• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 #include <trace/hooks/mm.h>
74 
75 #include <trace/hooks/cgroup.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 EXPORT_SYMBOL_GPL(root_mem_cgroup);
82 
83 /* Active memory cgroup to use from an interrupt context */
84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
86 
87 /* Socket memory accounting disabled? */
88 static bool cgroup_memory_nosocket __ro_after_init;
89 
90 /* Kernel memory accounting disabled? */
91 bool cgroup_memory_nokmem __ro_after_init;
92 
93 /* Whether the swap controller is active */
94 #ifdef CONFIG_MEMCG_SWAP
95 bool cgroup_memory_noswap __ro_after_init;
96 #else
97 #define cgroup_memory_noswap		1
98 #endif
99 
100 #ifdef CONFIG_CGROUP_WRITEBACK
101 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
102 #endif
103 
104 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)105 static bool do_memsw_account(void)
106 {
107 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
108 }
109 
110 #define THRESHOLDS_EVENTS_TARGET 128
111 #define SOFTLIMIT_EVENTS_TARGET 1024
112 
113 /*
114  * Cgroups above their limits are maintained in a RB-Tree, independent of
115  * their hierarchy representation
116  */
117 
118 struct mem_cgroup_tree_per_node {
119 	struct rb_root rb_root;
120 	struct rb_node *rb_rightmost;
121 	spinlock_t lock;
122 };
123 
124 struct mem_cgroup_tree {
125 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126 };
127 
128 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129 
130 /* for OOM */
131 struct mem_cgroup_eventfd_list {
132 	struct list_head list;
133 	struct eventfd_ctx *eventfd;
134 };
135 
136 /*
137  * cgroup_event represents events which userspace want to receive.
138  */
139 struct mem_cgroup_event {
140 	/*
141 	 * memcg which the event belongs to.
142 	 */
143 	struct mem_cgroup *memcg;
144 	/*
145 	 * eventfd to signal userspace about the event.
146 	 */
147 	struct eventfd_ctx *eventfd;
148 	/*
149 	 * Each of these stored in a list by the cgroup.
150 	 */
151 	struct list_head list;
152 	/*
153 	 * register_event() callback will be used to add new userspace
154 	 * waiter for changes related to this event.  Use eventfd_signal()
155 	 * on eventfd to send notification to userspace.
156 	 */
157 	int (*register_event)(struct mem_cgroup *memcg,
158 			      struct eventfd_ctx *eventfd, const char *args);
159 	/*
160 	 * unregister_event() callback will be called when userspace closes
161 	 * the eventfd or on cgroup removing.  This callback must be set,
162 	 * if you want provide notification functionality.
163 	 */
164 	void (*unregister_event)(struct mem_cgroup *memcg,
165 				 struct eventfd_ctx *eventfd);
166 	/*
167 	 * All fields below needed to unregister event when
168 	 * userspace closes eventfd.
169 	 */
170 	poll_table pt;
171 	wait_queue_head_t *wqh;
172 	wait_queue_entry_t wait;
173 	struct work_struct remove;
174 };
175 
176 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178 
179 /* Stuffs for move charges at task migration. */
180 /*
181  * Types of charges to be moved.
182  */
183 #define MOVE_ANON	0x1U
184 #define MOVE_FILE	0x2U
185 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
186 
187 /* "mc" and its members are protected by cgroup_mutex */
188 static struct move_charge_struct {
189 	spinlock_t	  lock; /* for from, to */
190 	struct mm_struct  *mm;
191 	struct mem_cgroup *from;
192 	struct mem_cgroup *to;
193 	unsigned long flags;
194 	unsigned long precharge;
195 	unsigned long moved_charge;
196 	unsigned long moved_swap;
197 	struct task_struct *moving_task;	/* a task moving charges */
198 	wait_queue_head_t waitq;		/* a waitq for other context */
199 } mc = {
200 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202 };
203 
204 /*
205  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206  * limit reclaim to prevent infinite loops, if they ever occur.
207  */
208 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
209 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
210 
211 /* for encoding cft->private value on file */
212 enum res_type {
213 	_MEM,
214 	_MEMSWAP,
215 	_OOM_TYPE,
216 	_KMEM,
217 	_TCP,
218 };
219 
220 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
221 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
222 #define MEMFILE_ATTR(val)	((val) & 0xffff)
223 /* Used for OOM notifier */
224 #define OOM_CONTROL		(0)
225 
226 /*
227  * Iteration constructs for visiting all cgroups (under a tree).  If
228  * loops are exited prematurely (break), mem_cgroup_iter_break() must
229  * be used for reference counting.
230  */
231 #define for_each_mem_cgroup_tree(iter, root)		\
232 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(root, iter, NULL))
235 
236 #define for_each_mem_cgroup(iter)			\
237 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
238 	     iter != NULL;				\
239 	     iter = mem_cgroup_iter(NULL, iter, NULL))
240 
task_is_dying(void)241 static inline bool task_is_dying(void)
242 {
243 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
244 		(current->flags & PF_EXITING);
245 }
246 
247 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)248 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 {
250 	if (!memcg)
251 		memcg = root_mem_cgroup;
252 	return &memcg->vmpressure;
253 }
254 
vmpressure_to_memcg(struct vmpressure * vmpr)255 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
256 {
257 	return container_of(vmpr, struct mem_cgroup, vmpressure);
258 }
259 
260 #ifdef CONFIG_MEMCG_KMEM
261 static DEFINE_SPINLOCK(objcg_lock);
262 
mem_cgroup_kmem_disabled(void)263 bool mem_cgroup_kmem_disabled(void)
264 {
265 	return cgroup_memory_nokmem;
266 }
267 
268 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
269 				      unsigned int nr_pages);
270 
obj_cgroup_release(struct percpu_ref * ref)271 static void obj_cgroup_release(struct percpu_ref *ref)
272 {
273 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
274 	unsigned int nr_bytes;
275 	unsigned int nr_pages;
276 	unsigned long flags;
277 
278 	/*
279 	 * At this point all allocated objects are freed, and
280 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
281 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
282 	 *
283 	 * The following sequence can lead to it:
284 	 * 1) CPU0: objcg == stock->cached_objcg
285 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
286 	 *          PAGE_SIZE bytes are charged
287 	 * 3) CPU1: a process from another memcg is allocating something,
288 	 *          the stock if flushed,
289 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
290 	 * 5) CPU0: we do release this object,
291 	 *          92 bytes are added to stock->nr_bytes
292 	 * 6) CPU0: stock is flushed,
293 	 *          92 bytes are added to objcg->nr_charged_bytes
294 	 *
295 	 * In the result, nr_charged_bytes == PAGE_SIZE.
296 	 * This page will be uncharged in obj_cgroup_release().
297 	 */
298 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
299 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
300 	nr_pages = nr_bytes >> PAGE_SHIFT;
301 
302 	if (nr_pages)
303 		obj_cgroup_uncharge_pages(objcg, nr_pages);
304 
305 	spin_lock_irqsave(&objcg_lock, flags);
306 	list_del(&objcg->list);
307 	spin_unlock_irqrestore(&objcg_lock, flags);
308 
309 	percpu_ref_exit(ref);
310 	kfree_rcu(objcg, rcu);
311 }
312 
obj_cgroup_alloc(void)313 static struct obj_cgroup *obj_cgroup_alloc(void)
314 {
315 	struct obj_cgroup *objcg;
316 	int ret;
317 
318 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
319 	if (!objcg)
320 		return NULL;
321 
322 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
323 			      GFP_KERNEL);
324 	if (ret) {
325 		kfree(objcg);
326 		return NULL;
327 	}
328 	INIT_LIST_HEAD(&objcg->list);
329 	return objcg;
330 }
331 
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)332 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
333 				  struct mem_cgroup *parent)
334 {
335 	struct obj_cgroup *objcg, *iter;
336 
337 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
338 
339 	spin_lock_irq(&objcg_lock);
340 
341 	/* 1) Ready to reparent active objcg. */
342 	list_add(&objcg->list, &memcg->objcg_list);
343 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
344 	list_for_each_entry(iter, &memcg->objcg_list, list)
345 		WRITE_ONCE(iter->memcg, parent);
346 	/* 3) Move already reparented objcgs to the parent's list */
347 	list_splice(&memcg->objcg_list, &parent->objcg_list);
348 
349 	spin_unlock_irq(&objcg_lock);
350 
351 	percpu_ref_kill(&objcg->refcnt);
352 }
353 
354 /*
355  * This will be used as a shrinker list's index.
356  * The main reason for not using cgroup id for this:
357  *  this works better in sparse environments, where we have a lot of memcgs,
358  *  but only a few kmem-limited. Or also, if we have, for instance, 200
359  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
360  *  200 entry array for that.
361  *
362  * The current size of the caches array is stored in memcg_nr_cache_ids. It
363  * will double each time we have to increase it.
364  */
365 static DEFINE_IDA(memcg_cache_ida);
366 int memcg_nr_cache_ids;
367 
368 /* Protects memcg_nr_cache_ids */
369 static DECLARE_RWSEM(memcg_cache_ids_sem);
370 
memcg_get_cache_ids(void)371 void memcg_get_cache_ids(void)
372 {
373 	down_read(&memcg_cache_ids_sem);
374 }
375 
memcg_put_cache_ids(void)376 void memcg_put_cache_ids(void)
377 {
378 	up_read(&memcg_cache_ids_sem);
379 }
380 
381 /*
382  * MIN_SIZE is different than 1, because we would like to avoid going through
383  * the alloc/free process all the time. In a small machine, 4 kmem-limited
384  * cgroups is a reasonable guess. In the future, it could be a parameter or
385  * tunable, but that is strictly not necessary.
386  *
387  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
388  * this constant directly from cgroup, but it is understandable that this is
389  * better kept as an internal representation in cgroup.c. In any case, the
390  * cgrp_id space is not getting any smaller, and we don't have to necessarily
391  * increase ours as well if it increases.
392  */
393 #define MEMCG_CACHES_MIN_SIZE 4
394 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
395 
396 /*
397  * A lot of the calls to the cache allocation functions are expected to be
398  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
399  * conditional to this static branch, we'll have to allow modules that does
400  * kmem_cache_alloc and the such to see this symbol as well
401  */
402 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
403 EXPORT_SYMBOL(memcg_kmem_enabled_key);
404 #endif
405 
406 /**
407  * mem_cgroup_css_from_page - css of the memcg associated with a page
408  * @page: page of interest
409  *
410  * If memcg is bound to the default hierarchy, css of the memcg associated
411  * with @page is returned.  The returned css remains associated with @page
412  * until it is released.
413  *
414  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
415  * is returned.
416  */
mem_cgroup_css_from_page(struct page * page)417 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
418 {
419 	struct mem_cgroup *memcg;
420 
421 	memcg = page_memcg(page);
422 
423 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
424 		memcg = root_mem_cgroup;
425 
426 	return &memcg->css;
427 }
428 
429 /**
430  * page_cgroup_ino - return inode number of the memcg a page is charged to
431  * @page: the page
432  *
433  * Look up the closest online ancestor of the memory cgroup @page is charged to
434  * and return its inode number or 0 if @page is not charged to any cgroup. It
435  * is safe to call this function without holding a reference to @page.
436  *
437  * Note, this function is inherently racy, because there is nothing to prevent
438  * the cgroup inode from getting torn down and potentially reallocated a moment
439  * after page_cgroup_ino() returns, so it only should be used by callers that
440  * do not care (such as procfs interfaces).
441  */
page_cgroup_ino(struct page * page)442 ino_t page_cgroup_ino(struct page *page)
443 {
444 	struct mem_cgroup *memcg;
445 	unsigned long ino = 0;
446 
447 	rcu_read_lock();
448 	memcg = page_memcg_check(page);
449 
450 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
451 		memcg = parent_mem_cgroup(memcg);
452 	if (memcg)
453 		ino = cgroup_ino(memcg->css.cgroup);
454 	rcu_read_unlock();
455 	return ino;
456 }
457 
458 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)459 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
460 {
461 	int nid = page_to_nid(page);
462 
463 	return memcg->nodeinfo[nid];
464 }
465 
466 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)467 soft_limit_tree_node(int nid)
468 {
469 	return soft_limit_tree.rb_tree_per_node[nid];
470 }
471 
472 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)473 soft_limit_tree_from_page(struct page *page)
474 {
475 	int nid = page_to_nid(page);
476 
477 	return soft_limit_tree.rb_tree_per_node[nid];
478 }
479 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)480 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
481 					 struct mem_cgroup_tree_per_node *mctz,
482 					 unsigned long new_usage_in_excess)
483 {
484 	struct rb_node **p = &mctz->rb_root.rb_node;
485 	struct rb_node *parent = NULL;
486 	struct mem_cgroup_per_node *mz_node;
487 	bool rightmost = true;
488 
489 	if (mz->on_tree)
490 		return;
491 
492 	mz->usage_in_excess = new_usage_in_excess;
493 	if (!mz->usage_in_excess)
494 		return;
495 	while (*p) {
496 		parent = *p;
497 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
498 					tree_node);
499 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
500 			p = &(*p)->rb_left;
501 			rightmost = false;
502 		} else {
503 			p = &(*p)->rb_right;
504 		}
505 	}
506 
507 	if (rightmost)
508 		mctz->rb_rightmost = &mz->tree_node;
509 
510 	rb_link_node(&mz->tree_node, parent, p);
511 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
512 	mz->on_tree = true;
513 }
514 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)515 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
516 					 struct mem_cgroup_tree_per_node *mctz)
517 {
518 	if (!mz->on_tree)
519 		return;
520 
521 	if (&mz->tree_node == mctz->rb_rightmost)
522 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
523 
524 	rb_erase(&mz->tree_node, &mctz->rb_root);
525 	mz->on_tree = false;
526 }
527 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)528 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
529 				       struct mem_cgroup_tree_per_node *mctz)
530 {
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&mctz->lock, flags);
534 	__mem_cgroup_remove_exceeded(mz, mctz);
535 	spin_unlock_irqrestore(&mctz->lock, flags);
536 }
537 
soft_limit_excess(struct mem_cgroup * memcg)538 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
539 {
540 	unsigned long nr_pages = page_counter_read(&memcg->memory);
541 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
542 	unsigned long excess = 0;
543 
544 	if (nr_pages > soft_limit)
545 		excess = nr_pages - soft_limit;
546 
547 	return excess;
548 }
549 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 	unsigned long excess;
553 	struct mem_cgroup_per_node *mz;
554 	struct mem_cgroup_tree_per_node *mctz;
555 
556 	mctz = soft_limit_tree_from_page(page);
557 	if (!mctz)
558 		return;
559 	/*
560 	 * Necessary to update all ancestors when hierarchy is used.
561 	 * because their event counter is not touched.
562 	 */
563 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 		mz = mem_cgroup_page_nodeinfo(memcg, page);
565 		excess = soft_limit_excess(memcg);
566 		/*
567 		 * We have to update the tree if mz is on RB-tree or
568 		 * mem is over its softlimit.
569 		 */
570 		if (excess || mz->on_tree) {
571 			unsigned long flags;
572 
573 			spin_lock_irqsave(&mctz->lock, flags);
574 			/* if on-tree, remove it */
575 			if (mz->on_tree)
576 				__mem_cgroup_remove_exceeded(mz, mctz);
577 			/*
578 			 * Insert again. mz->usage_in_excess will be updated.
579 			 * If excess is 0, no tree ops.
580 			 */
581 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
582 			spin_unlock_irqrestore(&mctz->lock, flags);
583 		}
584 	}
585 }
586 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)587 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
588 {
589 	struct mem_cgroup_tree_per_node *mctz;
590 	struct mem_cgroup_per_node *mz;
591 	int nid;
592 
593 	for_each_node(nid) {
594 		mz = memcg->nodeinfo[nid];
595 		mctz = soft_limit_tree_node(nid);
596 		if (mctz)
597 			mem_cgroup_remove_exceeded(mz, mctz);
598 	}
599 }
600 
601 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)602 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
603 {
604 	struct mem_cgroup_per_node *mz;
605 
606 retry:
607 	mz = NULL;
608 	if (!mctz->rb_rightmost)
609 		goto done;		/* Nothing to reclaim from */
610 
611 	mz = rb_entry(mctz->rb_rightmost,
612 		      struct mem_cgroup_per_node, tree_node);
613 	/*
614 	 * Remove the node now but someone else can add it back,
615 	 * we will to add it back at the end of reclaim to its correct
616 	 * position in the tree.
617 	 */
618 	__mem_cgroup_remove_exceeded(mz, mctz);
619 	if (!soft_limit_excess(mz->memcg) ||
620 	    !css_tryget(&mz->memcg->css))
621 		goto retry;
622 done:
623 	return mz;
624 }
625 
626 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
628 {
629 	struct mem_cgroup_per_node *mz;
630 
631 	spin_lock_irq(&mctz->lock);
632 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 	spin_unlock_irq(&mctz->lock);
634 	return mz;
635 }
636 
637 /*
638  * memcg and lruvec stats flushing
639  *
640  * Many codepaths leading to stats update or read are performance sensitive and
641  * adding stats flushing in such codepaths is not desirable. So, to optimize the
642  * flushing the kernel does:
643  *
644  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
645  *    rstat update tree grow unbounded.
646  *
647  * 2) Flush the stats synchronously on reader side only when there are more than
648  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
649  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
650  *    only for 2 seconds due to (1).
651  */
652 static void flush_memcg_stats_dwork(struct work_struct *w);
653 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
654 static DEFINE_SPINLOCK(stats_flush_lock);
655 static DEFINE_PER_CPU(unsigned int, stats_updates);
656 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
657 static u64 flush_next_time;
658 
659 #define FLUSH_TIME (2UL*HZ)
660 
memcg_rstat_updated(struct mem_cgroup * memcg,int val)661 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
662 {
663 	unsigned int x;
664 
665 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
666 
667 	x = __this_cpu_add_return(stats_updates, abs(val));
668 	if (x > MEMCG_CHARGE_BATCH) {
669 		atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
670 		__this_cpu_write(stats_updates, 0);
671 	}
672 }
673 
__mem_cgroup_flush_stats(void)674 static void __mem_cgroup_flush_stats(void)
675 {
676 	unsigned long flag;
677 
678 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
679 		return;
680 
681 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
682 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
683 	atomic_set(&stats_flush_threshold, 0);
684 	spin_unlock_irqrestore(&stats_flush_lock, flag);
685 }
686 
mem_cgroup_flush_stats(void)687 void mem_cgroup_flush_stats(void)
688 {
689 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
690 		__mem_cgroup_flush_stats();
691 }
692 
mem_cgroup_flush_stats_delayed(void)693 void mem_cgroup_flush_stats_delayed(void)
694 {
695 	if (time_after64(jiffies_64, flush_next_time))
696 		mem_cgroup_flush_stats();
697 }
698 
flush_memcg_stats_dwork(struct work_struct * w)699 static void flush_memcg_stats_dwork(struct work_struct *w)
700 {
701 	__mem_cgroup_flush_stats();
702 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
703 }
704 
705 /**
706  * __mod_memcg_state - update cgroup memory statistics
707  * @memcg: the memory cgroup
708  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
709  * @val: delta to add to the counter, can be negative
710  */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)711 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
712 {
713 	if (mem_cgroup_disabled())
714 		return;
715 
716 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
717 	memcg_rstat_updated(memcg, val);
718 }
719 
720 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)721 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
722 {
723 	long x = 0;
724 	int cpu;
725 
726 	for_each_possible_cpu(cpu)
727 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
728 #ifdef CONFIG_SMP
729 	if (x < 0)
730 		x = 0;
731 #endif
732 	return x;
733 }
734 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)735 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 			      int val)
737 {
738 	struct mem_cgroup_per_node *pn;
739 	struct mem_cgroup *memcg;
740 
741 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
742 	memcg = pn->memcg;
743 
744 	/* Update memcg */
745 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
746 
747 	/* Update lruvec */
748 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
749 
750 	memcg_rstat_updated(memcg, val);
751 }
752 
753 /**
754  * __mod_lruvec_state - update lruvec memory statistics
755  * @lruvec: the lruvec
756  * @idx: the stat item
757  * @val: delta to add to the counter, can be negative
758  *
759  * The lruvec is the intersection of the NUMA node and a cgroup. This
760  * function updates the all three counters that are affected by a
761  * change of state at this level: per-node, per-cgroup, per-lruvec.
762  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)763 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
764 			int val)
765 {
766 	/* Update node */
767 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
768 
769 	/* Update memcg and lruvec */
770 	if (!mem_cgroup_disabled())
771 		__mod_memcg_lruvec_state(lruvec, idx, val);
772 }
773 EXPORT_SYMBOL_GPL(__mod_lruvec_state);
774 
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)775 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
776 			     int val)
777 {
778 	struct page *head = compound_head(page); /* rmap on tail pages */
779 	struct mem_cgroup *memcg;
780 	pg_data_t *pgdat = page_pgdat(page);
781 	struct lruvec *lruvec;
782 
783 	rcu_read_lock();
784 	memcg = page_memcg(head);
785 	/* Untracked pages have no memcg, no lruvec. Update only the node */
786 	if (!memcg) {
787 		rcu_read_unlock();
788 		__mod_node_page_state(pgdat, idx, val);
789 		return;
790 	}
791 
792 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
793 	__mod_lruvec_state(lruvec, idx, val);
794 	rcu_read_unlock();
795 }
796 EXPORT_SYMBOL(__mod_lruvec_page_state);
797 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)798 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
799 {
800 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
801 	struct mem_cgroup *memcg;
802 	struct lruvec *lruvec;
803 
804 	rcu_read_lock();
805 	memcg = mem_cgroup_from_obj(p);
806 
807 	/*
808 	 * Untracked pages have no memcg, no lruvec. Update only the
809 	 * node. If we reparent the slab objects to the root memcg,
810 	 * when we free the slab object, we need to update the per-memcg
811 	 * vmstats to keep it correct for the root memcg.
812 	 */
813 	if (!memcg) {
814 		__mod_node_page_state(pgdat, idx, val);
815 	} else {
816 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
817 		__mod_lruvec_state(lruvec, idx, val);
818 	}
819 	rcu_read_unlock();
820 }
821 
822 /*
823  * mod_objcg_mlstate() may be called with irq enabled, so
824  * mod_memcg_lruvec_state() should be used.
825  */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)826 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
827 				     struct pglist_data *pgdat,
828 				     enum node_stat_item idx, int nr)
829 {
830 	struct mem_cgroup *memcg;
831 	struct lruvec *lruvec;
832 
833 	rcu_read_lock();
834 	memcg = obj_cgroup_memcg(objcg);
835 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
836 	mod_memcg_lruvec_state(lruvec, idx, nr);
837 	rcu_read_unlock();
838 }
839 
840 /**
841  * __count_memcg_events - account VM events in a cgroup
842  * @memcg: the memory cgroup
843  * @idx: the event item
844  * @count: the number of events that occurred
845  */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)846 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
847 			  unsigned long count)
848 {
849 	if (mem_cgroup_disabled())
850 		return;
851 
852 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
853 	memcg_rstat_updated(memcg, count);
854 }
855 
memcg_events(struct mem_cgroup * memcg,int event)856 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
857 {
858 	return READ_ONCE(memcg->vmstats.events[event]);
859 }
860 
memcg_events_local(struct mem_cgroup * memcg,int event)861 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
862 {
863 	long x = 0;
864 	int cpu;
865 
866 	for_each_possible_cpu(cpu)
867 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
868 	return x;
869 }
870 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)871 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
872 					 struct page *page,
873 					 int nr_pages)
874 {
875 	/* pagein of a big page is an event. So, ignore page size */
876 	if (nr_pages > 0)
877 		__count_memcg_events(memcg, PGPGIN, 1);
878 	else {
879 		__count_memcg_events(memcg, PGPGOUT, 1);
880 		nr_pages = -nr_pages; /* for event */
881 	}
882 
883 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
884 }
885 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)886 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
887 				       enum mem_cgroup_events_target target)
888 {
889 	unsigned long val, next;
890 
891 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
892 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
893 	/* from time_after() in jiffies.h */
894 	if ((long)(next - val) < 0) {
895 		switch (target) {
896 		case MEM_CGROUP_TARGET_THRESH:
897 			next = val + THRESHOLDS_EVENTS_TARGET;
898 			break;
899 		case MEM_CGROUP_TARGET_SOFTLIMIT:
900 			next = val + SOFTLIMIT_EVENTS_TARGET;
901 			break;
902 		default:
903 			break;
904 		}
905 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
906 		return true;
907 	}
908 	return false;
909 }
910 
911 /*
912  * Check events in order.
913  *
914  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)915 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
916 {
917 	/* threshold event is triggered in finer grain than soft limit */
918 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
919 						MEM_CGROUP_TARGET_THRESH))) {
920 		bool do_softlimit;
921 
922 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
923 						MEM_CGROUP_TARGET_SOFTLIMIT);
924 		mem_cgroup_threshold(memcg);
925 		if (unlikely(do_softlimit))
926 			mem_cgroup_update_tree(memcg, page);
927 	}
928 }
929 
mem_cgroup_from_task(struct task_struct * p)930 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
931 {
932 	/*
933 	 * mm_update_next_owner() may clear mm->owner to NULL
934 	 * if it races with swapoff, page migration, etc.
935 	 * So this can be called with p == NULL.
936 	 */
937 	if (unlikely(!p))
938 		return NULL;
939 
940 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
941 }
942 EXPORT_SYMBOL(mem_cgroup_from_task);
943 
active_memcg(void)944 static __always_inline struct mem_cgroup *active_memcg(void)
945 {
946 	if (!in_task())
947 		return this_cpu_read(int_active_memcg);
948 	else
949 		return current->active_memcg;
950 }
951 
952 /**
953  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
954  * @mm: mm from which memcg should be extracted. It can be NULL.
955  *
956  * Obtain a reference on mm->memcg and returns it if successful. If mm
957  * is NULL, then the memcg is chosen as follows:
958  * 1) The active memcg, if set.
959  * 2) current->mm->memcg, if available
960  * 3) root memcg
961  * If mem_cgroup is disabled, NULL is returned.
962  */
get_mem_cgroup_from_mm(struct mm_struct * mm)963 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
964 {
965 	struct mem_cgroup *memcg;
966 
967 	if (mem_cgroup_disabled())
968 		return NULL;
969 
970 	/*
971 	 * Page cache insertions can happen without an
972 	 * actual mm context, e.g. during disk probing
973 	 * on boot, loopback IO, acct() writes etc.
974 	 *
975 	 * No need to css_get on root memcg as the reference
976 	 * counting is disabled on the root level in the
977 	 * cgroup core. See CSS_NO_REF.
978 	 */
979 	if (unlikely(!mm)) {
980 		memcg = active_memcg();
981 		if (unlikely(memcg)) {
982 			/* remote memcg must hold a ref */
983 			css_get(&memcg->css);
984 			return memcg;
985 		}
986 		mm = current->mm;
987 		if (unlikely(!mm))
988 			return root_mem_cgroup;
989 	}
990 
991 	rcu_read_lock();
992 	do {
993 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
994 		if (unlikely(!memcg))
995 			memcg = root_mem_cgroup;
996 	} while (!css_tryget(&memcg->css));
997 	rcu_read_unlock();
998 	return memcg;
999 }
1000 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1001 
memcg_kmem_bypass(void)1002 static __always_inline bool memcg_kmem_bypass(void)
1003 {
1004 	/* Allow remote memcg charging from any context. */
1005 	if (unlikely(active_memcg()))
1006 		return false;
1007 
1008 	/* Memcg to charge can't be determined. */
1009 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1010 		return true;
1011 
1012 	return false;
1013 }
1014 
1015 /**
1016  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1017  * @root: hierarchy root
1018  * @prev: previously returned memcg, NULL on first invocation
1019  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1020  *
1021  * Returns references to children of the hierarchy below @root, or
1022  * @root itself, or %NULL after a full round-trip.
1023  *
1024  * Caller must pass the return value in @prev on subsequent
1025  * invocations for reference counting, or use mem_cgroup_iter_break()
1026  * to cancel a hierarchy walk before the round-trip is complete.
1027  *
1028  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1029  * in the hierarchy among all concurrent reclaimers operating on the
1030  * same node.
1031  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1032 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1033 				   struct mem_cgroup *prev,
1034 				   struct mem_cgroup_reclaim_cookie *reclaim)
1035 {
1036 	struct mem_cgroup_reclaim_iter *iter;
1037 	struct cgroup_subsys_state *css = NULL;
1038 	struct mem_cgroup *memcg = NULL;
1039 	struct mem_cgroup *pos = NULL;
1040 
1041 	if (mem_cgroup_disabled())
1042 		return NULL;
1043 
1044 	if (!root)
1045 		root = root_mem_cgroup;
1046 
1047 	if (prev && !reclaim)
1048 		pos = prev;
1049 
1050 	rcu_read_lock();
1051 
1052 	if (reclaim) {
1053 		struct mem_cgroup_per_node *mz;
1054 
1055 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1056 		iter = &mz->iter;
1057 
1058 		if (prev && reclaim->generation != iter->generation)
1059 			goto out_unlock;
1060 
1061 		while (1) {
1062 			pos = READ_ONCE(iter->position);
1063 			if (!pos || css_tryget(&pos->css))
1064 				break;
1065 			/*
1066 			 * css reference reached zero, so iter->position will
1067 			 * be cleared by ->css_released. However, we should not
1068 			 * rely on this happening soon, because ->css_released
1069 			 * is called from a work queue, and by busy-waiting we
1070 			 * might block it. So we clear iter->position right
1071 			 * away.
1072 			 */
1073 			(void)cmpxchg(&iter->position, pos, NULL);
1074 		}
1075 	}
1076 
1077 	if (pos)
1078 		css = &pos->css;
1079 
1080 	for (;;) {
1081 		css = css_next_descendant_pre(css, &root->css);
1082 		if (!css) {
1083 			/*
1084 			 * Reclaimers share the hierarchy walk, and a
1085 			 * new one might jump in right at the end of
1086 			 * the hierarchy - make sure they see at least
1087 			 * one group and restart from the beginning.
1088 			 */
1089 			if (!prev)
1090 				continue;
1091 			break;
1092 		}
1093 
1094 		/*
1095 		 * Verify the css and acquire a reference.  The root
1096 		 * is provided by the caller, so we know it's alive
1097 		 * and kicking, and don't take an extra reference.
1098 		 */
1099 		memcg = mem_cgroup_from_css(css);
1100 
1101 		if (css == &root->css)
1102 			break;
1103 
1104 		if (css_tryget(css))
1105 			break;
1106 
1107 		memcg = NULL;
1108 	}
1109 
1110 	if (reclaim) {
1111 		/*
1112 		 * The position could have already been updated by a competing
1113 		 * thread, so check that the value hasn't changed since we read
1114 		 * it to avoid reclaiming from the same cgroup twice.
1115 		 */
1116 		(void)cmpxchg(&iter->position, pos, memcg);
1117 
1118 		if (pos)
1119 			css_put(&pos->css);
1120 
1121 		if (!memcg)
1122 			iter->generation++;
1123 		else if (!prev)
1124 			reclaim->generation = iter->generation;
1125 	}
1126 
1127 out_unlock:
1128 	rcu_read_unlock();
1129 	if (prev && prev != root)
1130 		css_put(&prev->css);
1131 
1132 	return memcg;
1133 }
1134 
1135 /**
1136  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137  * @root: hierarchy root
1138  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1140 void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 			   struct mem_cgroup *prev)
1142 {
1143 	if (!root)
1144 		root = root_mem_cgroup;
1145 	if (prev && prev != root)
1146 		css_put(&prev->css);
1147 }
1148 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1149 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 					struct mem_cgroup *dead_memcg)
1151 {
1152 	struct mem_cgroup_reclaim_iter *iter;
1153 	struct mem_cgroup_per_node *mz;
1154 	int nid;
1155 
1156 	for_each_node(nid) {
1157 		mz = from->nodeinfo[nid];
1158 		iter = &mz->iter;
1159 		cmpxchg(&iter->position, dead_memcg, NULL);
1160 	}
1161 }
1162 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1163 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1164 {
1165 	struct mem_cgroup *memcg = dead_memcg;
1166 	struct mem_cgroup *last;
1167 
1168 	do {
1169 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1170 		last = memcg;
1171 	} while ((memcg = parent_mem_cgroup(memcg)));
1172 
1173 	/*
1174 	 * When cgruop1 non-hierarchy mode is used,
1175 	 * parent_mem_cgroup() does not walk all the way up to the
1176 	 * cgroup root (root_mem_cgroup). So we have to handle
1177 	 * dead_memcg from cgroup root separately.
1178 	 */
1179 	if (last != root_mem_cgroup)
1180 		__invalidate_reclaim_iterators(root_mem_cgroup,
1181 						dead_memcg);
1182 }
1183 
1184 /**
1185  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1186  * @memcg: hierarchy root
1187  * @fn: function to call for each task
1188  * @arg: argument passed to @fn
1189  *
1190  * This function iterates over tasks attached to @memcg or to any of its
1191  * descendants and calls @fn for each task. If @fn returns a non-zero
1192  * value, the function breaks the iteration loop and returns the value.
1193  * Otherwise, it will iterate over all tasks and return 0.
1194  *
1195  * This function must not be called for the root memory cgroup.
1196  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1197 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1198 			  int (*fn)(struct task_struct *, void *), void *arg)
1199 {
1200 	struct mem_cgroup *iter;
1201 	int ret = 0;
1202 
1203 	BUG_ON(memcg == root_mem_cgroup);
1204 
1205 	for_each_mem_cgroup_tree(iter, memcg) {
1206 		struct css_task_iter it;
1207 		struct task_struct *task;
1208 
1209 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1210 		while (!ret && (task = css_task_iter_next(&it)))
1211 			ret = fn(task, arg);
1212 		css_task_iter_end(&it);
1213 		if (ret) {
1214 			mem_cgroup_iter_break(memcg, iter);
1215 			break;
1216 		}
1217 	}
1218 	return ret;
1219 }
1220 
1221 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct page * page)1222 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1223 {
1224 	struct mem_cgroup *memcg;
1225 
1226 	if (mem_cgroup_disabled())
1227 		return;
1228 
1229 	memcg = page_memcg(page);
1230 
1231 	if (!memcg)
1232 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1233 	else
1234 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1235 }
1236 #endif
1237 
1238 /**
1239  * lock_page_lruvec - lock and return lruvec for a given page.
1240  * @page: the page
1241  *
1242  * These functions are safe to use under any of the following conditions:
1243  * - page locked
1244  * - PageLRU cleared
1245  * - lock_page_memcg()
1246  * - page->_refcount is zero
1247  */
lock_page_lruvec(struct page * page)1248 struct lruvec *lock_page_lruvec(struct page *page)
1249 {
1250 	struct lruvec *lruvec;
1251 
1252 	lruvec = mem_cgroup_page_lruvec(page);
1253 	spin_lock(&lruvec->lru_lock);
1254 
1255 	lruvec_memcg_debug(lruvec, page);
1256 
1257 	return lruvec;
1258 }
1259 
lock_page_lruvec_irq(struct page * page)1260 struct lruvec *lock_page_lruvec_irq(struct page *page)
1261 {
1262 	struct lruvec *lruvec;
1263 
1264 	lruvec = mem_cgroup_page_lruvec(page);
1265 	spin_lock_irq(&lruvec->lru_lock);
1266 
1267 	lruvec_memcg_debug(lruvec, page);
1268 
1269 	return lruvec;
1270 }
1271 
lock_page_lruvec_irqsave(struct page * page,unsigned long * flags)1272 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1273 {
1274 	struct lruvec *lruvec;
1275 
1276 	lruvec = mem_cgroup_page_lruvec(page);
1277 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1278 
1279 	lruvec_memcg_debug(lruvec, page);
1280 
1281 	return lruvec;
1282 }
1283 
page_to_lruvec(struct page * page,pg_data_t * pgdat)1284 struct lruvec *page_to_lruvec(struct page *page, pg_data_t *pgdat)
1285 {
1286 	struct lruvec *lruvec;
1287 
1288 	lruvec = mem_cgroup_page_lruvec(page);
1289 
1290 	return lruvec;
1291 }
1292 EXPORT_SYMBOL_GPL(page_to_lruvec);
1293 
do_traversal_all_lruvec(void)1294 void do_traversal_all_lruvec(void)
1295 {
1296 	pg_data_t *pgdat;
1297 
1298 	for_each_online_pgdat(pgdat) {
1299 		struct mem_cgroup *memcg = NULL;
1300 
1301 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
1302 		do {
1303 			struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
1304 
1305 			trace_android_vh_do_traversal_lruvec(lruvec);
1306 
1307 			memcg = mem_cgroup_iter(NULL, memcg, NULL);
1308 		} while (memcg);
1309 	}
1310 }
1311 EXPORT_SYMBOL_GPL(do_traversal_all_lruvec);
1312 
1313 /**
1314  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1315  * @lruvec: mem_cgroup per zone lru vector
1316  * @lru: index of lru list the page is sitting on
1317  * @zid: zone id of the accounted pages
1318  * @nr_pages: positive when adding or negative when removing
1319  *
1320  * This function must be called under lru_lock, just before a page is added
1321  * to or just after a page is removed from an lru list (that ordering being
1322  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1323  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1324 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1325 				int zid, int nr_pages)
1326 {
1327 	struct mem_cgroup_per_node *mz;
1328 	unsigned long *lru_size;
1329 	long size;
1330 
1331 	if (mem_cgroup_disabled())
1332 		return;
1333 
1334 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1335 	lru_size = &mz->lru_zone_size[zid][lru];
1336 
1337 	if (nr_pages < 0)
1338 		*lru_size += nr_pages;
1339 
1340 	size = *lru_size;
1341 	if (WARN_ONCE(size < 0,
1342 		"%s(%p, %d, %d): lru_size %ld\n",
1343 		__func__, lruvec, lru, nr_pages, size)) {
1344 		VM_BUG_ON(1);
1345 		*lru_size = 0;
1346 	}
1347 
1348 	if (nr_pages > 0)
1349 		*lru_size += nr_pages;
1350 }
1351 EXPORT_SYMBOL_GPL(mem_cgroup_update_lru_size);
1352 
1353 /**
1354  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1355  * @memcg: the memory cgroup
1356  *
1357  * Returns the maximum amount of memory @mem can be charged with, in
1358  * pages.
1359  */
mem_cgroup_margin(struct mem_cgroup * memcg)1360 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1361 {
1362 	unsigned long margin = 0;
1363 	unsigned long count;
1364 	unsigned long limit;
1365 
1366 	count = page_counter_read(&memcg->memory);
1367 	limit = READ_ONCE(memcg->memory.max);
1368 	if (count < limit)
1369 		margin = limit - count;
1370 
1371 	if (do_memsw_account()) {
1372 		count = page_counter_read(&memcg->memsw);
1373 		limit = READ_ONCE(memcg->memsw.max);
1374 		if (count < limit)
1375 			margin = min(margin, limit - count);
1376 		else
1377 			margin = 0;
1378 	}
1379 
1380 	return margin;
1381 }
1382 
1383 /*
1384  * A routine for checking "mem" is under move_account() or not.
1385  *
1386  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1387  * moving cgroups. This is for waiting at high-memory pressure
1388  * caused by "move".
1389  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1390 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1391 {
1392 	struct mem_cgroup *from;
1393 	struct mem_cgroup *to;
1394 	bool ret = false;
1395 	/*
1396 	 * Unlike task_move routines, we access mc.to, mc.from not under
1397 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1398 	 */
1399 	spin_lock(&mc.lock);
1400 	from = mc.from;
1401 	to = mc.to;
1402 	if (!from)
1403 		goto unlock;
1404 
1405 	ret = mem_cgroup_is_descendant(from, memcg) ||
1406 		mem_cgroup_is_descendant(to, memcg);
1407 unlock:
1408 	spin_unlock(&mc.lock);
1409 	return ret;
1410 }
1411 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1412 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1413 {
1414 	if (mc.moving_task && current != mc.moving_task) {
1415 		if (mem_cgroup_under_move(memcg)) {
1416 			DEFINE_WAIT(wait);
1417 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1418 			/* moving charge context might have finished. */
1419 			if (mc.moving_task)
1420 				schedule();
1421 			finish_wait(&mc.waitq, &wait);
1422 			return true;
1423 		}
1424 	}
1425 	return false;
1426 }
1427 
1428 struct memory_stat {
1429 	const char *name;
1430 	unsigned int idx;
1431 };
1432 
1433 static const struct memory_stat memory_stats[] = {
1434 	{ "anon",			NR_ANON_MAPPED			},
1435 	{ "file",			NR_FILE_PAGES			},
1436 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1437 	{ "pagetables",			NR_PAGETABLE			},
1438 	{ "percpu",			MEMCG_PERCPU_B			},
1439 	{ "sock",			MEMCG_SOCK			},
1440 	{ "shmem",			NR_SHMEM			},
1441 	{ "file_mapped",		NR_FILE_MAPPED			},
1442 	{ "file_dirty",			NR_FILE_DIRTY			},
1443 	{ "file_writeback",		NR_WRITEBACK			},
1444 #ifdef CONFIG_SWAP
1445 	{ "swapcached",			NR_SWAPCACHE			},
1446 #endif
1447 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1448 	{ "anon_thp",			NR_ANON_THPS			},
1449 	{ "file_thp",			NR_FILE_THPS			},
1450 	{ "shmem_thp",			NR_SHMEM_THPS			},
1451 #endif
1452 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1453 	{ "active_anon",		NR_ACTIVE_ANON			},
1454 	{ "inactive_file",		NR_INACTIVE_FILE		},
1455 	{ "active_file",		NR_ACTIVE_FILE			},
1456 	{ "unevictable",		NR_UNEVICTABLE			},
1457 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1458 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1459 
1460 	/* The memory events */
1461 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1462 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1463 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1464 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1465 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1466 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1467 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1468 };
1469 
1470 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1471 static int memcg_page_state_unit(int item)
1472 {
1473 	switch (item) {
1474 	case MEMCG_PERCPU_B:
1475 	case NR_SLAB_RECLAIMABLE_B:
1476 	case NR_SLAB_UNRECLAIMABLE_B:
1477 	case WORKINGSET_REFAULT_ANON:
1478 	case WORKINGSET_REFAULT_FILE:
1479 	case WORKINGSET_ACTIVATE_ANON:
1480 	case WORKINGSET_ACTIVATE_FILE:
1481 	case WORKINGSET_RESTORE_ANON:
1482 	case WORKINGSET_RESTORE_FILE:
1483 	case WORKINGSET_NODERECLAIM:
1484 		return 1;
1485 	case NR_KERNEL_STACK_KB:
1486 		return SZ_1K;
1487 	default:
1488 		return PAGE_SIZE;
1489 	}
1490 }
1491 
memcg_page_state_output(struct mem_cgroup * memcg,int item)1492 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1493 						    int item)
1494 {
1495 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1496 }
1497 
memory_stat_format(struct mem_cgroup * memcg)1498 static char *memory_stat_format(struct mem_cgroup *memcg)
1499 {
1500 	struct seq_buf s;
1501 	int i;
1502 
1503 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1504 	if (!s.buffer)
1505 		return NULL;
1506 
1507 	/*
1508 	 * Provide statistics on the state of the memory subsystem as
1509 	 * well as cumulative event counters that show past behavior.
1510 	 *
1511 	 * This list is ordered following a combination of these gradients:
1512 	 * 1) generic big picture -> specifics and details
1513 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1514 	 *
1515 	 * Current memory state:
1516 	 */
1517 	mem_cgroup_flush_stats();
1518 
1519 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1520 		u64 size;
1521 
1522 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1523 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1524 
1525 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1526 			size += memcg_page_state_output(memcg,
1527 							NR_SLAB_RECLAIMABLE_B);
1528 			seq_buf_printf(&s, "slab %llu\n", size);
1529 		}
1530 	}
1531 
1532 	/* Accumulated memory events */
1533 
1534 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1535 		       memcg_events(memcg, PGFAULT));
1536 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1537 		       memcg_events(memcg, PGMAJFAULT));
1538 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1539 		       memcg_events(memcg, PGREFILL));
1540 	seq_buf_printf(&s, "pgscan %lu\n",
1541 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1542 		       memcg_events(memcg, PGSCAN_DIRECT));
1543 	seq_buf_printf(&s, "pgsteal %lu\n",
1544 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1545 		       memcg_events(memcg, PGSTEAL_DIRECT));
1546 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1547 		       memcg_events(memcg, PGACTIVATE));
1548 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1549 		       memcg_events(memcg, PGDEACTIVATE));
1550 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1551 		       memcg_events(memcg, PGLAZYFREE));
1552 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1553 		       memcg_events(memcg, PGLAZYFREED));
1554 
1555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1556 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1557 		       memcg_events(memcg, THP_FAULT_ALLOC));
1558 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1559 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1560 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1561 
1562 	/* The above should easily fit into one page */
1563 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1564 
1565 	return s.buffer;
1566 }
1567 
1568 #define K(x) ((x) << (PAGE_SHIFT-10))
1569 /**
1570  * mem_cgroup_print_oom_context: Print OOM information relevant to
1571  * memory controller.
1572  * @memcg: The memory cgroup that went over limit
1573  * @p: Task that is going to be killed
1574  *
1575  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1576  * enabled
1577  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1578 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1579 {
1580 	rcu_read_lock();
1581 
1582 	if (memcg) {
1583 		pr_cont(",oom_memcg=");
1584 		pr_cont_cgroup_path(memcg->css.cgroup);
1585 	} else
1586 		pr_cont(",global_oom");
1587 	if (p) {
1588 		pr_cont(",task_memcg=");
1589 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1590 	}
1591 	rcu_read_unlock();
1592 }
1593 
1594 /**
1595  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1596  * memory controller.
1597  * @memcg: The memory cgroup that went over limit
1598  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1599 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1600 {
1601 	char *buf;
1602 
1603 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1604 		K((u64)page_counter_read(&memcg->memory)),
1605 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1606 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1607 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1608 			K((u64)page_counter_read(&memcg->swap)),
1609 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1610 	else {
1611 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1612 			K((u64)page_counter_read(&memcg->memsw)),
1613 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1614 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1615 			K((u64)page_counter_read(&memcg->kmem)),
1616 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1617 	}
1618 
1619 	pr_info("Memory cgroup stats for ");
1620 	pr_cont_cgroup_path(memcg->css.cgroup);
1621 	pr_cont(":");
1622 	buf = memory_stat_format(memcg);
1623 	if (!buf)
1624 		return;
1625 	pr_info("%s", buf);
1626 	kfree(buf);
1627 }
1628 
1629 /*
1630  * Return the memory (and swap, if configured) limit for a memcg.
1631  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1632 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1633 {
1634 	unsigned long max = READ_ONCE(memcg->memory.max);
1635 
1636 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1637 		if (mem_cgroup_swappiness(memcg))
1638 			max += min(READ_ONCE(memcg->swap.max),
1639 				   (unsigned long)total_swap_pages);
1640 	} else { /* v1 */
1641 		if (mem_cgroup_swappiness(memcg)) {
1642 			/* Calculate swap excess capacity from memsw limit */
1643 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1644 
1645 			max += min(swap, (unsigned long)total_swap_pages);
1646 		}
1647 	}
1648 	return max;
1649 }
1650 
mem_cgroup_size(struct mem_cgroup * memcg)1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1652 {
1653 	return page_counter_read(&memcg->memory);
1654 }
1655 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1657 				     int order)
1658 {
1659 	struct oom_control oc = {
1660 		.zonelist = NULL,
1661 		.nodemask = NULL,
1662 		.memcg = memcg,
1663 		.gfp_mask = gfp_mask,
1664 		.order = order,
1665 	};
1666 	bool ret = true;
1667 
1668 	if (mutex_lock_killable(&oom_lock))
1669 		return true;
1670 
1671 	if (mem_cgroup_margin(memcg) >= (1 << order))
1672 		goto unlock;
1673 
1674 	/*
1675 	 * A few threads which were not waiting at mutex_lock_killable() can
1676 	 * fail to bail out. Therefore, check again after holding oom_lock.
1677 	 */
1678 	ret = task_is_dying() || out_of_memory(&oc);
1679 
1680 unlock:
1681 	mutex_unlock(&oom_lock);
1682 	return ret;
1683 }
1684 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1685 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1686 				   pg_data_t *pgdat,
1687 				   gfp_t gfp_mask,
1688 				   unsigned long *total_scanned)
1689 {
1690 	struct mem_cgroup *victim = NULL;
1691 	int total = 0;
1692 	int loop = 0;
1693 	unsigned long excess;
1694 	unsigned long nr_scanned;
1695 	struct mem_cgroup_reclaim_cookie reclaim = {
1696 		.pgdat = pgdat,
1697 	};
1698 
1699 	excess = soft_limit_excess(root_memcg);
1700 
1701 	while (1) {
1702 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1703 		if (!victim) {
1704 			loop++;
1705 			if (loop >= 2) {
1706 				/*
1707 				 * If we have not been able to reclaim
1708 				 * anything, it might because there are
1709 				 * no reclaimable pages under this hierarchy
1710 				 */
1711 				if (!total)
1712 					break;
1713 				/*
1714 				 * We want to do more targeted reclaim.
1715 				 * excess >> 2 is not to excessive so as to
1716 				 * reclaim too much, nor too less that we keep
1717 				 * coming back to reclaim from this cgroup
1718 				 */
1719 				if (total >= (excess >> 2) ||
1720 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1721 					break;
1722 			}
1723 			continue;
1724 		}
1725 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1726 					pgdat, &nr_scanned);
1727 		*total_scanned += nr_scanned;
1728 		if (!soft_limit_excess(root_memcg))
1729 			break;
1730 	}
1731 	mem_cgroup_iter_break(root_memcg, victim);
1732 	return total;
1733 }
1734 
1735 #ifdef CONFIG_LOCKDEP
1736 static struct lockdep_map memcg_oom_lock_dep_map = {
1737 	.name = "memcg_oom_lock",
1738 };
1739 #endif
1740 
1741 static DEFINE_SPINLOCK(memcg_oom_lock);
1742 
1743 /*
1744  * Check OOM-Killer is already running under our hierarchy.
1745  * If someone is running, return false.
1746  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1747 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1748 {
1749 	struct mem_cgroup *iter, *failed = NULL;
1750 
1751 	spin_lock(&memcg_oom_lock);
1752 
1753 	for_each_mem_cgroup_tree(iter, memcg) {
1754 		if (iter->oom_lock) {
1755 			/*
1756 			 * this subtree of our hierarchy is already locked
1757 			 * so we cannot give a lock.
1758 			 */
1759 			failed = iter;
1760 			mem_cgroup_iter_break(memcg, iter);
1761 			break;
1762 		} else
1763 			iter->oom_lock = true;
1764 	}
1765 
1766 	if (failed) {
1767 		/*
1768 		 * OK, we failed to lock the whole subtree so we have
1769 		 * to clean up what we set up to the failing subtree
1770 		 */
1771 		for_each_mem_cgroup_tree(iter, memcg) {
1772 			if (iter == failed) {
1773 				mem_cgroup_iter_break(memcg, iter);
1774 				break;
1775 			}
1776 			iter->oom_lock = false;
1777 		}
1778 	} else
1779 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1780 
1781 	spin_unlock(&memcg_oom_lock);
1782 
1783 	return !failed;
1784 }
1785 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1786 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1787 {
1788 	struct mem_cgroup *iter;
1789 
1790 	spin_lock(&memcg_oom_lock);
1791 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1792 	for_each_mem_cgroup_tree(iter, memcg)
1793 		iter->oom_lock = false;
1794 	spin_unlock(&memcg_oom_lock);
1795 }
1796 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1798 {
1799 	struct mem_cgroup *iter;
1800 
1801 	spin_lock(&memcg_oom_lock);
1802 	for_each_mem_cgroup_tree(iter, memcg)
1803 		iter->under_oom++;
1804 	spin_unlock(&memcg_oom_lock);
1805 }
1806 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1807 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1808 {
1809 	struct mem_cgroup *iter;
1810 
1811 	/*
1812 	 * Be careful about under_oom underflows because a child memcg
1813 	 * could have been added after mem_cgroup_mark_under_oom.
1814 	 */
1815 	spin_lock(&memcg_oom_lock);
1816 	for_each_mem_cgroup_tree(iter, memcg)
1817 		if (iter->under_oom > 0)
1818 			iter->under_oom--;
1819 	spin_unlock(&memcg_oom_lock);
1820 }
1821 
1822 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1823 
1824 struct oom_wait_info {
1825 	struct mem_cgroup *memcg;
1826 	wait_queue_entry_t	wait;
1827 };
1828 
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1829 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1830 	unsigned mode, int sync, void *arg)
1831 {
1832 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1833 	struct mem_cgroup *oom_wait_memcg;
1834 	struct oom_wait_info *oom_wait_info;
1835 
1836 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1837 	oom_wait_memcg = oom_wait_info->memcg;
1838 
1839 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1840 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1841 		return 0;
1842 	return autoremove_wake_function(wait, mode, sync, arg);
1843 }
1844 
memcg_oom_recover(struct mem_cgroup * memcg)1845 static void memcg_oom_recover(struct mem_cgroup *memcg)
1846 {
1847 	/*
1848 	 * For the following lockless ->under_oom test, the only required
1849 	 * guarantee is that it must see the state asserted by an OOM when
1850 	 * this function is called as a result of userland actions
1851 	 * triggered by the notification of the OOM.  This is trivially
1852 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1853 	 * triggering notification.
1854 	 */
1855 	if (memcg && memcg->under_oom)
1856 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1857 }
1858 
1859 enum oom_status {
1860 	OOM_SUCCESS,
1861 	OOM_FAILED,
1862 	OOM_ASYNC,
1863 	OOM_SKIPPED
1864 };
1865 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1866 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867 {
1868 	enum oom_status ret;
1869 	bool locked;
1870 
1871 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1872 		return OOM_SKIPPED;
1873 
1874 	memcg_memory_event(memcg, MEMCG_OOM);
1875 
1876 	/*
1877 	 * We are in the middle of the charge context here, so we
1878 	 * don't want to block when potentially sitting on a callstack
1879 	 * that holds all kinds of filesystem and mm locks.
1880 	 *
1881 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1882 	 * handling until the charge can succeed; remember the context and put
1883 	 * the task to sleep at the end of the page fault when all locks are
1884 	 * released.
1885 	 *
1886 	 * On the other hand, in-kernel OOM killer allows for an async victim
1887 	 * memory reclaim (oom_reaper) and that means that we are not solely
1888 	 * relying on the oom victim to make a forward progress and we can
1889 	 * invoke the oom killer here.
1890 	 *
1891 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1892 	 * victim and then we have to bail out from the charge path.
1893 	 */
1894 	if (memcg->oom_kill_disable) {
1895 		if (!current->in_user_fault)
1896 			return OOM_SKIPPED;
1897 		css_get(&memcg->css);
1898 		current->memcg_in_oom = memcg;
1899 		current->memcg_oom_gfp_mask = mask;
1900 		current->memcg_oom_order = order;
1901 
1902 		return OOM_ASYNC;
1903 	}
1904 
1905 	mem_cgroup_mark_under_oom(memcg);
1906 
1907 	locked = mem_cgroup_oom_trylock(memcg);
1908 
1909 	if (locked)
1910 		mem_cgroup_oom_notify(memcg);
1911 
1912 	mem_cgroup_unmark_under_oom(memcg);
1913 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1914 		ret = OOM_SUCCESS;
1915 	else
1916 		ret = OOM_FAILED;
1917 
1918 	if (locked)
1919 		mem_cgroup_oom_unlock(memcg);
1920 
1921 	return ret;
1922 }
1923 
1924 /**
1925  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1926  * @handle: actually kill/wait or just clean up the OOM state
1927  *
1928  * This has to be called at the end of a page fault if the memcg OOM
1929  * handler was enabled.
1930  *
1931  * Memcg supports userspace OOM handling where failed allocations must
1932  * sleep on a waitqueue until the userspace task resolves the
1933  * situation.  Sleeping directly in the charge context with all kinds
1934  * of locks held is not a good idea, instead we remember an OOM state
1935  * in the task and mem_cgroup_oom_synchronize() has to be called at
1936  * the end of the page fault to complete the OOM handling.
1937  *
1938  * Returns %true if an ongoing memcg OOM situation was detected and
1939  * completed, %false otherwise.
1940  */
mem_cgroup_oom_synchronize(bool handle)1941 bool mem_cgroup_oom_synchronize(bool handle)
1942 {
1943 	struct mem_cgroup *memcg = current->memcg_in_oom;
1944 	struct oom_wait_info owait;
1945 	bool locked;
1946 
1947 	/* OOM is global, do not handle */
1948 	if (!memcg)
1949 		return false;
1950 
1951 	if (!handle)
1952 		goto cleanup;
1953 
1954 	owait.memcg = memcg;
1955 	owait.wait.flags = 0;
1956 	owait.wait.func = memcg_oom_wake_function;
1957 	owait.wait.private = current;
1958 	INIT_LIST_HEAD(&owait.wait.entry);
1959 
1960 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1961 	mem_cgroup_mark_under_oom(memcg);
1962 
1963 	locked = mem_cgroup_oom_trylock(memcg);
1964 
1965 	if (locked)
1966 		mem_cgroup_oom_notify(memcg);
1967 
1968 	if (locked && !memcg->oom_kill_disable) {
1969 		mem_cgroup_unmark_under_oom(memcg);
1970 		finish_wait(&memcg_oom_waitq, &owait.wait);
1971 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1972 					 current->memcg_oom_order);
1973 	} else {
1974 		schedule();
1975 		mem_cgroup_unmark_under_oom(memcg);
1976 		finish_wait(&memcg_oom_waitq, &owait.wait);
1977 	}
1978 
1979 	if (locked) {
1980 		mem_cgroup_oom_unlock(memcg);
1981 		/*
1982 		 * There is no guarantee that an OOM-lock contender
1983 		 * sees the wakeups triggered by the OOM kill
1984 		 * uncharges.  Wake any sleepers explicitly.
1985 		 */
1986 		memcg_oom_recover(memcg);
1987 	}
1988 cleanup:
1989 	current->memcg_in_oom = NULL;
1990 	css_put(&memcg->css);
1991 	return true;
1992 }
1993 
1994 /**
1995  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1996  * @victim: task to be killed by the OOM killer
1997  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1998  *
1999  * Returns a pointer to a memory cgroup, which has to be cleaned up
2000  * by killing all belonging OOM-killable tasks.
2001  *
2002  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2003  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2004 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2005 					    struct mem_cgroup *oom_domain)
2006 {
2007 	struct mem_cgroup *oom_group = NULL;
2008 	struct mem_cgroup *memcg;
2009 
2010 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2011 		return NULL;
2012 
2013 	if (!oom_domain)
2014 		oom_domain = root_mem_cgroup;
2015 
2016 	rcu_read_lock();
2017 
2018 	memcg = mem_cgroup_from_task(victim);
2019 	if (memcg == root_mem_cgroup)
2020 		goto out;
2021 
2022 	/*
2023 	 * If the victim task has been asynchronously moved to a different
2024 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2025 	 * In this case it's better to ignore memory.group.oom.
2026 	 */
2027 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2028 		goto out;
2029 
2030 	/*
2031 	 * Traverse the memory cgroup hierarchy from the victim task's
2032 	 * cgroup up to the OOMing cgroup (or root) to find the
2033 	 * highest-level memory cgroup with oom.group set.
2034 	 */
2035 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2036 		if (memcg->oom_group)
2037 			oom_group = memcg;
2038 
2039 		if (memcg == oom_domain)
2040 			break;
2041 	}
2042 
2043 	if (oom_group)
2044 		css_get(&oom_group->css);
2045 out:
2046 	rcu_read_unlock();
2047 
2048 	return oom_group;
2049 }
2050 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2051 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2052 {
2053 	pr_info("Tasks in ");
2054 	pr_cont_cgroup_path(memcg->css.cgroup);
2055 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2056 }
2057 
2058 /**
2059  * lock_page_memcg - lock a page and memcg binding
2060  * @page: the page
2061  *
2062  * This function protects unlocked LRU pages from being moved to
2063  * another cgroup.
2064  *
2065  * It ensures lifetime of the locked memcg. Caller is responsible
2066  * for the lifetime of the page.
2067  */
lock_page_memcg(struct page * page)2068 void lock_page_memcg(struct page *page)
2069 {
2070 	struct page *head = compound_head(page); /* rmap on tail pages */
2071 	struct mem_cgroup *memcg;
2072 	unsigned long flags;
2073 
2074 	/*
2075 	 * The RCU lock is held throughout the transaction.  The fast
2076 	 * path can get away without acquiring the memcg->move_lock
2077 	 * because page moving starts with an RCU grace period.
2078          */
2079 	rcu_read_lock();
2080 
2081 	if (mem_cgroup_disabled())
2082 		return;
2083 again:
2084 	memcg = page_memcg(head);
2085 	if (unlikely(!memcg))
2086 		return;
2087 
2088 #ifdef CONFIG_PROVE_LOCKING
2089 	local_irq_save(flags);
2090 	might_lock(&memcg->move_lock);
2091 	local_irq_restore(flags);
2092 #endif
2093 
2094 	if (atomic_read(&memcg->moving_account) <= 0)
2095 		return;
2096 
2097 	spin_lock_irqsave(&memcg->move_lock, flags);
2098 	if (memcg != page_memcg(head)) {
2099 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2100 		goto again;
2101 	}
2102 
2103 	/*
2104 	 * When charge migration first begins, we can have multiple
2105 	 * critical sections holding the fast-path RCU lock and one
2106 	 * holding the slowpath move_lock. Track the task who has the
2107 	 * move_lock for unlock_page_memcg().
2108 	 */
2109 	memcg->move_lock_task = current;
2110 	memcg->move_lock_flags = flags;
2111 }
2112 EXPORT_SYMBOL(lock_page_memcg);
2113 
__unlock_page_memcg(struct mem_cgroup * memcg)2114 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2115 {
2116 	if (memcg && memcg->move_lock_task == current) {
2117 		unsigned long flags = memcg->move_lock_flags;
2118 
2119 		memcg->move_lock_task = NULL;
2120 		memcg->move_lock_flags = 0;
2121 
2122 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2123 	}
2124 
2125 	rcu_read_unlock();
2126 }
2127 
2128 /**
2129  * unlock_page_memcg - unlock a page and memcg binding
2130  * @page: the page
2131  */
unlock_page_memcg(struct page * page)2132 void unlock_page_memcg(struct page *page)
2133 {
2134 	struct page *head = compound_head(page);
2135 
2136 	__unlock_page_memcg(page_memcg(head));
2137 }
2138 EXPORT_SYMBOL(unlock_page_memcg);
2139 
2140 struct obj_stock {
2141 #ifdef CONFIG_MEMCG_KMEM
2142 	struct obj_cgroup *cached_objcg;
2143 	struct pglist_data *cached_pgdat;
2144 	unsigned int nr_bytes;
2145 	int nr_slab_reclaimable_b;
2146 	int nr_slab_unreclaimable_b;
2147 #else
2148 	int dummy[0];
2149 #endif
2150 };
2151 
2152 struct memcg_stock_pcp {
2153 	struct mem_cgroup *cached; /* this never be root cgroup */
2154 	unsigned int nr_pages;
2155 	struct obj_stock task_obj;
2156 	struct obj_stock irq_obj;
2157 
2158 	struct work_struct work;
2159 	unsigned long flags;
2160 #define FLUSHING_CACHED_CHARGE	0
2161 };
2162 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2163 static DEFINE_MUTEX(percpu_charge_mutex);
2164 
2165 #ifdef CONFIG_MEMCG_KMEM
2166 static void drain_obj_stock(struct obj_stock *stock);
2167 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2168 				     struct mem_cgroup *root_memcg);
2169 
2170 #else
drain_obj_stock(struct obj_stock * stock)2171 static inline void drain_obj_stock(struct obj_stock *stock)
2172 {
2173 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2174 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2175 				     struct mem_cgroup *root_memcg)
2176 {
2177 	return false;
2178 }
2179 #endif
2180 
2181 /*
2182  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2183  * sequence used in this case to access content from object stock is slow.
2184  * To optimize for user context access, there are now two object stocks for
2185  * task context and interrupt context access respectively.
2186  *
2187  * The task context object stock can be accessed by disabling preemption only
2188  * which is cheap in non-preempt kernel. The interrupt context object stock
2189  * can only be accessed after disabling interrupt. User context code can
2190  * access interrupt object stock, but not vice versa.
2191  */
get_obj_stock(unsigned long * pflags)2192 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2193 {
2194 	struct memcg_stock_pcp *stock;
2195 
2196 	if (likely(in_task())) {
2197 		*pflags = 0UL;
2198 		preempt_disable();
2199 		stock = this_cpu_ptr(&memcg_stock);
2200 		return &stock->task_obj;
2201 	}
2202 
2203 	local_irq_save(*pflags);
2204 	stock = this_cpu_ptr(&memcg_stock);
2205 	return &stock->irq_obj;
2206 }
2207 
put_obj_stock(unsigned long flags)2208 static inline void put_obj_stock(unsigned long flags)
2209 {
2210 	if (likely(in_task()))
2211 		preempt_enable();
2212 	else
2213 		local_irq_restore(flags);
2214 }
2215 
2216 /**
2217  * consume_stock: Try to consume stocked charge on this cpu.
2218  * @memcg: memcg to consume from.
2219  * @nr_pages: how many pages to charge.
2220  *
2221  * The charges will only happen if @memcg matches the current cpu's memcg
2222  * stock, and at least @nr_pages are available in that stock.  Failure to
2223  * service an allocation will refill the stock.
2224  *
2225  * returns true if successful, false otherwise.
2226  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2227 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228 {
2229 	struct memcg_stock_pcp *stock;
2230 	unsigned long flags;
2231 	bool ret = false;
2232 
2233 	if (nr_pages > MEMCG_CHARGE_BATCH)
2234 		return ret;
2235 
2236 	local_irq_save(flags);
2237 
2238 	stock = this_cpu_ptr(&memcg_stock);
2239 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2240 		stock->nr_pages -= nr_pages;
2241 		ret = true;
2242 	}
2243 
2244 	local_irq_restore(flags);
2245 
2246 	return ret;
2247 }
2248 
2249 /*
2250  * Returns stocks cached in percpu and reset cached information.
2251  */
drain_stock(struct memcg_stock_pcp * stock)2252 static void drain_stock(struct memcg_stock_pcp *stock)
2253 {
2254 	struct mem_cgroup *old = stock->cached;
2255 
2256 	if (!old)
2257 		return;
2258 
2259 	if (stock->nr_pages) {
2260 		page_counter_uncharge(&old->memory, stock->nr_pages);
2261 		if (do_memsw_account())
2262 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2263 		stock->nr_pages = 0;
2264 	}
2265 
2266 	css_put(&old->css);
2267 	stock->cached = NULL;
2268 }
2269 
drain_local_stock(struct work_struct * dummy)2270 static void drain_local_stock(struct work_struct *dummy)
2271 {
2272 	struct memcg_stock_pcp *stock;
2273 	unsigned long flags;
2274 
2275 	/*
2276 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2277 	 * drain_stock races is that we always operate on local CPU stock
2278 	 * here with IRQ disabled
2279 	 */
2280 	local_irq_save(flags);
2281 
2282 	stock = this_cpu_ptr(&memcg_stock);
2283 	drain_obj_stock(&stock->irq_obj);
2284 	if (in_task())
2285 		drain_obj_stock(&stock->task_obj);
2286 	drain_stock(stock);
2287 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2288 
2289 	local_irq_restore(flags);
2290 }
2291 
2292 /*
2293  * Cache charges(val) to local per_cpu area.
2294  * This will be consumed by consume_stock() function, later.
2295  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2296 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2297 {
2298 	struct memcg_stock_pcp *stock;
2299 	unsigned long flags;
2300 
2301 	local_irq_save(flags);
2302 
2303 	stock = this_cpu_ptr(&memcg_stock);
2304 	if (stock->cached != memcg) { /* reset if necessary */
2305 		drain_stock(stock);
2306 		css_get(&memcg->css);
2307 		stock->cached = memcg;
2308 	}
2309 	stock->nr_pages += nr_pages;
2310 
2311 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2312 		drain_stock(stock);
2313 
2314 	local_irq_restore(flags);
2315 }
2316 
2317 /*
2318  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2319  * of the hierarchy under it.
2320  */
drain_all_stock(struct mem_cgroup * root_memcg)2321 static void drain_all_stock(struct mem_cgroup *root_memcg)
2322 {
2323 	int cpu, curcpu;
2324 
2325 	/* If someone's already draining, avoid adding running more workers. */
2326 	if (!mutex_trylock(&percpu_charge_mutex))
2327 		return;
2328 	/*
2329 	 * Notify other cpus that system-wide "drain" is running
2330 	 * We do not care about races with the cpu hotplug because cpu down
2331 	 * as well as workers from this path always operate on the local
2332 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2333 	 */
2334 	curcpu = get_cpu();
2335 	for_each_online_cpu(cpu) {
2336 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2337 		struct mem_cgroup *memcg;
2338 		bool flush = false;
2339 
2340 		rcu_read_lock();
2341 		memcg = stock->cached;
2342 		if (memcg && stock->nr_pages &&
2343 		    mem_cgroup_is_descendant(memcg, root_memcg))
2344 			flush = true;
2345 		else if (obj_stock_flush_required(stock, root_memcg))
2346 			flush = true;
2347 		rcu_read_unlock();
2348 
2349 		if (flush &&
2350 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2351 			if (cpu == curcpu)
2352 				drain_local_stock(&stock->work);
2353 			else
2354 				schedule_work_on(cpu, &stock->work);
2355 		}
2356 	}
2357 	put_cpu();
2358 	mutex_unlock(&percpu_charge_mutex);
2359 }
2360 
memcg_hotplug_cpu_dead(unsigned int cpu)2361 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2362 {
2363 	struct memcg_stock_pcp *stock;
2364 
2365 	stock = &per_cpu(memcg_stock, cpu);
2366 	drain_stock(stock);
2367 
2368 	return 0;
2369 }
2370 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2371 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2372 				  unsigned int nr_pages,
2373 				  gfp_t gfp_mask)
2374 {
2375 	unsigned long nr_reclaimed = 0;
2376 
2377 	do {
2378 		unsigned long pflags;
2379 
2380 		if (page_counter_read(&memcg->memory) <=
2381 		    READ_ONCE(memcg->memory.high))
2382 			continue;
2383 
2384 		memcg_memory_event(memcg, MEMCG_HIGH);
2385 
2386 		psi_memstall_enter(&pflags);
2387 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2388 							     gfp_mask, true);
2389 		psi_memstall_leave(&pflags);
2390 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2391 		 !mem_cgroup_is_root(memcg));
2392 
2393 	return nr_reclaimed;
2394 }
2395 
high_work_func(struct work_struct * work)2396 static void high_work_func(struct work_struct *work)
2397 {
2398 	struct mem_cgroup *memcg;
2399 
2400 	memcg = container_of(work, struct mem_cgroup, high_work);
2401 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2402 }
2403 
2404 /*
2405  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2406  * enough to still cause a significant slowdown in most cases, while still
2407  * allowing diagnostics and tracing to proceed without becoming stuck.
2408  */
2409 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2410 
2411 /*
2412  * When calculating the delay, we use these either side of the exponentiation to
2413  * maintain precision and scale to a reasonable number of jiffies (see the table
2414  * below.
2415  *
2416  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2417  *   overage ratio to a delay.
2418  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2419  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2420  *   to produce a reasonable delay curve.
2421  *
2422  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2423  * reasonable delay curve compared to precision-adjusted overage, not
2424  * penalising heavily at first, but still making sure that growth beyond the
2425  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2426  * example, with a high of 100 megabytes:
2427  *
2428  *  +-------+------------------------+
2429  *  | usage | time to allocate in ms |
2430  *  +-------+------------------------+
2431  *  | 100M  |                      0 |
2432  *  | 101M  |                      6 |
2433  *  | 102M  |                     25 |
2434  *  | 103M  |                     57 |
2435  *  | 104M  |                    102 |
2436  *  | 105M  |                    159 |
2437  *  | 106M  |                    230 |
2438  *  | 107M  |                    313 |
2439  *  | 108M  |                    409 |
2440  *  | 109M  |                    518 |
2441  *  | 110M  |                    639 |
2442  *  | 111M  |                    774 |
2443  *  | 112M  |                    921 |
2444  *  | 113M  |                   1081 |
2445  *  | 114M  |                   1254 |
2446  *  | 115M  |                   1439 |
2447  *  | 116M  |                   1638 |
2448  *  | 117M  |                   1849 |
2449  *  | 118M  |                   2000 |
2450  *  | 119M  |                   2000 |
2451  *  | 120M  |                   2000 |
2452  *  +-------+------------------------+
2453  */
2454  #define MEMCG_DELAY_PRECISION_SHIFT 20
2455  #define MEMCG_DELAY_SCALING_SHIFT 14
2456 
calculate_overage(unsigned long usage,unsigned long high)2457 static u64 calculate_overage(unsigned long usage, unsigned long high)
2458 {
2459 	u64 overage;
2460 
2461 	if (usage <= high)
2462 		return 0;
2463 
2464 	/*
2465 	 * Prevent division by 0 in overage calculation by acting as if
2466 	 * it was a threshold of 1 page
2467 	 */
2468 	high = max(high, 1UL);
2469 
2470 	overage = usage - high;
2471 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2472 	return div64_u64(overage, high);
2473 }
2474 
mem_find_max_overage(struct mem_cgroup * memcg)2475 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2476 {
2477 	u64 overage, max_overage = 0;
2478 
2479 	do {
2480 		overage = calculate_overage(page_counter_read(&memcg->memory),
2481 					    READ_ONCE(memcg->memory.high));
2482 		max_overage = max(overage, max_overage);
2483 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2484 		 !mem_cgroup_is_root(memcg));
2485 
2486 	return max_overage;
2487 }
2488 
swap_find_max_overage(struct mem_cgroup * memcg)2489 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2490 {
2491 	u64 overage, max_overage = 0;
2492 
2493 	do {
2494 		overage = calculate_overage(page_counter_read(&memcg->swap),
2495 					    READ_ONCE(memcg->swap.high));
2496 		if (overage)
2497 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2498 		max_overage = max(overage, max_overage);
2499 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2500 		 !mem_cgroup_is_root(memcg));
2501 
2502 	return max_overage;
2503 }
2504 
2505 /*
2506  * Get the number of jiffies that we should penalise a mischievous cgroup which
2507  * is exceeding its memory.high by checking both it and its ancestors.
2508  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2509 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2510 					  unsigned int nr_pages,
2511 					  u64 max_overage)
2512 {
2513 	unsigned long penalty_jiffies;
2514 
2515 	if (!max_overage)
2516 		return 0;
2517 
2518 	/*
2519 	 * We use overage compared to memory.high to calculate the number of
2520 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2521 	 * fairly lenient on small overages, and increasingly harsh when the
2522 	 * memcg in question makes it clear that it has no intention of stopping
2523 	 * its crazy behaviour, so we exponentially increase the delay based on
2524 	 * overage amount.
2525 	 */
2526 	penalty_jiffies = max_overage * max_overage * HZ;
2527 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2528 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2529 
2530 	/*
2531 	 * Factor in the task's own contribution to the overage, such that four
2532 	 * N-sized allocations are throttled approximately the same as one
2533 	 * 4N-sized allocation.
2534 	 *
2535 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2536 	 * larger the current charge patch is than that.
2537 	 */
2538 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2539 }
2540 
2541 /*
2542  * Scheduled by try_charge() to be executed from the userland return path
2543  * and reclaims memory over the high limit.
2544  */
mem_cgroup_handle_over_high(void)2545 void mem_cgroup_handle_over_high(void)
2546 {
2547 	unsigned long penalty_jiffies;
2548 	unsigned long pflags;
2549 	unsigned long nr_reclaimed;
2550 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2551 	int nr_retries = MAX_RECLAIM_RETRIES;
2552 	struct mem_cgroup *memcg;
2553 	bool in_retry = false;
2554 
2555 	if (likely(!nr_pages))
2556 		return;
2557 
2558 	memcg = get_mem_cgroup_from_mm(current->mm);
2559 	current->memcg_nr_pages_over_high = 0;
2560 
2561 retry_reclaim:
2562 	/*
2563 	 * The allocating task should reclaim at least the batch size, but for
2564 	 * subsequent retries we only want to do what's necessary to prevent oom
2565 	 * or breaching resource isolation.
2566 	 *
2567 	 * This is distinct from memory.max or page allocator behaviour because
2568 	 * memory.high is currently batched, whereas memory.max and the page
2569 	 * allocator run every time an allocation is made.
2570 	 */
2571 	nr_reclaimed = reclaim_high(memcg,
2572 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2573 				    GFP_KERNEL);
2574 
2575 	/*
2576 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2577 	 * allocators proactively to slow down excessive growth.
2578 	 */
2579 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2580 					       mem_find_max_overage(memcg));
2581 
2582 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2583 						swap_find_max_overage(memcg));
2584 
2585 	/*
2586 	 * Clamp the max delay per usermode return so as to still keep the
2587 	 * application moving forwards and also permit diagnostics, albeit
2588 	 * extremely slowly.
2589 	 */
2590 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2591 
2592 	/*
2593 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2594 	 * that it's not even worth doing, in an attempt to be nice to those who
2595 	 * go only a small amount over their memory.high value and maybe haven't
2596 	 * been aggressively reclaimed enough yet.
2597 	 */
2598 	if (penalty_jiffies <= HZ / 100)
2599 		goto out;
2600 
2601 	/*
2602 	 * If reclaim is making forward progress but we're still over
2603 	 * memory.high, we want to encourage that rather than doing allocator
2604 	 * throttling.
2605 	 */
2606 	if (nr_reclaimed || nr_retries--) {
2607 		in_retry = true;
2608 		goto retry_reclaim;
2609 	}
2610 
2611 	/*
2612 	 * If we exit early, we're guaranteed to die (since
2613 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2614 	 * need to account for any ill-begotten jiffies to pay them off later.
2615 	 */
2616 	psi_memstall_enter(&pflags);
2617 	schedule_timeout_killable(penalty_jiffies);
2618 	psi_memstall_leave(&pflags);
2619 
2620 out:
2621 	css_put(&memcg->css);
2622 }
2623 
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2624 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2625 			unsigned int nr_pages)
2626 {
2627 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2628 	int nr_retries = MAX_RECLAIM_RETRIES;
2629 	struct mem_cgroup *mem_over_limit;
2630 	struct page_counter *counter;
2631 	enum oom_status oom_status;
2632 	unsigned long nr_reclaimed;
2633 	bool passed_oom = false;
2634 	bool may_swap = true;
2635 	bool drained = false;
2636 	unsigned long pflags;
2637 
2638 retry:
2639 	if (consume_stock(memcg, nr_pages))
2640 		return 0;
2641 
2642 	if (!do_memsw_account() ||
2643 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2644 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2645 			goto done_restock;
2646 		if (do_memsw_account())
2647 			page_counter_uncharge(&memcg->memsw, batch);
2648 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2649 	} else {
2650 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2651 		may_swap = false;
2652 	}
2653 
2654 	if (batch > nr_pages) {
2655 		batch = nr_pages;
2656 		goto retry;
2657 	}
2658 
2659 	/*
2660 	 * Memcg doesn't have a dedicated reserve for atomic
2661 	 * allocations. But like the global atomic pool, we need to
2662 	 * put the burden of reclaim on regular allocation requests
2663 	 * and let these go through as privileged allocations.
2664 	 */
2665 	if (gfp_mask & __GFP_ATOMIC)
2666 		goto force;
2667 
2668 	/*
2669 	 * Prevent unbounded recursion when reclaim operations need to
2670 	 * allocate memory. This might exceed the limits temporarily,
2671 	 * but we prefer facilitating memory reclaim and getting back
2672 	 * under the limit over triggering OOM kills in these cases.
2673 	 */
2674 	if (unlikely(current->flags & PF_MEMALLOC))
2675 		goto force;
2676 
2677 	if (unlikely(task_in_memcg_oom(current)))
2678 		goto nomem;
2679 
2680 	if (!gfpflags_allow_blocking(gfp_mask))
2681 		goto nomem;
2682 
2683 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2684 
2685 	psi_memstall_enter(&pflags);
2686 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2687 						    gfp_mask, may_swap);
2688 	psi_memstall_leave(&pflags);
2689 
2690 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2691 		goto retry;
2692 
2693 	if (!drained) {
2694 		drain_all_stock(mem_over_limit);
2695 		drained = true;
2696 		goto retry;
2697 	}
2698 
2699 	if (gfp_mask & __GFP_NORETRY)
2700 		goto nomem;
2701 	/*
2702 	 * Even though the limit is exceeded at this point, reclaim
2703 	 * may have been able to free some pages.  Retry the charge
2704 	 * before killing the task.
2705 	 *
2706 	 * Only for regular pages, though: huge pages are rather
2707 	 * unlikely to succeed so close to the limit, and we fall back
2708 	 * to regular pages anyway in case of failure.
2709 	 */
2710 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2711 		goto retry;
2712 	/*
2713 	 * At task move, charge accounts can be doubly counted. So, it's
2714 	 * better to wait until the end of task_move if something is going on.
2715 	 */
2716 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2717 		goto retry;
2718 
2719 	if (nr_retries--)
2720 		goto retry;
2721 
2722 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2723 		goto nomem;
2724 
2725 	/* Avoid endless loop for tasks bypassed by the oom killer */
2726 	if (passed_oom && task_is_dying())
2727 		goto nomem;
2728 
2729 	/*
2730 	 * keep retrying as long as the memcg oom killer is able to make
2731 	 * a forward progress or bypass the charge if the oom killer
2732 	 * couldn't make any progress.
2733 	 */
2734 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2735 		       get_order(nr_pages * PAGE_SIZE));
2736 	if (oom_status == OOM_SUCCESS) {
2737 		passed_oom = true;
2738 		nr_retries = MAX_RECLAIM_RETRIES;
2739 		goto retry;
2740 	}
2741 nomem:
2742 	if (!(gfp_mask & __GFP_NOFAIL))
2743 		return -ENOMEM;
2744 force:
2745 	/*
2746 	 * The allocation either can't fail or will lead to more memory
2747 	 * being freed very soon.  Allow memory usage go over the limit
2748 	 * temporarily by force charging it.
2749 	 */
2750 	page_counter_charge(&memcg->memory, nr_pages);
2751 	if (do_memsw_account())
2752 		page_counter_charge(&memcg->memsw, nr_pages);
2753 
2754 	return 0;
2755 
2756 done_restock:
2757 	if (batch > nr_pages)
2758 		refill_stock(memcg, batch - nr_pages);
2759 
2760 	/*
2761 	 * If the hierarchy is above the normal consumption range, schedule
2762 	 * reclaim on returning to userland.  We can perform reclaim here
2763 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2764 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2765 	 * not recorded as it most likely matches current's and won't
2766 	 * change in the meantime.  As high limit is checked again before
2767 	 * reclaim, the cost of mismatch is negligible.
2768 	 */
2769 	do {
2770 		bool mem_high, swap_high;
2771 
2772 		mem_high = page_counter_read(&memcg->memory) >
2773 			READ_ONCE(memcg->memory.high);
2774 		swap_high = page_counter_read(&memcg->swap) >
2775 			READ_ONCE(memcg->swap.high);
2776 
2777 		/* Don't bother a random interrupted task */
2778 		if (in_interrupt()) {
2779 			if (mem_high) {
2780 				schedule_work(&memcg->high_work);
2781 				break;
2782 			}
2783 			continue;
2784 		}
2785 
2786 		if (mem_high || swap_high) {
2787 			/*
2788 			 * The allocating tasks in this cgroup will need to do
2789 			 * reclaim or be throttled to prevent further growth
2790 			 * of the memory or swap footprints.
2791 			 *
2792 			 * Target some best-effort fairness between the tasks,
2793 			 * and distribute reclaim work and delay penalties
2794 			 * based on how much each task is actually allocating.
2795 			 */
2796 			current->memcg_nr_pages_over_high += batch;
2797 			set_notify_resume(current);
2798 			break;
2799 		}
2800 	} while ((memcg = parent_mem_cgroup(memcg)));
2801 
2802 	return 0;
2803 }
2804 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2805 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2806 			     unsigned int nr_pages)
2807 {
2808 	if (mem_cgroup_is_root(memcg))
2809 		return 0;
2810 
2811 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2812 }
2813 
2814 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2815 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2816 {
2817 	if (mem_cgroup_is_root(memcg))
2818 		return;
2819 
2820 	page_counter_uncharge(&memcg->memory, nr_pages);
2821 	if (do_memsw_account())
2822 		page_counter_uncharge(&memcg->memsw, nr_pages);
2823 }
2824 #endif
2825 
commit_charge(struct page * page,struct mem_cgroup * memcg)2826 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2827 {
2828 	VM_BUG_ON_PAGE(page_memcg(page), page);
2829 	/*
2830 	 * Any of the following ensures page's memcg stability:
2831 	 *
2832 	 * - the page lock
2833 	 * - LRU isolation
2834 	 * - lock_page_memcg()
2835 	 * - exclusive reference
2836 	 * - mem_cgroup_trylock_pages()
2837 	 */
2838 	page->memcg_data = (unsigned long)memcg;
2839 }
2840 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)2841 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2842 {
2843 	struct mem_cgroup *memcg;
2844 
2845 	rcu_read_lock();
2846 retry:
2847 	memcg = obj_cgroup_memcg(objcg);
2848 	if (unlikely(!css_tryget(&memcg->css)))
2849 		goto retry;
2850 	rcu_read_unlock();
2851 
2852 	return memcg;
2853 }
2854 
2855 #ifdef CONFIG_MEMCG_KMEM
2856 /*
2857  * The allocated objcg pointers array is not accounted directly.
2858  * Moreover, it should not come from DMA buffer and is not readily
2859  * reclaimable. So those GFP bits should be masked off.
2860  */
2861 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2862 				 __GFP_ACCOUNT | __GFP_NOFAIL)
2863 
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp,bool new_page)2864 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2865 				 gfp_t gfp, bool new_page)
2866 {
2867 	unsigned int objects = objs_per_slab_page(s, page);
2868 	unsigned long memcg_data;
2869 	void *vec;
2870 
2871 	gfp &= ~OBJCGS_CLEAR_MASK;
2872 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2873 			   page_to_nid(page));
2874 	if (!vec)
2875 		return -ENOMEM;
2876 
2877 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2878 	if (new_page) {
2879 		/*
2880 		 * If the slab page is brand new and nobody can yet access
2881 		 * it's memcg_data, no synchronization is required and
2882 		 * memcg_data can be simply assigned.
2883 		 */
2884 		page->memcg_data = memcg_data;
2885 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2886 		/*
2887 		 * If the slab page is already in use, somebody can allocate
2888 		 * and assign obj_cgroups in parallel. In this case the existing
2889 		 * objcg vector should be reused.
2890 		 */
2891 		kfree(vec);
2892 		return 0;
2893 	}
2894 
2895 	kmemleak_not_leak(vec);
2896 	return 0;
2897 }
2898 
2899 /*
2900  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2901  *
2902  * A passed kernel object can be a slab object or a generic kernel page, so
2903  * different mechanisms for getting the memory cgroup pointer should be used.
2904  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2905  * can not know for sure how the kernel object is implemented.
2906  * mem_cgroup_from_obj() can be safely used in such cases.
2907  *
2908  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2909  * cgroup_mutex, etc.
2910  */
mem_cgroup_from_obj(void * p)2911 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2912 {
2913 	struct page *page;
2914 
2915 	if (mem_cgroup_disabled())
2916 		return NULL;
2917 
2918 	page = virt_to_head_page(p);
2919 
2920 	/*
2921 	 * Slab objects are accounted individually, not per-page.
2922 	 * Memcg membership data for each individual object is saved in
2923 	 * the page->obj_cgroups.
2924 	 */
2925 	if (page_objcgs_check(page)) {
2926 		struct obj_cgroup *objcg;
2927 		unsigned int off;
2928 
2929 		off = obj_to_index(page->slab_cache, page, p);
2930 		objcg = page_objcgs(page)[off];
2931 		if (objcg)
2932 			return obj_cgroup_memcg(objcg);
2933 
2934 		return NULL;
2935 	}
2936 
2937 	/*
2938 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2939 	 * check above could fail because the object cgroups vector wasn't set
2940 	 * at that moment, but it can be set concurrently.
2941 	 * page_memcg_check(page) will guarantee that a proper memory
2942 	 * cgroup pointer or NULL will be returned.
2943 	 */
2944 	return page_memcg_check(page);
2945 }
2946 
get_obj_cgroup_from_current(void)2947 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2948 {
2949 	struct obj_cgroup *objcg = NULL;
2950 	struct mem_cgroup *memcg;
2951 
2952 	if (memcg_kmem_bypass())
2953 		return NULL;
2954 
2955 	rcu_read_lock();
2956 	if (unlikely(active_memcg()))
2957 		memcg = active_memcg();
2958 	else
2959 		memcg = mem_cgroup_from_task(current);
2960 
2961 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2962 		objcg = rcu_dereference(memcg->objcg);
2963 		if (objcg && obj_cgroup_tryget(objcg))
2964 			break;
2965 		objcg = NULL;
2966 	}
2967 	rcu_read_unlock();
2968 
2969 	return objcg;
2970 }
2971 
memcg_alloc_cache_id(void)2972 static int memcg_alloc_cache_id(void)
2973 {
2974 	int id, size;
2975 	int err;
2976 
2977 	id = ida_simple_get(&memcg_cache_ida,
2978 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2979 	if (id < 0)
2980 		return id;
2981 
2982 	if (id < memcg_nr_cache_ids)
2983 		return id;
2984 
2985 	/*
2986 	 * There's no space for the new id in memcg_caches arrays,
2987 	 * so we have to grow them.
2988 	 */
2989 	down_write(&memcg_cache_ids_sem);
2990 
2991 	size = 2 * (id + 1);
2992 	if (size < MEMCG_CACHES_MIN_SIZE)
2993 		size = MEMCG_CACHES_MIN_SIZE;
2994 	else if (size > MEMCG_CACHES_MAX_SIZE)
2995 		size = MEMCG_CACHES_MAX_SIZE;
2996 
2997 	err = memcg_update_all_list_lrus(size);
2998 	if (!err)
2999 		memcg_nr_cache_ids = size;
3000 
3001 	up_write(&memcg_cache_ids_sem);
3002 
3003 	if (err) {
3004 		ida_simple_remove(&memcg_cache_ida, id);
3005 		return err;
3006 	}
3007 	return id;
3008 }
3009 
memcg_free_cache_id(int id)3010 static void memcg_free_cache_id(int id)
3011 {
3012 	ida_simple_remove(&memcg_cache_ida, id);
3013 }
3014 
3015 /*
3016  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3017  * @objcg: object cgroup to uncharge
3018  * @nr_pages: number of pages to uncharge
3019  */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3020 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3021 				      unsigned int nr_pages)
3022 {
3023 	struct mem_cgroup *memcg;
3024 
3025 	memcg = get_mem_cgroup_from_objcg(objcg);
3026 
3027 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3028 		page_counter_uncharge(&memcg->kmem, nr_pages);
3029 	refill_stock(memcg, nr_pages);
3030 
3031 	css_put(&memcg->css);
3032 }
3033 
3034 /*
3035  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3036  * @objcg: object cgroup to charge
3037  * @gfp: reclaim mode
3038  * @nr_pages: number of pages to charge
3039  *
3040  * Returns 0 on success, an error code on failure.
3041  */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3042 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3043 				   unsigned int nr_pages)
3044 {
3045 	struct page_counter *counter;
3046 	struct mem_cgroup *memcg;
3047 	int ret;
3048 
3049 	memcg = get_mem_cgroup_from_objcg(objcg);
3050 
3051 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3052 	if (ret)
3053 		goto out;
3054 
3055 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3056 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3057 
3058 		/*
3059 		 * Enforce __GFP_NOFAIL allocation because callers are not
3060 		 * prepared to see failures and likely do not have any failure
3061 		 * handling code.
3062 		 */
3063 		if (gfp & __GFP_NOFAIL) {
3064 			page_counter_charge(&memcg->kmem, nr_pages);
3065 			goto out;
3066 		}
3067 		cancel_charge(memcg, nr_pages);
3068 		ret = -ENOMEM;
3069 	}
3070 out:
3071 	css_put(&memcg->css);
3072 
3073 	return ret;
3074 }
3075 
3076 /**
3077  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3078  * @page: page to charge
3079  * @gfp: reclaim mode
3080  * @order: allocation order
3081  *
3082  * Returns 0 on success, an error code on failure.
3083  */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3084 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3085 {
3086 	struct obj_cgroup *objcg;
3087 	int ret = 0;
3088 
3089 	objcg = get_obj_cgroup_from_current();
3090 	if (objcg) {
3091 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3092 		if (!ret) {
3093 			page->memcg_data = (unsigned long)objcg |
3094 				MEMCG_DATA_KMEM;
3095 			return 0;
3096 		}
3097 		obj_cgroup_put(objcg);
3098 	}
3099 	return ret;
3100 }
3101 
3102 /**
3103  * __memcg_kmem_uncharge_page: uncharge a kmem page
3104  * @page: page to uncharge
3105  * @order: allocation order
3106  */
__memcg_kmem_uncharge_page(struct page * page,int order)3107 void __memcg_kmem_uncharge_page(struct page *page, int order)
3108 {
3109 	struct obj_cgroup *objcg;
3110 	unsigned int nr_pages = 1 << order;
3111 
3112 	if (!PageMemcgKmem(page))
3113 		return;
3114 
3115 	objcg = __page_objcg(page);
3116 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3117 	page->memcg_data = 0;
3118 	obj_cgroup_put(objcg);
3119 }
3120 
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3121 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3122 		     enum node_stat_item idx, int nr)
3123 {
3124 	unsigned long flags;
3125 	struct obj_stock *stock = get_obj_stock(&flags);
3126 	int *bytes;
3127 
3128 	/*
3129 	 * Save vmstat data in stock and skip vmstat array update unless
3130 	 * accumulating over a page of vmstat data or when pgdat or idx
3131 	 * changes.
3132 	 */
3133 	if (stock->cached_objcg != objcg) {
3134 		drain_obj_stock(stock);
3135 		obj_cgroup_get(objcg);
3136 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3137 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3138 		stock->cached_objcg = objcg;
3139 		stock->cached_pgdat = pgdat;
3140 	} else if (stock->cached_pgdat != pgdat) {
3141 		/* Flush the existing cached vmstat data */
3142 		struct pglist_data *oldpg = stock->cached_pgdat;
3143 
3144 		if (stock->nr_slab_reclaimable_b) {
3145 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3146 					  stock->nr_slab_reclaimable_b);
3147 			stock->nr_slab_reclaimable_b = 0;
3148 		}
3149 		if (stock->nr_slab_unreclaimable_b) {
3150 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3151 					  stock->nr_slab_unreclaimable_b);
3152 			stock->nr_slab_unreclaimable_b = 0;
3153 		}
3154 		stock->cached_pgdat = pgdat;
3155 	}
3156 
3157 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3158 					       : &stock->nr_slab_unreclaimable_b;
3159 	/*
3160 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3161 	 * cached locally at least once before pushing it out.
3162 	 */
3163 	if (!*bytes) {
3164 		*bytes = nr;
3165 		nr = 0;
3166 	} else {
3167 		*bytes += nr;
3168 		if (abs(*bytes) > PAGE_SIZE) {
3169 			nr = *bytes;
3170 			*bytes = 0;
3171 		} else {
3172 			nr = 0;
3173 		}
3174 	}
3175 	if (nr)
3176 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3177 
3178 	put_obj_stock(flags);
3179 }
3180 
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3181 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3182 {
3183 	unsigned long flags;
3184 	struct obj_stock *stock = get_obj_stock(&flags);
3185 	bool ret = false;
3186 
3187 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3188 		stock->nr_bytes -= nr_bytes;
3189 		ret = true;
3190 	}
3191 
3192 	put_obj_stock(flags);
3193 
3194 	return ret;
3195 }
3196 
drain_obj_stock(struct obj_stock * stock)3197 static void drain_obj_stock(struct obj_stock *stock)
3198 {
3199 	struct obj_cgroup *old = stock->cached_objcg;
3200 
3201 	if (!old)
3202 		return;
3203 
3204 	if (stock->nr_bytes) {
3205 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3206 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3207 
3208 		if (nr_pages)
3209 			obj_cgroup_uncharge_pages(old, nr_pages);
3210 
3211 		/*
3212 		 * The leftover is flushed to the centralized per-memcg value.
3213 		 * On the next attempt to refill obj stock it will be moved
3214 		 * to a per-cpu stock (probably, on an other CPU), see
3215 		 * refill_obj_stock().
3216 		 *
3217 		 * How often it's flushed is a trade-off between the memory
3218 		 * limit enforcement accuracy and potential CPU contention,
3219 		 * so it might be changed in the future.
3220 		 */
3221 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3222 		stock->nr_bytes = 0;
3223 	}
3224 
3225 	/*
3226 	 * Flush the vmstat data in current stock
3227 	 */
3228 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3229 		if (stock->nr_slab_reclaimable_b) {
3230 			mod_objcg_mlstate(old, stock->cached_pgdat,
3231 					  NR_SLAB_RECLAIMABLE_B,
3232 					  stock->nr_slab_reclaimable_b);
3233 			stock->nr_slab_reclaimable_b = 0;
3234 		}
3235 		if (stock->nr_slab_unreclaimable_b) {
3236 			mod_objcg_mlstate(old, stock->cached_pgdat,
3237 					  NR_SLAB_UNRECLAIMABLE_B,
3238 					  stock->nr_slab_unreclaimable_b);
3239 			stock->nr_slab_unreclaimable_b = 0;
3240 		}
3241 		stock->cached_pgdat = NULL;
3242 	}
3243 
3244 	obj_cgroup_put(old);
3245 	stock->cached_objcg = NULL;
3246 }
3247 
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3248 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3249 				     struct mem_cgroup *root_memcg)
3250 {
3251 	struct mem_cgroup *memcg;
3252 
3253 	if (in_task() && stock->task_obj.cached_objcg) {
3254 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3255 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3256 			return true;
3257 	}
3258 	if (stock->irq_obj.cached_objcg) {
3259 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3260 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3261 			return true;
3262 	}
3263 
3264 	return false;
3265 }
3266 
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3267 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3268 			     bool allow_uncharge)
3269 {
3270 	unsigned long flags;
3271 	struct obj_stock *stock = get_obj_stock(&flags);
3272 	unsigned int nr_pages = 0;
3273 
3274 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3275 		drain_obj_stock(stock);
3276 		obj_cgroup_get(objcg);
3277 		stock->cached_objcg = objcg;
3278 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3279 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3280 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3281 	}
3282 	stock->nr_bytes += nr_bytes;
3283 
3284 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3285 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3286 		stock->nr_bytes &= (PAGE_SIZE - 1);
3287 	}
3288 
3289 	put_obj_stock(flags);
3290 
3291 	if (nr_pages)
3292 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3293 }
3294 
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3295 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3296 {
3297 	unsigned int nr_pages, nr_bytes;
3298 	int ret;
3299 
3300 	if (consume_obj_stock(objcg, size))
3301 		return 0;
3302 
3303 	/*
3304 	 * In theory, objcg->nr_charged_bytes can have enough
3305 	 * pre-charged bytes to satisfy the allocation. However,
3306 	 * flushing objcg->nr_charged_bytes requires two atomic
3307 	 * operations, and objcg->nr_charged_bytes can't be big.
3308 	 * The shared objcg->nr_charged_bytes can also become a
3309 	 * performance bottleneck if all tasks of the same memcg are
3310 	 * trying to update it. So it's better to ignore it and try
3311 	 * grab some new pages. The stock's nr_bytes will be flushed to
3312 	 * objcg->nr_charged_bytes later on when objcg changes.
3313 	 *
3314 	 * The stock's nr_bytes may contain enough pre-charged bytes
3315 	 * to allow one less page from being charged, but we can't rely
3316 	 * on the pre-charged bytes not being changed outside of
3317 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3318 	 * pre-charged bytes as well when charging pages. To avoid a
3319 	 * page uncharge right after a page charge, we set the
3320 	 * allow_uncharge flag to false when calling refill_obj_stock()
3321 	 * to temporarily allow the pre-charged bytes to exceed the page
3322 	 * size limit. The maximum reachable value of the pre-charged
3323 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3324 	 * race.
3325 	 */
3326 	nr_pages = size >> PAGE_SHIFT;
3327 	nr_bytes = size & (PAGE_SIZE - 1);
3328 
3329 	if (nr_bytes)
3330 		nr_pages += 1;
3331 
3332 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3333 	if (!ret && nr_bytes)
3334 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3335 
3336 	return ret;
3337 }
3338 
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3339 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3340 {
3341 	refill_obj_stock(objcg, size, true);
3342 }
3343 
3344 #endif /* CONFIG_MEMCG_KMEM */
3345 
3346 /*
3347  * Because page_memcg(head) is not set on tails, set it now.
3348  */
split_page_memcg(struct page * head,unsigned int nr)3349 void split_page_memcg(struct page *head, unsigned int nr)
3350 {
3351 	struct mem_cgroup *memcg = page_memcg(head);
3352 	int i;
3353 
3354 	if (mem_cgroup_disabled() || !memcg)
3355 		return;
3356 
3357 	for (i = 1; i < nr; i++)
3358 		head[i].memcg_data = head->memcg_data;
3359 
3360 	if (PageMemcgKmem(head))
3361 		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3362 	else
3363 		css_get_many(&memcg->css, nr - 1);
3364 }
3365 
3366 #ifdef CONFIG_MEMCG_SWAP
3367 /**
3368  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3369  * @entry: swap entry to be moved
3370  * @from:  mem_cgroup which the entry is moved from
3371  * @to:  mem_cgroup which the entry is moved to
3372  *
3373  * It succeeds only when the swap_cgroup's record for this entry is the same
3374  * as the mem_cgroup's id of @from.
3375  *
3376  * Returns 0 on success, -EINVAL on failure.
3377  *
3378  * The caller must have charged to @to, IOW, called page_counter_charge() about
3379  * both res and memsw, and called css_get().
3380  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3381 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3382 				struct mem_cgroup *from, struct mem_cgroup *to)
3383 {
3384 	unsigned short old_id, new_id;
3385 
3386 	old_id = mem_cgroup_id(from);
3387 	new_id = mem_cgroup_id(to);
3388 
3389 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3390 		mod_memcg_state(from, MEMCG_SWAP, -1);
3391 		mod_memcg_state(to, MEMCG_SWAP, 1);
3392 		return 0;
3393 	}
3394 	return -EINVAL;
3395 }
3396 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3397 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3398 				struct mem_cgroup *from, struct mem_cgroup *to)
3399 {
3400 	return -EINVAL;
3401 }
3402 #endif
3403 
3404 static DEFINE_MUTEX(memcg_max_mutex);
3405 
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3406 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3407 				 unsigned long max, bool memsw)
3408 {
3409 	bool enlarge = false;
3410 	bool drained = false;
3411 	int ret;
3412 	bool limits_invariant;
3413 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3414 
3415 	do {
3416 		if (signal_pending(current)) {
3417 			ret = -EINTR;
3418 			break;
3419 		}
3420 
3421 		mutex_lock(&memcg_max_mutex);
3422 		/*
3423 		 * Make sure that the new limit (memsw or memory limit) doesn't
3424 		 * break our basic invariant rule memory.max <= memsw.max.
3425 		 */
3426 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3427 					   max <= memcg->memsw.max;
3428 		if (!limits_invariant) {
3429 			mutex_unlock(&memcg_max_mutex);
3430 			ret = -EINVAL;
3431 			break;
3432 		}
3433 		if (max > counter->max)
3434 			enlarge = true;
3435 		ret = page_counter_set_max(counter, max);
3436 		mutex_unlock(&memcg_max_mutex);
3437 
3438 		if (!ret)
3439 			break;
3440 
3441 		if (!drained) {
3442 			drain_all_stock(memcg);
3443 			drained = true;
3444 			continue;
3445 		}
3446 
3447 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3448 					GFP_KERNEL, !memsw)) {
3449 			ret = -EBUSY;
3450 			break;
3451 		}
3452 	} while (true);
3453 
3454 	if (!ret && enlarge)
3455 		memcg_oom_recover(memcg);
3456 
3457 	return ret;
3458 }
3459 
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3460 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3461 					    gfp_t gfp_mask,
3462 					    unsigned long *total_scanned)
3463 {
3464 	unsigned long nr_reclaimed = 0;
3465 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3466 	unsigned long reclaimed;
3467 	int loop = 0;
3468 	struct mem_cgroup_tree_per_node *mctz;
3469 	unsigned long excess;
3470 	unsigned long nr_scanned;
3471 
3472 	if (order > 0)
3473 		return 0;
3474 
3475 	mctz = soft_limit_tree_node(pgdat->node_id);
3476 
3477 	/*
3478 	 * Do not even bother to check the largest node if the root
3479 	 * is empty. Do it lockless to prevent lock bouncing. Races
3480 	 * are acceptable as soft limit is best effort anyway.
3481 	 */
3482 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3483 		return 0;
3484 
3485 	/*
3486 	 * This loop can run a while, specially if mem_cgroup's continuously
3487 	 * keep exceeding their soft limit and putting the system under
3488 	 * pressure
3489 	 */
3490 	do {
3491 		if (next_mz)
3492 			mz = next_mz;
3493 		else
3494 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3495 		if (!mz)
3496 			break;
3497 
3498 		nr_scanned = 0;
3499 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3500 						    gfp_mask, &nr_scanned);
3501 		nr_reclaimed += reclaimed;
3502 		*total_scanned += nr_scanned;
3503 		spin_lock_irq(&mctz->lock);
3504 		__mem_cgroup_remove_exceeded(mz, mctz);
3505 
3506 		/*
3507 		 * If we failed to reclaim anything from this memory cgroup
3508 		 * it is time to move on to the next cgroup
3509 		 */
3510 		next_mz = NULL;
3511 		if (!reclaimed)
3512 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3513 
3514 		excess = soft_limit_excess(mz->memcg);
3515 		/*
3516 		 * One school of thought says that we should not add
3517 		 * back the node to the tree if reclaim returns 0.
3518 		 * But our reclaim could return 0, simply because due
3519 		 * to priority we are exposing a smaller subset of
3520 		 * memory to reclaim from. Consider this as a longer
3521 		 * term TODO.
3522 		 */
3523 		/* If excess == 0, no tree ops */
3524 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3525 		spin_unlock_irq(&mctz->lock);
3526 		css_put(&mz->memcg->css);
3527 		loop++;
3528 		/*
3529 		 * Could not reclaim anything and there are no more
3530 		 * mem cgroups to try or we seem to be looping without
3531 		 * reclaiming anything.
3532 		 */
3533 		if (!nr_reclaimed &&
3534 			(next_mz == NULL ||
3535 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3536 			break;
3537 	} while (!nr_reclaimed);
3538 	if (next_mz)
3539 		css_put(&next_mz->memcg->css);
3540 	return nr_reclaimed;
3541 }
3542 
3543 /*
3544  * Reclaims as many pages from the given memcg as possible.
3545  *
3546  * Caller is responsible for holding css reference for memcg.
3547  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3548 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3549 {
3550 	int nr_retries = MAX_RECLAIM_RETRIES;
3551 
3552 	/* we call try-to-free pages for make this cgroup empty */
3553 	lru_add_drain_all();
3554 
3555 	drain_all_stock(memcg);
3556 
3557 	/* try to free all pages in this cgroup */
3558 	while (nr_retries && page_counter_read(&memcg->memory)) {
3559 		int progress;
3560 
3561 		if (signal_pending(current))
3562 			return -EINTR;
3563 
3564 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3565 							GFP_KERNEL, true);
3566 		if (!progress) {
3567 			nr_retries--;
3568 			/* maybe some writeback is necessary */
3569 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3570 		}
3571 
3572 	}
3573 
3574 	return 0;
3575 }
3576 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3577 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3578 					    char *buf, size_t nbytes,
3579 					    loff_t off)
3580 {
3581 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3582 
3583 	if (mem_cgroup_is_root(memcg))
3584 		return -EINVAL;
3585 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3586 }
3587 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3588 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3589 				     struct cftype *cft)
3590 {
3591 	return 1;
3592 }
3593 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3594 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3595 				      struct cftype *cft, u64 val)
3596 {
3597 	if (val == 1)
3598 		return 0;
3599 
3600 	pr_warn_once("Non-hierarchical mode is deprecated. "
3601 		     "Please report your usecase to linux-mm@kvack.org if you "
3602 		     "depend on this functionality.\n");
3603 
3604 	return -EINVAL;
3605 }
3606 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3607 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3608 {
3609 	unsigned long val;
3610 
3611 	if (mem_cgroup_is_root(memcg)) {
3612 		mem_cgroup_flush_stats();
3613 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3614 			memcg_page_state(memcg, NR_ANON_MAPPED);
3615 		if (swap)
3616 			val += memcg_page_state(memcg, MEMCG_SWAP);
3617 	} else {
3618 		if (!swap)
3619 			val = page_counter_read(&memcg->memory);
3620 		else
3621 			val = page_counter_read(&memcg->memsw);
3622 	}
3623 	return val;
3624 }
3625 
3626 enum {
3627 	RES_USAGE,
3628 	RES_LIMIT,
3629 	RES_MAX_USAGE,
3630 	RES_FAILCNT,
3631 	RES_SOFT_LIMIT,
3632 };
3633 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3634 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3635 			       struct cftype *cft)
3636 {
3637 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3638 	struct page_counter *counter;
3639 
3640 	switch (MEMFILE_TYPE(cft->private)) {
3641 	case _MEM:
3642 		counter = &memcg->memory;
3643 		break;
3644 	case _MEMSWAP:
3645 		counter = &memcg->memsw;
3646 		break;
3647 	case _KMEM:
3648 		counter = &memcg->kmem;
3649 		break;
3650 	case _TCP:
3651 		counter = &memcg->tcpmem;
3652 		break;
3653 	default:
3654 		BUG();
3655 	}
3656 
3657 	switch (MEMFILE_ATTR(cft->private)) {
3658 	case RES_USAGE:
3659 		if (counter == &memcg->memory)
3660 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3661 		if (counter == &memcg->memsw)
3662 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3663 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3664 	case RES_LIMIT:
3665 		return (u64)counter->max * PAGE_SIZE;
3666 	case RES_MAX_USAGE:
3667 		return (u64)counter->watermark * PAGE_SIZE;
3668 	case RES_FAILCNT:
3669 		return counter->failcnt;
3670 	case RES_SOFT_LIMIT:
3671 		return (u64)memcg->soft_limit * PAGE_SIZE;
3672 	default:
3673 		BUG();
3674 	}
3675 }
3676 
3677 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3678 static int memcg_online_kmem(struct mem_cgroup *memcg)
3679 {
3680 	struct obj_cgroup *objcg;
3681 	int memcg_id;
3682 
3683 	if (cgroup_memory_nokmem)
3684 		return 0;
3685 
3686 	BUG_ON(memcg->kmemcg_id >= 0);
3687 	BUG_ON(memcg->kmem_state);
3688 
3689 	memcg_id = memcg_alloc_cache_id();
3690 	if (memcg_id < 0)
3691 		return memcg_id;
3692 
3693 	objcg = obj_cgroup_alloc();
3694 	if (!objcg) {
3695 		memcg_free_cache_id(memcg_id);
3696 		return -ENOMEM;
3697 	}
3698 	objcg->memcg = memcg;
3699 	rcu_assign_pointer(memcg->objcg, objcg);
3700 
3701 	static_branch_enable(&memcg_kmem_enabled_key);
3702 
3703 	memcg->kmemcg_id = memcg_id;
3704 	memcg->kmem_state = KMEM_ONLINE;
3705 
3706 	return 0;
3707 }
3708 
memcg_offline_kmem(struct mem_cgroup * memcg)3709 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3710 {
3711 	struct cgroup_subsys_state *css;
3712 	struct mem_cgroup *parent, *child;
3713 	int kmemcg_id;
3714 
3715 	if (memcg->kmem_state != KMEM_ONLINE)
3716 		return;
3717 
3718 	memcg->kmem_state = KMEM_ALLOCATED;
3719 
3720 	parent = parent_mem_cgroup(memcg);
3721 	if (!parent)
3722 		parent = root_mem_cgroup;
3723 
3724 	memcg_reparent_objcgs(memcg, parent);
3725 
3726 	kmemcg_id = memcg->kmemcg_id;
3727 	BUG_ON(kmemcg_id < 0);
3728 
3729 	/*
3730 	 * Change kmemcg_id of this cgroup and all its descendants to the
3731 	 * parent's id, and then move all entries from this cgroup's list_lrus
3732 	 * to ones of the parent. After we have finished, all list_lrus
3733 	 * corresponding to this cgroup are guaranteed to remain empty. The
3734 	 * ordering is imposed by list_lru_node->lock taken by
3735 	 * memcg_drain_all_list_lrus().
3736 	 */
3737 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3738 	css_for_each_descendant_pre(css, &memcg->css) {
3739 		child = mem_cgroup_from_css(css);
3740 		BUG_ON(child->kmemcg_id != kmemcg_id);
3741 		child->kmemcg_id = parent->kmemcg_id;
3742 	}
3743 	rcu_read_unlock();
3744 
3745 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3746 
3747 	memcg_free_cache_id(kmemcg_id);
3748 }
3749 
memcg_free_kmem(struct mem_cgroup * memcg)3750 static void memcg_free_kmem(struct mem_cgroup *memcg)
3751 {
3752 	/* css_alloc() failed, offlining didn't happen */
3753 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3754 		memcg_offline_kmem(memcg);
3755 }
3756 #else
memcg_online_kmem(struct mem_cgroup * memcg)3757 static int memcg_online_kmem(struct mem_cgroup *memcg)
3758 {
3759 	return 0;
3760 }
memcg_offline_kmem(struct mem_cgroup * memcg)3761 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3762 {
3763 }
memcg_free_kmem(struct mem_cgroup * memcg)3764 static void memcg_free_kmem(struct mem_cgroup *memcg)
3765 {
3766 }
3767 #endif /* CONFIG_MEMCG_KMEM */
3768 
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3769 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3770 				 unsigned long max)
3771 {
3772 	int ret;
3773 
3774 	mutex_lock(&memcg_max_mutex);
3775 	ret = page_counter_set_max(&memcg->kmem, max);
3776 	mutex_unlock(&memcg_max_mutex);
3777 	return ret;
3778 }
3779 
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3780 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3781 {
3782 	int ret;
3783 
3784 	mutex_lock(&memcg_max_mutex);
3785 
3786 	ret = page_counter_set_max(&memcg->tcpmem, max);
3787 	if (ret)
3788 		goto out;
3789 
3790 	if (!memcg->tcpmem_active) {
3791 		/*
3792 		 * The active flag needs to be written after the static_key
3793 		 * update. This is what guarantees that the socket activation
3794 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3795 		 * for details, and note that we don't mark any socket as
3796 		 * belonging to this memcg until that flag is up.
3797 		 *
3798 		 * We need to do this, because static_keys will span multiple
3799 		 * sites, but we can't control their order. If we mark a socket
3800 		 * as accounted, but the accounting functions are not patched in
3801 		 * yet, we'll lose accounting.
3802 		 *
3803 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3804 		 * because when this value change, the code to process it is not
3805 		 * patched in yet.
3806 		 */
3807 		static_branch_inc(&memcg_sockets_enabled_key);
3808 		memcg->tcpmem_active = true;
3809 	}
3810 out:
3811 	mutex_unlock(&memcg_max_mutex);
3812 	return ret;
3813 }
3814 
3815 /*
3816  * The user of this function is...
3817  * RES_LIMIT.
3818  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3819 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3820 				char *buf, size_t nbytes, loff_t off)
3821 {
3822 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3823 	unsigned long nr_pages;
3824 	int ret;
3825 
3826 	buf = strstrip(buf);
3827 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3828 	if (ret)
3829 		return ret;
3830 
3831 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3832 	case RES_LIMIT:
3833 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3834 			ret = -EINVAL;
3835 			break;
3836 		}
3837 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838 		case _MEM:
3839 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3840 			break;
3841 		case _MEMSWAP:
3842 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3843 			break;
3844 		case _KMEM:
3845 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3846 				     "Please report your usecase to linux-mm@kvack.org if you "
3847 				     "depend on this functionality.\n");
3848 			ret = memcg_update_kmem_max(memcg, nr_pages);
3849 			break;
3850 		case _TCP:
3851 			ret = memcg_update_tcp_max(memcg, nr_pages);
3852 			break;
3853 		}
3854 		break;
3855 	case RES_SOFT_LIMIT:
3856 		memcg->soft_limit = nr_pages;
3857 		ret = 0;
3858 		break;
3859 	}
3860 	return ret ?: nbytes;
3861 }
3862 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3863 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3864 				size_t nbytes, loff_t off)
3865 {
3866 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3867 	struct page_counter *counter;
3868 
3869 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3870 	case _MEM:
3871 		counter = &memcg->memory;
3872 		break;
3873 	case _MEMSWAP:
3874 		counter = &memcg->memsw;
3875 		break;
3876 	case _KMEM:
3877 		counter = &memcg->kmem;
3878 		break;
3879 	case _TCP:
3880 		counter = &memcg->tcpmem;
3881 		break;
3882 	default:
3883 		BUG();
3884 	}
3885 
3886 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3887 	case RES_MAX_USAGE:
3888 		page_counter_reset_watermark(counter);
3889 		break;
3890 	case RES_FAILCNT:
3891 		counter->failcnt = 0;
3892 		break;
3893 	default:
3894 		BUG();
3895 	}
3896 
3897 	return nbytes;
3898 }
3899 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3900 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3901 					struct cftype *cft)
3902 {
3903 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3904 }
3905 
3906 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3907 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3908 					struct cftype *cft, u64 val)
3909 {
3910 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3911 
3912 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3913 		     "Please report your usecase to linux-mm@kvack.org if you "
3914 		     "depend on this functionality.\n");
3915 
3916 	if (val & ~MOVE_MASK)
3917 		return -EINVAL;
3918 
3919 	/*
3920 	 * No kind of locking is needed in here, because ->can_attach() will
3921 	 * check this value once in the beginning of the process, and then carry
3922 	 * on with stale data. This means that changes to this value will only
3923 	 * affect task migrations starting after the change.
3924 	 */
3925 	memcg->move_charge_at_immigrate = val;
3926 	return 0;
3927 }
3928 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3929 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3930 					struct cftype *cft, u64 val)
3931 {
3932 	return -ENOSYS;
3933 }
3934 #endif
3935 
3936 #ifdef CONFIG_NUMA
3937 
3938 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3939 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3940 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3941 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3942 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3943 				int nid, unsigned int lru_mask, bool tree)
3944 {
3945 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3946 	unsigned long nr = 0;
3947 	enum lru_list lru;
3948 
3949 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3950 
3951 	for_each_lru(lru) {
3952 		if (!(BIT(lru) & lru_mask))
3953 			continue;
3954 		if (tree)
3955 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3956 		else
3957 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3958 	}
3959 	return nr;
3960 }
3961 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3963 					     unsigned int lru_mask,
3964 					     bool tree)
3965 {
3966 	unsigned long nr = 0;
3967 	enum lru_list lru;
3968 
3969 	for_each_lru(lru) {
3970 		if (!(BIT(lru) & lru_mask))
3971 			continue;
3972 		if (tree)
3973 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3974 		else
3975 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3976 	}
3977 	return nr;
3978 }
3979 
memcg_numa_stat_show(struct seq_file * m,void * v)3980 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3981 {
3982 	struct numa_stat {
3983 		const char *name;
3984 		unsigned int lru_mask;
3985 	};
3986 
3987 	static const struct numa_stat stats[] = {
3988 		{ "total", LRU_ALL },
3989 		{ "file", LRU_ALL_FILE },
3990 		{ "anon", LRU_ALL_ANON },
3991 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3992 	};
3993 	const struct numa_stat *stat;
3994 	int nid;
3995 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3996 
3997 	mem_cgroup_flush_stats();
3998 
3999 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4000 		seq_printf(m, "%s=%lu", stat->name,
4001 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4002 						   false));
4003 		for_each_node_state(nid, N_MEMORY)
4004 			seq_printf(m, " N%d=%lu", nid,
4005 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4006 							stat->lru_mask, false));
4007 		seq_putc(m, '\n');
4008 	}
4009 
4010 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4011 
4012 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4013 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4014 						   true));
4015 		for_each_node_state(nid, N_MEMORY)
4016 			seq_printf(m, " N%d=%lu", nid,
4017 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4018 							stat->lru_mask, true));
4019 		seq_putc(m, '\n');
4020 	}
4021 
4022 	return 0;
4023 }
4024 #endif /* CONFIG_NUMA */
4025 
4026 static const unsigned int memcg1_stats[] = {
4027 	NR_FILE_PAGES,
4028 	NR_ANON_MAPPED,
4029 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4030 	NR_ANON_THPS,
4031 #endif
4032 	NR_SHMEM,
4033 	NR_FILE_MAPPED,
4034 	NR_FILE_DIRTY,
4035 	NR_WRITEBACK,
4036 	MEMCG_SWAP,
4037 };
4038 
4039 static const char *const memcg1_stat_names[] = {
4040 	"cache",
4041 	"rss",
4042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4043 	"rss_huge",
4044 #endif
4045 	"shmem",
4046 	"mapped_file",
4047 	"dirty",
4048 	"writeback",
4049 	"swap",
4050 };
4051 
4052 /* Universal VM events cgroup1 shows, original sort order */
4053 static const unsigned int memcg1_events[] = {
4054 	PGPGIN,
4055 	PGPGOUT,
4056 	PGFAULT,
4057 	PGMAJFAULT,
4058 };
4059 
memcg_stat_show(struct seq_file * m,void * v)4060 static int memcg_stat_show(struct seq_file *m, void *v)
4061 {
4062 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4063 	unsigned long memory, memsw;
4064 	struct mem_cgroup *mi;
4065 	unsigned int i;
4066 
4067 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4068 
4069 	mem_cgroup_flush_stats();
4070 
4071 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4072 		unsigned long nr;
4073 
4074 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4075 			continue;
4076 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4077 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4078 	}
4079 
4080 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4081 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4082 			   memcg_events_local(memcg, memcg1_events[i]));
4083 
4084 	for (i = 0; i < NR_LRU_LISTS; i++)
4085 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4086 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4087 			   PAGE_SIZE);
4088 
4089 	/* Hierarchical information */
4090 	memory = memsw = PAGE_COUNTER_MAX;
4091 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4092 		memory = min(memory, READ_ONCE(mi->memory.max));
4093 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4094 	}
4095 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4096 		   (u64)memory * PAGE_SIZE);
4097 	if (do_memsw_account())
4098 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4099 			   (u64)memsw * PAGE_SIZE);
4100 
4101 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4102 		unsigned long nr;
4103 
4104 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4105 			continue;
4106 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4107 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4108 						(u64)nr * PAGE_SIZE);
4109 	}
4110 
4111 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4112 		seq_printf(m, "total_%s %llu\n",
4113 			   vm_event_name(memcg1_events[i]),
4114 			   (u64)memcg_events(memcg, memcg1_events[i]));
4115 
4116 	for (i = 0; i < NR_LRU_LISTS; i++)
4117 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4118 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4119 			   PAGE_SIZE);
4120 
4121 #ifdef CONFIG_DEBUG_VM
4122 	{
4123 		pg_data_t *pgdat;
4124 		struct mem_cgroup_per_node *mz;
4125 		unsigned long anon_cost = 0;
4126 		unsigned long file_cost = 0;
4127 
4128 		for_each_online_pgdat(pgdat) {
4129 			mz = memcg->nodeinfo[pgdat->node_id];
4130 
4131 			anon_cost += mz->lruvec.anon_cost;
4132 			file_cost += mz->lruvec.file_cost;
4133 		}
4134 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4135 		seq_printf(m, "file_cost %lu\n", file_cost);
4136 	}
4137 #endif
4138 
4139 	return 0;
4140 }
4141 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4142 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4143 				      struct cftype *cft)
4144 {
4145 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4146 
4147 	return mem_cgroup_swappiness(memcg);
4148 }
4149 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4150 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4151 				       struct cftype *cft, u64 val)
4152 {
4153 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4154 
4155 	if (val > 200)
4156 		return -EINVAL;
4157 
4158 	if (!mem_cgroup_is_root(memcg))
4159 		memcg->swappiness = val;
4160 	else
4161 		vm_swappiness = val;
4162 
4163 	return 0;
4164 }
4165 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4166 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4167 {
4168 	struct mem_cgroup_threshold_ary *t;
4169 	unsigned long usage;
4170 	int i;
4171 
4172 	rcu_read_lock();
4173 	if (!swap)
4174 		t = rcu_dereference(memcg->thresholds.primary);
4175 	else
4176 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4177 
4178 	if (!t)
4179 		goto unlock;
4180 
4181 	usage = mem_cgroup_usage(memcg, swap);
4182 
4183 	/*
4184 	 * current_threshold points to threshold just below or equal to usage.
4185 	 * If it's not true, a threshold was crossed after last
4186 	 * call of __mem_cgroup_threshold().
4187 	 */
4188 	i = t->current_threshold;
4189 
4190 	/*
4191 	 * Iterate backward over array of thresholds starting from
4192 	 * current_threshold and check if a threshold is crossed.
4193 	 * If none of thresholds below usage is crossed, we read
4194 	 * only one element of the array here.
4195 	 */
4196 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4197 		eventfd_signal(t->entries[i].eventfd, 1);
4198 
4199 	/* i = current_threshold + 1 */
4200 	i++;
4201 
4202 	/*
4203 	 * Iterate forward over array of thresholds starting from
4204 	 * current_threshold+1 and check if a threshold is crossed.
4205 	 * If none of thresholds above usage is crossed, we read
4206 	 * only one element of the array here.
4207 	 */
4208 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4209 		eventfd_signal(t->entries[i].eventfd, 1);
4210 
4211 	/* Update current_threshold */
4212 	t->current_threshold = i - 1;
4213 unlock:
4214 	rcu_read_unlock();
4215 }
4216 
mem_cgroup_threshold(struct mem_cgroup * memcg)4217 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4218 {
4219 	while (memcg) {
4220 		__mem_cgroup_threshold(memcg, false);
4221 		if (do_memsw_account())
4222 			__mem_cgroup_threshold(memcg, true);
4223 
4224 		memcg = parent_mem_cgroup(memcg);
4225 	}
4226 }
4227 
compare_thresholds(const void * a,const void * b)4228 static int compare_thresholds(const void *a, const void *b)
4229 {
4230 	const struct mem_cgroup_threshold *_a = a;
4231 	const struct mem_cgroup_threshold *_b = b;
4232 
4233 	if (_a->threshold > _b->threshold)
4234 		return 1;
4235 
4236 	if (_a->threshold < _b->threshold)
4237 		return -1;
4238 
4239 	return 0;
4240 }
4241 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4242 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4243 {
4244 	struct mem_cgroup_eventfd_list *ev;
4245 
4246 	spin_lock(&memcg_oom_lock);
4247 
4248 	list_for_each_entry(ev, &memcg->oom_notify, list)
4249 		eventfd_signal(ev->eventfd, 1);
4250 
4251 	spin_unlock(&memcg_oom_lock);
4252 	return 0;
4253 }
4254 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4255 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4256 {
4257 	struct mem_cgroup *iter;
4258 
4259 	for_each_mem_cgroup_tree(iter, memcg)
4260 		mem_cgroup_oom_notify_cb(iter);
4261 }
4262 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4263 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4264 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4265 {
4266 	struct mem_cgroup_thresholds *thresholds;
4267 	struct mem_cgroup_threshold_ary *new;
4268 	unsigned long threshold;
4269 	unsigned long usage;
4270 	int i, size, ret;
4271 
4272 	ret = page_counter_memparse(args, "-1", &threshold);
4273 	if (ret)
4274 		return ret;
4275 
4276 	mutex_lock(&memcg->thresholds_lock);
4277 
4278 	if (type == _MEM) {
4279 		thresholds = &memcg->thresholds;
4280 		usage = mem_cgroup_usage(memcg, false);
4281 	} else if (type == _MEMSWAP) {
4282 		thresholds = &memcg->memsw_thresholds;
4283 		usage = mem_cgroup_usage(memcg, true);
4284 	} else
4285 		BUG();
4286 
4287 	/* Check if a threshold crossed before adding a new one */
4288 	if (thresholds->primary)
4289 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4290 
4291 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4292 
4293 	/* Allocate memory for new array of thresholds */
4294 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4295 	if (!new) {
4296 		ret = -ENOMEM;
4297 		goto unlock;
4298 	}
4299 	new->size = size;
4300 
4301 	/* Copy thresholds (if any) to new array */
4302 	if (thresholds->primary)
4303 		memcpy(new->entries, thresholds->primary->entries,
4304 		       flex_array_size(new, entries, size - 1));
4305 
4306 	/* Add new threshold */
4307 	new->entries[size - 1].eventfd = eventfd;
4308 	new->entries[size - 1].threshold = threshold;
4309 
4310 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4311 	sort(new->entries, size, sizeof(*new->entries),
4312 			compare_thresholds, NULL);
4313 
4314 	/* Find current threshold */
4315 	new->current_threshold = -1;
4316 	for (i = 0; i < size; i++) {
4317 		if (new->entries[i].threshold <= usage) {
4318 			/*
4319 			 * new->current_threshold will not be used until
4320 			 * rcu_assign_pointer(), so it's safe to increment
4321 			 * it here.
4322 			 */
4323 			++new->current_threshold;
4324 		} else
4325 			break;
4326 	}
4327 
4328 	/* Free old spare buffer and save old primary buffer as spare */
4329 	kfree(thresholds->spare);
4330 	thresholds->spare = thresholds->primary;
4331 
4332 	rcu_assign_pointer(thresholds->primary, new);
4333 
4334 	/* To be sure that nobody uses thresholds */
4335 	synchronize_rcu();
4336 
4337 unlock:
4338 	mutex_unlock(&memcg->thresholds_lock);
4339 
4340 	return ret;
4341 }
4342 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4343 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4344 	struct eventfd_ctx *eventfd, const char *args)
4345 {
4346 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4347 }
4348 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4349 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350 	struct eventfd_ctx *eventfd, const char *args)
4351 {
4352 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4353 }
4354 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4355 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4356 	struct eventfd_ctx *eventfd, enum res_type type)
4357 {
4358 	struct mem_cgroup_thresholds *thresholds;
4359 	struct mem_cgroup_threshold_ary *new;
4360 	unsigned long usage;
4361 	int i, j, size, entries;
4362 
4363 	mutex_lock(&memcg->thresholds_lock);
4364 
4365 	if (type == _MEM) {
4366 		thresholds = &memcg->thresholds;
4367 		usage = mem_cgroup_usage(memcg, false);
4368 	} else if (type == _MEMSWAP) {
4369 		thresholds = &memcg->memsw_thresholds;
4370 		usage = mem_cgroup_usage(memcg, true);
4371 	} else
4372 		BUG();
4373 
4374 	if (!thresholds->primary)
4375 		goto unlock;
4376 
4377 	/* Check if a threshold crossed before removing */
4378 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4379 
4380 	/* Calculate new number of threshold */
4381 	size = entries = 0;
4382 	for (i = 0; i < thresholds->primary->size; i++) {
4383 		if (thresholds->primary->entries[i].eventfd != eventfd)
4384 			size++;
4385 		else
4386 			entries++;
4387 	}
4388 
4389 	new = thresholds->spare;
4390 
4391 	/* If no items related to eventfd have been cleared, nothing to do */
4392 	if (!entries)
4393 		goto unlock;
4394 
4395 	/* Set thresholds array to NULL if we don't have thresholds */
4396 	if (!size) {
4397 		kfree(new);
4398 		new = NULL;
4399 		goto swap_buffers;
4400 	}
4401 
4402 	new->size = size;
4403 
4404 	/* Copy thresholds and find current threshold */
4405 	new->current_threshold = -1;
4406 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4407 		if (thresholds->primary->entries[i].eventfd == eventfd)
4408 			continue;
4409 
4410 		new->entries[j] = thresholds->primary->entries[i];
4411 		if (new->entries[j].threshold <= usage) {
4412 			/*
4413 			 * new->current_threshold will not be used
4414 			 * until rcu_assign_pointer(), so it's safe to increment
4415 			 * it here.
4416 			 */
4417 			++new->current_threshold;
4418 		}
4419 		j++;
4420 	}
4421 
4422 swap_buffers:
4423 	/* Swap primary and spare array */
4424 	thresholds->spare = thresholds->primary;
4425 
4426 	rcu_assign_pointer(thresholds->primary, new);
4427 
4428 	/* To be sure that nobody uses thresholds */
4429 	synchronize_rcu();
4430 
4431 	/* If all events are unregistered, free the spare array */
4432 	if (!new) {
4433 		kfree(thresholds->spare);
4434 		thresholds->spare = NULL;
4435 	}
4436 unlock:
4437 	mutex_unlock(&memcg->thresholds_lock);
4438 }
4439 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4440 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4441 	struct eventfd_ctx *eventfd)
4442 {
4443 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4444 }
4445 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4446 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447 	struct eventfd_ctx *eventfd)
4448 {
4449 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4450 }
4451 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4452 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4453 	struct eventfd_ctx *eventfd, const char *args)
4454 {
4455 	struct mem_cgroup_eventfd_list *event;
4456 
4457 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4458 	if (!event)
4459 		return -ENOMEM;
4460 
4461 	spin_lock(&memcg_oom_lock);
4462 
4463 	event->eventfd = eventfd;
4464 	list_add(&event->list, &memcg->oom_notify);
4465 
4466 	/* already in OOM ? */
4467 	if (memcg->under_oom)
4468 		eventfd_signal(eventfd, 1);
4469 	spin_unlock(&memcg_oom_lock);
4470 
4471 	return 0;
4472 }
4473 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4474 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4475 	struct eventfd_ctx *eventfd)
4476 {
4477 	struct mem_cgroup_eventfd_list *ev, *tmp;
4478 
4479 	spin_lock(&memcg_oom_lock);
4480 
4481 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4482 		if (ev->eventfd == eventfd) {
4483 			list_del(&ev->list);
4484 			kfree(ev);
4485 		}
4486 	}
4487 
4488 	spin_unlock(&memcg_oom_lock);
4489 }
4490 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4491 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4492 {
4493 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4494 
4495 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4496 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4497 	seq_printf(sf, "oom_kill %lu\n",
4498 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4499 	return 0;
4500 }
4501 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4502 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4503 	struct cftype *cft, u64 val)
4504 {
4505 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4506 
4507 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4508 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4509 		return -EINVAL;
4510 
4511 	memcg->oom_kill_disable = val;
4512 	if (!val)
4513 		memcg_oom_recover(memcg);
4514 
4515 	return 0;
4516 }
4517 
4518 #ifdef CONFIG_CGROUP_WRITEBACK
4519 
4520 #include <trace/events/writeback.h>
4521 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4522 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4523 {
4524 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4525 }
4526 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4527 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4528 {
4529 	wb_domain_exit(&memcg->cgwb_domain);
4530 }
4531 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4532 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4533 {
4534 	wb_domain_size_changed(&memcg->cgwb_domain);
4535 }
4536 
mem_cgroup_wb_domain(struct bdi_writeback * wb)4537 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4538 {
4539 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4540 
4541 	if (!memcg->css.parent)
4542 		return NULL;
4543 
4544 	return &memcg->cgwb_domain;
4545 }
4546 
4547 /**
4548  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4549  * @wb: bdi_writeback in question
4550  * @pfilepages: out parameter for number of file pages
4551  * @pheadroom: out parameter for number of allocatable pages according to memcg
4552  * @pdirty: out parameter for number of dirty pages
4553  * @pwriteback: out parameter for number of pages under writeback
4554  *
4555  * Determine the numbers of file, headroom, dirty, and writeback pages in
4556  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4557  * is a bit more involved.
4558  *
4559  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4560  * headroom is calculated as the lowest headroom of itself and the
4561  * ancestors.  Note that this doesn't consider the actual amount of
4562  * available memory in the system.  The caller should further cap
4563  * *@pheadroom accordingly.
4564  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4565 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4566 			 unsigned long *pheadroom, unsigned long *pdirty,
4567 			 unsigned long *pwriteback)
4568 {
4569 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4570 	struct mem_cgroup *parent;
4571 
4572 	mem_cgroup_flush_stats();
4573 
4574 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4575 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4576 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4577 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4578 
4579 	*pheadroom = PAGE_COUNTER_MAX;
4580 	while ((parent = parent_mem_cgroup(memcg))) {
4581 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4582 					    READ_ONCE(memcg->memory.high));
4583 		unsigned long used = page_counter_read(&memcg->memory);
4584 
4585 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4586 		memcg = parent;
4587 	}
4588 }
4589 
4590 /*
4591  * Foreign dirty flushing
4592  *
4593  * There's an inherent mismatch between memcg and writeback.  The former
4594  * tracks ownership per-page while the latter per-inode.  This was a
4595  * deliberate design decision because honoring per-page ownership in the
4596  * writeback path is complicated, may lead to higher CPU and IO overheads
4597  * and deemed unnecessary given that write-sharing an inode across
4598  * different cgroups isn't a common use-case.
4599  *
4600  * Combined with inode majority-writer ownership switching, this works well
4601  * enough in most cases but there are some pathological cases.  For
4602  * example, let's say there are two cgroups A and B which keep writing to
4603  * different but confined parts of the same inode.  B owns the inode and
4604  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4605  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4606  * triggering background writeback.  A will be slowed down without a way to
4607  * make writeback of the dirty pages happen.
4608  *
4609  * Conditions like the above can lead to a cgroup getting repeatedly and
4610  * severely throttled after making some progress after each
4611  * dirty_expire_interval while the underlying IO device is almost
4612  * completely idle.
4613  *
4614  * Solving this problem completely requires matching the ownership tracking
4615  * granularities between memcg and writeback in either direction.  However,
4616  * the more egregious behaviors can be avoided by simply remembering the
4617  * most recent foreign dirtying events and initiating remote flushes on
4618  * them when local writeback isn't enough to keep the memory clean enough.
4619  *
4620  * The following two functions implement such mechanism.  When a foreign
4621  * page - a page whose memcg and writeback ownerships don't match - is
4622  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4623  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4624  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4625  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4626  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4627  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4628  * limited to MEMCG_CGWB_FRN_CNT.
4629  *
4630  * The mechanism only remembers IDs and doesn't hold any object references.
4631  * As being wrong occasionally doesn't matter, updates and accesses to the
4632  * records are lockless and racy.
4633  */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4634 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4635 					     struct bdi_writeback *wb)
4636 {
4637 	struct mem_cgroup *memcg = page_memcg(page);
4638 	struct memcg_cgwb_frn *frn;
4639 	u64 now = get_jiffies_64();
4640 	u64 oldest_at = now;
4641 	int oldest = -1;
4642 	int i;
4643 
4644 	trace_track_foreign_dirty(page, wb);
4645 
4646 	/*
4647 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4648 	 * using it.  If not replace the oldest one which isn't being
4649 	 * written out.
4650 	 */
4651 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4652 		frn = &memcg->cgwb_frn[i];
4653 		if (frn->bdi_id == wb->bdi->id &&
4654 		    frn->memcg_id == wb->memcg_css->id)
4655 			break;
4656 		if (time_before64(frn->at, oldest_at) &&
4657 		    atomic_read(&frn->done.cnt) == 1) {
4658 			oldest = i;
4659 			oldest_at = frn->at;
4660 		}
4661 	}
4662 
4663 	if (i < MEMCG_CGWB_FRN_CNT) {
4664 		/*
4665 		 * Re-using an existing one.  Update timestamp lazily to
4666 		 * avoid making the cacheline hot.  We want them to be
4667 		 * reasonably up-to-date and significantly shorter than
4668 		 * dirty_expire_interval as that's what expires the record.
4669 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4670 		 */
4671 		unsigned long update_intv =
4672 			min_t(unsigned long, HZ,
4673 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4674 
4675 		if (time_before64(frn->at, now - update_intv))
4676 			frn->at = now;
4677 	} else if (oldest >= 0) {
4678 		/* replace the oldest free one */
4679 		frn = &memcg->cgwb_frn[oldest];
4680 		frn->bdi_id = wb->bdi->id;
4681 		frn->memcg_id = wb->memcg_css->id;
4682 		frn->at = now;
4683 	}
4684 }
4685 
4686 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4687 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4688 {
4689 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4690 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4691 	u64 now = jiffies_64;
4692 	int i;
4693 
4694 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4695 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4696 
4697 		/*
4698 		 * If the record is older than dirty_expire_interval,
4699 		 * writeback on it has already started.  No need to kick it
4700 		 * off again.  Also, don't start a new one if there's
4701 		 * already one in flight.
4702 		 */
4703 		if (time_after64(frn->at, now - intv) &&
4704 		    atomic_read(&frn->done.cnt) == 1) {
4705 			frn->at = 0;
4706 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4707 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4708 					       WB_REASON_FOREIGN_FLUSH,
4709 					       &frn->done);
4710 		}
4711 	}
4712 }
4713 
4714 #else	/* CONFIG_CGROUP_WRITEBACK */
4715 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4716 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4717 {
4718 	return 0;
4719 }
4720 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4721 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4722 {
4723 }
4724 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4725 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4726 {
4727 }
4728 
4729 #endif	/* CONFIG_CGROUP_WRITEBACK */
4730 
4731 /*
4732  * DO NOT USE IN NEW FILES.
4733  *
4734  * "cgroup.event_control" implementation.
4735  *
4736  * This is way over-engineered.  It tries to support fully configurable
4737  * events for each user.  Such level of flexibility is completely
4738  * unnecessary especially in the light of the planned unified hierarchy.
4739  *
4740  * Please deprecate this and replace with something simpler if at all
4741  * possible.
4742  */
4743 
4744 /*
4745  * Unregister event and free resources.
4746  *
4747  * Gets called from workqueue.
4748  */
memcg_event_remove(struct work_struct * work)4749 static void memcg_event_remove(struct work_struct *work)
4750 {
4751 	struct mem_cgroup_event *event =
4752 		container_of(work, struct mem_cgroup_event, remove);
4753 	struct mem_cgroup *memcg = event->memcg;
4754 
4755 	remove_wait_queue(event->wqh, &event->wait);
4756 
4757 	event->unregister_event(memcg, event->eventfd);
4758 
4759 	/* Notify userspace the event is going away. */
4760 	eventfd_signal(event->eventfd, 1);
4761 
4762 	eventfd_ctx_put(event->eventfd);
4763 	kfree(event);
4764 	css_put(&memcg->css);
4765 }
4766 
4767 /*
4768  * Gets called on EPOLLHUP on eventfd when user closes it.
4769  *
4770  * Called with wqh->lock held and interrupts disabled.
4771  */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4772 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4773 			    int sync, void *key)
4774 {
4775 	struct mem_cgroup_event *event =
4776 		container_of(wait, struct mem_cgroup_event, wait);
4777 	struct mem_cgroup *memcg = event->memcg;
4778 	__poll_t flags = key_to_poll(key);
4779 
4780 	if (flags & EPOLLHUP) {
4781 		/*
4782 		 * If the event has been detached at cgroup removal, we
4783 		 * can simply return knowing the other side will cleanup
4784 		 * for us.
4785 		 *
4786 		 * We can't race against event freeing since the other
4787 		 * side will require wqh->lock via remove_wait_queue(),
4788 		 * which we hold.
4789 		 */
4790 		spin_lock(&memcg->event_list_lock);
4791 		if (!list_empty(&event->list)) {
4792 			list_del_init(&event->list);
4793 			/*
4794 			 * We are in atomic context, but cgroup_event_remove()
4795 			 * may sleep, so we have to call it in workqueue.
4796 			 */
4797 			schedule_work(&event->remove);
4798 		}
4799 		spin_unlock(&memcg->event_list_lock);
4800 	}
4801 
4802 	return 0;
4803 }
4804 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4805 static void memcg_event_ptable_queue_proc(struct file *file,
4806 		wait_queue_head_t *wqh, poll_table *pt)
4807 {
4808 	struct mem_cgroup_event *event =
4809 		container_of(pt, struct mem_cgroup_event, pt);
4810 
4811 	event->wqh = wqh;
4812 	add_wait_queue(wqh, &event->wait);
4813 }
4814 
4815 /*
4816  * DO NOT USE IN NEW FILES.
4817  *
4818  * Parse input and register new cgroup event handler.
4819  *
4820  * Input must be in format '<event_fd> <control_fd> <args>'.
4821  * Interpretation of args is defined by control file implementation.
4822  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4823 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4824 					 char *buf, size_t nbytes, loff_t off)
4825 {
4826 	struct cgroup_subsys_state *css = of_css(of);
4827 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4828 	struct mem_cgroup_event *event;
4829 	struct cgroup_subsys_state *cfile_css;
4830 	unsigned int efd, cfd;
4831 	struct fd efile;
4832 	struct fd cfile;
4833 	struct dentry *cdentry;
4834 	const char *name;
4835 	char *endp;
4836 	int ret;
4837 
4838 	buf = strstrip(buf);
4839 
4840 	efd = simple_strtoul(buf, &endp, 10);
4841 	if (*endp != ' ')
4842 		return -EINVAL;
4843 	buf = endp + 1;
4844 
4845 	cfd = simple_strtoul(buf, &endp, 10);
4846 	if ((*endp != ' ') && (*endp != '\0'))
4847 		return -EINVAL;
4848 	buf = endp + 1;
4849 
4850 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4851 	if (!event)
4852 		return -ENOMEM;
4853 
4854 	event->memcg = memcg;
4855 	INIT_LIST_HEAD(&event->list);
4856 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4857 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4858 	INIT_WORK(&event->remove, memcg_event_remove);
4859 
4860 	efile = fdget(efd);
4861 	if (!efile.file) {
4862 		ret = -EBADF;
4863 		goto out_kfree;
4864 	}
4865 
4866 	event->eventfd = eventfd_ctx_fileget(efile.file);
4867 	if (IS_ERR(event->eventfd)) {
4868 		ret = PTR_ERR(event->eventfd);
4869 		goto out_put_efile;
4870 	}
4871 
4872 	cfile = fdget(cfd);
4873 	if (!cfile.file) {
4874 		ret = -EBADF;
4875 		goto out_put_eventfd;
4876 	}
4877 
4878 	/* the process need read permission on control file */
4879 	/* AV: shouldn't we check that it's been opened for read instead? */
4880 	ret = file_permission(cfile.file, MAY_READ);
4881 	if (ret < 0)
4882 		goto out_put_cfile;
4883 
4884 	/*
4885 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4886 	 * file can't be renamed, it's safe to access its name afterwards.
4887 	 */
4888 	cdentry = cfile.file->f_path.dentry;
4889 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4890 		ret = -EINVAL;
4891 		goto out_put_cfile;
4892 	}
4893 
4894 	/*
4895 	 * Determine the event callbacks and set them in @event.  This used
4896 	 * to be done via struct cftype but cgroup core no longer knows
4897 	 * about these events.  The following is crude but the whole thing
4898 	 * is for compatibility anyway.
4899 	 *
4900 	 * DO NOT ADD NEW FILES.
4901 	 */
4902 	name = cdentry->d_name.name;
4903 
4904 	if (!strcmp(name, "memory.usage_in_bytes")) {
4905 		event->register_event = mem_cgroup_usage_register_event;
4906 		event->unregister_event = mem_cgroup_usage_unregister_event;
4907 	} else if (!strcmp(name, "memory.oom_control")) {
4908 		event->register_event = mem_cgroup_oom_register_event;
4909 		event->unregister_event = mem_cgroup_oom_unregister_event;
4910 	} else if (!strcmp(name, "memory.pressure_level")) {
4911 		event->register_event = vmpressure_register_event;
4912 		event->unregister_event = vmpressure_unregister_event;
4913 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4914 		event->register_event = memsw_cgroup_usage_register_event;
4915 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4916 	} else {
4917 		ret = -EINVAL;
4918 		goto out_put_cfile;
4919 	}
4920 
4921 	/*
4922 	 * Verify @cfile should belong to @css.  Also, remaining events are
4923 	 * automatically removed on cgroup destruction but the removal is
4924 	 * asynchronous, so take an extra ref on @css.
4925 	 */
4926 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4927 					       &memory_cgrp_subsys);
4928 	ret = -EINVAL;
4929 	if (IS_ERR(cfile_css))
4930 		goto out_put_cfile;
4931 	if (cfile_css != css) {
4932 		css_put(cfile_css);
4933 		goto out_put_cfile;
4934 	}
4935 
4936 	ret = event->register_event(memcg, event->eventfd, buf);
4937 	if (ret)
4938 		goto out_put_css;
4939 
4940 	vfs_poll(efile.file, &event->pt);
4941 
4942 	spin_lock_irq(&memcg->event_list_lock);
4943 	list_add(&event->list, &memcg->event_list);
4944 	spin_unlock_irq(&memcg->event_list_lock);
4945 
4946 	fdput(cfile);
4947 	fdput(efile);
4948 
4949 	return nbytes;
4950 
4951 out_put_css:
4952 	css_put(css);
4953 out_put_cfile:
4954 	fdput(cfile);
4955 out_put_eventfd:
4956 	eventfd_ctx_put(event->eventfd);
4957 out_put_efile:
4958 	fdput(efile);
4959 out_kfree:
4960 	kfree(event);
4961 
4962 	return ret;
4963 }
4964 
4965 static struct cftype mem_cgroup_legacy_files[] = {
4966 	{
4967 		.name = "usage_in_bytes",
4968 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4969 		.read_u64 = mem_cgroup_read_u64,
4970 	},
4971 	{
4972 		.name = "max_usage_in_bytes",
4973 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4974 		.write = mem_cgroup_reset,
4975 		.read_u64 = mem_cgroup_read_u64,
4976 	},
4977 	{
4978 		.name = "limit_in_bytes",
4979 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4980 		.write = mem_cgroup_write,
4981 		.read_u64 = mem_cgroup_read_u64,
4982 	},
4983 	{
4984 		.name = "soft_limit_in_bytes",
4985 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4986 		.write = mem_cgroup_write,
4987 		.read_u64 = mem_cgroup_read_u64,
4988 	},
4989 	{
4990 		.name = "failcnt",
4991 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4992 		.write = mem_cgroup_reset,
4993 		.read_u64 = mem_cgroup_read_u64,
4994 	},
4995 	{
4996 		.name = "stat",
4997 		.seq_show = memcg_stat_show,
4998 	},
4999 	{
5000 		.name = "force_empty",
5001 		.write = mem_cgroup_force_empty_write,
5002 	},
5003 	{
5004 		.name = "use_hierarchy",
5005 		.write_u64 = mem_cgroup_hierarchy_write,
5006 		.read_u64 = mem_cgroup_hierarchy_read,
5007 	},
5008 	{
5009 		.name = "cgroup.event_control",		/* XXX: for compat */
5010 		.write = memcg_write_event_control,
5011 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5012 	},
5013 	{
5014 		.name = "swappiness",
5015 		.read_u64 = mem_cgroup_swappiness_read,
5016 		.write_u64 = mem_cgroup_swappiness_write,
5017 	},
5018 	{
5019 		.name = "move_charge_at_immigrate",
5020 		.read_u64 = mem_cgroup_move_charge_read,
5021 		.write_u64 = mem_cgroup_move_charge_write,
5022 	},
5023 	{
5024 		.name = "oom_control",
5025 		.seq_show = mem_cgroup_oom_control_read,
5026 		.write_u64 = mem_cgroup_oom_control_write,
5027 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5028 	},
5029 	{
5030 		.name = "pressure_level",
5031 	},
5032 #ifdef CONFIG_NUMA
5033 	{
5034 		.name = "numa_stat",
5035 		.seq_show = memcg_numa_stat_show,
5036 	},
5037 #endif
5038 	{
5039 		.name = "kmem.limit_in_bytes",
5040 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5041 		.write = mem_cgroup_write,
5042 		.read_u64 = mem_cgroup_read_u64,
5043 	},
5044 	{
5045 		.name = "kmem.usage_in_bytes",
5046 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5047 		.read_u64 = mem_cgroup_read_u64,
5048 	},
5049 	{
5050 		.name = "kmem.failcnt",
5051 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5052 		.write = mem_cgroup_reset,
5053 		.read_u64 = mem_cgroup_read_u64,
5054 	},
5055 	{
5056 		.name = "kmem.max_usage_in_bytes",
5057 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5058 		.write = mem_cgroup_reset,
5059 		.read_u64 = mem_cgroup_read_u64,
5060 	},
5061 #if defined(CONFIG_MEMCG_KMEM) && \
5062 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5063 	{
5064 		.name = "kmem.slabinfo",
5065 		.seq_show = memcg_slab_show,
5066 	},
5067 #endif
5068 	{
5069 		.name = "kmem.tcp.limit_in_bytes",
5070 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5071 		.write = mem_cgroup_write,
5072 		.read_u64 = mem_cgroup_read_u64,
5073 	},
5074 	{
5075 		.name = "kmem.tcp.usage_in_bytes",
5076 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5077 		.read_u64 = mem_cgroup_read_u64,
5078 	},
5079 	{
5080 		.name = "kmem.tcp.failcnt",
5081 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5082 		.write = mem_cgroup_reset,
5083 		.read_u64 = mem_cgroup_read_u64,
5084 	},
5085 	{
5086 		.name = "kmem.tcp.max_usage_in_bytes",
5087 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5088 		.write = mem_cgroup_reset,
5089 		.read_u64 = mem_cgroup_read_u64,
5090 	},
5091 	{ },	/* terminate */
5092 };
5093 
5094 /*
5095  * Private memory cgroup IDR
5096  *
5097  * Swap-out records and page cache shadow entries need to store memcg
5098  * references in constrained space, so we maintain an ID space that is
5099  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5100  * memory-controlled cgroups to 64k.
5101  *
5102  * However, there usually are many references to the offline CSS after
5103  * the cgroup has been destroyed, such as page cache or reclaimable
5104  * slab objects, that don't need to hang on to the ID. We want to keep
5105  * those dead CSS from occupying IDs, or we might quickly exhaust the
5106  * relatively small ID space and prevent the creation of new cgroups
5107  * even when there are much fewer than 64k cgroups - possibly none.
5108  *
5109  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5110  * be freed and recycled when it's no longer needed, which is usually
5111  * when the CSS is offlined.
5112  *
5113  * The only exception to that are records of swapped out tmpfs/shmem
5114  * pages that need to be attributed to live ancestors on swapin. But
5115  * those references are manageable from userspace.
5116  */
5117 
5118 static DEFINE_IDR(mem_cgroup_idr);
5119 
mem_cgroup_id_remove(struct mem_cgroup * memcg)5120 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5121 {
5122 	if (memcg->id.id > 0) {
5123 		trace_android_vh_mem_cgroup_id_remove(memcg);
5124 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5125 		memcg->id.id = 0;
5126 	}
5127 }
5128 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5129 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5130 						  unsigned int n)
5131 {
5132 	refcount_add(n, &memcg->id.ref);
5133 }
5134 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5135 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5136 {
5137 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5138 		mem_cgroup_id_remove(memcg);
5139 
5140 		/* Memcg ID pins CSS */
5141 		css_put(&memcg->css);
5142 	}
5143 }
5144 
mem_cgroup_id_put(struct mem_cgroup * memcg)5145 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5146 {
5147 	mem_cgroup_id_put_many(memcg, 1);
5148 }
5149 
5150 /**
5151  * mem_cgroup_from_id - look up a memcg from a memcg id
5152  * @id: the memcg id to look up
5153  *
5154  * Caller must hold rcu_read_lock().
5155  */
mem_cgroup_from_id(unsigned short id)5156 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5157 {
5158 	WARN_ON_ONCE(!rcu_read_lock_held());
5159 	return idr_find(&mem_cgroup_idr, id);
5160 }
5161 EXPORT_SYMBOL_GPL(mem_cgroup_from_id);
5162 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5163 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5164 {
5165 	struct mem_cgroup_per_node *pn;
5166 	int tmp = node;
5167 	/*
5168 	 * This routine is called against possible nodes.
5169 	 * But it's BUG to call kmalloc() against offline node.
5170 	 *
5171 	 * TODO: this routine can waste much memory for nodes which will
5172 	 *       never be onlined. It's better to use memory hotplug callback
5173 	 *       function.
5174 	 */
5175 	if (!node_state(node, N_NORMAL_MEMORY))
5176 		tmp = -1;
5177 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5178 	if (!pn)
5179 		return 1;
5180 
5181 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5182 						   GFP_KERNEL_ACCOUNT);
5183 	if (!pn->lruvec_stats_percpu) {
5184 		kfree(pn);
5185 		return 1;
5186 	}
5187 
5188 	lruvec_init(&pn->lruvec);
5189 	pn->usage_in_excess = 0;
5190 	pn->on_tree = false;
5191 	pn->memcg = memcg;
5192 
5193 	memcg->nodeinfo[node] = pn;
5194 	return 0;
5195 }
5196 
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5197 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5198 {
5199 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5200 
5201 	if (!pn)
5202 		return;
5203 
5204 	free_percpu(pn->lruvec_stats_percpu);
5205 	kfree(pn);
5206 }
5207 
__mem_cgroup_free(struct mem_cgroup * memcg)5208 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5209 {
5210 	int node;
5211 
5212 	trace_android_vh_mem_cgroup_free(memcg);
5213 	for_each_node(node)
5214 		free_mem_cgroup_per_node_info(memcg, node);
5215 	free_percpu(memcg->vmstats_percpu);
5216 	kfree(memcg);
5217 }
5218 
mem_cgroup_free(struct mem_cgroup * memcg)5219 static void mem_cgroup_free(struct mem_cgroup *memcg)
5220 {
5221 	lru_gen_exit_memcg(memcg);
5222 	memcg_wb_domain_exit(memcg);
5223 	__mem_cgroup_free(memcg);
5224 }
5225 
mem_cgroup_alloc(void)5226 static struct mem_cgroup *mem_cgroup_alloc(void)
5227 {
5228 	struct mem_cgroup *memcg;
5229 	unsigned int size;
5230 	int node;
5231 	int __maybe_unused i;
5232 	long error = -ENOMEM;
5233 
5234 	size = sizeof(struct mem_cgroup);
5235 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5236 
5237 	memcg = kzalloc(size, GFP_KERNEL);
5238 	if (!memcg)
5239 		return ERR_PTR(error);
5240 
5241 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5242 				 1, MEM_CGROUP_ID_MAX,
5243 				 GFP_KERNEL);
5244 	if (memcg->id.id < 0) {
5245 		error = memcg->id.id;
5246 		goto fail;
5247 	}
5248 
5249 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5250 						 GFP_KERNEL_ACCOUNT);
5251 	if (!memcg->vmstats_percpu)
5252 		goto fail;
5253 
5254 	for_each_node(node)
5255 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5256 			goto fail;
5257 
5258 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5259 		goto fail;
5260 
5261 	INIT_WORK(&memcg->high_work, high_work_func);
5262 	INIT_LIST_HEAD(&memcg->oom_notify);
5263 	mutex_init(&memcg->thresholds_lock);
5264 	spin_lock_init(&memcg->move_lock);
5265 	vmpressure_init(&memcg->vmpressure);
5266 	INIT_LIST_HEAD(&memcg->event_list);
5267 	spin_lock_init(&memcg->event_list_lock);
5268 	memcg->socket_pressure = jiffies;
5269 	trace_android_rvh_memcgv2_init(memcg);
5270 #ifdef CONFIG_MEMCG_KMEM
5271 	memcg->kmemcg_id = -1;
5272 	INIT_LIST_HEAD(&memcg->objcg_list);
5273 #endif
5274 #ifdef CONFIG_CGROUP_WRITEBACK
5275 	INIT_LIST_HEAD(&memcg->cgwb_list);
5276 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5277 		memcg->cgwb_frn[i].done =
5278 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5279 #endif
5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5282 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5283 	memcg->deferred_split_queue.split_queue_len = 0;
5284 #endif
5285 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5286 	lru_gen_init_memcg(memcg);
5287 	trace_android_vh_mem_cgroup_alloc(memcg);
5288 	return memcg;
5289 fail:
5290 	mem_cgroup_id_remove(memcg);
5291 	__mem_cgroup_free(memcg);
5292 	return ERR_PTR(error);
5293 }
5294 
5295 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5296 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5297 {
5298 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5299 	struct mem_cgroup *memcg, *old_memcg;
5300 	long error = -ENOMEM;
5301 
5302 	old_memcg = set_active_memcg(parent);
5303 	memcg = mem_cgroup_alloc();
5304 	set_active_memcg(old_memcg);
5305 	if (IS_ERR(memcg))
5306 		return ERR_CAST(memcg);
5307 
5308 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5309 	memcg->soft_limit = PAGE_COUNTER_MAX;
5310 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5311 	if (parent) {
5312 		memcg->swappiness = mem_cgroup_swappiness(parent);
5313 		memcg->oom_kill_disable = parent->oom_kill_disable;
5314 
5315 		page_counter_init(&memcg->memory, &parent->memory);
5316 		page_counter_init(&memcg->swap, &parent->swap);
5317 		page_counter_init(&memcg->kmem, &parent->kmem);
5318 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5319 	} else {
5320 		page_counter_init(&memcg->memory, NULL);
5321 		page_counter_init(&memcg->swap, NULL);
5322 		page_counter_init(&memcg->kmem, NULL);
5323 		page_counter_init(&memcg->tcpmem, NULL);
5324 
5325 		root_mem_cgroup = memcg;
5326 		return &memcg->css;
5327 	}
5328 
5329 	/* The following stuff does not apply to the root */
5330 	error = memcg_online_kmem(memcg);
5331 	if (error)
5332 		goto fail;
5333 
5334 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5335 		static_branch_inc(&memcg_sockets_enabled_key);
5336 
5337 	return &memcg->css;
5338 fail:
5339 	mem_cgroup_id_remove(memcg);
5340 	mem_cgroup_free(memcg);
5341 	return ERR_PTR(error);
5342 }
5343 
mem_cgroup_css_online(struct cgroup_subsys_state * css)5344 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5345 {
5346 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347 
5348 	/*
5349 	 * A memcg must be visible for expand_shrinker_info()
5350 	 * by the time the maps are allocated. So, we allocate maps
5351 	 * here, when for_each_mem_cgroup() can't skip it.
5352 	 */
5353 	if (alloc_shrinker_info(memcg)) {
5354 		mem_cgroup_id_remove(memcg);
5355 		return -ENOMEM;
5356 	}
5357 
5358 	/* Online state pins memcg ID, memcg ID pins CSS */
5359 	refcount_set(&memcg->id.ref, 1);
5360 	css_get(css);
5361 
5362 	if (unlikely(mem_cgroup_is_root(memcg)))
5363 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5364 				   2UL*HZ);
5365 	trace_android_vh_mem_cgroup_css_online(css, memcg);
5366 	return 0;
5367 }
5368 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5369 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5370 {
5371 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5372 	struct mem_cgroup_event *event, *tmp;
5373 
5374 	trace_android_vh_mem_cgroup_css_offline(css, memcg);
5375 	/*
5376 	 * Unregister events and notify userspace.
5377 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5378 	 * directory to avoid race between userspace and kernelspace.
5379 	 */
5380 	spin_lock_irq(&memcg->event_list_lock);
5381 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5382 		list_del_init(&event->list);
5383 		schedule_work(&event->remove);
5384 	}
5385 	spin_unlock_irq(&memcg->event_list_lock);
5386 
5387 	page_counter_set_min(&memcg->memory, 0);
5388 	page_counter_set_low(&memcg->memory, 0);
5389 
5390 	memcg_offline_kmem(memcg);
5391 	reparent_shrinker_deferred(memcg);
5392 	wb_memcg_offline(memcg);
5393 
5394 	drain_all_stock(memcg);
5395 
5396 	mem_cgroup_id_put(memcg);
5397 }
5398 
mem_cgroup_css_released(struct cgroup_subsys_state * css)5399 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5400 {
5401 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402 
5403 	invalidate_reclaim_iterators(memcg);
5404 }
5405 
mem_cgroup_css_free(struct cgroup_subsys_state * css)5406 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5407 {
5408 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5409 	int __maybe_unused i;
5410 
5411 #ifdef CONFIG_CGROUP_WRITEBACK
5412 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5413 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5414 #endif
5415 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5416 		static_branch_dec(&memcg_sockets_enabled_key);
5417 
5418 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5419 		static_branch_dec(&memcg_sockets_enabled_key);
5420 
5421 	vmpressure_cleanup(&memcg->vmpressure);
5422 	cancel_work_sync(&memcg->high_work);
5423 	mem_cgroup_remove_from_trees(memcg);
5424 	free_shrinker_info(memcg);
5425 	memcg_free_kmem(memcg);
5426 	mem_cgroup_free(memcg);
5427 }
5428 
5429 /**
5430  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5431  * @css: the target css
5432  *
5433  * Reset the states of the mem_cgroup associated with @css.  This is
5434  * invoked when the userland requests disabling on the default hierarchy
5435  * but the memcg is pinned through dependency.  The memcg should stop
5436  * applying policies and should revert to the vanilla state as it may be
5437  * made visible again.
5438  *
5439  * The current implementation only resets the essential configurations.
5440  * This needs to be expanded to cover all the visible parts.
5441  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5442 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5443 {
5444 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5445 
5446 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5447 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5448 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5449 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5450 	page_counter_set_min(&memcg->memory, 0);
5451 	page_counter_set_low(&memcg->memory, 0);
5452 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5453 	memcg->soft_limit = PAGE_COUNTER_MAX;
5454 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5455 	memcg_wb_domain_size_changed(memcg);
5456 }
5457 
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5458 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5459 {
5460 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5461 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5462 	struct memcg_vmstats_percpu *statc;
5463 	long delta, v;
5464 	int i, nid;
5465 
5466 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5467 
5468 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5469 		/*
5470 		 * Collect the aggregated propagation counts of groups
5471 		 * below us. We're in a per-cpu loop here and this is
5472 		 * a global counter, so the first cycle will get them.
5473 		 */
5474 		delta = memcg->vmstats.state_pending[i];
5475 		if (delta)
5476 			memcg->vmstats.state_pending[i] = 0;
5477 
5478 		/* Add CPU changes on this level since the last flush */
5479 		v = READ_ONCE(statc->state[i]);
5480 		if (v != statc->state_prev[i]) {
5481 			delta += v - statc->state_prev[i];
5482 			statc->state_prev[i] = v;
5483 		}
5484 
5485 		if (!delta)
5486 			continue;
5487 
5488 		/* Aggregate counts on this level and propagate upwards */
5489 		memcg->vmstats.state[i] += delta;
5490 		if (parent)
5491 			parent->vmstats.state_pending[i] += delta;
5492 	}
5493 
5494 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5495 		delta = memcg->vmstats.events_pending[i];
5496 		if (delta)
5497 			memcg->vmstats.events_pending[i] = 0;
5498 
5499 		v = READ_ONCE(statc->events[i]);
5500 		if (v != statc->events_prev[i]) {
5501 			delta += v - statc->events_prev[i];
5502 			statc->events_prev[i] = v;
5503 		}
5504 
5505 		if (!delta)
5506 			continue;
5507 
5508 		memcg->vmstats.events[i] += delta;
5509 		if (parent)
5510 			parent->vmstats.events_pending[i] += delta;
5511 	}
5512 
5513 	for_each_node_state(nid, N_MEMORY) {
5514 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5515 		struct mem_cgroup_per_node *ppn = NULL;
5516 		struct lruvec_stats_percpu *lstatc;
5517 
5518 		if (parent)
5519 			ppn = parent->nodeinfo[nid];
5520 
5521 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5522 
5523 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5524 			delta = pn->lruvec_stats.state_pending[i];
5525 			if (delta)
5526 				pn->lruvec_stats.state_pending[i] = 0;
5527 
5528 			v = READ_ONCE(lstatc->state[i]);
5529 			if (v != lstatc->state_prev[i]) {
5530 				delta += v - lstatc->state_prev[i];
5531 				lstatc->state_prev[i] = v;
5532 			}
5533 
5534 			if (!delta)
5535 				continue;
5536 
5537 			pn->lruvec_stats.state[i] += delta;
5538 			if (ppn)
5539 				ppn->lruvec_stats.state_pending[i] += delta;
5540 		}
5541 	}
5542 }
5543 
5544 #ifdef CONFIG_MMU
5545 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5546 static int mem_cgroup_do_precharge(unsigned long count)
5547 {
5548 	int ret;
5549 
5550 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5551 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5552 	if (!ret) {
5553 		mc.precharge += count;
5554 		return ret;
5555 	}
5556 
5557 	/* Try charges one by one with reclaim, but do not retry */
5558 	while (count--) {
5559 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5560 		if (ret)
5561 			return ret;
5562 		mc.precharge++;
5563 		cond_resched();
5564 	}
5565 	return 0;
5566 }
5567 
5568 union mc_target {
5569 	struct page	*page;
5570 	swp_entry_t	ent;
5571 };
5572 
5573 enum mc_target_type {
5574 	MC_TARGET_NONE = 0,
5575 	MC_TARGET_PAGE,
5576 	MC_TARGET_SWAP,
5577 	MC_TARGET_DEVICE,
5578 };
5579 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5580 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5581 						unsigned long addr, pte_t ptent)
5582 {
5583 	struct page *page = vm_normal_page(vma, addr, ptent);
5584 
5585 	if (!page || !page_mapped(page))
5586 		return NULL;
5587 	if (PageAnon(page)) {
5588 		if (!(mc.flags & MOVE_ANON))
5589 			return NULL;
5590 	} else {
5591 		if (!(mc.flags & MOVE_FILE))
5592 			return NULL;
5593 	}
5594 	if (!get_page_unless_zero(page))
5595 		return NULL;
5596 
5597 	return page;
5598 }
5599 
5600 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5601 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5602 			pte_t ptent, swp_entry_t *entry)
5603 {
5604 	struct page *page = NULL;
5605 	swp_entry_t ent = pte_to_swp_entry(ptent);
5606 
5607 	if (!(mc.flags & MOVE_ANON))
5608 		return NULL;
5609 
5610 	/*
5611 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5612 	 * a device and because they are not accessible by CPU they are store
5613 	 * as special swap entry in the CPU page table.
5614 	 */
5615 	if (is_device_private_entry(ent)) {
5616 		page = pfn_swap_entry_to_page(ent);
5617 		/*
5618 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5619 		 * a refcount of 1 when free (unlike normal page)
5620 		 */
5621 		if (!page_ref_add_unless(page, 1, 1))
5622 			return NULL;
5623 		return page;
5624 	}
5625 
5626 	if (non_swap_entry(ent))
5627 		return NULL;
5628 
5629 	/*
5630 	 * Because lookup_swap_cache() updates some statistics counter,
5631 	 * we call find_get_page() with swapper_space directly.
5632 	 */
5633 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5634 	entry->val = ent.val;
5635 
5636 	return page;
5637 }
5638 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5639 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5640 			pte_t ptent, swp_entry_t *entry)
5641 {
5642 	return NULL;
5643 }
5644 #endif
5645 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5646 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5647 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5648 {
5649 	if (!vma->vm_file) /* anonymous vma */
5650 		return NULL;
5651 	if (!(mc.flags & MOVE_FILE))
5652 		return NULL;
5653 
5654 	/* page is moved even if it's not RSS of this task(page-faulted). */
5655 	/* shmem/tmpfs may report page out on swap: account for that too. */
5656 	return find_get_incore_page(vma->vm_file->f_mapping,
5657 			linear_page_index(vma, addr));
5658 }
5659 
5660 /**
5661  * mem_cgroup_move_account - move account of the page
5662  * @page: the page
5663  * @compound: charge the page as compound or small page
5664  * @from: mem_cgroup which the page is moved from.
5665  * @to:	mem_cgroup which the page is moved to. @from != @to.
5666  *
5667  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5668  *
5669  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5670  * from old cgroup.
5671  */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5672 static int mem_cgroup_move_account(struct page *page,
5673 				   bool compound,
5674 				   struct mem_cgroup *from,
5675 				   struct mem_cgroup *to)
5676 {
5677 	struct lruvec *from_vec, *to_vec;
5678 	struct pglist_data *pgdat;
5679 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5680 	int ret;
5681 
5682 	VM_BUG_ON(from == to);
5683 	VM_BUG_ON_PAGE(PageLRU(page), page);
5684 	VM_BUG_ON(compound && !PageTransHuge(page));
5685 
5686 	/*
5687 	 * Prevent mem_cgroup_migrate() from looking at
5688 	 * page's memory cgroup of its source page while we change it.
5689 	 */
5690 	ret = -EBUSY;
5691 	if (!trylock_page(page))
5692 		goto out;
5693 
5694 	ret = -EINVAL;
5695 	if (page_memcg(page) != from)
5696 		goto out_unlock;
5697 
5698 	pgdat = page_pgdat(page);
5699 	from_vec = mem_cgroup_lruvec(from, pgdat);
5700 	to_vec = mem_cgroup_lruvec(to, pgdat);
5701 
5702 	lock_page_memcg(page);
5703 
5704 	if (PageAnon(page)) {
5705 		if (page_mapped(page)) {
5706 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5707 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5708 			if (PageTransHuge(page)) {
5709 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5710 						   -nr_pages);
5711 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5712 						   nr_pages);
5713 			}
5714 		}
5715 	} else {
5716 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5717 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5718 
5719 		if (PageSwapBacked(page)) {
5720 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5721 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5722 		}
5723 
5724 		if (page_mapped(page)) {
5725 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5726 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5727 		}
5728 
5729 		if (PageDirty(page)) {
5730 			struct address_space *mapping = page_mapping(page);
5731 
5732 			if (mapping_can_writeback(mapping)) {
5733 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5734 						   -nr_pages);
5735 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5736 						   nr_pages);
5737 			}
5738 		}
5739 	}
5740 
5741 	if (PageWriteback(page)) {
5742 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5743 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5744 	}
5745 
5746 	/*
5747 	 * All state has been migrated, let's switch to the new memcg.
5748 	 *
5749 	 * It is safe to change page's memcg here because the page
5750 	 * is referenced, charged, isolated, and locked: we can't race
5751 	 * with (un)charging, migration, LRU putback, or anything else
5752 	 * that would rely on a stable page's memory cgroup.
5753 	 *
5754 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5755 	 * to save space. As soon as we switch page's memory cgroup to a
5756 	 * new memcg that isn't locked, the above state can change
5757 	 * concurrently again. Make sure we're truly done with it.
5758 	 */
5759 	smp_mb();
5760 
5761 	css_get(&to->css);
5762 	css_put(&from->css);
5763 
5764 	page->memcg_data = (unsigned long)to;
5765 
5766 	__unlock_page_memcg(from);
5767 
5768 	ret = 0;
5769 
5770 	local_irq_disable();
5771 	mem_cgroup_charge_statistics(to, page, nr_pages);
5772 	memcg_check_events(to, page);
5773 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5774 	memcg_check_events(from, page);
5775 	local_irq_enable();
5776 out_unlock:
5777 	unlock_page(page);
5778 out:
5779 	return ret;
5780 }
5781 
5782 /**
5783  * get_mctgt_type - get target type of moving charge
5784  * @vma: the vma the pte to be checked belongs
5785  * @addr: the address corresponding to the pte to be checked
5786  * @ptent: the pte to be checked
5787  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5788  *
5789  * Returns
5790  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5791  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5792  *     move charge. if @target is not NULL, the page is stored in target->page
5793  *     with extra refcnt got(Callers should handle it).
5794  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5795  *     target for charge migration. if @target is not NULL, the entry is stored
5796  *     in target->ent.
5797  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5798  *     (so ZONE_DEVICE page and thus not on the lru).
5799  *     For now we such page is charge like a regular page would be as for all
5800  *     intent and purposes it is just special memory taking the place of a
5801  *     regular page.
5802  *
5803  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5804  *
5805  * Called with pte lock held.
5806  */
5807 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5808 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5809 		unsigned long addr, pte_t ptent, union mc_target *target)
5810 {
5811 	struct page *page = NULL;
5812 	enum mc_target_type ret = MC_TARGET_NONE;
5813 	swp_entry_t ent = { .val = 0 };
5814 
5815 	if (pte_present(ptent))
5816 		page = mc_handle_present_pte(vma, addr, ptent);
5817 	else if (is_swap_pte(ptent))
5818 		page = mc_handle_swap_pte(vma, ptent, &ent);
5819 	else if (pte_none(ptent))
5820 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5821 
5822 	if (!page && !ent.val)
5823 		return ret;
5824 	if (page) {
5825 		/*
5826 		 * Do only loose check w/o serialization.
5827 		 * mem_cgroup_move_account() checks the page is valid or
5828 		 * not under LRU exclusion.
5829 		 */
5830 		if (page_memcg(page) == mc.from) {
5831 			ret = MC_TARGET_PAGE;
5832 			if (is_device_private_page(page))
5833 				ret = MC_TARGET_DEVICE;
5834 			if (target)
5835 				target->page = page;
5836 		}
5837 		if (!ret || !target)
5838 			put_page(page);
5839 	}
5840 	/*
5841 	 * There is a swap entry and a page doesn't exist or isn't charged.
5842 	 * But we cannot move a tail-page in a THP.
5843 	 */
5844 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5845 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5846 		ret = MC_TARGET_SWAP;
5847 		if (target)
5848 			target->ent = ent;
5849 	}
5850 	return ret;
5851 }
5852 
5853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5854 /*
5855  * We don't consider PMD mapped swapping or file mapped pages because THP does
5856  * not support them for now.
5857  * Caller should make sure that pmd_trans_huge(pmd) is true.
5858  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5859 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5860 		unsigned long addr, pmd_t pmd, union mc_target *target)
5861 {
5862 	struct page *page = NULL;
5863 	enum mc_target_type ret = MC_TARGET_NONE;
5864 
5865 	if (unlikely(is_swap_pmd(pmd))) {
5866 		VM_BUG_ON(thp_migration_supported() &&
5867 				  !is_pmd_migration_entry(pmd));
5868 		return ret;
5869 	}
5870 	page = pmd_page(pmd);
5871 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5872 	if (!(mc.flags & MOVE_ANON))
5873 		return ret;
5874 	if (page_memcg(page) == mc.from) {
5875 		ret = MC_TARGET_PAGE;
5876 		if (target) {
5877 			get_page(page);
5878 			target->page = page;
5879 		}
5880 	}
5881 	return ret;
5882 }
5883 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5884 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5885 		unsigned long addr, pmd_t pmd, union mc_target *target)
5886 {
5887 	return MC_TARGET_NONE;
5888 }
5889 #endif
5890 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5891 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5892 					unsigned long addr, unsigned long end,
5893 					struct mm_walk *walk)
5894 {
5895 	struct vm_area_struct *vma = walk->vma;
5896 	pte_t *pte;
5897 	spinlock_t *ptl;
5898 
5899 	ptl = pmd_trans_huge_lock(pmd, vma);
5900 	if (ptl) {
5901 		/*
5902 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5903 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5904 		 * this might change.
5905 		 */
5906 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5907 			mc.precharge += HPAGE_PMD_NR;
5908 		spin_unlock(ptl);
5909 		return 0;
5910 	}
5911 
5912 	if (pmd_trans_unstable(pmd))
5913 		return 0;
5914 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5915 	for (; addr != end; pte++, addr += PAGE_SIZE)
5916 		if (get_mctgt_type(vma, addr, *pte, NULL))
5917 			mc.precharge++;	/* increment precharge temporarily */
5918 	pte_unmap_unlock(pte - 1, ptl);
5919 	cond_resched();
5920 
5921 	return 0;
5922 }
5923 
5924 static const struct mm_walk_ops precharge_walk_ops = {
5925 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5926 };
5927 
mem_cgroup_count_precharge(struct mm_struct * mm)5928 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5929 {
5930 	unsigned long precharge;
5931 
5932 	mmap_read_lock(mm);
5933 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5934 	mmap_read_unlock(mm);
5935 
5936 	precharge = mc.precharge;
5937 	mc.precharge = 0;
5938 
5939 	return precharge;
5940 }
5941 
mem_cgroup_precharge_mc(struct mm_struct * mm)5942 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5943 {
5944 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5945 
5946 	VM_BUG_ON(mc.moving_task);
5947 	mc.moving_task = current;
5948 	return mem_cgroup_do_precharge(precharge);
5949 }
5950 
5951 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5952 static void __mem_cgroup_clear_mc(void)
5953 {
5954 	struct mem_cgroup *from = mc.from;
5955 	struct mem_cgroup *to = mc.to;
5956 
5957 	/* we must uncharge all the leftover precharges from mc.to */
5958 	if (mc.precharge) {
5959 		cancel_charge(mc.to, mc.precharge);
5960 		mc.precharge = 0;
5961 	}
5962 	/*
5963 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5964 	 * we must uncharge here.
5965 	 */
5966 	if (mc.moved_charge) {
5967 		cancel_charge(mc.from, mc.moved_charge);
5968 		mc.moved_charge = 0;
5969 	}
5970 	/* we must fixup refcnts and charges */
5971 	if (mc.moved_swap) {
5972 		/* uncharge swap account from the old cgroup */
5973 		if (!mem_cgroup_is_root(mc.from))
5974 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5975 
5976 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5977 
5978 		/*
5979 		 * we charged both to->memory and to->memsw, so we
5980 		 * should uncharge to->memory.
5981 		 */
5982 		if (!mem_cgroup_is_root(mc.to))
5983 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5984 
5985 		mc.moved_swap = 0;
5986 	}
5987 	memcg_oom_recover(from);
5988 	memcg_oom_recover(to);
5989 	wake_up_all(&mc.waitq);
5990 }
5991 
mem_cgroup_clear_mc(void)5992 static void mem_cgroup_clear_mc(void)
5993 {
5994 	struct mm_struct *mm = mc.mm;
5995 
5996 	/*
5997 	 * we must clear moving_task before waking up waiters at the end of
5998 	 * task migration.
5999 	 */
6000 	mc.moving_task = NULL;
6001 	__mem_cgroup_clear_mc();
6002 	spin_lock(&mc.lock);
6003 	mc.from = NULL;
6004 	mc.to = NULL;
6005 	mc.mm = NULL;
6006 	spin_unlock(&mc.lock);
6007 
6008 	mmput(mm);
6009 }
6010 
mem_cgroup_can_attach(struct cgroup_taskset * tset)6011 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6012 {
6013 	struct cgroup_subsys_state *css;
6014 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6015 	struct mem_cgroup *from;
6016 	struct task_struct *leader, *p;
6017 	struct mm_struct *mm;
6018 	unsigned long move_flags;
6019 	int ret = 0;
6020 
6021 	/* charge immigration isn't supported on the default hierarchy */
6022 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6023 		return 0;
6024 
6025 	/*
6026 	 * Multi-process migrations only happen on the default hierarchy
6027 	 * where charge immigration is not used.  Perform charge
6028 	 * immigration if @tset contains a leader and whine if there are
6029 	 * multiple.
6030 	 */
6031 	p = NULL;
6032 	cgroup_taskset_for_each_leader(leader, css, tset) {
6033 		WARN_ON_ONCE(p);
6034 		p = leader;
6035 		memcg = mem_cgroup_from_css(css);
6036 	}
6037 	if (!p)
6038 		return 0;
6039 
6040 	/*
6041 	 * We are now committed to this value whatever it is. Changes in this
6042 	 * tunable will only affect upcoming migrations, not the current one.
6043 	 * So we need to save it, and keep it going.
6044 	 */
6045 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6046 	if (!move_flags)
6047 		return 0;
6048 
6049 	from = mem_cgroup_from_task(p);
6050 
6051 	VM_BUG_ON(from == memcg);
6052 
6053 	mm = get_task_mm(p);
6054 	if (!mm)
6055 		return 0;
6056 	/* We move charges only when we move a owner of the mm */
6057 	if (mm->owner == p) {
6058 		VM_BUG_ON(mc.from);
6059 		VM_BUG_ON(mc.to);
6060 		VM_BUG_ON(mc.precharge);
6061 		VM_BUG_ON(mc.moved_charge);
6062 		VM_BUG_ON(mc.moved_swap);
6063 
6064 		spin_lock(&mc.lock);
6065 		mc.mm = mm;
6066 		mc.from = from;
6067 		mc.to = memcg;
6068 		mc.flags = move_flags;
6069 		spin_unlock(&mc.lock);
6070 		/* We set mc.moving_task later */
6071 
6072 		ret = mem_cgroup_precharge_mc(mm);
6073 		if (ret)
6074 			mem_cgroup_clear_mc();
6075 	} else {
6076 		mmput(mm);
6077 	}
6078 	return ret;
6079 }
6080 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6081 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6082 {
6083 	if (mc.to)
6084 		mem_cgroup_clear_mc();
6085 }
6086 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6087 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6088 				unsigned long addr, unsigned long end,
6089 				struct mm_walk *walk)
6090 {
6091 	int ret = 0;
6092 	struct vm_area_struct *vma = walk->vma;
6093 	pte_t *pte;
6094 	spinlock_t *ptl;
6095 	enum mc_target_type target_type;
6096 	union mc_target target;
6097 	struct page *page;
6098 
6099 	ptl = pmd_trans_huge_lock(pmd, vma);
6100 	if (ptl) {
6101 		if (mc.precharge < HPAGE_PMD_NR) {
6102 			spin_unlock(ptl);
6103 			return 0;
6104 		}
6105 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6106 		if (target_type == MC_TARGET_PAGE) {
6107 			page = target.page;
6108 			if (!isolate_lru_page(page)) {
6109 				if (!mem_cgroup_move_account(page, true,
6110 							     mc.from, mc.to)) {
6111 					mc.precharge -= HPAGE_PMD_NR;
6112 					mc.moved_charge += HPAGE_PMD_NR;
6113 				}
6114 				putback_lru_page(page);
6115 			}
6116 			put_page(page);
6117 		} else if (target_type == MC_TARGET_DEVICE) {
6118 			page = target.page;
6119 			if (!mem_cgroup_move_account(page, true,
6120 						     mc.from, mc.to)) {
6121 				mc.precharge -= HPAGE_PMD_NR;
6122 				mc.moved_charge += HPAGE_PMD_NR;
6123 			}
6124 			put_page(page);
6125 		}
6126 		spin_unlock(ptl);
6127 		return 0;
6128 	}
6129 
6130 	if (pmd_trans_unstable(pmd))
6131 		return 0;
6132 retry:
6133 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6134 	for (; addr != end; addr += PAGE_SIZE) {
6135 		pte_t ptent = *(pte++);
6136 		bool device = false;
6137 		swp_entry_t ent;
6138 
6139 		if (!mc.precharge)
6140 			break;
6141 
6142 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6143 		case MC_TARGET_DEVICE:
6144 			device = true;
6145 			fallthrough;
6146 		case MC_TARGET_PAGE:
6147 			page = target.page;
6148 			/*
6149 			 * We can have a part of the split pmd here. Moving it
6150 			 * can be done but it would be too convoluted so simply
6151 			 * ignore such a partial THP and keep it in original
6152 			 * memcg. There should be somebody mapping the head.
6153 			 */
6154 			if (PageTransCompound(page))
6155 				goto put;
6156 			if (!device && isolate_lru_page(page))
6157 				goto put;
6158 			if (!mem_cgroup_move_account(page, false,
6159 						mc.from, mc.to)) {
6160 				mc.precharge--;
6161 				/* we uncharge from mc.from later. */
6162 				mc.moved_charge++;
6163 			}
6164 			if (!device)
6165 				putback_lru_page(page);
6166 put:			/* get_mctgt_type() gets the page */
6167 			put_page(page);
6168 			break;
6169 		case MC_TARGET_SWAP:
6170 			ent = target.ent;
6171 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6172 				mc.precharge--;
6173 				mem_cgroup_id_get_many(mc.to, 1);
6174 				/* we fixup other refcnts and charges later. */
6175 				mc.moved_swap++;
6176 			}
6177 			break;
6178 		default:
6179 			break;
6180 		}
6181 	}
6182 	pte_unmap_unlock(pte - 1, ptl);
6183 	cond_resched();
6184 
6185 	if (addr != end) {
6186 		/*
6187 		 * We have consumed all precharges we got in can_attach().
6188 		 * We try charge one by one, but don't do any additional
6189 		 * charges to mc.to if we have failed in charge once in attach()
6190 		 * phase.
6191 		 */
6192 		ret = mem_cgroup_do_precharge(1);
6193 		if (!ret)
6194 			goto retry;
6195 	}
6196 
6197 	return ret;
6198 }
6199 
6200 static const struct mm_walk_ops charge_walk_ops = {
6201 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6202 };
6203 
mem_cgroup_move_charge(void)6204 static void mem_cgroup_move_charge(void)
6205 {
6206 	lru_add_drain_all();
6207 	/*
6208 	 * Signal lock_page_memcg() to take the memcg's move_lock
6209 	 * while we're moving its pages to another memcg. Then wait
6210 	 * for already started RCU-only updates to finish.
6211 	 */
6212 	atomic_inc(&mc.from->moving_account);
6213 	synchronize_rcu();
6214 retry:
6215 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6216 		/*
6217 		 * Someone who are holding the mmap_lock might be waiting in
6218 		 * waitq. So we cancel all extra charges, wake up all waiters,
6219 		 * and retry. Because we cancel precharges, we might not be able
6220 		 * to move enough charges, but moving charge is a best-effort
6221 		 * feature anyway, so it wouldn't be a big problem.
6222 		 */
6223 		__mem_cgroup_clear_mc();
6224 		cond_resched();
6225 		goto retry;
6226 	}
6227 	/*
6228 	 * When we have consumed all precharges and failed in doing
6229 	 * additional charge, the page walk just aborts.
6230 	 */
6231 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6232 			NULL);
6233 
6234 	mmap_read_unlock(mc.mm);
6235 	atomic_dec(&mc.from->moving_account);
6236 }
6237 
mem_cgroup_move_task(void)6238 static void mem_cgroup_move_task(void)
6239 {
6240 	if (mc.to) {
6241 		mem_cgroup_move_charge();
6242 		mem_cgroup_clear_mc();
6243 	}
6244 }
6245 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6246 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6247 {
6248 	return 0;
6249 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6250 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6251 {
6252 }
mem_cgroup_move_task(void)6253 static void mem_cgroup_move_task(void)
6254 {
6255 }
6256 #endif
6257 
6258 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6259 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6260 {
6261 	struct task_struct *task;
6262 	struct cgroup_subsys_state *css;
6263 
6264 	/* find the first leader if there is any */
6265 	cgroup_taskset_for_each_leader(task, css, tset)
6266 		break;
6267 
6268 	if (!task)
6269 		return;
6270 
6271 	task_lock(task);
6272 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6273 		lru_gen_migrate_mm(task->mm);
6274 	task_unlock(task);
6275 }
6276 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6277 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6278 {
6279 }
6280 #endif /* CONFIG_LRU_GEN */
6281 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6282 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6283 {
6284 	if (value == PAGE_COUNTER_MAX)
6285 		seq_puts(m, "max\n");
6286 	else
6287 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6288 
6289 	return 0;
6290 }
6291 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6292 static u64 memory_current_read(struct cgroup_subsys_state *css,
6293 			       struct cftype *cft)
6294 {
6295 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6296 
6297 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6298 }
6299 
memory_min_show(struct seq_file * m,void * v)6300 static int memory_min_show(struct seq_file *m, void *v)
6301 {
6302 	return seq_puts_memcg_tunable(m,
6303 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6304 }
6305 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6306 static ssize_t memory_min_write(struct kernfs_open_file *of,
6307 				char *buf, size_t nbytes, loff_t off)
6308 {
6309 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6310 	unsigned long min;
6311 	int err;
6312 
6313 	buf = strstrip(buf);
6314 	err = page_counter_memparse(buf, "max", &min);
6315 	if (err)
6316 		return err;
6317 
6318 	page_counter_set_min(&memcg->memory, min);
6319 
6320 	return nbytes;
6321 }
6322 
memory_low_show(struct seq_file * m,void * v)6323 static int memory_low_show(struct seq_file *m, void *v)
6324 {
6325 	return seq_puts_memcg_tunable(m,
6326 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6327 }
6328 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6329 static ssize_t memory_low_write(struct kernfs_open_file *of,
6330 				char *buf, size_t nbytes, loff_t off)
6331 {
6332 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6333 	unsigned long low;
6334 	int err;
6335 
6336 	buf = strstrip(buf);
6337 	err = page_counter_memparse(buf, "max", &low);
6338 	if (err)
6339 		return err;
6340 
6341 	page_counter_set_low(&memcg->memory, low);
6342 
6343 	return nbytes;
6344 }
6345 
memory_high_show(struct seq_file * m,void * v)6346 static int memory_high_show(struct seq_file *m, void *v)
6347 {
6348 	return seq_puts_memcg_tunable(m,
6349 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6350 }
6351 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6352 static ssize_t memory_high_write(struct kernfs_open_file *of,
6353 				 char *buf, size_t nbytes, loff_t off)
6354 {
6355 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6356 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6357 	bool drained = false;
6358 	unsigned long high;
6359 	int err;
6360 
6361 	buf = strstrip(buf);
6362 	err = page_counter_memparse(buf, "max", &high);
6363 	if (err)
6364 		return err;
6365 
6366 	page_counter_set_high(&memcg->memory, high);
6367 
6368 	for (;;) {
6369 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6370 		unsigned long reclaimed;
6371 
6372 		if (nr_pages <= high)
6373 			break;
6374 
6375 		if (signal_pending(current))
6376 			break;
6377 
6378 		if (!drained) {
6379 			drain_all_stock(memcg);
6380 			drained = true;
6381 			continue;
6382 		}
6383 
6384 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6385 							 GFP_KERNEL, true);
6386 
6387 		if (!reclaimed && !nr_retries--)
6388 			break;
6389 	}
6390 
6391 	memcg_wb_domain_size_changed(memcg);
6392 	return nbytes;
6393 }
6394 
memory_max_show(struct seq_file * m,void * v)6395 static int memory_max_show(struct seq_file *m, void *v)
6396 {
6397 	return seq_puts_memcg_tunable(m,
6398 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6399 }
6400 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6401 static ssize_t memory_max_write(struct kernfs_open_file *of,
6402 				char *buf, size_t nbytes, loff_t off)
6403 {
6404 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6405 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6406 	bool drained = false;
6407 	unsigned long max;
6408 	int err;
6409 
6410 	buf = strstrip(buf);
6411 	err = page_counter_memparse(buf, "max", &max);
6412 	if (err)
6413 		return err;
6414 
6415 	xchg(&memcg->memory.max, max);
6416 
6417 	for (;;) {
6418 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6419 
6420 		if (nr_pages <= max)
6421 			break;
6422 
6423 		if (signal_pending(current))
6424 			break;
6425 
6426 		if (!drained) {
6427 			drain_all_stock(memcg);
6428 			drained = true;
6429 			continue;
6430 		}
6431 
6432 		if (nr_reclaims) {
6433 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6434 							  GFP_KERNEL, true))
6435 				nr_reclaims--;
6436 			continue;
6437 		}
6438 
6439 		memcg_memory_event(memcg, MEMCG_OOM);
6440 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6441 			break;
6442 	}
6443 
6444 	memcg_wb_domain_size_changed(memcg);
6445 	return nbytes;
6446 }
6447 
__memory_events_show(struct seq_file * m,atomic_long_t * events)6448 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6449 {
6450 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6451 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6452 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6453 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6454 	seq_printf(m, "oom_kill %lu\n",
6455 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6456 }
6457 
memory_events_show(struct seq_file * m,void * v)6458 static int memory_events_show(struct seq_file *m, void *v)
6459 {
6460 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6461 
6462 	__memory_events_show(m, memcg->memory_events);
6463 	return 0;
6464 }
6465 
memory_events_local_show(struct seq_file * m,void * v)6466 static int memory_events_local_show(struct seq_file *m, void *v)
6467 {
6468 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6469 
6470 	__memory_events_show(m, memcg->memory_events_local);
6471 	return 0;
6472 }
6473 
memory_stat_show(struct seq_file * m,void * v)6474 static int memory_stat_show(struct seq_file *m, void *v)
6475 {
6476 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6477 	char *buf;
6478 
6479 	buf = memory_stat_format(memcg);
6480 	if (!buf)
6481 		return -ENOMEM;
6482 	seq_puts(m, buf);
6483 	kfree(buf);
6484 	return 0;
6485 }
6486 
6487 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6488 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6489 						     int item)
6490 {
6491 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6492 }
6493 
memory_numa_stat_show(struct seq_file * m,void * v)6494 static int memory_numa_stat_show(struct seq_file *m, void *v)
6495 {
6496 	int i;
6497 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6498 
6499 	mem_cgroup_flush_stats();
6500 
6501 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6502 		int nid;
6503 
6504 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6505 			continue;
6506 
6507 		seq_printf(m, "%s", memory_stats[i].name);
6508 		for_each_node_state(nid, N_MEMORY) {
6509 			u64 size;
6510 			struct lruvec *lruvec;
6511 
6512 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6513 			size = lruvec_page_state_output(lruvec,
6514 							memory_stats[i].idx);
6515 			seq_printf(m, " N%d=%llu", nid, size);
6516 		}
6517 		seq_putc(m, '\n');
6518 	}
6519 
6520 	return 0;
6521 }
6522 #endif
6523 
memory_oom_group_show(struct seq_file * m,void * v)6524 static int memory_oom_group_show(struct seq_file *m, void *v)
6525 {
6526 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6527 
6528 	seq_printf(m, "%d\n", memcg->oom_group);
6529 
6530 	return 0;
6531 }
6532 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6533 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6534 				      char *buf, size_t nbytes, loff_t off)
6535 {
6536 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6537 	int ret, oom_group;
6538 
6539 	buf = strstrip(buf);
6540 	if (!buf)
6541 		return -EINVAL;
6542 
6543 	ret = kstrtoint(buf, 0, &oom_group);
6544 	if (ret)
6545 		return ret;
6546 
6547 	if (oom_group != 0 && oom_group != 1)
6548 		return -EINVAL;
6549 
6550 	memcg->oom_group = oom_group;
6551 
6552 	return nbytes;
6553 }
6554 
6555 static struct cftype memory_files[] = {
6556 	{
6557 		.name = "current",
6558 		.flags = CFTYPE_NOT_ON_ROOT,
6559 		.read_u64 = memory_current_read,
6560 	},
6561 	{
6562 		.name = "min",
6563 		.flags = CFTYPE_NOT_ON_ROOT,
6564 		.seq_show = memory_min_show,
6565 		.write = memory_min_write,
6566 	},
6567 	{
6568 		.name = "low",
6569 		.flags = CFTYPE_NOT_ON_ROOT,
6570 		.seq_show = memory_low_show,
6571 		.write = memory_low_write,
6572 	},
6573 	{
6574 		.name = "high",
6575 		.flags = CFTYPE_NOT_ON_ROOT,
6576 		.seq_show = memory_high_show,
6577 		.write = memory_high_write,
6578 	},
6579 	{
6580 		.name = "max",
6581 		.flags = CFTYPE_NOT_ON_ROOT,
6582 		.seq_show = memory_max_show,
6583 		.write = memory_max_write,
6584 	},
6585 	{
6586 		.name = "events",
6587 		.flags = CFTYPE_NOT_ON_ROOT,
6588 		.file_offset = offsetof(struct mem_cgroup, events_file),
6589 		.seq_show = memory_events_show,
6590 	},
6591 	{
6592 		.name = "events.local",
6593 		.flags = CFTYPE_NOT_ON_ROOT,
6594 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6595 		.seq_show = memory_events_local_show,
6596 	},
6597 	{
6598 		.name = "stat",
6599 		.seq_show = memory_stat_show,
6600 	},
6601 #ifdef CONFIG_NUMA
6602 	{
6603 		.name = "numa_stat",
6604 		.seq_show = memory_numa_stat_show,
6605 	},
6606 #endif
6607 	{
6608 		.name = "oom.group",
6609 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6610 		.seq_show = memory_oom_group_show,
6611 		.write = memory_oom_group_write,
6612 	},
6613 	{ }	/* terminate */
6614 };
6615 
6616 struct cgroup_subsys memory_cgrp_subsys = {
6617 	.css_alloc = mem_cgroup_css_alloc,
6618 	.css_online = mem_cgroup_css_online,
6619 	.css_offline = mem_cgroup_css_offline,
6620 	.css_released = mem_cgroup_css_released,
6621 	.css_free = mem_cgroup_css_free,
6622 	.css_reset = mem_cgroup_css_reset,
6623 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6624 	.can_attach = mem_cgroup_can_attach,
6625 	.attach = mem_cgroup_attach,
6626 	.cancel_attach = mem_cgroup_cancel_attach,
6627 	.post_attach = mem_cgroup_move_task,
6628 	.dfl_cftypes = memory_files,
6629 	.legacy_cftypes = mem_cgroup_legacy_files,
6630 	.early_init = 0,
6631 };
6632 
6633 /*
6634  * This function calculates an individual cgroup's effective
6635  * protection which is derived from its own memory.min/low, its
6636  * parent's and siblings' settings, as well as the actual memory
6637  * distribution in the tree.
6638  *
6639  * The following rules apply to the effective protection values:
6640  *
6641  * 1. At the first level of reclaim, effective protection is equal to
6642  *    the declared protection in memory.min and memory.low.
6643  *
6644  * 2. To enable safe delegation of the protection configuration, at
6645  *    subsequent levels the effective protection is capped to the
6646  *    parent's effective protection.
6647  *
6648  * 3. To make complex and dynamic subtrees easier to configure, the
6649  *    user is allowed to overcommit the declared protection at a given
6650  *    level. If that is the case, the parent's effective protection is
6651  *    distributed to the children in proportion to how much protection
6652  *    they have declared and how much of it they are utilizing.
6653  *
6654  *    This makes distribution proportional, but also work-conserving:
6655  *    if one cgroup claims much more protection than it uses memory,
6656  *    the unused remainder is available to its siblings.
6657  *
6658  * 4. Conversely, when the declared protection is undercommitted at a
6659  *    given level, the distribution of the larger parental protection
6660  *    budget is NOT proportional. A cgroup's protection from a sibling
6661  *    is capped to its own memory.min/low setting.
6662  *
6663  * 5. However, to allow protecting recursive subtrees from each other
6664  *    without having to declare each individual cgroup's fixed share
6665  *    of the ancestor's claim to protection, any unutilized -
6666  *    "floating" - protection from up the tree is distributed in
6667  *    proportion to each cgroup's *usage*. This makes the protection
6668  *    neutral wrt sibling cgroups and lets them compete freely over
6669  *    the shared parental protection budget, but it protects the
6670  *    subtree as a whole from neighboring subtrees.
6671  *
6672  * Note that 4. and 5. are not in conflict: 4. is about protecting
6673  * against immediate siblings whereas 5. is about protecting against
6674  * neighboring subtrees.
6675  */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6676 static unsigned long effective_protection(unsigned long usage,
6677 					  unsigned long parent_usage,
6678 					  unsigned long setting,
6679 					  unsigned long parent_effective,
6680 					  unsigned long siblings_protected)
6681 {
6682 	unsigned long protected;
6683 	unsigned long ep;
6684 
6685 	protected = min(usage, setting);
6686 	/*
6687 	 * If all cgroups at this level combined claim and use more
6688 	 * protection then what the parent affords them, distribute
6689 	 * shares in proportion to utilization.
6690 	 *
6691 	 * We are using actual utilization rather than the statically
6692 	 * claimed protection in order to be work-conserving: claimed
6693 	 * but unused protection is available to siblings that would
6694 	 * otherwise get a smaller chunk than what they claimed.
6695 	 */
6696 	if (siblings_protected > parent_effective)
6697 		return protected * parent_effective / siblings_protected;
6698 
6699 	/*
6700 	 * Ok, utilized protection of all children is within what the
6701 	 * parent affords them, so we know whatever this child claims
6702 	 * and utilizes is effectively protected.
6703 	 *
6704 	 * If there is unprotected usage beyond this value, reclaim
6705 	 * will apply pressure in proportion to that amount.
6706 	 *
6707 	 * If there is unutilized protection, the cgroup will be fully
6708 	 * shielded from reclaim, but we do return a smaller value for
6709 	 * protection than what the group could enjoy in theory. This
6710 	 * is okay. With the overcommit distribution above, effective
6711 	 * protection is always dependent on how memory is actually
6712 	 * consumed among the siblings anyway.
6713 	 */
6714 	ep = protected;
6715 
6716 	/*
6717 	 * If the children aren't claiming (all of) the protection
6718 	 * afforded to them by the parent, distribute the remainder in
6719 	 * proportion to the (unprotected) memory of each cgroup. That
6720 	 * way, cgroups that aren't explicitly prioritized wrt each
6721 	 * other compete freely over the allowance, but they are
6722 	 * collectively protected from neighboring trees.
6723 	 *
6724 	 * We're using unprotected memory for the weight so that if
6725 	 * some cgroups DO claim explicit protection, we don't protect
6726 	 * the same bytes twice.
6727 	 *
6728 	 * Check both usage and parent_usage against the respective
6729 	 * protected values. One should imply the other, but they
6730 	 * aren't read atomically - make sure the division is sane.
6731 	 */
6732 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6733 		return ep;
6734 	if (parent_effective > siblings_protected &&
6735 	    parent_usage > siblings_protected &&
6736 	    usage > protected) {
6737 		unsigned long unclaimed;
6738 
6739 		unclaimed = parent_effective - siblings_protected;
6740 		unclaimed *= usage - protected;
6741 		unclaimed /= parent_usage - siblings_protected;
6742 
6743 		ep += unclaimed;
6744 	}
6745 
6746 	return ep;
6747 }
6748 
6749 /**
6750  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6751  * @root: the top ancestor of the sub-tree being checked
6752  * @memcg: the memory cgroup to check
6753  *
6754  * WARNING: This function is not stateless! It can only be used as part
6755  *          of a top-down tree iteration, not for isolated queries.
6756  */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6757 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6758 				     struct mem_cgroup *memcg)
6759 {
6760 	unsigned long usage, parent_usage;
6761 	struct mem_cgroup *parent;
6762 
6763 	if (mem_cgroup_disabled())
6764 		return;
6765 
6766 	if (!root)
6767 		root = root_mem_cgroup;
6768 
6769 	/*
6770 	 * Effective values of the reclaim targets are ignored so they
6771 	 * can be stale. Have a look at mem_cgroup_protection for more
6772 	 * details.
6773 	 * TODO: calculation should be more robust so that we do not need
6774 	 * that special casing.
6775 	 */
6776 	if (memcg == root)
6777 		return;
6778 
6779 	usage = page_counter_read(&memcg->memory);
6780 	if (!usage)
6781 		return;
6782 
6783 	parent = parent_mem_cgroup(memcg);
6784 	/* No parent means a non-hierarchical mode on v1 memcg */
6785 	if (!parent)
6786 		return;
6787 
6788 	trace_android_rvh_memcgv2_calc_decayed_watermark(memcg);
6789 
6790 	if (parent == root) {
6791 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6792 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6793 		return;
6794 	}
6795 
6796 	parent_usage = page_counter_read(&parent->memory);
6797 
6798 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6799 			READ_ONCE(memcg->memory.min),
6800 			READ_ONCE(parent->memory.emin),
6801 			atomic_long_read(&parent->memory.children_min_usage)));
6802 
6803 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6804 			READ_ONCE(memcg->memory.low),
6805 			READ_ONCE(parent->memory.elow),
6806 			atomic_long_read(&parent->memory.children_low_usage)));
6807 }
6808 
charge_memcg(struct page * page,struct mem_cgroup * memcg,gfp_t gfp)6809 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6810 {
6811 	unsigned int nr_pages = thp_nr_pages(page);
6812 	int ret;
6813 
6814 	ret = try_charge(memcg, gfp, nr_pages);
6815 	if (ret)
6816 		goto out;
6817 
6818 	css_get(&memcg->css);
6819 	commit_charge(page, memcg);
6820 
6821 	local_irq_disable();
6822 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6823 	memcg_check_events(memcg, page);
6824 	local_irq_enable();
6825 out:
6826 	return ret;
6827 }
6828 
6829 /**
6830  * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6831  * @page: page to charge
6832  * @mm: mm context of the victim
6833  * @gfp_mask: reclaim mode
6834  *
6835  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6836  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6837  * charge to the active memcg.
6838  *
6839  * Do not use this for pages allocated for swapin.
6840  *
6841  * Returns 0 on success. Otherwise, an error code is returned.
6842  */
__mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6843 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6844 			gfp_t gfp_mask)
6845 {
6846 	struct mem_cgroup *memcg;
6847 	int ret;
6848 
6849 	memcg = get_mem_cgroup_from_mm(mm);
6850 	ret = charge_memcg(page, memcg, gfp_mask);
6851 	css_put(&memcg->css);
6852 
6853 	return ret;
6854 }
6855 
6856 /**
6857  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6858  * @page: page to charge
6859  * @mm: mm context of the victim
6860  * @gfp: reclaim mode
6861  * @entry: swap entry for which the page is allocated
6862  *
6863  * This function charges a page allocated for swapin. Please call this before
6864  * adding the page to the swapcache.
6865  *
6866  * Returns 0 on success. Otherwise, an error code is returned.
6867  */
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)6868 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6869 				  gfp_t gfp, swp_entry_t entry)
6870 {
6871 	struct mem_cgroup *memcg;
6872 	unsigned short id;
6873 	int ret;
6874 
6875 	if (mem_cgroup_disabled())
6876 		return 0;
6877 
6878 	id = lookup_swap_cgroup_id(entry);
6879 	rcu_read_lock();
6880 	memcg = mem_cgroup_from_id(id);
6881 	if (!memcg || !css_tryget_online(&memcg->css))
6882 		memcg = get_mem_cgroup_from_mm(mm);
6883 	rcu_read_unlock();
6884 
6885 	ret = charge_memcg(page, memcg, gfp);
6886 
6887 	css_put(&memcg->css);
6888 	return ret;
6889 }
6890 
6891 /*
6892  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6893  * @entry: swap entry for which the page is charged
6894  *
6895  * Call this function after successfully adding the charged page to swapcache.
6896  *
6897  * Note: This function assumes the page for which swap slot is being uncharged
6898  * is order 0 page.
6899  */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)6900 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6901 {
6902 	/*
6903 	 * Cgroup1's unified memory+swap counter has been charged with the
6904 	 * new swapcache page, finish the transfer by uncharging the swap
6905 	 * slot. The swap slot would also get uncharged when it dies, but
6906 	 * it can stick around indefinitely and we'd count the page twice
6907 	 * the entire time.
6908 	 *
6909 	 * Cgroup2 has separate resource counters for memory and swap,
6910 	 * so this is a non-issue here. Memory and swap charge lifetimes
6911 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6912 	 * page to memory here, and uncharge swap when the slot is freed.
6913 	 */
6914 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6915 		/*
6916 		 * The swap entry might not get freed for a long time,
6917 		 * let's not wait for it.  The page already received a
6918 		 * memory+swap charge, drop the swap entry duplicate.
6919 		 */
6920 		mem_cgroup_uncharge_swap(entry, 1);
6921 	}
6922 }
6923 
6924 struct uncharge_gather {
6925 	struct mem_cgroup *memcg;
6926 	unsigned long nr_memory;
6927 	unsigned long pgpgout;
6928 	unsigned long nr_kmem;
6929 	struct page *dummy_page;
6930 };
6931 
uncharge_gather_clear(struct uncharge_gather * ug)6932 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6933 {
6934 	memset(ug, 0, sizeof(*ug));
6935 }
6936 
uncharge_batch(const struct uncharge_gather * ug)6937 static void uncharge_batch(const struct uncharge_gather *ug)
6938 {
6939 	unsigned long flags;
6940 
6941 	if (ug->nr_memory) {
6942 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6943 		if (do_memsw_account())
6944 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6945 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6946 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6947 		memcg_oom_recover(ug->memcg);
6948 	}
6949 
6950 	local_irq_save(flags);
6951 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6952 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6953 	memcg_check_events(ug->memcg, ug->dummy_page);
6954 	local_irq_restore(flags);
6955 
6956 	/* drop reference from uncharge_page */
6957 	css_put(&ug->memcg->css);
6958 }
6959 
uncharge_page(struct page * page,struct uncharge_gather * ug)6960 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6961 {
6962 	unsigned long nr_pages;
6963 	struct mem_cgroup *memcg;
6964 	struct obj_cgroup *objcg;
6965 	bool use_objcg = PageMemcgKmem(page);
6966 
6967 	VM_BUG_ON_PAGE(PageLRU(page), page);
6968 
6969 	/*
6970 	 * Nobody should be changing or seriously looking at
6971 	 * page memcg or objcg at this point, we have fully
6972 	 * exclusive access to the page.
6973 	 */
6974 	if (use_objcg) {
6975 		objcg = __page_objcg(page);
6976 		/*
6977 		 * This get matches the put at the end of the function and
6978 		 * kmem pages do not hold memcg references anymore.
6979 		 */
6980 		memcg = get_mem_cgroup_from_objcg(objcg);
6981 	} else {
6982 		memcg = __page_memcg(page);
6983 	}
6984 
6985 	if (!memcg)
6986 		return;
6987 
6988 	if (ug->memcg != memcg) {
6989 		if (ug->memcg) {
6990 			uncharge_batch(ug);
6991 			uncharge_gather_clear(ug);
6992 		}
6993 		ug->memcg = memcg;
6994 		ug->dummy_page = page;
6995 
6996 		/* pairs with css_put in uncharge_batch */
6997 		css_get(&memcg->css);
6998 	}
6999 
7000 	nr_pages = compound_nr(page);
7001 
7002 	if (use_objcg) {
7003 		ug->nr_memory += nr_pages;
7004 		ug->nr_kmem += nr_pages;
7005 
7006 		page->memcg_data = 0;
7007 		obj_cgroup_put(objcg);
7008 	} else {
7009 		/* LRU pages aren't accounted at the root level */
7010 		if (!mem_cgroup_is_root(memcg))
7011 			ug->nr_memory += nr_pages;
7012 		ug->pgpgout++;
7013 
7014 		page->memcg_data = 0;
7015 	}
7016 
7017 	css_put(&memcg->css);
7018 }
7019 
7020 /**
7021  * __mem_cgroup_uncharge - uncharge a page
7022  * @page: page to uncharge
7023  *
7024  * Uncharge a page previously charged with __mem_cgroup_charge().
7025  */
__mem_cgroup_uncharge(struct page * page)7026 void __mem_cgroup_uncharge(struct page *page)
7027 {
7028 	struct uncharge_gather ug;
7029 
7030 	/* Don't touch page->lru of any random page, pre-check: */
7031 	if (!page_memcg(page))
7032 		return;
7033 
7034 	uncharge_gather_clear(&ug);
7035 	uncharge_page(page, &ug);
7036 	uncharge_batch(&ug);
7037 }
7038 
7039 /**
7040  * __mem_cgroup_uncharge_list - uncharge a list of page
7041  * @page_list: list of pages to uncharge
7042  *
7043  * Uncharge a list of pages previously charged with
7044  * __mem_cgroup_charge().
7045  */
__mem_cgroup_uncharge_list(struct list_head * page_list)7046 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7047 {
7048 	struct uncharge_gather ug;
7049 	struct page *page;
7050 
7051 	uncharge_gather_clear(&ug);
7052 	list_for_each_entry(page, page_list, lru)
7053 		uncharge_page(page, &ug);
7054 	if (ug.memcg)
7055 		uncharge_batch(&ug);
7056 }
7057 
7058 /**
7059  * mem_cgroup_migrate - charge a page's replacement
7060  * @oldpage: currently circulating page
7061  * @newpage: replacement page
7062  *
7063  * Charge @newpage as a replacement page for @oldpage. @oldpage will
7064  * be uncharged upon free.
7065  *
7066  * Both pages must be locked, @newpage->mapping must be set up.
7067  */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7068 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7069 {
7070 	struct mem_cgroup *memcg;
7071 	unsigned int nr_pages;
7072 	unsigned long flags;
7073 
7074 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7075 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7076 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7077 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7078 		       newpage);
7079 
7080 	if (mem_cgroup_disabled())
7081 		return;
7082 
7083 	/* Page cache replacement: new page already charged? */
7084 	if (page_memcg(newpage))
7085 		return;
7086 
7087 	memcg = page_memcg(oldpage);
7088 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
7089 	if (!memcg)
7090 		return;
7091 
7092 	/* Force-charge the new page. The old one will be freed soon */
7093 	nr_pages = thp_nr_pages(newpage);
7094 
7095 	if (!mem_cgroup_is_root(memcg)) {
7096 		page_counter_charge(&memcg->memory, nr_pages);
7097 		if (do_memsw_account())
7098 			page_counter_charge(&memcg->memsw, nr_pages);
7099 	}
7100 
7101 	css_get(&memcg->css);
7102 	commit_charge(newpage, memcg);
7103 
7104 	local_irq_save(flags);
7105 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7106 	memcg_check_events(memcg, newpage);
7107 	local_irq_restore(flags);
7108 }
7109 
7110 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7111 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7112 
mem_cgroup_sk_alloc(struct sock * sk)7113 void mem_cgroup_sk_alloc(struct sock *sk)
7114 {
7115 	struct mem_cgroup *memcg;
7116 
7117 	if (!mem_cgroup_sockets_enabled)
7118 		return;
7119 
7120 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7121 	if (in_interrupt())
7122 		return;
7123 
7124 	rcu_read_lock();
7125 	memcg = mem_cgroup_from_task(current);
7126 	if (memcg == root_mem_cgroup)
7127 		goto out;
7128 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7129 		goto out;
7130 	if (css_tryget(&memcg->css))
7131 		sk->sk_memcg = memcg;
7132 out:
7133 	rcu_read_unlock();
7134 }
7135 
mem_cgroup_sk_free(struct sock * sk)7136 void mem_cgroup_sk_free(struct sock *sk)
7137 {
7138 	if (sk->sk_memcg)
7139 		css_put(&sk->sk_memcg->css);
7140 }
7141 
7142 /**
7143  * mem_cgroup_charge_skmem - charge socket memory
7144  * @memcg: memcg to charge
7145  * @nr_pages: number of pages to charge
7146  * @gfp_mask: reclaim mode
7147  *
7148  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7149  * @memcg's configured limit, %false if it doesn't.
7150  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7151 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7152 			     gfp_t gfp_mask)
7153 {
7154 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7155 		struct page_counter *fail;
7156 
7157 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7158 			memcg->tcpmem_pressure = 0;
7159 			return true;
7160 		}
7161 		memcg->tcpmem_pressure = 1;
7162 		if (gfp_mask & __GFP_NOFAIL) {
7163 			page_counter_charge(&memcg->tcpmem, nr_pages);
7164 			return true;
7165 		}
7166 		return false;
7167 	}
7168 
7169 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7170 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7171 		return true;
7172 	}
7173 
7174 	return false;
7175 }
7176 
7177 /**
7178  * mem_cgroup_uncharge_skmem - uncharge socket memory
7179  * @memcg: memcg to uncharge
7180  * @nr_pages: number of pages to uncharge
7181  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7182 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7183 {
7184 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7185 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7186 		return;
7187 	}
7188 
7189 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7190 
7191 	refill_stock(memcg, nr_pages);
7192 }
7193 
cgroup_memory(char * s)7194 static int __init cgroup_memory(char *s)
7195 {
7196 	char *token;
7197 
7198 	while ((token = strsep(&s, ",")) != NULL) {
7199 		if (!*token)
7200 			continue;
7201 		if (!strcmp(token, "nosocket"))
7202 			cgroup_memory_nosocket = true;
7203 		if (!strcmp(token, "nokmem"))
7204 			cgroup_memory_nokmem = true;
7205 	}
7206 	return 1;
7207 }
7208 __setup("cgroup.memory=", cgroup_memory);
7209 
7210 /*
7211  * subsys_initcall() for memory controller.
7212  *
7213  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7214  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7215  * basically everything that doesn't depend on a specific mem_cgroup structure
7216  * should be initialized from here.
7217  */
mem_cgroup_init(void)7218 static int __init mem_cgroup_init(void)
7219 {
7220 	int cpu, node;
7221 
7222 	/*
7223 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7224 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7225 	 * to work fine, we should make sure that the overfill threshold can't
7226 	 * exceed S32_MAX / PAGE_SIZE.
7227 	 */
7228 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7229 
7230 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7231 				  memcg_hotplug_cpu_dead);
7232 
7233 	for_each_possible_cpu(cpu)
7234 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7235 			  drain_local_stock);
7236 
7237 	for_each_node(node) {
7238 		struct mem_cgroup_tree_per_node *rtpn;
7239 
7240 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7241 				    node_online(node) ? node : NUMA_NO_NODE);
7242 
7243 		rtpn->rb_root = RB_ROOT;
7244 		rtpn->rb_rightmost = NULL;
7245 		spin_lock_init(&rtpn->lock);
7246 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7247 	}
7248 
7249 	return 0;
7250 }
7251 subsys_initcall(mem_cgroup_init);
7252 
7253 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7254 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7255 {
7256 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7257 		/*
7258 		 * The root cgroup cannot be destroyed, so it's refcount must
7259 		 * always be >= 1.
7260 		 */
7261 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7262 			VM_BUG_ON(1);
7263 			break;
7264 		}
7265 		memcg = parent_mem_cgroup(memcg);
7266 		if (!memcg)
7267 			memcg = root_mem_cgroup;
7268 	}
7269 	return memcg;
7270 }
7271 
7272 /**
7273  * mem_cgroup_swapout - transfer a memsw charge to swap
7274  * @page: page whose memsw charge to transfer
7275  * @entry: swap entry to move the charge to
7276  *
7277  * Transfer the memsw charge of @page to @entry.
7278  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7279 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7280 {
7281 	struct mem_cgroup *memcg, *swap_memcg;
7282 	unsigned int nr_entries;
7283 	unsigned short oldid;
7284 
7285 	VM_BUG_ON_PAGE(PageLRU(page), page);
7286 	VM_BUG_ON_PAGE(page_count(page), page);
7287 
7288 	if (mem_cgroup_disabled())
7289 		return;
7290 
7291 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7292 		return;
7293 
7294 	memcg = page_memcg(page);
7295 
7296 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7297 	if (!memcg)
7298 		return;
7299 
7300 	/*
7301 	 * In case the memcg owning these pages has been offlined and doesn't
7302 	 * have an ID allocated to it anymore, charge the closest online
7303 	 * ancestor for the swap instead and transfer the memory+swap charge.
7304 	 */
7305 	swap_memcg = mem_cgroup_id_get_online(memcg);
7306 	nr_entries = thp_nr_pages(page);
7307 	/* Get references for the tail pages, too */
7308 	if (nr_entries > 1)
7309 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7310 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7311 				   nr_entries);
7312 	VM_BUG_ON_PAGE(oldid, page);
7313 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7314 
7315 	page->memcg_data = 0;
7316 
7317 	if (!mem_cgroup_is_root(memcg))
7318 		page_counter_uncharge(&memcg->memory, nr_entries);
7319 
7320 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7321 		if (!mem_cgroup_is_root(swap_memcg))
7322 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7323 		page_counter_uncharge(&memcg->memsw, nr_entries);
7324 	}
7325 
7326 	/*
7327 	 * Interrupts should be disabled here because the caller holds the
7328 	 * i_pages lock which is taken with interrupts-off. It is
7329 	 * important here to have the interrupts disabled because it is the
7330 	 * only synchronisation we have for updating the per-CPU variables.
7331 	 */
7332 	VM_BUG_ON(!irqs_disabled());
7333 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7334 	memcg_check_events(memcg, page);
7335 
7336 	css_put(&memcg->css);
7337 }
7338 
7339 /**
7340  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7341  * @page: page being added to swap
7342  * @entry: swap entry to charge
7343  *
7344  * Try to charge @page's memcg for the swap space at @entry.
7345  *
7346  * Returns 0 on success, -ENOMEM on failure.
7347  */
__mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7348 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7349 {
7350 	unsigned int nr_pages = thp_nr_pages(page);
7351 	struct page_counter *counter;
7352 	struct mem_cgroup *memcg;
7353 	unsigned short oldid;
7354 
7355 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7356 		return 0;
7357 
7358 	memcg = page_memcg(page);
7359 
7360 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7361 	if (!memcg)
7362 		return 0;
7363 
7364 	if (!entry.val) {
7365 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7366 		return 0;
7367 	}
7368 
7369 	memcg = mem_cgroup_id_get_online(memcg);
7370 
7371 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7372 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7373 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7374 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7375 		mem_cgroup_id_put(memcg);
7376 		return -ENOMEM;
7377 	}
7378 
7379 	/* Get references for the tail pages, too */
7380 	if (nr_pages > 1)
7381 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7382 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7383 	VM_BUG_ON_PAGE(oldid, page);
7384 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7385 
7386 	return 0;
7387 }
7388 
7389 /**
7390  * __mem_cgroup_uncharge_swap - uncharge swap space
7391  * @entry: swap entry to uncharge
7392  * @nr_pages: the amount of swap space to uncharge
7393  */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7394 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7395 {
7396 	struct mem_cgroup *memcg;
7397 	unsigned short id;
7398 
7399 	id = swap_cgroup_record(entry, 0, nr_pages);
7400 	rcu_read_lock();
7401 	memcg = mem_cgroup_from_id(id);
7402 	if (memcg) {
7403 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7404 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7405 				page_counter_uncharge(&memcg->swap, nr_pages);
7406 			else
7407 				page_counter_uncharge(&memcg->memsw, nr_pages);
7408 		}
7409 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7410 		mem_cgroup_id_put_many(memcg, nr_pages);
7411 	}
7412 	rcu_read_unlock();
7413 }
7414 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7415 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7416 {
7417 	long nr_swap_pages = get_nr_swap_pages();
7418 
7419 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7420 		return nr_swap_pages;
7421 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7422 		nr_swap_pages = min_t(long, nr_swap_pages,
7423 				      READ_ONCE(memcg->swap.max) -
7424 				      page_counter_read(&memcg->swap));
7425 	return nr_swap_pages;
7426 }
7427 
mem_cgroup_swap_full(struct page * page)7428 bool mem_cgroup_swap_full(struct page *page)
7429 {
7430 	struct mem_cgroup *memcg;
7431 
7432 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7433 
7434 	if (vm_swap_full())
7435 		return true;
7436 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7437 		return false;
7438 
7439 	memcg = page_memcg(page);
7440 	if (!memcg)
7441 		return false;
7442 
7443 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7444 		unsigned long usage = page_counter_read(&memcg->swap);
7445 
7446 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7447 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7448 			return true;
7449 	}
7450 
7451 	return false;
7452 }
7453 
setup_swap_account(char * s)7454 static int __init setup_swap_account(char *s)
7455 {
7456 	if (!strcmp(s, "1"))
7457 		cgroup_memory_noswap = false;
7458 	else if (!strcmp(s, "0"))
7459 		cgroup_memory_noswap = true;
7460 	return 1;
7461 }
7462 __setup("swapaccount=", setup_swap_account);
7463 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7464 static u64 swap_current_read(struct cgroup_subsys_state *css,
7465 			     struct cftype *cft)
7466 {
7467 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7468 
7469 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7470 }
7471 
swap_high_show(struct seq_file * m,void * v)7472 static int swap_high_show(struct seq_file *m, void *v)
7473 {
7474 	return seq_puts_memcg_tunable(m,
7475 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7476 }
7477 
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7478 static ssize_t swap_high_write(struct kernfs_open_file *of,
7479 			       char *buf, size_t nbytes, loff_t off)
7480 {
7481 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7482 	unsigned long high;
7483 	int err;
7484 
7485 	buf = strstrip(buf);
7486 	err = page_counter_memparse(buf, "max", &high);
7487 	if (err)
7488 		return err;
7489 
7490 	page_counter_set_high(&memcg->swap, high);
7491 
7492 	return nbytes;
7493 }
7494 
swap_max_show(struct seq_file * m,void * v)7495 static int swap_max_show(struct seq_file *m, void *v)
7496 {
7497 	return seq_puts_memcg_tunable(m,
7498 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7499 }
7500 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7501 static ssize_t swap_max_write(struct kernfs_open_file *of,
7502 			      char *buf, size_t nbytes, loff_t off)
7503 {
7504 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7505 	unsigned long max;
7506 	int err;
7507 
7508 	buf = strstrip(buf);
7509 	err = page_counter_memparse(buf, "max", &max);
7510 	if (err)
7511 		return err;
7512 
7513 	xchg(&memcg->swap.max, max);
7514 
7515 	return nbytes;
7516 }
7517 
swap_events_show(struct seq_file * m,void * v)7518 static int swap_events_show(struct seq_file *m, void *v)
7519 {
7520 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7521 
7522 	seq_printf(m, "high %lu\n",
7523 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7524 	seq_printf(m, "max %lu\n",
7525 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7526 	seq_printf(m, "fail %lu\n",
7527 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7528 
7529 	return 0;
7530 }
7531 
7532 static struct cftype swap_files[] = {
7533 	{
7534 		.name = "swap.current",
7535 		.flags = CFTYPE_NOT_ON_ROOT,
7536 		.read_u64 = swap_current_read,
7537 	},
7538 	{
7539 		.name = "swap.high",
7540 		.flags = CFTYPE_NOT_ON_ROOT,
7541 		.seq_show = swap_high_show,
7542 		.write = swap_high_write,
7543 	},
7544 	{
7545 		.name = "swap.max",
7546 		.flags = CFTYPE_NOT_ON_ROOT,
7547 		.seq_show = swap_max_show,
7548 		.write = swap_max_write,
7549 	},
7550 	{
7551 		.name = "swap.events",
7552 		.flags = CFTYPE_NOT_ON_ROOT,
7553 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7554 		.seq_show = swap_events_show,
7555 	},
7556 	{ }	/* terminate */
7557 };
7558 
7559 static struct cftype memsw_files[] = {
7560 	{
7561 		.name = "memsw.usage_in_bytes",
7562 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7563 		.read_u64 = mem_cgroup_read_u64,
7564 	},
7565 	{
7566 		.name = "memsw.max_usage_in_bytes",
7567 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7568 		.write = mem_cgroup_reset,
7569 		.read_u64 = mem_cgroup_read_u64,
7570 	},
7571 	{
7572 		.name = "memsw.limit_in_bytes",
7573 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7574 		.write = mem_cgroup_write,
7575 		.read_u64 = mem_cgroup_read_u64,
7576 	},
7577 	{
7578 		.name = "memsw.failcnt",
7579 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7580 		.write = mem_cgroup_reset,
7581 		.read_u64 = mem_cgroup_read_u64,
7582 	},
7583 	{ },	/* terminate */
7584 };
7585 
7586 /*
7587  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7588  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7589  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7590  * boot parameter. This may result in premature OOPS inside
7591  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7592  */
mem_cgroup_swap_init(void)7593 static int __init mem_cgroup_swap_init(void)
7594 {
7595 	/* No memory control -> no swap control */
7596 	if (mem_cgroup_disabled())
7597 		cgroup_memory_noswap = true;
7598 
7599 	if (cgroup_memory_noswap)
7600 		return 0;
7601 
7602 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7603 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7604 
7605 	return 0;
7606 }
7607 core_initcall(mem_cgroup_swap_init);
7608 
7609 #endif /* CONFIG_MEMCG_SWAP */
7610