• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 /*
71  * Generally the error codes correspond to their respective errors, but there
72  * are a few special cases.
73  *
74  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75  *          instance will return EUCLEAN if any of the blocks are corrupted in
76  *          a way that is problematic.  We want to reserve EUCLEAN for these
77  *          sort of corruptions.
78  *
79  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80  *        need to use EROFS for this case.  We will have no idea of the
81  *        original failure, that will have been reported at the time we tripped
82  *        over the error.  Each subsequent error that doesn't have any context
83  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84  */
btrfs_decode_error(int errno)85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 	char *errstr = "unknown";
88 
89 	switch (errno) {
90 	case -ENOENT:		/* -2 */
91 		errstr = "No such entry";
92 		break;
93 	case -EIO:		/* -5 */
94 		errstr = "IO failure";
95 		break;
96 	case -ENOMEM:		/* -12*/
97 		errstr = "Out of memory";
98 		break;
99 	case -EEXIST:		/* -17 */
100 		errstr = "Object already exists";
101 		break;
102 	case -ENOSPC:		/* -28 */
103 		errstr = "No space left";
104 		break;
105 	case -EROFS:		/* -30 */
106 		errstr = "Readonly filesystem";
107 		break;
108 	case -EOPNOTSUPP:	/* -95 */
109 		errstr = "Operation not supported";
110 		break;
111 	case -EUCLEAN:		/* -117 */
112 		errstr = "Filesystem corrupted";
113 		break;
114 	case -EDQUOT:		/* -122 */
115 		errstr = "Quota exceeded";
116 		break;
117 	}
118 
119 	return errstr;
120 }
121 
122 /*
123  * __btrfs_handle_fs_error decodes expected errors from the caller and
124  * invokes the appropriate error response.
125  */
126 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 		       unsigned int line, int errno, const char *fmt, ...)
129 {
130 	struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 	const char *errstr;
133 #endif
134 
135 	/*
136 	 * Special case: if the error is EROFS, and we're already
137 	 * under SB_RDONLY, then it is safe here.
138 	 */
139 	if (errno == -EROFS && sb_rdonly(sb))
140   		return;
141 
142 #ifdef CONFIG_PRINTK
143 	errstr = btrfs_decode_error(errno);
144 	if (fmt) {
145 		struct va_format vaf;
146 		va_list args;
147 
148 		va_start(args, fmt);
149 		vaf.fmt = fmt;
150 		vaf.va = &args;
151 
152 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 			sb->s_id, function, line, errno, errstr, &vaf);
154 		va_end(args);
155 	} else {
156 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 			sb->s_id, function, line, errno, errstr);
158 	}
159 #endif
160 
161 	/*
162 	 * Today we only save the error info to memory.  Long term we'll
163 	 * also send it down to the disk
164 	 */
165 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166 
167 	/* Don't go through full error handling during mount */
168 	if (!(sb->s_flags & SB_BORN))
169 		return;
170 
171 	if (sb_rdonly(sb))
172 		return;
173 
174 	btrfs_discard_stop(fs_info);
175 
176 	/* btrfs handle error by forcing the filesystem readonly */
177 	btrfs_set_sb_rdonly(sb);
178 	btrfs_info(fs_info, "forced readonly");
179 	/*
180 	 * Note that a running device replace operation is not canceled here
181 	 * although there is no way to update the progress. It would add the
182 	 * risk of a deadlock, therefore the canceling is omitted. The only
183 	 * penalty is that some I/O remains active until the procedure
184 	 * completes. The next time when the filesystem is mounted writable
185 	 * again, the device replace operation continues.
186 	 */
187 }
188 
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 	"emergency",
192 	"alert",
193 	"critical",
194 	"error",
195 	"warning",
196 	"notice",
197 	"info",
198 	"debug",
199 };
200 
201 
202 /*
203  * Use one ratelimit state per log level so that a flood of less important
204  * messages doesn't cause more important ones to be dropped.
205  */
206 static struct ratelimit_state printk_limits[] = {
207 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216 
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 	struct va_format vaf;
221 	va_list args;
222 	int kern_level;
223 	const char *type = logtypes[4];
224 	struct ratelimit_state *ratelimit = &printk_limits[4];
225 
226 	va_start(args, fmt);
227 
228 	while ((kern_level = printk_get_level(fmt)) != 0) {
229 		size_t size = printk_skip_level(fmt) - fmt;
230 
231 		if (kern_level >= '0' && kern_level <= '7') {
232 			memcpy(lvl, fmt,  size);
233 			lvl[size] = '\0';
234 			type = logtypes[kern_level - '0'];
235 			ratelimit = &printk_limits[kern_level - '0'];
236 		}
237 		fmt += size;
238 	}
239 
240 	vaf.fmt = fmt;
241 	vaf.va = &args;
242 
243 	if (__ratelimit(ratelimit)) {
244 		if (fs_info)
245 			printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
246 				fs_info->sb->s_id, &vaf);
247 		else
248 			printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
249 	}
250 
251 	va_end(args);
252 }
253 #endif
254 
255 #if BITS_PER_LONG == 32
btrfs_warn_32bit_limit(struct btrfs_fs_info * fs_info)256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
257 {
258 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
259 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
260 		btrfs_warn(fs_info,
261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
262 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
263 		btrfs_warn(fs_info,
264 			   "please consider upgrading to 64bit kernel/hardware");
265 	}
266 }
267 
btrfs_err_32bit_limit(struct btrfs_fs_info * fs_info)268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
269 {
270 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
271 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
272 		btrfs_err(fs_info,
273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
274 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
275 		btrfs_err(fs_info,
276 			   "please consider upgrading to 64bit kernel/hardware");
277 	}
278 }
279 #endif
280 
281 /*
282  * We only mark the transaction aborted and then set the file system read-only.
283  * This will prevent new transactions from starting or trying to join this
284  * one.
285  *
286  * This means that error recovery at the call site is limited to freeing
287  * any local memory allocations and passing the error code up without
288  * further cleanup. The transaction should complete as it normally would
289  * in the call path but will return -EIO.
290  *
291  * We'll complete the cleanup in btrfs_end_transaction and
292  * btrfs_commit_transaction.
293  */
294 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
296 			       const char *function,
297 			       unsigned int line, int errno)
298 {
299 	struct btrfs_fs_info *fs_info = trans->fs_info;
300 
301 	WRITE_ONCE(trans->aborted, errno);
302 	WRITE_ONCE(trans->transaction->aborted, errno);
303 	/* Wake up anybody who may be waiting on this transaction */
304 	wake_up(&fs_info->transaction_wait);
305 	wake_up(&fs_info->transaction_blocked_wait);
306 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
307 }
308 /*
309  * __btrfs_panic decodes unexpected, fatal errors from the caller,
310  * issues an alert, and either panics or BUGs, depending on mount options.
311  */
312 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)313 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
314 		   unsigned int line, int errno, const char *fmt, ...)
315 {
316 	char *s_id = "<unknown>";
317 	const char *errstr;
318 	struct va_format vaf = { .fmt = fmt };
319 	va_list args;
320 
321 	if (fs_info)
322 		s_id = fs_info->sb->s_id;
323 
324 	va_start(args, fmt);
325 	vaf.va = &args;
326 
327 	errstr = btrfs_decode_error(errno);
328 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
329 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
330 			s_id, function, line, &vaf, errno, errstr);
331 
332 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
333 		   function, line, &vaf, errno, errstr);
334 	va_end(args);
335 	/* Caller calls BUG() */
336 }
337 
btrfs_put_super(struct super_block * sb)338 static void btrfs_put_super(struct super_block *sb)
339 {
340 	close_ctree(btrfs_sb(sb));
341 }
342 
343 enum {
344 	Opt_acl, Opt_noacl,
345 	Opt_clear_cache,
346 	Opt_commit_interval,
347 	Opt_compress,
348 	Opt_compress_force,
349 	Opt_compress_force_type,
350 	Opt_compress_type,
351 	Opt_degraded,
352 	Opt_device,
353 	Opt_fatal_errors,
354 	Opt_flushoncommit, Opt_noflushoncommit,
355 	Opt_max_inline,
356 	Opt_barrier, Opt_nobarrier,
357 	Opt_datacow, Opt_nodatacow,
358 	Opt_datasum, Opt_nodatasum,
359 	Opt_defrag, Opt_nodefrag,
360 	Opt_discard, Opt_nodiscard,
361 	Opt_discard_mode,
362 	Opt_norecovery,
363 	Opt_ratio,
364 	Opt_rescan_uuid_tree,
365 	Opt_skip_balance,
366 	Opt_space_cache, Opt_no_space_cache,
367 	Opt_space_cache_version,
368 	Opt_ssd, Opt_nossd,
369 	Opt_ssd_spread, Opt_nossd_spread,
370 	Opt_subvol,
371 	Opt_subvol_empty,
372 	Opt_subvolid,
373 	Opt_thread_pool,
374 	Opt_treelog, Opt_notreelog,
375 	Opt_user_subvol_rm_allowed,
376 
377 	/* Rescue options */
378 	Opt_rescue,
379 	Opt_usebackuproot,
380 	Opt_nologreplay,
381 	Opt_ignorebadroots,
382 	Opt_ignoredatacsums,
383 	Opt_rescue_all,
384 
385 	/* Deprecated options */
386 	Opt_recovery,
387 	Opt_inode_cache, Opt_noinode_cache,
388 
389 	/* Debugging options */
390 	Opt_check_integrity,
391 	Opt_check_integrity_including_extent_data,
392 	Opt_check_integrity_print_mask,
393 	Opt_enospc_debug, Opt_noenospc_debug,
394 #ifdef CONFIG_BTRFS_DEBUG
395 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
396 #endif
397 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
398 	Opt_ref_verify,
399 #endif
400 	Opt_err,
401 };
402 
403 static const match_table_t tokens = {
404 	{Opt_acl, "acl"},
405 	{Opt_noacl, "noacl"},
406 	{Opt_clear_cache, "clear_cache"},
407 	{Opt_commit_interval, "commit=%u"},
408 	{Opt_compress, "compress"},
409 	{Opt_compress_type, "compress=%s"},
410 	{Opt_compress_force, "compress-force"},
411 	{Opt_compress_force_type, "compress-force=%s"},
412 	{Opt_degraded, "degraded"},
413 	{Opt_device, "device=%s"},
414 	{Opt_fatal_errors, "fatal_errors=%s"},
415 	{Opt_flushoncommit, "flushoncommit"},
416 	{Opt_noflushoncommit, "noflushoncommit"},
417 	{Opt_inode_cache, "inode_cache"},
418 	{Opt_noinode_cache, "noinode_cache"},
419 	{Opt_max_inline, "max_inline=%s"},
420 	{Opt_barrier, "barrier"},
421 	{Opt_nobarrier, "nobarrier"},
422 	{Opt_datacow, "datacow"},
423 	{Opt_nodatacow, "nodatacow"},
424 	{Opt_datasum, "datasum"},
425 	{Opt_nodatasum, "nodatasum"},
426 	{Opt_defrag, "autodefrag"},
427 	{Opt_nodefrag, "noautodefrag"},
428 	{Opt_discard, "discard"},
429 	{Opt_discard_mode, "discard=%s"},
430 	{Opt_nodiscard, "nodiscard"},
431 	{Opt_norecovery, "norecovery"},
432 	{Opt_ratio, "metadata_ratio=%u"},
433 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
434 	{Opt_skip_balance, "skip_balance"},
435 	{Opt_space_cache, "space_cache"},
436 	{Opt_no_space_cache, "nospace_cache"},
437 	{Opt_space_cache_version, "space_cache=%s"},
438 	{Opt_ssd, "ssd"},
439 	{Opt_nossd, "nossd"},
440 	{Opt_ssd_spread, "ssd_spread"},
441 	{Opt_nossd_spread, "nossd_spread"},
442 	{Opt_subvol, "subvol=%s"},
443 	{Opt_subvol_empty, "subvol="},
444 	{Opt_subvolid, "subvolid=%s"},
445 	{Opt_thread_pool, "thread_pool=%u"},
446 	{Opt_treelog, "treelog"},
447 	{Opt_notreelog, "notreelog"},
448 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
449 
450 	/* Rescue options */
451 	{Opt_rescue, "rescue=%s"},
452 	/* Deprecated, with alias rescue=nologreplay */
453 	{Opt_nologreplay, "nologreplay"},
454 	/* Deprecated, with alias rescue=usebackuproot */
455 	{Opt_usebackuproot, "usebackuproot"},
456 
457 	/* Deprecated options */
458 	{Opt_recovery, "recovery"},
459 
460 	/* Debugging options */
461 	{Opt_check_integrity, "check_int"},
462 	{Opt_check_integrity_including_extent_data, "check_int_data"},
463 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
464 	{Opt_enospc_debug, "enospc_debug"},
465 	{Opt_noenospc_debug, "noenospc_debug"},
466 #ifdef CONFIG_BTRFS_DEBUG
467 	{Opt_fragment_data, "fragment=data"},
468 	{Opt_fragment_metadata, "fragment=metadata"},
469 	{Opt_fragment_all, "fragment=all"},
470 #endif
471 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
472 	{Opt_ref_verify, "ref_verify"},
473 #endif
474 	{Opt_err, NULL},
475 };
476 
477 static const match_table_t rescue_tokens = {
478 	{Opt_usebackuproot, "usebackuproot"},
479 	{Opt_nologreplay, "nologreplay"},
480 	{Opt_ignorebadroots, "ignorebadroots"},
481 	{Opt_ignorebadroots, "ibadroots"},
482 	{Opt_ignoredatacsums, "ignoredatacsums"},
483 	{Opt_ignoredatacsums, "idatacsums"},
484 	{Opt_rescue_all, "all"},
485 	{Opt_err, NULL},
486 };
487 
check_ro_option(struct btrfs_fs_info * fs_info,unsigned long opt,const char * opt_name)488 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
489 			    const char *opt_name)
490 {
491 	if (fs_info->mount_opt & opt) {
492 		btrfs_err(fs_info, "%s must be used with ro mount option",
493 			  opt_name);
494 		return true;
495 	}
496 	return false;
497 }
498 
parse_rescue_options(struct btrfs_fs_info * info,const char * options)499 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
500 {
501 	char *opts;
502 	char *orig;
503 	char *p;
504 	substring_t args[MAX_OPT_ARGS];
505 	int ret = 0;
506 
507 	opts = kstrdup(options, GFP_KERNEL);
508 	if (!opts)
509 		return -ENOMEM;
510 	orig = opts;
511 
512 	while ((p = strsep(&opts, ":")) != NULL) {
513 		int token;
514 
515 		if (!*p)
516 			continue;
517 		token = match_token(p, rescue_tokens, args);
518 		switch (token){
519 		case Opt_usebackuproot:
520 			btrfs_info(info,
521 				   "trying to use backup root at mount time");
522 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
523 			break;
524 		case Opt_nologreplay:
525 			btrfs_set_and_info(info, NOLOGREPLAY,
526 					   "disabling log replay at mount time");
527 			break;
528 		case Opt_ignorebadroots:
529 			btrfs_set_and_info(info, IGNOREBADROOTS,
530 					   "ignoring bad roots");
531 			break;
532 		case Opt_ignoredatacsums:
533 			btrfs_set_and_info(info, IGNOREDATACSUMS,
534 					   "ignoring data csums");
535 			break;
536 		case Opt_rescue_all:
537 			btrfs_info(info, "enabling all of the rescue options");
538 			btrfs_set_and_info(info, IGNOREDATACSUMS,
539 					   "ignoring data csums");
540 			btrfs_set_and_info(info, IGNOREBADROOTS,
541 					   "ignoring bad roots");
542 			btrfs_set_and_info(info, NOLOGREPLAY,
543 					   "disabling log replay at mount time");
544 			break;
545 		case Opt_err:
546 			btrfs_info(info, "unrecognized rescue option '%s'", p);
547 			ret = -EINVAL;
548 			goto out;
549 		default:
550 			break;
551 		}
552 
553 	}
554 out:
555 	kfree(orig);
556 	return ret;
557 }
558 
559 /*
560  * Regular mount options parser.  Everything that is needed only when
561  * reading in a new superblock is parsed here.
562  * XXX JDM: This needs to be cleaned up for remount.
563  */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)564 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
565 			unsigned long new_flags)
566 {
567 	substring_t args[MAX_OPT_ARGS];
568 	char *p, *num;
569 	int intarg;
570 	int ret = 0;
571 	char *compress_type;
572 	bool compress_force = false;
573 	enum btrfs_compression_type saved_compress_type;
574 	int saved_compress_level;
575 	bool saved_compress_force;
576 	int no_compress = 0;
577 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
578 
579 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
580 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
581 	else if (btrfs_free_space_cache_v1_active(info)) {
582 		if (btrfs_is_zoned(info)) {
583 			btrfs_info(info,
584 			"zoned: clearing existing space cache");
585 			btrfs_set_super_cache_generation(info->super_copy, 0);
586 		} else {
587 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
588 		}
589 	}
590 
591 	/*
592 	 * Even the options are empty, we still need to do extra check
593 	 * against new flags
594 	 */
595 	if (!options)
596 		goto check;
597 
598 	while ((p = strsep(&options, ",")) != NULL) {
599 		int token;
600 		if (!*p)
601 			continue;
602 
603 		token = match_token(p, tokens, args);
604 		switch (token) {
605 		case Opt_degraded:
606 			btrfs_info(info, "allowing degraded mounts");
607 			btrfs_set_opt(info->mount_opt, DEGRADED);
608 			break;
609 		case Opt_subvol:
610 		case Opt_subvol_empty:
611 		case Opt_subvolid:
612 		case Opt_device:
613 			/*
614 			 * These are parsed by btrfs_parse_subvol_options or
615 			 * btrfs_parse_device_options and can be ignored here.
616 			 */
617 			break;
618 		case Opt_nodatasum:
619 			btrfs_set_and_info(info, NODATASUM,
620 					   "setting nodatasum");
621 			break;
622 		case Opt_datasum:
623 			if (btrfs_test_opt(info, NODATASUM)) {
624 				if (btrfs_test_opt(info, NODATACOW))
625 					btrfs_info(info,
626 						   "setting datasum, datacow enabled");
627 				else
628 					btrfs_info(info, "setting datasum");
629 			}
630 			btrfs_clear_opt(info->mount_opt, NODATACOW);
631 			btrfs_clear_opt(info->mount_opt, NODATASUM);
632 			break;
633 		case Opt_nodatacow:
634 			if (!btrfs_test_opt(info, NODATACOW)) {
635 				if (!btrfs_test_opt(info, COMPRESS) ||
636 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
637 					btrfs_info(info,
638 						   "setting nodatacow, compression disabled");
639 				} else {
640 					btrfs_info(info, "setting nodatacow");
641 				}
642 			}
643 			btrfs_clear_opt(info->mount_opt, COMPRESS);
644 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
645 			btrfs_set_opt(info->mount_opt, NODATACOW);
646 			btrfs_set_opt(info->mount_opt, NODATASUM);
647 			break;
648 		case Opt_datacow:
649 			btrfs_clear_and_info(info, NODATACOW,
650 					     "setting datacow");
651 			break;
652 		case Opt_compress_force:
653 		case Opt_compress_force_type:
654 			compress_force = true;
655 			fallthrough;
656 		case Opt_compress:
657 		case Opt_compress_type:
658 			saved_compress_type = btrfs_test_opt(info,
659 							     COMPRESS) ?
660 				info->compress_type : BTRFS_COMPRESS_NONE;
661 			saved_compress_force =
662 				btrfs_test_opt(info, FORCE_COMPRESS);
663 			saved_compress_level = info->compress_level;
664 			if (token == Opt_compress ||
665 			    token == Opt_compress_force ||
666 			    strncmp(args[0].from, "zlib", 4) == 0) {
667 				compress_type = "zlib";
668 
669 				info->compress_type = BTRFS_COMPRESS_ZLIB;
670 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
671 				/*
672 				 * args[0] contains uninitialized data since
673 				 * for these tokens we don't expect any
674 				 * parameter.
675 				 */
676 				if (token != Opt_compress &&
677 				    token != Opt_compress_force)
678 					info->compress_level =
679 					  btrfs_compress_str2level(
680 							BTRFS_COMPRESS_ZLIB,
681 							args[0].from + 4);
682 				btrfs_set_opt(info->mount_opt, COMPRESS);
683 				btrfs_clear_opt(info->mount_opt, NODATACOW);
684 				btrfs_clear_opt(info->mount_opt, NODATASUM);
685 				no_compress = 0;
686 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
687 				compress_type = "lzo";
688 				info->compress_type = BTRFS_COMPRESS_LZO;
689 				info->compress_level = 0;
690 				btrfs_set_opt(info->mount_opt, COMPRESS);
691 				btrfs_clear_opt(info->mount_opt, NODATACOW);
692 				btrfs_clear_opt(info->mount_opt, NODATASUM);
693 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
694 				no_compress = 0;
695 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
696 				compress_type = "zstd";
697 				info->compress_type = BTRFS_COMPRESS_ZSTD;
698 				info->compress_level =
699 					btrfs_compress_str2level(
700 							 BTRFS_COMPRESS_ZSTD,
701 							 args[0].from + 4);
702 				btrfs_set_opt(info->mount_opt, COMPRESS);
703 				btrfs_clear_opt(info->mount_opt, NODATACOW);
704 				btrfs_clear_opt(info->mount_opt, NODATASUM);
705 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
706 				no_compress = 0;
707 			} else if (strncmp(args[0].from, "no", 2) == 0) {
708 				compress_type = "no";
709 				info->compress_level = 0;
710 				info->compress_type = 0;
711 				btrfs_clear_opt(info->mount_opt, COMPRESS);
712 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
713 				compress_force = false;
714 				no_compress++;
715 			} else {
716 				btrfs_err(info, "unrecognized compression value %s",
717 					  args[0].from);
718 				ret = -EINVAL;
719 				goto out;
720 			}
721 
722 			if (compress_force) {
723 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
724 			} else {
725 				/*
726 				 * If we remount from compress-force=xxx to
727 				 * compress=xxx, we need clear FORCE_COMPRESS
728 				 * flag, otherwise, there is no way for users
729 				 * to disable forcible compression separately.
730 				 */
731 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
732 			}
733 			if (no_compress == 1) {
734 				btrfs_info(info, "use no compression");
735 			} else if ((info->compress_type != saved_compress_type) ||
736 				   (compress_force != saved_compress_force) ||
737 				   (info->compress_level != saved_compress_level)) {
738 				btrfs_info(info, "%s %s compression, level %d",
739 					   (compress_force) ? "force" : "use",
740 					   compress_type, info->compress_level);
741 			}
742 			compress_force = false;
743 			break;
744 		case Opt_ssd:
745 			btrfs_set_and_info(info, SSD,
746 					   "enabling ssd optimizations");
747 			btrfs_clear_opt(info->mount_opt, NOSSD);
748 			break;
749 		case Opt_ssd_spread:
750 			btrfs_set_and_info(info, SSD,
751 					   "enabling ssd optimizations");
752 			btrfs_set_and_info(info, SSD_SPREAD,
753 					   "using spread ssd allocation scheme");
754 			btrfs_clear_opt(info->mount_opt, NOSSD);
755 			break;
756 		case Opt_nossd:
757 			btrfs_set_opt(info->mount_opt, NOSSD);
758 			btrfs_clear_and_info(info, SSD,
759 					     "not using ssd optimizations");
760 			fallthrough;
761 		case Opt_nossd_spread:
762 			btrfs_clear_and_info(info, SSD_SPREAD,
763 					     "not using spread ssd allocation scheme");
764 			break;
765 		case Opt_barrier:
766 			btrfs_clear_and_info(info, NOBARRIER,
767 					     "turning on barriers");
768 			break;
769 		case Opt_nobarrier:
770 			btrfs_set_and_info(info, NOBARRIER,
771 					   "turning off barriers");
772 			break;
773 		case Opt_thread_pool:
774 			ret = match_int(&args[0], &intarg);
775 			if (ret) {
776 				btrfs_err(info, "unrecognized thread_pool value %s",
777 					  args[0].from);
778 				goto out;
779 			} else if (intarg == 0) {
780 				btrfs_err(info, "invalid value 0 for thread_pool");
781 				ret = -EINVAL;
782 				goto out;
783 			}
784 			info->thread_pool_size = intarg;
785 			break;
786 		case Opt_max_inline:
787 			num = match_strdup(&args[0]);
788 			if (num) {
789 				info->max_inline = memparse(num, NULL);
790 				kfree(num);
791 
792 				if (info->max_inline) {
793 					info->max_inline = min_t(u64,
794 						info->max_inline,
795 						info->sectorsize);
796 				}
797 				btrfs_info(info, "max_inline at %llu",
798 					   info->max_inline);
799 			} else {
800 				ret = -ENOMEM;
801 				goto out;
802 			}
803 			break;
804 		case Opt_acl:
805 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
806 			info->sb->s_flags |= SB_POSIXACL;
807 			break;
808 #else
809 			btrfs_err(info, "support for ACL not compiled in!");
810 			ret = -EINVAL;
811 			goto out;
812 #endif
813 		case Opt_noacl:
814 			info->sb->s_flags &= ~SB_POSIXACL;
815 			break;
816 		case Opt_notreelog:
817 			btrfs_set_and_info(info, NOTREELOG,
818 					   "disabling tree log");
819 			break;
820 		case Opt_treelog:
821 			btrfs_clear_and_info(info, NOTREELOG,
822 					     "enabling tree log");
823 			break;
824 		case Opt_norecovery:
825 		case Opt_nologreplay:
826 			btrfs_warn(info,
827 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
828 			btrfs_set_and_info(info, NOLOGREPLAY,
829 					   "disabling log replay at mount time");
830 			break;
831 		case Opt_flushoncommit:
832 			btrfs_set_and_info(info, FLUSHONCOMMIT,
833 					   "turning on flush-on-commit");
834 			break;
835 		case Opt_noflushoncommit:
836 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
837 					     "turning off flush-on-commit");
838 			break;
839 		case Opt_ratio:
840 			ret = match_int(&args[0], &intarg);
841 			if (ret) {
842 				btrfs_err(info, "unrecognized metadata_ratio value %s",
843 					  args[0].from);
844 				goto out;
845 			}
846 			info->metadata_ratio = intarg;
847 			btrfs_info(info, "metadata ratio %u",
848 				   info->metadata_ratio);
849 			break;
850 		case Opt_discard:
851 		case Opt_discard_mode:
852 			if (token == Opt_discard ||
853 			    strcmp(args[0].from, "sync") == 0) {
854 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
855 				btrfs_set_and_info(info, DISCARD_SYNC,
856 						   "turning on sync discard");
857 			} else if (strcmp(args[0].from, "async") == 0) {
858 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
859 				btrfs_set_and_info(info, DISCARD_ASYNC,
860 						   "turning on async discard");
861 			} else {
862 				btrfs_err(info, "unrecognized discard mode value %s",
863 					  args[0].from);
864 				ret = -EINVAL;
865 				goto out;
866 			}
867 			break;
868 		case Opt_nodiscard:
869 			btrfs_clear_and_info(info, DISCARD_SYNC,
870 					     "turning off discard");
871 			btrfs_clear_and_info(info, DISCARD_ASYNC,
872 					     "turning off async discard");
873 			break;
874 		case Opt_space_cache:
875 		case Opt_space_cache_version:
876 			if (token == Opt_space_cache ||
877 			    strcmp(args[0].from, "v1") == 0) {
878 				btrfs_clear_opt(info->mount_opt,
879 						FREE_SPACE_TREE);
880 				btrfs_set_and_info(info, SPACE_CACHE,
881 					   "enabling disk space caching");
882 			} else if (strcmp(args[0].from, "v2") == 0) {
883 				btrfs_clear_opt(info->mount_opt,
884 						SPACE_CACHE);
885 				btrfs_set_and_info(info, FREE_SPACE_TREE,
886 						   "enabling free space tree");
887 			} else {
888 				btrfs_err(info, "unrecognized space_cache value %s",
889 					  args[0].from);
890 				ret = -EINVAL;
891 				goto out;
892 			}
893 			break;
894 		case Opt_rescan_uuid_tree:
895 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
896 			break;
897 		case Opt_no_space_cache:
898 			if (btrfs_test_opt(info, SPACE_CACHE)) {
899 				btrfs_clear_and_info(info, SPACE_CACHE,
900 					     "disabling disk space caching");
901 			}
902 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
903 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
904 					     "disabling free space tree");
905 			}
906 			break;
907 		case Opt_inode_cache:
908 		case Opt_noinode_cache:
909 			btrfs_warn(info,
910 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
911 			break;
912 		case Opt_clear_cache:
913 			btrfs_set_and_info(info, CLEAR_CACHE,
914 					   "force clearing of disk cache");
915 			break;
916 		case Opt_user_subvol_rm_allowed:
917 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
918 			break;
919 		case Opt_enospc_debug:
920 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
921 			break;
922 		case Opt_noenospc_debug:
923 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
924 			break;
925 		case Opt_defrag:
926 			btrfs_set_and_info(info, AUTO_DEFRAG,
927 					   "enabling auto defrag");
928 			break;
929 		case Opt_nodefrag:
930 			btrfs_clear_and_info(info, AUTO_DEFRAG,
931 					     "disabling auto defrag");
932 			break;
933 		case Opt_recovery:
934 		case Opt_usebackuproot:
935 			btrfs_warn(info,
936 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
937 				   token == Opt_recovery ? "recovery" :
938 				   "usebackuproot");
939 			btrfs_info(info,
940 				   "trying to use backup root at mount time");
941 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
942 			break;
943 		case Opt_skip_balance:
944 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
945 			break;
946 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
947 		case Opt_check_integrity_including_extent_data:
948 			btrfs_info(info,
949 				   "enabling check integrity including extent data");
950 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
951 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
952 			break;
953 		case Opt_check_integrity:
954 			btrfs_info(info, "enabling check integrity");
955 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
956 			break;
957 		case Opt_check_integrity_print_mask:
958 			ret = match_int(&args[0], &intarg);
959 			if (ret) {
960 				btrfs_err(info,
961 				"unrecognized check_integrity_print_mask value %s",
962 					args[0].from);
963 				goto out;
964 			}
965 			info->check_integrity_print_mask = intarg;
966 			btrfs_info(info, "check_integrity_print_mask 0x%x",
967 				   info->check_integrity_print_mask);
968 			break;
969 #else
970 		case Opt_check_integrity_including_extent_data:
971 		case Opt_check_integrity:
972 		case Opt_check_integrity_print_mask:
973 			btrfs_err(info,
974 				  "support for check_integrity* not compiled in!");
975 			ret = -EINVAL;
976 			goto out;
977 #endif
978 		case Opt_fatal_errors:
979 			if (strcmp(args[0].from, "panic") == 0) {
980 				btrfs_set_opt(info->mount_opt,
981 					      PANIC_ON_FATAL_ERROR);
982 			} else if (strcmp(args[0].from, "bug") == 0) {
983 				btrfs_clear_opt(info->mount_opt,
984 					      PANIC_ON_FATAL_ERROR);
985 			} else {
986 				btrfs_err(info, "unrecognized fatal_errors value %s",
987 					  args[0].from);
988 				ret = -EINVAL;
989 				goto out;
990 			}
991 			break;
992 		case Opt_commit_interval:
993 			intarg = 0;
994 			ret = match_int(&args[0], &intarg);
995 			if (ret) {
996 				btrfs_err(info, "unrecognized commit_interval value %s",
997 					  args[0].from);
998 				ret = -EINVAL;
999 				goto out;
1000 			}
1001 			if (intarg == 0) {
1002 				btrfs_info(info,
1003 					   "using default commit interval %us",
1004 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
1005 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
1006 			} else if (intarg > 300) {
1007 				btrfs_warn(info, "excessive commit interval %d",
1008 					   intarg);
1009 			}
1010 			info->commit_interval = intarg;
1011 			break;
1012 		case Opt_rescue:
1013 			ret = parse_rescue_options(info, args[0].from);
1014 			if (ret < 0) {
1015 				btrfs_err(info, "unrecognized rescue value %s",
1016 					  args[0].from);
1017 				goto out;
1018 			}
1019 			break;
1020 #ifdef CONFIG_BTRFS_DEBUG
1021 		case Opt_fragment_all:
1022 			btrfs_info(info, "fragmenting all space");
1023 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1024 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1025 			break;
1026 		case Opt_fragment_metadata:
1027 			btrfs_info(info, "fragmenting metadata");
1028 			btrfs_set_opt(info->mount_opt,
1029 				      FRAGMENT_METADATA);
1030 			break;
1031 		case Opt_fragment_data:
1032 			btrfs_info(info, "fragmenting data");
1033 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1034 			break;
1035 #endif
1036 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1037 		case Opt_ref_verify:
1038 			btrfs_info(info, "doing ref verification");
1039 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
1040 			break;
1041 #endif
1042 		case Opt_err:
1043 			btrfs_err(info, "unrecognized mount option '%s'", p);
1044 			ret = -EINVAL;
1045 			goto out;
1046 		default:
1047 			break;
1048 		}
1049 	}
1050 check:
1051 	/* We're read-only, don't have to check. */
1052 	if (new_flags & SB_RDONLY)
1053 		goto out;
1054 
1055 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1056 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1057 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1058 		ret = -EINVAL;
1059 out:
1060 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1061 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1062 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
1063 		btrfs_err(info, "cannot disable free space tree");
1064 		ret = -EINVAL;
1065 
1066 	}
1067 	if (!ret)
1068 		ret = btrfs_check_mountopts_zoned(info);
1069 	if (!ret && !remounting) {
1070 		if (btrfs_test_opt(info, SPACE_CACHE))
1071 			btrfs_info(info, "disk space caching is enabled");
1072 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
1073 			btrfs_info(info, "using free space tree");
1074 	}
1075 	return ret;
1076 }
1077 
1078 /*
1079  * Parse mount options that are required early in the mount process.
1080  *
1081  * All other options will be parsed on much later in the mount process and
1082  * only when we need to allocate a new super block.
1083  */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)1084 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1085 				      void *holder)
1086 {
1087 	substring_t args[MAX_OPT_ARGS];
1088 	char *device_name, *opts, *orig, *p;
1089 	struct btrfs_device *device = NULL;
1090 	int error = 0;
1091 
1092 	lockdep_assert_held(&uuid_mutex);
1093 
1094 	if (!options)
1095 		return 0;
1096 
1097 	/*
1098 	 * strsep changes the string, duplicate it because btrfs_parse_options
1099 	 * gets called later
1100 	 */
1101 	opts = kstrdup(options, GFP_KERNEL);
1102 	if (!opts)
1103 		return -ENOMEM;
1104 	orig = opts;
1105 
1106 	while ((p = strsep(&opts, ",")) != NULL) {
1107 		int token;
1108 
1109 		if (!*p)
1110 			continue;
1111 
1112 		token = match_token(p, tokens, args);
1113 		if (token == Opt_device) {
1114 			device_name = match_strdup(&args[0]);
1115 			if (!device_name) {
1116 				error = -ENOMEM;
1117 				goto out;
1118 			}
1119 			device = btrfs_scan_one_device(device_name, flags,
1120 					holder);
1121 			kfree(device_name);
1122 			if (IS_ERR(device)) {
1123 				error = PTR_ERR(device);
1124 				goto out;
1125 			}
1126 		}
1127 	}
1128 
1129 out:
1130 	kfree(orig);
1131 	return error;
1132 }
1133 
1134 /*
1135  * Parse mount options that are related to subvolume id
1136  *
1137  * The value is later passed to mount_subvol()
1138  */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)1139 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1140 		u64 *subvol_objectid)
1141 {
1142 	substring_t args[MAX_OPT_ARGS];
1143 	char *opts, *orig, *p;
1144 	int error = 0;
1145 	u64 subvolid;
1146 
1147 	if (!options)
1148 		return 0;
1149 
1150 	/*
1151 	 * strsep changes the string, duplicate it because
1152 	 * btrfs_parse_device_options gets called later
1153 	 */
1154 	opts = kstrdup(options, GFP_KERNEL);
1155 	if (!opts)
1156 		return -ENOMEM;
1157 	orig = opts;
1158 
1159 	while ((p = strsep(&opts, ",")) != NULL) {
1160 		int token;
1161 		if (!*p)
1162 			continue;
1163 
1164 		token = match_token(p, tokens, args);
1165 		switch (token) {
1166 		case Opt_subvol:
1167 			kfree(*subvol_name);
1168 			*subvol_name = match_strdup(&args[0]);
1169 			if (!*subvol_name) {
1170 				error = -ENOMEM;
1171 				goto out;
1172 			}
1173 			break;
1174 		case Opt_subvolid:
1175 			error = match_u64(&args[0], &subvolid);
1176 			if (error)
1177 				goto out;
1178 
1179 			/* we want the original fs_tree */
1180 			if (subvolid == 0)
1181 				subvolid = BTRFS_FS_TREE_OBJECTID;
1182 
1183 			*subvol_objectid = subvolid;
1184 			break;
1185 		default:
1186 			break;
1187 		}
1188 	}
1189 
1190 out:
1191 	kfree(orig);
1192 	return error;
1193 }
1194 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)1195 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1196 					  u64 subvol_objectid)
1197 {
1198 	struct btrfs_root *root = fs_info->tree_root;
1199 	struct btrfs_root *fs_root = NULL;
1200 	struct btrfs_root_ref *root_ref;
1201 	struct btrfs_inode_ref *inode_ref;
1202 	struct btrfs_key key;
1203 	struct btrfs_path *path = NULL;
1204 	char *name = NULL, *ptr;
1205 	u64 dirid;
1206 	int len;
1207 	int ret;
1208 
1209 	path = btrfs_alloc_path();
1210 	if (!path) {
1211 		ret = -ENOMEM;
1212 		goto err;
1213 	}
1214 
1215 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1216 	if (!name) {
1217 		ret = -ENOMEM;
1218 		goto err;
1219 	}
1220 	ptr = name + PATH_MAX - 1;
1221 	ptr[0] = '\0';
1222 
1223 	/*
1224 	 * Walk up the subvolume trees in the tree of tree roots by root
1225 	 * backrefs until we hit the top-level subvolume.
1226 	 */
1227 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1228 		key.objectid = subvol_objectid;
1229 		key.type = BTRFS_ROOT_BACKREF_KEY;
1230 		key.offset = (u64)-1;
1231 
1232 		ret = btrfs_search_backwards(root, &key, path);
1233 		if (ret < 0) {
1234 			goto err;
1235 		} else if (ret > 0) {
1236 			ret = -ENOENT;
1237 			goto err;
1238 		}
1239 
1240 		subvol_objectid = key.offset;
1241 
1242 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1243 					  struct btrfs_root_ref);
1244 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1245 		ptr -= len + 1;
1246 		if (ptr < name) {
1247 			ret = -ENAMETOOLONG;
1248 			goto err;
1249 		}
1250 		read_extent_buffer(path->nodes[0], ptr + 1,
1251 				   (unsigned long)(root_ref + 1), len);
1252 		ptr[0] = '/';
1253 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1254 		btrfs_release_path(path);
1255 
1256 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1257 		if (IS_ERR(fs_root)) {
1258 			ret = PTR_ERR(fs_root);
1259 			fs_root = NULL;
1260 			goto err;
1261 		}
1262 
1263 		/*
1264 		 * Walk up the filesystem tree by inode refs until we hit the
1265 		 * root directory.
1266 		 */
1267 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1268 			key.objectid = dirid;
1269 			key.type = BTRFS_INODE_REF_KEY;
1270 			key.offset = (u64)-1;
1271 
1272 			ret = btrfs_search_backwards(fs_root, &key, path);
1273 			if (ret < 0) {
1274 				goto err;
1275 			} else if (ret > 0) {
1276 				ret = -ENOENT;
1277 				goto err;
1278 			}
1279 
1280 			dirid = key.offset;
1281 
1282 			inode_ref = btrfs_item_ptr(path->nodes[0],
1283 						   path->slots[0],
1284 						   struct btrfs_inode_ref);
1285 			len = btrfs_inode_ref_name_len(path->nodes[0],
1286 						       inode_ref);
1287 			ptr -= len + 1;
1288 			if (ptr < name) {
1289 				ret = -ENAMETOOLONG;
1290 				goto err;
1291 			}
1292 			read_extent_buffer(path->nodes[0], ptr + 1,
1293 					   (unsigned long)(inode_ref + 1), len);
1294 			ptr[0] = '/';
1295 			btrfs_release_path(path);
1296 		}
1297 		btrfs_put_root(fs_root);
1298 		fs_root = NULL;
1299 	}
1300 
1301 	btrfs_free_path(path);
1302 	if (ptr == name + PATH_MAX - 1) {
1303 		name[0] = '/';
1304 		name[1] = '\0';
1305 	} else {
1306 		memmove(name, ptr, name + PATH_MAX - ptr);
1307 	}
1308 	return name;
1309 
1310 err:
1311 	btrfs_put_root(fs_root);
1312 	btrfs_free_path(path);
1313 	kfree(name);
1314 	return ERR_PTR(ret);
1315 }
1316 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1317 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1318 {
1319 	struct btrfs_root *root = fs_info->tree_root;
1320 	struct btrfs_dir_item *di;
1321 	struct btrfs_path *path;
1322 	struct btrfs_key location;
1323 	u64 dir_id;
1324 
1325 	path = btrfs_alloc_path();
1326 	if (!path)
1327 		return -ENOMEM;
1328 
1329 	/*
1330 	 * Find the "default" dir item which points to the root item that we
1331 	 * will mount by default if we haven't been given a specific subvolume
1332 	 * to mount.
1333 	 */
1334 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1335 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1336 	if (IS_ERR(di)) {
1337 		btrfs_free_path(path);
1338 		return PTR_ERR(di);
1339 	}
1340 	if (!di) {
1341 		/*
1342 		 * Ok the default dir item isn't there.  This is weird since
1343 		 * it's always been there, but don't freak out, just try and
1344 		 * mount the top-level subvolume.
1345 		 */
1346 		btrfs_free_path(path);
1347 		*objectid = BTRFS_FS_TREE_OBJECTID;
1348 		return 0;
1349 	}
1350 
1351 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1352 	btrfs_free_path(path);
1353 	*objectid = location.objectid;
1354 	return 0;
1355 }
1356 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1357 static int btrfs_fill_super(struct super_block *sb,
1358 			    struct btrfs_fs_devices *fs_devices,
1359 			    void *data)
1360 {
1361 	struct inode *inode;
1362 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1363 	int err;
1364 
1365 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1366 	sb->s_magic = BTRFS_SUPER_MAGIC;
1367 	sb->s_op = &btrfs_super_ops;
1368 	sb->s_d_op = &btrfs_dentry_operations;
1369 	sb->s_export_op = &btrfs_export_ops;
1370 #ifdef CONFIG_FS_VERITY
1371 	sb->s_vop = &btrfs_verityops;
1372 #endif
1373 	sb->s_xattr = btrfs_xattr_handlers;
1374 	sb->s_time_gran = 1;
1375 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1376 	sb->s_flags |= SB_POSIXACL;
1377 #endif
1378 	sb->s_flags |= SB_I_VERSION;
1379 	sb->s_iflags |= SB_I_CGROUPWB;
1380 
1381 	err = super_setup_bdi(sb);
1382 	if (err) {
1383 		btrfs_err(fs_info, "super_setup_bdi failed");
1384 		return err;
1385 	}
1386 
1387 	err = open_ctree(sb, fs_devices, (char *)data);
1388 	if (err) {
1389 		btrfs_err(fs_info, "open_ctree failed");
1390 		return err;
1391 	}
1392 
1393 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1394 	if (IS_ERR(inode)) {
1395 		err = PTR_ERR(inode);
1396 		goto fail_close;
1397 	}
1398 
1399 	sb->s_root = d_make_root(inode);
1400 	if (!sb->s_root) {
1401 		err = -ENOMEM;
1402 		goto fail_close;
1403 	}
1404 
1405 	cleancache_init_fs(sb);
1406 	sb->s_flags |= SB_ACTIVE;
1407 	return 0;
1408 
1409 fail_close:
1410 	close_ctree(fs_info);
1411 	return err;
1412 }
1413 
btrfs_sync_fs(struct super_block * sb,int wait)1414 int btrfs_sync_fs(struct super_block *sb, int wait)
1415 {
1416 	struct btrfs_trans_handle *trans;
1417 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1418 	struct btrfs_root *root = fs_info->tree_root;
1419 
1420 	trace_btrfs_sync_fs(fs_info, wait);
1421 
1422 	if (!wait) {
1423 		filemap_flush(fs_info->btree_inode->i_mapping);
1424 		return 0;
1425 	}
1426 
1427 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1428 
1429 	trans = btrfs_attach_transaction_barrier(root);
1430 	if (IS_ERR(trans)) {
1431 		/* no transaction, don't bother */
1432 		if (PTR_ERR(trans) == -ENOENT) {
1433 			/*
1434 			 * Exit unless we have some pending changes
1435 			 * that need to go through commit
1436 			 */
1437 			if (fs_info->pending_changes == 0)
1438 				return 0;
1439 			/*
1440 			 * A non-blocking test if the fs is frozen. We must not
1441 			 * start a new transaction here otherwise a deadlock
1442 			 * happens. The pending operations are delayed to the
1443 			 * next commit after thawing.
1444 			 */
1445 			if (sb_start_write_trylock(sb))
1446 				sb_end_write(sb);
1447 			else
1448 				return 0;
1449 			trans = btrfs_start_transaction(root, 0);
1450 		}
1451 		if (IS_ERR(trans))
1452 			return PTR_ERR(trans);
1453 	}
1454 	return btrfs_commit_transaction(trans);
1455 }
1456 
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1457 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1458 {
1459 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1460 	*printed = true;
1461 }
1462 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1463 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1464 {
1465 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1466 	const char *compress_type;
1467 	const char *subvol_name;
1468 	bool printed = false;
1469 
1470 	if (btrfs_test_opt(info, DEGRADED))
1471 		seq_puts(seq, ",degraded");
1472 	if (btrfs_test_opt(info, NODATASUM))
1473 		seq_puts(seq, ",nodatasum");
1474 	if (btrfs_test_opt(info, NODATACOW))
1475 		seq_puts(seq, ",nodatacow");
1476 	if (btrfs_test_opt(info, NOBARRIER))
1477 		seq_puts(seq, ",nobarrier");
1478 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1479 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1480 	if (info->thread_pool_size !=  min_t(unsigned long,
1481 					     num_online_cpus() + 2, 8))
1482 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1483 	if (btrfs_test_opt(info, COMPRESS)) {
1484 		compress_type = btrfs_compress_type2str(info->compress_type);
1485 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1486 			seq_printf(seq, ",compress-force=%s", compress_type);
1487 		else
1488 			seq_printf(seq, ",compress=%s", compress_type);
1489 		if (info->compress_level)
1490 			seq_printf(seq, ":%d", info->compress_level);
1491 	}
1492 	if (btrfs_test_opt(info, NOSSD))
1493 		seq_puts(seq, ",nossd");
1494 	if (btrfs_test_opt(info, SSD_SPREAD))
1495 		seq_puts(seq, ",ssd_spread");
1496 	else if (btrfs_test_opt(info, SSD))
1497 		seq_puts(seq, ",ssd");
1498 	if (btrfs_test_opt(info, NOTREELOG))
1499 		seq_puts(seq, ",notreelog");
1500 	if (btrfs_test_opt(info, NOLOGREPLAY))
1501 		print_rescue_option(seq, "nologreplay", &printed);
1502 	if (btrfs_test_opt(info, USEBACKUPROOT))
1503 		print_rescue_option(seq, "usebackuproot", &printed);
1504 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1505 		print_rescue_option(seq, "ignorebadroots", &printed);
1506 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1507 		print_rescue_option(seq, "ignoredatacsums", &printed);
1508 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1509 		seq_puts(seq, ",flushoncommit");
1510 	if (btrfs_test_opt(info, DISCARD_SYNC))
1511 		seq_puts(seq, ",discard");
1512 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1513 		seq_puts(seq, ",discard=async");
1514 	if (!(info->sb->s_flags & SB_POSIXACL))
1515 		seq_puts(seq, ",noacl");
1516 	if (btrfs_free_space_cache_v1_active(info))
1517 		seq_puts(seq, ",space_cache");
1518 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1519 		seq_puts(seq, ",space_cache=v2");
1520 	else
1521 		seq_puts(seq, ",nospace_cache");
1522 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1523 		seq_puts(seq, ",rescan_uuid_tree");
1524 	if (btrfs_test_opt(info, CLEAR_CACHE))
1525 		seq_puts(seq, ",clear_cache");
1526 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1527 		seq_puts(seq, ",user_subvol_rm_allowed");
1528 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1529 		seq_puts(seq, ",enospc_debug");
1530 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1531 		seq_puts(seq, ",autodefrag");
1532 	if (btrfs_test_opt(info, SKIP_BALANCE))
1533 		seq_puts(seq, ",skip_balance");
1534 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1535 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1536 		seq_puts(seq, ",check_int_data");
1537 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1538 		seq_puts(seq, ",check_int");
1539 	if (info->check_integrity_print_mask)
1540 		seq_printf(seq, ",check_int_print_mask=%d",
1541 				info->check_integrity_print_mask);
1542 #endif
1543 	if (info->metadata_ratio)
1544 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1545 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1546 		seq_puts(seq, ",fatal_errors=panic");
1547 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1548 		seq_printf(seq, ",commit=%u", info->commit_interval);
1549 #ifdef CONFIG_BTRFS_DEBUG
1550 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1551 		seq_puts(seq, ",fragment=data");
1552 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1553 		seq_puts(seq, ",fragment=metadata");
1554 #endif
1555 	if (btrfs_test_opt(info, REF_VERIFY))
1556 		seq_puts(seq, ",ref_verify");
1557 	seq_printf(seq, ",subvolid=%llu",
1558 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1559 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1560 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1561 	if (!IS_ERR(subvol_name)) {
1562 		seq_puts(seq, ",subvol=");
1563 		seq_escape(seq, subvol_name, " \t\n\\");
1564 		kfree(subvol_name);
1565 	}
1566 	return 0;
1567 }
1568 
btrfs_test_super(struct super_block * s,void * data)1569 static int btrfs_test_super(struct super_block *s, void *data)
1570 {
1571 	struct btrfs_fs_info *p = data;
1572 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1573 
1574 	return fs_info->fs_devices == p->fs_devices;
1575 }
1576 
btrfs_set_super(struct super_block * s,void * data)1577 static int btrfs_set_super(struct super_block *s, void *data)
1578 {
1579 	int err = set_anon_super(s, data);
1580 	if (!err)
1581 		s->s_fs_info = data;
1582 	return err;
1583 }
1584 
1585 /*
1586  * subvolumes are identified by ino 256
1587  */
is_subvolume_inode(struct inode * inode)1588 static inline int is_subvolume_inode(struct inode *inode)
1589 {
1590 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1591 		return 1;
1592 	return 0;
1593 }
1594 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1595 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1596 				   struct vfsmount *mnt)
1597 {
1598 	struct dentry *root;
1599 	int ret;
1600 
1601 	if (!subvol_name) {
1602 		if (!subvol_objectid) {
1603 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1604 							  &subvol_objectid);
1605 			if (ret) {
1606 				root = ERR_PTR(ret);
1607 				goto out;
1608 			}
1609 		}
1610 		subvol_name = btrfs_get_subvol_name_from_objectid(
1611 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1612 		if (IS_ERR(subvol_name)) {
1613 			root = ERR_CAST(subvol_name);
1614 			subvol_name = NULL;
1615 			goto out;
1616 		}
1617 
1618 	}
1619 
1620 	root = mount_subtree(mnt, subvol_name);
1621 	/* mount_subtree() drops our reference on the vfsmount. */
1622 	mnt = NULL;
1623 
1624 	if (!IS_ERR(root)) {
1625 		struct super_block *s = root->d_sb;
1626 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1627 		struct inode *root_inode = d_inode(root);
1628 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1629 
1630 		ret = 0;
1631 		if (!is_subvolume_inode(root_inode)) {
1632 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1633 			       subvol_name);
1634 			ret = -EINVAL;
1635 		}
1636 		if (subvol_objectid && root_objectid != subvol_objectid) {
1637 			/*
1638 			 * This will also catch a race condition where a
1639 			 * subvolume which was passed by ID is renamed and
1640 			 * another subvolume is renamed over the old location.
1641 			 */
1642 			btrfs_err(fs_info,
1643 				  "subvol '%s' does not match subvolid %llu",
1644 				  subvol_name, subvol_objectid);
1645 			ret = -EINVAL;
1646 		}
1647 		if (ret) {
1648 			dput(root);
1649 			root = ERR_PTR(ret);
1650 			deactivate_locked_super(s);
1651 		}
1652 	}
1653 
1654 out:
1655 	mntput(mnt);
1656 	kfree(subvol_name);
1657 	return root;
1658 }
1659 
1660 /*
1661  * Find a superblock for the given device / mount point.
1662  *
1663  * Note: This is based on mount_bdev from fs/super.c with a few additions
1664  *       for multiple device setup.  Make sure to keep it in sync.
1665  */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1666 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1667 		int flags, const char *device_name, void *data)
1668 {
1669 	struct block_device *bdev = NULL;
1670 	struct super_block *s;
1671 	struct btrfs_device *device = NULL;
1672 	struct btrfs_fs_devices *fs_devices = NULL;
1673 	struct btrfs_fs_info *fs_info = NULL;
1674 	void *new_sec_opts = NULL;
1675 	fmode_t mode = FMODE_READ;
1676 	int error = 0;
1677 
1678 	if (!(flags & SB_RDONLY))
1679 		mode |= FMODE_WRITE;
1680 
1681 	if (data) {
1682 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1683 		if (error)
1684 			return ERR_PTR(error);
1685 	}
1686 
1687 	/*
1688 	 * Setup a dummy root and fs_info for test/set super.  This is because
1689 	 * we don't actually fill this stuff out until open_ctree, but we need
1690 	 * then open_ctree will properly initialize the file system specific
1691 	 * settings later.  btrfs_init_fs_info initializes the static elements
1692 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1693 	 * superblock with our given fs_devices later on at sget() time.
1694 	 */
1695 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1696 	if (!fs_info) {
1697 		error = -ENOMEM;
1698 		goto error_sec_opts;
1699 	}
1700 	btrfs_init_fs_info(fs_info);
1701 
1702 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1703 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1704 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1705 		error = -ENOMEM;
1706 		goto error_fs_info;
1707 	}
1708 
1709 	mutex_lock(&uuid_mutex);
1710 	error = btrfs_parse_device_options(data, mode, fs_type);
1711 	if (error) {
1712 		mutex_unlock(&uuid_mutex);
1713 		goto error_fs_info;
1714 	}
1715 
1716 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1717 	if (IS_ERR(device)) {
1718 		mutex_unlock(&uuid_mutex);
1719 		error = PTR_ERR(device);
1720 		goto error_fs_info;
1721 	}
1722 
1723 	fs_devices = device->fs_devices;
1724 	fs_info->fs_devices = fs_devices;
1725 
1726 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1727 	mutex_unlock(&uuid_mutex);
1728 	if (error)
1729 		goto error_fs_info;
1730 
1731 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1732 		error = -EACCES;
1733 		goto error_close_devices;
1734 	}
1735 
1736 	bdev = fs_devices->latest_dev->bdev;
1737 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1738 		 fs_info);
1739 	if (IS_ERR(s)) {
1740 		error = PTR_ERR(s);
1741 		goto error_close_devices;
1742 	}
1743 
1744 	if (s->s_root) {
1745 		btrfs_close_devices(fs_devices);
1746 		btrfs_free_fs_info(fs_info);
1747 		if ((flags ^ s->s_flags) & SB_RDONLY)
1748 			error = -EBUSY;
1749 	} else {
1750 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1751 		btrfs_sb(s)->bdev_holder = fs_type;
1752 		error = btrfs_fill_super(s, fs_devices, data);
1753 	}
1754 	if (!error)
1755 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1756 	security_free_mnt_opts(&new_sec_opts);
1757 	if (error) {
1758 		deactivate_locked_super(s);
1759 		return ERR_PTR(error);
1760 	}
1761 
1762 	return dget(s->s_root);
1763 
1764 error_close_devices:
1765 	btrfs_close_devices(fs_devices);
1766 error_fs_info:
1767 	btrfs_free_fs_info(fs_info);
1768 error_sec_opts:
1769 	security_free_mnt_opts(&new_sec_opts);
1770 	return ERR_PTR(error);
1771 }
1772 
1773 /*
1774  * Mount function which is called by VFS layer.
1775  *
1776  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1777  * which needs vfsmount* of device's root (/).  This means device's root has to
1778  * be mounted internally in any case.
1779  *
1780  * Operation flow:
1781  *   1. Parse subvol id related options for later use in mount_subvol().
1782  *
1783  *   2. Mount device's root (/) by calling vfs_kern_mount().
1784  *
1785  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1786  *      first place. In order to avoid calling btrfs_mount() again, we use
1787  *      different file_system_type which is not registered to VFS by
1788  *      register_filesystem() (btrfs_root_fs_type). As a result,
1789  *      btrfs_mount_root() is called. The return value will be used by
1790  *      mount_subtree() in mount_subvol().
1791  *
1792  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1793  *      "btrfs subvolume set-default", mount_subvol() is called always.
1794  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1795 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1796 		const char *device_name, void *data)
1797 {
1798 	struct vfsmount *mnt_root;
1799 	struct dentry *root;
1800 	char *subvol_name = NULL;
1801 	u64 subvol_objectid = 0;
1802 	int error = 0;
1803 
1804 	error = btrfs_parse_subvol_options(data, &subvol_name,
1805 					&subvol_objectid);
1806 	if (error) {
1807 		kfree(subvol_name);
1808 		return ERR_PTR(error);
1809 	}
1810 
1811 	/* mount device's root (/) */
1812 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1813 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1814 		if (flags & SB_RDONLY) {
1815 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1816 				flags & ~SB_RDONLY, device_name, data);
1817 		} else {
1818 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1819 				flags | SB_RDONLY, device_name, data);
1820 			if (IS_ERR(mnt_root)) {
1821 				root = ERR_CAST(mnt_root);
1822 				kfree(subvol_name);
1823 				goto out;
1824 			}
1825 
1826 			down_write(&mnt_root->mnt_sb->s_umount);
1827 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1828 			up_write(&mnt_root->mnt_sb->s_umount);
1829 			if (error < 0) {
1830 				root = ERR_PTR(error);
1831 				mntput(mnt_root);
1832 				kfree(subvol_name);
1833 				goto out;
1834 			}
1835 		}
1836 	}
1837 	if (IS_ERR(mnt_root)) {
1838 		root = ERR_CAST(mnt_root);
1839 		kfree(subvol_name);
1840 		goto out;
1841 	}
1842 
1843 	/* mount_subvol() will free subvol_name and mnt_root */
1844 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1845 
1846 out:
1847 	return root;
1848 }
1849 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1850 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1851 				     u32 new_pool_size, u32 old_pool_size)
1852 {
1853 	if (new_pool_size == old_pool_size)
1854 		return;
1855 
1856 	fs_info->thread_pool_size = new_pool_size;
1857 
1858 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1859 	       old_pool_size, new_pool_size);
1860 
1861 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1862 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1863 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1864 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1865 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1866 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1867 				new_pool_size);
1868 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1869 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1870 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1871 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1872 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1873 				new_pool_size);
1874 }
1875 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1876 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1877 				       unsigned long old_opts, int flags)
1878 {
1879 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1880 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1881 	     (flags & SB_RDONLY))) {
1882 		/* wait for any defraggers to finish */
1883 		wait_event(fs_info->transaction_wait,
1884 			   (atomic_read(&fs_info->defrag_running) == 0));
1885 		if (flags & SB_RDONLY)
1886 			sync_filesystem(fs_info->sb);
1887 	}
1888 }
1889 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1890 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1891 					 unsigned long old_opts)
1892 {
1893 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1894 
1895 	/*
1896 	 * We need to cleanup all defragable inodes if the autodefragment is
1897 	 * close or the filesystem is read only.
1898 	 */
1899 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1900 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1901 		btrfs_cleanup_defrag_inodes(fs_info);
1902 	}
1903 
1904 	/* If we toggled discard async */
1905 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1906 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1907 		btrfs_discard_resume(fs_info);
1908 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1909 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1910 		btrfs_discard_cleanup(fs_info);
1911 
1912 	/* If we toggled space cache */
1913 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1914 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1915 }
1916 
btrfs_remount(struct super_block * sb,int * flags,char * data)1917 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1918 {
1919 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1920 	unsigned old_flags = sb->s_flags;
1921 	unsigned long old_opts = fs_info->mount_opt;
1922 	unsigned long old_compress_type = fs_info->compress_type;
1923 	u64 old_max_inline = fs_info->max_inline;
1924 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1925 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1926 	int ret;
1927 
1928 	sync_filesystem(sb);
1929 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1930 
1931 	if (data) {
1932 		void *new_sec_opts = NULL;
1933 
1934 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1935 		if (!ret)
1936 			ret = security_sb_remount(sb, new_sec_opts);
1937 		security_free_mnt_opts(&new_sec_opts);
1938 		if (ret)
1939 			goto restore;
1940 	}
1941 
1942 	ret = btrfs_parse_options(fs_info, data, *flags);
1943 	if (ret)
1944 		goto restore;
1945 
1946 	/* V1 cache is not supported for subpage mount. */
1947 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
1948 		btrfs_warn(fs_info,
1949 	"v1 space cache is not supported for page size %lu with sectorsize %u",
1950 			   PAGE_SIZE, fs_info->sectorsize);
1951 		ret = -EINVAL;
1952 		goto restore;
1953 	}
1954 	btrfs_remount_begin(fs_info, old_opts, *flags);
1955 	btrfs_resize_thread_pool(fs_info,
1956 		fs_info->thread_pool_size, old_thread_pool_size);
1957 
1958 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1959 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1960 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1961 		btrfs_warn(fs_info,
1962 		"remount supports changing free space tree only from ro to rw");
1963 		/* Make sure free space cache options match the state on disk */
1964 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1965 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1966 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1967 		}
1968 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1969 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1970 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1971 		}
1972 	}
1973 
1974 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1975 		goto out;
1976 
1977 	if (*flags & SB_RDONLY) {
1978 		/*
1979 		 * this also happens on 'umount -rf' or on shutdown, when
1980 		 * the filesystem is busy.
1981 		 */
1982 		cancel_work_sync(&fs_info->async_reclaim_work);
1983 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1984 
1985 		btrfs_discard_cleanup(fs_info);
1986 
1987 		/* wait for the uuid_scan task to finish */
1988 		down(&fs_info->uuid_tree_rescan_sem);
1989 		/* avoid complains from lockdep et al. */
1990 		up(&fs_info->uuid_tree_rescan_sem);
1991 
1992 		btrfs_set_sb_rdonly(sb);
1993 
1994 		/*
1995 		 * Setting SB_RDONLY will put the cleaner thread to
1996 		 * sleep at the next loop if it's already active.
1997 		 * If it's already asleep, we'll leave unused block
1998 		 * groups on disk until we're mounted read-write again
1999 		 * unless we clean them up here.
2000 		 */
2001 		btrfs_delete_unused_bgs(fs_info);
2002 
2003 		/*
2004 		 * The cleaner task could be already running before we set the
2005 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
2006 		 * We must make sure that after we finish the remount, i.e. after
2007 		 * we call btrfs_commit_super(), the cleaner can no longer start
2008 		 * a transaction - either because it was dropping a dead root,
2009 		 * running delayed iputs or deleting an unused block group (the
2010 		 * cleaner picked a block group from the list of unused block
2011 		 * groups before we were able to in the previous call to
2012 		 * btrfs_delete_unused_bgs()).
2013 		 */
2014 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2015 			    TASK_UNINTERRUPTIBLE);
2016 
2017 		/*
2018 		 * We've set the superblock to RO mode, so we might have made
2019 		 * the cleaner task sleep without running all pending delayed
2020 		 * iputs. Go through all the delayed iputs here, so that if an
2021 		 * unmount happens without remounting RW we don't end up at
2022 		 * finishing close_ctree() with a non-empty list of delayed
2023 		 * iputs.
2024 		 */
2025 		btrfs_run_delayed_iputs(fs_info);
2026 
2027 		btrfs_dev_replace_suspend_for_unmount(fs_info);
2028 		btrfs_scrub_cancel(fs_info);
2029 		btrfs_pause_balance(fs_info);
2030 
2031 		/*
2032 		 * Pause the qgroup rescan worker if it is running. We don't want
2033 		 * it to be still running after we are in RO mode, as after that,
2034 		 * by the time we unmount, it might have left a transaction open,
2035 		 * so we would leak the transaction and/or crash.
2036 		 */
2037 		btrfs_qgroup_wait_for_completion(fs_info, false);
2038 
2039 		ret = btrfs_commit_super(fs_info);
2040 		if (ret)
2041 			goto restore;
2042 	} else {
2043 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2044 			btrfs_err(fs_info,
2045 				"Remounting read-write after error is not allowed");
2046 			ret = -EINVAL;
2047 			goto restore;
2048 		}
2049 		if (btrfs_super_compat_ro_flags(fs_info->super_copy) &
2050 		    ~BTRFS_FEATURE_COMPAT_RO_SUPP) {
2051 			btrfs_err(fs_info,
2052 		"can not remount read-write due to unsupported optional flags 0x%llx",
2053 				btrfs_super_compat_ro_flags(fs_info->super_copy) &
2054 				~BTRFS_FEATURE_COMPAT_RO_SUPP);
2055 			ret = -EINVAL;
2056 			goto restore;
2057 		}
2058 		if (fs_info->fs_devices->rw_devices == 0) {
2059 			ret = -EACCES;
2060 			goto restore;
2061 		}
2062 
2063 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2064 			btrfs_warn(fs_info,
2065 		"too many missing devices, writable remount is not allowed");
2066 			ret = -EACCES;
2067 			goto restore;
2068 		}
2069 
2070 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2071 			btrfs_warn(fs_info,
2072 		"mount required to replay tree-log, cannot remount read-write");
2073 			ret = -EINVAL;
2074 			goto restore;
2075 		}
2076 
2077 		/*
2078 		 * NOTE: when remounting with a change that does writes, don't
2079 		 * put it anywhere above this point, as we are not sure to be
2080 		 * safe to write until we pass the above checks.
2081 		 */
2082 		ret = btrfs_start_pre_rw_mount(fs_info);
2083 		if (ret)
2084 			goto restore;
2085 
2086 		btrfs_clear_sb_rdonly(sb);
2087 
2088 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2089 	}
2090 out:
2091 	/*
2092 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2093 	 * since the absence of the flag means it can be toggled off by remount.
2094 	 */
2095 	*flags |= SB_I_VERSION;
2096 
2097 	wake_up_process(fs_info->transaction_kthread);
2098 	btrfs_remount_cleanup(fs_info, old_opts);
2099 	btrfs_clear_oneshot_options(fs_info);
2100 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2101 
2102 	return 0;
2103 
2104 restore:
2105 	/* We've hit an error - don't reset SB_RDONLY */
2106 	if (sb_rdonly(sb))
2107 		old_flags |= SB_RDONLY;
2108 	if (!(old_flags & SB_RDONLY))
2109 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2110 	sb->s_flags = old_flags;
2111 	fs_info->mount_opt = old_opts;
2112 	fs_info->compress_type = old_compress_type;
2113 	fs_info->max_inline = old_max_inline;
2114 	btrfs_resize_thread_pool(fs_info,
2115 		old_thread_pool_size, fs_info->thread_pool_size);
2116 	fs_info->metadata_ratio = old_metadata_ratio;
2117 	btrfs_remount_cleanup(fs_info, old_opts);
2118 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2119 
2120 	return ret;
2121 }
2122 
2123 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)2124 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2125 {
2126 	const struct btrfs_device_info *dev_info1 = a;
2127 	const struct btrfs_device_info *dev_info2 = b;
2128 
2129 	if (dev_info1->max_avail > dev_info2->max_avail)
2130 		return -1;
2131 	else if (dev_info1->max_avail < dev_info2->max_avail)
2132 		return 1;
2133 	return 0;
2134 }
2135 
2136 /*
2137  * sort the devices by max_avail, in which max free extent size of each device
2138  * is stored.(Descending Sort)
2139  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)2140 static inline void btrfs_descending_sort_devices(
2141 					struct btrfs_device_info *devices,
2142 					size_t nr_devices)
2143 {
2144 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2145 	     btrfs_cmp_device_free_bytes, NULL);
2146 }
2147 
2148 /*
2149  * The helper to calc the free space on the devices that can be used to store
2150  * file data.
2151  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)2152 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2153 					      u64 *free_bytes)
2154 {
2155 	struct btrfs_device_info *devices_info;
2156 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2157 	struct btrfs_device *device;
2158 	u64 type;
2159 	u64 avail_space;
2160 	u64 min_stripe_size;
2161 	int num_stripes = 1;
2162 	int i = 0, nr_devices;
2163 	const struct btrfs_raid_attr *rattr;
2164 
2165 	/*
2166 	 * We aren't under the device list lock, so this is racy-ish, but good
2167 	 * enough for our purposes.
2168 	 */
2169 	nr_devices = fs_info->fs_devices->open_devices;
2170 	if (!nr_devices) {
2171 		smp_mb();
2172 		nr_devices = fs_info->fs_devices->open_devices;
2173 		ASSERT(nr_devices);
2174 		if (!nr_devices) {
2175 			*free_bytes = 0;
2176 			return 0;
2177 		}
2178 	}
2179 
2180 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2181 			       GFP_KERNEL);
2182 	if (!devices_info)
2183 		return -ENOMEM;
2184 
2185 	/* calc min stripe number for data space allocation */
2186 	type = btrfs_data_alloc_profile(fs_info);
2187 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2188 
2189 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2190 		num_stripes = nr_devices;
2191 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2192 		num_stripes = 2;
2193 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2194 		num_stripes = 3;
2195 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2196 		num_stripes = 4;
2197 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2198 		num_stripes = 4;
2199 
2200 	/* Adjust for more than 1 stripe per device */
2201 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2202 
2203 	rcu_read_lock();
2204 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2205 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2206 						&device->dev_state) ||
2207 		    !device->bdev ||
2208 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2209 			continue;
2210 
2211 		if (i >= nr_devices)
2212 			break;
2213 
2214 		avail_space = device->total_bytes - device->bytes_used;
2215 
2216 		/* align with stripe_len */
2217 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2218 
2219 		/*
2220 		 * In order to avoid overwriting the superblock on the drive,
2221 		 * btrfs starts at an offset of at least 1MB when doing chunk
2222 		 * allocation.
2223 		 *
2224 		 * This ensures we have at least min_stripe_size free space
2225 		 * after excluding 1MB.
2226 		 */
2227 		if (avail_space <= SZ_1M + min_stripe_size)
2228 			continue;
2229 
2230 		avail_space -= SZ_1M;
2231 
2232 		devices_info[i].dev = device;
2233 		devices_info[i].max_avail = avail_space;
2234 
2235 		i++;
2236 	}
2237 	rcu_read_unlock();
2238 
2239 	nr_devices = i;
2240 
2241 	btrfs_descending_sort_devices(devices_info, nr_devices);
2242 
2243 	i = nr_devices - 1;
2244 	avail_space = 0;
2245 	while (nr_devices >= rattr->devs_min) {
2246 		num_stripes = min(num_stripes, nr_devices);
2247 
2248 		if (devices_info[i].max_avail >= min_stripe_size) {
2249 			int j;
2250 			u64 alloc_size;
2251 
2252 			avail_space += devices_info[i].max_avail * num_stripes;
2253 			alloc_size = devices_info[i].max_avail;
2254 			for (j = i + 1 - num_stripes; j <= i; j++)
2255 				devices_info[j].max_avail -= alloc_size;
2256 		}
2257 		i--;
2258 		nr_devices--;
2259 	}
2260 
2261 	kfree(devices_info);
2262 	*free_bytes = avail_space;
2263 	return 0;
2264 }
2265 
2266 /*
2267  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2268  *
2269  * If there's a redundant raid level at DATA block groups, use the respective
2270  * multiplier to scale the sizes.
2271  *
2272  * Unused device space usage is based on simulating the chunk allocator
2273  * algorithm that respects the device sizes and order of allocations.  This is
2274  * a close approximation of the actual use but there are other factors that may
2275  * change the result (like a new metadata chunk).
2276  *
2277  * If metadata is exhausted, f_bavail will be 0.
2278  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2279 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2280 {
2281 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2282 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2283 	struct btrfs_space_info *found;
2284 	u64 total_used = 0;
2285 	u64 total_free_data = 0;
2286 	u64 total_free_meta = 0;
2287 	u32 bits = fs_info->sectorsize_bits;
2288 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2289 	unsigned factor = 1;
2290 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2291 	int ret;
2292 	u64 thresh = 0;
2293 	int mixed = 0;
2294 
2295 	list_for_each_entry(found, &fs_info->space_info, list) {
2296 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2297 			int i;
2298 
2299 			total_free_data += found->disk_total - found->disk_used;
2300 			total_free_data -=
2301 				btrfs_account_ro_block_groups_free_space(found);
2302 
2303 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2304 				if (!list_empty(&found->block_groups[i]))
2305 					factor = btrfs_bg_type_to_factor(
2306 						btrfs_raid_array[i].bg_flag);
2307 			}
2308 		}
2309 
2310 		/*
2311 		 * Metadata in mixed block goup profiles are accounted in data
2312 		 */
2313 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2314 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2315 				mixed = 1;
2316 			else
2317 				total_free_meta += found->disk_total -
2318 					found->disk_used;
2319 		}
2320 
2321 		total_used += found->disk_used;
2322 	}
2323 
2324 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2325 	buf->f_blocks >>= bits;
2326 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2327 
2328 	/* Account global block reserve as used, it's in logical size already */
2329 	spin_lock(&block_rsv->lock);
2330 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2331 	if (buf->f_bfree >= block_rsv->size >> bits)
2332 		buf->f_bfree -= block_rsv->size >> bits;
2333 	else
2334 		buf->f_bfree = 0;
2335 	spin_unlock(&block_rsv->lock);
2336 
2337 	buf->f_bavail = div_u64(total_free_data, factor);
2338 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2339 	if (ret)
2340 		return ret;
2341 	buf->f_bavail += div_u64(total_free_data, factor);
2342 	buf->f_bavail = buf->f_bavail >> bits;
2343 
2344 	/*
2345 	 * We calculate the remaining metadata space minus global reserve. If
2346 	 * this is (supposedly) smaller than zero, there's no space. But this
2347 	 * does not hold in practice, the exhausted state happens where's still
2348 	 * some positive delta. So we apply some guesswork and compare the
2349 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2350 	 *
2351 	 * We probably cannot calculate the exact threshold value because this
2352 	 * depends on the internal reservations requested by various
2353 	 * operations, so some operations that consume a few metadata will
2354 	 * succeed even if the Avail is zero. But this is better than the other
2355 	 * way around.
2356 	 */
2357 	thresh = SZ_4M;
2358 
2359 	/*
2360 	 * We only want to claim there's no available space if we can no longer
2361 	 * allocate chunks for our metadata profile and our global reserve will
2362 	 * not fit in the free metadata space.  If we aren't ->full then we
2363 	 * still can allocate chunks and thus are fine using the currently
2364 	 * calculated f_bavail.
2365 	 */
2366 	if (!mixed && block_rsv->space_info->full &&
2367 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2368 		buf->f_bavail = 0;
2369 
2370 	buf->f_type = BTRFS_SUPER_MAGIC;
2371 	buf->f_bsize = dentry->d_sb->s_blocksize;
2372 	buf->f_namelen = BTRFS_NAME_LEN;
2373 
2374 	/* We treat it as constant endianness (it doesn't matter _which_)
2375 	   because we want the fsid to come out the same whether mounted
2376 	   on a big-endian or little-endian host */
2377 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2378 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2379 	/* Mask in the root object ID too, to disambiguate subvols */
2380 	buf->f_fsid.val[0] ^=
2381 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2382 	buf->f_fsid.val[1] ^=
2383 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2384 
2385 	return 0;
2386 }
2387 
btrfs_kill_super(struct super_block * sb)2388 static void btrfs_kill_super(struct super_block *sb)
2389 {
2390 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2391 	kill_anon_super(sb);
2392 	btrfs_free_fs_info(fs_info);
2393 }
2394 
2395 static struct file_system_type btrfs_fs_type = {
2396 	.owner		= THIS_MODULE,
2397 	.name		= "btrfs",
2398 	.mount		= btrfs_mount,
2399 	.kill_sb	= btrfs_kill_super,
2400 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2401 };
2402 
2403 static struct file_system_type btrfs_root_fs_type = {
2404 	.owner		= THIS_MODULE,
2405 	.name		= "btrfs",
2406 	.mount		= btrfs_mount_root,
2407 	.kill_sb	= btrfs_kill_super,
2408 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2409 };
2410 
2411 MODULE_ALIAS_FS("btrfs");
2412 
btrfs_control_open(struct inode * inode,struct file * file)2413 static int btrfs_control_open(struct inode *inode, struct file *file)
2414 {
2415 	/*
2416 	 * The control file's private_data is used to hold the
2417 	 * transaction when it is started and is used to keep
2418 	 * track of whether a transaction is already in progress.
2419 	 */
2420 	file->private_data = NULL;
2421 	return 0;
2422 }
2423 
2424 /*
2425  * Used by /dev/btrfs-control for devices ioctls.
2426  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2427 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2428 				unsigned long arg)
2429 {
2430 	struct btrfs_ioctl_vol_args *vol;
2431 	struct btrfs_device *device = NULL;
2432 	int ret = -ENOTTY;
2433 
2434 	if (!capable(CAP_SYS_ADMIN))
2435 		return -EPERM;
2436 
2437 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2438 	if (IS_ERR(vol))
2439 		return PTR_ERR(vol);
2440 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2441 
2442 	switch (cmd) {
2443 	case BTRFS_IOC_SCAN_DEV:
2444 		mutex_lock(&uuid_mutex);
2445 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2446 					       &btrfs_root_fs_type);
2447 		ret = PTR_ERR_OR_ZERO(device);
2448 		mutex_unlock(&uuid_mutex);
2449 		break;
2450 	case BTRFS_IOC_FORGET_DEV:
2451 		ret = btrfs_forget_devices(vol->name);
2452 		break;
2453 	case BTRFS_IOC_DEVICES_READY:
2454 		mutex_lock(&uuid_mutex);
2455 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2456 					       &btrfs_root_fs_type);
2457 		if (IS_ERR(device)) {
2458 			mutex_unlock(&uuid_mutex);
2459 			ret = PTR_ERR(device);
2460 			break;
2461 		}
2462 		ret = !(device->fs_devices->num_devices ==
2463 			device->fs_devices->total_devices);
2464 		mutex_unlock(&uuid_mutex);
2465 		break;
2466 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2467 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2468 		break;
2469 	}
2470 
2471 	kfree(vol);
2472 	return ret;
2473 }
2474 
btrfs_freeze(struct super_block * sb)2475 static int btrfs_freeze(struct super_block *sb)
2476 {
2477 	struct btrfs_trans_handle *trans;
2478 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2479 	struct btrfs_root *root = fs_info->tree_root;
2480 
2481 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2482 	/*
2483 	 * We don't need a barrier here, we'll wait for any transaction that
2484 	 * could be in progress on other threads (and do delayed iputs that
2485 	 * we want to avoid on a frozen filesystem), or do the commit
2486 	 * ourselves.
2487 	 */
2488 	trans = btrfs_attach_transaction_barrier(root);
2489 	if (IS_ERR(trans)) {
2490 		/* no transaction, don't bother */
2491 		if (PTR_ERR(trans) == -ENOENT)
2492 			return 0;
2493 		return PTR_ERR(trans);
2494 	}
2495 	return btrfs_commit_transaction(trans);
2496 }
2497 
check_dev_super(struct btrfs_device * dev)2498 static int check_dev_super(struct btrfs_device *dev)
2499 {
2500 	struct btrfs_fs_info *fs_info = dev->fs_info;
2501 	struct btrfs_super_block *sb;
2502 	u16 csum_type;
2503 	int ret = 0;
2504 
2505 	/* This should be called with fs still frozen. */
2506 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2507 
2508 	/* Missing dev, no need to check. */
2509 	if (!dev->bdev)
2510 		return 0;
2511 
2512 	/* Only need to check the primary super block. */
2513 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2514 	if (IS_ERR(sb))
2515 		return PTR_ERR(sb);
2516 
2517 	/* Verify the checksum. */
2518 	csum_type = btrfs_super_csum_type(sb);
2519 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2520 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2521 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2522 		ret = -EUCLEAN;
2523 		goto out;
2524 	}
2525 
2526 	if (btrfs_check_super_csum(fs_info, sb)) {
2527 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2528 		ret = -EUCLEAN;
2529 		goto out;
2530 	}
2531 
2532 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2533 	ret = btrfs_validate_super(fs_info, sb, 0);
2534 	if (ret < 0)
2535 		goto out;
2536 
2537 	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2538 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2539 			btrfs_super_generation(sb),
2540 			fs_info->last_trans_committed);
2541 		ret = -EUCLEAN;
2542 		goto out;
2543 	}
2544 out:
2545 	btrfs_release_disk_super(sb);
2546 	return ret;
2547 }
2548 
btrfs_unfreeze(struct super_block * sb)2549 static int btrfs_unfreeze(struct super_block *sb)
2550 {
2551 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2552 	struct btrfs_device *device;
2553 	int ret = 0;
2554 
2555 	/*
2556 	 * Make sure the fs is not changed by accident (like hibernation then
2557 	 * modified by other OS).
2558 	 * If we found anything wrong, we mark the fs error immediately.
2559 	 *
2560 	 * And since the fs is frozen, no one can modify the fs yet, thus
2561 	 * we don't need to hold device_list_mutex.
2562 	 */
2563 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2564 		ret = check_dev_super(device);
2565 		if (ret < 0) {
2566 			btrfs_handle_fs_error(fs_info, ret,
2567 				"super block on devid %llu got modified unexpectedly",
2568 				device->devid);
2569 			break;
2570 		}
2571 	}
2572 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2573 
2574 	/*
2575 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2576 	 * above checks failed. Since the fs is either fine or read-only, we're
2577 	 * safe to continue, without causing further damage.
2578 	 */
2579 	return 0;
2580 }
2581 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2582 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2583 {
2584 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2585 
2586 	/*
2587 	 * There should be always a valid pointer in latest_dev, it may be stale
2588 	 * for a short moment in case it's being deleted but still valid until
2589 	 * the end of RCU grace period.
2590 	 */
2591 	rcu_read_lock();
2592 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2593 	rcu_read_unlock();
2594 
2595 	return 0;
2596 }
2597 
2598 static const struct super_operations btrfs_super_ops = {
2599 	.drop_inode	= btrfs_drop_inode,
2600 	.evict_inode	= btrfs_evict_inode,
2601 	.put_super	= btrfs_put_super,
2602 	.sync_fs	= btrfs_sync_fs,
2603 	.show_options	= btrfs_show_options,
2604 	.show_devname	= btrfs_show_devname,
2605 	.alloc_inode	= btrfs_alloc_inode,
2606 	.destroy_inode	= btrfs_destroy_inode,
2607 	.free_inode	= btrfs_free_inode,
2608 	.statfs		= btrfs_statfs,
2609 	.remount_fs	= btrfs_remount,
2610 	.freeze_fs	= btrfs_freeze,
2611 	.unfreeze_fs	= btrfs_unfreeze,
2612 };
2613 
2614 static const struct file_operations btrfs_ctl_fops = {
2615 	.open = btrfs_control_open,
2616 	.unlocked_ioctl	 = btrfs_control_ioctl,
2617 	.compat_ioctl = compat_ptr_ioctl,
2618 	.owner	 = THIS_MODULE,
2619 	.llseek = noop_llseek,
2620 };
2621 
2622 static struct miscdevice btrfs_misc = {
2623 	.minor		= BTRFS_MINOR,
2624 	.name		= "btrfs-control",
2625 	.fops		= &btrfs_ctl_fops
2626 };
2627 
2628 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2629 MODULE_ALIAS("devname:btrfs-control");
2630 
btrfs_interface_init(void)2631 static int __init btrfs_interface_init(void)
2632 {
2633 	return misc_register(&btrfs_misc);
2634 }
2635 
btrfs_interface_exit(void)2636 static __cold void btrfs_interface_exit(void)
2637 {
2638 	misc_deregister(&btrfs_misc);
2639 }
2640 
btrfs_print_mod_info(void)2641 static void __init btrfs_print_mod_info(void)
2642 {
2643 	static const char options[] = ""
2644 #ifdef CONFIG_BTRFS_DEBUG
2645 			", debug=on"
2646 #endif
2647 #ifdef CONFIG_BTRFS_ASSERT
2648 			", assert=on"
2649 #endif
2650 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2651 			", integrity-checker=on"
2652 #endif
2653 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2654 			", ref-verify=on"
2655 #endif
2656 #ifdef CONFIG_BLK_DEV_ZONED
2657 			", zoned=yes"
2658 #else
2659 			", zoned=no"
2660 #endif
2661 #ifdef CONFIG_FS_VERITY
2662 			", fsverity=yes"
2663 #else
2664 			", fsverity=no"
2665 #endif
2666 			;
2667 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2668 }
2669 
init_btrfs_fs(void)2670 static int __init init_btrfs_fs(void)
2671 {
2672 	int err;
2673 
2674 	btrfs_props_init();
2675 
2676 	err = btrfs_init_sysfs();
2677 	if (err)
2678 		return err;
2679 
2680 	btrfs_init_compress();
2681 
2682 	err = btrfs_init_cachep();
2683 	if (err)
2684 		goto free_compress;
2685 
2686 	err = extent_io_init();
2687 	if (err)
2688 		goto free_cachep;
2689 
2690 	err = extent_state_cache_init();
2691 	if (err)
2692 		goto free_extent_io;
2693 
2694 	err = extent_map_init();
2695 	if (err)
2696 		goto free_extent_state_cache;
2697 
2698 	err = ordered_data_init();
2699 	if (err)
2700 		goto free_extent_map;
2701 
2702 	err = btrfs_delayed_inode_init();
2703 	if (err)
2704 		goto free_ordered_data;
2705 
2706 	err = btrfs_auto_defrag_init();
2707 	if (err)
2708 		goto free_delayed_inode;
2709 
2710 	err = btrfs_delayed_ref_init();
2711 	if (err)
2712 		goto free_auto_defrag;
2713 
2714 	err = btrfs_prelim_ref_init();
2715 	if (err)
2716 		goto free_delayed_ref;
2717 
2718 	err = btrfs_end_io_wq_init();
2719 	if (err)
2720 		goto free_prelim_ref;
2721 
2722 	err = btrfs_interface_init();
2723 	if (err)
2724 		goto free_end_io_wq;
2725 
2726 	btrfs_print_mod_info();
2727 
2728 	err = btrfs_run_sanity_tests();
2729 	if (err)
2730 		goto unregister_ioctl;
2731 
2732 	err = register_filesystem(&btrfs_fs_type);
2733 	if (err)
2734 		goto unregister_ioctl;
2735 
2736 	return 0;
2737 
2738 unregister_ioctl:
2739 	btrfs_interface_exit();
2740 free_end_io_wq:
2741 	btrfs_end_io_wq_exit();
2742 free_prelim_ref:
2743 	btrfs_prelim_ref_exit();
2744 free_delayed_ref:
2745 	btrfs_delayed_ref_exit();
2746 free_auto_defrag:
2747 	btrfs_auto_defrag_exit();
2748 free_delayed_inode:
2749 	btrfs_delayed_inode_exit();
2750 free_ordered_data:
2751 	ordered_data_exit();
2752 free_extent_map:
2753 	extent_map_exit();
2754 free_extent_state_cache:
2755 	extent_state_cache_exit();
2756 free_extent_io:
2757 	extent_io_exit();
2758 free_cachep:
2759 	btrfs_destroy_cachep();
2760 free_compress:
2761 	btrfs_exit_compress();
2762 	btrfs_exit_sysfs();
2763 
2764 	return err;
2765 }
2766 
exit_btrfs_fs(void)2767 static void __exit exit_btrfs_fs(void)
2768 {
2769 	btrfs_destroy_cachep();
2770 	btrfs_delayed_ref_exit();
2771 	btrfs_auto_defrag_exit();
2772 	btrfs_delayed_inode_exit();
2773 	btrfs_prelim_ref_exit();
2774 	ordered_data_exit();
2775 	extent_map_exit();
2776 	extent_state_cache_exit();
2777 	extent_io_exit();
2778 	btrfs_interface_exit();
2779 	btrfs_end_io_wq_exit();
2780 	unregister_filesystem(&btrfs_fs_type);
2781 	btrfs_exit_sysfs();
2782 	btrfs_cleanup_fs_uuids();
2783 	btrfs_exit_compress();
2784 }
2785 
2786 late_initcall(init_btrfs_fs);
2787 module_exit(exit_btrfs_fs)
2788 
2789 MODULE_LICENSE("GPL");
2790 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
2791 MODULE_SOFTDEP("pre: crc32c");
2792 MODULE_SOFTDEP("pre: xxhash64");
2793 MODULE_SOFTDEP("pre: sha256");
2794 MODULE_SOFTDEP("pre: blake2b-256");
2795