1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/mm.h>
9 #include <linux/uaccess.h>
10 #include <linux/hardirq.h>
11
12 #include <asm/cacheflush.h>
13
14 #include "highmem-internal.h"
15
16 /**
17 * kmap - Map a page for long term usage
18 * @page: Pointer to the page to be mapped
19 *
20 * Returns: The virtual address of the mapping
21 *
22 * Can only be invoked from preemptible task context because on 32bit
23 * systems with CONFIG_HIGHMEM enabled this function might sleep.
24 *
25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26 * this returns the virtual address of the direct kernel mapping.
27 *
28 * The returned virtual address is globally visible and valid up to the
29 * point where it is unmapped via kunmap(). The pointer can be handed to
30 * other contexts.
31 *
32 * For highmem pages on 32bit systems this can be slow as the mapping space
33 * is limited and protected by a global lock. In case that there is no
34 * mapping slot available the function blocks until a slot is released via
35 * kunmap().
36 */
37 static inline void *kmap(struct page *page);
38
39 /**
40 * kunmap - Unmap the virtual address mapped by kmap()
41 * @addr: Virtual address to be unmapped
42 *
43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44 * pages in the low memory area.
45 */
46 static inline void kunmap(struct page *page);
47
48 /**
49 * kmap_to_page - Get the page for a kmap'ed address
50 * @addr: The address to look up
51 *
52 * Returns: The page which is mapped to @addr.
53 */
54 static inline struct page *kmap_to_page(void *addr);
55
56 /**
57 * kmap_flush_unused - Flush all unused kmap mappings in order to
58 * remove stray mappings
59 */
60 static inline void kmap_flush_unused(void);
61
62 /**
63 * kmap_local_page - Map a page for temporary usage
64 * @page: Pointer to the page to be mapped
65 *
66 * Returns: The virtual address of the mapping
67 *
68 * Can be invoked from any context.
69 *
70 * Requires careful handling when nesting multiple mappings because the map
71 * management is stack based. The unmap has to be in the reverse order of
72 * the map operation:
73 *
74 * addr1 = kmap_local_page(page1);
75 * addr2 = kmap_local_page(page2);
76 * ...
77 * kunmap_local(addr2);
78 * kunmap_local(addr1);
79 *
80 * Unmapping addr1 before addr2 is invalid and causes malfunction.
81 *
82 * Contrary to kmap() mappings the mapping is only valid in the context of
83 * the caller and cannot be handed to other contexts.
84 *
85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86 * virtual address of the direct mapping. Only real highmem pages are
87 * temporarily mapped.
88 *
89 * While it is significantly faster than kmap() for the higmem case it
90 * comes with restrictions about the pointer validity. Only use when really
91 * necessary.
92 *
93 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
94 * disabling migration in order to keep the virtual address stable across
95 * preemption. No caller of kmap_local_page() can rely on this side effect.
96 */
97 static inline void *kmap_local_page(struct page *page);
98
99 /**
100 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
101 * @page: Pointer to the page to be mapped
102 *
103 * Returns: The virtual address of the mapping
104 *
105 * Effectively a wrapper around kmap_local_page() which disables pagefaults
106 * and preemption.
107 *
108 * Do not use in new code. Use kmap_local_page() instead.
109 */
110 static inline void *kmap_atomic(struct page *page);
111
112 /**
113 * kunmap_atomic - Unmap the virtual address mapped by kmap_atomic()
114 * @addr: Virtual address to be unmapped
115 *
116 * Counterpart to kmap_atomic().
117 *
118 * Effectively a wrapper around kunmap_local() which additionally undoes
119 * the side effects of kmap_atomic(), i.e. reenabling pagefaults and
120 * preemption.
121 */
122
123 /* Highmem related interfaces for management code */
124 static inline unsigned int nr_free_highpages(void);
125 static inline unsigned long totalhigh_pages(void);
126
127 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)128 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
129 {
130 }
131 #endif
132
133 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)134 static inline void flush_kernel_vmap_range(void *vaddr, int size)
135 {
136 }
invalidate_kernel_vmap_range(void * vaddr,int size)137 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
138 {
139 }
140 #endif
141
142 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
143 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)144 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
145 {
146 void *addr = kmap_atomic(page);
147 clear_user_page(addr, vaddr, page);
148 kunmap_atomic(addr);
149 }
150 #endif
151
152 #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
153 /**
154 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
155 * @vma: The VMA the page is to be allocated for
156 * @vaddr: The virtual address the page will be inserted into
157 *
158 * This function will allocate a page for a VMA that the caller knows will
159 * be able to migrate in the future using move_pages() or reclaimed
160 *
161 * An architecture may override this function by defining
162 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
163 * implementation.
164 */
165 static inline struct page *
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)166 alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
167 unsigned long vaddr)
168 {
169 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_CMA, vma, vaddr);
170
171 if (page)
172 clear_user_highpage(page, vaddr);
173
174 return page;
175 }
176 #endif
177
clear_highpage(struct page * page)178 static inline void clear_highpage(struct page *page)
179 {
180 void *kaddr = kmap_atomic(page);
181 clear_page(kaddr);
182 kunmap_atomic(kaddr);
183 }
184
185 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
186
tag_clear_highpage(struct page * page)187 static inline void tag_clear_highpage(struct page *page)
188 {
189 }
190
191 #endif
192
193 /*
194 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
195 * If we pass in a head page, we can zero up to the size of the compound page.
196 */
197 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
198 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
199 unsigned start2, unsigned end2);
200 #else /* !HIGHMEM || !TRANSPARENT_HUGEPAGE */
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)201 static inline void zero_user_segments(struct page *page,
202 unsigned start1, unsigned end1,
203 unsigned start2, unsigned end2)
204 {
205 void *kaddr = kmap_atomic(page);
206 unsigned int i;
207
208 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
209
210 if (end1 > start1)
211 memset(kaddr + start1, 0, end1 - start1);
212
213 if (end2 > start2)
214 memset(kaddr + start2, 0, end2 - start2);
215
216 kunmap_atomic(kaddr);
217 for (i = 0; i < compound_nr(page); i++)
218 flush_dcache_page(page + i);
219 }
220 #endif /* !HIGHMEM || !TRANSPARENT_HUGEPAGE */
221
zero_user_segment(struct page * page,unsigned start,unsigned end)222 static inline void zero_user_segment(struct page *page,
223 unsigned start, unsigned end)
224 {
225 zero_user_segments(page, start, end, 0, 0);
226 }
227
zero_user(struct page * page,unsigned start,unsigned size)228 static inline void zero_user(struct page *page,
229 unsigned start, unsigned size)
230 {
231 zero_user_segments(page, start, start + size, 0, 0);
232 }
233
234 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
235
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)236 static inline void copy_user_highpage(struct page *to, struct page *from,
237 unsigned long vaddr, struct vm_area_struct *vma)
238 {
239 char *vfrom, *vto;
240
241 vfrom = kmap_atomic(from);
242 vto = kmap_atomic(to);
243 copy_user_page(vto, vfrom, vaddr, to);
244 kunmap_atomic(vto);
245 kunmap_atomic(vfrom);
246 }
247
248 #endif
249
250 #ifdef copy_mc_to_kernel
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)251 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
252 unsigned long vaddr, struct vm_area_struct *vma)
253 {
254 unsigned long ret;
255 char *vfrom, *vto;
256
257 vfrom = kmap_local_page(from);
258 vto = kmap_local_page(to);
259 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
260 kunmap_local(vto);
261 kunmap_local(vfrom);
262
263 return ret;
264 }
265 #else
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)266 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
267 unsigned long vaddr, struct vm_area_struct *vma)
268 {
269 copy_user_highpage(to, from, vaddr, vma);
270 return 0;
271 }
272 #endif
273
274 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
275
copy_highpage(struct page * to,struct page * from)276 static inline void copy_highpage(struct page *to, struct page *from)
277 {
278 char *vfrom, *vto;
279
280 vfrom = kmap_atomic(from);
281 vto = kmap_atomic(to);
282 copy_page(vto, vfrom);
283 kunmap_atomic(vto);
284 kunmap_atomic(vfrom);
285 }
286
287 #endif
288
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)289 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
290 struct page *src_page, size_t src_off,
291 size_t len)
292 {
293 char *dst = kmap_local_page(dst_page);
294 char *src = kmap_local_page(src_page);
295
296 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
297 memcpy(dst + dst_off, src + src_off, len);
298 kunmap_local(src);
299 kunmap_local(dst);
300 }
301
memmove_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)302 static inline void memmove_page(struct page *dst_page, size_t dst_off,
303 struct page *src_page, size_t src_off,
304 size_t len)
305 {
306 char *dst = kmap_local_page(dst_page);
307 char *src = kmap_local_page(src_page);
308
309 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
310 memmove(dst + dst_off, src + src_off, len);
311 kunmap_local(src);
312 kunmap_local(dst);
313 }
314
memset_page(struct page * page,size_t offset,int val,size_t len)315 static inline void memset_page(struct page *page, size_t offset, int val,
316 size_t len)
317 {
318 char *addr = kmap_local_page(page);
319
320 VM_BUG_ON(offset + len > PAGE_SIZE);
321 memset(addr + offset, val, len);
322 kunmap_local(addr);
323 }
324
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)325 static inline void memcpy_from_page(char *to, struct page *page,
326 size_t offset, size_t len)
327 {
328 char *from = kmap_local_page(page);
329
330 VM_BUG_ON(offset + len > PAGE_SIZE);
331 memcpy(to, from + offset, len);
332 kunmap_local(from);
333 }
334
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)335 static inline void memcpy_to_page(struct page *page, size_t offset,
336 const char *from, size_t len)
337 {
338 char *to = kmap_local_page(page);
339
340 VM_BUG_ON(offset + len > PAGE_SIZE);
341 memcpy(to + offset, from, len);
342 flush_dcache_page(page);
343 kunmap_local(to);
344 }
345
memzero_page(struct page * page,size_t offset,size_t len)346 static inline void memzero_page(struct page *page, size_t offset, size_t len)
347 {
348 char *addr = kmap_local_page(page);
349 memset(addr + offset, 0, len);
350 flush_dcache_page(page);
351 kunmap_local(addr);
352 }
353
354 #endif /* _LINUX_HIGHMEM_H */
355