• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
__kasan_check_read(const volatile void * p,unsigned int size)29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
__kasan_check_write(const volatile void * p,unsigned int size)35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #undef memset
memset(void * addr,int c,size_t len)42 void *memset(void *addr, int c, size_t len)
43 {
44 	if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45 		return NULL;
46 
47 	return __memset(addr, c, len);
48 }
49 
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
memmove(void * dest,const void * src,size_t len)52 void *memmove(void *dest, const void *src, size_t len)
53 {
54 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56 		return NULL;
57 
58 	return __memmove(dest, src, len);
59 }
60 #endif
61 
62 #undef memcpy
memcpy(void * dest,const void * src,size_t len)63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65 	if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 	    !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67 		return NULL;
68 
69 	return __memcpy(dest, src, len);
70 }
71 
kasan_poison(const void * addr,size_t size,u8 value,bool init)72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74 	void *shadow_start, *shadow_end;
75 
76 	if (!kasan_arch_is_ready())
77 		return;
78 
79 	/*
80 	 * Perform shadow offset calculation based on untagged address, as
81 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 	 * addresses to this function.
83 	 */
84 	addr = kasan_reset_tag(addr);
85 
86 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
87 	if (is_kfence_address(addr))
88 		return;
89 
90 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
91 		return;
92 	if (WARN_ON(size & KASAN_GRANULE_MASK))
93 		return;
94 
95 	shadow_start = kasan_mem_to_shadow(addr);
96 	shadow_end = kasan_mem_to_shadow(addr + size);
97 
98 	__memset(shadow_start, value, shadow_end - shadow_start);
99 }
100 EXPORT_SYMBOL(kasan_poison);
101 
102 #ifdef CONFIG_KASAN_GENERIC
kasan_poison_last_granule(const void * addr,size_t size)103 void kasan_poison_last_granule(const void *addr, size_t size)
104 {
105 	if (!kasan_arch_is_ready())
106 		return;
107 
108 	if (size & KASAN_GRANULE_MASK) {
109 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110 		*shadow = size & KASAN_GRANULE_MASK;
111 	}
112 }
113 #endif
114 
kasan_unpoison(const void * addr,size_t size,bool init)115 void kasan_unpoison(const void *addr, size_t size, bool init)
116 {
117 	u8 tag = get_tag(addr);
118 
119 	/*
120 	 * Perform shadow offset calculation based on untagged address, as
121 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122 	 * addresses to this function.
123 	 */
124 	addr = kasan_reset_tag(addr);
125 
126 	/*
127 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128 	 * that calls to ksize(), where size is not a multiple of machine-word
129 	 * size, would otherwise poison the invalid portion of the word.
130 	 */
131 	if (is_kfence_address(addr))
132 		return;
133 
134 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135 		return;
136 
137 	/* Unpoison all granules that cover the object. */
138 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139 
140 	/* Partially poison the last granule for the generic mode. */
141 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142 		kasan_poison_last_granule(addr, size);
143 }
144 
145 #ifdef CONFIG_MEMORY_HOTPLUG
shadow_mapped(unsigned long addr)146 static bool shadow_mapped(unsigned long addr)
147 {
148 	pgd_t *pgd = pgd_offset_k(addr);
149 	p4d_t *p4d;
150 	pud_t *pud;
151 	pmd_t *pmd;
152 	pte_t *pte;
153 
154 	if (pgd_none(*pgd))
155 		return false;
156 	p4d = p4d_offset(pgd, addr);
157 	if (p4d_none(*p4d))
158 		return false;
159 	pud = pud_offset(p4d, addr);
160 	if (pud_none(*pud))
161 		return false;
162 
163 	/*
164 	 * We can't use pud_large() or pud_huge(), the first one is
165 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
166 	 * pud_bad(), if pud is bad then it's bad because it's huge.
167 	 */
168 	if (pud_bad(*pud))
169 		return true;
170 	pmd = pmd_offset(pud, addr);
171 	if (pmd_none(*pmd))
172 		return false;
173 
174 	if (pmd_bad(*pmd))
175 		return true;
176 	pte = pte_offset_kernel(pmd, addr);
177 	return !pte_none(*pte);
178 }
179 
kasan_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)180 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181 			unsigned long action, void *data)
182 {
183 	struct memory_notify *mem_data = data;
184 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185 	unsigned long shadow_end, shadow_size;
186 
187 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
191 	shadow_end = shadow_start + shadow_size;
192 
193 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195 		return NOTIFY_BAD;
196 
197 	switch (action) {
198 	case MEM_GOING_ONLINE: {
199 		void *ret;
200 
201 		/*
202 		 * If shadow is mapped already than it must have been mapped
203 		 * during the boot. This could happen if we onlining previously
204 		 * offlined memory.
205 		 */
206 		if (shadow_mapped(shadow_start))
207 			return NOTIFY_OK;
208 
209 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210 					shadow_end, GFP_KERNEL,
211 					PAGE_KERNEL, VM_NO_GUARD,
212 					pfn_to_nid(mem_data->start_pfn),
213 					__builtin_return_address(0));
214 		if (!ret)
215 			return NOTIFY_BAD;
216 
217 		kmemleak_ignore(ret);
218 		return NOTIFY_OK;
219 	}
220 	case MEM_CANCEL_ONLINE:
221 	case MEM_OFFLINE: {
222 		struct vm_struct *vm;
223 
224 		/*
225 		 * shadow_start was either mapped during boot by kasan_init()
226 		 * or during memory online by __vmalloc_node_range().
227 		 * In the latter case we can use vfree() to free shadow.
228 		 * Non-NULL result of the find_vm_area() will tell us if
229 		 * that was the second case.
230 		 *
231 		 * Currently it's not possible to free shadow mapped
232 		 * during boot by kasan_init(). It's because the code
233 		 * to do that hasn't been written yet. So we'll just
234 		 * leak the memory.
235 		 */
236 		vm = find_vm_area((void *)shadow_start);
237 		if (vm)
238 			vfree((void *)shadow_start);
239 	}
240 	}
241 
242 	return NOTIFY_OK;
243 }
244 
kasan_memhotplug_init(void)245 static int __init kasan_memhotplug_init(void)
246 {
247 	hotplug_memory_notifier(kasan_mem_notifier, 0);
248 
249 	return 0;
250 }
251 
252 core_initcall(kasan_memhotplug_init);
253 #endif
254 
255 #ifdef CONFIG_KASAN_VMALLOC
256 
kasan_populate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)257 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
258 				      void *unused)
259 {
260 	unsigned long page;
261 	pte_t pte;
262 
263 	if (likely(!pte_none(*ptep)))
264 		return 0;
265 
266 	page = __get_free_page(GFP_KERNEL);
267 	if (!page)
268 		return -ENOMEM;
269 
270 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
271 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
272 
273 	spin_lock(&init_mm.page_table_lock);
274 	if (likely(pte_none(*ptep))) {
275 		set_pte_at(&init_mm, addr, ptep, pte);
276 		page = 0;
277 	}
278 	spin_unlock(&init_mm.page_table_lock);
279 	if (page)
280 		free_page(page);
281 	return 0;
282 }
283 
kasan_populate_vmalloc(unsigned long addr,unsigned long size)284 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
285 {
286 	unsigned long shadow_start, shadow_end;
287 	int ret;
288 
289 	if (!is_vmalloc_or_module_addr((void *)addr))
290 		return 0;
291 
292 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
293 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
294 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
295 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
296 
297 	ret = apply_to_page_range(&init_mm, shadow_start,
298 				  shadow_end - shadow_start,
299 				  kasan_populate_vmalloc_pte, NULL);
300 	if (ret)
301 		return ret;
302 
303 	flush_cache_vmap(shadow_start, shadow_end);
304 
305 	/*
306 	 * We need to be careful about inter-cpu effects here. Consider:
307 	 *
308 	 *   CPU#0				  CPU#1
309 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
310 	 *					p[99] = 1;
311 	 *
312 	 * With compiler instrumentation, that ends up looking like this:
313 	 *
314 	 *   CPU#0				  CPU#1
315 	 * // vmalloc() allocates memory
316 	 * // let a = area->addr
317 	 * // we reach kasan_populate_vmalloc
318 	 * // and call kasan_unpoison:
319 	 * STORE shadow(a), unpoison_val
320 	 * ...
321 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
322 	 * // rest of vmalloc process		<data dependency>
323 	 * STORE p, a				LOAD shadow(x+99)
324 	 *
325 	 * If there is no barrier between the end of unpoisoning the shadow
326 	 * and the store of the result to p, the stores could be committed
327 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
328 	 * poison in the shadow.
329 	 *
330 	 * We need some sort of barrier between the stores.
331 	 *
332 	 * In the vmalloc() case, this is provided by a smp_wmb() in
333 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
334 	 * get_vm_area() and friends, the caller gets shadow allocated but
335 	 * doesn't have any pages mapped into the virtual address space that
336 	 * has been reserved. Mapping those pages in will involve taking and
337 	 * releasing a page-table lock, which will provide the barrier.
338 	 */
339 
340 	return 0;
341 }
342 
kasan_depopulate_vmalloc_pte(pte_t * ptep,unsigned long addr,void * unused)343 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
344 					void *unused)
345 {
346 	unsigned long page;
347 
348 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
349 
350 	spin_lock(&init_mm.page_table_lock);
351 
352 	if (likely(!pte_none(*ptep))) {
353 		pte_clear(&init_mm, addr, ptep);
354 		free_page(page);
355 	}
356 	spin_unlock(&init_mm.page_table_lock);
357 
358 	return 0;
359 }
360 
361 /*
362  * Release the backing for the vmalloc region [start, end), which
363  * lies within the free region [free_region_start, free_region_end).
364  *
365  * This can be run lazily, long after the region was freed. It runs
366  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
367  * infrastructure.
368  *
369  * How does this work?
370  * -------------------
371  *
372  * We have a region that is page aligned, labeled as A.
373  * That might not map onto the shadow in a way that is page-aligned:
374  *
375  *                    start                     end
376  *                    v                         v
377  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
378  *  -------- -------- --------          -------- --------
379  *      |        |       |                 |        |
380  *      |        |       |         /-------/        |
381  *      \-------\|/------/         |/---------------/
382  *              |||                ||
383  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
384  *                 (1)      (2)      (3)
385  *
386  * First we align the start upwards and the end downwards, so that the
387  * shadow of the region aligns with shadow page boundaries. In the
388  * example, this gives us the shadow page (2). This is the shadow entirely
389  * covered by this allocation.
390  *
391  * Then we have the tricky bits. We want to know if we can free the
392  * partially covered shadow pages - (1) and (3) in the example. For this,
393  * we are given the start and end of the free region that contains this
394  * allocation. Extending our previous example, we could have:
395  *
396  *  free_region_start                                    free_region_end
397  *  |                 start                     end      |
398  *  v                 v                         v        v
399  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
400  *  -------- -------- --------          -------- --------
401  *      |        |       |                 |        |
402  *      |        |       |         /-------/        |
403  *      \-------\|/------/         |/---------------/
404  *              |||                ||
405  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
406  *                 (1)      (2)      (3)
407  *
408  * Once again, we align the start of the free region up, and the end of
409  * the free region down so that the shadow is page aligned. So we can free
410  * page (1) - we know no allocation currently uses anything in that page,
411  * because all of it is in the vmalloc free region. But we cannot free
412  * page (3), because we can't be sure that the rest of it is unused.
413  *
414  * We only consider pages that contain part of the original region for
415  * freeing: we don't try to free other pages from the free region or we'd
416  * end up trying to free huge chunks of virtual address space.
417  *
418  * Concurrency
419  * -----------
420  *
421  * How do we know that we're not freeing a page that is simultaneously
422  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
423  *
424  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
425  * at the same time. While we run under free_vmap_area_lock, the population
426  * code does not.
427  *
428  * free_vmap_area_lock instead operates to ensure that the larger range
429  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
430  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
431  * no space identified as free will become used while we are running. This
432  * means that so long as we are careful with alignment and only free shadow
433  * pages entirely covered by the free region, we will not run in to any
434  * trouble - any simultaneous allocations will be for disjoint regions.
435  */
kasan_release_vmalloc(unsigned long start,unsigned long end,unsigned long free_region_start,unsigned long free_region_end)436 void kasan_release_vmalloc(unsigned long start, unsigned long end,
437 			   unsigned long free_region_start,
438 			   unsigned long free_region_end)
439 {
440 	void *shadow_start, *shadow_end;
441 	unsigned long region_start, region_end;
442 	unsigned long size;
443 
444 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
445 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
446 
447 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
448 
449 	if (start != region_start &&
450 	    free_region_start < region_start)
451 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
452 
453 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
454 
455 	if (end != region_end &&
456 	    free_region_end > region_end)
457 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
458 
459 	shadow_start = kasan_mem_to_shadow((void *)region_start);
460 	shadow_end = kasan_mem_to_shadow((void *)region_end);
461 
462 	if (shadow_end > shadow_start) {
463 		size = shadow_end - shadow_start;
464 		apply_to_existing_page_range(&init_mm,
465 					     (unsigned long)shadow_start,
466 					     size, kasan_depopulate_vmalloc_pte,
467 					     NULL);
468 		flush_tlb_kernel_range((unsigned long)shadow_start,
469 				       (unsigned long)shadow_end);
470 	}
471 }
472 
__kasan_unpoison_vmalloc(const void * start,unsigned long size,kasan_vmalloc_flags_t flags)473 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
474 			       kasan_vmalloc_flags_t flags)
475 {
476 	/*
477 	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
478 	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
479 	 * Software KASAN modes can't optimize zeroing memory by combining it
480 	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
481 	 */
482 
483 	if (!is_vmalloc_or_module_addr(start))
484 		return (void *)start;
485 
486 	/*
487 	 * Don't tag executable memory with the tag-based mode.
488 	 * The kernel doesn't tolerate having the PC register tagged.
489 	 */
490 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
491 	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
492 		return (void *)start;
493 
494 	start = set_tag(start, kasan_random_tag());
495 	kasan_unpoison(start, size, false);
496 	return (void *)start;
497 }
498 
499 /*
500  * Poison the shadow for a vmalloc region. Called as part of the
501  * freeing process at the time the region is freed.
502  */
__kasan_poison_vmalloc(const void * start,unsigned long size)503 void __kasan_poison_vmalloc(const void *start, unsigned long size)
504 {
505 	if (!is_vmalloc_or_module_addr(start))
506 		return;
507 
508 	size = round_up(size, KASAN_GRANULE_SIZE);
509 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
510 }
511 
512 #else /* CONFIG_KASAN_VMALLOC */
513 
kasan_alloc_module_shadow(void * addr,size_t size,gfp_t gfp_mask)514 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
515 {
516 	void *ret;
517 	size_t scaled_size;
518 	size_t shadow_size;
519 	unsigned long shadow_start;
520 
521 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
522 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
523 				KASAN_SHADOW_SCALE_SHIFT;
524 	shadow_size = round_up(scaled_size, PAGE_SIZE);
525 
526 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
527 		return -EINVAL;
528 
529 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
530 			shadow_start + shadow_size,
531 			GFP_KERNEL,
532 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
533 			__builtin_return_address(0));
534 
535 	if (ret) {
536 		struct vm_struct *vm = find_vm_area(addr);
537 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
538 		vm->flags |= VM_KASAN;
539 		kmemleak_ignore(ret);
540 
541 		if (vm->flags & VM_DEFER_KMEMLEAK)
542 			kmemleak_vmalloc(vm, size, gfp_mask);
543 
544 		return 0;
545 	}
546 
547 	return -ENOMEM;
548 }
549 
kasan_free_module_shadow(const struct vm_struct * vm)550 void kasan_free_module_shadow(const struct vm_struct *vm)
551 {
552 	if (vm->flags & VM_KASAN)
553 		vfree(kasan_mem_to_shadow(vm->addr));
554 }
555 
556 #endif
557