• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60 
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85 
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101 
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 struct mwait_cpu_dead {
109 	unsigned int	control;
110 	unsigned int	status;
111 };
112 
113 /*
114  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
115  * that it's unlikely to be touched by other CPUs.
116  */
117 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
118 
119 /* Logical package management. We might want to allocate that dynamically */
120 unsigned int __max_logical_packages __read_mostly;
121 EXPORT_SYMBOL(__max_logical_packages);
122 static unsigned int logical_packages __read_mostly;
123 static unsigned int logical_die __read_mostly;
124 
125 /* Maximum number of SMT threads on any online core */
126 int __read_mostly __max_smt_threads = 1;
127 
128 /* Flag to indicate if a complete sched domain rebuild is required */
129 bool x86_topology_update;
130 
arch_update_cpu_topology(void)131 int arch_update_cpu_topology(void)
132 {
133 	int retval = x86_topology_update;
134 
135 	x86_topology_update = false;
136 	return retval;
137 }
138 
smpboot_setup_warm_reset_vector(unsigned long start_eip)139 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
140 {
141 	unsigned long flags;
142 
143 	spin_lock_irqsave(&rtc_lock, flags);
144 	CMOS_WRITE(0xa, 0xf);
145 	spin_unlock_irqrestore(&rtc_lock, flags);
146 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
147 							start_eip >> 4;
148 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
149 							start_eip & 0xf;
150 }
151 
smpboot_restore_warm_reset_vector(void)152 static inline void smpboot_restore_warm_reset_vector(void)
153 {
154 	unsigned long flags;
155 
156 	/*
157 	 * Paranoid:  Set warm reset code and vector here back
158 	 * to default values.
159 	 */
160 	spin_lock_irqsave(&rtc_lock, flags);
161 	CMOS_WRITE(0, 0xf);
162 	spin_unlock_irqrestore(&rtc_lock, flags);
163 
164 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
165 }
166 
167 static void init_freq_invariance(bool secondary, bool cppc_ready);
168 
169 /*
170  * Report back to the Boot Processor during boot time or to the caller processor
171  * during CPU online.
172  */
smp_callin(void)173 static void smp_callin(void)
174 {
175 	int cpuid;
176 
177 	/*
178 	 * If waken up by an INIT in an 82489DX configuration
179 	 * cpu_callout_mask guarantees we don't get here before
180 	 * an INIT_deassert IPI reaches our local APIC, so it is
181 	 * now safe to touch our local APIC.
182 	 */
183 	cpuid = smp_processor_id();
184 
185 	/*
186 	 * the boot CPU has finished the init stage and is spinning
187 	 * on callin_map until we finish. We are free to set up this
188 	 * CPU, first the APIC. (this is probably redundant on most
189 	 * boards)
190 	 */
191 	apic_ap_setup();
192 
193 	/*
194 	 * Save our processor parameters. Note: this information
195 	 * is needed for clock calibration.
196 	 */
197 	smp_store_cpu_info(cpuid);
198 
199 	/*
200 	 * The topology information must be up to date before
201 	 * calibrate_delay() and notify_cpu_starting().
202 	 */
203 	set_cpu_sibling_map(raw_smp_processor_id());
204 
205 	init_freq_invariance(true, false);
206 
207 	/*
208 	 * Get our bogomips.
209 	 * Update loops_per_jiffy in cpu_data. Previous call to
210 	 * smp_store_cpu_info() stored a value that is close but not as
211 	 * accurate as the value just calculated.
212 	 */
213 	calibrate_delay();
214 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
215 	pr_debug("Stack at about %p\n", &cpuid);
216 
217 	wmb();
218 
219 	notify_cpu_starting(cpuid);
220 
221 	/*
222 	 * Allow the master to continue.
223 	 */
224 	cpumask_set_cpu(cpuid, cpu_callin_mask);
225 }
226 
227 static int cpu0_logical_apicid;
228 static int enable_start_cpu0;
229 /*
230  * Activate a secondary processor.
231  */
start_secondary(void * unused)232 static void notrace start_secondary(void *unused)
233 {
234 	/*
235 	 * Don't put *anything* except direct CPU state initialization
236 	 * before cpu_init(), SMP booting is too fragile that we want to
237 	 * limit the things done here to the most necessary things.
238 	 */
239 	cr4_init();
240 
241 #ifdef CONFIG_X86_32
242 	/* switch away from the initial page table */
243 	load_cr3(swapper_pg_dir);
244 	__flush_tlb_all();
245 #endif
246 	cpu_init_secondary();
247 	rcu_cpu_starting(raw_smp_processor_id());
248 	x86_cpuinit.early_percpu_clock_init();
249 	smp_callin();
250 
251 	enable_start_cpu0 = 0;
252 
253 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
254 	barrier();
255 	/*
256 	 * Check TSC synchronization with the boot CPU:
257 	 */
258 	check_tsc_sync_target();
259 
260 	speculative_store_bypass_ht_init();
261 
262 	/*
263 	 * Lock vector_lock, set CPU online and bring the vector
264 	 * allocator online. Online must be set with vector_lock held
265 	 * to prevent a concurrent irq setup/teardown from seeing a
266 	 * half valid vector space.
267 	 */
268 	lock_vector_lock();
269 	set_cpu_online(smp_processor_id(), true);
270 	lapic_online();
271 	unlock_vector_lock();
272 	cpu_set_state_online(smp_processor_id());
273 	x86_platform.nmi_init();
274 
275 	/* enable local interrupts */
276 	local_irq_enable();
277 
278 	x86_cpuinit.setup_percpu_clockev();
279 
280 	wmb();
281 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
282 }
283 
284 /**
285  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
286  * @cpu:	CPU to check
287  */
topology_is_primary_thread(unsigned int cpu)288 bool topology_is_primary_thread(unsigned int cpu)
289 {
290 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
291 }
292 
293 /**
294  * topology_smt_supported - Check whether SMT is supported by the CPUs
295  */
topology_smt_supported(void)296 bool topology_smt_supported(void)
297 {
298 	return smp_num_siblings > 1;
299 }
300 
301 /**
302  * topology_phys_to_logical_pkg - Map a physical package id to a logical
303  *
304  * Returns logical package id or -1 if not found
305  */
topology_phys_to_logical_pkg(unsigned int phys_pkg)306 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
307 {
308 	int cpu;
309 
310 	for_each_possible_cpu(cpu) {
311 		struct cpuinfo_x86 *c = &cpu_data(cpu);
312 
313 		if (c->initialized && c->phys_proc_id == phys_pkg)
314 			return c->logical_proc_id;
315 	}
316 	return -1;
317 }
318 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
319 /**
320  * topology_phys_to_logical_die - Map a physical die id to logical
321  *
322  * Returns logical die id or -1 if not found
323  */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)324 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
325 {
326 	int cpu;
327 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
328 
329 	for_each_possible_cpu(cpu) {
330 		struct cpuinfo_x86 *c = &cpu_data(cpu);
331 
332 		if (c->initialized && c->cpu_die_id == die_id &&
333 		    c->phys_proc_id == proc_id)
334 			return c->logical_die_id;
335 	}
336 	return -1;
337 }
338 EXPORT_SYMBOL(topology_phys_to_logical_die);
339 
340 /**
341  * topology_update_package_map - Update the physical to logical package map
342  * @pkg:	The physical package id as retrieved via CPUID
343  * @cpu:	The cpu for which this is updated
344  */
topology_update_package_map(unsigned int pkg,unsigned int cpu)345 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
346 {
347 	int new;
348 
349 	/* Already available somewhere? */
350 	new = topology_phys_to_logical_pkg(pkg);
351 	if (new >= 0)
352 		goto found;
353 
354 	new = logical_packages++;
355 	if (new != pkg) {
356 		pr_info("CPU %u Converting physical %u to logical package %u\n",
357 			cpu, pkg, new);
358 	}
359 found:
360 	cpu_data(cpu).logical_proc_id = new;
361 	return 0;
362 }
363 /**
364  * topology_update_die_map - Update the physical to logical die map
365  * @die:	The die id as retrieved via CPUID
366  * @cpu:	The cpu for which this is updated
367  */
topology_update_die_map(unsigned int die,unsigned int cpu)368 int topology_update_die_map(unsigned int die, unsigned int cpu)
369 {
370 	int new;
371 
372 	/* Already available somewhere? */
373 	new = topology_phys_to_logical_die(die, cpu);
374 	if (new >= 0)
375 		goto found;
376 
377 	new = logical_die++;
378 	if (new != die) {
379 		pr_info("CPU %u Converting physical %u to logical die %u\n",
380 			cpu, die, new);
381 	}
382 found:
383 	cpu_data(cpu).logical_die_id = new;
384 	return 0;
385 }
386 
smp_store_boot_cpu_info(void)387 void __init smp_store_boot_cpu_info(void)
388 {
389 	int id = 0; /* CPU 0 */
390 	struct cpuinfo_x86 *c = &cpu_data(id);
391 
392 	*c = boot_cpu_data;
393 	c->cpu_index = id;
394 	topology_update_package_map(c->phys_proc_id, id);
395 	topology_update_die_map(c->cpu_die_id, id);
396 	c->initialized = true;
397 }
398 
399 /*
400  * The bootstrap kernel entry code has set these up. Save them for
401  * a given CPU
402  */
smp_store_cpu_info(int id)403 void smp_store_cpu_info(int id)
404 {
405 	struct cpuinfo_x86 *c = &cpu_data(id);
406 
407 	/* Copy boot_cpu_data only on the first bringup */
408 	if (!c->initialized)
409 		*c = boot_cpu_data;
410 	c->cpu_index = id;
411 	/*
412 	 * During boot time, CPU0 has this setup already. Save the info when
413 	 * bringing up AP or offlined CPU0.
414 	 */
415 	identify_secondary_cpu(c);
416 	c->initialized = true;
417 }
418 
419 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)420 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
421 {
422 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
423 
424 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
425 }
426 
427 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)428 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
429 {
430 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
431 
432 	return !WARN_ONCE(!topology_same_node(c, o),
433 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
434 		"[node: %d != %d]. Ignoring dependency.\n",
435 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
436 }
437 
438 #define link_mask(mfunc, c1, c2)					\
439 do {									\
440 	cpumask_set_cpu((c1), mfunc(c2));				\
441 	cpumask_set_cpu((c2), mfunc(c1));				\
442 } while (0)
443 
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)444 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
445 {
446 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
447 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
448 
449 		if (c->phys_proc_id == o->phys_proc_id &&
450 		    c->cpu_die_id == o->cpu_die_id &&
451 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
452 			if (c->cpu_core_id == o->cpu_core_id)
453 				return topology_sane(c, o, "smt");
454 
455 			if ((c->cu_id != 0xff) &&
456 			    (o->cu_id != 0xff) &&
457 			    (c->cu_id == o->cu_id))
458 				return topology_sane(c, o, "smt");
459 		}
460 
461 	} else if (c->phys_proc_id == o->phys_proc_id &&
462 		   c->cpu_die_id == o->cpu_die_id &&
463 		   c->cpu_core_id == o->cpu_core_id) {
464 		return topology_sane(c, o, "smt");
465 	}
466 
467 	return false;
468 }
469 
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)470 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
471 {
472 	if (c->phys_proc_id == o->phys_proc_id &&
473 	    c->cpu_die_id == o->cpu_die_id)
474 		return true;
475 	return false;
476 }
477 
478 /*
479  * Unlike the other levels, we do not enforce keeping a
480  * multicore group inside a NUMA node.  If this happens, we will
481  * discard the MC level of the topology later.
482  */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)483 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
484 {
485 	if (c->phys_proc_id == o->phys_proc_id)
486 		return true;
487 	return false;
488 }
489 
490 /*
491  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
492  *
493  * Any Intel CPU that has multiple nodes per package and does not
494  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
495  *
496  * When in SNC mode, these CPUs enumerate an LLC that is shared
497  * by multiple NUMA nodes. The LLC is shared for off-package data
498  * access but private to the NUMA node (half of the package) for
499  * on-package access. CPUID (the source of the information about
500  * the LLC) can only enumerate the cache as shared or unshared,
501  * but not this particular configuration.
502  */
503 
504 static const struct x86_cpu_id intel_cod_cpu[] = {
505 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
506 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
507 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
508 	{}
509 };
510 
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)511 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
512 {
513 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
514 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
515 	bool intel_snc = id && id->driver_data;
516 
517 	/* Do not match if we do not have a valid APICID for cpu: */
518 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
519 		return false;
520 
521 	/* Do not match if LLC id does not match: */
522 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
523 		return false;
524 
525 	/*
526 	 * Allow the SNC topology without warning. Return of false
527 	 * means 'c' does not share the LLC of 'o'. This will be
528 	 * reflected to userspace.
529 	 */
530 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
531 		return false;
532 
533 	return topology_sane(c, o, "llc");
534 }
535 
536 
537 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
x86_sched_itmt_flags(void)538 static inline int x86_sched_itmt_flags(void)
539 {
540 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
541 }
542 
543 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)544 static int x86_core_flags(void)
545 {
546 	return cpu_core_flags() | x86_sched_itmt_flags();
547 }
548 #endif
549 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)550 static int x86_smt_flags(void)
551 {
552 	return cpu_smt_flags() | x86_sched_itmt_flags();
553 }
554 #endif
555 #endif
556 
557 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
558 #ifdef CONFIG_SCHED_SMT
559 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
560 #endif
561 #ifdef CONFIG_SCHED_MC
562 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
563 #endif
564 	{ NULL, },
565 };
566 
567 static struct sched_domain_topology_level x86_topology[] = {
568 #ifdef CONFIG_SCHED_SMT
569 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
570 #endif
571 #ifdef CONFIG_SCHED_MC
572 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
573 #endif
574 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
575 	{ NULL, },
576 };
577 
578 /*
579  * Set if a package/die has multiple NUMA nodes inside.
580  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
581  * Sub-NUMA Clustering have this.
582  */
583 static bool x86_has_numa_in_package;
584 
set_cpu_sibling_map(int cpu)585 void set_cpu_sibling_map(int cpu)
586 {
587 	bool has_smt = smp_num_siblings > 1;
588 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
589 	struct cpuinfo_x86 *c = &cpu_data(cpu);
590 	struct cpuinfo_x86 *o;
591 	int i, threads;
592 
593 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
594 
595 	if (!has_mp) {
596 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
597 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
598 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
599 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
600 		c->booted_cores = 1;
601 		return;
602 	}
603 
604 	for_each_cpu(i, cpu_sibling_setup_mask) {
605 		o = &cpu_data(i);
606 
607 		if (match_pkg(c, o) && !topology_same_node(c, o))
608 			x86_has_numa_in_package = true;
609 
610 		if ((i == cpu) || (has_smt && match_smt(c, o)))
611 			link_mask(topology_sibling_cpumask, cpu, i);
612 
613 		if ((i == cpu) || (has_mp && match_llc(c, o)))
614 			link_mask(cpu_llc_shared_mask, cpu, i);
615 
616 		if ((i == cpu) || (has_mp && match_die(c, o)))
617 			link_mask(topology_die_cpumask, cpu, i);
618 	}
619 
620 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
621 	if (threads > __max_smt_threads)
622 		__max_smt_threads = threads;
623 
624 	for_each_cpu(i, topology_sibling_cpumask(cpu))
625 		cpu_data(i).smt_active = threads > 1;
626 
627 	/*
628 	 * This needs a separate iteration over the cpus because we rely on all
629 	 * topology_sibling_cpumask links to be set-up.
630 	 */
631 	for_each_cpu(i, cpu_sibling_setup_mask) {
632 		o = &cpu_data(i);
633 
634 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
635 			link_mask(topology_core_cpumask, cpu, i);
636 
637 			/*
638 			 *  Does this new cpu bringup a new core?
639 			 */
640 			if (threads == 1) {
641 				/*
642 				 * for each core in package, increment
643 				 * the booted_cores for this new cpu
644 				 */
645 				if (cpumask_first(
646 				    topology_sibling_cpumask(i)) == i)
647 					c->booted_cores++;
648 				/*
649 				 * increment the core count for all
650 				 * the other cpus in this package
651 				 */
652 				if (i != cpu)
653 					cpu_data(i).booted_cores++;
654 			} else if (i != cpu && !c->booted_cores)
655 				c->booted_cores = cpu_data(i).booted_cores;
656 		}
657 	}
658 }
659 
660 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)661 const struct cpumask *cpu_coregroup_mask(int cpu)
662 {
663 	return cpu_llc_shared_mask(cpu);
664 }
665 
impress_friends(void)666 static void impress_friends(void)
667 {
668 	int cpu;
669 	unsigned long bogosum = 0;
670 	/*
671 	 * Allow the user to impress friends.
672 	 */
673 	pr_debug("Before bogomips\n");
674 	for_each_possible_cpu(cpu)
675 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
676 			bogosum += cpu_data(cpu).loops_per_jiffy;
677 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
678 		num_online_cpus(),
679 		bogosum/(500000/HZ),
680 		(bogosum/(5000/HZ))%100);
681 
682 	pr_debug("Before bogocount - setting activated=1\n");
683 }
684 
__inquire_remote_apic(int apicid)685 void __inquire_remote_apic(int apicid)
686 {
687 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
688 	const char * const names[] = { "ID", "VERSION", "SPIV" };
689 	int timeout;
690 	u32 status;
691 
692 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
693 
694 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
695 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
696 
697 		/*
698 		 * Wait for idle.
699 		 */
700 		status = safe_apic_wait_icr_idle();
701 		if (status)
702 			pr_cont("a previous APIC delivery may have failed\n");
703 
704 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
705 
706 		timeout = 0;
707 		do {
708 			udelay(100);
709 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
710 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
711 
712 		switch (status) {
713 		case APIC_ICR_RR_VALID:
714 			status = apic_read(APIC_RRR);
715 			pr_cont("%08x\n", status);
716 			break;
717 		default:
718 			pr_cont("failed\n");
719 		}
720 	}
721 }
722 
723 /*
724  * The Multiprocessor Specification 1.4 (1997) example code suggests
725  * that there should be a 10ms delay between the BSP asserting INIT
726  * and de-asserting INIT, when starting a remote processor.
727  * But that slows boot and resume on modern processors, which include
728  * many cores and don't require that delay.
729  *
730  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
731  * Modern processor families are quirked to remove the delay entirely.
732  */
733 #define UDELAY_10MS_DEFAULT 10000
734 
735 static unsigned int init_udelay = UINT_MAX;
736 
cpu_init_udelay(char * str)737 static int __init cpu_init_udelay(char *str)
738 {
739 	get_option(&str, &init_udelay);
740 
741 	return 0;
742 }
743 early_param("cpu_init_udelay", cpu_init_udelay);
744 
smp_quirk_init_udelay(void)745 static void __init smp_quirk_init_udelay(void)
746 {
747 	/* if cmdline changed it from default, leave it alone */
748 	if (init_udelay != UINT_MAX)
749 		return;
750 
751 	/* if modern processor, use no delay */
752 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
753 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
754 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
755 		init_udelay = 0;
756 		return;
757 	}
758 	/* else, use legacy delay */
759 	init_udelay = UDELAY_10MS_DEFAULT;
760 }
761 
762 /*
763  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
764  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
765  * won't ... remember to clear down the APIC, etc later.
766  */
767 int
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)768 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
769 {
770 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
771 	unsigned long send_status, accept_status = 0;
772 	int maxlvt;
773 
774 	/* Target chip */
775 	/* Boot on the stack */
776 	/* Kick the second */
777 	apic_icr_write(APIC_DM_NMI | dm, apicid);
778 
779 	pr_debug("Waiting for send to finish...\n");
780 	send_status = safe_apic_wait_icr_idle();
781 
782 	/*
783 	 * Give the other CPU some time to accept the IPI.
784 	 */
785 	udelay(200);
786 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
787 		maxlvt = lapic_get_maxlvt();
788 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
789 			apic_write(APIC_ESR, 0);
790 		accept_status = (apic_read(APIC_ESR) & 0xEF);
791 	}
792 	pr_debug("NMI sent\n");
793 
794 	if (send_status)
795 		pr_err("APIC never delivered???\n");
796 	if (accept_status)
797 		pr_err("APIC delivery error (%lx)\n", accept_status);
798 
799 	return (send_status | accept_status);
800 }
801 
802 static int
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)803 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
804 {
805 	unsigned long send_status = 0, accept_status = 0;
806 	int maxlvt, num_starts, j;
807 
808 	maxlvt = lapic_get_maxlvt();
809 
810 	/*
811 	 * Be paranoid about clearing APIC errors.
812 	 */
813 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
814 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
815 			apic_write(APIC_ESR, 0);
816 		apic_read(APIC_ESR);
817 	}
818 
819 	pr_debug("Asserting INIT\n");
820 
821 	/*
822 	 * Turn INIT on target chip
823 	 */
824 	/*
825 	 * Send IPI
826 	 */
827 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
828 		       phys_apicid);
829 
830 	pr_debug("Waiting for send to finish...\n");
831 	send_status = safe_apic_wait_icr_idle();
832 
833 	udelay(init_udelay);
834 
835 	pr_debug("Deasserting INIT\n");
836 
837 	/* Target chip */
838 	/* Send IPI */
839 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
840 
841 	pr_debug("Waiting for send to finish...\n");
842 	send_status = safe_apic_wait_icr_idle();
843 
844 	mb();
845 
846 	/*
847 	 * Should we send STARTUP IPIs ?
848 	 *
849 	 * Determine this based on the APIC version.
850 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
851 	 */
852 	if (APIC_INTEGRATED(boot_cpu_apic_version))
853 		num_starts = 2;
854 	else
855 		num_starts = 0;
856 
857 	/*
858 	 * Run STARTUP IPI loop.
859 	 */
860 	pr_debug("#startup loops: %d\n", num_starts);
861 
862 	for (j = 1; j <= num_starts; j++) {
863 		pr_debug("Sending STARTUP #%d\n", j);
864 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
865 			apic_write(APIC_ESR, 0);
866 		apic_read(APIC_ESR);
867 		pr_debug("After apic_write\n");
868 
869 		/*
870 		 * STARTUP IPI
871 		 */
872 
873 		/* Target chip */
874 		/* Boot on the stack */
875 		/* Kick the second */
876 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
877 			       phys_apicid);
878 
879 		/*
880 		 * Give the other CPU some time to accept the IPI.
881 		 */
882 		if (init_udelay == 0)
883 			udelay(10);
884 		else
885 			udelay(300);
886 
887 		pr_debug("Startup point 1\n");
888 
889 		pr_debug("Waiting for send to finish...\n");
890 		send_status = safe_apic_wait_icr_idle();
891 
892 		/*
893 		 * Give the other CPU some time to accept the IPI.
894 		 */
895 		if (init_udelay == 0)
896 			udelay(10);
897 		else
898 			udelay(200);
899 
900 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
901 			apic_write(APIC_ESR, 0);
902 		accept_status = (apic_read(APIC_ESR) & 0xEF);
903 		if (send_status || accept_status)
904 			break;
905 	}
906 	pr_debug("After Startup\n");
907 
908 	if (send_status)
909 		pr_err("APIC never delivered???\n");
910 	if (accept_status)
911 		pr_err("APIC delivery error (%lx)\n", accept_status);
912 
913 	return (send_status | accept_status);
914 }
915 
916 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)917 static void announce_cpu(int cpu, int apicid)
918 {
919 	static int current_node = NUMA_NO_NODE;
920 	int node = early_cpu_to_node(cpu);
921 	static int width, node_width;
922 
923 	if (!width)
924 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
925 
926 	if (!node_width)
927 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
928 
929 	if (cpu == 1)
930 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
931 
932 	if (system_state < SYSTEM_RUNNING) {
933 		if (node != current_node) {
934 			if (current_node > (-1))
935 				pr_cont("\n");
936 			current_node = node;
937 
938 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
939 			       node_width - num_digits(node), " ", node);
940 		}
941 
942 		/* Add padding for the BSP */
943 		if (cpu == 1)
944 			pr_cont("%*s", width + 1, " ");
945 
946 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
947 
948 	} else
949 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
950 			node, cpu, apicid);
951 }
952 
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)953 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
954 {
955 	int cpu;
956 
957 	cpu = smp_processor_id();
958 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
959 		return NMI_HANDLED;
960 
961 	return NMI_DONE;
962 }
963 
964 /*
965  * Wake up AP by INIT, INIT, STARTUP sequence.
966  *
967  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
968  * boot-strap code which is not a desired behavior for waking up BSP. To
969  * void the boot-strap code, wake up CPU0 by NMI instead.
970  *
971  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
972  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
973  * We'll change this code in the future to wake up hard offlined CPU0 if
974  * real platform and request are available.
975  */
976 static int
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)977 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
978 	       int *cpu0_nmi_registered)
979 {
980 	int id;
981 	int boot_error;
982 
983 	preempt_disable();
984 
985 	/*
986 	 * Wake up AP by INIT, INIT, STARTUP sequence.
987 	 */
988 	if (cpu) {
989 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
990 		goto out;
991 	}
992 
993 	/*
994 	 * Wake up BSP by nmi.
995 	 *
996 	 * Register a NMI handler to help wake up CPU0.
997 	 */
998 	boot_error = register_nmi_handler(NMI_LOCAL,
999 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
1000 
1001 	if (!boot_error) {
1002 		enable_start_cpu0 = 1;
1003 		*cpu0_nmi_registered = 1;
1004 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1005 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1006 	}
1007 
1008 out:
1009 	preempt_enable();
1010 
1011 	return boot_error;
1012 }
1013 
common_cpu_up(unsigned int cpu,struct task_struct * idle)1014 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1015 {
1016 	int ret;
1017 
1018 	/* Just in case we booted with a single CPU. */
1019 	alternatives_enable_smp();
1020 
1021 	per_cpu(current_task, cpu) = idle;
1022 	cpu_init_stack_canary(cpu, idle);
1023 
1024 	/* Initialize the interrupt stack(s) */
1025 	ret = irq_init_percpu_irqstack(cpu);
1026 	if (ret)
1027 		return ret;
1028 
1029 #ifdef CONFIG_X86_32
1030 	/* Stack for startup_32 can be just as for start_secondary onwards */
1031 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1032 #else
1033 	initial_gs = per_cpu_offset(cpu);
1034 #endif
1035 	return 0;
1036 }
1037 
1038 /*
1039  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1040  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1041  * Returns zero if CPU booted OK, else error code from
1042  * ->wakeup_secondary_cpu.
1043  */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle,int * cpu0_nmi_registered)1044 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1045 		       int *cpu0_nmi_registered)
1046 {
1047 	/* start_ip had better be page-aligned! */
1048 	unsigned long start_ip = real_mode_header->trampoline_start;
1049 
1050 	unsigned long boot_error = 0;
1051 	unsigned long timeout;
1052 
1053 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1054 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1055 	initial_code = (unsigned long)start_secondary;
1056 	initial_stack  = idle->thread.sp;
1057 
1058 	/* Enable the espfix hack for this CPU */
1059 	init_espfix_ap(cpu);
1060 
1061 	/* So we see what's up */
1062 	announce_cpu(cpu, apicid);
1063 
1064 	/*
1065 	 * This grunge runs the startup process for
1066 	 * the targeted processor.
1067 	 */
1068 
1069 	if (x86_platform.legacy.warm_reset) {
1070 
1071 		pr_debug("Setting warm reset code and vector.\n");
1072 
1073 		smpboot_setup_warm_reset_vector(start_ip);
1074 		/*
1075 		 * Be paranoid about clearing APIC errors.
1076 		*/
1077 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1078 			apic_write(APIC_ESR, 0);
1079 			apic_read(APIC_ESR);
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * AP might wait on cpu_callout_mask in cpu_init() with
1085 	 * cpu_initialized_mask set if previous attempt to online
1086 	 * it timed-out. Clear cpu_initialized_mask so that after
1087 	 * INIT/SIPI it could start with a clean state.
1088 	 */
1089 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1090 	smp_mb();
1091 
1092 	/*
1093 	 * Wake up a CPU in difference cases:
1094 	 * - Use the method in the APIC driver if it's defined
1095 	 * Otherwise,
1096 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1097 	 */
1098 	if (apic->wakeup_secondary_cpu)
1099 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1100 	else
1101 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1102 						     cpu0_nmi_registered);
1103 
1104 	if (!boot_error) {
1105 		/*
1106 		 * Wait 10s total for first sign of life from AP
1107 		 */
1108 		boot_error = -1;
1109 		timeout = jiffies + 10*HZ;
1110 		while (time_before(jiffies, timeout)) {
1111 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1112 				/*
1113 				 * Tell AP to proceed with initialization
1114 				 */
1115 				cpumask_set_cpu(cpu, cpu_callout_mask);
1116 				boot_error = 0;
1117 				break;
1118 			}
1119 			schedule();
1120 		}
1121 	}
1122 
1123 	if (!boot_error) {
1124 		/*
1125 		 * Wait till AP completes initial initialization
1126 		 */
1127 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1128 			/*
1129 			 * Allow other tasks to run while we wait for the
1130 			 * AP to come online. This also gives a chance
1131 			 * for the MTRR work(triggered by the AP coming online)
1132 			 * to be completed in the stop machine context.
1133 			 */
1134 			schedule();
1135 		}
1136 	}
1137 
1138 	if (x86_platform.legacy.warm_reset) {
1139 		/*
1140 		 * Cleanup possible dangling ends...
1141 		 */
1142 		smpboot_restore_warm_reset_vector();
1143 	}
1144 
1145 	return boot_error;
1146 }
1147 
native_cpu_up(unsigned int cpu,struct task_struct * tidle)1148 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1149 {
1150 	int apicid = apic->cpu_present_to_apicid(cpu);
1151 	int cpu0_nmi_registered = 0;
1152 	unsigned long flags;
1153 	int err, ret = 0;
1154 
1155 	lockdep_assert_irqs_enabled();
1156 
1157 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1158 
1159 	if (apicid == BAD_APICID ||
1160 	    !physid_isset(apicid, phys_cpu_present_map) ||
1161 	    !apic->apic_id_valid(apicid)) {
1162 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1163 		return -EINVAL;
1164 	}
1165 
1166 	/*
1167 	 * Already booted CPU?
1168 	 */
1169 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1170 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1171 		return -ENOSYS;
1172 	}
1173 
1174 	/*
1175 	 * Save current MTRR state in case it was changed since early boot
1176 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1177 	 */
1178 	mtrr_save_state();
1179 
1180 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1181 	err = cpu_check_up_prepare(cpu);
1182 	if (err && err != -EBUSY)
1183 		return err;
1184 
1185 	/* the FPU context is blank, nobody can own it */
1186 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1187 
1188 	err = common_cpu_up(cpu, tidle);
1189 	if (err)
1190 		return err;
1191 
1192 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1193 	if (err) {
1194 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1195 		ret = -EIO;
1196 		goto unreg_nmi;
1197 	}
1198 
1199 	/*
1200 	 * Check TSC synchronization with the AP (keep irqs disabled
1201 	 * while doing so):
1202 	 */
1203 	local_irq_save(flags);
1204 	check_tsc_sync_source(cpu);
1205 	local_irq_restore(flags);
1206 
1207 	while (!cpu_online(cpu)) {
1208 		cpu_relax();
1209 		touch_nmi_watchdog();
1210 	}
1211 
1212 unreg_nmi:
1213 	/*
1214 	 * Clean up the nmi handler. Do this after the callin and callout sync
1215 	 * to avoid impact of possible long unregister time.
1216 	 */
1217 	if (cpu0_nmi_registered)
1218 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1219 
1220 	return ret;
1221 }
1222 
1223 /**
1224  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1225  */
arch_disable_smp_support(void)1226 void arch_disable_smp_support(void)
1227 {
1228 	disable_ioapic_support();
1229 }
1230 
1231 /*
1232  * Fall back to non SMP mode after errors.
1233  *
1234  * RED-PEN audit/test this more. I bet there is more state messed up here.
1235  */
disable_smp(void)1236 static __init void disable_smp(void)
1237 {
1238 	pr_info("SMP disabled\n");
1239 
1240 	disable_ioapic_support();
1241 
1242 	init_cpu_present(cpumask_of(0));
1243 	init_cpu_possible(cpumask_of(0));
1244 
1245 	if (smp_found_config)
1246 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1247 	else
1248 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1249 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1250 	cpumask_set_cpu(0, topology_core_cpumask(0));
1251 	cpumask_set_cpu(0, topology_die_cpumask(0));
1252 }
1253 
1254 /*
1255  * Various sanity checks.
1256  */
smp_sanity_check(void)1257 static void __init smp_sanity_check(void)
1258 {
1259 	preempt_disable();
1260 
1261 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1262 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1263 		unsigned int cpu;
1264 		unsigned nr;
1265 
1266 		pr_warn("More than 8 CPUs detected - skipping them\n"
1267 			"Use CONFIG_X86_BIGSMP\n");
1268 
1269 		nr = 0;
1270 		for_each_present_cpu(cpu) {
1271 			if (nr >= 8)
1272 				set_cpu_present(cpu, false);
1273 			nr++;
1274 		}
1275 
1276 		nr = 0;
1277 		for_each_possible_cpu(cpu) {
1278 			if (nr >= 8)
1279 				set_cpu_possible(cpu, false);
1280 			nr++;
1281 		}
1282 
1283 		nr_cpu_ids = 8;
1284 	}
1285 #endif
1286 
1287 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1288 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1289 			hard_smp_processor_id());
1290 
1291 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1292 	}
1293 
1294 	/*
1295 	 * Should not be necessary because the MP table should list the boot
1296 	 * CPU too, but we do it for the sake of robustness anyway.
1297 	 */
1298 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1299 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1300 			  boot_cpu_physical_apicid);
1301 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1302 	}
1303 	preempt_enable();
1304 }
1305 
smp_cpu_index_default(void)1306 static void __init smp_cpu_index_default(void)
1307 {
1308 	int i;
1309 	struct cpuinfo_x86 *c;
1310 
1311 	for_each_possible_cpu(i) {
1312 		c = &cpu_data(i);
1313 		/* mark all to hotplug */
1314 		c->cpu_index = nr_cpu_ids;
1315 	}
1316 }
1317 
smp_get_logical_apicid(void)1318 static void __init smp_get_logical_apicid(void)
1319 {
1320 	if (x2apic_mode)
1321 		cpu0_logical_apicid = apic_read(APIC_LDR);
1322 	else
1323 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1324 }
1325 
1326 /*
1327  * Prepare for SMP bootup.
1328  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1329  *            for common interface support.
1330  */
native_smp_prepare_cpus(unsigned int max_cpus)1331 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1332 {
1333 	unsigned int i;
1334 
1335 	smp_cpu_index_default();
1336 
1337 	/*
1338 	 * Setup boot CPU information
1339 	 */
1340 	smp_store_boot_cpu_info(); /* Final full version of the data */
1341 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1342 	mb();
1343 
1344 	for_each_possible_cpu(i) {
1345 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1346 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1347 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1348 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1349 	}
1350 
1351 	/*
1352 	 * Set 'default' x86 topology, this matches default_topology() in that
1353 	 * it has NUMA nodes as a topology level. See also
1354 	 * native_smp_cpus_done().
1355 	 *
1356 	 * Must be done before set_cpus_sibling_map() is ran.
1357 	 */
1358 	set_sched_topology(x86_topology);
1359 
1360 	set_cpu_sibling_map(0);
1361 	init_freq_invariance(false, false);
1362 	smp_sanity_check();
1363 
1364 	switch (apic_intr_mode) {
1365 	case APIC_PIC:
1366 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1367 		disable_smp();
1368 		return;
1369 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1370 		disable_smp();
1371 		/* Setup local timer */
1372 		x86_init.timers.setup_percpu_clockev();
1373 		return;
1374 	case APIC_VIRTUAL_WIRE:
1375 	case APIC_SYMMETRIC_IO:
1376 		break;
1377 	}
1378 
1379 	/* Setup local timer */
1380 	x86_init.timers.setup_percpu_clockev();
1381 
1382 	smp_get_logical_apicid();
1383 
1384 	pr_info("CPU0: ");
1385 	print_cpu_info(&cpu_data(0));
1386 
1387 	uv_system_init();
1388 
1389 	set_mtrr_aps_delayed_init();
1390 
1391 	smp_quirk_init_udelay();
1392 
1393 	speculative_store_bypass_ht_init();
1394 }
1395 
arch_thaw_secondary_cpus_begin(void)1396 void arch_thaw_secondary_cpus_begin(void)
1397 {
1398 	set_mtrr_aps_delayed_init();
1399 }
1400 
arch_thaw_secondary_cpus_end(void)1401 void arch_thaw_secondary_cpus_end(void)
1402 {
1403 	mtrr_aps_init();
1404 }
1405 
1406 /*
1407  * Early setup to make printk work.
1408  */
native_smp_prepare_boot_cpu(void)1409 void __init native_smp_prepare_boot_cpu(void)
1410 {
1411 	int me = smp_processor_id();
1412 	switch_to_new_gdt(me);
1413 	/* already set me in cpu_online_mask in boot_cpu_init() */
1414 	cpumask_set_cpu(me, cpu_callout_mask);
1415 	cpu_set_state_online(me);
1416 	native_pv_lock_init();
1417 }
1418 
calculate_max_logical_packages(void)1419 void __init calculate_max_logical_packages(void)
1420 {
1421 	int ncpus;
1422 
1423 	/*
1424 	 * Today neither Intel nor AMD support heterogeneous systems so
1425 	 * extrapolate the boot cpu's data to all packages.
1426 	 */
1427 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1428 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1429 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1430 }
1431 
native_smp_cpus_done(unsigned int max_cpus)1432 void __init native_smp_cpus_done(unsigned int max_cpus)
1433 {
1434 	pr_debug("Boot done\n");
1435 
1436 	calculate_max_logical_packages();
1437 
1438 	if (x86_has_numa_in_package)
1439 		set_sched_topology(x86_numa_in_package_topology);
1440 
1441 	nmi_selftest();
1442 	impress_friends();
1443 	mtrr_aps_init();
1444 }
1445 
1446 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1447 static int __init _setup_possible_cpus(char *str)
1448 {
1449 	get_option(&str, &setup_possible_cpus);
1450 	return 0;
1451 }
1452 early_param("possible_cpus", _setup_possible_cpus);
1453 
1454 
1455 /*
1456  * cpu_possible_mask should be static, it cannot change as cpu's
1457  * are onlined, or offlined. The reason is per-cpu data-structures
1458  * are allocated by some modules at init time, and don't expect to
1459  * do this dynamically on cpu arrival/departure.
1460  * cpu_present_mask on the other hand can change dynamically.
1461  * In case when cpu_hotplug is not compiled, then we resort to current
1462  * behaviour, which is cpu_possible == cpu_present.
1463  * - Ashok Raj
1464  *
1465  * Three ways to find out the number of additional hotplug CPUs:
1466  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1467  * - The user can overwrite it with possible_cpus=NUM
1468  * - Otherwise don't reserve additional CPUs.
1469  * We do this because additional CPUs waste a lot of memory.
1470  * -AK
1471  */
prefill_possible_map(void)1472 __init void prefill_possible_map(void)
1473 {
1474 	int i, possible;
1475 
1476 	/* No boot processor was found in mptable or ACPI MADT */
1477 	if (!num_processors) {
1478 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1479 			int apicid = boot_cpu_physical_apicid;
1480 			int cpu = hard_smp_processor_id();
1481 
1482 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1483 
1484 			/* Make sure boot cpu is enumerated */
1485 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1486 			    apic->apic_id_valid(apicid))
1487 				generic_processor_info(apicid, boot_cpu_apic_version);
1488 		}
1489 
1490 		if (!num_processors)
1491 			num_processors = 1;
1492 	}
1493 
1494 	i = setup_max_cpus ?: 1;
1495 	if (setup_possible_cpus == -1) {
1496 		possible = num_processors;
1497 #ifdef CONFIG_HOTPLUG_CPU
1498 		if (setup_max_cpus)
1499 			possible += disabled_cpus;
1500 #else
1501 		if (possible > i)
1502 			possible = i;
1503 #endif
1504 	} else
1505 		possible = setup_possible_cpus;
1506 
1507 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1508 
1509 	/* nr_cpu_ids could be reduced via nr_cpus= */
1510 	if (possible > nr_cpu_ids) {
1511 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1512 			possible, nr_cpu_ids);
1513 		possible = nr_cpu_ids;
1514 	}
1515 
1516 #ifdef CONFIG_HOTPLUG_CPU
1517 	if (!setup_max_cpus)
1518 #endif
1519 	if (possible > i) {
1520 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1521 			possible, setup_max_cpus);
1522 		possible = i;
1523 	}
1524 
1525 	nr_cpu_ids = possible;
1526 
1527 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1528 		possible, max_t(int, possible - num_processors, 0));
1529 
1530 	reset_cpu_possible_mask();
1531 
1532 	for (i = 0; i < possible; i++)
1533 		set_cpu_possible(i, true);
1534 }
1535 
1536 #ifdef CONFIG_HOTPLUG_CPU
1537 
1538 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1539 static void recompute_smt_state(void)
1540 {
1541 	int max_threads, cpu;
1542 
1543 	max_threads = 0;
1544 	for_each_online_cpu (cpu) {
1545 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1546 
1547 		if (threads > max_threads)
1548 			max_threads = threads;
1549 	}
1550 	__max_smt_threads = max_threads;
1551 }
1552 
remove_siblinginfo(int cpu)1553 static void remove_siblinginfo(int cpu)
1554 {
1555 	int sibling;
1556 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1557 
1558 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1559 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1560 		/*/
1561 		 * last thread sibling in this cpu core going down
1562 		 */
1563 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1564 			cpu_data(sibling).booted_cores--;
1565 	}
1566 
1567 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1568 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1569 
1570 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1571 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1572 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1573 			cpu_data(sibling).smt_active = false;
1574 	}
1575 
1576 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1577 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1578 	cpumask_clear(cpu_llc_shared_mask(cpu));
1579 	cpumask_clear(topology_sibling_cpumask(cpu));
1580 	cpumask_clear(topology_core_cpumask(cpu));
1581 	cpumask_clear(topology_die_cpumask(cpu));
1582 	c->cpu_core_id = 0;
1583 	c->booted_cores = 0;
1584 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1585 	recompute_smt_state();
1586 }
1587 
remove_cpu_from_maps(int cpu)1588 static void remove_cpu_from_maps(int cpu)
1589 {
1590 	set_cpu_online(cpu, false);
1591 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1592 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1593 	/* was set by cpu_init() */
1594 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1595 	numa_remove_cpu(cpu);
1596 }
1597 
cpu_disable_common(void)1598 void cpu_disable_common(void)
1599 {
1600 	int cpu = smp_processor_id();
1601 
1602 	remove_siblinginfo(cpu);
1603 
1604 	/* It's now safe to remove this processor from the online map */
1605 	lock_vector_lock();
1606 	remove_cpu_from_maps(cpu);
1607 	unlock_vector_lock();
1608 	fixup_irqs();
1609 	lapic_offline();
1610 }
1611 
native_cpu_disable(void)1612 int native_cpu_disable(void)
1613 {
1614 	int ret;
1615 
1616 	ret = lapic_can_unplug_cpu();
1617 	if (ret)
1618 		return ret;
1619 
1620 	cpu_disable_common();
1621 
1622         /*
1623          * Disable the local APIC. Otherwise IPI broadcasts will reach
1624          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1625          * messages.
1626          *
1627          * Disabling the APIC must happen after cpu_disable_common()
1628          * which invokes fixup_irqs().
1629          *
1630          * Disabling the APIC preserves already set bits in IRR, but
1631          * an interrupt arriving after disabling the local APIC does not
1632          * set the corresponding IRR bit.
1633          *
1634          * fixup_irqs() scans IRR for set bits so it can raise a not
1635          * yet handled interrupt on the new destination CPU via an IPI
1636          * but obviously it can't do so for IRR bits which are not set.
1637          * IOW, interrupts arriving after disabling the local APIC will
1638          * be lost.
1639          */
1640 	apic_soft_disable();
1641 
1642 	return 0;
1643 }
1644 
common_cpu_die(unsigned int cpu)1645 int common_cpu_die(unsigned int cpu)
1646 {
1647 	int ret = 0;
1648 
1649 	/* We don't do anything here: idle task is faking death itself. */
1650 
1651 	/* They ack this in play_dead() by setting CPU_DEAD */
1652 	if (cpu_wait_death(cpu, 5)) {
1653 		if (system_state == SYSTEM_RUNNING)
1654 			pr_info("CPU %u is now offline\n", cpu);
1655 	} else {
1656 		pr_err("CPU %u didn't die...\n", cpu);
1657 		ret = -1;
1658 	}
1659 
1660 	return ret;
1661 }
1662 
native_cpu_die(unsigned int cpu)1663 void native_cpu_die(unsigned int cpu)
1664 {
1665 	common_cpu_die(cpu);
1666 }
1667 
play_dead_common(void)1668 void play_dead_common(void)
1669 {
1670 	idle_task_exit();
1671 
1672 	/* Ack it */
1673 	(void)cpu_report_death();
1674 
1675 	/*
1676 	 * With physical CPU hotplug, we should halt the cpu
1677 	 */
1678 	local_irq_disable();
1679 }
1680 
1681 /**
1682  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1683  *
1684  * If NMI wants to wake up CPU0, start CPU0.
1685  */
cond_wakeup_cpu0(void)1686 void cond_wakeup_cpu0(void)
1687 {
1688 	if (smp_processor_id() == 0 && enable_start_cpu0)
1689 		start_cpu0();
1690 }
1691 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1692 
1693 /*
1694  * We need to flush the caches before going to sleep, lest we have
1695  * dirty data in our caches when we come back up.
1696  */
mwait_play_dead(void)1697 static inline void mwait_play_dead(void)
1698 {
1699 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1700 	unsigned int eax, ebx, ecx, edx;
1701 	unsigned int highest_cstate = 0;
1702 	unsigned int highest_subcstate = 0;
1703 	int i;
1704 
1705 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1706 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1707 		return;
1708 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1709 		return;
1710 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1711 		return;
1712 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1713 		return;
1714 
1715 	eax = CPUID_MWAIT_LEAF;
1716 	ecx = 0;
1717 	native_cpuid(&eax, &ebx, &ecx, &edx);
1718 
1719 	/*
1720 	 * eax will be 0 if EDX enumeration is not valid.
1721 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1722 	 */
1723 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1724 		eax = 0;
1725 	} else {
1726 		edx >>= MWAIT_SUBSTATE_SIZE;
1727 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1728 			if (edx & MWAIT_SUBSTATE_MASK) {
1729 				highest_cstate = i;
1730 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1731 			}
1732 		}
1733 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1734 			(highest_subcstate - 1);
1735 	}
1736 
1737 	wbinvd();
1738 
1739 	while (1) {
1740 		/*
1741 		 * The CLFLUSH is a workaround for erratum AAI65 for
1742 		 * the Xeon 7400 series.  It's not clear it is actually
1743 		 * needed, but it should be harmless in either case.
1744 		 * The WBINVD is insufficient due to the spurious-wakeup
1745 		 * case where we return around the loop.
1746 		 */
1747 		mb();
1748 		clflush(md);
1749 		mb();
1750 		__monitor(md, 0, 0);
1751 		mb();
1752 		__mwait(eax, 0);
1753 
1754 		cond_wakeup_cpu0();
1755 	}
1756 }
1757 
hlt_play_dead(void)1758 void hlt_play_dead(void)
1759 {
1760 	if (__this_cpu_read(cpu_info.x86) >= 4)
1761 		wbinvd();
1762 
1763 	while (1) {
1764 		native_halt();
1765 
1766 		cond_wakeup_cpu0();
1767 	}
1768 }
1769 
native_play_dead(void)1770 void native_play_dead(void)
1771 {
1772 	play_dead_common();
1773 	tboot_shutdown(TB_SHUTDOWN_WFS);
1774 
1775 	mwait_play_dead();	/* Only returns on failure */
1776 	if (cpuidle_play_dead())
1777 		hlt_play_dead();
1778 }
1779 
1780 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1781 int native_cpu_disable(void)
1782 {
1783 	return -ENOSYS;
1784 }
1785 
native_cpu_die(unsigned int cpu)1786 void native_cpu_die(unsigned int cpu)
1787 {
1788 	/* We said "no" in __cpu_disable */
1789 	BUG();
1790 }
1791 
native_play_dead(void)1792 void native_play_dead(void)
1793 {
1794 	BUG();
1795 }
1796 
1797 #endif
1798 
1799 #ifdef CONFIG_X86_64
1800 /*
1801  * APERF/MPERF frequency ratio computation.
1802  *
1803  * The scheduler wants to do frequency invariant accounting and needs a <1
1804  * ratio to account for the 'current' frequency, corresponding to
1805  * freq_curr / freq_max.
1806  *
1807  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1808  * our P-state setting is little more than a request/hint, we need to observe
1809  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1810  * interval after discarding idle time. This is given by:
1811  *
1812  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1813  *
1814  * where freq_base is the max non-turbo P-state.
1815  *
1816  * The freq_max term has to be set to a somewhat arbitrary value, because we
1817  * can't know which turbo states will be available at a given point in time:
1818  * it all depends on the thermal headroom of the entire package. We set it to
1819  * the turbo level with 4 cores active.
1820  *
1821  * Benchmarks show that's a good compromise between the 1C turbo ratio
1822  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1823  * which would ignore the entire turbo range (a conspicuous part, making
1824  * freq_curr/freq_max always maxed out).
1825  *
1826  * An exception to the heuristic above is the Atom uarch, where we choose the
1827  * highest turbo level for freq_max since Atom's are generally oriented towards
1828  * power efficiency.
1829  *
1830  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1831  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1832  */
1833 
1834 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1835 
1836 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1837 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1838 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1839 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1840 
arch_set_max_freq_ratio(bool turbo_disabled)1841 void arch_set_max_freq_ratio(bool turbo_disabled)
1842 {
1843 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1844 					arch_turbo_freq_ratio;
1845 }
1846 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1847 
turbo_disabled(void)1848 static bool turbo_disabled(void)
1849 {
1850 	u64 misc_en;
1851 	int err;
1852 
1853 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1854 	if (err)
1855 		return false;
1856 
1857 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1858 }
1859 
slv_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1860 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1861 {
1862 	int err;
1863 
1864 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1865 	if (err)
1866 		return false;
1867 
1868 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1869 	if (err)
1870 		return false;
1871 
1872 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1873 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1874 
1875 	return true;
1876 }
1877 
1878 #define X86_MATCH(model)					\
1879 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1880 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1881 
1882 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1883 	X86_MATCH(XEON_PHI_KNL),
1884 	X86_MATCH(XEON_PHI_KNM),
1885 	{}
1886 };
1887 
1888 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1889 	X86_MATCH(SKYLAKE_X),
1890 	{}
1891 };
1892 
1893 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1894 	X86_MATCH(ATOM_GOLDMONT),
1895 	X86_MATCH(ATOM_GOLDMONT_D),
1896 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1897 	{}
1898 };
1899 
knl_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int num_delta_fratio)1900 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1901 				int num_delta_fratio)
1902 {
1903 	int fratio, delta_fratio, found;
1904 	int err, i;
1905 	u64 msr;
1906 
1907 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1908 	if (err)
1909 		return false;
1910 
1911 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1912 
1913 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1914 	if (err)
1915 		return false;
1916 
1917 	fratio = (msr >> 8) & 0xFF;
1918 	i = 16;
1919 	found = 0;
1920 	do {
1921 		if (found >= num_delta_fratio) {
1922 			*turbo_freq = fratio;
1923 			return true;
1924 		}
1925 
1926 		delta_fratio = (msr >> (i + 5)) & 0x7;
1927 
1928 		if (delta_fratio) {
1929 			found += 1;
1930 			fratio -= delta_fratio;
1931 		}
1932 
1933 		i += 8;
1934 	} while (i < 64);
1935 
1936 	return true;
1937 }
1938 
skx_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int size)1939 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1940 {
1941 	u64 ratios, counts;
1942 	u32 group_size;
1943 	int err, i;
1944 
1945 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1946 	if (err)
1947 		return false;
1948 
1949 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1950 
1951 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1952 	if (err)
1953 		return false;
1954 
1955 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1956 	if (err)
1957 		return false;
1958 
1959 	for (i = 0; i < 64; i += 8) {
1960 		group_size = (counts >> i) & 0xFF;
1961 		if (group_size >= size) {
1962 			*turbo_freq = (ratios >> i) & 0xFF;
1963 			return true;
1964 		}
1965 	}
1966 
1967 	return false;
1968 }
1969 
core_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1970 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1971 {
1972 	u64 msr;
1973 	int err;
1974 
1975 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1976 	if (err)
1977 		return false;
1978 
1979 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1980 	if (err)
1981 		return false;
1982 
1983 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1984 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1985 
1986 	/* The CPU may have less than 4 cores */
1987 	if (!*turbo_freq)
1988 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1989 
1990 	return true;
1991 }
1992 
intel_set_max_freq_ratio(void)1993 static bool intel_set_max_freq_ratio(void)
1994 {
1995 	u64 base_freq, turbo_freq;
1996 	u64 turbo_ratio;
1997 
1998 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1999 		goto out;
2000 
2001 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
2002 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2003 		goto out;
2004 
2005 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2006 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2007 		goto out;
2008 
2009 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2010 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2011 		goto out;
2012 
2013 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2014 		goto out;
2015 
2016 	return false;
2017 
2018 out:
2019 	/*
2020 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2021 	 * but then fill all MSR's with zeroes.
2022 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2023 	 * in MSR_TURBO_RATIO_LIMIT.
2024 	 */
2025 	if (!base_freq || !turbo_freq) {
2026 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2027 		return false;
2028 	}
2029 
2030 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2031 	if (!turbo_ratio) {
2032 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2033 		return false;
2034 	}
2035 
2036 	arch_turbo_freq_ratio = turbo_ratio;
2037 	arch_set_max_freq_ratio(turbo_disabled());
2038 
2039 	return true;
2040 }
2041 
2042 #ifdef CONFIG_ACPI_CPPC_LIB
amd_set_max_freq_ratio(void)2043 static bool amd_set_max_freq_ratio(void)
2044 {
2045 	struct cppc_perf_caps perf_caps;
2046 	u64 highest_perf, nominal_perf;
2047 	u64 perf_ratio;
2048 	int rc;
2049 
2050 	rc = cppc_get_perf_caps(0, &perf_caps);
2051 	if (rc) {
2052 		pr_debug("Could not retrieve perf counters (%d)\n", rc);
2053 		return false;
2054 	}
2055 
2056 	highest_perf = amd_get_highest_perf();
2057 	nominal_perf = perf_caps.nominal_perf;
2058 
2059 	if (!highest_perf || !nominal_perf) {
2060 		pr_debug("Could not retrieve highest or nominal performance\n");
2061 		return false;
2062 	}
2063 
2064 	perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2065 	/* midpoint between max_boost and max_P */
2066 	perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2067 	if (!perf_ratio) {
2068 		pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2069 		return false;
2070 	}
2071 
2072 	arch_turbo_freq_ratio = perf_ratio;
2073 	arch_set_max_freq_ratio(false);
2074 
2075 	return true;
2076 }
2077 #else
amd_set_max_freq_ratio(void)2078 static bool amd_set_max_freq_ratio(void)
2079 {
2080 	return false;
2081 }
2082 #endif
2083 
init_counter_refs(void)2084 static void init_counter_refs(void)
2085 {
2086 	u64 aperf, mperf;
2087 
2088 	rdmsrl(MSR_IA32_APERF, aperf);
2089 	rdmsrl(MSR_IA32_MPERF, mperf);
2090 
2091 	this_cpu_write(arch_prev_aperf, aperf);
2092 	this_cpu_write(arch_prev_mperf, mperf);
2093 }
2094 
2095 #ifdef CONFIG_PM_SLEEP
2096 static struct syscore_ops freq_invariance_syscore_ops = {
2097 	.resume = init_counter_refs,
2098 };
2099 
register_freq_invariance_syscore_ops(void)2100 static void register_freq_invariance_syscore_ops(void)
2101 {
2102 	/* Bail out if registered already. */
2103 	if (freq_invariance_syscore_ops.node.prev)
2104 		return;
2105 
2106 	register_syscore_ops(&freq_invariance_syscore_ops);
2107 }
2108 #else
register_freq_invariance_syscore_ops(void)2109 static inline void register_freq_invariance_syscore_ops(void) {}
2110 #endif
2111 
init_freq_invariance(bool secondary,bool cppc_ready)2112 static void init_freq_invariance(bool secondary, bool cppc_ready)
2113 {
2114 	bool ret = false;
2115 
2116 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2117 		return;
2118 
2119 	if (secondary) {
2120 		if (static_branch_likely(&arch_scale_freq_key)) {
2121 			init_counter_refs();
2122 		}
2123 		return;
2124 	}
2125 
2126 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2127 		ret = intel_set_max_freq_ratio();
2128 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2129 		if (!cppc_ready) {
2130 			return;
2131 		}
2132 		ret = amd_set_max_freq_ratio();
2133 	}
2134 
2135 	if (ret) {
2136 		init_counter_refs();
2137 		static_branch_enable(&arch_scale_freq_key);
2138 		register_freq_invariance_syscore_ops();
2139 		pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2140 	} else {
2141 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2142 	}
2143 }
2144 
2145 #ifdef CONFIG_ACPI_CPPC_LIB
2146 static DEFINE_MUTEX(freq_invariance_lock);
2147 
init_freq_invariance_cppc(void)2148 void init_freq_invariance_cppc(void)
2149 {
2150 	static bool secondary;
2151 
2152 	mutex_lock(&freq_invariance_lock);
2153 
2154 	init_freq_invariance(secondary, true);
2155 	secondary = true;
2156 
2157 	mutex_unlock(&freq_invariance_lock);
2158 }
2159 #endif
2160 
disable_freq_invariance_workfn(struct work_struct * work)2161 static void disable_freq_invariance_workfn(struct work_struct *work)
2162 {
2163 	static_branch_disable(&arch_scale_freq_key);
2164 }
2165 
2166 static DECLARE_WORK(disable_freq_invariance_work,
2167 		    disable_freq_invariance_workfn);
2168 
2169 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2170 
arch_scale_freq_tick(void)2171 void arch_scale_freq_tick(void)
2172 {
2173 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2174 	u64 aperf, mperf;
2175 	u64 acnt, mcnt;
2176 
2177 	if (!arch_scale_freq_invariant())
2178 		return;
2179 
2180 	rdmsrl(MSR_IA32_APERF, aperf);
2181 	rdmsrl(MSR_IA32_MPERF, mperf);
2182 
2183 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2184 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2185 
2186 	this_cpu_write(arch_prev_aperf, aperf);
2187 	this_cpu_write(arch_prev_mperf, mperf);
2188 
2189 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2190 		goto error;
2191 
2192 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2193 		goto error;
2194 
2195 	freq_scale = div64_u64(acnt, mcnt);
2196 	if (!freq_scale)
2197 		goto error;
2198 
2199 	if (freq_scale > SCHED_CAPACITY_SCALE)
2200 		freq_scale = SCHED_CAPACITY_SCALE;
2201 
2202 	this_cpu_write(arch_freq_scale, freq_scale);
2203 	return;
2204 
2205 error:
2206 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2207 	schedule_work(&disable_freq_invariance_work);
2208 }
2209 #else
init_freq_invariance(bool secondary,bool cppc_ready)2210 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2211 {
2212 }
2213 #endif /* CONFIG_X86_64 */
2214