 }
8287 if (v == (void*)2) {
8288 status_unused(seq);
8289 return 0;
8290 }
8291
8292 spin_lock(&mddev->lock);
8293 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8294 seq_printf(seq, "%s : %sactive", mdname(mddev),
8295 mddev->pers ? "" : "in");
8296 if (mddev->pers) {
8297 if (mddev->ro == MD_RDONLY)
8298 seq_printf(seq, " (read-only)");
8299 if (mddev->ro == MD_AUTO_READ)
8300 seq_printf(seq, " (auto-read-only)");
8301 seq_printf(seq, " %s", mddev->pers->name);
8302 }
8303
8304 sectors = 0;
8305 rcu_read_lock();
8306 rdev_for_each_rcu(rdev, mddev) {
8307 char b[BDEVNAME_SIZE];
8308 seq_printf(seq, " %s[%d]",
8309 bdevname(rdev->bdev,b), rdev->desc_nr);
8310 if (test_bit(WriteMostly, &rdev->flags))
8311 seq_printf(seq, "(W)");
8312 if (test_bit(Journal, &rdev->flags))
8313 seq_printf(seq, "(J)");
8314 if (test_bit(Faulty, &rdev->flags)) {
8315 seq_printf(seq, "(F)");
8316 continue;
8317 }
8318 if (rdev->raid_disk < 0)
8319 seq_printf(seq, "(S)"); /* spare */
8320 if (test_bit(Replacement, &rdev->flags))
8321 seq_printf(seq, "(R)");
8322 sectors += rdev->sectors;
8323 }
8324 rcu_read_unlock();
8325
8326 if (!list_empty(&mddev->disks)) {
8327 if (mddev->pers)
8328 seq_printf(seq, "\n %llu blocks",
8329 (unsigned long long)
8330 mddev->array_sectors / 2);
8331 else
8332 seq_printf(seq, "\n %llu blocks",
8333 (unsigned long long)sectors / 2);
8334 }
8335 if (mddev->persistent) {
8336 if (mddev->major_version != 0 ||
8337 mddev->minor_version != 90) {
8338 seq_printf(seq," super %d.%d",
8339 mddev->major_version,
8340 mddev->minor_version);
8341 }
8342 } else if (mddev->external)
8343 seq_printf(seq, " super external:%s",
8344 mddev->metadata_type);
8345 else
8346 seq_printf(seq, " super non-persistent");
8347
8348 if (mddev->pers) {
8349 mddev->pers->status(seq, mddev);
8350 seq_printf(seq, "\n ");
8351 if (mddev->pers->sync_request) {
8352 if (status_resync(seq, mddev))
8353 seq_printf(seq, "\n ");
8354 }
8355 } else
8356 seq_printf(seq, "\n ");
8357
8358 md_bitmap_status(seq, mddev->bitmap);
8359
8360 seq_printf(seq, "\n");
8361 }
8362 spin_unlock(&mddev->lock);
8363
8364 return 0;
8365 }
8366
8367 static const struct seq_operations md_seq_ops = {
8368 .start = md_seq_start,
8369 .next = md_seq_next,
8370 .stop = md_seq_stop,
8371 .show = md_seq_show,
8372 };
8373
md_seq_open(struct inode * inode,struct file * file)8374 static int md_seq_open(struct inode *inode, struct file *file)
8375 {
8376 struct seq_file *seq;
8377 int error;
8378
8379 error = seq_open(file, &md_seq_ops);
8380 if (error)
8381 return error;
8382
8383 seq = file->private_data;
8384 seq->poll_event = atomic_read(&md_event_count);
8385 return error;
8386 }
8387
8388 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8389 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8390 {
8391 struct seq_file *seq = filp->private_data;
8392 __poll_t mask;
8393
8394 if (md_unloading)
8395 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8396 poll_wait(filp, &md_event_waiters, wait);
8397
8398 /* always allow read */
8399 mask = EPOLLIN | EPOLLRDNORM;
8400
8401 if (seq->poll_event != atomic_read(&md_event_count))
8402 mask |= EPOLLERR | EPOLLPRI;
8403 return mask;
8404 }
8405
8406 static const struct proc_ops mdstat_proc_ops = {
8407 .proc_open = md_seq_open,
8408 .proc_read = seq_read,
8409 .proc_lseek = seq_lseek,
8410 .proc_release = seq_release,
8411 .proc_poll = mdstat_poll,
8412 };
8413
register_md_personality(struct md_personality * p)8414 int register_md_personality(struct md_personality *p)
8415 {
8416 pr_debug("md: %s personality registered for level %d\n",
8417 p->name, p->level);
8418 spin_lock(&pers_lock);
8419 list_add_tail(&p->list, &pers_list);
8420 spin_unlock(&pers_lock);
8421 return 0;
8422 }
8423 EXPORT_SYMBOL(register_md_personality);
8424
unregister_md_personality(struct md_personality * p)8425 int unregister_md_personality(struct md_personality *p)
8426 {
8427 pr_debug("md: %s personality unregistered\n", p->name);
8428 spin_lock(&pers_lock);
8429 list_del_init(&p->list);
8430 spin_unlock(&pers_lock);
8431 return 0;
8432 }
8433 EXPORT_SYMBOL(unregister_md_personality);
8434
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8435 int register_md_cluster_operations(struct md_cluster_operations *ops,
8436 struct module *module)
8437 {
8438 int ret = 0;
8439 spin_lock(&pers_lock);
8440 if (md_cluster_ops != NULL)
8441 ret = -EALREADY;
8442 else {
8443 md_cluster_ops = ops;
8444 md_cluster_mod = module;
8445 }
8446 spin_unlock(&pers_lock);
8447 return ret;
8448 }
8449 EXPORT_SYMBOL(register_md_cluster_operations);
8450
unregister_md_cluster_operations(void)8451 int unregister_md_cluster_operations(void)
8452 {
8453 spin_lock(&pers_lock);
8454 md_cluster_ops = NULL;
8455 spin_unlock(&pers_lock);
8456 return 0;
8457 }
8458 EXPORT_SYMBOL(unregister_md_cluster_operations);
8459
md_setup_cluster(struct mddev * mddev,int nodes)8460 int md_setup_cluster(struct mddev *mddev, int nodes)
8461 {
8462 int ret;
8463 if (!md_cluster_ops)
8464 request_module("md-cluster");
8465 spin_lock(&pers_lock);
8466 /* ensure module won't be unloaded */
8467 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8468 pr_warn("can't find md-cluster module or get it's reference.\n");
8469 spin_unlock(&pers_lock);
8470 return -ENOENT;
8471 }
8472 spin_unlock(&pers_lock);
8473
8474 ret = md_cluster_ops->join(mddev, nodes);
8475 if (!ret)
8476 mddev->safemode_delay = 0;
8477 return ret;
8478 }
8479
md_cluster_stop(struct mddev * mddev)8480 void md_cluster_stop(struct mddev *mddev)
8481 {
8482 if (!md_cluster_ops)
8483 return;
8484 md_cluster_ops->leave(mddev);
8485 module_put(md_cluster_mod);
8486 }
8487
is_mddev_idle(struct mddev * mddev,int init)8488 static int is_mddev_idle(struct mddev *mddev, int init)
8489 {
8490 struct md_rdev *rdev;
8491 int idle;
8492 int curr_events;
8493
8494 idle = 1;
8495 rcu_read_lock();
8496 rdev_for_each_rcu(rdev, mddev) {
8497 struct gendisk *disk = rdev->bdev->bd_disk;
8498 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8499 atomic_read(&disk->sync_io);
8500 /* sync IO will cause sync_io to increase before the disk_stats
8501 * as sync_io is counted when a request starts, and
8502 * disk_stats is counted when it completes.
8503 * So resync activity will cause curr_events to be smaller than
8504 * when there was no such activity.
8505 * non-sync IO will cause disk_stat to increase without
8506 * increasing sync_io so curr_events will (eventually)
8507 * be larger than it was before. Once it becomes
8508 * substantially larger, the test below will cause
8509 * the array to appear non-idle, and resync will slow
8510 * down.
8511 * If there is a lot of outstanding resync activity when
8512 * we set last_event to curr_events, then all that activity
8513 * completing might cause the array to appear non-idle
8514 * and resync will be slowed down even though there might
8515 * not have been non-resync activity. This will only
8516 * happen once though. 'last_events' will soon reflect
8517 * the state where there is little or no outstanding
8518 * resync requests, and further resync activity will
8519 * always make curr_events less than last_events.
8520 *
8521 */
8522 if (init || curr_events - rdev->last_events > 64) {
8523 rdev->last_events = curr_events;
8524 idle = 0;
8525 }
8526 }
8527 rcu_read_unlock();
8528 return idle;
8529 }
8530
md_done_sync(struct mddev * mddev,int blocks,int ok)8531 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8532 {
8533 /* another "blocks" (512byte) blocks have been synced */
8534 atomic_sub(blocks, &mddev->recovery_active);
8535 wake_up(&mddev->recovery_wait);
8536 if (!ok) {
8537 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8538 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8539 md_wakeup_thread(mddev->thread);
8540 // stop recovery, signal do_sync ....
8541 }
8542 }
8543 EXPORT_SYMBOL(md_done_sync);
8544
8545 /* md_write_start(mddev, bi)
8546 * If we need to update some array metadata (e.g. 'active' flag
8547 * in superblock) before writing, schedule a superblock update
8548 * and wait for it to complete.
8549 * A return value of 'false' means that the write wasn't recorded
8550 * and cannot proceed as the array is being suspend.
8551 */
md_write_start(struct mddev * mddev,struct bio * bi)8552 bool md_write_start(struct mddev *mddev, struct bio *bi)
8553 {
8554 int did_change = 0;
8555
8556 if (bio_data_dir(bi) != WRITE)
8557 return true;
8558
8559 BUG_ON(mddev->ro == MD_RDONLY);
8560 if (mddev->ro == MD_AUTO_READ) {
8561 /* need to switch to read/write */
8562 mddev->ro = MD_RDWR;
8563 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8564 md_wakeup_thread(mddev->thread);
8565 md_wakeup_thread(mddev->sync_thread);
8566 did_change = 1;
8567 }
8568 rcu_read_lock();
8569 percpu_ref_get(&mddev->writes_pending);
8570 smp_mb(); /* Match smp_mb in set_in_sync() */
8571 if (mddev->safemode == 1)
8572 mddev->safemode = 0;
8573 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8574 if (mddev->in_sync || mddev->sync_checkers) {
8575 spin_lock(&mddev->lock);
8576 if (mddev->in_sync) {
8577 mddev->in_sync = 0;
8578 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8579 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8580 md_wakeup_thread(mddev->thread);
8581 did_change = 1;
8582 }
8583 spin_unlock(&mddev->lock);
8584 }
8585 rcu_read_unlock();
8586 if (did_change)
8587 sysfs_notify_dirent_safe(mddev->sysfs_state);
8588 if (!mddev->has_superblocks)
8589 return true;
8590 wait_event(mddev->sb_wait,
8591 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8592 mddev->suspended);
8593 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8594 percpu_ref_put(&mddev->writes_pending);
8595 return false;
8596 }
8597 return true;
8598 }
8599 EXPORT_SYMBOL(md_write_start);
8600
8601 /* md_write_inc can only be called when md_write_start() has
8602 * already been called at least once of the current request.
8603 * It increments the counter and is useful when a single request
8604 * is split into several parts. Each part causes an increment and
8605 * so needs a matching md_write_end().
8606 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8607 * a spinlocked region.
8608 */
md_write_inc(struct mddev * mddev,struct bio * bi)8609 void md_write_inc(struct mddev *mddev, struct bio *bi)
8610 {
8611 if (bio_data_dir(bi) != WRITE)
8612 return;
8613 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8614 percpu_ref_get(&mddev->writes_pending);
8615 }
8616 EXPORT_SYMBOL(md_write_inc);
8617
md_write_end(struct mddev * mddev)8618 void md_write_end(struct mddev *mddev)
8619 {
8620 percpu_ref_put(&mddev->writes_pending);
8621
8622 if (mddev->safemode == 2)
8623 md_wakeup_thread(mddev->thread);
8624 else if (mddev->safemode_delay)
8625 /* The roundup() ensures this only performs locking once
8626 * every ->safemode_delay jiffies
8627 */
8628 mod_timer(&mddev->safemode_timer,
8629 roundup(jiffies, mddev->safemode_delay) +
8630 mddev->safemode_delay);
8631 }
8632
8633 EXPORT_SYMBOL(md_write_end);
8634
8635 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8636 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8637 struct bio *bio, sector_t start, sector_t size)
8638 {
8639 struct bio *discard_bio = NULL;
8640
8641 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8642 &discard_bio) || !discard_bio)
8643 return;
8644
8645 bio_chain(discard_bio, bio);
8646 bio_clone_blkg_association(discard_bio, bio);
8647 if (mddev->gendisk)
8648 trace_block_bio_remap(discard_bio,
8649 disk_devt(mddev->gendisk),
8650 bio->bi_iter.bi_sector);
8651 submit_bio_noacct(discard_bio);
8652 }
8653 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8654
acct_bioset_init(struct mddev * mddev)8655 int acct_bioset_init(struct mddev *mddev)
8656 {
8657 int err = 0;
8658
8659 if (!bioset_initialized(&mddev->io_acct_set))
8660 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8661 offsetof(struct md_io_acct, bio_clone), 0);
8662 return err;
8663 }
8664 EXPORT_SYMBOL_GPL(acct_bioset_init);
8665
acct_bioset_exit(struct mddev * mddev)8666 void acct_bioset_exit(struct mddev *mddev)
8667 {
8668 bioset_exit(&mddev->io_acct_set);
8669 }
8670 EXPORT_SYMBOL_GPL(acct_bioset_exit);
8671
md_end_io_acct(struct bio * bio)8672 static void md_end_io_acct(struct bio *bio)
8673 {
8674 struct md_io_acct *md_io_acct = bio->bi_private;
8675 struct bio *orig_bio = md_io_acct->orig_bio;
8676
8677 if (bio->bi_status && !orig_bio->bi_status)
8678 orig_bio->bi_status = bio->bi_status;
8679
8680 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8681 bio_put(bio);
8682 bio_endio(orig_bio);
8683 }
8684
8685 /*
8686 * Used by personalities that don't already clone the bio and thus can't
8687 * easily add the timestamp to their extended bio structure.
8688 */
md_account_bio(struct mddev * mddev,struct bio ** bio)8689 void md_account_bio(struct mddev *mddev, struct bio **bio)
8690 {
8691 struct md_io_acct *md_io_acct;
8692 struct bio *clone;
8693
8694 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8695 return;
8696
8697 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8698 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8699 md_io_acct->orig_bio = *bio;
8700 md_io_acct->start_time = bio_start_io_acct(*bio);
8701
8702 clone->bi_end_io = md_end_io_acct;
8703 clone->bi_private = md_io_acct;
8704 *bio = clone;
8705 }
8706 EXPORT_SYMBOL_GPL(md_account_bio);
8707
8708 /* md_allow_write(mddev)
8709 * Calling this ensures that the array is marked 'active' so that writes
8710 * may proceed without blocking. It is important to call this before
8711 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8712 * Must be called with mddev_lock held.
8713 */
md_allow_write(struct mddev * mddev)8714 void md_allow_write(struct mddev *mddev)
8715 {
8716 if (!mddev->pers)
8717 return;
8718 if (!md_is_rdwr(mddev))
8719 return;
8720 if (!mddev->pers->sync_request)
8721 return;
8722
8723 spin_lock(&mddev->lock);
8724 if (mddev->in_sync) {
8725 mddev->in_sync = 0;
8726 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8727 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8728 if (mddev->safemode_delay &&
8729 mddev->safemode == 0)
8730 mddev->safemode = 1;
8731 spin_unlock(&mddev->lock);
8732 md_update_sb(mddev, 0);
8733 sysfs_notify_dirent_safe(mddev->sysfs_state);
8734 /* wait for the dirty state to be recorded in the metadata */
8735 wait_event(mddev->sb_wait,
8736 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8737 } else
8738 spin_unlock(&mddev->lock);
8739 }
8740 EXPORT_SYMBOL_GPL(md_allow_write);
8741
8742 #define SYNC_MARKS 10
8743 #define SYNC_MARK_STEP (3*HZ)
8744 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8745 void md_do_sync(struct md_thread *thread)
8746 {
8747 struct mddev *mddev = thread->mddev;
8748 struct mddev *mddev2;
8749 unsigned int currspeed = 0, window;
8750 sector_t max_sectors,j, io_sectors, recovery_done;
8751 unsigned long mark[SYNC_MARKS];
8752 unsigned long update_time;
8753 sector_t mark_cnt[SYNC_MARKS];
8754 int last_mark,m;
8755 struct list_head *tmp;
8756 sector_t last_check;
8757 int skipped = 0;
8758 struct md_rdev *rdev;
8759 char *desc, *action = NULL;
8760 struct blk_plug plug;
8761 int ret;
8762
8763 /* just incase thread restarts... */
8764 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8765 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8766 return;
8767 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8768 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8769 return;
8770 }
8771
8772 if (mddev_is_clustered(mddev)) {
8773 ret = md_cluster_ops->resync_start(mddev);
8774 if (ret)
8775 goto skip;
8776
8777 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8778 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8779 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8780 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8781 && ((unsigned long long)mddev->curr_resync_completed
8782 < (unsigned long long)mddev->resync_max_sectors))
8783 goto skip;
8784 }
8785
8786 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8787 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8788 desc = "data-check";
8789 action = "check";
8790 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8791 desc = "requested-resync";
8792 action = "repair";
8793 } else
8794 desc = "resync";
8795 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8796 desc = "reshape";
8797 else
8798 desc = "recovery";
8799
8800 mddev->last_sync_action = action ?: desc;
8801
8802 /* we overload curr_resync somewhat here.
8803 * 0 == not engaged in resync at all
8804 * 2 == checking that there is no conflict with another sync
8805 * 1 == like 2, but have yielded to allow conflicting resync to
8806 * commence
8807 * other == active in resync - this many blocks
8808 *
8809 * Before starting a resync we must have set curr_resync to
8810 * 2, and then checked that every "conflicting" array has curr_resync
8811 * less than ours. When we find one that is the same or higher
8812 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8813 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8814 * This will mean we have to start checking from the beginning again.
8815 *
8816 */
8817
8818 do {
8819 int mddev2_minor = -1;
8820 mddev->curr_resync = 2;
8821
8822 try_again:
8823 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8824 goto skip;
8825 for_each_mddev(mddev2, tmp) {
8826 if (mddev2 == mddev)
8827 continue;
8828 if (!mddev->parallel_resync
8829 && mddev2->curr_resync
8830 && match_mddev_units(mddev, mddev2)) {
8831 DEFINE_WAIT(wq);
8832 if (mddev < mddev2 && mddev->curr_resync == 2) {
8833 /* arbitrarily yield */
8834 mddev->curr_resync = 1;
8835 wake_up(&resync_wait);
8836 }
8837 if (mddev > mddev2 && mddev->curr_resync == 1)
8838 /* no need to wait here, we can wait the next
8839 * time 'round when curr_resync == 2
8840 */
8841 continue;
8842 /* We need to wait 'interruptible' so as not to
8843 * contribute to the load average, and not to
8844 * be caught by 'softlockup'
8845 */
8846 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8847 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8848 mddev2->curr_resync >= mddev->curr_resync) {
8849 if (mddev2_minor != mddev2->md_minor) {
8850 mddev2_minor = mddev2->md_minor;
8851 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8852 desc, mdname(mddev),
8853 mdname(mddev2));
8854 }
8855 mddev_put(mddev2);
8856 if (signal_pending(current))
8857 flush_signals(current);
8858 schedule();
8859 finish_wait(&resync_wait, &wq);
8860 goto try_again;
8861 }
8862 finish_wait(&resync_wait, &wq);
8863 }
8864 }
8865 } while (mddev->curr_resync < 2);
8866
8867 j = 0;
8868 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8869 /* resync follows the size requested by the personality,
8870 * which defaults to physical size, but can be virtual size
8871 */
8872 max_sectors = mddev->resync_max_sectors;
8873 atomic64_set(&mddev->resync_mismatches, 0);
8874 /* we don't use the checkpoint if there's a bitmap */
8875 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8876 j = mddev->resync_min;
8877 else if (!mddev->bitmap)
8878 j = mddev->recovery_cp;
8879
8880 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8881 max_sectors = mddev->resync_max_sectors;
8882 /*
8883 * If the original node aborts reshaping then we continue the
8884 * reshaping, so set j again to avoid restart reshape from the
8885 * first beginning
8886 */
8887 if (mddev_is_clustered(mddev) &&
8888 mddev->reshape_position != MaxSector)
8889 j = mddev->reshape_position;
8890 } else {
8891 /* recovery follows the physical size of devices */
8892 max_sectors = mddev->dev_sectors;
8893 j = MaxSector;
8894 rcu_read_lock();
8895 rdev_for_each_rcu(rdev, mddev)
8896 if (rdev->raid_disk >= 0 &&
8897 !test_bit(Journal, &rdev->flags) &&
8898 !test_bit(Faulty, &rdev->flags) &&
8899 !test_bit(In_sync, &rdev->flags) &&
8900 rdev->recovery_offset < j)
8901 j = rdev->recovery_offset;
8902 rcu_read_unlock();
8903
8904 /* If there is a bitmap, we need to make sure all
8905 * writes that started before we added a spare
8906 * complete before we start doing a recovery.
8907 * Otherwise the write might complete and (via
8908 * bitmap_endwrite) set a bit in the bitmap after the
8909 * recovery has checked that bit and skipped that
8910 * region.
8911 */
8912 if (mddev->bitmap) {
8913 mddev->pers->quiesce(mddev, 1);
8914 mddev->pers->quiesce(mddev, 0);
8915 }
8916 }
8917
8918 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8919 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8920 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8921 speed_max(mddev), desc);
8922
8923 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8924
8925 io_sectors = 0;
8926 for (m = 0; m < SYNC_MARKS; m++) {
8927 mark[m] = jiffies;
8928 mark_cnt[m] = io_sectors;
8929 }
8930 last_mark = 0;
8931 mddev->resync_mark = mark[last_mark];
8932 mddev->resync_mark_cnt = mark_cnt[last_mark];
8933
8934 /*
8935 * Tune reconstruction:
8936 */
8937 window = 32 * (PAGE_SIZE / 512);
8938 pr_debug("md: using %dk window, over a total of %lluk.\n",
8939 window/2, (unsigned long long)max_sectors/2);
8940
8941 atomic_set(&mddev->recovery_active, 0);
8942 last_check = 0;
8943
8944 if (j>2) {
8945 pr_debug("md: resuming %s of %s from checkpoint.\n",
8946 desc, mdname(mddev));
8947 mddev->curr_resync = j;
8948 } else
8949 mddev->curr_resync = 3; /* no longer delayed */
8950 mddev->curr_resync_completed = j;
8951 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8952 md_new_event(mddev);
8953 update_time = jiffies;
8954
8955 blk_start_plug(&plug);
8956 while (j < max_sectors) {
8957 sector_t sectors;
8958
8959 skipped = 0;
8960
8961 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8962 ((mddev->curr_resync > mddev->curr_resync_completed &&
8963 (mddev->curr_resync - mddev->curr_resync_completed)
8964 > (max_sectors >> 4)) ||
8965 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8966 (j - mddev->curr_resync_completed)*2
8967 >= mddev->resync_max - mddev->curr_resync_completed ||
8968 mddev->curr_resync_completed > mddev->resync_max
8969 )) {
8970 /* time to update curr_resync_completed */
8971 wait_event(mddev->recovery_wait,
8972 atomic_read(&mddev->recovery_active) == 0);
8973 mddev->curr_resync_completed = j;
8974 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8975 j > mddev->recovery_cp)
8976 mddev->recovery_cp = j;
8977 update_time = jiffies;
8978 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8979 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8980 }
8981
8982 while (j >= mddev->resync_max &&
8983 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8984 /* As this condition is controlled by user-space,
8985 * we can block indefinitely, so use '_interruptible'
8986 * to avoid triggering warnings.
8987 */
8988 flush_signals(current); /* just in case */
8989 wait_event_interruptible(mddev->recovery_wait,
8990 mddev->resync_max > j
8991 || test_bit(MD_RECOVERY_INTR,
8992 &mddev->recovery));
8993 }
8994
8995 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8996 break;
8997
8998 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8999 if (sectors == 0) {
9000 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9001 break;
9002 }
9003
9004 if (!skipped) { /* actual IO requested */
9005 io_sectors += sectors;
9006 atomic_add(sectors, &mddev->recovery_active);
9007 }
9008
9009 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9010 break;
9011
9012 j += sectors;
9013 if (j > max_sectors)
9014 /* when skipping, extra large numbers can be returned. */
9015 j = max_sectors;
9016 if (j > 2)
9017 mddev->curr_resync = j;
9018 mddev->curr_mark_cnt = io_sectors;
9019 if (last_check == 0)
9020 /* this is the earliest that rebuild will be
9021 * visible in /proc/mdstat
9022 */
9023 md_new_event(mddev);
9024
9025 if (last_check + window > io_sectors || j == max_sectors)
9026 continue;
9027
9028 last_check = io_sectors;
9029 repeat:
9030 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9031 /* step marks */
9032 int next = (last_mark+1) % SYNC_MARKS;
9033
9034 mddev->resync_mark = mark[next];
9035 mddev->resync_mark_cnt = mark_cnt[next];
9036 mark[next] = jiffies;
9037 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9038 last_mark = next;
9039 }
9040
9041 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9042 break;
9043
9044 /*
9045 * this loop exits only if either when we are slower than
9046 * the 'hard' speed limit, or the system was IO-idle for
9047 * a jiffy.
9048 * the system might be non-idle CPU-wise, but we only care
9049 * about not overloading the IO subsystem. (things like an
9050 * e2fsck being done on the RAID array should execute fast)
9051 */
9052 cond_resched();
9053
9054 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9055 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9056 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9057
9058 if (currspeed > speed_min(mddev)) {
9059 if (currspeed > speed_max(mddev)) {
9060 msleep(500);
9061 goto repeat;
9062 }
9063 if (!is_mddev_idle(mddev, 0)) {
9064 /*
9065 * Give other IO more of a chance.
9066 * The faster the devices, the less we wait.
9067 */
9068 wait_event(mddev->recovery_wait,
9069 !atomic_read(&mddev->recovery_active));
9070 }
9071 }
9072 }
9073 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9074 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9075 ? "interrupted" : "done");
9076 /*
9077 * this also signals 'finished resyncing' to md_stop
9078 */
9079 blk_finish_plug(&plug);
9080 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9081
9082 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9083 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9084 mddev->curr_resync > 3) {
9085 mddev->curr_resync_completed = mddev->curr_resync;
9086 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9087 }
9088 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9089
9090 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9091 mddev->curr_resync > 3) {
9092 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9093 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9094 if (mddev->curr_resync >= mddev->recovery_cp) {
9095 pr_debug("md: checkpointing %s of %s.\n",
9096 desc, mdname(mddev));
9097 if (test_bit(MD_RECOVERY_ERROR,
9098 &mddev->recovery))
9099 mddev->recovery_cp =
9100 mddev->curr_resync_completed;
9101 else
9102 mddev->recovery_cp =
9103 mddev->curr_resync;
9104 }
9105 } else
9106 mddev->recovery_cp = MaxSector;
9107 } else {
9108 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9109 mddev->curr_resync = MaxSector;
9110 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9111 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9112 rcu_read_lock();
9113 rdev_for_each_rcu(rdev, mddev)
9114 if (rdev->raid_disk >= 0 &&
9115 mddev->delta_disks >= 0 &&
9116 !test_bit(Journal, &rdev->flags) &&
9117 !test_bit(Faulty, &rdev->flags) &&
9118 !test_bit(In_sync, &rdev->flags) &&
9119 rdev->recovery_offset < mddev->curr_resync)
9120 rdev->recovery_offset = mddev->curr_resync;
9121 rcu_read_unlock();
9122 }
9123 }
9124 }
9125 skip:
9126 /* set CHANGE_PENDING here since maybe another update is needed,
9127 * so other nodes are informed. It should be harmless for normal
9128 * raid */
9129 set_mask_bits(&mddev->sb_flags, 0,
9130 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9131
9132 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9133 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9134 mddev->delta_disks > 0 &&
9135 mddev->pers->finish_reshape &&
9136 mddev->pers->size &&
9137 mddev->queue) {
9138 mddev_lock_nointr(mddev);
9139 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9140 mddev_unlock(mddev);
9141 if (!mddev_is_clustered(mddev))
9142 set_capacity_and_notify(mddev->gendisk,
9143 mddev->array_sectors);
9144 }
9145
9146 spin_lock(&mddev->lock);
9147 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9148 /* We completed so min/max setting can be forgotten if used. */
9149 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9150 mddev->resync_min = 0;
9151 mddev->resync_max = MaxSector;
9152 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9153 mddev->resync_min = mddev->curr_resync_completed;
9154 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9155 mddev->curr_resync = 0;
9156 spin_unlock(&mddev->lock);
9157
9158 wake_up(&resync_wait);
9159 md_wakeup_thread(mddev->thread);
9160 return;
9161 }
9162 EXPORT_SYMBOL_GPL(md_do_sync);
9163
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9164 static int remove_and_add_spares(struct mddev *mddev,
9165 struct md_rdev *this)
9166 {
9167 struct md_rdev *rdev;
9168 int spares = 0;
9169 int removed = 0;
9170 bool remove_some = false;
9171
9172 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9173 /* Mustn't remove devices when resync thread is running */
9174 return 0;
9175
9176 rdev_for_each(rdev, mddev) {
9177 if ((this == NULL || rdev == this) &&
9178 rdev->raid_disk >= 0 &&
9179 !test_bit(Blocked, &rdev->flags) &&
9180 test_bit(Faulty, &rdev->flags) &&
9181 atomic_read(&rdev->nr_pending)==0) {
9182 /* Faulty non-Blocked devices with nr_pending == 0
9183 * never get nr_pending incremented,
9184 * never get Faulty cleared, and never get Blocked set.
9185 * So we can synchronize_rcu now rather than once per device
9186 */
9187 remove_some = true;
9188 set_bit(RemoveSynchronized, &rdev->flags);
9189 }
9190 }
9191
9192 if (remove_some)
9193 synchronize_rcu();
9194 rdev_for_each(rdev, mddev) {
9195 if ((this == NULL || rdev == this) &&
9196 rdev->raid_disk >= 0 &&
9197 !test_bit(Blocked, &rdev->flags) &&
9198 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9199 (!test_bit(In_sync, &rdev->flags) &&
9200 !test_bit(Journal, &rdev->flags))) &&
9201 atomic_read(&rdev->nr_pending)==0)) {
9202 if (mddev->pers->hot_remove_disk(
9203 mddev, rdev) == 0) {
9204 sysfs_unlink_rdev(mddev, rdev);
9205 rdev->saved_raid_disk = rdev->raid_disk;
9206 rdev->raid_disk = -1;
9207 removed++;
9208 }
9209 }
9210 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9211 clear_bit(RemoveSynchronized, &rdev->flags);
9212 }
9213
9214 if (removed && mddev->kobj.sd)
9215 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9216
9217 if (this && removed)
9218 goto no_add;
9219
9220 rdev_for_each(rdev, mddev) {
9221 if (this && this != rdev)
9222 continue;
9223 if (test_bit(Candidate, &rdev->flags))
9224 continue;
9225 if (rdev->raid_disk >= 0 &&
9226 !test_bit(In_sync, &rdev->flags) &&
9227 !test_bit(Journal, &rdev->flags) &&
9228 !test_bit(Faulty, &rdev->flags))
9229 spares++;
9230 if (rdev->raid_disk >= 0)
9231 continue;
9232 if (test_bit(Faulty, &rdev->flags))
9233 continue;
9234 if (!test_bit(Journal, &rdev->flags)) {
9235 if (!md_is_rdwr(mddev) &&
9236 !(rdev->saved_raid_disk >= 0 &&
9237 !test_bit(Bitmap_sync, &rdev->flags)))
9238 continue;
9239
9240 rdev->recovery_offset = 0;
9241 }
9242 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9243 /* failure here is OK */
9244 sysfs_link_rdev(mddev, rdev);
9245 if (!test_bit(Journal, &rdev->flags))
9246 spares++;
9247 md_new_event(mddev);
9248 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9249 }
9250 }
9251 no_add:
9252 if (removed)
9253 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9254 return spares;
9255 }
9256
md_start_sync(struct work_struct * ws)9257 static void md_start_sync(struct work_struct *ws)
9258 {
9259 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9260
9261 mddev->sync_thread = md_register_thread(md_do_sync,
9262 mddev,
9263 "resync");
9264 if (!mddev->sync_thread) {
9265 pr_warn("%s: could not start resync thread...\n",
9266 mdname(mddev));
9267 /* leave the spares where they are, it shouldn't hurt */
9268 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9269 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9270 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9271 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9272 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9273 wake_up(&resync_wait);
9274 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9275 &mddev->recovery))
9276 if (mddev->sysfs_action)
9277 sysfs_notify_dirent_safe(mddev->sysfs_action);
9278 } else
9279 md_wakeup_thread(mddev->sync_thread);
9280 sysfs_notify_dirent_safe(mddev->sysfs_action);
9281 md_new_event(mddev);
9282 }
9283
9284 /*
9285 * This routine is regularly called by all per-raid-array threads to
9286 * deal with generic issues like resync and super-block update.
9287 * Raid personalities that don't have a thread (linear/raid0) do not
9288 * need this as they never do any recovery or update the superblock.
9289 *
9290 * It does not do any resync itself, but rather "forks" off other threads
9291 * to do that as needed.
9292 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9293 * "->recovery" and create a thread at ->sync_thread.
9294 * When the thread finishes it sets MD_RECOVERY_DONE
9295 * and wakeups up this thread which will reap the thread and finish up.
9296 * This thread also removes any faulty devices (with nr_pending == 0).
9297 *
9298 * The overall approach is:
9299 * 1/ if the superblock needs updating, update it.
9300 * 2/ If a recovery thread is running, don't do anything else.
9301 * 3/ If recovery has finished, clean up, possibly marking spares active.
9302 * 4/ If there are any faulty devices, remove them.
9303 * 5/ If array is degraded, try to add spares devices
9304 * 6/ If array has spares or is not in-sync, start a resync thread.
9305 */
md_check_recovery(struct mddev * mddev)9306 void md_check_recovery(struct mddev *mddev)
9307 {
9308 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9309 /* Write superblock - thread that called mddev_suspend()
9310 * holds reconfig_mutex for us.
9311 */
9312 set_bit(MD_UPDATING_SB, &mddev->flags);
9313 smp_mb__after_atomic();
9314 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9315 md_update_sb(mddev, 0);
9316 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9317 wake_up(&mddev->sb_wait);
9318 }
9319
9320 if (mddev->suspended)
9321 return;
9322
9323 if (mddev->bitmap)
9324 md_bitmap_daemon_work(mddev);
9325
9326 if (signal_pending(current)) {
9327 if (mddev->pers->sync_request && !mddev->external) {
9328 pr_debug("md: %s in immediate safe mode\n",
9329 mdname(mddev));
9330 mddev->safemode = 2;
9331 }
9332 flush_signals(current);
9333 }
9334
9335 if (!md_is_rdwr(mddev) &&
9336 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9337 return;
9338 if ( ! (
9339 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9340 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9341 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9342 (mddev->external == 0 && mddev->safemode == 1) ||
9343 (mddev->safemode == 2
9344 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9345 ))
9346 return;
9347
9348 if (mddev_trylock(mddev)) {
9349 int spares = 0;
9350 bool try_set_sync = mddev->safemode != 0;
9351
9352 if (!mddev->external && mddev->safemode == 1)
9353 mddev->safemode = 0;
9354
9355 if (!md_is_rdwr(mddev)) {
9356 struct md_rdev *rdev;
9357 if (!mddev->external && mddev->in_sync)
9358 /* 'Blocked' flag not needed as failed devices
9359 * will be recorded if array switched to read/write.
9360 * Leaving it set will prevent the device
9361 * from being removed.
9362 */
9363 rdev_for_each(rdev, mddev)
9364 clear_bit(Blocked, &rdev->flags);
9365 /* On a read-only array we can:
9366 * - remove failed devices
9367 * - add already-in_sync devices if the array itself
9368 * is in-sync.
9369 * As we only add devices that are already in-sync,
9370 * we can activate the spares immediately.
9371 */
9372 remove_and_add_spares(mddev, NULL);
9373 /* There is no thread, but we need to call
9374 * ->spare_active and clear saved_raid_disk
9375 */
9376 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9377 md_reap_sync_thread(mddev);
9378 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9379 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9380 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9381 goto unlock;
9382 }
9383
9384 if (mddev_is_clustered(mddev)) {
9385 struct md_rdev *rdev, *tmp;
9386 /* kick the device if another node issued a
9387 * remove disk.
9388 */
9389 rdev_for_each_safe(rdev, tmp, mddev) {
9390 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9391 rdev->raid_disk < 0)
9392 md_kick_rdev_from_array(rdev);
9393 }
9394 }
9395
9396 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9397 spin_lock(&mddev->lock);
9398 set_in_sync(mddev);
9399 spin_unlock(&mddev->lock);
9400 }
9401
9402 if (mddev->sb_flags)
9403 md_update_sb(mddev, 0);
9404
9405 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9406 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9407 /* resync/recovery still happening */
9408 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9409 goto unlock;
9410 }
9411 if (mddev->sync_thread) {
9412 md_reap_sync_thread(mddev);
9413 goto unlock;
9414 }
9415 /* Set RUNNING before clearing NEEDED to avoid
9416 * any transients in the value of "sync_action".
9417 */
9418 mddev->curr_resync_completed = 0;
9419 spin_lock(&mddev->lock);
9420 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9421 spin_unlock(&mddev->lock);
9422 /* Clear some bits that don't mean anything, but
9423 * might be left set
9424 */
9425 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9426 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9427
9428 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9429 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9430 goto not_running;
9431 /* no recovery is running.
9432 * remove any failed drives, then
9433 * add spares if possible.
9434 * Spares are also removed and re-added, to allow
9435 * the personality to fail the re-add.
9436 */
9437
9438 if (mddev->reshape_position != MaxSector) {
9439 if (mddev->pers->check_reshape == NULL ||
9440 mddev->pers->check_reshape(mddev) != 0)
9441 /* Cannot proceed */
9442 goto not_running;
9443 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9444 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9445 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9446 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9447 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9448 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9449 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9450 } else if (mddev->recovery_cp < MaxSector) {
9451 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9452 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9453 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9454 /* nothing to be done ... */
9455 goto not_running;
9456
9457 if (mddev->pers->sync_request) {
9458 if (spares) {
9459 /* We are adding a device or devices to an array
9460 * which has the bitmap stored on all devices.
9461 * So make sure all bitmap pages get written
9462 */
9463 md_bitmap_write_all(mddev->bitmap);
9464 }
9465 INIT_WORK(&mddev->del_work, md_start_sync);
9466 queue_work(md_misc_wq, &mddev->del_work);
9467 goto unlock;
9468 }
9469 not_running:
9470 if (!mddev->sync_thread) {
9471 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9472 wake_up(&resync_wait);
9473 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9474 &mddev->recovery))
9475 if (mddev->sysfs_action)
9476 sysfs_notify_dirent_safe(mddev->sysfs_action);
9477 }
9478 unlock:
9479 wake_up(&mddev->sb_wait);
9480 mddev_unlock(mddev);
9481 }
9482 }
9483 EXPORT_SYMBOL(md_check_recovery);
9484
md_reap_sync_thread(struct mddev * mddev)9485 void md_reap_sync_thread(struct mddev *mddev)
9486 {
9487 struct md_rdev *rdev;
9488 sector_t old_dev_sectors = mddev->dev_sectors;
9489 bool is_reshaped = false;
9490
9491 /* resync has finished, collect result */
9492 md_unregister_thread(&mddev->sync_thread);
9493 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9494 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9495 mddev->degraded != mddev->raid_disks) {
9496 /* success...*/
9497 /* activate any spares */
9498 if (mddev->pers->spare_active(mddev)) {
9499 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9500 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9501 }
9502 }
9503 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9504 mddev->pers->finish_reshape) {
9505 mddev->pers->finish_reshape(mddev);
9506 if (mddev_is_clustered(mddev))
9507 is_reshaped = true;
9508 }
9509
9510 /* If array is no-longer degraded, then any saved_raid_disk
9511 * information must be scrapped.
9512 */
9513 if (!mddev->degraded)
9514 rdev_for_each(rdev, mddev)
9515 rdev->saved_raid_disk = -1;
9516
9517 md_update_sb(mddev, 1);
9518 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9519 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9520 * clustered raid */
9521 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9522 md_cluster_ops->resync_finish(mddev);
9523 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9524 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9525 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9526 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9527 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9528 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9529 /*
9530 * We call md_cluster_ops->update_size here because sync_size could
9531 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9532 * so it is time to update size across cluster.
9533 */
9534 if (mddev_is_clustered(mddev) && is_reshaped
9535 && !test_bit(MD_CLOSING, &mddev->flags))
9536 md_cluster_ops->update_size(mddev, old_dev_sectors);
9537 wake_up(&resync_wait);
9538 /* flag recovery needed just to double check */
9539 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9540 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9541 sysfs_notify_dirent_safe(mddev->sysfs_action);
9542 md_new_event(mddev);
9543 if (mddev->event_work.func)
9544 queue_work(md_misc_wq, &mddev->event_work);
9545 }
9546 EXPORT_SYMBOL(md_reap_sync_thread);
9547
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9548 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9549 {
9550 sysfs_notify_dirent_safe(rdev->sysfs_state);
9551 wait_event_timeout(rdev->blocked_wait,
9552 !test_bit(Blocked, &rdev->flags) &&
9553 !test_bit(BlockedBadBlocks, &rdev->flags),
9554 msecs_to_jiffies(5000));
9555 rdev_dec_pending(rdev, mddev);
9556 }
9557 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9558
md_finish_reshape(struct mddev * mddev)9559 void md_finish_reshape(struct mddev *mddev)
9560 {
9561 /* called be personality module when reshape completes. */
9562 struct md_rdev *rdev;
9563
9564 rdev_for_each(rdev, mddev) {
9565 if (rdev->data_offset > rdev->new_data_offset)
9566 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9567 else
9568 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9569 rdev->data_offset = rdev->new_data_offset;
9570 }
9571 }
9572 EXPORT_SYMBOL(md_finish_reshape);
9573
9574 /* Bad block management */
9575
9576 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9577 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9578 int is_new)
9579 {
9580 struct mddev *mddev = rdev->mddev;
9581 int rv;
9582 if (is_new)
9583 s += rdev->new_data_offset;
9584 else
9585 s += rdev->data_offset;
9586 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9587 if (rv == 0) {
9588 /* Make sure they get written out promptly */
9589 if (test_bit(ExternalBbl, &rdev->flags))
9590 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9591 sysfs_notify_dirent_safe(rdev->sysfs_state);
9592 set_mask_bits(&mddev->sb_flags, 0,
9593 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9594 md_wakeup_thread(rdev->mddev->thread);
9595 return 1;
9596 } else
9597 return 0;
9598 }
9599 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9600
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9601 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9602 int is_new)
9603 {
9604 int rv;
9605 if (is_new)
9606 s += rdev->new_data_offset;
9607 else
9608 s += rdev->data_offset;
9609 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9610 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9611 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9612 return rv;
9613 }
9614 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9615
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9616 static int md_notify_reboot(struct notifier_block *this,
9617 unsigned long code, void *x)
9618 {
9619 struct list_head *tmp;
9620 struct mddev *mddev;
9621 int need_delay = 0;
9622
9623 for_each_mddev(mddev, tmp) {
9624 if (mddev_trylock(mddev)) {
9625 if (mddev->pers)
9626 __md_stop_writes(mddev);
9627 if (mddev->persistent)
9628 mddev->safemode = 2;
9629 mddev_unlock(mddev);
9630 }
9631 need_delay = 1;
9632 }
9633 /*
9634 * certain more exotic SCSI devices are known to be
9635 * volatile wrt too early system reboots. While the
9636 * right place to handle this issue is the given
9637 * driver, we do want to have a safe RAID driver ...
9638 */
9639 if (need_delay)
9640 mdelay(1000*1);
9641
9642 return NOTIFY_DONE;
9643 }
9644
9645 static struct notifier_block md_notifier = {
9646 .notifier_call = md_notify_reboot,
9647 .next = NULL,
9648 .priority = INT_MAX, /* before any real devices */
9649 };
9650
md_geninit(void)9651 static void md_geninit(void)
9652 {
9653 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9654
9655 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9656 }
9657
md_init(void)9658 static int __init md_init(void)
9659 {
9660 int ret = -ENOMEM;
9661
9662 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9663 if (!md_wq)
9664 goto err_wq;
9665
9666 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9667 if (!md_misc_wq)
9668 goto err_misc_wq;
9669
9670 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9671 if (!md_rdev_misc_wq)
9672 goto err_rdev_misc_wq;
9673
9674 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9675 if (ret < 0)
9676 goto err_md;
9677
9678 ret = __register_blkdev(0, "mdp", md_probe);
9679 if (ret < 0)
9680 goto err_mdp;
9681 mdp_major = ret;
9682
9683 register_reboot_notifier(&md_notifier);
9684 raid_table_header = register_sysctl_table(raid_root_table);
9685
9686 md_geninit();
9687 return 0;
9688
9689 err_mdp:
9690 unregister_blkdev(MD_MAJOR, "md");
9691 err_md:
9692 destroy_workqueue(md_rdev_misc_wq);
9693 err_rdev_misc_wq:
9694 destroy_workqueue(md_misc_wq);
9695 err_misc_wq:
9696 destroy_workqueue(md_wq);
9697 err_wq:
9698 return ret;
9699 }
9700
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9701 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9702 {
9703 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9704 struct md_rdev *rdev2, *tmp;
9705 int role, ret;
9706 char b[BDEVNAME_SIZE];
9707
9708 /*
9709 * If size is changed in another node then we need to
9710 * do resize as well.
9711 */
9712 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9713 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9714 if (ret)
9715 pr_info("md-cluster: resize failed\n");
9716 else
9717 md_bitmap_update_sb(mddev->bitmap);
9718 }
9719
9720 /* Check for change of roles in the active devices */
9721 rdev_for_each_safe(rdev2, tmp, mddev) {
9722 if (test_bit(Faulty, &rdev2->flags))
9723 continue;
9724
9725 /* Check if the roles changed */
9726 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9727
9728 if (test_bit(Candidate, &rdev2->flags)) {
9729 if (role == 0xfffe) {
9730 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9731 md_kick_rdev_from_array(rdev2);
9732 continue;
9733 }
9734 else
9735 clear_bit(Candidate, &rdev2->flags);
9736 }
9737
9738 if (role != rdev2->raid_disk) {
9739 /*
9740 * got activated except reshape is happening.
9741 */
9742 if (rdev2->raid_disk == -1 && role != 0xffff &&
9743 !(le32_to_cpu(sb->feature_map) &
9744 MD_FEATURE_RESHAPE_ACTIVE)) {
9745 rdev2->saved_raid_disk = role;
9746 ret = remove_and_add_spares(mddev, rdev2);
9747 pr_info("Activated spare: %s\n",
9748 bdevname(rdev2->bdev,b));
9749 /* wakeup mddev->thread here, so array could
9750 * perform resync with the new activated disk */
9751 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9752 md_wakeup_thread(mddev->thread);
9753 }
9754 /* device faulty
9755 * We just want to do the minimum to mark the disk
9756 * as faulty. The recovery is performed by the
9757 * one who initiated the error.
9758 */
9759 if ((role == 0xfffe) || (role == 0xfffd)) {
9760 md_error(mddev, rdev2);
9761 clear_bit(Blocked, &rdev2->flags);
9762 }
9763 }
9764 }
9765
9766 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9767 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9768 if (ret)
9769 pr_warn("md: updating array disks failed. %d\n", ret);
9770 }
9771
9772 /*
9773 * Since mddev->delta_disks has already updated in update_raid_disks,
9774 * so it is time to check reshape.
9775 */
9776 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9777 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9778 /*
9779 * reshape is happening in the remote node, we need to
9780 * update reshape_position and call start_reshape.
9781 */
9782 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9783 if (mddev->pers->update_reshape_pos)
9784 mddev->pers->update_reshape_pos(mddev);
9785 if (mddev->pers->start_reshape)
9786 mddev->pers->start_reshape(mddev);
9787 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9788 mddev->reshape_position != MaxSector &&
9789 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9790 /* reshape is just done in another node. */
9791 mddev->reshape_position = MaxSector;
9792 if (mddev->pers->update_reshape_pos)
9793 mddev->pers->update_reshape_pos(mddev);
9794 }
9795
9796 /* Finally set the event to be up to date */
9797 mddev->events = le64_to_cpu(sb->events);
9798 }
9799
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9800 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9801 {
9802 int err;
9803 struct page *swapout = rdev->sb_page;
9804 struct mdp_superblock_1 *sb;
9805
9806 /* Store the sb page of the rdev in the swapout temporary
9807 * variable in case we err in the future
9808 */
9809 rdev->sb_page = NULL;
9810 err = alloc_disk_sb(rdev);
9811 if (err == 0) {
9812 ClearPageUptodate(rdev->sb_page);
9813 rdev->sb_loaded = 0;
9814 err = super_types[mddev->major_version].
9815 load_super(rdev, NULL, mddev->minor_version);
9816 }
9817 if (err < 0) {
9818 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9819 __func__, __LINE__, rdev->desc_nr, err);
9820 if (rdev->sb_page)
9821 put_page(rdev->sb_page);
9822 rdev->sb_page = swapout;
9823 rdev->sb_loaded = 1;
9824 return err;
9825 }
9826
9827 sb = page_address(rdev->sb_page);
9828 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9829 * is not set
9830 */
9831
9832 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9833 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9834
9835 /* The other node finished recovery, call spare_active to set
9836 * device In_sync and mddev->degraded
9837 */
9838 if (rdev->recovery_offset == MaxSector &&
9839 !test_bit(In_sync, &rdev->flags) &&
9840 mddev->pers->spare_active(mddev))
9841 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9842
9843 put_page(swapout);
9844 return 0;
9845 }
9846
md_reload_sb(struct mddev * mddev,int nr)9847 void md_reload_sb(struct mddev *mddev, int nr)
9848 {
9849 struct md_rdev *rdev = NULL, *iter;
9850 int err;
9851
9852 /* Find the rdev */
9853 rdev_for_each_rcu(iter, mddev) {
9854 if (iter->desc_nr == nr) {
9855 rdev = iter;
9856 break;
9857 }
9858 }
9859
9860 if (!rdev) {
9861 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9862 return;
9863 }
9864
9865 err = read_rdev(mddev, rdev);
9866 if (err < 0)
9867 return;
9868
9869 check_sb_changes(mddev, rdev);
9870
9871 /* Read all rdev's to update recovery_offset */
9872 rdev_for_each_rcu(rdev, mddev) {
9873 if (!test_bit(Faulty, &rdev->flags))
9874 read_rdev(mddev, rdev);
9875 }
9876 }
9877 EXPORT_SYMBOL(md_reload_sb);
9878
9879 #ifndef MODULE
9880
9881 /*
9882 * Searches all registered partitions for autorun RAID arrays
9883 * at boot time.
9884 */
9885
9886 static DEFINE_MUTEX(detected_devices_mutex);
9887 static LIST_HEAD(all_detected_devices);
9888 struct detected_devices_node {
9889 struct list_head list;
9890 dev_t dev;
9891 };
9892
md_autodetect_dev(dev_t dev)9893 void md_autodetect_dev(dev_t dev)
9894 {
9895 struct detected_devices_node *node_detected_dev;
9896
9897 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9898 if (node_detected_dev) {
9899 node_detected_dev->dev = dev;
9900 mutex_lock(&detected_devices_mutex);
9901 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9902 mutex_unlock(&detected_devices_mutex);
9903 }
9904 }
9905
md_autostart_arrays(int part)9906 void md_autostart_arrays(int part)
9907 {
9908 struct md_rdev *rdev;
9909 struct detected_devices_node *node_detected_dev;
9910 dev_t dev;
9911 int i_scanned, i_passed;
9912
9913 i_scanned = 0;
9914 i_passed = 0;
9915
9916 pr_info("md: Autodetecting RAID arrays.\n");
9917
9918 mutex_lock(&detected_devices_mutex);
9919 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9920 i_scanned++;
9921 node_detected_dev = list_entry(all_detected_devices.next,
9922 struct detected_devices_node, list);
9923 list_del(&node_detected_dev->list);
9924 dev = node_detected_dev->dev;
9925 kfree(node_detected_dev);
9926 mutex_unlock(&detected_devices_mutex);
9927 rdev = md_import_device(dev,0, 90);
9928 mutex_lock(&detected_devices_mutex);
9929 if (IS_ERR(rdev))
9930 continue;
9931
9932 if (test_bit(Faulty, &rdev->flags))
9933 continue;
9934
9935 set_bit(AutoDetected, &rdev->flags);
9936 list_add(&rdev->same_set, &pending_raid_disks);
9937 i_passed++;
9938 }
9939 mutex_unlock(&detected_devices_mutex);
9940
9941 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9942
9943 autorun_devices(part);
9944 }
9945
9946 #endif /* !MODULE */
9947
md_exit(void)9948 static __exit void md_exit(void)
9949 {
9950 struct mddev *mddev;
9951 struct list_head *tmp;
9952 int delay = 1;
9953
9954 unregister_blkdev(MD_MAJOR,"md");
9955 unregister_blkdev(mdp_major, "mdp");
9956 unregister_reboot_notifier(&md_notifier);
9957 unregister_sysctl_table(raid_table_header);
9958
9959 /* We cannot unload the modules while some process is
9960 * waiting for us in select() or poll() - wake them up
9961 */
9962 md_unloading = 1;
9963 while (waitqueue_active(&md_event_waiters)) {
9964 /* not safe to leave yet */
9965 wake_up(&md_event_waiters);
9966 msleep(delay);
9967 delay += delay;
9968 }
9969 remove_proc_entry("mdstat", NULL);
9970
9971 for_each_mddev(mddev, tmp) {
9972 export_array(mddev);
9973 mddev->ctime = 0;
9974 mddev->hold_active = 0;
9975 /*
9976 * for_each_mddev() will call mddev_put() at the end of each
9977 * iteration. As the mddev is now fully clear, this will
9978 * schedule the mddev for destruction by a workqueue, and the
9979 * destroy_workqueue() below will wait for that to complete.
9980 */
9981 }
9982 destroy_workqueue(md_rdev_misc_wq);
9983 destroy_workqueue(md_misc_wq);
9984 destroy_workqueue(md_wq);
9985 }
9986
9987 subsys_initcall(md_init);
module_exit(md_exit)9988 module_exit(md_exit)
9989
9990 static int get_ro(char *buffer, const struct kernel_param *kp)
9991 {
9992 return sprintf(buffer, "%d\n", start_readonly);
9993 }
set_ro(const char * val,const struct kernel_param * kp)9994 static int set_ro(const char *val, const struct kernel_param *kp)
9995 {
9996 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9997 }
9998
9999 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10000 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10001 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10002 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10003
10004 MODULE_LICENSE("GPL");
10005 MODULE_DESCRIPTION("MD RAID framework");
10006 MODULE_ALIAS("md");
10007 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10008