1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/skbuff.h>
10 #include <linux/bpf_trace.h>
11 #include <net/udp_tunnel.h>
12 #include <linux/ip.h>
13 #include <net/ipv6.h>
14 #include <net/tcp.h>
15 #include <linux/if_ether.h>
16 #include <linux/if_vlan.h>
17 #include <net/ip6_checksum.h>
18 #include "qede_ptp.h"
19
20 #include <linux/qed/qed_if.h>
21 #include "qede.h"
22 /*********************************
23 * Content also used by slowpath *
24 *********************************/
25
qede_alloc_rx_buffer(struct qede_rx_queue * rxq,bool allow_lazy)26 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
27 {
28 struct sw_rx_data *sw_rx_data;
29 struct eth_rx_bd *rx_bd;
30 dma_addr_t mapping;
31 struct page *data;
32
33 /* In case lazy-allocation is allowed, postpone allocation until the
34 * end of the NAPI run. We'd still need to make sure the Rx ring has
35 * sufficient buffers to guarantee an additional Rx interrupt.
36 */
37 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
38 rxq->filled_buffers--;
39 return 0;
40 }
41
42 data = alloc_pages(GFP_ATOMIC, 0);
43 if (unlikely(!data))
44 return -ENOMEM;
45
46 /* Map the entire page as it would be used
47 * for multiple RX buffer segment size mapping.
48 */
49 mapping = dma_map_page(rxq->dev, data, 0,
50 PAGE_SIZE, rxq->data_direction);
51 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
52 __free_page(data);
53 return -ENOMEM;
54 }
55
56 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
57 sw_rx_data->page_offset = 0;
58 sw_rx_data->data = data;
59 sw_rx_data->mapping = mapping;
60
61 /* Advance PROD and get BD pointer */
62 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
63 WARN_ON(!rx_bd);
64 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
65 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
66 rxq->rx_headroom);
67
68 rxq->sw_rx_prod++;
69 rxq->filled_buffers++;
70
71 return 0;
72 }
73
74 /* Unmap the data and free skb */
qede_free_tx_pkt(struct qede_dev * edev,struct qede_tx_queue * txq,int * len)75 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
76 {
77 u16 idx = txq->sw_tx_cons;
78 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
79 struct eth_tx_1st_bd *first_bd;
80 struct eth_tx_bd *tx_data_bd;
81 int bds_consumed = 0;
82 int nbds;
83 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
84 int i, split_bd_len = 0;
85
86 if (unlikely(!skb)) {
87 DP_ERR(edev,
88 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
89 idx, txq->sw_tx_cons, txq->sw_tx_prod);
90 return -1;
91 }
92
93 *len = skb->len;
94
95 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
96
97 bds_consumed++;
98
99 nbds = first_bd->data.nbds;
100
101 if (data_split) {
102 struct eth_tx_bd *split = (struct eth_tx_bd *)
103 qed_chain_consume(&txq->tx_pbl);
104 split_bd_len = BD_UNMAP_LEN(split);
105 bds_consumed++;
106 }
107 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
108 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
109
110 /* Unmap the data of the skb frags */
111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
112 tx_data_bd = (struct eth_tx_bd *)
113 qed_chain_consume(&txq->tx_pbl);
114 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
115 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
116 }
117
118 while (bds_consumed++ < nbds)
119 qed_chain_consume(&txq->tx_pbl);
120
121 /* Free skb */
122 dev_kfree_skb_any(skb);
123 txq->sw_tx_ring.skbs[idx].skb = NULL;
124 txq->sw_tx_ring.skbs[idx].flags = 0;
125
126 return 0;
127 }
128
129 /* Unmap the data and free skb when mapping failed during start_xmit */
qede_free_failed_tx_pkt(struct qede_tx_queue * txq,struct eth_tx_1st_bd * first_bd,int nbd,bool data_split)130 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
131 struct eth_tx_1st_bd *first_bd,
132 int nbd, bool data_split)
133 {
134 u16 idx = txq->sw_tx_prod;
135 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
136 struct eth_tx_bd *tx_data_bd;
137 int i, split_bd_len = 0;
138
139 /* Return prod to its position before this skb was handled */
140 qed_chain_set_prod(&txq->tx_pbl,
141 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
142
143 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
144
145 if (data_split) {
146 struct eth_tx_bd *split = (struct eth_tx_bd *)
147 qed_chain_produce(&txq->tx_pbl);
148 split_bd_len = BD_UNMAP_LEN(split);
149 nbd--;
150 }
151
152 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
153 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
154
155 /* Unmap the data of the skb frags */
156 for (i = 0; i < nbd; i++) {
157 tx_data_bd = (struct eth_tx_bd *)
158 qed_chain_produce(&txq->tx_pbl);
159 if (tx_data_bd->nbytes)
160 dma_unmap_page(txq->dev,
161 BD_UNMAP_ADDR(tx_data_bd),
162 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
163 }
164
165 /* Return again prod to its position before this skb was handled */
166 qed_chain_set_prod(&txq->tx_pbl,
167 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
168
169 /* Free skb */
170 dev_kfree_skb_any(skb);
171 txq->sw_tx_ring.skbs[idx].skb = NULL;
172 txq->sw_tx_ring.skbs[idx].flags = 0;
173 }
174
qede_xmit_type(struct sk_buff * skb,int * ipv6_ext)175 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
176 {
177 u32 rc = XMIT_L4_CSUM;
178 __be16 l3_proto;
179
180 if (skb->ip_summed != CHECKSUM_PARTIAL)
181 return XMIT_PLAIN;
182
183 l3_proto = vlan_get_protocol(skb);
184 if (l3_proto == htons(ETH_P_IPV6) &&
185 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
186 *ipv6_ext = 1;
187
188 if (skb->encapsulation) {
189 rc |= XMIT_ENC;
190 if (skb_is_gso(skb)) {
191 unsigned short gso_type = skb_shinfo(skb)->gso_type;
192
193 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
194 (gso_type & SKB_GSO_GRE_CSUM))
195 rc |= XMIT_ENC_GSO_L4_CSUM;
196
197 rc |= XMIT_LSO;
198 return rc;
199 }
200 }
201
202 if (skb_is_gso(skb))
203 rc |= XMIT_LSO;
204
205 return rc;
206 }
207
qede_set_params_for_ipv6_ext(struct sk_buff * skb,struct eth_tx_2nd_bd * second_bd,struct eth_tx_3rd_bd * third_bd)208 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
209 struct eth_tx_2nd_bd *second_bd,
210 struct eth_tx_3rd_bd *third_bd)
211 {
212 u8 l4_proto;
213 u16 bd2_bits1 = 0, bd2_bits2 = 0;
214
215 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
216
217 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
218 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
219 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
220
221 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
222 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
223
224 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
225 l4_proto = ipv6_hdr(skb)->nexthdr;
226 else
227 l4_proto = ip_hdr(skb)->protocol;
228
229 if (l4_proto == IPPROTO_UDP)
230 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
231
232 if (third_bd)
233 third_bd->data.bitfields |=
234 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
235 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
236 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
237
238 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
239 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
240 }
241
map_frag_to_bd(struct qede_tx_queue * txq,skb_frag_t * frag,struct eth_tx_bd * bd)242 static int map_frag_to_bd(struct qede_tx_queue *txq,
243 skb_frag_t *frag, struct eth_tx_bd *bd)
244 {
245 dma_addr_t mapping;
246
247 /* Map skb non-linear frag data for DMA */
248 mapping = skb_frag_dma_map(txq->dev, frag, 0,
249 skb_frag_size(frag), DMA_TO_DEVICE);
250 if (unlikely(dma_mapping_error(txq->dev, mapping)))
251 return -ENOMEM;
252
253 /* Setup the data pointer of the frag data */
254 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
255
256 return 0;
257 }
258
qede_get_skb_hlen(struct sk_buff * skb,bool is_encap_pkt)259 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
260 {
261 if (is_encap_pkt)
262 return (skb_inner_transport_header(skb) +
263 inner_tcp_hdrlen(skb) - skb->data);
264 else
265 return (skb_transport_header(skb) +
266 tcp_hdrlen(skb) - skb->data);
267 }
268
269 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
270 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
qede_pkt_req_lin(struct sk_buff * skb,u8 xmit_type)271 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
272 {
273 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
274
275 if (xmit_type & XMIT_LSO) {
276 int hlen;
277
278 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
279
280 /* linear payload would require its own BD */
281 if (skb_headlen(skb) > hlen)
282 allowed_frags--;
283 }
284
285 return (skb_shinfo(skb)->nr_frags > allowed_frags);
286 }
287 #endif
288
qede_update_tx_producer(struct qede_tx_queue * txq)289 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
290 {
291 /* wmb makes sure that the BDs data is updated before updating the
292 * producer, otherwise FW may read old data from the BDs.
293 */
294 wmb();
295 barrier();
296 writel(txq->tx_db.raw, txq->doorbell_addr);
297
298 /* Fence required to flush the write combined buffer, since another
299 * CPU may write to the same doorbell address and data may be lost
300 * due to relaxed order nature of write combined bar.
301 */
302 wmb();
303 }
304
qede_xdp_xmit(struct qede_tx_queue * txq,dma_addr_t dma,u16 pad,u16 len,struct page * page,struct xdp_frame * xdpf)305 static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad,
306 u16 len, struct page *page, struct xdp_frame *xdpf)
307 {
308 struct eth_tx_1st_bd *bd;
309 struct sw_tx_xdp *xdp;
310 u16 val;
311
312 if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >=
313 txq->num_tx_buffers)) {
314 txq->stopped_cnt++;
315 return -ENOMEM;
316 }
317
318 bd = qed_chain_produce(&txq->tx_pbl);
319 bd->data.nbds = 1;
320 bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
321
322 val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
323 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
324
325 bd->data.bitfields = cpu_to_le16(val);
326
327 /* We can safely ignore the offset, as it's 0 for XDP */
328 BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len);
329
330 xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod;
331 xdp->mapping = dma;
332 xdp->page = page;
333 xdp->xdpf = xdpf;
334
335 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
336
337 return 0;
338 }
339
qede_xdp_transmit(struct net_device * dev,int n_frames,struct xdp_frame ** frames,u32 flags)340 int qede_xdp_transmit(struct net_device *dev, int n_frames,
341 struct xdp_frame **frames, u32 flags)
342 {
343 struct qede_dev *edev = netdev_priv(dev);
344 struct device *dmadev = &edev->pdev->dev;
345 struct qede_tx_queue *xdp_tx;
346 struct xdp_frame *xdpf;
347 dma_addr_t mapping;
348 int i, nxmit = 0;
349 u16 xdp_prod;
350
351 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
352 return -EINVAL;
353
354 if (unlikely(!netif_running(dev)))
355 return -ENETDOWN;
356
357 i = smp_processor_id() % edev->total_xdp_queues;
358 xdp_tx = edev->fp_array[i].xdp_tx;
359
360 spin_lock(&xdp_tx->xdp_tx_lock);
361
362 for (i = 0; i < n_frames; i++) {
363 xdpf = frames[i];
364
365 mapping = dma_map_single(dmadev, xdpf->data, xdpf->len,
366 DMA_TO_DEVICE);
367 if (unlikely(dma_mapping_error(dmadev, mapping)))
368 break;
369
370 if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len,
371 NULL, xdpf)))
372 break;
373 nxmit++;
374 }
375
376 if (flags & XDP_XMIT_FLUSH) {
377 xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl);
378
379 xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
380 qede_update_tx_producer(xdp_tx);
381 }
382
383 spin_unlock(&xdp_tx->xdp_tx_lock);
384
385 return nxmit;
386 }
387
qede_txq_has_work(struct qede_tx_queue * txq)388 int qede_txq_has_work(struct qede_tx_queue *txq)
389 {
390 u16 hw_bd_cons;
391
392 /* Tell compiler that consumer and producer can change */
393 barrier();
394 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
395 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
396 return 0;
397
398 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
399 }
400
qede_xdp_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)401 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
402 {
403 struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp;
404 struct device *dev = &edev->pdev->dev;
405 struct xdp_frame *xdpf;
406 u16 hw_bd_cons;
407
408 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
409 barrier();
410
411 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
412 xdp_info = xdp_arr + txq->sw_tx_cons;
413 xdpf = xdp_info->xdpf;
414
415 if (xdpf) {
416 dma_unmap_single(dev, xdp_info->mapping, xdpf->len,
417 DMA_TO_DEVICE);
418 xdp_return_frame(xdpf);
419
420 xdp_info->xdpf = NULL;
421 } else {
422 dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE,
423 DMA_BIDIRECTIONAL);
424 __free_page(xdp_info->page);
425 }
426
427 qed_chain_consume(&txq->tx_pbl);
428 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
429 txq->xmit_pkts++;
430 }
431 }
432
qede_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)433 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
434 {
435 unsigned int pkts_compl = 0, bytes_compl = 0;
436 struct netdev_queue *netdev_txq;
437 u16 hw_bd_cons;
438 int rc;
439
440 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
441
442 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
443 barrier();
444
445 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
446 int len = 0;
447
448 rc = qede_free_tx_pkt(edev, txq, &len);
449 if (rc) {
450 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
451 hw_bd_cons,
452 qed_chain_get_cons_idx(&txq->tx_pbl));
453 break;
454 }
455
456 bytes_compl += len;
457 pkts_compl++;
458 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
459 txq->xmit_pkts++;
460 }
461
462 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
463
464 /* Need to make the tx_bd_cons update visible to start_xmit()
465 * before checking for netif_tx_queue_stopped(). Without the
466 * memory barrier, there is a small possibility that
467 * start_xmit() will miss it and cause the queue to be stopped
468 * forever.
469 * On the other hand we need an rmb() here to ensure the proper
470 * ordering of bit testing in the following
471 * netif_tx_queue_stopped(txq) call.
472 */
473 smp_mb();
474
475 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
476 /* Taking tx_lock is needed to prevent reenabling the queue
477 * while it's empty. This could have happen if rx_action() gets
478 * suspended in qede_tx_int() after the condition before
479 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
480 *
481 * stops the queue->sees fresh tx_bd_cons->releases the queue->
482 * sends some packets consuming the whole queue again->
483 * stops the queue
484 */
485
486 __netif_tx_lock(netdev_txq, smp_processor_id());
487
488 if ((netif_tx_queue_stopped(netdev_txq)) &&
489 (edev->state == QEDE_STATE_OPEN) &&
490 (qed_chain_get_elem_left(&txq->tx_pbl)
491 >= (MAX_SKB_FRAGS + 1))) {
492 netif_tx_wake_queue(netdev_txq);
493 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
494 "Wake queue was called\n");
495 }
496
497 __netif_tx_unlock(netdev_txq);
498 }
499
500 return 0;
501 }
502
qede_has_rx_work(struct qede_rx_queue * rxq)503 bool qede_has_rx_work(struct qede_rx_queue *rxq)
504 {
505 u16 hw_comp_cons, sw_comp_cons;
506
507 /* Tell compiler that status block fields can change */
508 barrier();
509
510 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
511 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
512
513 return hw_comp_cons != sw_comp_cons;
514 }
515
qede_rx_bd_ring_consume(struct qede_rx_queue * rxq)516 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
517 {
518 qed_chain_consume(&rxq->rx_bd_ring);
519 rxq->sw_rx_cons++;
520 }
521
522 /* This function reuses the buffer(from an offset) from
523 * consumer index to producer index in the bd ring
524 */
qede_reuse_page(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)525 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
526 struct sw_rx_data *curr_cons)
527 {
528 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
529 struct sw_rx_data *curr_prod;
530 dma_addr_t new_mapping;
531
532 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
533 *curr_prod = *curr_cons;
534
535 new_mapping = curr_prod->mapping + curr_prod->page_offset;
536
537 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
538 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
539 rxq->rx_headroom);
540
541 rxq->sw_rx_prod++;
542 curr_cons->data = NULL;
543 }
544
545 /* In case of allocation failures reuse buffers
546 * from consumer index to produce buffers for firmware
547 */
qede_recycle_rx_bd_ring(struct qede_rx_queue * rxq,u8 count)548 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
549 {
550 struct sw_rx_data *curr_cons;
551
552 for (; count > 0; count--) {
553 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
554 qede_reuse_page(rxq, curr_cons);
555 qede_rx_bd_ring_consume(rxq);
556 }
557 }
558
qede_realloc_rx_buffer(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)559 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
560 struct sw_rx_data *curr_cons)
561 {
562 /* Move to the next segment in the page */
563 curr_cons->page_offset += rxq->rx_buf_seg_size;
564
565 if (curr_cons->page_offset == PAGE_SIZE) {
566 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
567 /* Since we failed to allocate new buffer
568 * current buffer can be used again.
569 */
570 curr_cons->page_offset -= rxq->rx_buf_seg_size;
571
572 return -ENOMEM;
573 }
574
575 dma_unmap_page(rxq->dev, curr_cons->mapping,
576 PAGE_SIZE, rxq->data_direction);
577 } else {
578 /* Increment refcount of the page as we don't want
579 * network stack to take the ownership of the page
580 * which can be recycled multiple times by the driver.
581 */
582 page_ref_inc(curr_cons->data);
583 qede_reuse_page(rxq, curr_cons);
584 }
585
586 return 0;
587 }
588
qede_update_rx_prod(struct qede_dev * edev,struct qede_rx_queue * rxq)589 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
590 {
591 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
592 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
593 struct eth_rx_prod_data rx_prods = {0};
594
595 /* Update producers */
596 rx_prods.bd_prod = cpu_to_le16(bd_prod);
597 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
598
599 /* Make sure that the BD and SGE data is updated before updating the
600 * producers since FW might read the BD/SGE right after the producer
601 * is updated.
602 */
603 wmb();
604
605 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
606 (u32 *)&rx_prods);
607 }
608
qede_get_rxhash(struct sk_buff * skb,u8 bitfields,__le32 rss_hash)609 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
610 {
611 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
612 enum rss_hash_type htype;
613 u32 hash = 0;
614
615 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
616 if (htype) {
617 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
618 (htype == RSS_HASH_TYPE_IPV6)) ?
619 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
620 hash = le32_to_cpu(rss_hash);
621 }
622 skb_set_hash(skb, hash, hash_type);
623 }
624
qede_set_skb_csum(struct sk_buff * skb,u8 csum_flag)625 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
626 {
627 skb_checksum_none_assert(skb);
628
629 if (csum_flag & QEDE_CSUM_UNNECESSARY)
630 skb->ip_summed = CHECKSUM_UNNECESSARY;
631
632 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
633 skb->csum_level = 1;
634 skb->encapsulation = 1;
635 }
636 }
637
qede_skb_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct sk_buff * skb,u16 vlan_tag)638 static inline void qede_skb_receive(struct qede_dev *edev,
639 struct qede_fastpath *fp,
640 struct qede_rx_queue *rxq,
641 struct sk_buff *skb, u16 vlan_tag)
642 {
643 if (vlan_tag)
644 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
645
646 napi_gro_receive(&fp->napi, skb);
647 }
648
qede_set_gro_params(struct qede_dev * edev,struct sk_buff * skb,struct eth_fast_path_rx_tpa_start_cqe * cqe)649 static void qede_set_gro_params(struct qede_dev *edev,
650 struct sk_buff *skb,
651 struct eth_fast_path_rx_tpa_start_cqe *cqe)
652 {
653 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
654
655 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
656 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
657 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
658 else
659 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
660
661 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
662 cqe->header_len;
663 }
664
qede_fill_frag_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,u8 tpa_agg_index,u16 len_on_bd)665 static int qede_fill_frag_skb(struct qede_dev *edev,
666 struct qede_rx_queue *rxq,
667 u8 tpa_agg_index, u16 len_on_bd)
668 {
669 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
670 NUM_RX_BDS_MAX];
671 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
672 struct sk_buff *skb = tpa_info->skb;
673
674 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
675 goto out;
676
677 /* Add one frag and update the appropriate fields in the skb */
678 skb_fill_page_desc(skb, tpa_info->frag_id++,
679 current_bd->data,
680 current_bd->page_offset + rxq->rx_headroom,
681 len_on_bd);
682
683 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
684 /* Incr page ref count to reuse on allocation failure
685 * so that it doesn't get freed while freeing SKB.
686 */
687 page_ref_inc(current_bd->data);
688 goto out;
689 }
690
691 qede_rx_bd_ring_consume(rxq);
692
693 skb->data_len += len_on_bd;
694 skb->truesize += rxq->rx_buf_seg_size;
695 skb->len += len_on_bd;
696
697 return 0;
698
699 out:
700 tpa_info->state = QEDE_AGG_STATE_ERROR;
701 qede_recycle_rx_bd_ring(rxq, 1);
702
703 return -ENOMEM;
704 }
705
qede_tunn_exist(u16 flag)706 static bool qede_tunn_exist(u16 flag)
707 {
708 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
709 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
710 }
711
qede_check_tunn_csum(u16 flag)712 static u8 qede_check_tunn_csum(u16 flag)
713 {
714 u16 csum_flag = 0;
715 u8 tcsum = 0;
716
717 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
718 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
719 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
720 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
721
722 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
723 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
724 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
725 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
726 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
727 }
728
729 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
730 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
731 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
732 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
733
734 if (csum_flag & flag)
735 return QEDE_CSUM_ERROR;
736
737 return QEDE_CSUM_UNNECESSARY | tcsum;
738 }
739
740 static inline struct sk_buff *
qede_build_skb(struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)741 qede_build_skb(struct qede_rx_queue *rxq,
742 struct sw_rx_data *bd, u16 len, u16 pad)
743 {
744 struct sk_buff *skb;
745 void *buf;
746
747 buf = page_address(bd->data) + bd->page_offset;
748 skb = build_skb(buf, rxq->rx_buf_seg_size);
749
750 if (unlikely(!skb))
751 return NULL;
752
753 skb_reserve(skb, pad);
754 skb_put(skb, len);
755
756 return skb;
757 }
758
759 static struct sk_buff *
qede_tpa_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad,bool alloc_skb)760 qede_tpa_rx_build_skb(struct qede_dev *edev,
761 struct qede_rx_queue *rxq,
762 struct sw_rx_data *bd, u16 len, u16 pad,
763 bool alloc_skb)
764 {
765 struct sk_buff *skb;
766
767 skb = qede_build_skb(rxq, bd, len, pad);
768 bd->page_offset += rxq->rx_buf_seg_size;
769
770 if (bd->page_offset == PAGE_SIZE) {
771 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
772 DP_NOTICE(edev,
773 "Failed to allocate RX buffer for tpa start\n");
774 bd->page_offset -= rxq->rx_buf_seg_size;
775 page_ref_inc(bd->data);
776 dev_kfree_skb_any(skb);
777 return NULL;
778 }
779 } else {
780 page_ref_inc(bd->data);
781 qede_reuse_page(rxq, bd);
782 }
783
784 /* We've consumed the first BD and prepared an SKB */
785 qede_rx_bd_ring_consume(rxq);
786
787 return skb;
788 }
789
790 static struct sk_buff *
qede_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)791 qede_rx_build_skb(struct qede_dev *edev,
792 struct qede_rx_queue *rxq,
793 struct sw_rx_data *bd, u16 len, u16 pad)
794 {
795 struct sk_buff *skb = NULL;
796
797 /* For smaller frames still need to allocate skb, memcpy
798 * data and benefit in reusing the page segment instead of
799 * un-mapping it.
800 */
801 if ((len + pad <= edev->rx_copybreak)) {
802 unsigned int offset = bd->page_offset + pad;
803
804 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
805 if (unlikely(!skb))
806 return NULL;
807
808 skb_reserve(skb, pad);
809 skb_put_data(skb, page_address(bd->data) + offset, len);
810 qede_reuse_page(rxq, bd);
811 goto out;
812 }
813
814 skb = qede_build_skb(rxq, bd, len, pad);
815
816 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
817 /* Incr page ref count to reuse on allocation failure so
818 * that it doesn't get freed while freeing SKB [as its
819 * already mapped there].
820 */
821 page_ref_inc(bd->data);
822 dev_kfree_skb_any(skb);
823 return NULL;
824 }
825 out:
826 /* We've consumed the first BD and prepared an SKB */
827 qede_rx_bd_ring_consume(rxq);
828
829 return skb;
830 }
831
qede_tpa_start(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_start_cqe * cqe)832 static void qede_tpa_start(struct qede_dev *edev,
833 struct qede_rx_queue *rxq,
834 struct eth_fast_path_rx_tpa_start_cqe *cqe)
835 {
836 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
837 struct sw_rx_data *sw_rx_data_cons;
838 u16 pad;
839
840 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
841 pad = cqe->placement_offset + rxq->rx_headroom;
842
843 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
844 le16_to_cpu(cqe->len_on_first_bd),
845 pad, false);
846 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
847 tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
848
849 if (unlikely(!tpa_info->skb)) {
850 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
851
852 /* Consume from ring but do not produce since
853 * this might be used by FW still, it will be re-used
854 * at TPA end.
855 */
856 tpa_info->tpa_start_fail = true;
857 qede_rx_bd_ring_consume(rxq);
858 tpa_info->state = QEDE_AGG_STATE_ERROR;
859 goto cons_buf;
860 }
861
862 tpa_info->frag_id = 0;
863 tpa_info->state = QEDE_AGG_STATE_START;
864
865 if ((le16_to_cpu(cqe->pars_flags.flags) >>
866 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
867 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
868 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
869 else
870 tpa_info->vlan_tag = 0;
871
872 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
873
874 /* This is needed in order to enable forwarding support */
875 qede_set_gro_params(edev, tpa_info->skb, cqe);
876
877 cons_buf: /* We still need to handle bd_len_list to consume buffers */
878 if (likely(cqe->bw_ext_bd_len_list[0]))
879 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
880 le16_to_cpu(cqe->bw_ext_bd_len_list[0]));
881
882 if (unlikely(cqe->bw_ext_bd_len_list[1])) {
883 DP_ERR(edev,
884 "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n");
885 tpa_info->state = QEDE_AGG_STATE_ERROR;
886 }
887 }
888
889 #ifdef CONFIG_INET
qede_gro_ip_csum(struct sk_buff * skb)890 static void qede_gro_ip_csum(struct sk_buff *skb)
891 {
892 const struct iphdr *iph = ip_hdr(skb);
893 struct tcphdr *th;
894
895 skb_set_transport_header(skb, sizeof(struct iphdr));
896 th = tcp_hdr(skb);
897
898 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
899 iph->saddr, iph->daddr, 0);
900
901 tcp_gro_complete(skb);
902 }
903
qede_gro_ipv6_csum(struct sk_buff * skb)904 static void qede_gro_ipv6_csum(struct sk_buff *skb)
905 {
906 struct ipv6hdr *iph = ipv6_hdr(skb);
907 struct tcphdr *th;
908
909 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
910 th = tcp_hdr(skb);
911
912 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
913 &iph->saddr, &iph->daddr, 0);
914 tcp_gro_complete(skb);
915 }
916 #endif
917
qede_gro_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct sk_buff * skb,u16 vlan_tag)918 static void qede_gro_receive(struct qede_dev *edev,
919 struct qede_fastpath *fp,
920 struct sk_buff *skb,
921 u16 vlan_tag)
922 {
923 /* FW can send a single MTU sized packet from gro flow
924 * due to aggregation timeout/last segment etc. which
925 * is not expected to be a gro packet. If a skb has zero
926 * frags then simply push it in the stack as non gso skb.
927 */
928 if (unlikely(!skb->data_len)) {
929 skb_shinfo(skb)->gso_type = 0;
930 skb_shinfo(skb)->gso_size = 0;
931 goto send_skb;
932 }
933
934 #ifdef CONFIG_INET
935 if (skb_shinfo(skb)->gso_size) {
936 skb_reset_network_header(skb);
937
938 switch (skb->protocol) {
939 case htons(ETH_P_IP):
940 qede_gro_ip_csum(skb);
941 break;
942 case htons(ETH_P_IPV6):
943 qede_gro_ipv6_csum(skb);
944 break;
945 default:
946 DP_ERR(edev,
947 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
948 ntohs(skb->protocol));
949 }
950 }
951 #endif
952
953 send_skb:
954 skb_record_rx_queue(skb, fp->rxq->rxq_id);
955 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
956 }
957
qede_tpa_cont(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_cont_cqe * cqe)958 static inline void qede_tpa_cont(struct qede_dev *edev,
959 struct qede_rx_queue *rxq,
960 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
961 {
962 int i;
963
964 for (i = 0; cqe->len_list[i]; i++)
965 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
966 le16_to_cpu(cqe->len_list[i]));
967
968 if (unlikely(i > 1))
969 DP_ERR(edev,
970 "Strange - TPA cont with more than a single len_list entry\n");
971 }
972
qede_tpa_end(struct qede_dev * edev,struct qede_fastpath * fp,struct eth_fast_path_rx_tpa_end_cqe * cqe)973 static int qede_tpa_end(struct qede_dev *edev,
974 struct qede_fastpath *fp,
975 struct eth_fast_path_rx_tpa_end_cqe *cqe)
976 {
977 struct qede_rx_queue *rxq = fp->rxq;
978 struct qede_agg_info *tpa_info;
979 struct sk_buff *skb;
980 int i;
981
982 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
983 skb = tpa_info->skb;
984
985 if (tpa_info->buffer.page_offset == PAGE_SIZE)
986 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
987 PAGE_SIZE, rxq->data_direction);
988
989 for (i = 0; cqe->len_list[i]; i++)
990 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
991 le16_to_cpu(cqe->len_list[i]));
992 if (unlikely(i > 1))
993 DP_ERR(edev,
994 "Strange - TPA emd with more than a single len_list entry\n");
995
996 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
997 goto err;
998
999 /* Sanity */
1000 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1001 DP_ERR(edev,
1002 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1003 cqe->num_of_bds, tpa_info->frag_id);
1004 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1005 DP_ERR(edev,
1006 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1007 le16_to_cpu(cqe->total_packet_len), skb->len);
1008
1009 /* Finalize the SKB */
1010 skb->protocol = eth_type_trans(skb, edev->ndev);
1011 skb->ip_summed = CHECKSUM_UNNECESSARY;
1012
1013 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1014 * to skb_shinfo(skb)->gso_segs
1015 */
1016 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1017
1018 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1019
1020 tpa_info->state = QEDE_AGG_STATE_NONE;
1021
1022 return 1;
1023 err:
1024 tpa_info->state = QEDE_AGG_STATE_NONE;
1025
1026 if (tpa_info->tpa_start_fail) {
1027 qede_reuse_page(rxq, &tpa_info->buffer);
1028 tpa_info->tpa_start_fail = false;
1029 }
1030
1031 dev_kfree_skb_any(tpa_info->skb);
1032 tpa_info->skb = NULL;
1033 return 0;
1034 }
1035
qede_check_notunn_csum(u16 flag)1036 static u8 qede_check_notunn_csum(u16 flag)
1037 {
1038 u16 csum_flag = 0;
1039 u8 csum = 0;
1040
1041 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1042 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1043 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1044 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1045 csum = QEDE_CSUM_UNNECESSARY;
1046 }
1047
1048 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1049 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1050
1051 if (csum_flag & flag)
1052 return QEDE_CSUM_ERROR;
1053
1054 return csum;
1055 }
1056
qede_check_csum(u16 flag)1057 static u8 qede_check_csum(u16 flag)
1058 {
1059 if (!qede_tunn_exist(flag))
1060 return qede_check_notunn_csum(flag);
1061 else
1062 return qede_check_tunn_csum(flag);
1063 }
1064
qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe * cqe,u16 flag)1065 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1066 u16 flag)
1067 {
1068 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1069
1070 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1071 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1072 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1073 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1074 return true;
1075
1076 return false;
1077 }
1078
1079 /* Return true iff packet is to be passed to stack */
qede_rx_xdp(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct bpf_prog * prog,struct sw_rx_data * bd,struct eth_fast_path_rx_reg_cqe * cqe,u16 * data_offset,u16 * len)1080 static bool qede_rx_xdp(struct qede_dev *edev,
1081 struct qede_fastpath *fp,
1082 struct qede_rx_queue *rxq,
1083 struct bpf_prog *prog,
1084 struct sw_rx_data *bd,
1085 struct eth_fast_path_rx_reg_cqe *cqe,
1086 u16 *data_offset, u16 *len)
1087 {
1088 struct xdp_buff xdp;
1089 enum xdp_action act;
1090
1091 xdp_init_buff(&xdp, rxq->rx_buf_seg_size, &rxq->xdp_rxq);
1092 xdp_prepare_buff(&xdp, page_address(bd->data), *data_offset,
1093 *len, false);
1094
1095 act = bpf_prog_run_xdp(prog, &xdp);
1096
1097 /* Recalculate, as XDP might have changed the headers */
1098 *data_offset = xdp.data - xdp.data_hard_start;
1099 *len = xdp.data_end - xdp.data;
1100
1101 if (act == XDP_PASS)
1102 return true;
1103
1104 /* Count number of packets not to be passed to stack */
1105 rxq->xdp_no_pass++;
1106
1107 switch (act) {
1108 case XDP_TX:
1109 /* We need the replacement buffer before transmit. */
1110 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1111 qede_recycle_rx_bd_ring(rxq, 1);
1112
1113 trace_xdp_exception(edev->ndev, prog, act);
1114 break;
1115 }
1116
1117 /* Now if there's a transmission problem, we'd still have to
1118 * throw current buffer, as replacement was already allocated.
1119 */
1120 if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping,
1121 *data_offset, *len, bd->data,
1122 NULL))) {
1123 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1124 rxq->data_direction);
1125 __free_page(bd->data);
1126
1127 trace_xdp_exception(edev->ndev, prog, act);
1128 } else {
1129 dma_sync_single_for_device(rxq->dev,
1130 bd->mapping + *data_offset,
1131 *len, rxq->data_direction);
1132 fp->xdp_xmit |= QEDE_XDP_TX;
1133 }
1134
1135 /* Regardless, we've consumed an Rx BD */
1136 qede_rx_bd_ring_consume(rxq);
1137 break;
1138 case XDP_REDIRECT:
1139 /* We need the replacement buffer before transmit. */
1140 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1141 qede_recycle_rx_bd_ring(rxq, 1);
1142
1143 trace_xdp_exception(edev->ndev, prog, act);
1144 break;
1145 }
1146
1147 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1148 rxq->data_direction);
1149
1150 if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog)))
1151 DP_NOTICE(edev, "Failed to redirect the packet\n");
1152 else
1153 fp->xdp_xmit |= QEDE_XDP_REDIRECT;
1154
1155 qede_rx_bd_ring_consume(rxq);
1156 break;
1157 default:
1158 bpf_warn_invalid_xdp_action(act);
1159 fallthrough;
1160 case XDP_ABORTED:
1161 trace_xdp_exception(edev->ndev, prog, act);
1162 fallthrough;
1163 case XDP_DROP:
1164 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1165 }
1166
1167 return false;
1168 }
1169
qede_rx_build_jumbo(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sk_buff * skb,struct eth_fast_path_rx_reg_cqe * cqe,u16 first_bd_len)1170 static int qede_rx_build_jumbo(struct qede_dev *edev,
1171 struct qede_rx_queue *rxq,
1172 struct sk_buff *skb,
1173 struct eth_fast_path_rx_reg_cqe *cqe,
1174 u16 first_bd_len)
1175 {
1176 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1177 struct sw_rx_data *bd;
1178 u16 bd_cons_idx;
1179 u8 num_frags;
1180
1181 pkt_len -= first_bd_len;
1182
1183 /* We've already used one BD for the SKB. Now take care of the rest */
1184 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1185 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1186 pkt_len;
1187
1188 if (unlikely(!cur_size)) {
1189 DP_ERR(edev,
1190 "Still got %d BDs for mapping jumbo, but length became 0\n",
1191 num_frags);
1192 goto out;
1193 }
1194
1195 /* We need a replacement buffer for each BD */
1196 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1197 goto out;
1198
1199 /* Now that we've allocated the replacement buffer,
1200 * we can safely consume the next BD and map it to the SKB.
1201 */
1202 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1203 bd = &rxq->sw_rx_ring[bd_cons_idx];
1204 qede_rx_bd_ring_consume(rxq);
1205
1206 dma_unmap_page(rxq->dev, bd->mapping,
1207 PAGE_SIZE, DMA_FROM_DEVICE);
1208
1209 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, bd->data,
1210 rxq->rx_headroom, cur_size, PAGE_SIZE);
1211
1212 pkt_len -= cur_size;
1213 }
1214
1215 if (unlikely(pkt_len))
1216 DP_ERR(edev,
1217 "Mapped all BDs of jumbo, but still have %d bytes\n",
1218 pkt_len);
1219
1220 out:
1221 return num_frags;
1222 }
1223
qede_rx_process_tpa_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,union eth_rx_cqe * cqe,enum eth_rx_cqe_type type)1224 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1225 struct qede_fastpath *fp,
1226 struct qede_rx_queue *rxq,
1227 union eth_rx_cqe *cqe,
1228 enum eth_rx_cqe_type type)
1229 {
1230 switch (type) {
1231 case ETH_RX_CQE_TYPE_TPA_START:
1232 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1233 return 0;
1234 case ETH_RX_CQE_TYPE_TPA_CONT:
1235 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1236 return 0;
1237 case ETH_RX_CQE_TYPE_TPA_END:
1238 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1239 default:
1240 return 0;
1241 }
1242 }
1243
qede_rx_process_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq)1244 static int qede_rx_process_cqe(struct qede_dev *edev,
1245 struct qede_fastpath *fp,
1246 struct qede_rx_queue *rxq)
1247 {
1248 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1249 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1250 u16 len, pad, bd_cons_idx, parse_flag;
1251 enum eth_rx_cqe_type cqe_type;
1252 union eth_rx_cqe *cqe;
1253 struct sw_rx_data *bd;
1254 struct sk_buff *skb;
1255 __le16 flags;
1256 u8 csum_flag;
1257
1258 /* Get the CQE from the completion ring */
1259 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1260 cqe_type = cqe->fast_path_regular.type;
1261
1262 /* Process an unlikely slowpath event */
1263 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1264 struct eth_slow_path_rx_cqe *sp_cqe;
1265
1266 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1267 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1268 return 0;
1269 }
1270
1271 /* Handle TPA cqes */
1272 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1273 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1274
1275 /* Get the data from the SW ring; Consume it only after it's evident
1276 * we wouldn't recycle it.
1277 */
1278 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1279 bd = &rxq->sw_rx_ring[bd_cons_idx];
1280
1281 fp_cqe = &cqe->fast_path_regular;
1282 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1283 pad = fp_cqe->placement_offset + rxq->rx_headroom;
1284
1285 /* Run eBPF program if one is attached */
1286 if (xdp_prog)
1287 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1288 &pad, &len))
1289 return 0;
1290
1291 /* If this is an error packet then drop it */
1292 flags = cqe->fast_path_regular.pars_flags.flags;
1293 parse_flag = le16_to_cpu(flags);
1294
1295 csum_flag = qede_check_csum(parse_flag);
1296 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1297 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1298 rxq->rx_ip_frags++;
1299 else
1300 rxq->rx_hw_errors++;
1301 }
1302
1303 /* Basic validation passed; Need to prepare an SKB. This would also
1304 * guarantee to finally consume the first BD upon success.
1305 */
1306 skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1307 if (!skb) {
1308 rxq->rx_alloc_errors++;
1309 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1310 return 0;
1311 }
1312
1313 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1314 * by a single cqe.
1315 */
1316 if (fp_cqe->bd_num > 1) {
1317 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1318 fp_cqe, len);
1319
1320 if (unlikely(unmapped_frags > 0)) {
1321 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1322 dev_kfree_skb_any(skb);
1323 return 0;
1324 }
1325 }
1326
1327 /* The SKB contains all the data. Now prepare meta-magic */
1328 skb->protocol = eth_type_trans(skb, edev->ndev);
1329 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1330 qede_set_skb_csum(skb, csum_flag);
1331 skb_record_rx_queue(skb, rxq->rxq_id);
1332 qede_ptp_record_rx_ts(edev, cqe, skb);
1333
1334 /* SKB is prepared - pass it to stack */
1335 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1336
1337 return 1;
1338 }
1339
qede_rx_int(struct qede_fastpath * fp,int budget)1340 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1341 {
1342 struct qede_rx_queue *rxq = fp->rxq;
1343 struct qede_dev *edev = fp->edev;
1344 int work_done = 0, rcv_pkts = 0;
1345 u16 hw_comp_cons, sw_comp_cons;
1346
1347 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1348 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1349
1350 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1351 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1352 * read before it is written by FW, then FW writes CQE and SB, and then
1353 * the CPU reads the hw_comp_cons, it will use an old CQE.
1354 */
1355 rmb();
1356
1357 /* Loop to complete all indicated BDs */
1358 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1359 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1360 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1361 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1362 work_done++;
1363 }
1364
1365 rxq->rcv_pkts += rcv_pkts;
1366
1367 /* Allocate replacement buffers */
1368 while (rxq->num_rx_buffers - rxq->filled_buffers)
1369 if (qede_alloc_rx_buffer(rxq, false))
1370 break;
1371
1372 /* Update producers */
1373 qede_update_rx_prod(edev, rxq);
1374
1375 return work_done;
1376 }
1377
qede_poll_is_more_work(struct qede_fastpath * fp)1378 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1379 {
1380 qed_sb_update_sb_idx(fp->sb_info);
1381
1382 /* *_has_*_work() reads the status block, thus we need to ensure that
1383 * status block indices have been actually read (qed_sb_update_sb_idx)
1384 * prior to this check (*_has_*_work) so that we won't write the
1385 * "newer" value of the status block to HW (if there was a DMA right
1386 * after qede_has_rx_work and if there is no rmb, the memory reading
1387 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1388 * In this case there will never be another interrupt until there is
1389 * another update of the status block, while there is still unhandled
1390 * work.
1391 */
1392 rmb();
1393
1394 if (likely(fp->type & QEDE_FASTPATH_RX))
1395 if (qede_has_rx_work(fp->rxq))
1396 return true;
1397
1398 if (fp->type & QEDE_FASTPATH_XDP)
1399 if (qede_txq_has_work(fp->xdp_tx))
1400 return true;
1401
1402 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1403 int cos;
1404
1405 for_each_cos_in_txq(fp->edev, cos) {
1406 if (qede_txq_has_work(&fp->txq[cos]))
1407 return true;
1408 }
1409 }
1410
1411 return false;
1412 }
1413
1414 /*********************
1415 * NDO & API related *
1416 *********************/
qede_poll(struct napi_struct * napi,int budget)1417 int qede_poll(struct napi_struct *napi, int budget)
1418 {
1419 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1420 napi);
1421 struct qede_dev *edev = fp->edev;
1422 int rx_work_done = 0;
1423 u16 xdp_prod;
1424
1425 fp->xdp_xmit = 0;
1426
1427 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1428 int cos;
1429
1430 for_each_cos_in_txq(fp->edev, cos) {
1431 if (qede_txq_has_work(&fp->txq[cos]))
1432 qede_tx_int(edev, &fp->txq[cos]);
1433 }
1434 }
1435
1436 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1437 qede_xdp_tx_int(edev, fp->xdp_tx);
1438
1439 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1440 qede_has_rx_work(fp->rxq)) ?
1441 qede_rx_int(fp, budget) : 0;
1442
1443 if (fp->xdp_xmit & QEDE_XDP_REDIRECT)
1444 xdp_do_flush();
1445
1446 /* Handle case where we are called by netpoll with a budget of 0 */
1447 if (rx_work_done < budget || !budget) {
1448 if (!qede_poll_is_more_work(fp)) {
1449 napi_complete_done(napi, rx_work_done);
1450
1451 /* Update and reenable interrupts */
1452 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1453 } else {
1454 rx_work_done = budget;
1455 }
1456 }
1457
1458 if (fp->xdp_xmit & QEDE_XDP_TX) {
1459 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1460
1461 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1462 qede_update_tx_producer(fp->xdp_tx);
1463 }
1464
1465 return rx_work_done;
1466 }
1467
qede_msix_fp_int(int irq,void * fp_cookie)1468 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1469 {
1470 struct qede_fastpath *fp = fp_cookie;
1471
1472 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1473
1474 napi_schedule_irqoff(&fp->napi);
1475 return IRQ_HANDLED;
1476 }
1477
1478 /* Main transmit function */
qede_start_xmit(struct sk_buff * skb,struct net_device * ndev)1479 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1480 {
1481 struct qede_dev *edev = netdev_priv(ndev);
1482 struct netdev_queue *netdev_txq;
1483 struct qede_tx_queue *txq;
1484 struct eth_tx_1st_bd *first_bd;
1485 struct eth_tx_2nd_bd *second_bd = NULL;
1486 struct eth_tx_3rd_bd *third_bd = NULL;
1487 struct eth_tx_bd *tx_data_bd = NULL;
1488 u16 txq_index, val = 0;
1489 u8 nbd = 0;
1490 dma_addr_t mapping;
1491 int rc, frag_idx = 0, ipv6_ext = 0;
1492 u8 xmit_type;
1493 u16 idx;
1494 u16 hlen;
1495 bool data_split = false;
1496
1497 /* Get tx-queue context and netdev index */
1498 txq_index = skb_get_queue_mapping(skb);
1499 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1500 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1501 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1502
1503 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1504
1505 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1506
1507 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1508 if (qede_pkt_req_lin(skb, xmit_type)) {
1509 if (skb_linearize(skb)) {
1510 txq->tx_mem_alloc_err++;
1511
1512 dev_kfree_skb_any(skb);
1513 return NETDEV_TX_OK;
1514 }
1515 }
1516 #endif
1517
1518 /* Fill the entry in the SW ring and the BDs in the FW ring */
1519 idx = txq->sw_tx_prod;
1520 txq->sw_tx_ring.skbs[idx].skb = skb;
1521 first_bd = (struct eth_tx_1st_bd *)
1522 qed_chain_produce(&txq->tx_pbl);
1523 memset(first_bd, 0, sizeof(*first_bd));
1524 first_bd->data.bd_flags.bitfields =
1525 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1526
1527 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1528 qede_ptp_tx_ts(edev, skb);
1529
1530 /* Map skb linear data for DMA and set in the first BD */
1531 mapping = dma_map_single(txq->dev, skb->data,
1532 skb_headlen(skb), DMA_TO_DEVICE);
1533 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1534 DP_NOTICE(edev, "SKB mapping failed\n");
1535 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1536 qede_update_tx_producer(txq);
1537 return NETDEV_TX_OK;
1538 }
1539 nbd++;
1540 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1541
1542 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1543 * 3rd BDs.
1544 */
1545 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1546 second_bd = (struct eth_tx_2nd_bd *)
1547 qed_chain_produce(&txq->tx_pbl);
1548 memset(second_bd, 0, sizeof(*second_bd));
1549
1550 nbd++;
1551 third_bd = (struct eth_tx_3rd_bd *)
1552 qed_chain_produce(&txq->tx_pbl);
1553 memset(third_bd, 0, sizeof(*third_bd));
1554
1555 nbd++;
1556 /* We need to fill in additional data in second_bd... */
1557 tx_data_bd = (struct eth_tx_bd *)second_bd;
1558 }
1559
1560 if (skb_vlan_tag_present(skb)) {
1561 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1562 first_bd->data.bd_flags.bitfields |=
1563 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1564 }
1565
1566 /* Fill the parsing flags & params according to the requested offload */
1567 if (xmit_type & XMIT_L4_CSUM) {
1568 /* We don't re-calculate IP checksum as it is already done by
1569 * the upper stack
1570 */
1571 first_bd->data.bd_flags.bitfields |=
1572 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1573
1574 if (xmit_type & XMIT_ENC) {
1575 first_bd->data.bd_flags.bitfields |=
1576 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1577
1578 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1579 }
1580
1581 /* Legacy FW had flipped behavior in regard to this bit -
1582 * I.e., needed to set to prevent FW from touching encapsulated
1583 * packets when it didn't need to.
1584 */
1585 if (unlikely(txq->is_legacy))
1586 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1587
1588 /* If the packet is IPv6 with extension header, indicate that
1589 * to FW and pass few params, since the device cracker doesn't
1590 * support parsing IPv6 with extension header/s.
1591 */
1592 if (unlikely(ipv6_ext))
1593 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1594 }
1595
1596 if (xmit_type & XMIT_LSO) {
1597 first_bd->data.bd_flags.bitfields |=
1598 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1599 third_bd->data.lso_mss =
1600 cpu_to_le16(skb_shinfo(skb)->gso_size);
1601
1602 if (unlikely(xmit_type & XMIT_ENC)) {
1603 first_bd->data.bd_flags.bitfields |=
1604 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1605
1606 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1607 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1608
1609 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1610 }
1611 hlen = qede_get_skb_hlen(skb, true);
1612 } else {
1613 first_bd->data.bd_flags.bitfields |=
1614 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1615 hlen = qede_get_skb_hlen(skb, false);
1616 }
1617
1618 /* @@@TBD - if will not be removed need to check */
1619 third_bd->data.bitfields |=
1620 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1621
1622 /* Make life easier for FW guys who can't deal with header and
1623 * data on same BD. If we need to split, use the second bd...
1624 */
1625 if (unlikely(skb_headlen(skb) > hlen)) {
1626 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1627 "TSO split header size is %d (%x:%x)\n",
1628 first_bd->nbytes, first_bd->addr.hi,
1629 first_bd->addr.lo);
1630
1631 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1632 le32_to_cpu(first_bd->addr.lo)) +
1633 hlen;
1634
1635 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1636 le16_to_cpu(first_bd->nbytes) -
1637 hlen);
1638
1639 /* this marks the BD as one that has no
1640 * individual mapping
1641 */
1642 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1643
1644 first_bd->nbytes = cpu_to_le16(hlen);
1645
1646 tx_data_bd = (struct eth_tx_bd *)third_bd;
1647 data_split = true;
1648 }
1649 } else {
1650 if (unlikely(skb->len > ETH_TX_MAX_NON_LSO_PKT_LEN)) {
1651 DP_ERR(edev, "Unexpected non LSO skb length = 0x%x\n", skb->len);
1652 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1653 qede_update_tx_producer(txq);
1654 return NETDEV_TX_OK;
1655 }
1656
1657 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1658 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1659 }
1660
1661 first_bd->data.bitfields = cpu_to_le16(val);
1662
1663 /* Handle fragmented skb */
1664 /* special handle for frags inside 2nd and 3rd bds.. */
1665 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1666 rc = map_frag_to_bd(txq,
1667 &skb_shinfo(skb)->frags[frag_idx],
1668 tx_data_bd);
1669 if (rc) {
1670 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1671 qede_update_tx_producer(txq);
1672 return NETDEV_TX_OK;
1673 }
1674
1675 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1676 tx_data_bd = (struct eth_tx_bd *)third_bd;
1677 else
1678 tx_data_bd = NULL;
1679
1680 frag_idx++;
1681 }
1682
1683 /* map last frags into 4th, 5th .... */
1684 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1685 tx_data_bd = (struct eth_tx_bd *)
1686 qed_chain_produce(&txq->tx_pbl);
1687
1688 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1689
1690 rc = map_frag_to_bd(txq,
1691 &skb_shinfo(skb)->frags[frag_idx],
1692 tx_data_bd);
1693 if (rc) {
1694 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1695 qede_update_tx_producer(txq);
1696 return NETDEV_TX_OK;
1697 }
1698 }
1699
1700 /* update the first BD with the actual num BDs */
1701 first_bd->data.nbds = nbd;
1702
1703 netdev_tx_sent_queue(netdev_txq, skb->len);
1704
1705 skb_tx_timestamp(skb);
1706
1707 /* Advance packet producer only before sending the packet since mapping
1708 * of pages may fail.
1709 */
1710 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1711
1712 /* 'next page' entries are counted in the producer value */
1713 txq->tx_db.data.bd_prod =
1714 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1715
1716 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1717 qede_update_tx_producer(txq);
1718
1719 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1720 < (MAX_SKB_FRAGS + 1))) {
1721 if (netdev_xmit_more())
1722 qede_update_tx_producer(txq);
1723
1724 netif_tx_stop_queue(netdev_txq);
1725 txq->stopped_cnt++;
1726 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1727 "Stop queue was called\n");
1728 /* paired memory barrier is in qede_tx_int(), we have to keep
1729 * ordering of set_bit() in netif_tx_stop_queue() and read of
1730 * fp->bd_tx_cons
1731 */
1732 smp_mb();
1733
1734 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1735 (MAX_SKB_FRAGS + 1)) &&
1736 (edev->state == QEDE_STATE_OPEN)) {
1737 netif_tx_wake_queue(netdev_txq);
1738 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1739 "Wake queue was called\n");
1740 }
1741 }
1742
1743 return NETDEV_TX_OK;
1744 }
1745
qede_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1746 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1747 struct net_device *sb_dev)
1748 {
1749 struct qede_dev *edev = netdev_priv(dev);
1750 int total_txq;
1751
1752 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1753
1754 return QEDE_TSS_COUNT(edev) ?
1755 netdev_pick_tx(dev, skb, NULL) % total_txq : 0;
1756 }
1757
1758 /* 8B udp header + 8B base tunnel header + 32B option length */
1759 #define QEDE_MAX_TUN_HDR_LEN 48
1760
qede_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1761 netdev_features_t qede_features_check(struct sk_buff *skb,
1762 struct net_device *dev,
1763 netdev_features_t features)
1764 {
1765 if (skb->encapsulation) {
1766 u8 l4_proto = 0;
1767
1768 switch (vlan_get_protocol(skb)) {
1769 case htons(ETH_P_IP):
1770 l4_proto = ip_hdr(skb)->protocol;
1771 break;
1772 case htons(ETH_P_IPV6):
1773 l4_proto = ipv6_hdr(skb)->nexthdr;
1774 break;
1775 default:
1776 return features;
1777 }
1778
1779 /* Disable offloads for geneve tunnels, as HW can't parse
1780 * the geneve header which has option length greater than 32b
1781 * and disable offloads for the ports which are not offloaded.
1782 */
1783 if (l4_proto == IPPROTO_UDP) {
1784 struct qede_dev *edev = netdev_priv(dev);
1785 u16 hdrlen, vxln_port, gnv_port;
1786
1787 hdrlen = QEDE_MAX_TUN_HDR_LEN;
1788 vxln_port = edev->vxlan_dst_port;
1789 gnv_port = edev->geneve_dst_port;
1790
1791 if ((skb_inner_mac_header(skb) -
1792 skb_transport_header(skb)) > hdrlen ||
1793 (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1794 ntohs(udp_hdr(skb)->dest) != gnv_port))
1795 return features & ~(NETIF_F_CSUM_MASK |
1796 NETIF_F_GSO_MASK);
1797 } else if (l4_proto == IPPROTO_IPIP) {
1798 /* IPIP tunnels are unknown to the device or at least unsupported natively,
1799 * offloads for them can't be done trivially, so disable them for such skb.
1800 */
1801 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1802 }
1803 }
1804
1805 return features;
1806 }
1807