1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
5 *
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 *
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 * Andrey Konovalov <andreyknvl@gmail.com>
11 */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26
27 #include "kasan.h"
28
__kasan_check_read(const volatile void * p,unsigned int size)29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34
__kasan_check_write(const volatile void * p,unsigned int size)35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40
41 #undef memset
memset(void * addr,int c,size_t len)42 void *memset(void *addr, int c, size_t len)
43 {
44 if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 return NULL;
46
47 return __memset(addr, c, len);
48 }
49
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
memmove(void * dest,const void * src,size_t len)52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 return NULL;
57
58 return __memmove(dest, src, len);
59 }
60 #endif
61
62 #undef memcpy
memcpy(void * dest,const void * src,size_t len)63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 return NULL;
68
69 return __memcpy(dest, src, len);
70 }
71
kasan_poison(const void * addr,size_t size,u8 value,bool init)72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74 void *shadow_start, *shadow_end;
75
76 if (!kasan_arch_is_ready())
77 return;
78
79 /*
80 * Perform shadow offset calculation based on untagged address, as
81 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 * addresses to this function.
83 */
84 addr = kasan_reset_tag(addr);
85
86 /* Skip KFENCE memory if called explicitly outside of sl*b. */
87 if (is_kfence_address(addr))
88 return;
89
90 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
91 return;
92 if (WARN_ON(size & KASAN_GRANULE_MASK))
93 return;
94
95 shadow_start = kasan_mem_to_shadow(addr);
96 shadow_end = kasan_mem_to_shadow(addr + size);
97
98 __memset(shadow_start, value, shadow_end - shadow_start);
99 }
100 EXPORT_SYMBOL(kasan_poison);
101
102 #ifdef CONFIG_KASAN_GENERIC
kasan_poison_last_granule(const void * addr,size_t size)103 void kasan_poison_last_granule(const void *addr, size_t size)
104 {
105 if (!kasan_arch_is_ready())
106 return;
107
108 if (size & KASAN_GRANULE_MASK) {
109 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110 *shadow = size & KASAN_GRANULE_MASK;
111 }
112 }
113 #endif
114
kasan_unpoison(const void * addr,size_t size,bool init)115 void kasan_unpoison(const void *addr, size_t size, bool init)
116 {
117 u8 tag = get_tag(addr);
118
119 /*
120 * Perform shadow offset calculation based on untagged address, as
121 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122 * addresses to this function.
123 */
124 addr = kasan_reset_tag(addr);
125
126 /*
127 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128 * that calls to ksize(), where size is not a multiple of machine-word
129 * size, would otherwise poison the invalid portion of the word.
130 */
131 if (is_kfence_address(addr))
132 return;
133
134 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135 return;
136
137 /* Unpoison all granules that cover the object. */
138 kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139
140 /* Partially poison the last granule for the generic mode. */
141 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142 kasan_poison_last_granule(addr, size);
143 }
144
145 #ifdef CONFIG_MEMORY_HOTPLUG
shadow_mapped(unsigned long addr)146 static bool shadow_mapped(unsigned long addr)
147 {
148 pgd_t *pgd = pgd_offset_k(addr);
149 p4d_t *p4d;
150 pud_t *pud;
151 pmd_t *pmd;
152 pte_t *pte;
153
154 if (pgd_none(*pgd))
155 return false;
156 p4d = p4d_offset(pgd, addr);
157 if (p4d_none(*p4d))
158 return false;
159 pud = pud_offset(p4d, addr);
160 if (pud_none(*pud))
161 return false;
162
163 /*
164 * We can't use pud_large() or pud_huge(), the first one is
165 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
166 * pud_bad(), if pud is bad then it's bad because it's huge.
167 */
168 if (pud_bad(*pud))
169 return true;
170 pmd = pmd_offset(pud, addr);
171 if (pmd_none(*pmd))
172 return false;
173
174 if (pmd_bad(*pmd))
175 return true;
176 pte = pte_offset_kernel(pmd, addr);
177 return !pte_none(*pte);
178 }
179
kasan_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)180 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181 unsigned long action, void *data)
182 {
183 struct memory_notify *mem_data = data;
184 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185 unsigned long shadow_end, shadow_size;
186
187 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190 shadow_size = nr_shadow_pages << PAGE_SHIFT;
191 shadow_end = shadow_start + shadow_size;
192
193 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195 return NOTIFY_BAD;
196
197 switch (action) {
198 case MEM_GOING_ONLINE: {
199 void *ret;
200
201 /*
202 * If shadow is mapped already than it must have been mapped
203 * during the boot. This could happen if we onlining previously
204 * offlined memory.
205 */
206 if (shadow_mapped(shadow_start))
207 return NOTIFY_OK;
208
209 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210 shadow_end, GFP_KERNEL,
211 PAGE_KERNEL, VM_NO_GUARD,
212 pfn_to_nid(mem_data->start_pfn),
213 __builtin_return_address(0));
214 if (!ret)
215 return NOTIFY_BAD;
216
217 kmemleak_ignore(ret);
218 return NOTIFY_OK;
219 }
220 case MEM_CANCEL_ONLINE:
221 case MEM_OFFLINE: {
222 struct vm_struct *vm;
223
224 /*
225 * shadow_start was either mapped during boot by kasan_init()
226 * or during memory online by __vmalloc_node_range().
227 * In the latter case we can use vfree() to free shadow.
228 * Non-NULL result of the find_vm_area() will tell us if
229 * that was the second case.
230 *
231 * Currently it's not possible to free shadow mapped
232 * during boot by kasan_init(). It's because the code
233 * to do that hasn't been written yet. So we'll just
234 * leak the memory.
235 */
236 vm = find_vm_area((void *)shadow_start);
237 if (vm)
238 vfree((void *)shadow_start);
239 }
240 }
241
242 return NOTIFY_OK;
243 }
244
kasan_memhotplug_init(void)245 static int __init kasan_memhotplug_init(void)
246 {
247 hotplug_memory_notifier(kasan_mem_notifier, 0);
248
249 return 0;
250 }
251
252 core_initcall(kasan_memhotplug_init);
253 #endif
254
255 #ifdef CONFIG_KASAN_VMALLOC
256
kasan_populate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)257 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
258 void *unused)
259 {
260 unsigned long page;
261 pte_t pte;
262
263 if (likely(!pte_none(*ptep)))
264 return 0;
265
266 page = __get_free_page(GFP_KERNEL);
267 if (!page)
268 return -ENOMEM;
269
270 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
271 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
272
273 spin_lock(&init_mm.page_table_lock);
274 if (likely(pte_none(*ptep))) {
275 set_pte_at(&init_mm, addr, ptep, pte);
276 page = 0;
277 }
278 spin_unlock(&init_mm.page_table_lock);
279 if (page)
280 free_page(page);
281 return 0;
282 }
283
kasan_populate_vmalloc(unsigned long addr,unsigned long size)284 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
285 {
286 unsigned long shadow_start, shadow_end;
287 int ret;
288
289 if (!is_vmalloc_or_module_addr((void *)addr))
290 return 0;
291
292 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
293 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
294 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
295 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
296
297 ret = apply_to_page_range(&init_mm, shadow_start,
298 shadow_end - shadow_start,
299 kasan_populate_vmalloc_pte, NULL);
300 if (ret)
301 return ret;
302
303 flush_cache_vmap(shadow_start, shadow_end);
304
305 /*
306 * We need to be careful about inter-cpu effects here. Consider:
307 *
308 * CPU#0 CPU#1
309 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
310 * p[99] = 1;
311 *
312 * With compiler instrumentation, that ends up looking like this:
313 *
314 * CPU#0 CPU#1
315 * // vmalloc() allocates memory
316 * // let a = area->addr
317 * // we reach kasan_populate_vmalloc
318 * // and call kasan_unpoison:
319 * STORE shadow(a), unpoison_val
320 * ...
321 * STORE shadow(a+99), unpoison_val x = LOAD p
322 * // rest of vmalloc process <data dependency>
323 * STORE p, a LOAD shadow(x+99)
324 *
325 * If there is no barrier between the end of unpoisoning the shadow
326 * and the store of the result to p, the stores could be committed
327 * in a different order by CPU#0, and CPU#1 could erroneously observe
328 * poison in the shadow.
329 *
330 * We need some sort of barrier between the stores.
331 *
332 * In the vmalloc() case, this is provided by a smp_wmb() in
333 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
334 * get_vm_area() and friends, the caller gets shadow allocated but
335 * doesn't have any pages mapped into the virtual address space that
336 * has been reserved. Mapping those pages in will involve taking and
337 * releasing a page-table lock, which will provide the barrier.
338 */
339
340 return 0;
341 }
342
kasan_depopulate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)343 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
344 void *unused)
345 {
346 unsigned long page;
347
348 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
349
350 spin_lock(&init_mm.page_table_lock);
351
352 if (likely(!pte_none(*ptep))) {
353 pte_clear(&init_mm, addr, ptep);
354 free_page(page);
355 }
356 spin_unlock(&init_mm.page_table_lock);
357
358 return 0;
359 }
360
361 /*
362 * Release the backing for the vmalloc region [start, end), which
363 * lies within the free region [free_region_start, free_region_end).
364 *
365 * This can be run lazily, long after the region was freed. It runs
366 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
367 * infrastructure.
368 *
369 * How does this work?
370 * -------------------
371 *
372 * We have a region that is page aligned, labeled as A.
373 * That might not map onto the shadow in a way that is page-aligned:
374 *
375 * start end
376 * v v
377 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
378 * -------- -------- -------- -------- --------
379 * | | | | |
380 * | | | /-------/ |
381 * \-------\|/------/ |/---------------/
382 * ||| ||
383 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
384 * (1) (2) (3)
385 *
386 * First we align the start upwards and the end downwards, so that the
387 * shadow of the region aligns with shadow page boundaries. In the
388 * example, this gives us the shadow page (2). This is the shadow entirely
389 * covered by this allocation.
390 *
391 * Then we have the tricky bits. We want to know if we can free the
392 * partially covered shadow pages - (1) and (3) in the example. For this,
393 * we are given the start and end of the free region that contains this
394 * allocation. Extending our previous example, we could have:
395 *
396 * free_region_start free_region_end
397 * | start end |
398 * v v v v
399 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
400 * -------- -------- -------- -------- --------
401 * | | | | |
402 * | | | /-------/ |
403 * \-------\|/------/ |/---------------/
404 * ||| ||
405 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
406 * (1) (2) (3)
407 *
408 * Once again, we align the start of the free region up, and the end of
409 * the free region down so that the shadow is page aligned. So we can free
410 * page (1) - we know no allocation currently uses anything in that page,
411 * because all of it is in the vmalloc free region. But we cannot free
412 * page (3), because we can't be sure that the rest of it is unused.
413 *
414 * We only consider pages that contain part of the original region for
415 * freeing: we don't try to free other pages from the free region or we'd
416 * end up trying to free huge chunks of virtual address space.
417 *
418 * Concurrency
419 * -----------
420 *
421 * How do we know that we're not freeing a page that is simultaneously
422 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
423 *
424 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
425 * at the same time. While we run under free_vmap_area_lock, the population
426 * code does not.
427 *
428 * free_vmap_area_lock instead operates to ensure that the larger range
429 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
430 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
431 * no space identified as free will become used while we are running. This
432 * means that so long as we are careful with alignment and only free shadow
433 * pages entirely covered by the free region, we will not run in to any
434 * trouble - any simultaneous allocations will be for disjoint regions.
435 */
kasan_release_vmalloc(unsigned long start,unsigned long end,unsigned long free_region_start,unsigned long free_region_end)436 void kasan_release_vmalloc(unsigned long start, unsigned long end,
437 unsigned long free_region_start,
438 unsigned long free_region_end)
439 {
440 void *shadow_start, *shadow_end;
441 unsigned long region_start, region_end;
442 unsigned long size;
443
444 region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
445 region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
446
447 free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
448
449 if (start != region_start &&
450 free_region_start < region_start)
451 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
452
453 free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
454
455 if (end != region_end &&
456 free_region_end > region_end)
457 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
458
459 shadow_start = kasan_mem_to_shadow((void *)region_start);
460 shadow_end = kasan_mem_to_shadow((void *)region_end);
461
462 if (shadow_end > shadow_start) {
463 size = shadow_end - shadow_start;
464 apply_to_existing_page_range(&init_mm,
465 (unsigned long)shadow_start,
466 size, kasan_depopulate_vmalloc_pte,
467 NULL);
468 flush_tlb_kernel_range((unsigned long)shadow_start,
469 (unsigned long)shadow_end);
470 }
471 }
472
__kasan_unpoison_vmalloc(const void * start,unsigned long size,kasan_vmalloc_flags_t flags)473 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
474 kasan_vmalloc_flags_t flags)
475 {
476 /*
477 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
478 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
479 * Software KASAN modes can't optimize zeroing memory by combining it
480 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
481 */
482
483 if (!is_vmalloc_or_module_addr(start))
484 return (void *)start;
485
486 /*
487 * Don't tag executable memory with the tag-based mode.
488 * The kernel doesn't tolerate having the PC register tagged.
489 */
490 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
491 !(flags & KASAN_VMALLOC_PROT_NORMAL))
492 return (void *)start;
493
494 start = set_tag(start, kasan_random_tag());
495 kasan_unpoison(start, size, false);
496 return (void *)start;
497 }
498
499 /*
500 * Poison the shadow for a vmalloc region. Called as part of the
501 * freeing process at the time the region is freed.
502 */
__kasan_poison_vmalloc(const void * start,unsigned long size)503 void __kasan_poison_vmalloc(const void *start, unsigned long size)
504 {
505 if (!is_vmalloc_or_module_addr(start))
506 return;
507
508 size = round_up(size, KASAN_GRANULE_SIZE);
509 kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
510 }
511
512 #else /* CONFIG_KASAN_VMALLOC */
513
kasan_alloc_module_shadow(void * addr,size_t size,gfp_t gfp_mask)514 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
515 {
516 void *ret;
517 size_t scaled_size;
518 size_t shadow_size;
519 unsigned long shadow_start;
520
521 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
522 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
523 KASAN_SHADOW_SCALE_SHIFT;
524 shadow_size = round_up(scaled_size, PAGE_SIZE);
525
526 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
527 return -EINVAL;
528
529 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
530 shadow_start + shadow_size,
531 GFP_KERNEL,
532 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
533 __builtin_return_address(0));
534
535 if (ret) {
536 struct vm_struct *vm = find_vm_area(addr);
537 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
538 vm->flags |= VM_KASAN;
539 kmemleak_ignore(ret);
540
541 if (vm->flags & VM_DEFER_KMEMLEAK)
542 kmemleak_vmalloc(vm, size, gfp_mask);
543
544 return 0;
545 }
546
547 return -ENOMEM;
548 }
549
kasan_free_module_shadow(const struct vm_struct * vm)550 void kasan_free_module_shadow(const struct vm_struct *vm)
551 {
552 if (vm->flags & VM_KASAN)
553 vfree(kasan_mem_to_shadow(vm->addr));
554 }
555
556 #endif
557