• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fs.h>
9 
10 #include "debug.h"
11 #include "ntfs.h"
12 #include "ntfs_fs.h"
13 
compare_attr(const struct ATTRIB * left,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const u16 * upcase)14 static inline int compare_attr(const struct ATTRIB *left, enum ATTR_TYPE type,
15 			       const __le16 *name, u8 name_len,
16 			       const u16 *upcase)
17 {
18 	/* First, compare the type codes. */
19 	int diff = le32_to_cpu(left->type) - le32_to_cpu(type);
20 
21 	if (diff)
22 		return diff;
23 
24 	/* They have the same type code, so we have to compare the names. */
25 	return ntfs_cmp_names(attr_name(left), left->name_len, name, name_len,
26 			      upcase, true);
27 }
28 
29 /*
30  * mi_new_attt_id
31  *
32  * Return: Unused attribute id that is less than mrec->next_attr_id.
33  */
mi_new_attt_id(struct mft_inode * mi)34 static __le16 mi_new_attt_id(struct mft_inode *mi)
35 {
36 	u16 free_id, max_id, t16;
37 	struct MFT_REC *rec = mi->mrec;
38 	struct ATTRIB *attr;
39 	__le16 id;
40 
41 	id = rec->next_attr_id;
42 	free_id = le16_to_cpu(id);
43 	if (free_id < 0x7FFF) {
44 		rec->next_attr_id = cpu_to_le16(free_id + 1);
45 		return id;
46 	}
47 
48 	/* One record can store up to 1024/24 ~= 42 attributes. */
49 	free_id = 0;
50 	max_id = 0;
51 
52 	attr = NULL;
53 
54 	for (;;) {
55 		attr = mi_enum_attr(mi, attr);
56 		if (!attr) {
57 			rec->next_attr_id = cpu_to_le16(max_id + 1);
58 			mi->dirty = true;
59 			return cpu_to_le16(free_id);
60 		}
61 
62 		t16 = le16_to_cpu(attr->id);
63 		if (t16 == free_id) {
64 			free_id += 1;
65 			attr = NULL;
66 		} else if (max_id < t16)
67 			max_id = t16;
68 	}
69 }
70 
mi_get(struct ntfs_sb_info * sbi,CLST rno,struct mft_inode ** mi)71 int mi_get(struct ntfs_sb_info *sbi, CLST rno, struct mft_inode **mi)
72 {
73 	int err;
74 	struct mft_inode *m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
75 
76 	if (!m)
77 		return -ENOMEM;
78 
79 	err = mi_init(m, sbi, rno);
80 	if (err) {
81 		kfree(m);
82 		return err;
83 	}
84 
85 	err = mi_read(m, false);
86 	if (err) {
87 		mi_put(m);
88 		return err;
89 	}
90 
91 	*mi = m;
92 	return 0;
93 }
94 
mi_put(struct mft_inode * mi)95 void mi_put(struct mft_inode *mi)
96 {
97 	mi_clear(mi);
98 	kfree(mi);
99 }
100 
mi_init(struct mft_inode * mi,struct ntfs_sb_info * sbi,CLST rno)101 int mi_init(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno)
102 {
103 	mi->sbi = sbi;
104 	mi->rno = rno;
105 	mi->mrec = kmalloc(sbi->record_size, GFP_NOFS);
106 	if (!mi->mrec)
107 		return -ENOMEM;
108 
109 	return 0;
110 }
111 
112 /*
113  * mi_read - Read MFT data.
114  */
mi_read(struct mft_inode * mi,bool is_mft)115 int mi_read(struct mft_inode *mi, bool is_mft)
116 {
117 	int err;
118 	struct MFT_REC *rec = mi->mrec;
119 	struct ntfs_sb_info *sbi = mi->sbi;
120 	u32 bpr = sbi->record_size;
121 	u64 vbo = (u64)mi->rno << sbi->record_bits;
122 	struct ntfs_inode *mft_ni = sbi->mft.ni;
123 	struct runs_tree *run = mft_ni ? &mft_ni->file.run : NULL;
124 	struct rw_semaphore *rw_lock = NULL;
125 
126 	if (is_mounted(sbi)) {
127 		if (!is_mft && mft_ni) {
128 			rw_lock = &mft_ni->file.run_lock;
129 			down_read(rw_lock);
130 		}
131 	}
132 
133 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
134 	if (rw_lock)
135 		up_read(rw_lock);
136 	if (!err)
137 		goto ok;
138 
139 	if (err == -E_NTFS_FIXUP) {
140 		mi->dirty = true;
141 		goto ok;
142 	}
143 
144 	if (err != -ENOENT)
145 		goto out;
146 
147 	if (rw_lock) {
148 		ni_lock(mft_ni);
149 		down_write(rw_lock);
150 	}
151 	err = attr_load_runs_vcn(mft_ni, ATTR_DATA, NULL, 0, run,
152 				 vbo >> sbi->cluster_bits);
153 	if (rw_lock) {
154 		up_write(rw_lock);
155 		ni_unlock(mft_ni);
156 	}
157 	if (err)
158 		goto out;
159 
160 	if (rw_lock)
161 		down_read(rw_lock);
162 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
163 	if (rw_lock)
164 		up_read(rw_lock);
165 
166 	if (err == -E_NTFS_FIXUP) {
167 		mi->dirty = true;
168 		goto ok;
169 	}
170 	if (err)
171 		goto out;
172 
173 ok:
174 	/* Check field 'total' only here. */
175 	if (le32_to_cpu(rec->total) != bpr) {
176 		err = -EINVAL;
177 		goto out;
178 	}
179 
180 	return 0;
181 
182 out:
183 	if (err == -E_NTFS_CORRUPT) {
184 		ntfs_err(sbi->sb, "mft corrupted");
185 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
186 		err = -EINVAL;
187 	}
188 
189 	return err;
190 }
191 
mi_enum_attr(struct mft_inode * mi,struct ATTRIB * attr)192 struct ATTRIB *mi_enum_attr(struct mft_inode *mi, struct ATTRIB *attr)
193 {
194 	const struct MFT_REC *rec = mi->mrec;
195 	u32 used = le32_to_cpu(rec->used);
196 	u32 t32, off, asize;
197 	u16 t16;
198 
199 	if (!attr) {
200 		u32 total = le32_to_cpu(rec->total);
201 
202 		off = le16_to_cpu(rec->attr_off);
203 
204 		if (used > total)
205 			return NULL;
206 
207 		if (off >= used || off < MFTRECORD_FIXUP_OFFSET_1 ||
208 		    !IS_ALIGNED(off, 4)) {
209 			return NULL;
210 		}
211 
212 		/* Skip non-resident records. */
213 		if (!is_rec_inuse(rec))
214 			return NULL;
215 
216 		attr = Add2Ptr(rec, off);
217 	} else {
218 		/* Check if input attr inside record. */
219 		off = PtrOffset(rec, attr);
220 		if (off >= used)
221 			return NULL;
222 
223 		asize = le32_to_cpu(attr->size);
224 		if (asize < SIZEOF_RESIDENT) {
225 			/* Impossible 'cause we should not return such attribute. */
226 			return NULL;
227 		}
228 
229 		attr = Add2Ptr(attr, asize);
230 		off += asize;
231 	}
232 
233 	asize = le32_to_cpu(attr->size);
234 
235 	/* Can we use the first field (attr->type). */
236 	if (off + 8 > used) {
237 		static_assert(ALIGN(sizeof(enum ATTR_TYPE), 8) == 8);
238 		return NULL;
239 	}
240 
241 	if (attr->type == ATTR_END) {
242 		/* End of enumeration. */
243 		return NULL;
244 	}
245 
246 	/* 0x100 is last known attribute for now. */
247 	t32 = le32_to_cpu(attr->type);
248 	if ((t32 & 0xf) || (t32 > 0x100))
249 		return NULL;
250 
251 	/* Check overflow and boundary. */
252 	if (off + asize < off || off + asize > used)
253 		return NULL;
254 
255 	/* Check size of attribute. */
256 	if (!attr->non_res) {
257 		if (asize < SIZEOF_RESIDENT)
258 			return NULL;
259 
260 		t16 = le16_to_cpu(attr->res.data_off);
261 
262 		if (t16 > asize)
263 			return NULL;
264 
265 		t32 = le32_to_cpu(attr->res.data_size);
266 		if (t16 + t32 > asize)
267 			return NULL;
268 
269 		if (attr->name_len &&
270 		    le16_to_cpu(attr->name_off) + sizeof(short) * attr->name_len > t16) {
271 			return NULL;
272 		}
273 
274 		return attr;
275 	}
276 
277 	/* Check some nonresident fields. */
278 	if (attr->name_len &&
279 	    le16_to_cpu(attr->name_off) + sizeof(short) * attr->name_len >
280 		    le16_to_cpu(attr->nres.run_off)) {
281 		return NULL;
282 	}
283 
284 	if (attr->nres.svcn || !is_attr_ext(attr)) {
285 		if (asize + 8 < SIZEOF_NONRESIDENT)
286 			return NULL;
287 
288 		if (attr->nres.c_unit)
289 			return NULL;
290 	} else if (asize + 8 < SIZEOF_NONRESIDENT_EX)
291 		return NULL;
292 
293 	return attr;
294 }
295 
296 /*
297  * mi_find_attr - Find the attribute by type and name and id.
298  */
mi_find_attr(struct mft_inode * mi,struct ATTRIB * attr,enum ATTR_TYPE type,const __le16 * name,size_t name_len,const __le16 * id)299 struct ATTRIB *mi_find_attr(struct mft_inode *mi, struct ATTRIB *attr,
300 			    enum ATTR_TYPE type, const __le16 *name,
301 			    size_t name_len, const __le16 *id)
302 {
303 	u32 type_in = le32_to_cpu(type);
304 	u32 atype;
305 
306 next_attr:
307 	attr = mi_enum_attr(mi, attr);
308 	if (!attr)
309 		return NULL;
310 
311 	atype = le32_to_cpu(attr->type);
312 	if (atype > type_in)
313 		return NULL;
314 
315 	if (atype < type_in)
316 		goto next_attr;
317 
318 	if (attr->name_len != name_len)
319 		goto next_attr;
320 
321 	if (name_len && memcmp(attr_name(attr), name, name_len * sizeof(short)))
322 		goto next_attr;
323 
324 	if (id && *id != attr->id)
325 		goto next_attr;
326 
327 	return attr;
328 }
329 
mi_write(struct mft_inode * mi,int wait)330 int mi_write(struct mft_inode *mi, int wait)
331 {
332 	struct MFT_REC *rec;
333 	int err;
334 	struct ntfs_sb_info *sbi;
335 
336 	if (!mi->dirty)
337 		return 0;
338 
339 	sbi = mi->sbi;
340 	rec = mi->mrec;
341 
342 	err = ntfs_write_bh(sbi, &rec->rhdr, &mi->nb, wait);
343 	if (err)
344 		return err;
345 
346 	if (mi->rno < sbi->mft.recs_mirr)
347 		sbi->flags |= NTFS_FLAGS_MFTMIRR;
348 
349 	mi->dirty = false;
350 
351 	return 0;
352 }
353 
mi_format_new(struct mft_inode * mi,struct ntfs_sb_info * sbi,CLST rno,__le16 flags,bool is_mft)354 int mi_format_new(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno,
355 		  __le16 flags, bool is_mft)
356 {
357 	int err;
358 	u16 seq = 1;
359 	struct MFT_REC *rec;
360 	u64 vbo = (u64)rno << sbi->record_bits;
361 
362 	err = mi_init(mi, sbi, rno);
363 	if (err)
364 		return err;
365 
366 	rec = mi->mrec;
367 
368 	if (rno == MFT_REC_MFT) {
369 		;
370 	} else if (rno < MFT_REC_FREE) {
371 		seq = rno;
372 	} else if (rno >= sbi->mft.used) {
373 		;
374 	} else if (mi_read(mi, is_mft)) {
375 		;
376 	} else if (rec->rhdr.sign == NTFS_FILE_SIGNATURE) {
377 		/* Record is reused. Update its sequence number. */
378 		seq = le16_to_cpu(rec->seq) + 1;
379 		if (!seq)
380 			seq = 1;
381 	}
382 
383 	memcpy(rec, sbi->new_rec, sbi->record_size);
384 
385 	rec->seq = cpu_to_le16(seq);
386 	rec->flags = RECORD_FLAG_IN_USE | flags;
387 
388 	mi->dirty = true;
389 
390 	if (!mi->nb.nbufs) {
391 		struct ntfs_inode *ni = sbi->mft.ni;
392 		bool lock = false;
393 
394 		if (is_mounted(sbi) && !is_mft) {
395 			down_read(&ni->file.run_lock);
396 			lock = true;
397 		}
398 
399 		err = ntfs_get_bh(sbi, &ni->file.run, vbo, sbi->record_size,
400 				  &mi->nb);
401 		if (lock)
402 			up_read(&ni->file.run_lock);
403 	}
404 
405 	return err;
406 }
407 
408 /*
409  * mi_mark_free - Mark record as unused and marks it as free in bitmap.
410  */
mi_mark_free(struct mft_inode * mi)411 void mi_mark_free(struct mft_inode *mi)
412 {
413 	CLST rno = mi->rno;
414 	struct ntfs_sb_info *sbi = mi->sbi;
415 
416 	if (rno >= MFT_REC_RESERVED && rno < MFT_REC_FREE) {
417 		ntfs_clear_mft_tail(sbi, rno, rno + 1);
418 		mi->dirty = false;
419 		return;
420 	}
421 
422 	if (mi->mrec) {
423 		clear_rec_inuse(mi->mrec);
424 		mi->dirty = true;
425 		mi_write(mi, 0);
426 	}
427 	ntfs_mark_rec_free(sbi, rno);
428 }
429 
430 /*
431  * mi_insert_attr - Reserve space for new attribute.
432  *
433  * Return: Not full constructed attribute or NULL if not possible to create.
434  */
mi_insert_attr(struct mft_inode * mi,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off)435 struct ATTRIB *mi_insert_attr(struct mft_inode *mi, enum ATTR_TYPE type,
436 			      const __le16 *name, u8 name_len, u32 asize,
437 			      u16 name_off)
438 {
439 	size_t tail;
440 	struct ATTRIB *attr;
441 	__le16 id;
442 	struct MFT_REC *rec = mi->mrec;
443 	struct ntfs_sb_info *sbi = mi->sbi;
444 	u32 used = le32_to_cpu(rec->used);
445 	const u16 *upcase = sbi->upcase;
446 	int diff;
447 
448 	/* Can we insert mi attribute? */
449 	if (used + asize > mi->sbi->record_size)
450 		return NULL;
451 
452 	/*
453 	 * Scan through the list of attributes to find the point
454 	 * at which we should insert it.
455 	 */
456 	attr = NULL;
457 	while ((attr = mi_enum_attr(mi, attr))) {
458 		diff = compare_attr(attr, type, name, name_len, upcase);
459 		if (diff > 0)
460 			break;
461 		if (diff < 0)
462 			continue;
463 
464 		if (!is_attr_indexed(attr))
465 			return NULL;
466 		break;
467 	}
468 
469 	if (!attr) {
470 		tail = 8; /* Not used, just to suppress warning. */
471 		attr = Add2Ptr(rec, used - 8);
472 	} else {
473 		tail = used - PtrOffset(rec, attr);
474 	}
475 
476 	id = mi_new_attt_id(mi);
477 
478 	memmove(Add2Ptr(attr, asize), attr, tail);
479 	memset(attr, 0, asize);
480 
481 	attr->type = type;
482 	attr->size = cpu_to_le32(asize);
483 	attr->name_len = name_len;
484 	attr->name_off = cpu_to_le16(name_off);
485 	attr->id = id;
486 
487 	memmove(Add2Ptr(attr, name_off), name, name_len * sizeof(short));
488 	rec->used = cpu_to_le32(used + asize);
489 
490 	mi->dirty = true;
491 
492 	return attr;
493 }
494 
495 /*
496  * mi_remove_attr - Remove the attribute from record.
497  *
498  * NOTE: The source attr will point to next attribute.
499  */
mi_remove_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTRIB * attr)500 bool mi_remove_attr(struct ntfs_inode *ni, struct mft_inode *mi,
501 		    struct ATTRIB *attr)
502 {
503 	struct MFT_REC *rec = mi->mrec;
504 	u32 aoff = PtrOffset(rec, attr);
505 	u32 used = le32_to_cpu(rec->used);
506 	u32 asize = le32_to_cpu(attr->size);
507 
508 	if (aoff + asize > used)
509 		return false;
510 
511 	if (ni && is_attr_indexed(attr)) {
512 		le16_add_cpu(&ni->mi.mrec->hard_links, -1);
513 		ni->mi.dirty = true;
514 	}
515 
516 	used -= asize;
517 	memmove(attr, Add2Ptr(attr, asize), used - aoff);
518 	rec->used = cpu_to_le32(used);
519 	mi->dirty = true;
520 
521 	return true;
522 }
523 
524 /* bytes = "new attribute size" - "old attribute size" */
mi_resize_attr(struct mft_inode * mi,struct ATTRIB * attr,int bytes)525 bool mi_resize_attr(struct mft_inode *mi, struct ATTRIB *attr, int bytes)
526 {
527 	struct MFT_REC *rec = mi->mrec;
528 	u32 aoff = PtrOffset(rec, attr);
529 	u32 total, used = le32_to_cpu(rec->used);
530 	u32 nsize, asize = le32_to_cpu(attr->size);
531 	u32 rsize = le32_to_cpu(attr->res.data_size);
532 	int tail = (int)(used - aoff - asize);
533 	int dsize;
534 	char *next;
535 
536 	if (tail < 0 || aoff >= used)
537 		return false;
538 
539 	if (!bytes)
540 		return true;
541 
542 	total = le32_to_cpu(rec->total);
543 	next = Add2Ptr(attr, asize);
544 
545 	if (bytes > 0) {
546 		dsize = ALIGN(bytes, 8);
547 		if (used + dsize > total)
548 			return false;
549 		nsize = asize + dsize;
550 		/* Move tail */
551 		memmove(next + dsize, next, tail);
552 		memset(next, 0, dsize);
553 		used += dsize;
554 		rsize += dsize;
555 	} else {
556 		dsize = ALIGN(-bytes, 8);
557 		if (dsize > asize)
558 			return false;
559 		nsize = asize - dsize;
560 		memmove(next - dsize, next, tail);
561 		used -= dsize;
562 		rsize -= dsize;
563 	}
564 
565 	rec->used = cpu_to_le32(used);
566 	attr->size = cpu_to_le32(nsize);
567 	if (!attr->non_res)
568 		attr->res.data_size = cpu_to_le32(rsize);
569 	mi->dirty = true;
570 
571 	return true;
572 }
573 
mi_pack_runs(struct mft_inode * mi,struct ATTRIB * attr,struct runs_tree * run,CLST len)574 int mi_pack_runs(struct mft_inode *mi, struct ATTRIB *attr,
575 		 struct runs_tree *run, CLST len)
576 {
577 	int err = 0;
578 	struct ntfs_sb_info *sbi = mi->sbi;
579 	u32 new_run_size;
580 	CLST plen;
581 	struct MFT_REC *rec = mi->mrec;
582 	CLST svcn = le64_to_cpu(attr->nres.svcn);
583 	u32 used = le32_to_cpu(rec->used);
584 	u32 aoff = PtrOffset(rec, attr);
585 	u32 asize = le32_to_cpu(attr->size);
586 	char *next = Add2Ptr(attr, asize);
587 	u16 run_off = le16_to_cpu(attr->nres.run_off);
588 	u32 run_size = asize - run_off;
589 	u32 tail = used - aoff - asize;
590 	u32 dsize = sbi->record_size - used;
591 
592 	/* Make a maximum gap in current record. */
593 	memmove(next + dsize, next, tail);
594 
595 	/* Pack as much as possible. */
596 	err = run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size + dsize,
597 		       &plen);
598 	if (err < 0) {
599 		memmove(next, next + dsize, tail);
600 		return err;
601 	}
602 
603 	new_run_size = ALIGN(err, 8);
604 
605 	memmove(next + new_run_size - run_size, next + dsize, tail);
606 
607 	attr->size = cpu_to_le32(asize + new_run_size - run_size);
608 	attr->nres.evcn = cpu_to_le64(svcn + plen - 1);
609 	rec->used = cpu_to_le32(used + new_run_size - run_size);
610 	mi->dirty = true;
611 
612 	return 0;
613 }
614