• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44 
45 #include <asm/cacheflush.h>
46 #include <asm/processor.h>
47 #include <asm/tlbflush.h>
48 #include <asm/x86_init.h>
49 #include <asm/fcntl.h>
50 #include <asm/e820/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/page.h>
53 #include <asm/msr.h>
54 #include <asm/memtype.h>
55 #include <asm/io.h>
56 
57 #include "memtype.h"
58 #include "../mm_internal.h"
59 
60 #undef pr_fmt
61 #define pr_fmt(fmt) "" fmt
62 
63 static bool __read_mostly pat_bp_initialized;
64 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 static bool __read_mostly pat_bp_enabled;
66 static bool __read_mostly pat_cm_initialized;
67 
68 /*
69  * PAT support is enabled by default, but can be disabled for
70  * various user-requested or hardware-forced reasons:
71  */
pat_disable(const char * msg_reason)72 void pat_disable(const char *msg_reason)
73 {
74 	if (pat_disabled)
75 		return;
76 
77 	if (pat_bp_initialized) {
78 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
79 		return;
80 	}
81 
82 	pat_disabled = true;
83 	pr_info("x86/PAT: %s\n", msg_reason);
84 }
85 
nopat(char * str)86 static int __init nopat(char *str)
87 {
88 	pat_disable("PAT support disabled via boot option.");
89 	return 0;
90 }
91 early_param("nopat", nopat);
92 
pat_enabled(void)93 bool pat_enabled(void)
94 {
95 	return pat_bp_enabled;
96 }
97 EXPORT_SYMBOL_GPL(pat_enabled);
98 
99 int pat_debug_enable;
100 
pat_debug_setup(char * str)101 static int __init pat_debug_setup(char *str)
102 {
103 	pat_debug_enable = 1;
104 	return 1;
105 }
106 __setup("debugpat", pat_debug_setup);
107 
108 #ifdef CONFIG_X86_PAT
109 /*
110  * X86 PAT uses page flags arch_1 and uncached together to keep track of
111  * memory type of pages that have backing page struct.
112  *
113  * X86 PAT supports 4 different memory types:
114  *  - _PAGE_CACHE_MODE_WB
115  *  - _PAGE_CACHE_MODE_WC
116  *  - _PAGE_CACHE_MODE_UC_MINUS
117  *  - _PAGE_CACHE_MODE_WT
118  *
119  * _PAGE_CACHE_MODE_WB is the default type.
120  */
121 
122 #define _PGMT_WB		0
123 #define _PGMT_WC		(1UL << PG_arch_1)
124 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
125 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
126 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
127 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
128 
get_page_memtype(struct page * pg)129 static inline enum page_cache_mode get_page_memtype(struct page *pg)
130 {
131 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
132 
133 	if (pg_flags == _PGMT_WB)
134 		return _PAGE_CACHE_MODE_WB;
135 	else if (pg_flags == _PGMT_WC)
136 		return _PAGE_CACHE_MODE_WC;
137 	else if (pg_flags == _PGMT_UC_MINUS)
138 		return _PAGE_CACHE_MODE_UC_MINUS;
139 	else
140 		return _PAGE_CACHE_MODE_WT;
141 }
142 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)143 static inline void set_page_memtype(struct page *pg,
144 				    enum page_cache_mode memtype)
145 {
146 	unsigned long memtype_flags;
147 	unsigned long old_flags;
148 	unsigned long new_flags;
149 
150 	switch (memtype) {
151 	case _PAGE_CACHE_MODE_WC:
152 		memtype_flags = _PGMT_WC;
153 		break;
154 	case _PAGE_CACHE_MODE_UC_MINUS:
155 		memtype_flags = _PGMT_UC_MINUS;
156 		break;
157 	case _PAGE_CACHE_MODE_WT:
158 		memtype_flags = _PGMT_WT;
159 		break;
160 	case _PAGE_CACHE_MODE_WB:
161 	default:
162 		memtype_flags = _PGMT_WB;
163 		break;
164 	}
165 
166 	do {
167 		old_flags = pg->flags;
168 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
169 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
170 }
171 #else
get_page_memtype(struct page * pg)172 static inline enum page_cache_mode get_page_memtype(struct page *pg)
173 {
174 	return -1;
175 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)176 static inline void set_page_memtype(struct page *pg,
177 				    enum page_cache_mode memtype)
178 {
179 }
180 #endif
181 
182 enum {
183 	PAT_UC = 0,		/* uncached */
184 	PAT_WC = 1,		/* Write combining */
185 	PAT_WT = 4,		/* Write Through */
186 	PAT_WP = 5,		/* Write Protected */
187 	PAT_WB = 6,		/* Write Back (default) */
188 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
189 };
190 
191 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
192 
pat_get_cache_mode(unsigned pat_val,char * msg)193 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
194 {
195 	enum page_cache_mode cache;
196 	char *cache_mode;
197 
198 	switch (pat_val) {
199 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
200 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
201 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
202 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
203 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
204 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
205 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
206 	}
207 
208 	memcpy(msg, cache_mode, 4);
209 
210 	return cache;
211 }
212 
213 #undef CM
214 
215 /*
216  * Update the cache mode to pgprot translation tables according to PAT
217  * configuration.
218  * Using lower indices is preferred, so we start with highest index.
219  */
__init_cache_modes(u64 pat)220 static void __init_cache_modes(u64 pat)
221 {
222 	enum page_cache_mode cache;
223 	char pat_msg[33];
224 	int i;
225 
226 	WARN_ON_ONCE(pat_cm_initialized);
227 
228 	pat_msg[32] = 0;
229 	for (i = 7; i >= 0; i--) {
230 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
231 					   pat_msg + 4 * i);
232 		update_cache_mode_entry(i, cache);
233 	}
234 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
235 
236 	pat_cm_initialized = true;
237 }
238 
239 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
240 
pat_bp_init(u64 pat)241 static void pat_bp_init(u64 pat)
242 {
243 	u64 tmp_pat;
244 
245 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
246 		pat_disable("PAT not supported by the CPU.");
247 		return;
248 	}
249 
250 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
251 	if (!tmp_pat) {
252 		pat_disable("PAT support disabled by the firmware.");
253 		return;
254 	}
255 
256 	wrmsrl(MSR_IA32_CR_PAT, pat);
257 	pat_bp_enabled = true;
258 
259 	__init_cache_modes(pat);
260 }
261 
pat_ap_init(u64 pat)262 static void pat_ap_init(u64 pat)
263 {
264 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
265 		/*
266 		 * If this happens we are on a secondary CPU, but switched to
267 		 * PAT on the boot CPU. We have no way to undo PAT.
268 		 */
269 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
270 	}
271 
272 	wrmsrl(MSR_IA32_CR_PAT, pat);
273 }
274 
init_cache_modes(void)275 void init_cache_modes(void)
276 {
277 	u64 pat = 0;
278 
279 	if (pat_cm_initialized)
280 		return;
281 
282 	if (boot_cpu_has(X86_FEATURE_PAT)) {
283 		/*
284 		 * CPU supports PAT. Set PAT table to be consistent with
285 		 * PAT MSR. This case supports "nopat" boot option, and
286 		 * virtual machine environments which support PAT without
287 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
288 		 *
289 		 * If PAT MSR returns 0, it is considered invalid and emulates
290 		 * as No PAT.
291 		 */
292 		rdmsrl(MSR_IA32_CR_PAT, pat);
293 	}
294 
295 	if (!pat) {
296 		/*
297 		 * No PAT. Emulate the PAT table that corresponds to the two
298 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
299 		 * This setup is also the same as the BIOS default setup.
300 		 *
301 		 * PTE encoding:
302 		 *
303 		 *       PCD
304 		 *       |PWT  PAT
305 		 *       ||    slot
306 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
307 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
308 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
309 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
310 		 *
311 		 * NOTE: When WC or WP is used, it is redirected to UC- per
312 		 * the default setup in __cachemode2pte_tbl[].
313 		 */
314 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
315 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
316 	}
317 
318 	__init_cache_modes(pat);
319 }
320 
321 /**
322  * pat_init - Initialize the PAT MSR and PAT table on the current CPU
323  *
324  * This function initializes PAT MSR and PAT table with an OS-defined value
325  * to enable additional cache attributes, WC, WT and WP.
326  *
327  * This function must be called on all CPUs using the specific sequence of
328  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
329  * procedure for PAT.
330  */
pat_init(void)331 void pat_init(void)
332 {
333 	u64 pat;
334 	struct cpuinfo_x86 *c = &boot_cpu_data;
335 
336 #ifndef CONFIG_X86_PAT
337 	pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
338 #endif
339 
340 	if (pat_disabled)
341 		return;
342 
343 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
344 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
345 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
346 		/*
347 		 * PAT support with the lower four entries. Intel Pentium 2,
348 		 * 3, M, and 4 are affected by PAT errata, which makes the
349 		 * upper four entries unusable. To be on the safe side, we don't
350 		 * use those.
351 		 *
352 		 *  PTE encoding:
353 		 *      PAT
354 		 *      |PCD
355 		 *      ||PWT  PAT
356 		 *      |||    slot
357 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
358 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
359 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
360 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
361 		 * PAT bit unused
362 		 *
363 		 * NOTE: When WT or WP is used, it is redirected to UC- per
364 		 * the default setup in __cachemode2pte_tbl[].
365 		 */
366 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
367 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
368 	} else {
369 		/*
370 		 * Full PAT support.  We put WT in slot 7 to improve
371 		 * robustness in the presence of errata that might cause
372 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
373 		 * access will hit slot 3, and slot 3 is UC, so at worst
374 		 * we lose performance without causing a correctness issue.
375 		 * Pentium 4 erratum N46 is an example for such an erratum,
376 		 * although we try not to use PAT at all on affected CPUs.
377 		 *
378 		 *  PTE encoding:
379 		 *      PAT
380 		 *      |PCD
381 		 *      ||PWT  PAT
382 		 *      |||    slot
383 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
384 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
385 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
386 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
387 		 *      100    4    WB : Reserved
388 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
389 		 *      110    6    UC-: Reserved
390 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
391 		 *
392 		 * The reserved slots are unused, but mapped to their
393 		 * corresponding types in the presence of PAT errata.
394 		 */
395 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
396 		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
397 	}
398 
399 	if (!pat_bp_initialized) {
400 		pat_bp_init(pat);
401 		pat_bp_initialized = true;
402 	} else {
403 		pat_ap_init(pat);
404 	}
405 }
406 
407 #undef PAT
408 
409 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
410 
411 /*
412  * Does intersection of PAT memory type and MTRR memory type and returns
413  * the resulting memory type as PAT understands it.
414  * (Type in pat and mtrr will not have same value)
415  * The intersection is based on "Effective Memory Type" tables in IA-32
416  * SDM vol 3a
417  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)418 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
419 				     enum page_cache_mode req_type)
420 {
421 	/*
422 	 * Look for MTRR hint to get the effective type in case where PAT
423 	 * request is for WB.
424 	 */
425 	if (req_type == _PAGE_CACHE_MODE_WB) {
426 		u8 mtrr_type, uniform;
427 
428 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
429 		if (mtrr_type != MTRR_TYPE_WRBACK)
430 			return _PAGE_CACHE_MODE_UC_MINUS;
431 
432 		return _PAGE_CACHE_MODE_WB;
433 	}
434 
435 	return req_type;
436 }
437 
438 struct pagerange_state {
439 	unsigned long		cur_pfn;
440 	int			ram;
441 	int			not_ram;
442 };
443 
444 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)445 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
446 {
447 	struct pagerange_state *state = arg;
448 
449 	state->not_ram	|= initial_pfn > state->cur_pfn;
450 	state->ram	|= total_nr_pages > 0;
451 	state->cur_pfn	 = initial_pfn + total_nr_pages;
452 
453 	return state->ram && state->not_ram;
454 }
455 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)456 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
457 {
458 	int ret = 0;
459 	unsigned long start_pfn = start >> PAGE_SHIFT;
460 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
461 	struct pagerange_state state = {start_pfn, 0, 0};
462 
463 	/*
464 	 * For legacy reasons, physical address range in the legacy ISA
465 	 * region is tracked as non-RAM. This will allow users of
466 	 * /dev/mem to map portions of legacy ISA region, even when
467 	 * some of those portions are listed(or not even listed) with
468 	 * different e820 types(RAM/reserved/..)
469 	 */
470 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
471 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
472 
473 	if (start_pfn < end_pfn) {
474 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
475 				&state, pagerange_is_ram_callback);
476 	}
477 
478 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
479 }
480 
481 /*
482  * For RAM pages, we use page flags to mark the pages with appropriate type.
483  * The page flags are limited to four types, WB (default), WC, WT and UC-.
484  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
485  * a new memory type is only allowed for a page mapped with the default WB
486  * type.
487  *
488  * Here we do two passes:
489  * - Find the memtype of all the pages in the range, look for any conflicts.
490  * - In case of no conflicts, set the new memtype for pages in the range.
491  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)492 static int reserve_ram_pages_type(u64 start, u64 end,
493 				  enum page_cache_mode req_type,
494 				  enum page_cache_mode *new_type)
495 {
496 	struct page *page;
497 	u64 pfn;
498 
499 	if (req_type == _PAGE_CACHE_MODE_WP) {
500 		if (new_type)
501 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
502 		return -EINVAL;
503 	}
504 
505 	if (req_type == _PAGE_CACHE_MODE_UC) {
506 		/* We do not support strong UC */
507 		WARN_ON_ONCE(1);
508 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
509 	}
510 
511 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
512 		enum page_cache_mode type;
513 
514 		page = pfn_to_page(pfn);
515 		type = get_page_memtype(page);
516 		if (type != _PAGE_CACHE_MODE_WB) {
517 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
518 				start, end - 1, type, req_type);
519 			if (new_type)
520 				*new_type = type;
521 
522 			return -EBUSY;
523 		}
524 	}
525 
526 	if (new_type)
527 		*new_type = req_type;
528 
529 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
530 		page = pfn_to_page(pfn);
531 		set_page_memtype(page, req_type);
532 	}
533 	return 0;
534 }
535 
free_ram_pages_type(u64 start,u64 end)536 static int free_ram_pages_type(u64 start, u64 end)
537 {
538 	struct page *page;
539 	u64 pfn;
540 
541 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
542 		page = pfn_to_page(pfn);
543 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
544 	}
545 	return 0;
546 }
547 
sanitize_phys(u64 address)548 static u64 sanitize_phys(u64 address)
549 {
550 	/*
551 	 * When changing the memtype for pages containing poison allow
552 	 * for a "decoy" virtual address (bit 63 clear) passed to
553 	 * set_memory_X(). __pa() on a "decoy" address results in a
554 	 * physical address with bit 63 set.
555 	 *
556 	 * Decoy addresses are not present for 32-bit builds, see
557 	 * set_mce_nospec().
558 	 */
559 	if (IS_ENABLED(CONFIG_X86_64))
560 		return address & __PHYSICAL_MASK;
561 	return address;
562 }
563 
564 /*
565  * req_type typically has one of the:
566  * - _PAGE_CACHE_MODE_WB
567  * - _PAGE_CACHE_MODE_WC
568  * - _PAGE_CACHE_MODE_UC_MINUS
569  * - _PAGE_CACHE_MODE_UC
570  * - _PAGE_CACHE_MODE_WT
571  *
572  * If new_type is NULL, function will return an error if it cannot reserve the
573  * region with req_type. If new_type is non-NULL, function will return
574  * available type in new_type in case of no error. In case of any error
575  * it will return a negative return value.
576  */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)577 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
578 		    enum page_cache_mode *new_type)
579 {
580 	struct memtype *entry_new;
581 	enum page_cache_mode actual_type;
582 	int is_range_ram;
583 	int err = 0;
584 
585 	start = sanitize_phys(start);
586 
587 	/*
588 	 * The end address passed into this function is exclusive, but
589 	 * sanitize_phys() expects an inclusive address.
590 	 */
591 	end = sanitize_phys(end - 1) + 1;
592 	if (start >= end) {
593 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
594 				start, end - 1, cattr_name(req_type));
595 		return -EINVAL;
596 	}
597 
598 	if (!pat_enabled()) {
599 		/* This is identical to page table setting without PAT */
600 		if (new_type)
601 			*new_type = req_type;
602 		return 0;
603 	}
604 
605 	/* Low ISA region is always mapped WB in page table. No need to track */
606 	if (x86_platform.is_untracked_pat_range(start, end)) {
607 		if (new_type)
608 			*new_type = _PAGE_CACHE_MODE_WB;
609 		return 0;
610 	}
611 
612 	/*
613 	 * Call mtrr_lookup to get the type hint. This is an
614 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
615 	 * tools and ACPI tools). Use WB request for WB memory and use
616 	 * UC_MINUS otherwise.
617 	 */
618 	actual_type = pat_x_mtrr_type(start, end, req_type);
619 
620 	if (new_type)
621 		*new_type = actual_type;
622 
623 	is_range_ram = pat_pagerange_is_ram(start, end);
624 	if (is_range_ram == 1) {
625 
626 		err = reserve_ram_pages_type(start, end, req_type, new_type);
627 
628 		return err;
629 	} else if (is_range_ram < 0) {
630 		return -EINVAL;
631 	}
632 
633 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
634 	if (!entry_new)
635 		return -ENOMEM;
636 
637 	entry_new->start = start;
638 	entry_new->end	 = end;
639 	entry_new->type	 = actual_type;
640 
641 	spin_lock(&memtype_lock);
642 
643 	err = memtype_check_insert(entry_new, new_type);
644 	if (err) {
645 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
646 			start, end - 1,
647 			cattr_name(entry_new->type), cattr_name(req_type));
648 		kfree(entry_new);
649 		spin_unlock(&memtype_lock);
650 
651 		return err;
652 	}
653 
654 	spin_unlock(&memtype_lock);
655 
656 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
657 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
658 		new_type ? cattr_name(*new_type) : "-");
659 
660 	return err;
661 }
662 
memtype_free(u64 start,u64 end)663 int memtype_free(u64 start, u64 end)
664 {
665 	int is_range_ram;
666 	struct memtype *entry_old;
667 
668 	if (!pat_enabled())
669 		return 0;
670 
671 	start = sanitize_phys(start);
672 	end = sanitize_phys(end);
673 
674 	/* Low ISA region is always mapped WB. No need to track */
675 	if (x86_platform.is_untracked_pat_range(start, end))
676 		return 0;
677 
678 	is_range_ram = pat_pagerange_is_ram(start, end);
679 	if (is_range_ram == 1)
680 		return free_ram_pages_type(start, end);
681 	if (is_range_ram < 0)
682 		return -EINVAL;
683 
684 	spin_lock(&memtype_lock);
685 	entry_old = memtype_erase(start, end);
686 	spin_unlock(&memtype_lock);
687 
688 	if (IS_ERR(entry_old)) {
689 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
690 			current->comm, current->pid, start, end - 1);
691 		return -EINVAL;
692 	}
693 
694 	kfree(entry_old);
695 
696 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
697 
698 	return 0;
699 }
700 
701 
702 /**
703  * lookup_memtype - Looks up the memory type for a physical address
704  * @paddr: physical address of which memory type needs to be looked up
705  *
706  * Only to be called when PAT is enabled
707  *
708  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
709  * or _PAGE_CACHE_MODE_WT.
710  */
lookup_memtype(u64 paddr)711 static enum page_cache_mode lookup_memtype(u64 paddr)
712 {
713 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
714 	struct memtype *entry;
715 
716 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
717 		return rettype;
718 
719 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
720 		struct page *page;
721 
722 		page = pfn_to_page(paddr >> PAGE_SHIFT);
723 		return get_page_memtype(page);
724 	}
725 
726 	spin_lock(&memtype_lock);
727 
728 	entry = memtype_lookup(paddr);
729 	if (entry != NULL)
730 		rettype = entry->type;
731 	else
732 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
733 
734 	spin_unlock(&memtype_lock);
735 
736 	return rettype;
737 }
738 
739 /**
740  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
741  * of @pfn cannot be overridden by UC MTRR memory type.
742  *
743  * Only to be called when PAT is enabled.
744  *
745  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
746  * Returns false in other cases.
747  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)748 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
749 {
750 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
751 
752 	return cm == _PAGE_CACHE_MODE_UC ||
753 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
754 	       cm == _PAGE_CACHE_MODE_WC;
755 }
756 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
757 
758 /**
759  * memtype_reserve_io - Request a memory type mapping for a region of memory
760  * @start: start (physical address) of the region
761  * @end: end (physical address) of the region
762  * @type: A pointer to memtype, with requested type. On success, requested
763  * or any other compatible type that was available for the region is returned
764  *
765  * On success, returns 0
766  * On failure, returns non-zero
767  */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)768 int memtype_reserve_io(resource_size_t start, resource_size_t end,
769 			enum page_cache_mode *type)
770 {
771 	resource_size_t size = end - start;
772 	enum page_cache_mode req_type = *type;
773 	enum page_cache_mode new_type;
774 	int ret;
775 
776 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
777 
778 	ret = memtype_reserve(start, end, req_type, &new_type);
779 	if (ret)
780 		goto out_err;
781 
782 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
783 		goto out_free;
784 
785 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
786 		goto out_free;
787 
788 	*type = new_type;
789 	return 0;
790 
791 out_free:
792 	memtype_free(start, end);
793 	ret = -EBUSY;
794 out_err:
795 	return ret;
796 }
797 
798 /**
799  * memtype_free_io - Release a memory type mapping for a region of memory
800  * @start: start (physical address) of the region
801  * @end: end (physical address) of the region
802  */
memtype_free_io(resource_size_t start,resource_size_t end)803 void memtype_free_io(resource_size_t start, resource_size_t end)
804 {
805 	memtype_free(start, end);
806 }
807 
808 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)809 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
810 {
811 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
812 
813 	return memtype_reserve_io(start, start + size, &type);
814 }
815 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
816 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)817 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
818 {
819 	memtype_free_io(start, start + size);
820 }
821 EXPORT_SYMBOL(arch_io_free_memtype_wc);
822 #endif
823 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)824 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
825 				unsigned long size, pgprot_t vma_prot)
826 {
827 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
828 		vma_prot = pgprot_decrypted(vma_prot);
829 
830 	return vma_prot;
831 }
832 
833 #ifdef CONFIG_STRICT_DEVMEM
834 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)835 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
836 {
837 	return 1;
838 }
839 #else
840 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)841 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
842 {
843 	u64 from = ((u64)pfn) << PAGE_SHIFT;
844 	u64 to = from + size;
845 	u64 cursor = from;
846 
847 	if (!pat_enabled())
848 		return 1;
849 
850 	while (cursor < to) {
851 		if (!devmem_is_allowed(pfn))
852 			return 0;
853 		cursor += PAGE_SIZE;
854 		pfn++;
855 	}
856 	return 1;
857 }
858 #endif /* CONFIG_STRICT_DEVMEM */
859 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)860 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
861 				unsigned long size, pgprot_t *vma_prot)
862 {
863 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
864 
865 	if (!range_is_allowed(pfn, size))
866 		return 0;
867 
868 	if (file->f_flags & O_DSYNC)
869 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
870 
871 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
872 			     cachemode2protval(pcm));
873 	return 1;
874 }
875 
876 /*
877  * Change the memory type for the physical address range in kernel identity
878  * mapping space if that range is a part of identity map.
879  */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)880 int memtype_kernel_map_sync(u64 base, unsigned long size,
881 			    enum page_cache_mode pcm)
882 {
883 	unsigned long id_sz;
884 
885 	if (base > __pa(high_memory-1))
886 		return 0;
887 
888 	/*
889 	 * Some areas in the middle of the kernel identity range
890 	 * are not mapped, for example the PCI space.
891 	 */
892 	if (!page_is_ram(base >> PAGE_SHIFT))
893 		return 0;
894 
895 	id_sz = (__pa(high_memory-1) <= base + size) ?
896 				__pa(high_memory) - base : size;
897 
898 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
899 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
900 			current->comm, current->pid,
901 			cattr_name(pcm),
902 			base, (unsigned long long)(base + size-1));
903 		return -EINVAL;
904 	}
905 	return 0;
906 }
907 
908 /*
909  * Internal interface to reserve a range of physical memory with prot.
910  * Reserved non RAM regions only and after successful memtype_reserve,
911  * this func also keeps identity mapping (if any) in sync with this new prot.
912  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)913 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
914 				int strict_prot)
915 {
916 	int is_ram = 0;
917 	int ret;
918 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
919 	enum page_cache_mode pcm = want_pcm;
920 
921 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
922 
923 	/*
924 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
925 	 * track of number of mappings of RAM pages. We can assert that
926 	 * the type requested matches the type of first page in the range.
927 	 */
928 	if (is_ram) {
929 		if (!pat_enabled())
930 			return 0;
931 
932 		pcm = lookup_memtype(paddr);
933 		if (want_pcm != pcm) {
934 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
935 				current->comm, current->pid,
936 				cattr_name(want_pcm),
937 				(unsigned long long)paddr,
938 				(unsigned long long)(paddr + size - 1),
939 				cattr_name(pcm));
940 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
941 					     (~_PAGE_CACHE_MASK)) |
942 					     cachemode2protval(pcm));
943 		}
944 		return 0;
945 	}
946 
947 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
948 	if (ret)
949 		return ret;
950 
951 	if (pcm != want_pcm) {
952 		if (strict_prot ||
953 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
954 			memtype_free(paddr, paddr + size);
955 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
956 			       current->comm, current->pid,
957 			       cattr_name(want_pcm),
958 			       (unsigned long long)paddr,
959 			       (unsigned long long)(paddr + size - 1),
960 			       cattr_name(pcm));
961 			return -EINVAL;
962 		}
963 		/*
964 		 * We allow returning different type than the one requested in
965 		 * non strict case.
966 		 */
967 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
968 				      (~_PAGE_CACHE_MASK)) |
969 				     cachemode2protval(pcm));
970 	}
971 
972 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
973 		memtype_free(paddr, paddr + size);
974 		return -EINVAL;
975 	}
976 	return 0;
977 }
978 
979 /*
980  * Internal interface to free a range of physical memory.
981  * Frees non RAM regions only.
982  */
free_pfn_range(u64 paddr,unsigned long size)983 static void free_pfn_range(u64 paddr, unsigned long size)
984 {
985 	int is_ram;
986 
987 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
988 	if (is_ram == 0)
989 		memtype_free(paddr, paddr + size);
990 }
991 
992 /*
993  * track_pfn_copy is called when vma that is covering the pfnmap gets
994  * copied through copy_page_range().
995  *
996  * If the vma has a linear pfn mapping for the entire range, we get the prot
997  * from pte and reserve the entire vma range with single reserve_pfn_range call.
998  */
track_pfn_copy(struct vm_area_struct * vma)999 int track_pfn_copy(struct vm_area_struct *vma)
1000 {
1001 	resource_size_t paddr;
1002 	unsigned long prot;
1003 	unsigned long vma_size = vma->vm_end - vma->vm_start;
1004 	pgprot_t pgprot;
1005 
1006 	if (vma->vm_flags & VM_PAT) {
1007 		/*
1008 		 * reserve the whole chunk covered by vma. We need the
1009 		 * starting address and protection from pte.
1010 		 */
1011 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1012 			WARN_ON_ONCE(1);
1013 			return -EINVAL;
1014 		}
1015 		pgprot = __pgprot(prot);
1016 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /*
1023  * prot is passed in as a parameter for the new mapping. If the vma has
1024  * a linear pfn mapping for the entire range, or no vma is provided,
1025  * reserve the entire pfn + size range with single reserve_pfn_range
1026  * call.
1027  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1028 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1029 		    unsigned long pfn, unsigned long addr, unsigned long size)
1030 {
1031 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1032 	enum page_cache_mode pcm;
1033 
1034 	/* reserve the whole chunk starting from paddr */
1035 	if (!vma || (addr == vma->vm_start
1036 				&& size == (vma->vm_end - vma->vm_start))) {
1037 		int ret;
1038 
1039 		ret = reserve_pfn_range(paddr, size, prot, 0);
1040 		if (ret == 0 && vma)
1041 			vma->vm_flags |= VM_PAT;
1042 		return ret;
1043 	}
1044 
1045 	if (!pat_enabled())
1046 		return 0;
1047 
1048 	/*
1049 	 * For anything smaller than the vma size we set prot based on the
1050 	 * lookup.
1051 	 */
1052 	pcm = lookup_memtype(paddr);
1053 
1054 	/* Check memtype for the remaining pages */
1055 	while (size > PAGE_SIZE) {
1056 		size -= PAGE_SIZE;
1057 		paddr += PAGE_SIZE;
1058 		if (pcm != lookup_memtype(paddr))
1059 			return -EINVAL;
1060 	}
1061 
1062 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1063 			 cachemode2protval(pcm));
1064 
1065 	return 0;
1066 }
1067 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1068 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1069 {
1070 	enum page_cache_mode pcm;
1071 
1072 	if (!pat_enabled())
1073 		return;
1074 
1075 	/* Set prot based on lookup */
1076 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1077 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1078 			 cachemode2protval(pcm));
1079 }
1080 
1081 /*
1082  * untrack_pfn is called while unmapping a pfnmap for a region.
1083  * untrack can be called for a specific region indicated by pfn and size or
1084  * can be for the entire vma (in which case pfn, size are zero).
1085  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1086 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1087 		 unsigned long size)
1088 {
1089 	resource_size_t paddr;
1090 	unsigned long prot;
1091 
1092 	if (vma && !(vma->vm_flags & VM_PAT))
1093 		return;
1094 
1095 	/* free the chunk starting from pfn or the whole chunk */
1096 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1097 	if (!paddr && !size) {
1098 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1099 			WARN_ON_ONCE(1);
1100 			return;
1101 		}
1102 
1103 		size = vma->vm_end - vma->vm_start;
1104 	}
1105 	free_pfn_range(paddr, size);
1106 	if (vma)
1107 		vma->vm_flags &= ~VM_PAT;
1108 }
1109 
1110 /*
1111  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1112  * with the old vma after its pfnmap page table has been removed.  The new
1113  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1114  */
untrack_pfn_moved(struct vm_area_struct * vma)1115 void untrack_pfn_moved(struct vm_area_struct *vma)
1116 {
1117 	vma->vm_flags &= ~VM_PAT;
1118 }
1119 
pgprot_writecombine(pgprot_t prot)1120 pgprot_t pgprot_writecombine(pgprot_t prot)
1121 {
1122 	return __pgprot(pgprot_val(prot) |
1123 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1124 }
1125 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1126 
pgprot_writethrough(pgprot_t prot)1127 pgprot_t pgprot_writethrough(pgprot_t prot)
1128 {
1129 	return __pgprot(pgprot_val(prot) |
1130 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1131 }
1132 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1133 
1134 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1135 
1136 /*
1137  * We are allocating a temporary printout-entry to be passed
1138  * between seq_start()/next() and seq_show():
1139  */
memtype_get_idx(loff_t pos)1140 static struct memtype *memtype_get_idx(loff_t pos)
1141 {
1142 	struct memtype *entry_print;
1143 	int ret;
1144 
1145 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1146 	if (!entry_print)
1147 		return NULL;
1148 
1149 	spin_lock(&memtype_lock);
1150 	ret = memtype_copy_nth_element(entry_print, pos);
1151 	spin_unlock(&memtype_lock);
1152 
1153 	/* Free it on error: */
1154 	if (ret) {
1155 		kfree(entry_print);
1156 		return NULL;
1157 	}
1158 
1159 	return entry_print;
1160 }
1161 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1162 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1163 {
1164 	if (*pos == 0) {
1165 		++*pos;
1166 		seq_puts(seq, "PAT memtype list:\n");
1167 	}
1168 
1169 	return memtype_get_idx(*pos);
1170 }
1171 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1172 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1173 {
1174 	kfree(v);
1175 	++*pos;
1176 	return memtype_get_idx(*pos);
1177 }
1178 
memtype_seq_stop(struct seq_file * seq,void * v)1179 static void memtype_seq_stop(struct seq_file *seq, void *v)
1180 {
1181 	kfree(v);
1182 }
1183 
memtype_seq_show(struct seq_file * seq,void * v)1184 static int memtype_seq_show(struct seq_file *seq, void *v)
1185 {
1186 	struct memtype *entry_print = (struct memtype *)v;
1187 
1188 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1189 			entry_print->start,
1190 			entry_print->end,
1191 			cattr_name(entry_print->type));
1192 
1193 	return 0;
1194 }
1195 
1196 static const struct seq_operations memtype_seq_ops = {
1197 	.start = memtype_seq_start,
1198 	.next  = memtype_seq_next,
1199 	.stop  = memtype_seq_stop,
1200 	.show  = memtype_seq_show,
1201 };
1202 
memtype_seq_open(struct inode * inode,struct file * file)1203 static int memtype_seq_open(struct inode *inode, struct file *file)
1204 {
1205 	return seq_open(file, &memtype_seq_ops);
1206 }
1207 
1208 static const struct file_operations memtype_fops = {
1209 	.open    = memtype_seq_open,
1210 	.read    = seq_read,
1211 	.llseek  = seq_lseek,
1212 	.release = seq_release,
1213 };
1214 
pat_memtype_list_init(void)1215 static int __init pat_memtype_list_init(void)
1216 {
1217 	if (pat_enabled()) {
1218 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1219 				    arch_debugfs_dir, NULL, &memtype_fops);
1220 	}
1221 	return 0;
1222 }
1223 late_initcall(pat_memtype_list_init);
1224 
1225 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1226