1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12
13 #include <asm/tlbflush.h>
14 #include <asm/mmu_context.h>
15 #include <asm/nospec-branch.h>
16 #include <asm/cache.h>
17 #include <asm/cacheflush.h>
18 #include <asm/apic.h>
19 #include <asm/perf_event.h>
20
21 #include "mm_internal.h"
22
23 #ifdef CONFIG_PARAVIRT
24 # define STATIC_NOPV
25 #else
26 # define STATIC_NOPV static
27 # define __flush_tlb_local native_flush_tlb_local
28 # define __flush_tlb_global native_flush_tlb_global
29 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
30 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
31 #endif
32
33 /*
34 * TLB flushing, formerly SMP-only
35 * c/o Linus Torvalds.
36 *
37 * These mean you can really definitely utterly forget about
38 * writing to user space from interrupts. (Its not allowed anyway).
39 *
40 * Optimizations Manfred Spraul <manfred@colorfullife.com>
41 *
42 * More scalable flush, from Andi Kleen
43 *
44 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
45 */
46
47 /*
48 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
49 * stored in cpu_tlb_state.last_user_mm_spec.
50 */
51 #define LAST_USER_MM_IBPB 0x1UL
52 #define LAST_USER_MM_L1D_FLUSH 0x2UL
53 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
54
55 /* Bits to set when tlbstate and flush is (re)initialized */
56 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
57
58 /*
59 * The x86 feature is called PCID (Process Context IDentifier). It is similar
60 * to what is traditionally called ASID on the RISC processors.
61 *
62 * We don't use the traditional ASID implementation, where each process/mm gets
63 * its own ASID and flush/restart when we run out of ASID space.
64 *
65 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
66 * that came by on this CPU, allowing cheaper switch_mm between processes on
67 * this CPU.
68 *
69 * We end up with different spaces for different things. To avoid confusion we
70 * use different names for each of them:
71 *
72 * ASID - [0, TLB_NR_DYN_ASIDS-1]
73 * the canonical identifier for an mm
74 *
75 * kPCID - [1, TLB_NR_DYN_ASIDS]
76 * the value we write into the PCID part of CR3; corresponds to the
77 * ASID+1, because PCID 0 is special.
78 *
79 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
80 * for KPTI each mm has two address spaces and thus needs two
81 * PCID values, but we can still do with a single ASID denomination
82 * for each mm. Corresponds to kPCID + 2048.
83 *
84 */
85
86 /* There are 12 bits of space for ASIDS in CR3 */
87 #define CR3_HW_ASID_BITS 12
88
89 /*
90 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
91 * user/kernel switches
92 */
93 #ifdef CONFIG_PAGE_TABLE_ISOLATION
94 # define PTI_CONSUMED_PCID_BITS 1
95 #else
96 # define PTI_CONSUMED_PCID_BITS 0
97 #endif
98
99 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
100
101 /*
102 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
103 * for them being zero-based. Another -1 is because PCID 0 is reserved for
104 * use by non-PCID-aware users.
105 */
106 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
107
108 /*
109 * Given @asid, compute kPCID
110 */
kern_pcid(u16 asid)111 static inline u16 kern_pcid(u16 asid)
112 {
113 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
114
115 #ifdef CONFIG_PAGE_TABLE_ISOLATION
116 /*
117 * Make sure that the dynamic ASID space does not conflict with the
118 * bit we are using to switch between user and kernel ASIDs.
119 */
120 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
121
122 /*
123 * The ASID being passed in here should have respected the
124 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
125 */
126 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
127 #endif
128 /*
129 * The dynamically-assigned ASIDs that get passed in are small
130 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
131 * so do not bother to clear it.
132 *
133 * If PCID is on, ASID-aware code paths put the ASID+1 into the
134 * PCID bits. This serves two purposes. It prevents a nasty
135 * situation in which PCID-unaware code saves CR3, loads some other
136 * value (with PCID == 0), and then restores CR3, thus corrupting
137 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
138 * that any bugs involving loading a PCID-enabled CR3 with
139 * CR4.PCIDE off will trigger deterministically.
140 */
141 return asid + 1;
142 }
143
144 /*
145 * Given @asid, compute uPCID
146 */
user_pcid(u16 asid)147 static inline u16 user_pcid(u16 asid)
148 {
149 u16 ret = kern_pcid(asid);
150 #ifdef CONFIG_PAGE_TABLE_ISOLATION
151 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
152 #endif
153 return ret;
154 }
155
build_cr3(pgd_t * pgd,u16 asid)156 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
157 {
158 if (static_cpu_has(X86_FEATURE_PCID)) {
159 return __sme_pa(pgd) | kern_pcid(asid);
160 } else {
161 VM_WARN_ON_ONCE(asid != 0);
162 return __sme_pa(pgd);
163 }
164 }
165
build_cr3_noflush(pgd_t * pgd,u16 asid)166 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
167 {
168 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
169 /*
170 * Use boot_cpu_has() instead of this_cpu_has() as this function
171 * might be called during early boot. This should work even after
172 * boot because all CPU's the have same capabilities:
173 */
174 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
175 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
176 }
177
178 /*
179 * We get here when we do something requiring a TLB invalidation
180 * but could not go invalidate all of the contexts. We do the
181 * necessary invalidation by clearing out the 'ctx_id' which
182 * forces a TLB flush when the context is loaded.
183 */
clear_asid_other(void)184 static void clear_asid_other(void)
185 {
186 u16 asid;
187
188 /*
189 * This is only expected to be set if we have disabled
190 * kernel _PAGE_GLOBAL pages.
191 */
192 if (!static_cpu_has(X86_FEATURE_PTI)) {
193 WARN_ON_ONCE(1);
194 return;
195 }
196
197 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
198 /* Do not need to flush the current asid */
199 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
200 continue;
201 /*
202 * Make sure the next time we go to switch to
203 * this asid, we do a flush:
204 */
205 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
206 }
207 this_cpu_write(cpu_tlbstate.invalidate_other, false);
208 }
209
210 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
211
212
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)213 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
214 u16 *new_asid, bool *need_flush)
215 {
216 u16 asid;
217
218 if (!static_cpu_has(X86_FEATURE_PCID)) {
219 *new_asid = 0;
220 *need_flush = true;
221 return;
222 }
223
224 if (this_cpu_read(cpu_tlbstate.invalidate_other))
225 clear_asid_other();
226
227 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
228 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
229 next->context.ctx_id)
230 continue;
231
232 *new_asid = asid;
233 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
234 next_tlb_gen);
235 return;
236 }
237
238 /*
239 * We don't currently own an ASID slot on this CPU.
240 * Allocate a slot.
241 */
242 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
243 if (*new_asid >= TLB_NR_DYN_ASIDS) {
244 *new_asid = 0;
245 this_cpu_write(cpu_tlbstate.next_asid, 1);
246 }
247 *need_flush = true;
248 }
249
250 /*
251 * Given an ASID, flush the corresponding user ASID. We can delay this
252 * until the next time we switch to it.
253 *
254 * See SWITCH_TO_USER_CR3.
255 */
invalidate_user_asid(u16 asid)256 static inline void invalidate_user_asid(u16 asid)
257 {
258 /* There is no user ASID if address space separation is off */
259 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
260 return;
261
262 /*
263 * We only have a single ASID if PCID is off and the CR3
264 * write will have flushed it.
265 */
266 if (!cpu_feature_enabled(X86_FEATURE_PCID))
267 return;
268
269 if (!static_cpu_has(X86_FEATURE_PTI))
270 return;
271
272 __set_bit(kern_pcid(asid),
273 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
274 }
275
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)276 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
277 {
278 unsigned long new_mm_cr3;
279
280 if (need_flush) {
281 invalidate_user_asid(new_asid);
282 new_mm_cr3 = build_cr3(pgdir, new_asid);
283 } else {
284 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
285 }
286
287 /*
288 * Caution: many callers of this function expect
289 * that load_cr3() is serializing and orders TLB
290 * fills with respect to the mm_cpumask writes.
291 */
292 write_cr3(new_mm_cr3);
293 }
294
leave_mm(int cpu)295 void leave_mm(int cpu)
296 {
297 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
298
299 /*
300 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
301 * If so, our callers still expect us to flush the TLB, but there
302 * aren't any user TLB entries in init_mm to worry about.
303 *
304 * This needs to happen before any other sanity checks due to
305 * intel_idle's shenanigans.
306 */
307 if (loaded_mm == &init_mm)
308 return;
309
310 /* Warn if we're not lazy. */
311 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
312
313 switch_mm(NULL, &init_mm, NULL);
314 }
315 EXPORT_SYMBOL_GPL(leave_mm);
316
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)317 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
318 struct task_struct *tsk)
319 {
320 unsigned long flags;
321
322 local_irq_save(flags);
323 switch_mm_irqs_off(prev, next, tsk);
324 local_irq_restore(flags);
325 }
326
327 /*
328 * Invoked from return to user/guest by a task that opted-in to L1D
329 * flushing but ended up running on an SMT enabled core due to wrong
330 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
331 * contract which this task requested.
332 */
l1d_flush_force_sigbus(struct callback_head * ch)333 static void l1d_flush_force_sigbus(struct callback_head *ch)
334 {
335 force_sig(SIGBUS);
336 }
337
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)338 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
339 struct task_struct *next)
340 {
341 /* Flush L1D if the outgoing task requests it */
342 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
343 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
344
345 /* Check whether the incoming task opted in for L1D flush */
346 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
347 return;
348
349 /*
350 * Validate that it is not running on an SMT sibling as this would
351 * make the excercise pointless because the siblings share L1D. If
352 * it runs on a SMT sibling, notify it with SIGBUS on return to
353 * user/guest
354 */
355 if (this_cpu_read(cpu_info.smt_active)) {
356 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
357 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
358 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
359 }
360 }
361
mm_mangle_tif_spec_bits(struct task_struct * next)362 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
363 {
364 unsigned long next_tif = task_thread_info(next)->flags;
365 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
366
367 /*
368 * Ensure that the bit shift above works as expected and the two flags
369 * end up in bit 0 and 1.
370 */
371 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
372
373 return (unsigned long)next->mm | spec_bits;
374 }
375
cond_mitigation(struct task_struct * next)376 static void cond_mitigation(struct task_struct *next)
377 {
378 unsigned long prev_mm, next_mm;
379
380 if (!next || !next->mm)
381 return;
382
383 next_mm = mm_mangle_tif_spec_bits(next);
384 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
385
386 /*
387 * Avoid user/user BTB poisoning by flushing the branch predictor
388 * when switching between processes. This stops one process from
389 * doing Spectre-v2 attacks on another.
390 *
391 * Both, the conditional and the always IBPB mode use the mm
392 * pointer to avoid the IBPB when switching between tasks of the
393 * same process. Using the mm pointer instead of mm->context.ctx_id
394 * opens a hypothetical hole vs. mm_struct reuse, which is more or
395 * less impossible to control by an attacker. Aside of that it
396 * would only affect the first schedule so the theoretically
397 * exposed data is not really interesting.
398 */
399 if (static_branch_likely(&switch_mm_cond_ibpb)) {
400 /*
401 * This is a bit more complex than the always mode because
402 * it has to handle two cases:
403 *
404 * 1) Switch from a user space task (potential attacker)
405 * which has TIF_SPEC_IB set to a user space task
406 * (potential victim) which has TIF_SPEC_IB not set.
407 *
408 * 2) Switch from a user space task (potential attacker)
409 * which has TIF_SPEC_IB not set to a user space task
410 * (potential victim) which has TIF_SPEC_IB set.
411 *
412 * This could be done by unconditionally issuing IBPB when
413 * a task which has TIF_SPEC_IB set is either scheduled in
414 * or out. Though that results in two flushes when:
415 *
416 * - the same user space task is scheduled out and later
417 * scheduled in again and only a kernel thread ran in
418 * between.
419 *
420 * - a user space task belonging to the same process is
421 * scheduled in after a kernel thread ran in between
422 *
423 * - a user space task belonging to the same process is
424 * scheduled in immediately.
425 *
426 * Optimize this with reasonably small overhead for the
427 * above cases. Mangle the TIF_SPEC_IB bit into the mm
428 * pointer of the incoming task which is stored in
429 * cpu_tlbstate.last_user_mm_spec for comparison.
430 *
431 * Issue IBPB only if the mm's are different and one or
432 * both have the IBPB bit set.
433 */
434 if (next_mm != prev_mm &&
435 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
436 indirect_branch_prediction_barrier();
437 }
438
439 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
440 /*
441 * Only flush when switching to a user space task with a
442 * different context than the user space task which ran
443 * last on this CPU.
444 */
445 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
446 (unsigned long)next->mm)
447 indirect_branch_prediction_barrier();
448 }
449
450 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
451 /*
452 * Flush L1D when the outgoing task requested it and/or
453 * check whether the incoming task requested L1D flushing
454 * and ended up on an SMT sibling.
455 */
456 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
457 l1d_flush_evaluate(prev_mm, next_mm, next);
458 }
459
460 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
461 }
462
463 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)464 static inline void cr4_update_pce_mm(struct mm_struct *mm)
465 {
466 if (static_branch_unlikely(&rdpmc_always_available_key) ||
467 (!static_branch_unlikely(&rdpmc_never_available_key) &&
468 atomic_read(&mm->context.perf_rdpmc_allowed))) {
469 /*
470 * Clear the existing dirty counters to
471 * prevent the leak for an RDPMC task.
472 */
473 perf_clear_dirty_counters();
474 cr4_set_bits_irqsoff(X86_CR4_PCE);
475 } else
476 cr4_clear_bits_irqsoff(X86_CR4_PCE);
477 }
478
cr4_update_pce(void * ignored)479 void cr4_update_pce(void *ignored)
480 {
481 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
482 }
483
484 #else
cr4_update_pce_mm(struct mm_struct * mm)485 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
486 #endif
487
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)488 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
489 struct task_struct *tsk)
490 {
491 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
492 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
493 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
494 unsigned cpu = smp_processor_id();
495 u64 next_tlb_gen;
496 bool need_flush;
497 u16 new_asid;
498
499 /*
500 * NB: The scheduler will call us with prev == next when switching
501 * from lazy TLB mode to normal mode if active_mm isn't changing.
502 * When this happens, we don't assume that CR3 (and hence
503 * cpu_tlbstate.loaded_mm) matches next.
504 *
505 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
506 */
507
508 /* We don't want flush_tlb_func() to run concurrently with us. */
509 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
510 WARN_ON_ONCE(!irqs_disabled());
511
512 /*
513 * Verify that CR3 is what we think it is. This will catch
514 * hypothetical buggy code that directly switches to swapper_pg_dir
515 * without going through leave_mm() / switch_mm_irqs_off() or that
516 * does something like write_cr3(read_cr3_pa()).
517 *
518 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
519 * isn't free.
520 */
521 #ifdef CONFIG_DEBUG_VM
522 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
523 /*
524 * If we were to BUG here, we'd be very likely to kill
525 * the system so hard that we don't see the call trace.
526 * Try to recover instead by ignoring the error and doing
527 * a global flush to minimize the chance of corruption.
528 *
529 * (This is far from being a fully correct recovery.
530 * Architecturally, the CPU could prefetch something
531 * back into an incorrect ASID slot and leave it there
532 * to cause trouble down the road. It's better than
533 * nothing, though.)
534 */
535 __flush_tlb_all();
536 }
537 #endif
538 if (was_lazy)
539 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
540
541 /*
542 * The membarrier system call requires a full memory barrier and
543 * core serialization before returning to user-space, after
544 * storing to rq->curr, when changing mm. This is because
545 * membarrier() sends IPIs to all CPUs that are in the target mm
546 * to make them issue memory barriers. However, if another CPU
547 * switches to/from the target mm concurrently with
548 * membarrier(), it can cause that CPU not to receive an IPI
549 * when it really should issue a memory barrier. Writing to CR3
550 * provides that full memory barrier and core serializing
551 * instruction.
552 */
553 if (real_prev == next) {
554 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
555 next->context.ctx_id);
556
557 /*
558 * Even in lazy TLB mode, the CPU should stay set in the
559 * mm_cpumask. The TLB shootdown code can figure out from
560 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
561 */
562 if (WARN_ON_ONCE(real_prev != &init_mm &&
563 !cpumask_test_cpu(cpu, mm_cpumask(next))))
564 cpumask_set_cpu(cpu, mm_cpumask(next));
565
566 /*
567 * If the CPU is not in lazy TLB mode, we are just switching
568 * from one thread in a process to another thread in the same
569 * process. No TLB flush required.
570 */
571 if (!was_lazy)
572 return;
573
574 /*
575 * Read the tlb_gen to check whether a flush is needed.
576 * If the TLB is up to date, just use it.
577 * The barrier synchronizes with the tlb_gen increment in
578 * the TLB shootdown code.
579 */
580 smp_mb();
581 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
582 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
583 next_tlb_gen)
584 return;
585
586 /*
587 * TLB contents went out of date while we were in lazy
588 * mode. Fall through to the TLB switching code below.
589 */
590 new_asid = prev_asid;
591 need_flush = true;
592 } else {
593 /*
594 * Apply process to process speculation vulnerability
595 * mitigations if applicable.
596 */
597 cond_mitigation(tsk);
598
599 /*
600 * Stop remote flushes for the previous mm.
601 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
602 * but the bitmap manipulation can cause cache line contention.
603 */
604 if (real_prev != &init_mm) {
605 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
606 mm_cpumask(real_prev)));
607 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
608 }
609
610 /*
611 * Start remote flushes and then read tlb_gen.
612 */
613 if (next != &init_mm)
614 cpumask_set_cpu(cpu, mm_cpumask(next));
615 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
616
617 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
618
619 /* Let nmi_uaccess_okay() know that we're changing CR3. */
620 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
621 barrier();
622 }
623
624 if (need_flush) {
625 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
626 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
627 load_new_mm_cr3(next->pgd, new_asid, true);
628
629 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
630 } else {
631 /* The new ASID is already up to date. */
632 load_new_mm_cr3(next->pgd, new_asid, false);
633
634 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
635 }
636
637 /* Make sure we write CR3 before loaded_mm. */
638 barrier();
639
640 this_cpu_write(cpu_tlbstate.loaded_mm, next);
641 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
642
643 if (next != real_prev) {
644 cr4_update_pce_mm(next);
645 switch_ldt(real_prev, next);
646 }
647 }
648
649 /*
650 * Please ignore the name of this function. It should be called
651 * switch_to_kernel_thread().
652 *
653 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
654 * kernel thread or other context without an mm. Acceptable implementations
655 * include doing nothing whatsoever, switching to init_mm, or various clever
656 * lazy tricks to try to minimize TLB flushes.
657 *
658 * The scheduler reserves the right to call enter_lazy_tlb() several times
659 * in a row. It will notify us that we're going back to a real mm by
660 * calling switch_mm_irqs_off().
661 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)662 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
663 {
664 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
665 return;
666
667 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
668 }
669
670 /*
671 * Call this when reinitializing a CPU. It fixes the following potential
672 * problems:
673 *
674 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
675 * because the CPU was taken down and came back up with CR3's PCID
676 * bits clear. CPU hotplug can do this.
677 *
678 * - The TLB contains junk in slots corresponding to inactive ASIDs.
679 *
680 * - The CPU went so far out to lunch that it may have missed a TLB
681 * flush.
682 */
initialize_tlbstate_and_flush(void)683 void initialize_tlbstate_and_flush(void)
684 {
685 int i;
686 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
687 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
688 unsigned long cr3 = __read_cr3();
689
690 /* Assert that CR3 already references the right mm. */
691 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
692
693 /*
694 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
695 * doesn't work like other CR4 bits because it can only be set from
696 * long mode.)
697 */
698 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
699 !(cr4_read_shadow() & X86_CR4_PCIDE));
700
701 /* Force ASID 0 and force a TLB flush. */
702 write_cr3(build_cr3(mm->pgd, 0));
703
704 /* Reinitialize tlbstate. */
705 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
706 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
707 this_cpu_write(cpu_tlbstate.next_asid, 1);
708 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
709 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
710
711 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
712 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
713 }
714
715 /*
716 * flush_tlb_func()'s memory ordering requirement is that any
717 * TLB fills that happen after we flush the TLB are ordered after we
718 * read active_mm's tlb_gen. We don't need any explicit barriers
719 * because all x86 flush operations are serializing and the
720 * atomic64_read operation won't be reordered by the compiler.
721 */
flush_tlb_func(void * info)722 static void flush_tlb_func(void *info)
723 {
724 /*
725 * We have three different tlb_gen values in here. They are:
726 *
727 * - mm_tlb_gen: the latest generation.
728 * - local_tlb_gen: the generation that this CPU has already caught
729 * up to.
730 * - f->new_tlb_gen: the generation that the requester of the flush
731 * wants us to catch up to.
732 */
733 const struct flush_tlb_info *f = info;
734 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
735 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
736 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
737 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
738 bool local = smp_processor_id() == f->initiating_cpu;
739 unsigned long nr_invalidate = 0;
740
741 /* This code cannot presently handle being reentered. */
742 VM_WARN_ON(!irqs_disabled());
743
744 if (!local) {
745 inc_irq_stat(irq_tlb_count);
746 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
747
748 /* Can only happen on remote CPUs */
749 if (f->mm && f->mm != loaded_mm)
750 return;
751 }
752
753 if (unlikely(loaded_mm == &init_mm))
754 return;
755
756 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
757 loaded_mm->context.ctx_id);
758
759 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
760 /*
761 * We're in lazy mode. We need to at least flush our
762 * paging-structure cache to avoid speculatively reading
763 * garbage into our TLB. Since switching to init_mm is barely
764 * slower than a minimal flush, just switch to init_mm.
765 *
766 * This should be rare, with native_flush_tlb_multi() skipping
767 * IPIs to lazy TLB mode CPUs.
768 */
769 switch_mm_irqs_off(NULL, &init_mm, NULL);
770 return;
771 }
772
773 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
774 /*
775 * There's nothing to do: we're already up to date. This can
776 * happen if two concurrent flushes happen -- the first flush to
777 * be handled can catch us all the way up, leaving no work for
778 * the second flush.
779 */
780 goto done;
781 }
782
783 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
784 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
785
786 /*
787 * If we get to this point, we know that our TLB is out of date.
788 * This does not strictly imply that we need to flush (it's
789 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
790 * going to need to flush in the very near future, so we might
791 * as well get it over with.
792 *
793 * The only question is whether to do a full or partial flush.
794 *
795 * We do a partial flush if requested and two extra conditions
796 * are met:
797 *
798 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
799 * we've always done all needed flushes to catch up to
800 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
801 * f->new_tlb_gen == 3, then we know that the flush needed to bring
802 * us up to date for tlb_gen 3 is the partial flush we're
803 * processing.
804 *
805 * As an example of why this check is needed, suppose that there
806 * are two concurrent flushes. The first is a full flush that
807 * changes context.tlb_gen from 1 to 2. The second is a partial
808 * flush that changes context.tlb_gen from 2 to 3. If they get
809 * processed on this CPU in reverse order, we'll see
810 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
811 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
812 * 3, we'd be break the invariant: we'd update local_tlb_gen above
813 * 1 without the full flush that's needed for tlb_gen 2.
814 *
815 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
816 * Partial TLB flushes are not all that much cheaper than full TLB
817 * flushes, so it seems unlikely that it would be a performance win
818 * to do a partial flush if that won't bring our TLB fully up to
819 * date. By doing a full flush instead, we can increase
820 * local_tlb_gen all the way to mm_tlb_gen and we can probably
821 * avoid another flush in the very near future.
822 */
823 if (f->end != TLB_FLUSH_ALL &&
824 f->new_tlb_gen == local_tlb_gen + 1 &&
825 f->new_tlb_gen == mm_tlb_gen) {
826 /* Partial flush */
827 unsigned long addr = f->start;
828
829 nr_invalidate = (f->end - f->start) >> f->stride_shift;
830
831 while (addr < f->end) {
832 flush_tlb_one_user(addr);
833 addr += 1UL << f->stride_shift;
834 }
835 if (local)
836 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
837 } else {
838 /* Full flush. */
839 nr_invalidate = TLB_FLUSH_ALL;
840
841 flush_tlb_local();
842 if (local)
843 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
844 }
845
846 /* Both paths above update our state to mm_tlb_gen. */
847 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
848
849 /* Tracing is done in a unified manner to reduce the code size */
850 done:
851 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
852 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
853 TLB_LOCAL_MM_SHOOTDOWN,
854 nr_invalidate);
855 }
856
tlb_is_not_lazy(int cpu,void * data)857 static bool tlb_is_not_lazy(int cpu, void *data)
858 {
859 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
860 }
861
862 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
863 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
864
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)865 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
866 const struct flush_tlb_info *info)
867 {
868 /*
869 * Do accounting and tracing. Note that there are (and have always been)
870 * cases in which a remote TLB flush will be traced, but eventually
871 * would not happen.
872 */
873 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
874 if (info->end == TLB_FLUSH_ALL)
875 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
876 else
877 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
878 (info->end - info->start) >> PAGE_SHIFT);
879
880 /*
881 * If no page tables were freed, we can skip sending IPIs to
882 * CPUs in lazy TLB mode. They will flush the CPU themselves
883 * at the next context switch.
884 *
885 * However, if page tables are getting freed, we need to send the
886 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
887 * up on the new contents of what used to be page tables, while
888 * doing a speculative memory access.
889 */
890 if (info->freed_tables)
891 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
892 else
893 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
894 (void *)info, 1, cpumask);
895 }
896
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)897 void flush_tlb_multi(const struct cpumask *cpumask,
898 const struct flush_tlb_info *info)
899 {
900 __flush_tlb_multi(cpumask, info);
901 }
902
903 /*
904 * See Documentation/x86/tlb.rst for details. We choose 33
905 * because it is large enough to cover the vast majority (at
906 * least 95%) of allocations, and is small enough that we are
907 * confident it will not cause too much overhead. Each single
908 * flush is about 100 ns, so this caps the maximum overhead at
909 * _about_ 3,000 ns.
910 *
911 * This is in units of pages.
912 */
913 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
914
915 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
916
917 #ifdef CONFIG_DEBUG_VM
918 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
919 #endif
920
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)921 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
922 unsigned long start, unsigned long end,
923 unsigned int stride_shift, bool freed_tables,
924 u64 new_tlb_gen)
925 {
926 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
927
928 #ifdef CONFIG_DEBUG_VM
929 /*
930 * Ensure that the following code is non-reentrant and flush_tlb_info
931 * is not overwritten. This means no TLB flushing is initiated by
932 * interrupt handlers and machine-check exception handlers.
933 */
934 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
935 #endif
936
937 info->start = start;
938 info->end = end;
939 info->mm = mm;
940 info->stride_shift = stride_shift;
941 info->freed_tables = freed_tables;
942 info->new_tlb_gen = new_tlb_gen;
943 info->initiating_cpu = smp_processor_id();
944
945 return info;
946 }
947
put_flush_tlb_info(void)948 static void put_flush_tlb_info(void)
949 {
950 #ifdef CONFIG_DEBUG_VM
951 /* Complete reentrancy prevention checks */
952 barrier();
953 this_cpu_dec(flush_tlb_info_idx);
954 #endif
955 }
956
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)957 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
958 unsigned long end, unsigned int stride_shift,
959 bool freed_tables)
960 {
961 struct flush_tlb_info *info;
962 u64 new_tlb_gen;
963 int cpu;
964
965 cpu = get_cpu();
966
967 /* Should we flush just the requested range? */
968 if ((end == TLB_FLUSH_ALL) ||
969 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
970 start = 0;
971 end = TLB_FLUSH_ALL;
972 }
973
974 /* This is also a barrier that synchronizes with switch_mm(). */
975 new_tlb_gen = inc_mm_tlb_gen(mm);
976
977 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
978 new_tlb_gen);
979
980 /*
981 * flush_tlb_multi() is not optimized for the common case in which only
982 * a local TLB flush is needed. Optimize this use-case by calling
983 * flush_tlb_func_local() directly in this case.
984 */
985 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
986 flush_tlb_multi(mm_cpumask(mm), info);
987 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
988 lockdep_assert_irqs_enabled();
989 local_irq_disable();
990 flush_tlb_func(info);
991 local_irq_enable();
992 }
993
994 put_flush_tlb_info();
995 put_cpu();
996 }
997
998
do_flush_tlb_all(void * info)999 static void do_flush_tlb_all(void *info)
1000 {
1001 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1002 __flush_tlb_all();
1003 }
1004
flush_tlb_all(void)1005 void flush_tlb_all(void)
1006 {
1007 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1008 on_each_cpu(do_flush_tlb_all, NULL, 1);
1009 }
1010
do_kernel_range_flush(void * info)1011 static void do_kernel_range_flush(void *info)
1012 {
1013 struct flush_tlb_info *f = info;
1014 unsigned long addr;
1015
1016 /* flush range by one by one 'invlpg' */
1017 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1018 flush_tlb_one_kernel(addr);
1019 }
1020
flush_tlb_kernel_range(unsigned long start,unsigned long end)1021 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1022 {
1023 /* Balance as user space task's flush, a bit conservative */
1024 if (end == TLB_FLUSH_ALL ||
1025 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1026 on_each_cpu(do_flush_tlb_all, NULL, 1);
1027 } else {
1028 struct flush_tlb_info *info;
1029
1030 preempt_disable();
1031 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
1032
1033 on_each_cpu(do_kernel_range_flush, info, 1);
1034
1035 put_flush_tlb_info();
1036 preempt_enable();
1037 }
1038 }
1039
1040 /*
1041 * This can be used from process context to figure out what the value of
1042 * CR3 is without needing to do a (slow) __read_cr3().
1043 *
1044 * It's intended to be used for code like KVM that sneakily changes CR3
1045 * and needs to restore it. It needs to be used very carefully.
1046 */
__get_current_cr3_fast(void)1047 unsigned long __get_current_cr3_fast(void)
1048 {
1049 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1050 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1051
1052 /* For now, be very restrictive about when this can be called. */
1053 VM_WARN_ON(in_nmi() || preemptible());
1054
1055 VM_BUG_ON(cr3 != __read_cr3());
1056 return cr3;
1057 }
1058 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1059
1060 /*
1061 * Flush one page in the kernel mapping
1062 */
flush_tlb_one_kernel(unsigned long addr)1063 void flush_tlb_one_kernel(unsigned long addr)
1064 {
1065 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1066
1067 /*
1068 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1069 * paravirt equivalent. Even with PCID, this is sufficient: we only
1070 * use PCID if we also use global PTEs for the kernel mapping, and
1071 * INVLPG flushes global translations across all address spaces.
1072 *
1073 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1074 * __flush_tlb_one_user() will flush the given address for the current
1075 * kernel address space and for its usermode counterpart, but it does
1076 * not flush it for other address spaces.
1077 */
1078 flush_tlb_one_user(addr);
1079
1080 if (!static_cpu_has(X86_FEATURE_PTI))
1081 return;
1082
1083 /*
1084 * See above. We need to propagate the flush to all other address
1085 * spaces. In principle, we only need to propagate it to kernelmode
1086 * address spaces, but the extra bookkeeping we would need is not
1087 * worth it.
1088 */
1089 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1090 }
1091
1092 /*
1093 * Flush one page in the user mapping
1094 */
native_flush_tlb_one_user(unsigned long addr)1095 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1096 {
1097 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1098
1099 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1100
1101 if (!static_cpu_has(X86_FEATURE_PTI))
1102 return;
1103
1104 /*
1105 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1106 * Just use invalidate_user_asid() in case we are called early.
1107 */
1108 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1109 invalidate_user_asid(loaded_mm_asid);
1110 else
1111 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1112 }
1113
flush_tlb_one_user(unsigned long addr)1114 void flush_tlb_one_user(unsigned long addr)
1115 {
1116 __flush_tlb_one_user(addr);
1117 }
1118
1119 /*
1120 * Flush everything
1121 */
native_flush_tlb_global(void)1122 STATIC_NOPV void native_flush_tlb_global(void)
1123 {
1124 unsigned long cr4, flags;
1125
1126 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1127 /*
1128 * Using INVPCID is considerably faster than a pair of writes
1129 * to CR4 sandwiched inside an IRQ flag save/restore.
1130 *
1131 * Note, this works with CR4.PCIDE=0 or 1.
1132 */
1133 invpcid_flush_all();
1134 return;
1135 }
1136
1137 /*
1138 * Read-modify-write to CR4 - protect it from preemption and
1139 * from interrupts. (Use the raw variant because this code can
1140 * be called from deep inside debugging code.)
1141 */
1142 raw_local_irq_save(flags);
1143
1144 cr4 = this_cpu_read(cpu_tlbstate.cr4);
1145 /* toggle PGE */
1146 native_write_cr4(cr4 ^ X86_CR4_PGE);
1147 /* write old PGE again and flush TLBs */
1148 native_write_cr4(cr4);
1149
1150 raw_local_irq_restore(flags);
1151 }
1152
1153 /*
1154 * Flush the entire current user mapping
1155 */
native_flush_tlb_local(void)1156 STATIC_NOPV void native_flush_tlb_local(void)
1157 {
1158 /*
1159 * Preemption or interrupts must be disabled to protect the access
1160 * to the per CPU variable and to prevent being preempted between
1161 * read_cr3() and write_cr3().
1162 */
1163 WARN_ON_ONCE(preemptible());
1164
1165 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1166
1167 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1168 native_write_cr3(__native_read_cr3());
1169 }
1170
flush_tlb_local(void)1171 void flush_tlb_local(void)
1172 {
1173 __flush_tlb_local();
1174 }
1175
1176 /*
1177 * Flush everything
1178 */
__flush_tlb_all(void)1179 void __flush_tlb_all(void)
1180 {
1181 /*
1182 * This is to catch users with enabled preemption and the PGE feature
1183 * and don't trigger the warning in __native_flush_tlb().
1184 */
1185 VM_WARN_ON_ONCE(preemptible());
1186
1187 if (boot_cpu_has(X86_FEATURE_PGE)) {
1188 __flush_tlb_global();
1189 } else {
1190 /*
1191 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1192 */
1193 flush_tlb_local();
1194 }
1195 }
1196 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1197
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1198 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1199 {
1200 struct flush_tlb_info *info;
1201
1202 int cpu = get_cpu();
1203
1204 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
1205 /*
1206 * flush_tlb_multi() is not optimized for the common case in which only
1207 * a local TLB flush is needed. Optimize this use-case by calling
1208 * flush_tlb_func_local() directly in this case.
1209 */
1210 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1211 flush_tlb_multi(&batch->cpumask, info);
1212 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1213 lockdep_assert_irqs_enabled();
1214 local_irq_disable();
1215 flush_tlb_func(info);
1216 local_irq_enable();
1217 }
1218
1219 cpumask_clear(&batch->cpumask);
1220
1221 put_flush_tlb_info();
1222 put_cpu();
1223 }
1224
1225 /*
1226 * Blindly accessing user memory from NMI context can be dangerous
1227 * if we're in the middle of switching the current user task or
1228 * switching the loaded mm. It can also be dangerous if we
1229 * interrupted some kernel code that was temporarily using a
1230 * different mm.
1231 */
nmi_uaccess_okay(void)1232 bool nmi_uaccess_okay(void)
1233 {
1234 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1235 struct mm_struct *current_mm = current->mm;
1236
1237 VM_WARN_ON_ONCE(!loaded_mm);
1238
1239 /*
1240 * The condition we want to check is
1241 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1242 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1243 * is supposed to be reasonably fast.
1244 *
1245 * Instead, we check the almost equivalent but somewhat conservative
1246 * condition below, and we rely on the fact that switch_mm_irqs_off()
1247 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1248 */
1249 if (loaded_mm != current_mm)
1250 return false;
1251
1252 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1253
1254 return true;
1255 }
1256
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1257 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1258 size_t count, loff_t *ppos)
1259 {
1260 char buf[32];
1261 unsigned int len;
1262
1263 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1264 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1265 }
1266
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1267 static ssize_t tlbflush_write_file(struct file *file,
1268 const char __user *user_buf, size_t count, loff_t *ppos)
1269 {
1270 char buf[32];
1271 ssize_t len;
1272 int ceiling;
1273
1274 len = min(count, sizeof(buf) - 1);
1275 if (copy_from_user(buf, user_buf, len))
1276 return -EFAULT;
1277
1278 buf[len] = '\0';
1279 if (kstrtoint(buf, 0, &ceiling))
1280 return -EINVAL;
1281
1282 if (ceiling < 0)
1283 return -EINVAL;
1284
1285 tlb_single_page_flush_ceiling = ceiling;
1286 return count;
1287 }
1288
1289 static const struct file_operations fops_tlbflush = {
1290 .read = tlbflush_read_file,
1291 .write = tlbflush_write_file,
1292 .llseek = default_llseek,
1293 };
1294
create_tlb_single_page_flush_ceiling(void)1295 static int __init create_tlb_single_page_flush_ceiling(void)
1296 {
1297 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1298 arch_debugfs_dir, NULL, &fops_tlbflush);
1299 return 0;
1300 }
1301 late_initcall(create_tlb_single_page_flush_ceiling);
1302