1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54
55 static const struct super_operations btrfs_super_ops;
56
57 /*
58 * Types for mounting the default subvolume and a subvolume explicitly
59 * requested by subvol=/path. That way the callchain is straightforward and we
60 * don't have to play tricks with the mount options and recursive calls to
61 * btrfs_mount.
62 *
63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64 */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69
70 /*
71 * Generally the error codes correspond to their respective errors, but there
72 * are a few special cases.
73 *
74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for
75 * instance will return EUCLEAN if any of the blocks are corrupted in
76 * a way that is problematic. We want to reserve EUCLEAN for these
77 * sort of corruptions.
78 *
79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80 * need to use EROFS for this case. We will have no idea of the
81 * original failure, that will have been reported at the time we tripped
82 * over the error. Each subsequent error that doesn't have any context
83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84 */
btrfs_decode_error(int errno)85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 char *errstr = "unknown";
88
89 switch (errno) {
90 case -ENOENT: /* -2 */
91 errstr = "No such entry";
92 break;
93 case -EIO: /* -5 */
94 errstr = "IO failure";
95 break;
96 case -ENOMEM: /* -12*/
97 errstr = "Out of memory";
98 break;
99 case -EEXIST: /* -17 */
100 errstr = "Object already exists";
101 break;
102 case -ENOSPC: /* -28 */
103 errstr = "No space left";
104 break;
105 case -EROFS: /* -30 */
106 errstr = "Readonly filesystem";
107 break;
108 case -EOPNOTSUPP: /* -95 */
109 errstr = "Operation not supported";
110 break;
111 case -EUCLEAN: /* -117 */
112 errstr = "Filesystem corrupted";
113 break;
114 case -EDQUOT: /* -122 */
115 errstr = "Quota exceeded";
116 break;
117 }
118
119 return errstr;
120 }
121
122 /*
123 * __btrfs_handle_fs_error decodes expected errors from the caller and
124 * invokes the appropriate error response.
125 */
126 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 unsigned int line, int errno, const char *fmt, ...)
129 {
130 struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 const char *errstr;
133 #endif
134
135 /*
136 * Special case: if the error is EROFS, and we're already
137 * under SB_RDONLY, then it is safe here.
138 */
139 if (errno == -EROFS && sb_rdonly(sb))
140 return;
141
142 #ifdef CONFIG_PRINTK
143 errstr = btrfs_decode_error(errno);
144 if (fmt) {
145 struct va_format vaf;
146 va_list args;
147
148 va_start(args, fmt);
149 vaf.fmt = fmt;
150 vaf.va = &args;
151
152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 sb->s_id, function, line, errno, errstr, &vaf);
154 va_end(args);
155 } else {
156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 sb->s_id, function, line, errno, errstr);
158 }
159 #endif
160
161 /*
162 * Today we only save the error info to memory. Long term we'll
163 * also send it down to the disk
164 */
165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166
167 /* Don't go through full error handling during mount */
168 if (!(sb->s_flags & SB_BORN))
169 return;
170
171 if (sb_rdonly(sb))
172 return;
173
174 btrfs_discard_stop(fs_info);
175
176 /* btrfs handle error by forcing the filesystem readonly */
177 btrfs_set_sb_rdonly(sb);
178 btrfs_info(fs_info, "forced readonly");
179 /*
180 * Note that a running device replace operation is not canceled here
181 * although there is no way to update the progress. It would add the
182 * risk of a deadlock, therefore the canceling is omitted. The only
183 * penalty is that some I/O remains active until the procedure
184 * completes. The next time when the filesystem is mounted writable
185 * again, the device replace operation continues.
186 */
187 }
188
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 "emergency",
192 "alert",
193 "critical",
194 "error",
195 "warning",
196 "notice",
197 "info",
198 "debug",
199 };
200
201
202 /*
203 * Use one ratelimit state per log level so that a flood of less important
204 * messages doesn't cause more important ones to be dropped.
205 */
206 static struct ratelimit_state printk_limits[] = {
207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 struct va_format vaf;
221 va_list args;
222 int kern_level;
223 const char *type = logtypes[4];
224 struct ratelimit_state *ratelimit = &printk_limits[4];
225
226 va_start(args, fmt);
227
228 while ((kern_level = printk_get_level(fmt)) != 0) {
229 size_t size = printk_skip_level(fmt) - fmt;
230
231 if (kern_level >= '0' && kern_level <= '7') {
232 memcpy(lvl, fmt, size);
233 lvl[size] = '\0';
234 type = logtypes[kern_level - '0'];
235 ratelimit = &printk_limits[kern_level - '0'];
236 }
237 fmt += size;
238 }
239
240 vaf.fmt = fmt;
241 vaf.va = &args;
242
243 if (__ratelimit(ratelimit)) {
244 if (fs_info)
245 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
246 fs_info->sb->s_id, &vaf);
247 else
248 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
249 }
250
251 va_end(args);
252 }
253 #endif
254
255 #if BITS_PER_LONG == 32
btrfs_warn_32bit_limit(struct btrfs_fs_info * fs_info)256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
257 {
258 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
259 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
260 btrfs_warn(fs_info,
261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
262 BTRFS_32BIT_MAX_FILE_SIZE >> 40);
263 btrfs_warn(fs_info,
264 "please consider upgrading to 64bit kernel/hardware");
265 }
266 }
267
btrfs_err_32bit_limit(struct btrfs_fs_info * fs_info)268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
269 {
270 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
271 btrfs_err(fs_info, "reached 32bit limit for logical addresses");
272 btrfs_err(fs_info,
273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
274 BTRFS_32BIT_MAX_FILE_SIZE >> 40);
275 btrfs_err(fs_info,
276 "please consider upgrading to 64bit kernel/hardware");
277 }
278 }
279 #endif
280
281 /*
282 * We only mark the transaction aborted and then set the file system read-only.
283 * This will prevent new transactions from starting or trying to join this
284 * one.
285 *
286 * This means that error recovery at the call site is limited to freeing
287 * any local memory allocations and passing the error code up without
288 * further cleanup. The transaction should complete as it normally would
289 * in the call path but will return -EIO.
290 *
291 * We'll complete the cleanup in btrfs_end_transaction and
292 * btrfs_commit_transaction.
293 */
294 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
296 const char *function,
297 unsigned int line, int errno)
298 {
299 struct btrfs_fs_info *fs_info = trans->fs_info;
300
301 WRITE_ONCE(trans->aborted, errno);
302 WRITE_ONCE(trans->transaction->aborted, errno);
303 /* Wake up anybody who may be waiting on this transaction */
304 wake_up(&fs_info->transaction_wait);
305 wake_up(&fs_info->transaction_blocked_wait);
306 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
307 }
308 /*
309 * __btrfs_panic decodes unexpected, fatal errors from the caller,
310 * issues an alert, and either panics or BUGs, depending on mount options.
311 */
312 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)313 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
314 unsigned int line, int errno, const char *fmt, ...)
315 {
316 char *s_id = "<unknown>";
317 const char *errstr;
318 struct va_format vaf = { .fmt = fmt };
319 va_list args;
320
321 if (fs_info)
322 s_id = fs_info->sb->s_id;
323
324 va_start(args, fmt);
325 vaf.va = &args;
326
327 errstr = btrfs_decode_error(errno);
328 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
329 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
330 s_id, function, line, &vaf, errno, errstr);
331
332 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
333 function, line, &vaf, errno, errstr);
334 va_end(args);
335 /* Caller calls BUG() */
336 }
337
btrfs_put_super(struct super_block * sb)338 static void btrfs_put_super(struct super_block *sb)
339 {
340 close_ctree(btrfs_sb(sb));
341 }
342
343 enum {
344 Opt_acl, Opt_noacl,
345 Opt_clear_cache,
346 Opt_commit_interval,
347 Opt_compress,
348 Opt_compress_force,
349 Opt_compress_force_type,
350 Opt_compress_type,
351 Opt_degraded,
352 Opt_device,
353 Opt_fatal_errors,
354 Opt_flushoncommit, Opt_noflushoncommit,
355 Opt_max_inline,
356 Opt_barrier, Opt_nobarrier,
357 Opt_datacow, Opt_nodatacow,
358 Opt_datasum, Opt_nodatasum,
359 Opt_defrag, Opt_nodefrag,
360 Opt_discard, Opt_nodiscard,
361 Opt_discard_mode,
362 Opt_norecovery,
363 Opt_ratio,
364 Opt_rescan_uuid_tree,
365 Opt_skip_balance,
366 Opt_space_cache, Opt_no_space_cache,
367 Opt_space_cache_version,
368 Opt_ssd, Opt_nossd,
369 Opt_ssd_spread, Opt_nossd_spread,
370 Opt_subvol,
371 Opt_subvol_empty,
372 Opt_subvolid,
373 Opt_thread_pool,
374 Opt_treelog, Opt_notreelog,
375 Opt_user_subvol_rm_allowed,
376
377 /* Rescue options */
378 Opt_rescue,
379 Opt_usebackuproot,
380 Opt_nologreplay,
381 Opt_ignorebadroots,
382 Opt_ignoredatacsums,
383 Opt_rescue_all,
384
385 /* Deprecated options */
386 Opt_recovery,
387 Opt_inode_cache, Opt_noinode_cache,
388
389 /* Debugging options */
390 Opt_check_integrity,
391 Opt_check_integrity_including_extent_data,
392 Opt_check_integrity_print_mask,
393 Opt_enospc_debug, Opt_noenospc_debug,
394 #ifdef CONFIG_BTRFS_DEBUG
395 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
396 #endif
397 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
398 Opt_ref_verify,
399 #endif
400 Opt_err,
401 };
402
403 static const match_table_t tokens = {
404 {Opt_acl, "acl"},
405 {Opt_noacl, "noacl"},
406 {Opt_clear_cache, "clear_cache"},
407 {Opt_commit_interval, "commit=%u"},
408 {Opt_compress, "compress"},
409 {Opt_compress_type, "compress=%s"},
410 {Opt_compress_force, "compress-force"},
411 {Opt_compress_force_type, "compress-force=%s"},
412 {Opt_degraded, "degraded"},
413 {Opt_device, "device=%s"},
414 {Opt_fatal_errors, "fatal_errors=%s"},
415 {Opt_flushoncommit, "flushoncommit"},
416 {Opt_noflushoncommit, "noflushoncommit"},
417 {Opt_inode_cache, "inode_cache"},
418 {Opt_noinode_cache, "noinode_cache"},
419 {Opt_max_inline, "max_inline=%s"},
420 {Opt_barrier, "barrier"},
421 {Opt_nobarrier, "nobarrier"},
422 {Opt_datacow, "datacow"},
423 {Opt_nodatacow, "nodatacow"},
424 {Opt_datasum, "datasum"},
425 {Opt_nodatasum, "nodatasum"},
426 {Opt_defrag, "autodefrag"},
427 {Opt_nodefrag, "noautodefrag"},
428 {Opt_discard, "discard"},
429 {Opt_discard_mode, "discard=%s"},
430 {Opt_nodiscard, "nodiscard"},
431 {Opt_norecovery, "norecovery"},
432 {Opt_ratio, "metadata_ratio=%u"},
433 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
434 {Opt_skip_balance, "skip_balance"},
435 {Opt_space_cache, "space_cache"},
436 {Opt_no_space_cache, "nospace_cache"},
437 {Opt_space_cache_version, "space_cache=%s"},
438 {Opt_ssd, "ssd"},
439 {Opt_nossd, "nossd"},
440 {Opt_ssd_spread, "ssd_spread"},
441 {Opt_nossd_spread, "nossd_spread"},
442 {Opt_subvol, "subvol=%s"},
443 {Opt_subvol_empty, "subvol="},
444 {Opt_subvolid, "subvolid=%s"},
445 {Opt_thread_pool, "thread_pool=%u"},
446 {Opt_treelog, "treelog"},
447 {Opt_notreelog, "notreelog"},
448 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
449
450 /* Rescue options */
451 {Opt_rescue, "rescue=%s"},
452 /* Deprecated, with alias rescue=nologreplay */
453 {Opt_nologreplay, "nologreplay"},
454 /* Deprecated, with alias rescue=usebackuproot */
455 {Opt_usebackuproot, "usebackuproot"},
456
457 /* Deprecated options */
458 {Opt_recovery, "recovery"},
459
460 /* Debugging options */
461 {Opt_check_integrity, "check_int"},
462 {Opt_check_integrity_including_extent_data, "check_int_data"},
463 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
464 {Opt_enospc_debug, "enospc_debug"},
465 {Opt_noenospc_debug, "noenospc_debug"},
466 #ifdef CONFIG_BTRFS_DEBUG
467 {Opt_fragment_data, "fragment=data"},
468 {Opt_fragment_metadata, "fragment=metadata"},
469 {Opt_fragment_all, "fragment=all"},
470 #endif
471 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
472 {Opt_ref_verify, "ref_verify"},
473 #endif
474 {Opt_err, NULL},
475 };
476
477 static const match_table_t rescue_tokens = {
478 {Opt_usebackuproot, "usebackuproot"},
479 {Opt_nologreplay, "nologreplay"},
480 {Opt_ignorebadroots, "ignorebadroots"},
481 {Opt_ignorebadroots, "ibadroots"},
482 {Opt_ignoredatacsums, "ignoredatacsums"},
483 {Opt_ignoredatacsums, "idatacsums"},
484 {Opt_rescue_all, "all"},
485 {Opt_err, NULL},
486 };
487
check_ro_option(struct btrfs_fs_info * fs_info,unsigned long opt,const char * opt_name)488 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
489 const char *opt_name)
490 {
491 if (fs_info->mount_opt & opt) {
492 btrfs_err(fs_info, "%s must be used with ro mount option",
493 opt_name);
494 return true;
495 }
496 return false;
497 }
498
parse_rescue_options(struct btrfs_fs_info * info,const char * options)499 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
500 {
501 char *opts;
502 char *orig;
503 char *p;
504 substring_t args[MAX_OPT_ARGS];
505 int ret = 0;
506
507 opts = kstrdup(options, GFP_KERNEL);
508 if (!opts)
509 return -ENOMEM;
510 orig = opts;
511
512 while ((p = strsep(&opts, ":")) != NULL) {
513 int token;
514
515 if (!*p)
516 continue;
517 token = match_token(p, rescue_tokens, args);
518 switch (token){
519 case Opt_usebackuproot:
520 btrfs_info(info,
521 "trying to use backup root at mount time");
522 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
523 break;
524 case Opt_nologreplay:
525 btrfs_set_and_info(info, NOLOGREPLAY,
526 "disabling log replay at mount time");
527 break;
528 case Opt_ignorebadroots:
529 btrfs_set_and_info(info, IGNOREBADROOTS,
530 "ignoring bad roots");
531 break;
532 case Opt_ignoredatacsums:
533 btrfs_set_and_info(info, IGNOREDATACSUMS,
534 "ignoring data csums");
535 break;
536 case Opt_rescue_all:
537 btrfs_info(info, "enabling all of the rescue options");
538 btrfs_set_and_info(info, IGNOREDATACSUMS,
539 "ignoring data csums");
540 btrfs_set_and_info(info, IGNOREBADROOTS,
541 "ignoring bad roots");
542 btrfs_set_and_info(info, NOLOGREPLAY,
543 "disabling log replay at mount time");
544 break;
545 case Opt_err:
546 btrfs_info(info, "unrecognized rescue option '%s'", p);
547 ret = -EINVAL;
548 goto out;
549 default:
550 break;
551 }
552
553 }
554 out:
555 kfree(orig);
556 return ret;
557 }
558
559 /*
560 * Regular mount options parser. Everything that is needed only when
561 * reading in a new superblock is parsed here.
562 * XXX JDM: This needs to be cleaned up for remount.
563 */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)564 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
565 unsigned long new_flags)
566 {
567 substring_t args[MAX_OPT_ARGS];
568 char *p, *num;
569 int intarg;
570 int ret = 0;
571 char *compress_type;
572 bool compress_force = false;
573 enum btrfs_compression_type saved_compress_type;
574 int saved_compress_level;
575 bool saved_compress_force;
576 int no_compress = 0;
577 const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
578
579 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
580 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
581 else if (btrfs_free_space_cache_v1_active(info)) {
582 if (btrfs_is_zoned(info)) {
583 btrfs_info(info,
584 "zoned: clearing existing space cache");
585 btrfs_set_super_cache_generation(info->super_copy, 0);
586 } else {
587 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
588 }
589 }
590
591 /*
592 * Even the options are empty, we still need to do extra check
593 * against new flags
594 */
595 if (!options)
596 goto check;
597
598 while ((p = strsep(&options, ",")) != NULL) {
599 int token;
600 if (!*p)
601 continue;
602
603 token = match_token(p, tokens, args);
604 switch (token) {
605 case Opt_degraded:
606 btrfs_info(info, "allowing degraded mounts");
607 btrfs_set_opt(info->mount_opt, DEGRADED);
608 break;
609 case Opt_subvol:
610 case Opt_subvol_empty:
611 case Opt_subvolid:
612 case Opt_device:
613 /*
614 * These are parsed by btrfs_parse_subvol_options or
615 * btrfs_parse_device_options and can be ignored here.
616 */
617 break;
618 case Opt_nodatasum:
619 btrfs_set_and_info(info, NODATASUM,
620 "setting nodatasum");
621 break;
622 case Opt_datasum:
623 if (btrfs_test_opt(info, NODATASUM)) {
624 if (btrfs_test_opt(info, NODATACOW))
625 btrfs_info(info,
626 "setting datasum, datacow enabled");
627 else
628 btrfs_info(info, "setting datasum");
629 }
630 btrfs_clear_opt(info->mount_opt, NODATACOW);
631 btrfs_clear_opt(info->mount_opt, NODATASUM);
632 break;
633 case Opt_nodatacow:
634 if (!btrfs_test_opt(info, NODATACOW)) {
635 if (!btrfs_test_opt(info, COMPRESS) ||
636 !btrfs_test_opt(info, FORCE_COMPRESS)) {
637 btrfs_info(info,
638 "setting nodatacow, compression disabled");
639 } else {
640 btrfs_info(info, "setting nodatacow");
641 }
642 }
643 btrfs_clear_opt(info->mount_opt, COMPRESS);
644 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
645 btrfs_set_opt(info->mount_opt, NODATACOW);
646 btrfs_set_opt(info->mount_opt, NODATASUM);
647 break;
648 case Opt_datacow:
649 btrfs_clear_and_info(info, NODATACOW,
650 "setting datacow");
651 break;
652 case Opt_compress_force:
653 case Opt_compress_force_type:
654 compress_force = true;
655 fallthrough;
656 case Opt_compress:
657 case Opt_compress_type:
658 saved_compress_type = btrfs_test_opt(info,
659 COMPRESS) ?
660 info->compress_type : BTRFS_COMPRESS_NONE;
661 saved_compress_force =
662 btrfs_test_opt(info, FORCE_COMPRESS);
663 saved_compress_level = info->compress_level;
664 if (token == Opt_compress ||
665 token == Opt_compress_force ||
666 strncmp(args[0].from, "zlib", 4) == 0) {
667 compress_type = "zlib";
668
669 info->compress_type = BTRFS_COMPRESS_ZLIB;
670 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
671 /*
672 * args[0] contains uninitialized data since
673 * for these tokens we don't expect any
674 * parameter.
675 */
676 if (token != Opt_compress &&
677 token != Opt_compress_force)
678 info->compress_level =
679 btrfs_compress_str2level(
680 BTRFS_COMPRESS_ZLIB,
681 args[0].from + 4);
682 btrfs_set_opt(info->mount_opt, COMPRESS);
683 btrfs_clear_opt(info->mount_opt, NODATACOW);
684 btrfs_clear_opt(info->mount_opt, NODATASUM);
685 no_compress = 0;
686 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
687 compress_type = "lzo";
688 info->compress_type = BTRFS_COMPRESS_LZO;
689 info->compress_level = 0;
690 btrfs_set_opt(info->mount_opt, COMPRESS);
691 btrfs_clear_opt(info->mount_opt, NODATACOW);
692 btrfs_clear_opt(info->mount_opt, NODATASUM);
693 btrfs_set_fs_incompat(info, COMPRESS_LZO);
694 no_compress = 0;
695 } else if (strncmp(args[0].from, "zstd", 4) == 0) {
696 compress_type = "zstd";
697 info->compress_type = BTRFS_COMPRESS_ZSTD;
698 info->compress_level =
699 btrfs_compress_str2level(
700 BTRFS_COMPRESS_ZSTD,
701 args[0].from + 4);
702 btrfs_set_opt(info->mount_opt, COMPRESS);
703 btrfs_clear_opt(info->mount_opt, NODATACOW);
704 btrfs_clear_opt(info->mount_opt, NODATASUM);
705 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
706 no_compress = 0;
707 } else if (strncmp(args[0].from, "no", 2) == 0) {
708 compress_type = "no";
709 info->compress_level = 0;
710 info->compress_type = 0;
711 btrfs_clear_opt(info->mount_opt, COMPRESS);
712 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
713 compress_force = false;
714 no_compress++;
715 } else {
716 btrfs_err(info, "unrecognized compression value %s",
717 args[0].from);
718 ret = -EINVAL;
719 goto out;
720 }
721
722 if (compress_force) {
723 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
724 } else {
725 /*
726 * If we remount from compress-force=xxx to
727 * compress=xxx, we need clear FORCE_COMPRESS
728 * flag, otherwise, there is no way for users
729 * to disable forcible compression separately.
730 */
731 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
732 }
733 if (no_compress == 1) {
734 btrfs_info(info, "use no compression");
735 } else if ((info->compress_type != saved_compress_type) ||
736 (compress_force != saved_compress_force) ||
737 (info->compress_level != saved_compress_level)) {
738 btrfs_info(info, "%s %s compression, level %d",
739 (compress_force) ? "force" : "use",
740 compress_type, info->compress_level);
741 }
742 compress_force = false;
743 break;
744 case Opt_ssd:
745 btrfs_set_and_info(info, SSD,
746 "enabling ssd optimizations");
747 btrfs_clear_opt(info->mount_opt, NOSSD);
748 break;
749 case Opt_ssd_spread:
750 btrfs_set_and_info(info, SSD,
751 "enabling ssd optimizations");
752 btrfs_set_and_info(info, SSD_SPREAD,
753 "using spread ssd allocation scheme");
754 btrfs_clear_opt(info->mount_opt, NOSSD);
755 break;
756 case Opt_nossd:
757 btrfs_set_opt(info->mount_opt, NOSSD);
758 btrfs_clear_and_info(info, SSD,
759 "not using ssd optimizations");
760 fallthrough;
761 case Opt_nossd_spread:
762 btrfs_clear_and_info(info, SSD_SPREAD,
763 "not using spread ssd allocation scheme");
764 break;
765 case Opt_barrier:
766 btrfs_clear_and_info(info, NOBARRIER,
767 "turning on barriers");
768 break;
769 case Opt_nobarrier:
770 btrfs_set_and_info(info, NOBARRIER,
771 "turning off barriers");
772 break;
773 case Opt_thread_pool:
774 ret = match_int(&args[0], &intarg);
775 if (ret) {
776 btrfs_err(info, "unrecognized thread_pool value %s",
777 args[0].from);
778 goto out;
779 } else if (intarg == 0) {
780 btrfs_err(info, "invalid value 0 for thread_pool");
781 ret = -EINVAL;
782 goto out;
783 }
784 info->thread_pool_size = intarg;
785 break;
786 case Opt_max_inline:
787 num = match_strdup(&args[0]);
788 if (num) {
789 info->max_inline = memparse(num, NULL);
790 kfree(num);
791
792 if (info->max_inline) {
793 info->max_inline = min_t(u64,
794 info->max_inline,
795 info->sectorsize);
796 }
797 btrfs_info(info, "max_inline at %llu",
798 info->max_inline);
799 } else {
800 ret = -ENOMEM;
801 goto out;
802 }
803 break;
804 case Opt_acl:
805 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
806 info->sb->s_flags |= SB_POSIXACL;
807 break;
808 #else
809 btrfs_err(info, "support for ACL not compiled in!");
810 ret = -EINVAL;
811 goto out;
812 #endif
813 case Opt_noacl:
814 info->sb->s_flags &= ~SB_POSIXACL;
815 break;
816 case Opt_notreelog:
817 btrfs_set_and_info(info, NOTREELOG,
818 "disabling tree log");
819 break;
820 case Opt_treelog:
821 btrfs_clear_and_info(info, NOTREELOG,
822 "enabling tree log");
823 break;
824 case Opt_norecovery:
825 case Opt_nologreplay:
826 btrfs_warn(info,
827 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
828 btrfs_set_and_info(info, NOLOGREPLAY,
829 "disabling log replay at mount time");
830 break;
831 case Opt_flushoncommit:
832 btrfs_set_and_info(info, FLUSHONCOMMIT,
833 "turning on flush-on-commit");
834 break;
835 case Opt_noflushoncommit:
836 btrfs_clear_and_info(info, FLUSHONCOMMIT,
837 "turning off flush-on-commit");
838 break;
839 case Opt_ratio:
840 ret = match_int(&args[0], &intarg);
841 if (ret) {
842 btrfs_err(info, "unrecognized metadata_ratio value %s",
843 args[0].from);
844 goto out;
845 }
846 info->metadata_ratio = intarg;
847 btrfs_info(info, "metadata ratio %u",
848 info->metadata_ratio);
849 break;
850 case Opt_discard:
851 case Opt_discard_mode:
852 if (token == Opt_discard ||
853 strcmp(args[0].from, "sync") == 0) {
854 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
855 btrfs_set_and_info(info, DISCARD_SYNC,
856 "turning on sync discard");
857 } else if (strcmp(args[0].from, "async") == 0) {
858 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
859 btrfs_set_and_info(info, DISCARD_ASYNC,
860 "turning on async discard");
861 } else {
862 btrfs_err(info, "unrecognized discard mode value %s",
863 args[0].from);
864 ret = -EINVAL;
865 goto out;
866 }
867 break;
868 case Opt_nodiscard:
869 btrfs_clear_and_info(info, DISCARD_SYNC,
870 "turning off discard");
871 btrfs_clear_and_info(info, DISCARD_ASYNC,
872 "turning off async discard");
873 break;
874 case Opt_space_cache:
875 case Opt_space_cache_version:
876 if (token == Opt_space_cache ||
877 strcmp(args[0].from, "v1") == 0) {
878 btrfs_clear_opt(info->mount_opt,
879 FREE_SPACE_TREE);
880 btrfs_set_and_info(info, SPACE_CACHE,
881 "enabling disk space caching");
882 } else if (strcmp(args[0].from, "v2") == 0) {
883 btrfs_clear_opt(info->mount_opt,
884 SPACE_CACHE);
885 btrfs_set_and_info(info, FREE_SPACE_TREE,
886 "enabling free space tree");
887 } else {
888 btrfs_err(info, "unrecognized space_cache value %s",
889 args[0].from);
890 ret = -EINVAL;
891 goto out;
892 }
893 break;
894 case Opt_rescan_uuid_tree:
895 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
896 break;
897 case Opt_no_space_cache:
898 if (btrfs_test_opt(info, SPACE_CACHE)) {
899 btrfs_clear_and_info(info, SPACE_CACHE,
900 "disabling disk space caching");
901 }
902 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
903 btrfs_clear_and_info(info, FREE_SPACE_TREE,
904 "disabling free space tree");
905 }
906 break;
907 case Opt_inode_cache:
908 case Opt_noinode_cache:
909 btrfs_warn(info,
910 "the 'inode_cache' option is deprecated and has no effect since 5.11");
911 break;
912 case Opt_clear_cache:
913 btrfs_set_and_info(info, CLEAR_CACHE,
914 "force clearing of disk cache");
915 break;
916 case Opt_user_subvol_rm_allowed:
917 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
918 break;
919 case Opt_enospc_debug:
920 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
921 break;
922 case Opt_noenospc_debug:
923 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
924 break;
925 case Opt_defrag:
926 btrfs_set_and_info(info, AUTO_DEFRAG,
927 "enabling auto defrag");
928 break;
929 case Opt_nodefrag:
930 btrfs_clear_and_info(info, AUTO_DEFRAG,
931 "disabling auto defrag");
932 break;
933 case Opt_recovery:
934 case Opt_usebackuproot:
935 btrfs_warn(info,
936 "'%s' is deprecated, use 'rescue=usebackuproot' instead",
937 token == Opt_recovery ? "recovery" :
938 "usebackuproot");
939 btrfs_info(info,
940 "trying to use backup root at mount time");
941 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
942 break;
943 case Opt_skip_balance:
944 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
945 break;
946 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
947 case Opt_check_integrity_including_extent_data:
948 btrfs_info(info,
949 "enabling check integrity including extent data");
950 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
951 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
952 break;
953 case Opt_check_integrity:
954 btrfs_info(info, "enabling check integrity");
955 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
956 break;
957 case Opt_check_integrity_print_mask:
958 ret = match_int(&args[0], &intarg);
959 if (ret) {
960 btrfs_err(info,
961 "unrecognized check_integrity_print_mask value %s",
962 args[0].from);
963 goto out;
964 }
965 info->check_integrity_print_mask = intarg;
966 btrfs_info(info, "check_integrity_print_mask 0x%x",
967 info->check_integrity_print_mask);
968 break;
969 #else
970 case Opt_check_integrity_including_extent_data:
971 case Opt_check_integrity:
972 case Opt_check_integrity_print_mask:
973 btrfs_err(info,
974 "support for check_integrity* not compiled in!");
975 ret = -EINVAL;
976 goto out;
977 #endif
978 case Opt_fatal_errors:
979 if (strcmp(args[0].from, "panic") == 0) {
980 btrfs_set_opt(info->mount_opt,
981 PANIC_ON_FATAL_ERROR);
982 } else if (strcmp(args[0].from, "bug") == 0) {
983 btrfs_clear_opt(info->mount_opt,
984 PANIC_ON_FATAL_ERROR);
985 } else {
986 btrfs_err(info, "unrecognized fatal_errors value %s",
987 args[0].from);
988 ret = -EINVAL;
989 goto out;
990 }
991 break;
992 case Opt_commit_interval:
993 intarg = 0;
994 ret = match_int(&args[0], &intarg);
995 if (ret) {
996 btrfs_err(info, "unrecognized commit_interval value %s",
997 args[0].from);
998 ret = -EINVAL;
999 goto out;
1000 }
1001 if (intarg == 0) {
1002 btrfs_info(info,
1003 "using default commit interval %us",
1004 BTRFS_DEFAULT_COMMIT_INTERVAL);
1005 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
1006 } else if (intarg > 300) {
1007 btrfs_warn(info, "excessive commit interval %d",
1008 intarg);
1009 }
1010 info->commit_interval = intarg;
1011 break;
1012 case Opt_rescue:
1013 ret = parse_rescue_options(info, args[0].from);
1014 if (ret < 0) {
1015 btrfs_err(info, "unrecognized rescue value %s",
1016 args[0].from);
1017 goto out;
1018 }
1019 break;
1020 #ifdef CONFIG_BTRFS_DEBUG
1021 case Opt_fragment_all:
1022 btrfs_info(info, "fragmenting all space");
1023 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1024 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1025 break;
1026 case Opt_fragment_metadata:
1027 btrfs_info(info, "fragmenting metadata");
1028 btrfs_set_opt(info->mount_opt,
1029 FRAGMENT_METADATA);
1030 break;
1031 case Opt_fragment_data:
1032 btrfs_info(info, "fragmenting data");
1033 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1034 break;
1035 #endif
1036 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1037 case Opt_ref_verify:
1038 btrfs_info(info, "doing ref verification");
1039 btrfs_set_opt(info->mount_opt, REF_VERIFY);
1040 break;
1041 #endif
1042 case Opt_err:
1043 btrfs_err(info, "unrecognized mount option '%s'", p);
1044 ret = -EINVAL;
1045 goto out;
1046 default:
1047 break;
1048 }
1049 }
1050 check:
1051 /* We're read-only, don't have to check. */
1052 if (new_flags & SB_RDONLY)
1053 goto out;
1054
1055 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1056 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1057 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1058 ret = -EINVAL;
1059 out:
1060 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1061 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1062 !btrfs_test_opt(info, CLEAR_CACHE)) {
1063 btrfs_err(info, "cannot disable free space tree");
1064 ret = -EINVAL;
1065
1066 }
1067 if (!ret)
1068 ret = btrfs_check_mountopts_zoned(info);
1069 if (!ret && !remounting) {
1070 if (btrfs_test_opt(info, SPACE_CACHE))
1071 btrfs_info(info, "disk space caching is enabled");
1072 if (btrfs_test_opt(info, FREE_SPACE_TREE))
1073 btrfs_info(info, "using free space tree");
1074 }
1075 return ret;
1076 }
1077
1078 /*
1079 * Parse mount options that are required early in the mount process.
1080 *
1081 * All other options will be parsed on much later in the mount process and
1082 * only when we need to allocate a new super block.
1083 */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)1084 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1085 void *holder)
1086 {
1087 substring_t args[MAX_OPT_ARGS];
1088 char *device_name, *opts, *orig, *p;
1089 struct btrfs_device *device = NULL;
1090 int error = 0;
1091
1092 lockdep_assert_held(&uuid_mutex);
1093
1094 if (!options)
1095 return 0;
1096
1097 /*
1098 * strsep changes the string, duplicate it because btrfs_parse_options
1099 * gets called later
1100 */
1101 opts = kstrdup(options, GFP_KERNEL);
1102 if (!opts)
1103 return -ENOMEM;
1104 orig = opts;
1105
1106 while ((p = strsep(&opts, ",")) != NULL) {
1107 int token;
1108
1109 if (!*p)
1110 continue;
1111
1112 token = match_token(p, tokens, args);
1113 if (token == Opt_device) {
1114 device_name = match_strdup(&args[0]);
1115 if (!device_name) {
1116 error = -ENOMEM;
1117 goto out;
1118 }
1119 device = btrfs_scan_one_device(device_name, flags,
1120 holder);
1121 kfree(device_name);
1122 if (IS_ERR(device)) {
1123 error = PTR_ERR(device);
1124 goto out;
1125 }
1126 }
1127 }
1128
1129 out:
1130 kfree(orig);
1131 return error;
1132 }
1133
1134 /*
1135 * Parse mount options that are related to subvolume id
1136 *
1137 * The value is later passed to mount_subvol()
1138 */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)1139 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1140 u64 *subvol_objectid)
1141 {
1142 substring_t args[MAX_OPT_ARGS];
1143 char *opts, *orig, *p;
1144 int error = 0;
1145 u64 subvolid;
1146
1147 if (!options)
1148 return 0;
1149
1150 /*
1151 * strsep changes the string, duplicate it because
1152 * btrfs_parse_device_options gets called later
1153 */
1154 opts = kstrdup(options, GFP_KERNEL);
1155 if (!opts)
1156 return -ENOMEM;
1157 orig = opts;
1158
1159 while ((p = strsep(&opts, ",")) != NULL) {
1160 int token;
1161 if (!*p)
1162 continue;
1163
1164 token = match_token(p, tokens, args);
1165 switch (token) {
1166 case Opt_subvol:
1167 kfree(*subvol_name);
1168 *subvol_name = match_strdup(&args[0]);
1169 if (!*subvol_name) {
1170 error = -ENOMEM;
1171 goto out;
1172 }
1173 break;
1174 case Opt_subvolid:
1175 error = match_u64(&args[0], &subvolid);
1176 if (error)
1177 goto out;
1178
1179 /* we want the original fs_tree */
1180 if (subvolid == 0)
1181 subvolid = BTRFS_FS_TREE_OBJECTID;
1182
1183 *subvol_objectid = subvolid;
1184 break;
1185 default:
1186 break;
1187 }
1188 }
1189
1190 out:
1191 kfree(orig);
1192 return error;
1193 }
1194
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)1195 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1196 u64 subvol_objectid)
1197 {
1198 struct btrfs_root *root = fs_info->tree_root;
1199 struct btrfs_root *fs_root = NULL;
1200 struct btrfs_root_ref *root_ref;
1201 struct btrfs_inode_ref *inode_ref;
1202 struct btrfs_key key;
1203 struct btrfs_path *path = NULL;
1204 char *name = NULL, *ptr;
1205 u64 dirid;
1206 int len;
1207 int ret;
1208
1209 path = btrfs_alloc_path();
1210 if (!path) {
1211 ret = -ENOMEM;
1212 goto err;
1213 }
1214
1215 name = kmalloc(PATH_MAX, GFP_KERNEL);
1216 if (!name) {
1217 ret = -ENOMEM;
1218 goto err;
1219 }
1220 ptr = name + PATH_MAX - 1;
1221 ptr[0] = '\0';
1222
1223 /*
1224 * Walk up the subvolume trees in the tree of tree roots by root
1225 * backrefs until we hit the top-level subvolume.
1226 */
1227 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1228 key.objectid = subvol_objectid;
1229 key.type = BTRFS_ROOT_BACKREF_KEY;
1230 key.offset = (u64)-1;
1231
1232 ret = btrfs_search_backwards(root, &key, path);
1233 if (ret < 0) {
1234 goto err;
1235 } else if (ret > 0) {
1236 ret = -ENOENT;
1237 goto err;
1238 }
1239
1240 subvol_objectid = key.offset;
1241
1242 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1243 struct btrfs_root_ref);
1244 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1245 ptr -= len + 1;
1246 if (ptr < name) {
1247 ret = -ENAMETOOLONG;
1248 goto err;
1249 }
1250 read_extent_buffer(path->nodes[0], ptr + 1,
1251 (unsigned long)(root_ref + 1), len);
1252 ptr[0] = '/';
1253 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1254 btrfs_release_path(path);
1255
1256 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1257 if (IS_ERR(fs_root)) {
1258 ret = PTR_ERR(fs_root);
1259 fs_root = NULL;
1260 goto err;
1261 }
1262
1263 /*
1264 * Walk up the filesystem tree by inode refs until we hit the
1265 * root directory.
1266 */
1267 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1268 key.objectid = dirid;
1269 key.type = BTRFS_INODE_REF_KEY;
1270 key.offset = (u64)-1;
1271
1272 ret = btrfs_search_backwards(fs_root, &key, path);
1273 if (ret < 0) {
1274 goto err;
1275 } else if (ret > 0) {
1276 ret = -ENOENT;
1277 goto err;
1278 }
1279
1280 dirid = key.offset;
1281
1282 inode_ref = btrfs_item_ptr(path->nodes[0],
1283 path->slots[0],
1284 struct btrfs_inode_ref);
1285 len = btrfs_inode_ref_name_len(path->nodes[0],
1286 inode_ref);
1287 ptr -= len + 1;
1288 if (ptr < name) {
1289 ret = -ENAMETOOLONG;
1290 goto err;
1291 }
1292 read_extent_buffer(path->nodes[0], ptr + 1,
1293 (unsigned long)(inode_ref + 1), len);
1294 ptr[0] = '/';
1295 btrfs_release_path(path);
1296 }
1297 btrfs_put_root(fs_root);
1298 fs_root = NULL;
1299 }
1300
1301 btrfs_free_path(path);
1302 if (ptr == name + PATH_MAX - 1) {
1303 name[0] = '/';
1304 name[1] = '\0';
1305 } else {
1306 memmove(name, ptr, name + PATH_MAX - ptr);
1307 }
1308 return name;
1309
1310 err:
1311 btrfs_put_root(fs_root);
1312 btrfs_free_path(path);
1313 kfree(name);
1314 return ERR_PTR(ret);
1315 }
1316
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1317 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1318 {
1319 struct btrfs_root *root = fs_info->tree_root;
1320 struct btrfs_dir_item *di;
1321 struct btrfs_path *path;
1322 struct btrfs_key location;
1323 u64 dir_id;
1324
1325 path = btrfs_alloc_path();
1326 if (!path)
1327 return -ENOMEM;
1328
1329 /*
1330 * Find the "default" dir item which points to the root item that we
1331 * will mount by default if we haven't been given a specific subvolume
1332 * to mount.
1333 */
1334 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1335 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1336 if (IS_ERR(di)) {
1337 btrfs_free_path(path);
1338 return PTR_ERR(di);
1339 }
1340 if (!di) {
1341 /*
1342 * Ok the default dir item isn't there. This is weird since
1343 * it's always been there, but don't freak out, just try and
1344 * mount the top-level subvolume.
1345 */
1346 btrfs_free_path(path);
1347 *objectid = BTRFS_FS_TREE_OBJECTID;
1348 return 0;
1349 }
1350
1351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1352 btrfs_free_path(path);
1353 *objectid = location.objectid;
1354 return 0;
1355 }
1356
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1357 static int btrfs_fill_super(struct super_block *sb,
1358 struct btrfs_fs_devices *fs_devices,
1359 void *data)
1360 {
1361 struct inode *inode;
1362 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1363 int err;
1364
1365 sb->s_maxbytes = MAX_LFS_FILESIZE;
1366 sb->s_magic = BTRFS_SUPER_MAGIC;
1367 sb->s_op = &btrfs_super_ops;
1368 sb->s_d_op = &btrfs_dentry_operations;
1369 sb->s_export_op = &btrfs_export_ops;
1370 #ifdef CONFIG_FS_VERITY
1371 sb->s_vop = &btrfs_verityops;
1372 #endif
1373 sb->s_xattr = btrfs_xattr_handlers;
1374 sb->s_time_gran = 1;
1375 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1376 sb->s_flags |= SB_POSIXACL;
1377 #endif
1378 sb->s_flags |= SB_I_VERSION;
1379 sb->s_iflags |= SB_I_CGROUPWB;
1380
1381 err = super_setup_bdi(sb);
1382 if (err) {
1383 btrfs_err(fs_info, "super_setup_bdi failed");
1384 return err;
1385 }
1386
1387 err = open_ctree(sb, fs_devices, (char *)data);
1388 if (err) {
1389 btrfs_err(fs_info, "open_ctree failed");
1390 return err;
1391 }
1392
1393 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1394 if (IS_ERR(inode)) {
1395 err = PTR_ERR(inode);
1396 goto fail_close;
1397 }
1398
1399 sb->s_root = d_make_root(inode);
1400 if (!sb->s_root) {
1401 err = -ENOMEM;
1402 goto fail_close;
1403 }
1404
1405 cleancache_init_fs(sb);
1406 sb->s_flags |= SB_ACTIVE;
1407 return 0;
1408
1409 fail_close:
1410 close_ctree(fs_info);
1411 return err;
1412 }
1413
btrfs_sync_fs(struct super_block * sb,int wait)1414 int btrfs_sync_fs(struct super_block *sb, int wait)
1415 {
1416 struct btrfs_trans_handle *trans;
1417 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1418 struct btrfs_root *root = fs_info->tree_root;
1419
1420 trace_btrfs_sync_fs(fs_info, wait);
1421
1422 if (!wait) {
1423 filemap_flush(fs_info->btree_inode->i_mapping);
1424 return 0;
1425 }
1426
1427 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1428
1429 trans = btrfs_attach_transaction_barrier(root);
1430 if (IS_ERR(trans)) {
1431 /* no transaction, don't bother */
1432 if (PTR_ERR(trans) == -ENOENT) {
1433 /*
1434 * Exit unless we have some pending changes
1435 * that need to go through commit
1436 */
1437 if (fs_info->pending_changes == 0)
1438 return 0;
1439 /*
1440 * A non-blocking test if the fs is frozen. We must not
1441 * start a new transaction here otherwise a deadlock
1442 * happens. The pending operations are delayed to the
1443 * next commit after thawing.
1444 */
1445 if (sb_start_write_trylock(sb))
1446 sb_end_write(sb);
1447 else
1448 return 0;
1449 trans = btrfs_start_transaction(root, 0);
1450 }
1451 if (IS_ERR(trans))
1452 return PTR_ERR(trans);
1453 }
1454 return btrfs_commit_transaction(trans);
1455 }
1456
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1457 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1458 {
1459 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1460 *printed = true;
1461 }
1462
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1463 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1464 {
1465 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1466 const char *compress_type;
1467 const char *subvol_name;
1468 bool printed = false;
1469
1470 if (btrfs_test_opt(info, DEGRADED))
1471 seq_puts(seq, ",degraded");
1472 if (btrfs_test_opt(info, NODATASUM))
1473 seq_puts(seq, ",nodatasum");
1474 if (btrfs_test_opt(info, NODATACOW))
1475 seq_puts(seq, ",nodatacow");
1476 if (btrfs_test_opt(info, NOBARRIER))
1477 seq_puts(seq, ",nobarrier");
1478 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1479 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1480 if (info->thread_pool_size != min_t(unsigned long,
1481 num_online_cpus() + 2, 8))
1482 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1483 if (btrfs_test_opt(info, COMPRESS)) {
1484 compress_type = btrfs_compress_type2str(info->compress_type);
1485 if (btrfs_test_opt(info, FORCE_COMPRESS))
1486 seq_printf(seq, ",compress-force=%s", compress_type);
1487 else
1488 seq_printf(seq, ",compress=%s", compress_type);
1489 if (info->compress_level)
1490 seq_printf(seq, ":%d", info->compress_level);
1491 }
1492 if (btrfs_test_opt(info, NOSSD))
1493 seq_puts(seq, ",nossd");
1494 if (btrfs_test_opt(info, SSD_SPREAD))
1495 seq_puts(seq, ",ssd_spread");
1496 else if (btrfs_test_opt(info, SSD))
1497 seq_puts(seq, ",ssd");
1498 if (btrfs_test_opt(info, NOTREELOG))
1499 seq_puts(seq, ",notreelog");
1500 if (btrfs_test_opt(info, NOLOGREPLAY))
1501 print_rescue_option(seq, "nologreplay", &printed);
1502 if (btrfs_test_opt(info, USEBACKUPROOT))
1503 print_rescue_option(seq, "usebackuproot", &printed);
1504 if (btrfs_test_opt(info, IGNOREBADROOTS))
1505 print_rescue_option(seq, "ignorebadroots", &printed);
1506 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1507 print_rescue_option(seq, "ignoredatacsums", &printed);
1508 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1509 seq_puts(seq, ",flushoncommit");
1510 if (btrfs_test_opt(info, DISCARD_SYNC))
1511 seq_puts(seq, ",discard");
1512 if (btrfs_test_opt(info, DISCARD_ASYNC))
1513 seq_puts(seq, ",discard=async");
1514 if (!(info->sb->s_flags & SB_POSIXACL))
1515 seq_puts(seq, ",noacl");
1516 if (btrfs_free_space_cache_v1_active(info))
1517 seq_puts(seq, ",space_cache");
1518 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1519 seq_puts(seq, ",space_cache=v2");
1520 else
1521 seq_puts(seq, ",nospace_cache");
1522 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1523 seq_puts(seq, ",rescan_uuid_tree");
1524 if (btrfs_test_opt(info, CLEAR_CACHE))
1525 seq_puts(seq, ",clear_cache");
1526 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1527 seq_puts(seq, ",user_subvol_rm_allowed");
1528 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1529 seq_puts(seq, ",enospc_debug");
1530 if (btrfs_test_opt(info, AUTO_DEFRAG))
1531 seq_puts(seq, ",autodefrag");
1532 if (btrfs_test_opt(info, SKIP_BALANCE))
1533 seq_puts(seq, ",skip_balance");
1534 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1535 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1536 seq_puts(seq, ",check_int_data");
1537 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1538 seq_puts(seq, ",check_int");
1539 if (info->check_integrity_print_mask)
1540 seq_printf(seq, ",check_int_print_mask=%d",
1541 info->check_integrity_print_mask);
1542 #endif
1543 if (info->metadata_ratio)
1544 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1545 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1546 seq_puts(seq, ",fatal_errors=panic");
1547 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1548 seq_printf(seq, ",commit=%u", info->commit_interval);
1549 #ifdef CONFIG_BTRFS_DEBUG
1550 if (btrfs_test_opt(info, FRAGMENT_DATA))
1551 seq_puts(seq, ",fragment=data");
1552 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1553 seq_puts(seq, ",fragment=metadata");
1554 #endif
1555 if (btrfs_test_opt(info, REF_VERIFY))
1556 seq_puts(seq, ",ref_verify");
1557 seq_printf(seq, ",subvolid=%llu",
1558 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1559 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1560 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1561 if (!IS_ERR(subvol_name)) {
1562 seq_puts(seq, ",subvol=");
1563 seq_escape(seq, subvol_name, " \t\n\\");
1564 kfree(subvol_name);
1565 }
1566 return 0;
1567 }
1568
btrfs_test_super(struct super_block * s,void * data)1569 static int btrfs_test_super(struct super_block *s, void *data)
1570 {
1571 struct btrfs_fs_info *p = data;
1572 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1573
1574 return fs_info->fs_devices == p->fs_devices;
1575 }
1576
btrfs_set_super(struct super_block * s,void * data)1577 static int btrfs_set_super(struct super_block *s, void *data)
1578 {
1579 int err = set_anon_super(s, data);
1580 if (!err)
1581 s->s_fs_info = data;
1582 return err;
1583 }
1584
1585 /*
1586 * subvolumes are identified by ino 256
1587 */
is_subvolume_inode(struct inode * inode)1588 static inline int is_subvolume_inode(struct inode *inode)
1589 {
1590 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1591 return 1;
1592 return 0;
1593 }
1594
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1595 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1596 struct vfsmount *mnt)
1597 {
1598 struct dentry *root;
1599 int ret;
1600
1601 if (!subvol_name) {
1602 if (!subvol_objectid) {
1603 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1604 &subvol_objectid);
1605 if (ret) {
1606 root = ERR_PTR(ret);
1607 goto out;
1608 }
1609 }
1610 subvol_name = btrfs_get_subvol_name_from_objectid(
1611 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1612 if (IS_ERR(subvol_name)) {
1613 root = ERR_CAST(subvol_name);
1614 subvol_name = NULL;
1615 goto out;
1616 }
1617
1618 }
1619
1620 root = mount_subtree(mnt, subvol_name);
1621 /* mount_subtree() drops our reference on the vfsmount. */
1622 mnt = NULL;
1623
1624 if (!IS_ERR(root)) {
1625 struct super_block *s = root->d_sb;
1626 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1627 struct inode *root_inode = d_inode(root);
1628 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1629
1630 ret = 0;
1631 if (!is_subvolume_inode(root_inode)) {
1632 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1633 subvol_name);
1634 ret = -EINVAL;
1635 }
1636 if (subvol_objectid && root_objectid != subvol_objectid) {
1637 /*
1638 * This will also catch a race condition where a
1639 * subvolume which was passed by ID is renamed and
1640 * another subvolume is renamed over the old location.
1641 */
1642 btrfs_err(fs_info,
1643 "subvol '%s' does not match subvolid %llu",
1644 subvol_name, subvol_objectid);
1645 ret = -EINVAL;
1646 }
1647 if (ret) {
1648 dput(root);
1649 root = ERR_PTR(ret);
1650 deactivate_locked_super(s);
1651 }
1652 }
1653
1654 out:
1655 mntput(mnt);
1656 kfree(subvol_name);
1657 return root;
1658 }
1659
1660 /*
1661 * Find a superblock for the given device / mount point.
1662 *
1663 * Note: This is based on mount_bdev from fs/super.c with a few additions
1664 * for multiple device setup. Make sure to keep it in sync.
1665 */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1666 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1667 int flags, const char *device_name, void *data)
1668 {
1669 struct block_device *bdev = NULL;
1670 struct super_block *s;
1671 struct btrfs_device *device = NULL;
1672 struct btrfs_fs_devices *fs_devices = NULL;
1673 struct btrfs_fs_info *fs_info = NULL;
1674 void *new_sec_opts = NULL;
1675 fmode_t mode = FMODE_READ;
1676 int error = 0;
1677
1678 if (!(flags & SB_RDONLY))
1679 mode |= FMODE_WRITE;
1680
1681 if (data) {
1682 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1683 if (error)
1684 return ERR_PTR(error);
1685 }
1686
1687 /*
1688 * Setup a dummy root and fs_info for test/set super. This is because
1689 * we don't actually fill this stuff out until open_ctree, but we need
1690 * then open_ctree will properly initialize the file system specific
1691 * settings later. btrfs_init_fs_info initializes the static elements
1692 * of the fs_info (locks and such) to make cleanup easier if we find a
1693 * superblock with our given fs_devices later on at sget() time.
1694 */
1695 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1696 if (!fs_info) {
1697 error = -ENOMEM;
1698 goto error_sec_opts;
1699 }
1700 btrfs_init_fs_info(fs_info);
1701
1702 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1703 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1704 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1705 error = -ENOMEM;
1706 goto error_fs_info;
1707 }
1708
1709 mutex_lock(&uuid_mutex);
1710 error = btrfs_parse_device_options(data, mode, fs_type);
1711 if (error) {
1712 mutex_unlock(&uuid_mutex);
1713 goto error_fs_info;
1714 }
1715
1716 device = btrfs_scan_one_device(device_name, mode, fs_type);
1717 if (IS_ERR(device)) {
1718 mutex_unlock(&uuid_mutex);
1719 error = PTR_ERR(device);
1720 goto error_fs_info;
1721 }
1722
1723 fs_devices = device->fs_devices;
1724 fs_info->fs_devices = fs_devices;
1725
1726 error = btrfs_open_devices(fs_devices, mode, fs_type);
1727 mutex_unlock(&uuid_mutex);
1728 if (error)
1729 goto error_fs_info;
1730
1731 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1732 error = -EACCES;
1733 goto error_close_devices;
1734 }
1735
1736 bdev = fs_devices->latest_dev->bdev;
1737 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1738 fs_info);
1739 if (IS_ERR(s)) {
1740 error = PTR_ERR(s);
1741 goto error_close_devices;
1742 }
1743
1744 if (s->s_root) {
1745 btrfs_close_devices(fs_devices);
1746 btrfs_free_fs_info(fs_info);
1747 if ((flags ^ s->s_flags) & SB_RDONLY)
1748 error = -EBUSY;
1749 } else {
1750 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1751 btrfs_sb(s)->bdev_holder = fs_type;
1752 error = btrfs_fill_super(s, fs_devices, data);
1753 }
1754 if (!error)
1755 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1756 security_free_mnt_opts(&new_sec_opts);
1757 if (error) {
1758 deactivate_locked_super(s);
1759 return ERR_PTR(error);
1760 }
1761
1762 return dget(s->s_root);
1763
1764 error_close_devices:
1765 btrfs_close_devices(fs_devices);
1766 error_fs_info:
1767 btrfs_free_fs_info(fs_info);
1768 error_sec_opts:
1769 security_free_mnt_opts(&new_sec_opts);
1770 return ERR_PTR(error);
1771 }
1772
1773 /*
1774 * Mount function which is called by VFS layer.
1775 *
1776 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1777 * which needs vfsmount* of device's root (/). This means device's root has to
1778 * be mounted internally in any case.
1779 *
1780 * Operation flow:
1781 * 1. Parse subvol id related options for later use in mount_subvol().
1782 *
1783 * 2. Mount device's root (/) by calling vfs_kern_mount().
1784 *
1785 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1786 * first place. In order to avoid calling btrfs_mount() again, we use
1787 * different file_system_type which is not registered to VFS by
1788 * register_filesystem() (btrfs_root_fs_type). As a result,
1789 * btrfs_mount_root() is called. The return value will be used by
1790 * mount_subtree() in mount_subvol().
1791 *
1792 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1793 * "btrfs subvolume set-default", mount_subvol() is called always.
1794 */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1795 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1796 const char *device_name, void *data)
1797 {
1798 struct vfsmount *mnt_root;
1799 struct dentry *root;
1800 char *subvol_name = NULL;
1801 u64 subvol_objectid = 0;
1802 int error = 0;
1803
1804 error = btrfs_parse_subvol_options(data, &subvol_name,
1805 &subvol_objectid);
1806 if (error) {
1807 kfree(subvol_name);
1808 return ERR_PTR(error);
1809 }
1810
1811 /* mount device's root (/) */
1812 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1813 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1814 if (flags & SB_RDONLY) {
1815 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1816 flags & ~SB_RDONLY, device_name, data);
1817 } else {
1818 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1819 flags | SB_RDONLY, device_name, data);
1820 if (IS_ERR(mnt_root)) {
1821 root = ERR_CAST(mnt_root);
1822 kfree(subvol_name);
1823 goto out;
1824 }
1825
1826 down_write(&mnt_root->mnt_sb->s_umount);
1827 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1828 up_write(&mnt_root->mnt_sb->s_umount);
1829 if (error < 0) {
1830 root = ERR_PTR(error);
1831 mntput(mnt_root);
1832 kfree(subvol_name);
1833 goto out;
1834 }
1835 }
1836 }
1837 if (IS_ERR(mnt_root)) {
1838 root = ERR_CAST(mnt_root);
1839 kfree(subvol_name);
1840 goto out;
1841 }
1842
1843 /* mount_subvol() will free subvol_name and mnt_root */
1844 root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1845
1846 out:
1847 return root;
1848 }
1849
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1850 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1851 u32 new_pool_size, u32 old_pool_size)
1852 {
1853 if (new_pool_size == old_pool_size)
1854 return;
1855
1856 fs_info->thread_pool_size = new_pool_size;
1857
1858 btrfs_info(fs_info, "resize thread pool %d -> %d",
1859 old_pool_size, new_pool_size);
1860
1861 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1862 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1863 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1864 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1865 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1866 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1867 new_pool_size);
1868 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1869 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1870 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1871 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1872 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1873 new_pool_size);
1874 }
1875
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1876 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1877 unsigned long old_opts, int flags)
1878 {
1879 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1880 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1881 (flags & SB_RDONLY))) {
1882 /* wait for any defraggers to finish */
1883 wait_event(fs_info->transaction_wait,
1884 (atomic_read(&fs_info->defrag_running) == 0));
1885 if (flags & SB_RDONLY)
1886 sync_filesystem(fs_info->sb);
1887 }
1888 }
1889
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1890 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1891 unsigned long old_opts)
1892 {
1893 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1894
1895 /*
1896 * We need to cleanup all defragable inodes if the autodefragment is
1897 * close or the filesystem is read only.
1898 */
1899 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1900 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1901 btrfs_cleanup_defrag_inodes(fs_info);
1902 }
1903
1904 /* If we toggled discard async */
1905 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1906 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1907 btrfs_discard_resume(fs_info);
1908 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1909 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1910 btrfs_discard_cleanup(fs_info);
1911
1912 /* If we toggled space cache */
1913 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1914 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1915 }
1916
btrfs_remount(struct super_block * sb,int * flags,char * data)1917 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1918 {
1919 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1920 unsigned old_flags = sb->s_flags;
1921 unsigned long old_opts = fs_info->mount_opt;
1922 unsigned long old_compress_type = fs_info->compress_type;
1923 u64 old_max_inline = fs_info->max_inline;
1924 u32 old_thread_pool_size = fs_info->thread_pool_size;
1925 u32 old_metadata_ratio = fs_info->metadata_ratio;
1926 int ret;
1927
1928 sync_filesystem(sb);
1929 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1930
1931 if (data) {
1932 void *new_sec_opts = NULL;
1933
1934 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1935 if (!ret)
1936 ret = security_sb_remount(sb, new_sec_opts);
1937 security_free_mnt_opts(&new_sec_opts);
1938 if (ret)
1939 goto restore;
1940 }
1941
1942 ret = btrfs_parse_options(fs_info, data, *flags);
1943 if (ret)
1944 goto restore;
1945
1946 /* V1 cache is not supported for subpage mount. */
1947 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
1948 btrfs_warn(fs_info,
1949 "v1 space cache is not supported for page size %lu with sectorsize %u",
1950 PAGE_SIZE, fs_info->sectorsize);
1951 ret = -EINVAL;
1952 goto restore;
1953 }
1954 btrfs_remount_begin(fs_info, old_opts, *flags);
1955 btrfs_resize_thread_pool(fs_info,
1956 fs_info->thread_pool_size, old_thread_pool_size);
1957
1958 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1959 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1960 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1961 btrfs_warn(fs_info,
1962 "remount supports changing free space tree only from ro to rw");
1963 /* Make sure free space cache options match the state on disk */
1964 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1965 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1966 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1967 }
1968 if (btrfs_free_space_cache_v1_active(fs_info)) {
1969 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1970 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1971 }
1972 }
1973
1974 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1975 goto out;
1976
1977 if (*flags & SB_RDONLY) {
1978 /*
1979 * this also happens on 'umount -rf' or on shutdown, when
1980 * the filesystem is busy.
1981 */
1982 cancel_work_sync(&fs_info->async_reclaim_work);
1983 cancel_work_sync(&fs_info->async_data_reclaim_work);
1984
1985 btrfs_discard_cleanup(fs_info);
1986
1987 /* wait for the uuid_scan task to finish */
1988 down(&fs_info->uuid_tree_rescan_sem);
1989 /* avoid complains from lockdep et al. */
1990 up(&fs_info->uuid_tree_rescan_sem);
1991
1992 btrfs_set_sb_rdonly(sb);
1993
1994 /*
1995 * Setting SB_RDONLY will put the cleaner thread to
1996 * sleep at the next loop if it's already active.
1997 * If it's already asleep, we'll leave unused block
1998 * groups on disk until we're mounted read-write again
1999 * unless we clean them up here.
2000 */
2001 btrfs_delete_unused_bgs(fs_info);
2002
2003 /*
2004 * The cleaner task could be already running before we set the
2005 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
2006 * We must make sure that after we finish the remount, i.e. after
2007 * we call btrfs_commit_super(), the cleaner can no longer start
2008 * a transaction - either because it was dropping a dead root,
2009 * running delayed iputs or deleting an unused block group (the
2010 * cleaner picked a block group from the list of unused block
2011 * groups before we were able to in the previous call to
2012 * btrfs_delete_unused_bgs()).
2013 */
2014 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2015 TASK_UNINTERRUPTIBLE);
2016
2017 /*
2018 * We've set the superblock to RO mode, so we might have made
2019 * the cleaner task sleep without running all pending delayed
2020 * iputs. Go through all the delayed iputs here, so that if an
2021 * unmount happens without remounting RW we don't end up at
2022 * finishing close_ctree() with a non-empty list of delayed
2023 * iputs.
2024 */
2025 btrfs_run_delayed_iputs(fs_info);
2026
2027 btrfs_dev_replace_suspend_for_unmount(fs_info);
2028 btrfs_scrub_cancel(fs_info);
2029 btrfs_pause_balance(fs_info);
2030
2031 /*
2032 * Pause the qgroup rescan worker if it is running. We don't want
2033 * it to be still running after we are in RO mode, as after that,
2034 * by the time we unmount, it might have left a transaction open,
2035 * so we would leak the transaction and/or crash.
2036 */
2037 btrfs_qgroup_wait_for_completion(fs_info, false);
2038
2039 ret = btrfs_commit_super(fs_info);
2040 if (ret)
2041 goto restore;
2042 } else {
2043 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2044 btrfs_err(fs_info,
2045 "Remounting read-write after error is not allowed");
2046 ret = -EINVAL;
2047 goto restore;
2048 }
2049 if (btrfs_super_compat_ro_flags(fs_info->super_copy) &
2050 ~BTRFS_FEATURE_COMPAT_RO_SUPP) {
2051 btrfs_err(fs_info,
2052 "can not remount read-write due to unsupported optional flags 0x%llx",
2053 btrfs_super_compat_ro_flags(fs_info->super_copy) &
2054 ~BTRFS_FEATURE_COMPAT_RO_SUPP);
2055 ret = -EINVAL;
2056 goto restore;
2057 }
2058 if (fs_info->fs_devices->rw_devices == 0) {
2059 ret = -EACCES;
2060 goto restore;
2061 }
2062
2063 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2064 btrfs_warn(fs_info,
2065 "too many missing devices, writable remount is not allowed");
2066 ret = -EACCES;
2067 goto restore;
2068 }
2069
2070 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2071 btrfs_warn(fs_info,
2072 "mount required to replay tree-log, cannot remount read-write");
2073 ret = -EINVAL;
2074 goto restore;
2075 }
2076
2077 /*
2078 * NOTE: when remounting with a change that does writes, don't
2079 * put it anywhere above this point, as we are not sure to be
2080 * safe to write until we pass the above checks.
2081 */
2082 ret = btrfs_start_pre_rw_mount(fs_info);
2083 if (ret)
2084 goto restore;
2085
2086 btrfs_clear_sb_rdonly(sb);
2087
2088 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2089 }
2090 out:
2091 /*
2092 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2093 * since the absence of the flag means it can be toggled off by remount.
2094 */
2095 *flags |= SB_I_VERSION;
2096
2097 wake_up_process(fs_info->transaction_kthread);
2098 btrfs_remount_cleanup(fs_info, old_opts);
2099 btrfs_clear_oneshot_options(fs_info);
2100 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2101
2102 return 0;
2103
2104 restore:
2105 /* We've hit an error - don't reset SB_RDONLY */
2106 if (sb_rdonly(sb))
2107 old_flags |= SB_RDONLY;
2108 if (!(old_flags & SB_RDONLY))
2109 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2110 sb->s_flags = old_flags;
2111 fs_info->mount_opt = old_opts;
2112 fs_info->compress_type = old_compress_type;
2113 fs_info->max_inline = old_max_inline;
2114 btrfs_resize_thread_pool(fs_info,
2115 old_thread_pool_size, fs_info->thread_pool_size);
2116 fs_info->metadata_ratio = old_metadata_ratio;
2117 btrfs_remount_cleanup(fs_info, old_opts);
2118 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2119
2120 return ret;
2121 }
2122
2123 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)2124 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2125 {
2126 const struct btrfs_device_info *dev_info1 = a;
2127 const struct btrfs_device_info *dev_info2 = b;
2128
2129 if (dev_info1->max_avail > dev_info2->max_avail)
2130 return -1;
2131 else if (dev_info1->max_avail < dev_info2->max_avail)
2132 return 1;
2133 return 0;
2134 }
2135
2136 /*
2137 * sort the devices by max_avail, in which max free extent size of each device
2138 * is stored.(Descending Sort)
2139 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)2140 static inline void btrfs_descending_sort_devices(
2141 struct btrfs_device_info *devices,
2142 size_t nr_devices)
2143 {
2144 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2145 btrfs_cmp_device_free_bytes, NULL);
2146 }
2147
2148 /*
2149 * The helper to calc the free space on the devices that can be used to store
2150 * file data.
2151 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)2152 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2153 u64 *free_bytes)
2154 {
2155 struct btrfs_device_info *devices_info;
2156 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2157 struct btrfs_device *device;
2158 u64 type;
2159 u64 avail_space;
2160 u64 min_stripe_size;
2161 int num_stripes = 1;
2162 int i = 0, nr_devices;
2163 const struct btrfs_raid_attr *rattr;
2164
2165 /*
2166 * We aren't under the device list lock, so this is racy-ish, but good
2167 * enough for our purposes.
2168 */
2169 nr_devices = fs_info->fs_devices->open_devices;
2170 if (!nr_devices) {
2171 smp_mb();
2172 nr_devices = fs_info->fs_devices->open_devices;
2173 ASSERT(nr_devices);
2174 if (!nr_devices) {
2175 *free_bytes = 0;
2176 return 0;
2177 }
2178 }
2179
2180 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2181 GFP_KERNEL);
2182 if (!devices_info)
2183 return -ENOMEM;
2184
2185 /* calc min stripe number for data space allocation */
2186 type = btrfs_data_alloc_profile(fs_info);
2187 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2188
2189 if (type & BTRFS_BLOCK_GROUP_RAID0)
2190 num_stripes = nr_devices;
2191 else if (type & BTRFS_BLOCK_GROUP_RAID1)
2192 num_stripes = 2;
2193 else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2194 num_stripes = 3;
2195 else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2196 num_stripes = 4;
2197 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2198 num_stripes = 4;
2199
2200 /* Adjust for more than 1 stripe per device */
2201 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2202
2203 rcu_read_lock();
2204 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2205 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2206 &device->dev_state) ||
2207 !device->bdev ||
2208 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2209 continue;
2210
2211 if (i >= nr_devices)
2212 break;
2213
2214 avail_space = device->total_bytes - device->bytes_used;
2215
2216 /* align with stripe_len */
2217 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2218
2219 /*
2220 * In order to avoid overwriting the superblock on the drive,
2221 * btrfs starts at an offset of at least 1MB when doing chunk
2222 * allocation.
2223 *
2224 * This ensures we have at least min_stripe_size free space
2225 * after excluding 1MB.
2226 */
2227 if (avail_space <= SZ_1M + min_stripe_size)
2228 continue;
2229
2230 avail_space -= SZ_1M;
2231
2232 devices_info[i].dev = device;
2233 devices_info[i].max_avail = avail_space;
2234
2235 i++;
2236 }
2237 rcu_read_unlock();
2238
2239 nr_devices = i;
2240
2241 btrfs_descending_sort_devices(devices_info, nr_devices);
2242
2243 i = nr_devices - 1;
2244 avail_space = 0;
2245 while (nr_devices >= rattr->devs_min) {
2246 num_stripes = min(num_stripes, nr_devices);
2247
2248 if (devices_info[i].max_avail >= min_stripe_size) {
2249 int j;
2250 u64 alloc_size;
2251
2252 avail_space += devices_info[i].max_avail * num_stripes;
2253 alloc_size = devices_info[i].max_avail;
2254 for (j = i + 1 - num_stripes; j <= i; j++)
2255 devices_info[j].max_avail -= alloc_size;
2256 }
2257 i--;
2258 nr_devices--;
2259 }
2260
2261 kfree(devices_info);
2262 *free_bytes = avail_space;
2263 return 0;
2264 }
2265
2266 /*
2267 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2268 *
2269 * If there's a redundant raid level at DATA block groups, use the respective
2270 * multiplier to scale the sizes.
2271 *
2272 * Unused device space usage is based on simulating the chunk allocator
2273 * algorithm that respects the device sizes and order of allocations. This is
2274 * a close approximation of the actual use but there are other factors that may
2275 * change the result (like a new metadata chunk).
2276 *
2277 * If metadata is exhausted, f_bavail will be 0.
2278 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2279 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2280 {
2281 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2282 struct btrfs_super_block *disk_super = fs_info->super_copy;
2283 struct btrfs_space_info *found;
2284 u64 total_used = 0;
2285 u64 total_free_data = 0;
2286 u64 total_free_meta = 0;
2287 u32 bits = fs_info->sectorsize_bits;
2288 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2289 unsigned factor = 1;
2290 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2291 int ret;
2292 u64 thresh = 0;
2293 int mixed = 0;
2294
2295 list_for_each_entry(found, &fs_info->space_info, list) {
2296 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2297 int i;
2298
2299 total_free_data += found->disk_total - found->disk_used;
2300 total_free_data -=
2301 btrfs_account_ro_block_groups_free_space(found);
2302
2303 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2304 if (!list_empty(&found->block_groups[i]))
2305 factor = btrfs_bg_type_to_factor(
2306 btrfs_raid_array[i].bg_flag);
2307 }
2308 }
2309
2310 /*
2311 * Metadata in mixed block goup profiles are accounted in data
2312 */
2313 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2314 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2315 mixed = 1;
2316 else
2317 total_free_meta += found->disk_total -
2318 found->disk_used;
2319 }
2320
2321 total_used += found->disk_used;
2322 }
2323
2324 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2325 buf->f_blocks >>= bits;
2326 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2327
2328 /* Account global block reserve as used, it's in logical size already */
2329 spin_lock(&block_rsv->lock);
2330 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2331 if (buf->f_bfree >= block_rsv->size >> bits)
2332 buf->f_bfree -= block_rsv->size >> bits;
2333 else
2334 buf->f_bfree = 0;
2335 spin_unlock(&block_rsv->lock);
2336
2337 buf->f_bavail = div_u64(total_free_data, factor);
2338 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2339 if (ret)
2340 return ret;
2341 buf->f_bavail += div_u64(total_free_data, factor);
2342 buf->f_bavail = buf->f_bavail >> bits;
2343
2344 /*
2345 * We calculate the remaining metadata space minus global reserve. If
2346 * this is (supposedly) smaller than zero, there's no space. But this
2347 * does not hold in practice, the exhausted state happens where's still
2348 * some positive delta. So we apply some guesswork and compare the
2349 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2350 *
2351 * We probably cannot calculate the exact threshold value because this
2352 * depends on the internal reservations requested by various
2353 * operations, so some operations that consume a few metadata will
2354 * succeed even if the Avail is zero. But this is better than the other
2355 * way around.
2356 */
2357 thresh = SZ_4M;
2358
2359 /*
2360 * We only want to claim there's no available space if we can no longer
2361 * allocate chunks for our metadata profile and our global reserve will
2362 * not fit in the free metadata space. If we aren't ->full then we
2363 * still can allocate chunks and thus are fine using the currently
2364 * calculated f_bavail.
2365 */
2366 if (!mixed && block_rsv->space_info->full &&
2367 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2368 buf->f_bavail = 0;
2369
2370 buf->f_type = BTRFS_SUPER_MAGIC;
2371 buf->f_bsize = dentry->d_sb->s_blocksize;
2372 buf->f_namelen = BTRFS_NAME_LEN;
2373
2374 /* We treat it as constant endianness (it doesn't matter _which_)
2375 because we want the fsid to come out the same whether mounted
2376 on a big-endian or little-endian host */
2377 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2378 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2379 /* Mask in the root object ID too, to disambiguate subvols */
2380 buf->f_fsid.val[0] ^=
2381 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2382 buf->f_fsid.val[1] ^=
2383 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2384
2385 return 0;
2386 }
2387
btrfs_kill_super(struct super_block * sb)2388 static void btrfs_kill_super(struct super_block *sb)
2389 {
2390 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2391 kill_anon_super(sb);
2392 btrfs_free_fs_info(fs_info);
2393 }
2394
2395 static struct file_system_type btrfs_fs_type = {
2396 .owner = THIS_MODULE,
2397 .name = "btrfs",
2398 .mount = btrfs_mount,
2399 .kill_sb = btrfs_kill_super,
2400 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2401 };
2402
2403 static struct file_system_type btrfs_root_fs_type = {
2404 .owner = THIS_MODULE,
2405 .name = "btrfs",
2406 .mount = btrfs_mount_root,
2407 .kill_sb = btrfs_kill_super,
2408 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2409 };
2410
2411 MODULE_ALIAS_FS("btrfs");
2412
btrfs_control_open(struct inode * inode,struct file * file)2413 static int btrfs_control_open(struct inode *inode, struct file *file)
2414 {
2415 /*
2416 * The control file's private_data is used to hold the
2417 * transaction when it is started and is used to keep
2418 * track of whether a transaction is already in progress.
2419 */
2420 file->private_data = NULL;
2421 return 0;
2422 }
2423
2424 /*
2425 * Used by /dev/btrfs-control for devices ioctls.
2426 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2427 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2428 unsigned long arg)
2429 {
2430 struct btrfs_ioctl_vol_args *vol;
2431 struct btrfs_device *device = NULL;
2432 int ret = -ENOTTY;
2433
2434 if (!capable(CAP_SYS_ADMIN))
2435 return -EPERM;
2436
2437 vol = memdup_user((void __user *)arg, sizeof(*vol));
2438 if (IS_ERR(vol))
2439 return PTR_ERR(vol);
2440 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2441
2442 switch (cmd) {
2443 case BTRFS_IOC_SCAN_DEV:
2444 mutex_lock(&uuid_mutex);
2445 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2446 &btrfs_root_fs_type);
2447 ret = PTR_ERR_OR_ZERO(device);
2448 mutex_unlock(&uuid_mutex);
2449 break;
2450 case BTRFS_IOC_FORGET_DEV:
2451 ret = btrfs_forget_devices(vol->name);
2452 break;
2453 case BTRFS_IOC_DEVICES_READY:
2454 mutex_lock(&uuid_mutex);
2455 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2456 &btrfs_root_fs_type);
2457 if (IS_ERR(device)) {
2458 mutex_unlock(&uuid_mutex);
2459 ret = PTR_ERR(device);
2460 break;
2461 }
2462 ret = !(device->fs_devices->num_devices ==
2463 device->fs_devices->total_devices);
2464 mutex_unlock(&uuid_mutex);
2465 break;
2466 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2467 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2468 break;
2469 }
2470
2471 kfree(vol);
2472 return ret;
2473 }
2474
btrfs_freeze(struct super_block * sb)2475 static int btrfs_freeze(struct super_block *sb)
2476 {
2477 struct btrfs_trans_handle *trans;
2478 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2479 struct btrfs_root *root = fs_info->tree_root;
2480
2481 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2482 /*
2483 * We don't need a barrier here, we'll wait for any transaction that
2484 * could be in progress on other threads (and do delayed iputs that
2485 * we want to avoid on a frozen filesystem), or do the commit
2486 * ourselves.
2487 */
2488 trans = btrfs_attach_transaction_barrier(root);
2489 if (IS_ERR(trans)) {
2490 /* no transaction, don't bother */
2491 if (PTR_ERR(trans) == -ENOENT)
2492 return 0;
2493 return PTR_ERR(trans);
2494 }
2495 return btrfs_commit_transaction(trans);
2496 }
2497
check_dev_super(struct btrfs_device * dev)2498 static int check_dev_super(struct btrfs_device *dev)
2499 {
2500 struct btrfs_fs_info *fs_info = dev->fs_info;
2501 struct btrfs_super_block *sb;
2502 u16 csum_type;
2503 int ret = 0;
2504
2505 /* This should be called with fs still frozen. */
2506 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2507
2508 /* Missing dev, no need to check. */
2509 if (!dev->bdev)
2510 return 0;
2511
2512 /* Only need to check the primary super block. */
2513 sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2514 if (IS_ERR(sb))
2515 return PTR_ERR(sb);
2516
2517 /* Verify the checksum. */
2518 csum_type = btrfs_super_csum_type(sb);
2519 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2520 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2521 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2522 ret = -EUCLEAN;
2523 goto out;
2524 }
2525
2526 if (btrfs_check_super_csum(fs_info, sb)) {
2527 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2528 ret = -EUCLEAN;
2529 goto out;
2530 }
2531
2532 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2533 ret = btrfs_validate_super(fs_info, sb, 0);
2534 if (ret < 0)
2535 goto out;
2536
2537 if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2538 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2539 btrfs_super_generation(sb),
2540 fs_info->last_trans_committed);
2541 ret = -EUCLEAN;
2542 goto out;
2543 }
2544 out:
2545 btrfs_release_disk_super(sb);
2546 return ret;
2547 }
2548
btrfs_unfreeze(struct super_block * sb)2549 static int btrfs_unfreeze(struct super_block *sb)
2550 {
2551 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2552 struct btrfs_device *device;
2553 int ret = 0;
2554
2555 /*
2556 * Make sure the fs is not changed by accident (like hibernation then
2557 * modified by other OS).
2558 * If we found anything wrong, we mark the fs error immediately.
2559 *
2560 * And since the fs is frozen, no one can modify the fs yet, thus
2561 * we don't need to hold device_list_mutex.
2562 */
2563 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2564 ret = check_dev_super(device);
2565 if (ret < 0) {
2566 btrfs_handle_fs_error(fs_info, ret,
2567 "super block on devid %llu got modified unexpectedly",
2568 device->devid);
2569 break;
2570 }
2571 }
2572 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2573
2574 /*
2575 * We still return 0, to allow VFS layer to unfreeze the fs even the
2576 * above checks failed. Since the fs is either fine or read-only, we're
2577 * safe to continue, without causing further damage.
2578 */
2579 return 0;
2580 }
2581
btrfs_show_devname(struct seq_file * m,struct dentry * root)2582 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2583 {
2584 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2585
2586 /*
2587 * There should be always a valid pointer in latest_dev, it may be stale
2588 * for a short moment in case it's being deleted but still valid until
2589 * the end of RCU grace period.
2590 */
2591 rcu_read_lock();
2592 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2593 rcu_read_unlock();
2594
2595 return 0;
2596 }
2597
2598 static const struct super_operations btrfs_super_ops = {
2599 .drop_inode = btrfs_drop_inode,
2600 .evict_inode = btrfs_evict_inode,
2601 .put_super = btrfs_put_super,
2602 .sync_fs = btrfs_sync_fs,
2603 .show_options = btrfs_show_options,
2604 .show_devname = btrfs_show_devname,
2605 .alloc_inode = btrfs_alloc_inode,
2606 .destroy_inode = btrfs_destroy_inode,
2607 .free_inode = btrfs_free_inode,
2608 .statfs = btrfs_statfs,
2609 .remount_fs = btrfs_remount,
2610 .freeze_fs = btrfs_freeze,
2611 .unfreeze_fs = btrfs_unfreeze,
2612 };
2613
2614 static const struct file_operations btrfs_ctl_fops = {
2615 .open = btrfs_control_open,
2616 .unlocked_ioctl = btrfs_control_ioctl,
2617 .compat_ioctl = compat_ptr_ioctl,
2618 .owner = THIS_MODULE,
2619 .llseek = noop_llseek,
2620 };
2621
2622 static struct miscdevice btrfs_misc = {
2623 .minor = BTRFS_MINOR,
2624 .name = "btrfs-control",
2625 .fops = &btrfs_ctl_fops
2626 };
2627
2628 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2629 MODULE_ALIAS("devname:btrfs-control");
2630
btrfs_interface_init(void)2631 static int __init btrfs_interface_init(void)
2632 {
2633 return misc_register(&btrfs_misc);
2634 }
2635
btrfs_interface_exit(void)2636 static __cold void btrfs_interface_exit(void)
2637 {
2638 misc_deregister(&btrfs_misc);
2639 }
2640
btrfs_print_mod_info(void)2641 static void __init btrfs_print_mod_info(void)
2642 {
2643 static const char options[] = ""
2644 #ifdef CONFIG_BTRFS_DEBUG
2645 ", debug=on"
2646 #endif
2647 #ifdef CONFIG_BTRFS_ASSERT
2648 ", assert=on"
2649 #endif
2650 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2651 ", integrity-checker=on"
2652 #endif
2653 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2654 ", ref-verify=on"
2655 #endif
2656 #ifdef CONFIG_BLK_DEV_ZONED
2657 ", zoned=yes"
2658 #else
2659 ", zoned=no"
2660 #endif
2661 #ifdef CONFIG_FS_VERITY
2662 ", fsverity=yes"
2663 #else
2664 ", fsverity=no"
2665 #endif
2666 ;
2667 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2668 }
2669
init_btrfs_fs(void)2670 static int __init init_btrfs_fs(void)
2671 {
2672 int err;
2673
2674 btrfs_props_init();
2675
2676 err = btrfs_init_sysfs();
2677 if (err)
2678 return err;
2679
2680 btrfs_init_compress();
2681
2682 err = btrfs_init_cachep();
2683 if (err)
2684 goto free_compress;
2685
2686 err = extent_io_init();
2687 if (err)
2688 goto free_cachep;
2689
2690 err = extent_state_cache_init();
2691 if (err)
2692 goto free_extent_io;
2693
2694 err = extent_map_init();
2695 if (err)
2696 goto free_extent_state_cache;
2697
2698 err = ordered_data_init();
2699 if (err)
2700 goto free_extent_map;
2701
2702 err = btrfs_delayed_inode_init();
2703 if (err)
2704 goto free_ordered_data;
2705
2706 err = btrfs_auto_defrag_init();
2707 if (err)
2708 goto free_delayed_inode;
2709
2710 err = btrfs_delayed_ref_init();
2711 if (err)
2712 goto free_auto_defrag;
2713
2714 err = btrfs_prelim_ref_init();
2715 if (err)
2716 goto free_delayed_ref;
2717
2718 err = btrfs_end_io_wq_init();
2719 if (err)
2720 goto free_prelim_ref;
2721
2722 err = btrfs_interface_init();
2723 if (err)
2724 goto free_end_io_wq;
2725
2726 btrfs_print_mod_info();
2727
2728 err = btrfs_run_sanity_tests();
2729 if (err)
2730 goto unregister_ioctl;
2731
2732 err = register_filesystem(&btrfs_fs_type);
2733 if (err)
2734 goto unregister_ioctl;
2735
2736 return 0;
2737
2738 unregister_ioctl:
2739 btrfs_interface_exit();
2740 free_end_io_wq:
2741 btrfs_end_io_wq_exit();
2742 free_prelim_ref:
2743 btrfs_prelim_ref_exit();
2744 free_delayed_ref:
2745 btrfs_delayed_ref_exit();
2746 free_auto_defrag:
2747 btrfs_auto_defrag_exit();
2748 free_delayed_inode:
2749 btrfs_delayed_inode_exit();
2750 free_ordered_data:
2751 ordered_data_exit();
2752 free_extent_map:
2753 extent_map_exit();
2754 free_extent_state_cache:
2755 extent_state_cache_exit();
2756 free_extent_io:
2757 extent_io_exit();
2758 free_cachep:
2759 btrfs_destroy_cachep();
2760 free_compress:
2761 btrfs_exit_compress();
2762 btrfs_exit_sysfs();
2763
2764 return err;
2765 }
2766
exit_btrfs_fs(void)2767 static void __exit exit_btrfs_fs(void)
2768 {
2769 btrfs_destroy_cachep();
2770 btrfs_delayed_ref_exit();
2771 btrfs_auto_defrag_exit();
2772 btrfs_delayed_inode_exit();
2773 btrfs_prelim_ref_exit();
2774 ordered_data_exit();
2775 extent_map_exit();
2776 extent_state_cache_exit();
2777 extent_io_exit();
2778 btrfs_interface_exit();
2779 btrfs_end_io_wq_exit();
2780 unregister_filesystem(&btrfs_fs_type);
2781 btrfs_exit_sysfs();
2782 btrfs_cleanup_fs_uuids();
2783 btrfs_exit_compress();
2784 }
2785
2786 late_initcall(init_btrfs_fs);
2787 module_exit(exit_btrfs_fs)
2788
2789 MODULE_LICENSE("GPL");
2790 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
2791 MODULE_SOFTDEP("pre: crc32c");
2792 MODULE_SOFTDEP("pre: xxhash64");
2793 MODULE_SOFTDEP("pre: sha256");
2794 MODULE_SOFTDEP("pre: blake2b-256");
2795