1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3
4 /*
5 * nfp_net_common.c
6 * Netronome network device driver: Common functions between PF and VF
7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8 * Jason McMullan <jason.mcmullan@netronome.com>
9 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
10 * Brad Petrus <brad.petrus@netronome.com>
11 * Chris Telfer <chris.telfer@netronome.com>
12 */
13
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38
39 #include <net/tls.h>
40 #include <net/vxlan.h>
41
42 #include "nfpcore/nfp_nsp.h"
43 #include "ccm.h"
44 #include "nfp_app.h"
45 #include "nfp_net_ctrl.h"
46 #include "nfp_net.h"
47 #include "nfp_net_sriov.h"
48 #include "nfp_port.h"
49 #include "crypto/crypto.h"
50 #include "crypto/fw.h"
51
52 /**
53 * nfp_net_get_fw_version() - Read and parse the FW version
54 * @fw_ver: Output fw_version structure to read to
55 * @ctrl_bar: Mapped address of the control BAR
56 */
nfp_net_get_fw_version(struct nfp_net_fw_version * fw_ver,void __iomem * ctrl_bar)57 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
58 void __iomem *ctrl_bar)
59 {
60 u32 reg;
61
62 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
63 put_unaligned_le32(reg, fw_ver);
64 }
65
nfp_net_dma_map_rx(struct nfp_net_dp * dp,void * frag)66 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
67 {
68 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
69 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
70 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
71 }
72
73 static void
nfp_net_dma_sync_dev_rx(const struct nfp_net_dp * dp,dma_addr_t dma_addr)74 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
75 {
76 dma_sync_single_for_device(dp->dev, dma_addr,
77 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
78 dp->rx_dma_dir);
79 }
80
nfp_net_dma_unmap_rx(struct nfp_net_dp * dp,dma_addr_t dma_addr)81 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
82 {
83 dma_unmap_single_attrs(dp->dev, dma_addr,
84 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
85 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
86 }
87
nfp_net_dma_sync_cpu_rx(struct nfp_net_dp * dp,dma_addr_t dma_addr,unsigned int len)88 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
89 unsigned int len)
90 {
91 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
92 len, dp->rx_dma_dir);
93 }
94
95 /* Firmware reconfig
96 *
97 * Firmware reconfig may take a while so we have two versions of it -
98 * synchronous and asynchronous (posted). All synchronous callers are holding
99 * RTNL so we don't have to worry about serializing them.
100 */
nfp_net_reconfig_start(struct nfp_net * nn,u32 update)101 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
102 {
103 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
104 /* ensure update is written before pinging HW */
105 nn_pci_flush(nn);
106 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
107 nn->reconfig_in_progress_update = update;
108 }
109
110 /* Pass 0 as update to run posted reconfigs. */
nfp_net_reconfig_start_async(struct nfp_net * nn,u32 update)111 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
112 {
113 update |= nn->reconfig_posted;
114 nn->reconfig_posted = 0;
115
116 nfp_net_reconfig_start(nn, update);
117
118 nn->reconfig_timer_active = true;
119 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
120 }
121
nfp_net_reconfig_check_done(struct nfp_net * nn,bool last_check)122 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
123 {
124 u32 reg;
125
126 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
127 if (reg == 0)
128 return true;
129 if (reg & NFP_NET_CFG_UPDATE_ERR) {
130 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
131 reg, nn->reconfig_in_progress_update,
132 nn_readl(nn, NFP_NET_CFG_CTRL));
133 return true;
134 } else if (last_check) {
135 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
136 reg, nn->reconfig_in_progress_update,
137 nn_readl(nn, NFP_NET_CFG_CTRL));
138 return true;
139 }
140
141 return false;
142 }
143
__nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)144 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
145 {
146 bool timed_out = false;
147 int i;
148
149 /* Poll update field, waiting for NFP to ack the config.
150 * Do an opportunistic wait-busy loop, afterward sleep.
151 */
152 for (i = 0; i < 50; i++) {
153 if (nfp_net_reconfig_check_done(nn, false))
154 return false;
155 udelay(4);
156 }
157
158 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
159 usleep_range(250, 500);
160 timed_out = time_is_before_eq_jiffies(deadline);
161 }
162
163 return timed_out;
164 }
165
nfp_net_reconfig_wait(struct nfp_net * nn,unsigned long deadline)166 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
167 {
168 if (__nfp_net_reconfig_wait(nn, deadline))
169 return -EIO;
170
171 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
172 return -EIO;
173
174 return 0;
175 }
176
nfp_net_reconfig_timer(struct timer_list * t)177 static void nfp_net_reconfig_timer(struct timer_list *t)
178 {
179 struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
180
181 spin_lock_bh(&nn->reconfig_lock);
182
183 nn->reconfig_timer_active = false;
184
185 /* If sync caller is present it will take over from us */
186 if (nn->reconfig_sync_present)
187 goto done;
188
189 /* Read reconfig status and report errors */
190 nfp_net_reconfig_check_done(nn, true);
191
192 if (nn->reconfig_posted)
193 nfp_net_reconfig_start_async(nn, 0);
194 done:
195 spin_unlock_bh(&nn->reconfig_lock);
196 }
197
198 /**
199 * nfp_net_reconfig_post() - Post async reconfig request
200 * @nn: NFP Net device to reconfigure
201 * @update: The value for the update field in the BAR config
202 *
203 * Record FW reconfiguration request. Reconfiguration will be kicked off
204 * whenever reconfiguration machinery is idle. Multiple requests can be
205 * merged together!
206 */
nfp_net_reconfig_post(struct nfp_net * nn,u32 update)207 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
208 {
209 spin_lock_bh(&nn->reconfig_lock);
210
211 /* Sync caller will kick off async reconf when it's done, just post */
212 if (nn->reconfig_sync_present) {
213 nn->reconfig_posted |= update;
214 goto done;
215 }
216
217 /* Opportunistically check if the previous command is done */
218 if (!nn->reconfig_timer_active ||
219 nfp_net_reconfig_check_done(nn, false))
220 nfp_net_reconfig_start_async(nn, update);
221 else
222 nn->reconfig_posted |= update;
223 done:
224 spin_unlock_bh(&nn->reconfig_lock);
225 }
226
nfp_net_reconfig_sync_enter(struct nfp_net * nn)227 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
228 {
229 bool cancelled_timer = false;
230 u32 pre_posted_requests;
231
232 spin_lock_bh(&nn->reconfig_lock);
233
234 WARN_ON(nn->reconfig_sync_present);
235 nn->reconfig_sync_present = true;
236
237 if (nn->reconfig_timer_active) {
238 nn->reconfig_timer_active = false;
239 cancelled_timer = true;
240 }
241 pre_posted_requests = nn->reconfig_posted;
242 nn->reconfig_posted = 0;
243
244 spin_unlock_bh(&nn->reconfig_lock);
245
246 if (cancelled_timer) {
247 del_timer_sync(&nn->reconfig_timer);
248 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
249 }
250
251 /* Run the posted reconfigs which were issued before we started */
252 if (pre_posted_requests) {
253 nfp_net_reconfig_start(nn, pre_posted_requests);
254 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
255 }
256 }
257
nfp_net_reconfig_wait_posted(struct nfp_net * nn)258 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
259 {
260 nfp_net_reconfig_sync_enter(nn);
261
262 spin_lock_bh(&nn->reconfig_lock);
263 nn->reconfig_sync_present = false;
264 spin_unlock_bh(&nn->reconfig_lock);
265 }
266
267 /**
268 * __nfp_net_reconfig() - Reconfigure the firmware
269 * @nn: NFP Net device to reconfigure
270 * @update: The value for the update field in the BAR config
271 *
272 * Write the update word to the BAR and ping the reconfig queue. The
273 * poll until the firmware has acknowledged the update by zeroing the
274 * update word.
275 *
276 * Return: Negative errno on error, 0 on success
277 */
__nfp_net_reconfig(struct nfp_net * nn,u32 update)278 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
279 {
280 int ret;
281
282 nfp_net_reconfig_sync_enter(nn);
283
284 nfp_net_reconfig_start(nn, update);
285 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
286
287 spin_lock_bh(&nn->reconfig_lock);
288
289 if (nn->reconfig_posted)
290 nfp_net_reconfig_start_async(nn, 0);
291
292 nn->reconfig_sync_present = false;
293
294 spin_unlock_bh(&nn->reconfig_lock);
295
296 return ret;
297 }
298
nfp_net_reconfig(struct nfp_net * nn,u32 update)299 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
300 {
301 int ret;
302
303 nn_ctrl_bar_lock(nn);
304 ret = __nfp_net_reconfig(nn, update);
305 nn_ctrl_bar_unlock(nn);
306
307 return ret;
308 }
309
nfp_net_mbox_lock(struct nfp_net * nn,unsigned int data_size)310 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
311 {
312 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
313 nn_err(nn, "mailbox too small for %u of data (%u)\n",
314 data_size, nn->tlv_caps.mbox_len);
315 return -EIO;
316 }
317
318 nn_ctrl_bar_lock(nn);
319 return 0;
320 }
321
322 /**
323 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
324 * @nn: NFP Net device to reconfigure
325 * @mbox_cmd: The value for the mailbox command
326 *
327 * Helper function for mailbox updates
328 *
329 * Return: Negative errno on error, 0 on success
330 */
nfp_net_mbox_reconfig(struct nfp_net * nn,u32 mbox_cmd)331 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
332 {
333 u32 mbox = nn->tlv_caps.mbox_off;
334 int ret;
335
336 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
337
338 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
339 if (ret) {
340 nn_err(nn, "Mailbox update error\n");
341 return ret;
342 }
343
344 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
345 }
346
nfp_net_mbox_reconfig_post(struct nfp_net * nn,u32 mbox_cmd)347 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
348 {
349 u32 mbox = nn->tlv_caps.mbox_off;
350
351 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
352
353 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
354 }
355
nfp_net_mbox_reconfig_wait_posted(struct nfp_net * nn)356 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
357 {
358 u32 mbox = nn->tlv_caps.mbox_off;
359
360 nfp_net_reconfig_wait_posted(nn);
361
362 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
363 }
364
nfp_net_mbox_reconfig_and_unlock(struct nfp_net * nn,u32 mbox_cmd)365 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
366 {
367 int ret;
368
369 ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
370 nn_ctrl_bar_unlock(nn);
371 return ret;
372 }
373
374 /* Interrupt configuration and handling
375 */
376
377 /**
378 * nfp_net_irq_unmask() - Unmask automasked interrupt
379 * @nn: NFP Network structure
380 * @entry_nr: MSI-X table entry
381 *
382 * Clear the ICR for the IRQ entry.
383 */
nfp_net_irq_unmask(struct nfp_net * nn,unsigned int entry_nr)384 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
385 {
386 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
387 nn_pci_flush(nn);
388 }
389
390 /**
391 * nfp_net_irqs_alloc() - allocates MSI-X irqs
392 * @pdev: PCI device structure
393 * @irq_entries: Array to be initialized and used to hold the irq entries
394 * @min_irqs: Minimal acceptable number of interrupts
395 * @wanted_irqs: Target number of interrupts to allocate
396 *
397 * Return: Number of irqs obtained or 0 on error.
398 */
399 unsigned int
nfp_net_irqs_alloc(struct pci_dev * pdev,struct msix_entry * irq_entries,unsigned int min_irqs,unsigned int wanted_irqs)400 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
401 unsigned int min_irqs, unsigned int wanted_irqs)
402 {
403 unsigned int i;
404 int got_irqs;
405
406 for (i = 0; i < wanted_irqs; i++)
407 irq_entries[i].entry = i;
408
409 got_irqs = pci_enable_msix_range(pdev, irq_entries,
410 min_irqs, wanted_irqs);
411 if (got_irqs < 0) {
412 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
413 min_irqs, wanted_irqs, got_irqs);
414 return 0;
415 }
416
417 if (got_irqs < wanted_irqs)
418 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
419 wanted_irqs, got_irqs);
420
421 return got_irqs;
422 }
423
424 /**
425 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
426 * @nn: NFP Network structure
427 * @irq_entries: Table of allocated interrupts
428 * @n: Size of @irq_entries (number of entries to grab)
429 *
430 * After interrupts are allocated with nfp_net_irqs_alloc() this function
431 * should be called to assign them to a specific netdev (port).
432 */
433 void
nfp_net_irqs_assign(struct nfp_net * nn,struct msix_entry * irq_entries,unsigned int n)434 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
435 unsigned int n)
436 {
437 struct nfp_net_dp *dp = &nn->dp;
438
439 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
440 dp->num_r_vecs = nn->max_r_vecs;
441
442 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
443
444 if (dp->num_rx_rings > dp->num_r_vecs ||
445 dp->num_tx_rings > dp->num_r_vecs)
446 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
447 dp->num_rx_rings, dp->num_tx_rings,
448 dp->num_r_vecs);
449
450 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
451 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
452 dp->num_stack_tx_rings = dp->num_tx_rings;
453 }
454
455 /**
456 * nfp_net_irqs_disable() - Disable interrupts
457 * @pdev: PCI device structure
458 *
459 * Undoes what @nfp_net_irqs_alloc() does.
460 */
nfp_net_irqs_disable(struct pci_dev * pdev)461 void nfp_net_irqs_disable(struct pci_dev *pdev)
462 {
463 pci_disable_msix(pdev);
464 }
465
466 /**
467 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
468 * @irq: Interrupt
469 * @data: Opaque data structure
470 *
471 * Return: Indicate if the interrupt has been handled.
472 */
nfp_net_irq_rxtx(int irq,void * data)473 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
474 {
475 struct nfp_net_r_vector *r_vec = data;
476
477 /* Currently we cannot tell if it's a rx or tx interrupt,
478 * since dim does not need accurate event_ctr to calculate,
479 * we just use this counter for both rx and tx dim.
480 */
481 r_vec->event_ctr++;
482
483 napi_schedule_irqoff(&r_vec->napi);
484
485 /* The FW auto-masks any interrupt, either via the MASK bit in
486 * the MSI-X table or via the per entry ICR field. So there
487 * is no need to disable interrupts here.
488 */
489 return IRQ_HANDLED;
490 }
491
nfp_ctrl_irq_rxtx(int irq,void * data)492 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
493 {
494 struct nfp_net_r_vector *r_vec = data;
495
496 tasklet_schedule(&r_vec->tasklet);
497
498 return IRQ_HANDLED;
499 }
500
501 /**
502 * nfp_net_read_link_status() - Reread link status from control BAR
503 * @nn: NFP Network structure
504 */
nfp_net_read_link_status(struct nfp_net * nn)505 static void nfp_net_read_link_status(struct nfp_net *nn)
506 {
507 unsigned long flags;
508 bool link_up;
509 u32 sts;
510
511 spin_lock_irqsave(&nn->link_status_lock, flags);
512
513 sts = nn_readl(nn, NFP_NET_CFG_STS);
514 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
515
516 if (nn->link_up == link_up)
517 goto out;
518
519 nn->link_up = link_up;
520 if (nn->port)
521 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
522
523 if (nn->link_up) {
524 netif_carrier_on(nn->dp.netdev);
525 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
526 } else {
527 netif_carrier_off(nn->dp.netdev);
528 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
529 }
530 out:
531 spin_unlock_irqrestore(&nn->link_status_lock, flags);
532 }
533
534 /**
535 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
536 * @irq: Interrupt
537 * @data: Opaque data structure
538 *
539 * Return: Indicate if the interrupt has been handled.
540 */
nfp_net_irq_lsc(int irq,void * data)541 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
542 {
543 struct nfp_net *nn = data;
544 struct msix_entry *entry;
545
546 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
547
548 nfp_net_read_link_status(nn);
549
550 nfp_net_irq_unmask(nn, entry->entry);
551
552 return IRQ_HANDLED;
553 }
554
555 /**
556 * nfp_net_irq_exn() - Interrupt service routine for exceptions
557 * @irq: Interrupt
558 * @data: Opaque data structure
559 *
560 * Return: Indicate if the interrupt has been handled.
561 */
nfp_net_irq_exn(int irq,void * data)562 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
563 {
564 struct nfp_net *nn = data;
565
566 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
567 /* XXX TO BE IMPLEMENTED */
568 return IRQ_HANDLED;
569 }
570
571 /**
572 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
573 * @tx_ring: TX ring structure
574 * @r_vec: IRQ vector servicing this ring
575 * @idx: Ring index
576 * @is_xdp: Is this an XDP TX ring?
577 */
578 static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring * tx_ring,struct nfp_net_r_vector * r_vec,unsigned int idx,bool is_xdp)579 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
580 struct nfp_net_r_vector *r_vec, unsigned int idx,
581 bool is_xdp)
582 {
583 struct nfp_net *nn = r_vec->nfp_net;
584
585 tx_ring->idx = idx;
586 tx_ring->r_vec = r_vec;
587 tx_ring->is_xdp = is_xdp;
588 u64_stats_init(&tx_ring->r_vec->tx_sync);
589
590 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
591 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
592 }
593
594 /**
595 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
596 * @rx_ring: RX ring structure
597 * @r_vec: IRQ vector servicing this ring
598 * @idx: Ring index
599 */
600 static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring * rx_ring,struct nfp_net_r_vector * r_vec,unsigned int idx)601 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
602 struct nfp_net_r_vector *r_vec, unsigned int idx)
603 {
604 struct nfp_net *nn = r_vec->nfp_net;
605
606 rx_ring->idx = idx;
607 rx_ring->r_vec = r_vec;
608 u64_stats_init(&rx_ring->r_vec->rx_sync);
609
610 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
611 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
612 }
613
614 /**
615 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
616 * @nn: NFP Network structure
617 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
618 * @format: printf-style format to construct the interrupt name
619 * @name: Pointer to allocated space for interrupt name
620 * @name_sz: Size of space for interrupt name
621 * @vector_idx: Index of MSI-X vector used for this interrupt
622 * @handler: IRQ handler to register for this interrupt
623 */
624 static int
nfp_net_aux_irq_request(struct nfp_net * nn,u32 ctrl_offset,const char * format,char * name,size_t name_sz,unsigned int vector_idx,irq_handler_t handler)625 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
626 const char *format, char *name, size_t name_sz,
627 unsigned int vector_idx, irq_handler_t handler)
628 {
629 struct msix_entry *entry;
630 int err;
631
632 entry = &nn->irq_entries[vector_idx];
633
634 snprintf(name, name_sz, format, nfp_net_name(nn));
635 err = request_irq(entry->vector, handler, 0, name, nn);
636 if (err) {
637 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
638 entry->vector, err);
639 return err;
640 }
641 nn_writeb(nn, ctrl_offset, entry->entry);
642 nfp_net_irq_unmask(nn, entry->entry);
643
644 return 0;
645 }
646
647 /**
648 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
649 * @nn: NFP Network structure
650 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
651 * @vector_idx: Index of MSI-X vector used for this interrupt
652 */
nfp_net_aux_irq_free(struct nfp_net * nn,u32 ctrl_offset,unsigned int vector_idx)653 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
654 unsigned int vector_idx)
655 {
656 nn_writeb(nn, ctrl_offset, 0xff);
657 nn_pci_flush(nn);
658 free_irq(nn->irq_entries[vector_idx].vector, nn);
659 }
660
661 /* Transmit
662 *
663 * One queue controller peripheral queue is used for transmit. The
664 * driver en-queues packets for transmit by advancing the write
665 * pointer. The device indicates that packets have transmitted by
666 * advancing the read pointer. The driver maintains a local copy of
667 * the read and write pointer in @struct nfp_net_tx_ring. The driver
668 * keeps @wr_p in sync with the queue controller write pointer and can
669 * determine how many packets have been transmitted by comparing its
670 * copy of the read pointer @rd_p with the read pointer maintained by
671 * the queue controller peripheral.
672 */
673
674 /**
675 * nfp_net_tx_full() - Check if the TX ring is full
676 * @tx_ring: TX ring to check
677 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
678 *
679 * This function checks, based on the *host copy* of read/write
680 * pointer if a given TX ring is full. The real TX queue may have
681 * some newly made available slots.
682 *
683 * Return: True if the ring is full.
684 */
nfp_net_tx_full(struct nfp_net_tx_ring * tx_ring,int dcnt)685 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
686 {
687 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
688 }
689
690 /* Wrappers for deciding when to stop and restart TX queues */
nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring * tx_ring)691 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
692 {
693 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
694 }
695
nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring * tx_ring)696 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
697 {
698 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
699 }
700
701 /**
702 * nfp_net_tx_ring_stop() - stop tx ring
703 * @nd_q: netdev queue
704 * @tx_ring: driver tx queue structure
705 *
706 * Safely stop TX ring. Remember that while we are running .start_xmit()
707 * someone else may be cleaning the TX ring completions so we need to be
708 * extra careful here.
709 */
nfp_net_tx_ring_stop(struct netdev_queue * nd_q,struct nfp_net_tx_ring * tx_ring)710 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
711 struct nfp_net_tx_ring *tx_ring)
712 {
713 netif_tx_stop_queue(nd_q);
714
715 /* We can race with the TX completion out of NAPI so recheck */
716 smp_mb();
717 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
718 netif_tx_start_queue(nd_q);
719 }
720
721 /**
722 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
723 * @r_vec: per-ring structure
724 * @txbuf: Pointer to driver soft TX descriptor
725 * @txd: Pointer to HW TX descriptor
726 * @skb: Pointer to SKB
727 * @md_bytes: Prepend length
728 *
729 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
730 * Return error on packet header greater than maximum supported LSO header size.
731 */
nfp_net_tx_tso(struct nfp_net_r_vector * r_vec,struct nfp_net_tx_buf * txbuf,struct nfp_net_tx_desc * txd,struct sk_buff * skb,u32 md_bytes)732 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
733 struct nfp_net_tx_buf *txbuf,
734 struct nfp_net_tx_desc *txd, struct sk_buff *skb,
735 u32 md_bytes)
736 {
737 u32 l3_offset, l4_offset, hdrlen;
738 u16 mss;
739
740 if (!skb_is_gso(skb))
741 return;
742
743 if (!skb->encapsulation) {
744 l3_offset = skb_network_offset(skb);
745 l4_offset = skb_transport_offset(skb);
746 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
747 } else {
748 l3_offset = skb_inner_network_offset(skb);
749 l4_offset = skb_inner_transport_offset(skb);
750 hdrlen = skb_inner_transport_header(skb) - skb->data +
751 inner_tcp_hdrlen(skb);
752 }
753
754 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
755 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
756
757 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
758 txd->l3_offset = l3_offset - md_bytes;
759 txd->l4_offset = l4_offset - md_bytes;
760 txd->lso_hdrlen = hdrlen - md_bytes;
761 txd->mss = cpu_to_le16(mss);
762 txd->flags |= PCIE_DESC_TX_LSO;
763
764 u64_stats_update_begin(&r_vec->tx_sync);
765 r_vec->tx_lso++;
766 u64_stats_update_end(&r_vec->tx_sync);
767 }
768
769 /**
770 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
771 * @dp: NFP Net data path struct
772 * @r_vec: per-ring structure
773 * @txbuf: Pointer to driver soft TX descriptor
774 * @txd: Pointer to TX descriptor
775 * @skb: Pointer to SKB
776 *
777 * This function sets the TX checksum flags in the TX descriptor based
778 * on the configuration and the protocol of the packet to be transmitted.
779 */
nfp_net_tx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_tx_buf * txbuf,struct nfp_net_tx_desc * txd,struct sk_buff * skb)780 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
781 struct nfp_net_r_vector *r_vec,
782 struct nfp_net_tx_buf *txbuf,
783 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
784 {
785 struct ipv6hdr *ipv6h;
786 struct iphdr *iph;
787 u8 l4_hdr;
788
789 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
790 return;
791
792 if (skb->ip_summed != CHECKSUM_PARTIAL)
793 return;
794
795 txd->flags |= PCIE_DESC_TX_CSUM;
796 if (skb->encapsulation)
797 txd->flags |= PCIE_DESC_TX_ENCAP;
798
799 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
800 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
801
802 if (iph->version == 4) {
803 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
804 l4_hdr = iph->protocol;
805 } else if (ipv6h->version == 6) {
806 l4_hdr = ipv6h->nexthdr;
807 } else {
808 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
809 return;
810 }
811
812 switch (l4_hdr) {
813 case IPPROTO_TCP:
814 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
815 break;
816 case IPPROTO_UDP:
817 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
818 break;
819 default:
820 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
821 return;
822 }
823
824 u64_stats_update_begin(&r_vec->tx_sync);
825 if (skb->encapsulation)
826 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
827 else
828 r_vec->hw_csum_tx += txbuf->pkt_cnt;
829 u64_stats_update_end(&r_vec->tx_sync);
830 }
831
832 static struct sk_buff *
nfp_net_tls_tx(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,u64 * tls_handle,int * nr_frags)833 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
834 struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
835 {
836 #ifdef CONFIG_TLS_DEVICE
837 struct nfp_net_tls_offload_ctx *ntls;
838 struct sk_buff *nskb;
839 bool resync_pending;
840 u32 datalen, seq;
841
842 if (likely(!dp->ktls_tx))
843 return skb;
844 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
845 return skb;
846
847 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
848 seq = ntohl(tcp_hdr(skb)->seq);
849 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
850 resync_pending = tls_offload_tx_resync_pending(skb->sk);
851 if (unlikely(resync_pending || ntls->next_seq != seq)) {
852 /* Pure ACK out of order already */
853 if (!datalen)
854 return skb;
855
856 u64_stats_update_begin(&r_vec->tx_sync);
857 r_vec->tls_tx_fallback++;
858 u64_stats_update_end(&r_vec->tx_sync);
859
860 nskb = tls_encrypt_skb(skb);
861 if (!nskb) {
862 u64_stats_update_begin(&r_vec->tx_sync);
863 r_vec->tls_tx_no_fallback++;
864 u64_stats_update_end(&r_vec->tx_sync);
865 return NULL;
866 }
867 /* encryption wasn't necessary */
868 if (nskb == skb)
869 return skb;
870 /* we don't re-check ring space */
871 if (unlikely(skb_is_nonlinear(nskb))) {
872 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
873 u64_stats_update_begin(&r_vec->tx_sync);
874 r_vec->tx_errors++;
875 u64_stats_update_end(&r_vec->tx_sync);
876 dev_kfree_skb_any(nskb);
877 return NULL;
878 }
879
880 /* jump forward, a TX may have gotten lost, need to sync TX */
881 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
882 tls_offload_tx_resync_request(nskb->sk, seq,
883 ntls->next_seq);
884
885 *nr_frags = 0;
886 return nskb;
887 }
888
889 if (datalen) {
890 u64_stats_update_begin(&r_vec->tx_sync);
891 if (!skb_is_gso(skb))
892 r_vec->hw_tls_tx++;
893 else
894 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
895 u64_stats_update_end(&r_vec->tx_sync);
896 }
897
898 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
899 ntls->next_seq += datalen;
900 #endif
901 return skb;
902 }
903
nfp_net_tls_tx_undo(struct sk_buff * skb,u64 tls_handle)904 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
905 {
906 #ifdef CONFIG_TLS_DEVICE
907 struct nfp_net_tls_offload_ctx *ntls;
908 u32 datalen, seq;
909
910 if (!tls_handle)
911 return;
912 if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
913 return;
914
915 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
916 seq = ntohl(tcp_hdr(skb)->seq);
917
918 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
919 if (ntls->next_seq == seq + datalen)
920 ntls->next_seq = seq;
921 else
922 WARN_ON_ONCE(1);
923 #endif
924 }
925
nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring * tx_ring)926 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
927 {
928 wmb();
929 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
930 tx_ring->wr_ptr_add = 0;
931 }
932
nfp_net_prep_tx_meta(struct sk_buff * skb,u64 tls_handle)933 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
934 {
935 struct metadata_dst *md_dst = skb_metadata_dst(skb);
936 unsigned char *data;
937 u32 meta_id = 0;
938 int md_bytes;
939
940 if (likely(!md_dst && !tls_handle))
941 return 0;
942 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
943 if (!tls_handle)
944 return 0;
945 md_dst = NULL;
946 }
947
948 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
949
950 if (unlikely(skb_cow_head(skb, md_bytes)))
951 return -ENOMEM;
952
953 meta_id = 0;
954 data = skb_push(skb, md_bytes) + md_bytes;
955 if (md_dst) {
956 data -= 4;
957 put_unaligned_be32(md_dst->u.port_info.port_id, data);
958 meta_id = NFP_NET_META_PORTID;
959 }
960 if (tls_handle) {
961 /* conn handle is opaque, we just use u64 to be able to quickly
962 * compare it to zero
963 */
964 data -= 8;
965 memcpy(data, &tls_handle, sizeof(tls_handle));
966 meta_id <<= NFP_NET_META_FIELD_SIZE;
967 meta_id |= NFP_NET_META_CONN_HANDLE;
968 }
969
970 data -= 4;
971 put_unaligned_be32(meta_id, data);
972
973 return md_bytes;
974 }
975
976 /**
977 * nfp_net_tx() - Main transmit entry point
978 * @skb: SKB to transmit
979 * @netdev: netdev structure
980 *
981 * Return: NETDEV_TX_OK on success.
982 */
nfp_net_tx(struct sk_buff * skb,struct net_device * netdev)983 static netdev_tx_t nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
984 {
985 struct nfp_net *nn = netdev_priv(netdev);
986 const skb_frag_t *frag;
987 int f, nr_frags, wr_idx, md_bytes;
988 struct nfp_net_tx_ring *tx_ring;
989 struct nfp_net_r_vector *r_vec;
990 struct nfp_net_tx_buf *txbuf;
991 struct nfp_net_tx_desc *txd;
992 struct netdev_queue *nd_q;
993 struct nfp_net_dp *dp;
994 dma_addr_t dma_addr;
995 unsigned int fsize;
996 u64 tls_handle = 0;
997 u16 qidx;
998
999 dp = &nn->dp;
1000 qidx = skb_get_queue_mapping(skb);
1001 tx_ring = &dp->tx_rings[qidx];
1002 r_vec = tx_ring->r_vec;
1003
1004 nr_frags = skb_shinfo(skb)->nr_frags;
1005
1006 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
1007 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
1008 qidx, tx_ring->wr_p, tx_ring->rd_p);
1009 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
1010 netif_tx_stop_queue(nd_q);
1011 nfp_net_tx_xmit_more_flush(tx_ring);
1012 u64_stats_update_begin(&r_vec->tx_sync);
1013 r_vec->tx_busy++;
1014 u64_stats_update_end(&r_vec->tx_sync);
1015 return NETDEV_TX_BUSY;
1016 }
1017
1018 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
1019 if (unlikely(!skb)) {
1020 nfp_net_tx_xmit_more_flush(tx_ring);
1021 return NETDEV_TX_OK;
1022 }
1023
1024 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
1025 if (unlikely(md_bytes < 0))
1026 goto err_flush;
1027
1028 /* Start with the head skbuf */
1029 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1030 DMA_TO_DEVICE);
1031 if (dma_mapping_error(dp->dev, dma_addr))
1032 goto err_dma_err;
1033
1034 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1035
1036 /* Stash the soft descriptor of the head then initialize it */
1037 txbuf = &tx_ring->txbufs[wr_idx];
1038 txbuf->skb = skb;
1039 txbuf->dma_addr = dma_addr;
1040 txbuf->fidx = -1;
1041 txbuf->pkt_cnt = 1;
1042 txbuf->real_len = skb->len;
1043
1044 /* Build TX descriptor */
1045 txd = &tx_ring->txds[wr_idx];
1046 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1047 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1048 nfp_desc_set_dma_addr(txd, dma_addr);
1049 txd->data_len = cpu_to_le16(skb->len);
1050
1051 txd->flags = 0;
1052 txd->mss = 0;
1053 txd->lso_hdrlen = 0;
1054
1055 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1056 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1057 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1058 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1059 txd->flags |= PCIE_DESC_TX_VLAN;
1060 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1061 }
1062
1063 /* Gather DMA */
1064 if (nr_frags > 0) {
1065 __le64 second_half;
1066
1067 /* all descs must match except for in addr, length and eop */
1068 second_half = txd->vals8[1];
1069
1070 for (f = 0; f < nr_frags; f++) {
1071 frag = &skb_shinfo(skb)->frags[f];
1072 fsize = skb_frag_size(frag);
1073
1074 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1075 fsize, DMA_TO_DEVICE);
1076 if (dma_mapping_error(dp->dev, dma_addr))
1077 goto err_unmap;
1078
1079 wr_idx = D_IDX(tx_ring, wr_idx + 1);
1080 tx_ring->txbufs[wr_idx].skb = skb;
1081 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1082 tx_ring->txbufs[wr_idx].fidx = f;
1083
1084 txd = &tx_ring->txds[wr_idx];
1085 txd->dma_len = cpu_to_le16(fsize);
1086 nfp_desc_set_dma_addr(txd, dma_addr);
1087 txd->offset_eop = md_bytes |
1088 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1089 txd->vals8[1] = second_half;
1090 }
1091
1092 u64_stats_update_begin(&r_vec->tx_sync);
1093 r_vec->tx_gather++;
1094 u64_stats_update_end(&r_vec->tx_sync);
1095 }
1096
1097 skb_tx_timestamp(skb);
1098
1099 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1100
1101 tx_ring->wr_p += nr_frags + 1;
1102 if (nfp_net_tx_ring_should_stop(tx_ring))
1103 nfp_net_tx_ring_stop(nd_q, tx_ring);
1104
1105 tx_ring->wr_ptr_add += nr_frags + 1;
1106 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1107 nfp_net_tx_xmit_more_flush(tx_ring);
1108
1109 return NETDEV_TX_OK;
1110
1111 err_unmap:
1112 while (--f >= 0) {
1113 frag = &skb_shinfo(skb)->frags[f];
1114 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1115 skb_frag_size(frag), DMA_TO_DEVICE);
1116 tx_ring->txbufs[wr_idx].skb = NULL;
1117 tx_ring->txbufs[wr_idx].dma_addr = 0;
1118 tx_ring->txbufs[wr_idx].fidx = -2;
1119 wr_idx = wr_idx - 1;
1120 if (wr_idx < 0)
1121 wr_idx += tx_ring->cnt;
1122 }
1123 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1124 skb_headlen(skb), DMA_TO_DEVICE);
1125 tx_ring->txbufs[wr_idx].skb = NULL;
1126 tx_ring->txbufs[wr_idx].dma_addr = 0;
1127 tx_ring->txbufs[wr_idx].fidx = -2;
1128 err_dma_err:
1129 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1130 err_flush:
1131 nfp_net_tx_xmit_more_flush(tx_ring);
1132 u64_stats_update_begin(&r_vec->tx_sync);
1133 r_vec->tx_errors++;
1134 u64_stats_update_end(&r_vec->tx_sync);
1135 nfp_net_tls_tx_undo(skb, tls_handle);
1136 dev_kfree_skb_any(skb);
1137 return NETDEV_TX_OK;
1138 }
1139
1140 /**
1141 * nfp_net_tx_complete() - Handled completed TX packets
1142 * @tx_ring: TX ring structure
1143 * @budget: NAPI budget (only used as bool to determine if in NAPI context)
1144 */
nfp_net_tx_complete(struct nfp_net_tx_ring * tx_ring,int budget)1145 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1146 {
1147 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1148 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1149 struct netdev_queue *nd_q;
1150 u32 done_pkts = 0, done_bytes = 0;
1151 u32 qcp_rd_p;
1152 int todo;
1153
1154 if (tx_ring->wr_p == tx_ring->rd_p)
1155 return;
1156
1157 /* Work out how many descriptors have been transmitted */
1158 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1159
1160 if (qcp_rd_p == tx_ring->qcp_rd_p)
1161 return;
1162
1163 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1164
1165 while (todo--) {
1166 const skb_frag_t *frag;
1167 struct nfp_net_tx_buf *tx_buf;
1168 struct sk_buff *skb;
1169 int fidx, nr_frags;
1170 int idx;
1171
1172 idx = D_IDX(tx_ring, tx_ring->rd_p++);
1173 tx_buf = &tx_ring->txbufs[idx];
1174
1175 skb = tx_buf->skb;
1176 if (!skb)
1177 continue;
1178
1179 nr_frags = skb_shinfo(skb)->nr_frags;
1180 fidx = tx_buf->fidx;
1181
1182 if (fidx == -1) {
1183 /* unmap head */
1184 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1185 skb_headlen(skb), DMA_TO_DEVICE);
1186
1187 done_pkts += tx_buf->pkt_cnt;
1188 done_bytes += tx_buf->real_len;
1189 } else {
1190 /* unmap fragment */
1191 frag = &skb_shinfo(skb)->frags[fidx];
1192 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1193 skb_frag_size(frag), DMA_TO_DEVICE);
1194 }
1195
1196 /* check for last gather fragment */
1197 if (fidx == nr_frags - 1)
1198 napi_consume_skb(skb, budget);
1199
1200 tx_buf->dma_addr = 0;
1201 tx_buf->skb = NULL;
1202 tx_buf->fidx = -2;
1203 }
1204
1205 tx_ring->qcp_rd_p = qcp_rd_p;
1206
1207 u64_stats_update_begin(&r_vec->tx_sync);
1208 r_vec->tx_bytes += done_bytes;
1209 r_vec->tx_pkts += done_pkts;
1210 u64_stats_update_end(&r_vec->tx_sync);
1211
1212 if (!dp->netdev)
1213 return;
1214
1215 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1216 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1217 if (nfp_net_tx_ring_should_wake(tx_ring)) {
1218 /* Make sure TX thread will see updated tx_ring->rd_p */
1219 smp_mb();
1220
1221 if (unlikely(netif_tx_queue_stopped(nd_q)))
1222 netif_tx_wake_queue(nd_q);
1223 }
1224
1225 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1226 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1227 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1228 }
1229
nfp_net_xdp_complete(struct nfp_net_tx_ring * tx_ring)1230 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1231 {
1232 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1233 u32 done_pkts = 0, done_bytes = 0;
1234 bool done_all;
1235 int idx, todo;
1236 u32 qcp_rd_p;
1237
1238 /* Work out how many descriptors have been transmitted */
1239 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1240
1241 if (qcp_rd_p == tx_ring->qcp_rd_p)
1242 return true;
1243
1244 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1245
1246 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1247 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1248
1249 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1250
1251 done_pkts = todo;
1252 while (todo--) {
1253 idx = D_IDX(tx_ring, tx_ring->rd_p);
1254 tx_ring->rd_p++;
1255
1256 done_bytes += tx_ring->txbufs[idx].real_len;
1257 }
1258
1259 u64_stats_update_begin(&r_vec->tx_sync);
1260 r_vec->tx_bytes += done_bytes;
1261 r_vec->tx_pkts += done_pkts;
1262 u64_stats_update_end(&r_vec->tx_sync);
1263
1264 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1265 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1266 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1267
1268 return done_all;
1269 }
1270
1271 /**
1272 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1273 * @dp: NFP Net data path struct
1274 * @tx_ring: TX ring structure
1275 *
1276 * Assumes that the device is stopped, must be idempotent.
1277 */
1278 static void
nfp_net_tx_ring_reset(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)1279 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1280 {
1281 const skb_frag_t *frag;
1282 struct netdev_queue *nd_q;
1283
1284 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1285 struct nfp_net_tx_buf *tx_buf;
1286 struct sk_buff *skb;
1287 int idx, nr_frags;
1288
1289 idx = D_IDX(tx_ring, tx_ring->rd_p);
1290 tx_buf = &tx_ring->txbufs[idx];
1291
1292 skb = tx_ring->txbufs[idx].skb;
1293 nr_frags = skb_shinfo(skb)->nr_frags;
1294
1295 if (tx_buf->fidx == -1) {
1296 /* unmap head */
1297 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1298 skb_headlen(skb), DMA_TO_DEVICE);
1299 } else {
1300 /* unmap fragment */
1301 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1302 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1303 skb_frag_size(frag), DMA_TO_DEVICE);
1304 }
1305
1306 /* check for last gather fragment */
1307 if (tx_buf->fidx == nr_frags - 1)
1308 dev_kfree_skb_any(skb);
1309
1310 tx_buf->dma_addr = 0;
1311 tx_buf->skb = NULL;
1312 tx_buf->fidx = -2;
1313
1314 tx_ring->qcp_rd_p++;
1315 tx_ring->rd_p++;
1316 }
1317
1318 memset(tx_ring->txds, 0, tx_ring->size);
1319 tx_ring->wr_p = 0;
1320 tx_ring->rd_p = 0;
1321 tx_ring->qcp_rd_p = 0;
1322 tx_ring->wr_ptr_add = 0;
1323
1324 if (tx_ring->is_xdp || !dp->netdev)
1325 return;
1326
1327 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1328 netdev_tx_reset_queue(nd_q);
1329 }
1330
nfp_net_tx_timeout(struct net_device * netdev,unsigned int txqueue)1331 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1332 {
1333 struct nfp_net *nn = netdev_priv(netdev);
1334
1335 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue);
1336 }
1337
1338 /* Receive processing
1339 */
1340 static unsigned int
nfp_net_calc_fl_bufsz(struct nfp_net_dp * dp)1341 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1342 {
1343 unsigned int fl_bufsz;
1344
1345 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1346 fl_bufsz += dp->rx_dma_off;
1347 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1348 fl_bufsz += NFP_NET_MAX_PREPEND;
1349 else
1350 fl_bufsz += dp->rx_offset;
1351 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1352
1353 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1354 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1355
1356 return fl_bufsz;
1357 }
1358
1359 static void
nfp_net_free_frag(void * frag,bool xdp)1360 nfp_net_free_frag(void *frag, bool xdp)
1361 {
1362 if (!xdp)
1363 skb_free_frag(frag);
1364 else
1365 __free_page(virt_to_page(frag));
1366 }
1367
1368 /**
1369 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1370 * @dp: NFP Net data path struct
1371 * @dma_addr: Pointer to storage for DMA address (output param)
1372 *
1373 * This function will allcate a new page frag, map it for DMA.
1374 *
1375 * Return: allocated page frag or NULL on failure.
1376 */
nfp_net_rx_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)1377 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1378 {
1379 void *frag;
1380
1381 if (!dp->xdp_prog) {
1382 frag = netdev_alloc_frag(dp->fl_bufsz);
1383 } else {
1384 struct page *page;
1385
1386 page = alloc_page(GFP_KERNEL);
1387 frag = page ? page_address(page) : NULL;
1388 }
1389 if (!frag) {
1390 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1391 return NULL;
1392 }
1393
1394 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1395 if (dma_mapping_error(dp->dev, *dma_addr)) {
1396 nfp_net_free_frag(frag, dp->xdp_prog);
1397 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1398 return NULL;
1399 }
1400
1401 return frag;
1402 }
1403
nfp_net_napi_alloc_one(struct nfp_net_dp * dp,dma_addr_t * dma_addr)1404 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1405 {
1406 void *frag;
1407
1408 if (!dp->xdp_prog) {
1409 frag = napi_alloc_frag(dp->fl_bufsz);
1410 if (unlikely(!frag))
1411 return NULL;
1412 } else {
1413 struct page *page;
1414
1415 page = dev_alloc_page();
1416 if (unlikely(!page))
1417 return NULL;
1418 frag = page_address(page);
1419 }
1420
1421 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1422 if (dma_mapping_error(dp->dev, *dma_addr)) {
1423 nfp_net_free_frag(frag, dp->xdp_prog);
1424 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1425 return NULL;
1426 }
1427
1428 return frag;
1429 }
1430
1431 /**
1432 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1433 * @dp: NFP Net data path struct
1434 * @rx_ring: RX ring structure
1435 * @frag: page fragment buffer
1436 * @dma_addr: DMA address of skb mapping
1437 */
nfp_net_rx_give_one(const struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,void * frag,dma_addr_t dma_addr)1438 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1439 struct nfp_net_rx_ring *rx_ring,
1440 void *frag, dma_addr_t dma_addr)
1441 {
1442 unsigned int wr_idx;
1443
1444 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1445
1446 nfp_net_dma_sync_dev_rx(dp, dma_addr);
1447
1448 /* Stash SKB and DMA address away */
1449 rx_ring->rxbufs[wr_idx].frag = frag;
1450 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1451
1452 /* Fill freelist descriptor */
1453 rx_ring->rxds[wr_idx].fld.reserved = 0;
1454 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1455 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1456 dma_addr + dp->rx_dma_off);
1457
1458 rx_ring->wr_p++;
1459 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1460 /* Update write pointer of the freelist queue. Make
1461 * sure all writes are flushed before telling the hardware.
1462 */
1463 wmb();
1464 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1465 }
1466 }
1467
1468 /**
1469 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1470 * @rx_ring: RX ring structure
1471 *
1472 * Assumes that the device is stopped, must be idempotent.
1473 */
nfp_net_rx_ring_reset(struct nfp_net_rx_ring * rx_ring)1474 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1475 {
1476 unsigned int wr_idx, last_idx;
1477
1478 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always
1479 * kept at cnt - 1 FL bufs.
1480 */
1481 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1482 return;
1483
1484 /* Move the empty entry to the end of the list */
1485 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1486 last_idx = rx_ring->cnt - 1;
1487 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1488 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1489 rx_ring->rxbufs[last_idx].dma_addr = 0;
1490 rx_ring->rxbufs[last_idx].frag = NULL;
1491
1492 memset(rx_ring->rxds, 0, rx_ring->size);
1493 rx_ring->wr_p = 0;
1494 rx_ring->rd_p = 0;
1495 }
1496
1497 /**
1498 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1499 * @dp: NFP Net data path struct
1500 * @rx_ring: RX ring to remove buffers from
1501 *
1502 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1503 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1504 * to restore required ring geometry.
1505 */
1506 static void
nfp_net_rx_ring_bufs_free(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1507 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1508 struct nfp_net_rx_ring *rx_ring)
1509 {
1510 unsigned int i;
1511
1512 for (i = 0; i < rx_ring->cnt - 1; i++) {
1513 /* NULL skb can only happen when initial filling of the ring
1514 * fails to allocate enough buffers and calls here to free
1515 * already allocated ones.
1516 */
1517 if (!rx_ring->rxbufs[i].frag)
1518 continue;
1519
1520 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1521 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1522 rx_ring->rxbufs[i].dma_addr = 0;
1523 rx_ring->rxbufs[i].frag = NULL;
1524 }
1525 }
1526
1527 /**
1528 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1529 * @dp: NFP Net data path struct
1530 * @rx_ring: RX ring to remove buffers from
1531 */
1532 static int
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1533 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1534 struct nfp_net_rx_ring *rx_ring)
1535 {
1536 struct nfp_net_rx_buf *rxbufs;
1537 unsigned int i;
1538
1539 rxbufs = rx_ring->rxbufs;
1540
1541 for (i = 0; i < rx_ring->cnt - 1; i++) {
1542 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1543 if (!rxbufs[i].frag) {
1544 nfp_net_rx_ring_bufs_free(dp, rx_ring);
1545 return -ENOMEM;
1546 }
1547 }
1548
1549 return 0;
1550 }
1551
1552 /**
1553 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1554 * @dp: NFP Net data path struct
1555 * @rx_ring: RX ring to fill
1556 */
1557 static void
nfp_net_rx_ring_fill_freelist(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)1558 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1559 struct nfp_net_rx_ring *rx_ring)
1560 {
1561 unsigned int i;
1562
1563 for (i = 0; i < rx_ring->cnt - 1; i++)
1564 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1565 rx_ring->rxbufs[i].dma_addr);
1566 }
1567
1568 /**
1569 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1570 * @flags: RX descriptor flags field in CPU byte order
1571 */
nfp_net_rx_csum_has_errors(u16 flags)1572 static int nfp_net_rx_csum_has_errors(u16 flags)
1573 {
1574 u16 csum_all_checked, csum_all_ok;
1575
1576 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1577 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1578
1579 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1580 }
1581
1582 /**
1583 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1584 * @dp: NFP Net data path struct
1585 * @r_vec: per-ring structure
1586 * @rxd: Pointer to RX descriptor
1587 * @meta: Parsed metadata prepend
1588 * @skb: Pointer to SKB
1589 */
nfp_net_rx_csum(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_desc * rxd,struct nfp_meta_parsed * meta,struct sk_buff * skb)1590 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1591 struct nfp_net_r_vector *r_vec,
1592 struct nfp_net_rx_desc *rxd,
1593 struct nfp_meta_parsed *meta, struct sk_buff *skb)
1594 {
1595 skb_checksum_none_assert(skb);
1596
1597 if (!(dp->netdev->features & NETIF_F_RXCSUM))
1598 return;
1599
1600 if (meta->csum_type) {
1601 skb->ip_summed = meta->csum_type;
1602 skb->csum = meta->csum;
1603 u64_stats_update_begin(&r_vec->rx_sync);
1604 r_vec->hw_csum_rx_complete++;
1605 u64_stats_update_end(&r_vec->rx_sync);
1606 return;
1607 }
1608
1609 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1610 u64_stats_update_begin(&r_vec->rx_sync);
1611 r_vec->hw_csum_rx_error++;
1612 u64_stats_update_end(&r_vec->rx_sync);
1613 return;
1614 }
1615
1616 /* Assume that the firmware will never report inner CSUM_OK unless outer
1617 * L4 headers were successfully parsed. FW will always report zero UDP
1618 * checksum as CSUM_OK.
1619 */
1620 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1621 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1622 __skb_incr_checksum_unnecessary(skb);
1623 u64_stats_update_begin(&r_vec->rx_sync);
1624 r_vec->hw_csum_rx_ok++;
1625 u64_stats_update_end(&r_vec->rx_sync);
1626 }
1627
1628 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1629 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1630 __skb_incr_checksum_unnecessary(skb);
1631 u64_stats_update_begin(&r_vec->rx_sync);
1632 r_vec->hw_csum_rx_inner_ok++;
1633 u64_stats_update_end(&r_vec->rx_sync);
1634 }
1635 }
1636
1637 static void
nfp_net_set_hash(struct net_device * netdev,struct nfp_meta_parsed * meta,unsigned int type,__be32 * hash)1638 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1639 unsigned int type, __be32 *hash)
1640 {
1641 if (!(netdev->features & NETIF_F_RXHASH))
1642 return;
1643
1644 switch (type) {
1645 case NFP_NET_RSS_IPV4:
1646 case NFP_NET_RSS_IPV6:
1647 case NFP_NET_RSS_IPV6_EX:
1648 meta->hash_type = PKT_HASH_TYPE_L3;
1649 break;
1650 default:
1651 meta->hash_type = PKT_HASH_TYPE_L4;
1652 break;
1653 }
1654
1655 meta->hash = get_unaligned_be32(hash);
1656 }
1657
1658 static void
nfp_net_set_hash_desc(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,struct nfp_net_rx_desc * rxd)1659 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1660 void *data, struct nfp_net_rx_desc *rxd)
1661 {
1662 struct nfp_net_rx_hash *rx_hash = data;
1663
1664 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1665 return;
1666
1667 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1668 &rx_hash->hash);
1669 }
1670
1671 static bool
nfp_net_parse_meta(struct net_device * netdev,struct nfp_meta_parsed * meta,void * data,void * pkt,unsigned int pkt_len,int meta_len)1672 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1673 void *data, void *pkt, unsigned int pkt_len, int meta_len)
1674 {
1675 u32 meta_info;
1676
1677 meta_info = get_unaligned_be32(data);
1678 data += 4;
1679
1680 while (meta_info) {
1681 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1682 case NFP_NET_META_HASH:
1683 meta_info >>= NFP_NET_META_FIELD_SIZE;
1684 nfp_net_set_hash(netdev, meta,
1685 meta_info & NFP_NET_META_FIELD_MASK,
1686 (__be32 *)data);
1687 data += 4;
1688 break;
1689 case NFP_NET_META_MARK:
1690 meta->mark = get_unaligned_be32(data);
1691 data += 4;
1692 break;
1693 case NFP_NET_META_PORTID:
1694 meta->portid = get_unaligned_be32(data);
1695 data += 4;
1696 break;
1697 case NFP_NET_META_CSUM:
1698 meta->csum_type = CHECKSUM_COMPLETE;
1699 meta->csum =
1700 (__force __wsum)__get_unaligned_cpu32(data);
1701 data += 4;
1702 break;
1703 case NFP_NET_META_RESYNC_INFO:
1704 if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
1705 pkt_len))
1706 return false;
1707 data += sizeof(struct nfp_net_tls_resync_req);
1708 break;
1709 default:
1710 return true;
1711 }
1712
1713 meta_info >>= NFP_NET_META_FIELD_SIZE;
1714 }
1715
1716 return data != pkt;
1717 }
1718
1719 static void
nfp_net_rx_drop(const struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring,struct nfp_net_rx_buf * rxbuf,struct sk_buff * skb)1720 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1721 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1722 struct sk_buff *skb)
1723 {
1724 u64_stats_update_begin(&r_vec->rx_sync);
1725 r_vec->rx_drops++;
1726 /* If we have both skb and rxbuf the replacement buffer allocation
1727 * must have failed, count this as an alloc failure.
1728 */
1729 if (skb && rxbuf)
1730 r_vec->rx_replace_buf_alloc_fail++;
1731 u64_stats_update_end(&r_vec->rx_sync);
1732
1733 /* skb is build based on the frag, free_skb() would free the frag
1734 * so to be able to reuse it we need an extra ref.
1735 */
1736 if (skb && rxbuf && skb->head == rxbuf->frag)
1737 page_ref_inc(virt_to_head_page(rxbuf->frag));
1738 if (rxbuf)
1739 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1740 if (skb)
1741 dev_kfree_skb_any(skb);
1742 }
1743
1744 static bool
nfp_net_tx_xdp_buf(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring,struct nfp_net_tx_ring * tx_ring,struct nfp_net_rx_buf * rxbuf,unsigned int dma_off,unsigned int pkt_len,bool * completed)1745 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1746 struct nfp_net_tx_ring *tx_ring,
1747 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1748 unsigned int pkt_len, bool *completed)
1749 {
1750 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
1751 struct nfp_net_tx_buf *txbuf;
1752 struct nfp_net_tx_desc *txd;
1753 int wr_idx;
1754
1755 /* Reject if xdp_adjust_tail grow packet beyond DMA area */
1756 if (pkt_len + dma_off > dma_map_sz)
1757 return false;
1758
1759 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1760 if (!*completed) {
1761 nfp_net_xdp_complete(tx_ring);
1762 *completed = true;
1763 }
1764
1765 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1766 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1767 NULL);
1768 return false;
1769 }
1770 }
1771
1772 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1773
1774 /* Stash the soft descriptor of the head then initialize it */
1775 txbuf = &tx_ring->txbufs[wr_idx];
1776
1777 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1778
1779 txbuf->frag = rxbuf->frag;
1780 txbuf->dma_addr = rxbuf->dma_addr;
1781 txbuf->fidx = -1;
1782 txbuf->pkt_cnt = 1;
1783 txbuf->real_len = pkt_len;
1784
1785 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1786 pkt_len, DMA_BIDIRECTIONAL);
1787
1788 /* Build TX descriptor */
1789 txd = &tx_ring->txds[wr_idx];
1790 txd->offset_eop = PCIE_DESC_TX_EOP;
1791 txd->dma_len = cpu_to_le16(pkt_len);
1792 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1793 txd->data_len = cpu_to_le16(pkt_len);
1794
1795 txd->flags = 0;
1796 txd->mss = 0;
1797 txd->lso_hdrlen = 0;
1798
1799 tx_ring->wr_p++;
1800 tx_ring->wr_ptr_add++;
1801 return true;
1802 }
1803
1804 /**
1805 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1806 * @rx_ring: RX ring to receive from
1807 * @budget: NAPI budget
1808 *
1809 * Note, this function is separated out from the napi poll function to
1810 * more cleanly separate packet receive code from other bookkeeping
1811 * functions performed in the napi poll function.
1812 *
1813 * Return: Number of packets received.
1814 */
nfp_net_rx(struct nfp_net_rx_ring * rx_ring,int budget)1815 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1816 {
1817 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1818 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1819 struct nfp_net_tx_ring *tx_ring;
1820 struct bpf_prog *xdp_prog;
1821 bool xdp_tx_cmpl = false;
1822 unsigned int true_bufsz;
1823 struct sk_buff *skb;
1824 int pkts_polled = 0;
1825 struct xdp_buff xdp;
1826 int idx;
1827
1828 xdp_prog = READ_ONCE(dp->xdp_prog);
1829 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1830 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
1831 &rx_ring->xdp_rxq);
1832 tx_ring = r_vec->xdp_ring;
1833
1834 while (pkts_polled < budget) {
1835 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1836 struct nfp_net_rx_buf *rxbuf;
1837 struct nfp_net_rx_desc *rxd;
1838 struct nfp_meta_parsed meta;
1839 bool redir_egress = false;
1840 struct net_device *netdev;
1841 dma_addr_t new_dma_addr;
1842 u32 meta_len_xdp = 0;
1843 void *new_frag;
1844
1845 idx = D_IDX(rx_ring, rx_ring->rd_p);
1846
1847 rxd = &rx_ring->rxds[idx];
1848 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1849 break;
1850
1851 /* Memory barrier to ensure that we won't do other reads
1852 * before the DD bit.
1853 */
1854 dma_rmb();
1855
1856 memset(&meta, 0, sizeof(meta));
1857
1858 rx_ring->rd_p++;
1859 pkts_polled++;
1860
1861 rxbuf = &rx_ring->rxbufs[idx];
1862 /* < meta_len >
1863 * <-- [rx_offset] -->
1864 * ---------------------------------------------------------
1865 * | [XX] | metadata | packet | XXXX |
1866 * ---------------------------------------------------------
1867 * <---------------- data_len --------------->
1868 *
1869 * The rx_offset is fixed for all packets, the meta_len can vary
1870 * on a packet by packet basis. If rx_offset is set to zero
1871 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1872 * buffer and is immediately followed by the packet (no [XX]).
1873 */
1874 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1875 data_len = le16_to_cpu(rxd->rxd.data_len);
1876 pkt_len = data_len - meta_len;
1877
1878 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1879 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1880 pkt_off += meta_len;
1881 else
1882 pkt_off += dp->rx_offset;
1883 meta_off = pkt_off - meta_len;
1884
1885 /* Stats update */
1886 u64_stats_update_begin(&r_vec->rx_sync);
1887 r_vec->rx_pkts++;
1888 r_vec->rx_bytes += pkt_len;
1889 u64_stats_update_end(&r_vec->rx_sync);
1890
1891 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1892 (dp->rx_offset && meta_len > dp->rx_offset))) {
1893 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1894 meta_len);
1895 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1896 continue;
1897 }
1898
1899 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1900 data_len);
1901
1902 if (!dp->chained_metadata_format) {
1903 nfp_net_set_hash_desc(dp->netdev, &meta,
1904 rxbuf->frag + meta_off, rxd);
1905 } else if (meta_len) {
1906 if (unlikely(nfp_net_parse_meta(dp->netdev, &meta,
1907 rxbuf->frag + meta_off,
1908 rxbuf->frag + pkt_off,
1909 pkt_len, meta_len))) {
1910 nn_dp_warn(dp, "invalid RX packet metadata\n");
1911 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1912 NULL);
1913 continue;
1914 }
1915 }
1916
1917 if (xdp_prog && !meta.portid) {
1918 void *orig_data = rxbuf->frag + pkt_off;
1919 unsigned int dma_off;
1920 int act;
1921
1922 xdp_prepare_buff(&xdp,
1923 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
1924 pkt_off - NFP_NET_RX_BUF_HEADROOM,
1925 pkt_len, true);
1926
1927 act = bpf_prog_run_xdp(xdp_prog, &xdp);
1928
1929 pkt_len = xdp.data_end - xdp.data;
1930 pkt_off += xdp.data - orig_data;
1931
1932 switch (act) {
1933 case XDP_PASS:
1934 meta_len_xdp = xdp.data - xdp.data_meta;
1935 break;
1936 case XDP_TX:
1937 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1938 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1939 tx_ring, rxbuf,
1940 dma_off,
1941 pkt_len,
1942 &xdp_tx_cmpl)))
1943 trace_xdp_exception(dp->netdev,
1944 xdp_prog, act);
1945 continue;
1946 default:
1947 bpf_warn_invalid_xdp_action(act);
1948 fallthrough;
1949 case XDP_ABORTED:
1950 trace_xdp_exception(dp->netdev, xdp_prog, act);
1951 fallthrough;
1952 case XDP_DROP:
1953 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1954 rxbuf->dma_addr);
1955 continue;
1956 }
1957 }
1958
1959 if (likely(!meta.portid)) {
1960 netdev = dp->netdev;
1961 } else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1962 struct nfp_net *nn = netdev_priv(dp->netdev);
1963
1964 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1965 pkt_len);
1966 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1967 rxbuf->dma_addr);
1968 continue;
1969 } else {
1970 struct nfp_net *nn;
1971
1972 nn = netdev_priv(dp->netdev);
1973 netdev = nfp_app_dev_get(nn->app, meta.portid,
1974 &redir_egress);
1975 if (unlikely(!netdev)) {
1976 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1977 NULL);
1978 continue;
1979 }
1980
1981 if (nfp_netdev_is_nfp_repr(netdev))
1982 nfp_repr_inc_rx_stats(netdev, pkt_len);
1983 }
1984
1985 skb = build_skb(rxbuf->frag, true_bufsz);
1986 if (unlikely(!skb)) {
1987 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1988 continue;
1989 }
1990 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1991 if (unlikely(!new_frag)) {
1992 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1993 continue;
1994 }
1995
1996 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1997
1998 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1999
2000 skb_reserve(skb, pkt_off);
2001 skb_put(skb, pkt_len);
2002
2003 skb->mark = meta.mark;
2004 skb_set_hash(skb, meta.hash, meta.hash_type);
2005
2006 skb_record_rx_queue(skb, rx_ring->idx);
2007 skb->protocol = eth_type_trans(skb, netdev);
2008
2009 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
2010
2011 #ifdef CONFIG_TLS_DEVICE
2012 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
2013 skb->decrypted = true;
2014 u64_stats_update_begin(&r_vec->rx_sync);
2015 r_vec->hw_tls_rx++;
2016 u64_stats_update_end(&r_vec->rx_sync);
2017 }
2018 #endif
2019
2020 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
2021 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2022 le16_to_cpu(rxd->rxd.vlan));
2023 if (meta_len_xdp)
2024 skb_metadata_set(skb, meta_len_xdp);
2025
2026 if (likely(!redir_egress)) {
2027 napi_gro_receive(&rx_ring->r_vec->napi, skb);
2028 } else {
2029 skb->dev = netdev;
2030 skb_reset_network_header(skb);
2031 __skb_push(skb, ETH_HLEN);
2032 dev_queue_xmit(skb);
2033 }
2034 }
2035
2036 if (xdp_prog) {
2037 if (tx_ring->wr_ptr_add)
2038 nfp_net_tx_xmit_more_flush(tx_ring);
2039 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2040 !xdp_tx_cmpl)
2041 if (!nfp_net_xdp_complete(tx_ring))
2042 pkts_polled = budget;
2043 }
2044
2045 return pkts_polled;
2046 }
2047
2048 /**
2049 * nfp_net_poll() - napi poll function
2050 * @napi: NAPI structure
2051 * @budget: NAPI budget
2052 *
2053 * Return: number of packets polled.
2054 */
nfp_net_poll(struct napi_struct * napi,int budget)2055 static int nfp_net_poll(struct napi_struct *napi, int budget)
2056 {
2057 struct nfp_net_r_vector *r_vec =
2058 container_of(napi, struct nfp_net_r_vector, napi);
2059 unsigned int pkts_polled = 0;
2060
2061 if (r_vec->tx_ring)
2062 nfp_net_tx_complete(r_vec->tx_ring, budget);
2063 if (r_vec->rx_ring)
2064 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2065
2066 if (pkts_polled < budget)
2067 if (napi_complete_done(napi, pkts_polled))
2068 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2069
2070 if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
2071 struct dim_sample dim_sample = {};
2072 unsigned int start;
2073 u64 pkts, bytes;
2074
2075 do {
2076 start = u64_stats_fetch_begin(&r_vec->rx_sync);
2077 pkts = r_vec->rx_pkts;
2078 bytes = r_vec->rx_bytes;
2079 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
2080
2081 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
2082 net_dim(&r_vec->rx_dim, dim_sample);
2083 }
2084
2085 if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
2086 struct dim_sample dim_sample = {};
2087 unsigned int start;
2088 u64 pkts, bytes;
2089
2090 do {
2091 start = u64_stats_fetch_begin(&r_vec->tx_sync);
2092 pkts = r_vec->tx_pkts;
2093 bytes = r_vec->tx_bytes;
2094 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
2095
2096 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
2097 net_dim(&r_vec->tx_dim, dim_sample);
2098 }
2099
2100 return pkts_polled;
2101 }
2102
2103 /* Control device data path
2104 */
2105
2106 static bool
nfp_ctrl_tx_one(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,struct sk_buff * skb,bool old)2107 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2108 struct sk_buff *skb, bool old)
2109 {
2110 unsigned int real_len = skb->len, meta_len = 0;
2111 struct nfp_net_tx_ring *tx_ring;
2112 struct nfp_net_tx_buf *txbuf;
2113 struct nfp_net_tx_desc *txd;
2114 struct nfp_net_dp *dp;
2115 dma_addr_t dma_addr;
2116 int wr_idx;
2117
2118 dp = &r_vec->nfp_net->dp;
2119 tx_ring = r_vec->tx_ring;
2120
2121 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2122 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2123 goto err_free;
2124 }
2125
2126 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2127 u64_stats_update_begin(&r_vec->tx_sync);
2128 r_vec->tx_busy++;
2129 u64_stats_update_end(&r_vec->tx_sync);
2130 if (!old)
2131 __skb_queue_tail(&r_vec->queue, skb);
2132 else
2133 __skb_queue_head(&r_vec->queue, skb);
2134 return true;
2135 }
2136
2137 if (nfp_app_ctrl_has_meta(nn->app)) {
2138 if (unlikely(skb_headroom(skb) < 8)) {
2139 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2140 goto err_free;
2141 }
2142 meta_len = 8;
2143 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2144 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2145 }
2146
2147 /* Start with the head skbuf */
2148 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2149 DMA_TO_DEVICE);
2150 if (dma_mapping_error(dp->dev, dma_addr))
2151 goto err_dma_warn;
2152
2153 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2154
2155 /* Stash the soft descriptor of the head then initialize it */
2156 txbuf = &tx_ring->txbufs[wr_idx];
2157 txbuf->skb = skb;
2158 txbuf->dma_addr = dma_addr;
2159 txbuf->fidx = -1;
2160 txbuf->pkt_cnt = 1;
2161 txbuf->real_len = real_len;
2162
2163 /* Build TX descriptor */
2164 txd = &tx_ring->txds[wr_idx];
2165 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2166 txd->dma_len = cpu_to_le16(skb_headlen(skb));
2167 nfp_desc_set_dma_addr(txd, dma_addr);
2168 txd->data_len = cpu_to_le16(skb->len);
2169
2170 txd->flags = 0;
2171 txd->mss = 0;
2172 txd->lso_hdrlen = 0;
2173
2174 tx_ring->wr_p++;
2175 tx_ring->wr_ptr_add++;
2176 nfp_net_tx_xmit_more_flush(tx_ring);
2177
2178 return false;
2179
2180 err_dma_warn:
2181 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2182 err_free:
2183 u64_stats_update_begin(&r_vec->tx_sync);
2184 r_vec->tx_errors++;
2185 u64_stats_update_end(&r_vec->tx_sync);
2186 dev_kfree_skb_any(skb);
2187 return false;
2188 }
2189
__nfp_ctrl_tx(struct nfp_net * nn,struct sk_buff * skb)2190 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2191 {
2192 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2193
2194 return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2195 }
2196
nfp_ctrl_tx(struct nfp_net * nn,struct sk_buff * skb)2197 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2198 {
2199 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2200 bool ret;
2201
2202 spin_lock_bh(&r_vec->lock);
2203 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2204 spin_unlock_bh(&r_vec->lock);
2205
2206 return ret;
2207 }
2208
__nfp_ctrl_tx_queued(struct nfp_net_r_vector * r_vec)2209 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2210 {
2211 struct sk_buff *skb;
2212
2213 while ((skb = __skb_dequeue(&r_vec->queue)))
2214 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2215 return;
2216 }
2217
2218 static bool
nfp_ctrl_meta_ok(struct nfp_net * nn,void * data,unsigned int meta_len)2219 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2220 {
2221 u32 meta_type, meta_tag;
2222
2223 if (!nfp_app_ctrl_has_meta(nn->app))
2224 return !meta_len;
2225
2226 if (meta_len != 8)
2227 return false;
2228
2229 meta_type = get_unaligned_be32(data);
2230 meta_tag = get_unaligned_be32(data + 4);
2231
2232 return (meta_type == NFP_NET_META_PORTID &&
2233 meta_tag == NFP_META_PORT_ID_CTRL);
2234 }
2235
2236 static bool
nfp_ctrl_rx_one(struct nfp_net * nn,struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,struct nfp_net_rx_ring * rx_ring)2237 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2238 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2239 {
2240 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2241 struct nfp_net_rx_buf *rxbuf;
2242 struct nfp_net_rx_desc *rxd;
2243 dma_addr_t new_dma_addr;
2244 struct sk_buff *skb;
2245 void *new_frag;
2246 int idx;
2247
2248 idx = D_IDX(rx_ring, rx_ring->rd_p);
2249
2250 rxd = &rx_ring->rxds[idx];
2251 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2252 return false;
2253
2254 /* Memory barrier to ensure that we won't do other reads
2255 * before the DD bit.
2256 */
2257 dma_rmb();
2258
2259 rx_ring->rd_p++;
2260
2261 rxbuf = &rx_ring->rxbufs[idx];
2262 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2263 data_len = le16_to_cpu(rxd->rxd.data_len);
2264 pkt_len = data_len - meta_len;
2265
2266 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2267 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2268 pkt_off += meta_len;
2269 else
2270 pkt_off += dp->rx_offset;
2271 meta_off = pkt_off - meta_len;
2272
2273 /* Stats update */
2274 u64_stats_update_begin(&r_vec->rx_sync);
2275 r_vec->rx_pkts++;
2276 r_vec->rx_bytes += pkt_len;
2277 u64_stats_update_end(&r_vec->rx_sync);
2278
2279 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
2280
2281 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2282 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2283 meta_len);
2284 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2285 return true;
2286 }
2287
2288 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2289 if (unlikely(!skb)) {
2290 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2291 return true;
2292 }
2293 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2294 if (unlikely(!new_frag)) {
2295 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2296 return true;
2297 }
2298
2299 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2300
2301 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2302
2303 skb_reserve(skb, pkt_off);
2304 skb_put(skb, pkt_len);
2305
2306 nfp_app_ctrl_rx(nn->app, skb);
2307
2308 return true;
2309 }
2310
nfp_ctrl_rx(struct nfp_net_r_vector * r_vec)2311 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2312 {
2313 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2314 struct nfp_net *nn = r_vec->nfp_net;
2315 struct nfp_net_dp *dp = &nn->dp;
2316 unsigned int budget = 512;
2317
2318 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2319 continue;
2320
2321 return budget;
2322 }
2323
nfp_ctrl_poll(struct tasklet_struct * t)2324 static void nfp_ctrl_poll(struct tasklet_struct *t)
2325 {
2326 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
2327
2328 spin_lock(&r_vec->lock);
2329 nfp_net_tx_complete(r_vec->tx_ring, 0);
2330 __nfp_ctrl_tx_queued(r_vec);
2331 spin_unlock(&r_vec->lock);
2332
2333 if (nfp_ctrl_rx(r_vec)) {
2334 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2335 } else {
2336 tasklet_schedule(&r_vec->tasklet);
2337 nn_dp_warn(&r_vec->nfp_net->dp,
2338 "control message budget exceeded!\n");
2339 }
2340 }
2341
2342 /* Setup and Configuration
2343 */
2344
2345 /**
2346 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2347 * @nn: NFP Network structure
2348 */
nfp_net_vecs_init(struct nfp_net * nn)2349 static void nfp_net_vecs_init(struct nfp_net *nn)
2350 {
2351 struct nfp_net_r_vector *r_vec;
2352 int r;
2353
2354 nn->lsc_handler = nfp_net_irq_lsc;
2355 nn->exn_handler = nfp_net_irq_exn;
2356
2357 for (r = 0; r < nn->max_r_vecs; r++) {
2358 struct msix_entry *entry;
2359
2360 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2361
2362 r_vec = &nn->r_vecs[r];
2363 r_vec->nfp_net = nn;
2364 r_vec->irq_entry = entry->entry;
2365 r_vec->irq_vector = entry->vector;
2366
2367 if (nn->dp.netdev) {
2368 r_vec->handler = nfp_net_irq_rxtx;
2369 } else {
2370 r_vec->handler = nfp_ctrl_irq_rxtx;
2371
2372 __skb_queue_head_init(&r_vec->queue);
2373 spin_lock_init(&r_vec->lock);
2374 tasklet_setup(&r_vec->tasklet, nfp_ctrl_poll);
2375 tasklet_disable(&r_vec->tasklet);
2376 }
2377
2378 cpumask_set_cpu(r, &r_vec->affinity_mask);
2379 }
2380 }
2381
2382 /**
2383 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2384 * @tx_ring: TX ring to free
2385 */
nfp_net_tx_ring_free(struct nfp_net_tx_ring * tx_ring)2386 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2387 {
2388 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2389 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2390
2391 kvfree(tx_ring->txbufs);
2392
2393 if (tx_ring->txds)
2394 dma_free_coherent(dp->dev, tx_ring->size,
2395 tx_ring->txds, tx_ring->dma);
2396
2397 tx_ring->cnt = 0;
2398 tx_ring->txbufs = NULL;
2399 tx_ring->txds = NULL;
2400 tx_ring->dma = 0;
2401 tx_ring->size = 0;
2402 }
2403
2404 /**
2405 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2406 * @dp: NFP Net data path struct
2407 * @tx_ring: TX Ring structure to allocate
2408 *
2409 * Return: 0 on success, negative errno otherwise.
2410 */
2411 static int
nfp_net_tx_ring_alloc(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2412 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2413 {
2414 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2415
2416 tx_ring->cnt = dp->txd_cnt;
2417
2418 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2419 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2420 &tx_ring->dma,
2421 GFP_KERNEL | __GFP_NOWARN);
2422 if (!tx_ring->txds) {
2423 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2424 tx_ring->cnt);
2425 goto err_alloc;
2426 }
2427
2428 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2429 GFP_KERNEL);
2430 if (!tx_ring->txbufs)
2431 goto err_alloc;
2432
2433 if (!tx_ring->is_xdp && dp->netdev)
2434 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2435 tx_ring->idx);
2436
2437 return 0;
2438
2439 err_alloc:
2440 nfp_net_tx_ring_free(tx_ring);
2441 return -ENOMEM;
2442 }
2443
2444 static void
nfp_net_tx_ring_bufs_free(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2445 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2446 struct nfp_net_tx_ring *tx_ring)
2447 {
2448 unsigned int i;
2449
2450 if (!tx_ring->is_xdp)
2451 return;
2452
2453 for (i = 0; i < tx_ring->cnt; i++) {
2454 if (!tx_ring->txbufs[i].frag)
2455 return;
2456
2457 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2458 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2459 }
2460 }
2461
2462 static int
nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp * dp,struct nfp_net_tx_ring * tx_ring)2463 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2464 struct nfp_net_tx_ring *tx_ring)
2465 {
2466 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2467 unsigned int i;
2468
2469 if (!tx_ring->is_xdp)
2470 return 0;
2471
2472 for (i = 0; i < tx_ring->cnt; i++) {
2473 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2474 if (!txbufs[i].frag) {
2475 nfp_net_tx_ring_bufs_free(dp, tx_ring);
2476 return -ENOMEM;
2477 }
2478 }
2479
2480 return 0;
2481 }
2482
nfp_net_tx_rings_prepare(struct nfp_net * nn,struct nfp_net_dp * dp)2483 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2484 {
2485 unsigned int r;
2486
2487 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2488 GFP_KERNEL);
2489 if (!dp->tx_rings)
2490 return -ENOMEM;
2491
2492 for (r = 0; r < dp->num_tx_rings; r++) {
2493 int bias = 0;
2494
2495 if (r >= dp->num_stack_tx_rings)
2496 bias = dp->num_stack_tx_rings;
2497
2498 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2499 r, bias);
2500
2501 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2502 goto err_free_prev;
2503
2504 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2505 goto err_free_ring;
2506 }
2507
2508 return 0;
2509
2510 err_free_prev:
2511 while (r--) {
2512 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2513 err_free_ring:
2514 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2515 }
2516 kfree(dp->tx_rings);
2517 return -ENOMEM;
2518 }
2519
nfp_net_tx_rings_free(struct nfp_net_dp * dp)2520 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2521 {
2522 unsigned int r;
2523
2524 for (r = 0; r < dp->num_tx_rings; r++) {
2525 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2526 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2527 }
2528
2529 kfree(dp->tx_rings);
2530 }
2531
2532 /**
2533 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2534 * @rx_ring: RX ring to free
2535 */
nfp_net_rx_ring_free(struct nfp_net_rx_ring * rx_ring)2536 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2537 {
2538 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2539 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2540
2541 if (dp->netdev)
2542 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2543 kvfree(rx_ring->rxbufs);
2544
2545 if (rx_ring->rxds)
2546 dma_free_coherent(dp->dev, rx_ring->size,
2547 rx_ring->rxds, rx_ring->dma);
2548
2549 rx_ring->cnt = 0;
2550 rx_ring->rxbufs = NULL;
2551 rx_ring->rxds = NULL;
2552 rx_ring->dma = 0;
2553 rx_ring->size = 0;
2554 }
2555
2556 /**
2557 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2558 * @dp: NFP Net data path struct
2559 * @rx_ring: RX ring to allocate
2560 *
2561 * Return: 0 on success, negative errno otherwise.
2562 */
2563 static int
nfp_net_rx_ring_alloc(struct nfp_net_dp * dp,struct nfp_net_rx_ring * rx_ring)2564 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2565 {
2566 int err;
2567
2568 if (dp->netdev) {
2569 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2570 rx_ring->idx, rx_ring->r_vec->napi.napi_id);
2571 if (err < 0)
2572 return err;
2573 }
2574
2575 rx_ring->cnt = dp->rxd_cnt;
2576 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2577 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2578 &rx_ring->dma,
2579 GFP_KERNEL | __GFP_NOWARN);
2580 if (!rx_ring->rxds) {
2581 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2582 rx_ring->cnt);
2583 goto err_alloc;
2584 }
2585
2586 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2587 GFP_KERNEL);
2588 if (!rx_ring->rxbufs)
2589 goto err_alloc;
2590
2591 return 0;
2592
2593 err_alloc:
2594 nfp_net_rx_ring_free(rx_ring);
2595 return -ENOMEM;
2596 }
2597
nfp_net_rx_rings_prepare(struct nfp_net * nn,struct nfp_net_dp * dp)2598 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2599 {
2600 unsigned int r;
2601
2602 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2603 GFP_KERNEL);
2604 if (!dp->rx_rings)
2605 return -ENOMEM;
2606
2607 for (r = 0; r < dp->num_rx_rings; r++) {
2608 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2609
2610 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2611 goto err_free_prev;
2612
2613 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2614 goto err_free_ring;
2615 }
2616
2617 return 0;
2618
2619 err_free_prev:
2620 while (r--) {
2621 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2622 err_free_ring:
2623 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2624 }
2625 kfree(dp->rx_rings);
2626 return -ENOMEM;
2627 }
2628
nfp_net_rx_rings_free(struct nfp_net_dp * dp)2629 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2630 {
2631 unsigned int r;
2632
2633 for (r = 0; r < dp->num_rx_rings; r++) {
2634 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2635 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2636 }
2637
2638 kfree(dp->rx_rings);
2639 }
2640
2641 static void
nfp_net_vector_assign_rings(struct nfp_net_dp * dp,struct nfp_net_r_vector * r_vec,int idx)2642 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2643 struct nfp_net_r_vector *r_vec, int idx)
2644 {
2645 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2646 r_vec->tx_ring =
2647 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2648
2649 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2650 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2651 }
2652
2653 static int
nfp_net_prepare_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec,int idx)2654 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2655 int idx)
2656 {
2657 int err;
2658
2659 /* Setup NAPI */
2660 if (nn->dp.netdev)
2661 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2662 nfp_net_poll, NAPI_POLL_WEIGHT);
2663 else
2664 tasklet_enable(&r_vec->tasklet);
2665
2666 snprintf(r_vec->name, sizeof(r_vec->name),
2667 "%s-rxtx-%d", nfp_net_name(nn), idx);
2668 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2669 r_vec);
2670 if (err) {
2671 if (nn->dp.netdev)
2672 netif_napi_del(&r_vec->napi);
2673 else
2674 tasklet_disable(&r_vec->tasklet);
2675
2676 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2677 return err;
2678 }
2679 disable_irq(r_vec->irq_vector);
2680
2681 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2682
2683 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2684 r_vec->irq_entry);
2685
2686 return 0;
2687 }
2688
2689 static void
nfp_net_cleanup_vector(struct nfp_net * nn,struct nfp_net_r_vector * r_vec)2690 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2691 {
2692 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2693 if (nn->dp.netdev)
2694 netif_napi_del(&r_vec->napi);
2695 else
2696 tasklet_disable(&r_vec->tasklet);
2697
2698 free_irq(r_vec->irq_vector, r_vec);
2699 }
2700
2701 /**
2702 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2703 * @nn: NFP Net device to reconfigure
2704 */
nfp_net_rss_write_itbl(struct nfp_net * nn)2705 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2706 {
2707 int i;
2708
2709 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2710 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2711 get_unaligned_le32(nn->rss_itbl + i));
2712 }
2713
2714 /**
2715 * nfp_net_rss_write_key() - Write RSS hash key to device
2716 * @nn: NFP Net device to reconfigure
2717 */
nfp_net_rss_write_key(struct nfp_net * nn)2718 void nfp_net_rss_write_key(struct nfp_net *nn)
2719 {
2720 int i;
2721
2722 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2723 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2724 get_unaligned_le32(nn->rss_key + i));
2725 }
2726
2727 /**
2728 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2729 * @nn: NFP Net device to reconfigure
2730 */
nfp_net_coalesce_write_cfg(struct nfp_net * nn)2731 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2732 {
2733 u8 i;
2734 u32 factor;
2735 u32 value;
2736
2737 /* Compute factor used to convert coalesce '_usecs' parameters to
2738 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2739 * count.
2740 */
2741 factor = nn->tlv_caps.me_freq_mhz / 16;
2742
2743 /* copy RX interrupt coalesce parameters */
2744 value = (nn->rx_coalesce_max_frames << 16) |
2745 (factor * nn->rx_coalesce_usecs);
2746 for (i = 0; i < nn->dp.num_rx_rings; i++)
2747 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2748
2749 /* copy TX interrupt coalesce parameters */
2750 value = (nn->tx_coalesce_max_frames << 16) |
2751 (factor * nn->tx_coalesce_usecs);
2752 for (i = 0; i < nn->dp.num_tx_rings; i++)
2753 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2754 }
2755
2756 /**
2757 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2758 * @nn: NFP Net device to reconfigure
2759 * @addr: MAC address to write
2760 *
2761 * Writes the MAC address from the netdev to the device control BAR. Does not
2762 * perform the required reconfig. We do a bit of byte swapping dance because
2763 * firmware is LE.
2764 */
nfp_net_write_mac_addr(struct nfp_net * nn,const u8 * addr)2765 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2766 {
2767 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2768 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2769 }
2770
nfp_net_vec_clear_ring_data(struct nfp_net * nn,unsigned int idx)2771 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2772 {
2773 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2774 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2775 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2776
2777 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2778 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2779 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2780 }
2781
2782 /**
2783 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2784 * @nn: NFP Net device to reconfigure
2785 *
2786 * Warning: must be fully idempotent.
2787 */
nfp_net_clear_config_and_disable(struct nfp_net * nn)2788 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2789 {
2790 u32 new_ctrl, update;
2791 unsigned int r;
2792 int err;
2793
2794 new_ctrl = nn->dp.ctrl;
2795 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2796 update = NFP_NET_CFG_UPDATE_GEN;
2797 update |= NFP_NET_CFG_UPDATE_MSIX;
2798 update |= NFP_NET_CFG_UPDATE_RING;
2799
2800 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2801 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2802
2803 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2804 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2805
2806 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2807 err = nfp_net_reconfig(nn, update);
2808 if (err)
2809 nn_err(nn, "Could not disable device: %d\n", err);
2810
2811 for (r = 0; r < nn->dp.num_rx_rings; r++)
2812 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2813 for (r = 0; r < nn->dp.num_tx_rings; r++)
2814 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2815 for (r = 0; r < nn->dp.num_r_vecs; r++)
2816 nfp_net_vec_clear_ring_data(nn, r);
2817
2818 nn->dp.ctrl = new_ctrl;
2819 }
2820
2821 static void
nfp_net_rx_ring_hw_cfg_write(struct nfp_net * nn,struct nfp_net_rx_ring * rx_ring,unsigned int idx)2822 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2823 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2824 {
2825 /* Write the DMA address, size and MSI-X info to the device */
2826 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2827 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2828 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2829 }
2830
2831 static void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net * nn,struct nfp_net_tx_ring * tx_ring,unsigned int idx)2832 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2833 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2834 {
2835 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2836 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2837 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2838 }
2839
2840 /**
2841 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2842 * @nn: NFP Net device to reconfigure
2843 */
nfp_net_set_config_and_enable(struct nfp_net * nn)2844 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2845 {
2846 u32 bufsz, new_ctrl, update = 0;
2847 unsigned int r;
2848 int err;
2849
2850 new_ctrl = nn->dp.ctrl;
2851
2852 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2853 nfp_net_rss_write_key(nn);
2854 nfp_net_rss_write_itbl(nn);
2855 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2856 update |= NFP_NET_CFG_UPDATE_RSS;
2857 }
2858
2859 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2860 nfp_net_coalesce_write_cfg(nn);
2861 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2862 }
2863
2864 for (r = 0; r < nn->dp.num_tx_rings; r++)
2865 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2866 for (r = 0; r < nn->dp.num_rx_rings; r++)
2867 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2868
2869 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2870 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2871
2872 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2873 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2874
2875 if (nn->dp.netdev)
2876 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2877
2878 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2879
2880 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2881 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2882
2883 /* Enable device */
2884 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2885 update |= NFP_NET_CFG_UPDATE_GEN;
2886 update |= NFP_NET_CFG_UPDATE_MSIX;
2887 update |= NFP_NET_CFG_UPDATE_RING;
2888 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2889 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2890
2891 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2892 err = nfp_net_reconfig(nn, update);
2893 if (err) {
2894 nfp_net_clear_config_and_disable(nn);
2895 return err;
2896 }
2897
2898 nn->dp.ctrl = new_ctrl;
2899
2900 for (r = 0; r < nn->dp.num_rx_rings; r++)
2901 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2902
2903 return 0;
2904 }
2905
2906 /**
2907 * nfp_net_close_stack() - Quiesce the stack (part of close)
2908 * @nn: NFP Net device to reconfigure
2909 */
nfp_net_close_stack(struct nfp_net * nn)2910 static void nfp_net_close_stack(struct nfp_net *nn)
2911 {
2912 struct nfp_net_r_vector *r_vec;
2913 unsigned int r;
2914
2915 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2916 netif_carrier_off(nn->dp.netdev);
2917 nn->link_up = false;
2918
2919 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2920 r_vec = &nn->r_vecs[r];
2921
2922 disable_irq(r_vec->irq_vector);
2923 napi_disable(&r_vec->napi);
2924
2925 if (r_vec->rx_ring)
2926 cancel_work_sync(&r_vec->rx_dim.work);
2927
2928 if (r_vec->tx_ring)
2929 cancel_work_sync(&r_vec->tx_dim.work);
2930 }
2931
2932 netif_tx_disable(nn->dp.netdev);
2933 }
2934
2935 /**
2936 * nfp_net_close_free_all() - Free all runtime resources
2937 * @nn: NFP Net device to reconfigure
2938 */
nfp_net_close_free_all(struct nfp_net * nn)2939 static void nfp_net_close_free_all(struct nfp_net *nn)
2940 {
2941 unsigned int r;
2942
2943 nfp_net_tx_rings_free(&nn->dp);
2944 nfp_net_rx_rings_free(&nn->dp);
2945
2946 for (r = 0; r < nn->dp.num_r_vecs; r++)
2947 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2948
2949 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2950 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2951 }
2952
2953 /**
2954 * nfp_net_netdev_close() - Called when the device is downed
2955 * @netdev: netdev structure
2956 */
nfp_net_netdev_close(struct net_device * netdev)2957 static int nfp_net_netdev_close(struct net_device *netdev)
2958 {
2959 struct nfp_net *nn = netdev_priv(netdev);
2960
2961 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2962 */
2963 nfp_net_close_stack(nn);
2964
2965 /* Step 2: Tell NFP
2966 */
2967 nfp_net_clear_config_and_disable(nn);
2968 nfp_port_configure(netdev, false);
2969
2970 /* Step 3: Free resources
2971 */
2972 nfp_net_close_free_all(nn);
2973
2974 nn_dbg(nn, "%s down", netdev->name);
2975 return 0;
2976 }
2977
nfp_ctrl_close(struct nfp_net * nn)2978 void nfp_ctrl_close(struct nfp_net *nn)
2979 {
2980 int r;
2981
2982 rtnl_lock();
2983
2984 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2985 disable_irq(nn->r_vecs[r].irq_vector);
2986 tasklet_disable(&nn->r_vecs[r].tasklet);
2987 }
2988
2989 nfp_net_clear_config_and_disable(nn);
2990
2991 nfp_net_close_free_all(nn);
2992
2993 rtnl_unlock();
2994 }
2995
nfp_net_rx_dim_work(struct work_struct * work)2996 static void nfp_net_rx_dim_work(struct work_struct *work)
2997 {
2998 struct nfp_net_r_vector *r_vec;
2999 unsigned int factor, value;
3000 struct dim_cq_moder moder;
3001 struct nfp_net *nn;
3002 struct dim *dim;
3003
3004 dim = container_of(work, struct dim, work);
3005 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
3006 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim);
3007 nn = r_vec->nfp_net;
3008
3009 /* Compute factor used to convert coalesce '_usecs' parameters to
3010 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
3011 * count.
3012 */
3013 factor = nn->tlv_caps.me_freq_mhz / 16;
3014 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts))
3015 return;
3016
3017 /* copy RX interrupt coalesce parameters */
3018 value = (moder.pkts << 16) | (factor * moder.usec);
3019 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value);
3020 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD);
3021
3022 dim->state = DIM_START_MEASURE;
3023 }
3024
nfp_net_tx_dim_work(struct work_struct * work)3025 static void nfp_net_tx_dim_work(struct work_struct *work)
3026 {
3027 struct nfp_net_r_vector *r_vec;
3028 unsigned int factor, value;
3029 struct dim_cq_moder moder;
3030 struct nfp_net *nn;
3031 struct dim *dim;
3032
3033 dim = container_of(work, struct dim, work);
3034 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
3035 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim);
3036 nn = r_vec->nfp_net;
3037
3038 /* Compute factor used to convert coalesce '_usecs' parameters to
3039 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
3040 * count.
3041 */
3042 factor = nn->tlv_caps.me_freq_mhz / 16;
3043 if (nfp_net_coalesce_para_check(factor * moder.usec, moder.pkts))
3044 return;
3045
3046 /* copy TX interrupt coalesce parameters */
3047 value = (moder.pkts << 16) | (factor * moder.usec);
3048 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value);
3049 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD);
3050
3051 dim->state = DIM_START_MEASURE;
3052 }
3053
3054 /**
3055 * nfp_net_open_stack() - Start the device from stack's perspective
3056 * @nn: NFP Net device to reconfigure
3057 */
nfp_net_open_stack(struct nfp_net * nn)3058 static void nfp_net_open_stack(struct nfp_net *nn)
3059 {
3060 struct nfp_net_r_vector *r_vec;
3061 unsigned int r;
3062
3063 for (r = 0; r < nn->dp.num_r_vecs; r++) {
3064 r_vec = &nn->r_vecs[r];
3065
3066 if (r_vec->rx_ring) {
3067 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work);
3068 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
3069 }
3070
3071 if (r_vec->tx_ring) {
3072 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work);
3073 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
3074 }
3075
3076 napi_enable(&r_vec->napi);
3077 enable_irq(r_vec->irq_vector);
3078 }
3079
3080 netif_tx_wake_all_queues(nn->dp.netdev);
3081
3082 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
3083 nfp_net_read_link_status(nn);
3084 }
3085
nfp_net_open_alloc_all(struct nfp_net * nn)3086 static int nfp_net_open_alloc_all(struct nfp_net *nn)
3087 {
3088 int err, r;
3089
3090 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
3091 nn->exn_name, sizeof(nn->exn_name),
3092 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
3093 if (err)
3094 return err;
3095 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
3096 nn->lsc_name, sizeof(nn->lsc_name),
3097 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
3098 if (err)
3099 goto err_free_exn;
3100 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
3101
3102 for (r = 0; r < nn->dp.num_r_vecs; r++) {
3103 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3104 if (err)
3105 goto err_cleanup_vec_p;
3106 }
3107
3108 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
3109 if (err)
3110 goto err_cleanup_vec;
3111
3112 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
3113 if (err)
3114 goto err_free_rx_rings;
3115
3116 for (r = 0; r < nn->max_r_vecs; r++)
3117 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3118
3119 return 0;
3120
3121 err_free_rx_rings:
3122 nfp_net_rx_rings_free(&nn->dp);
3123 err_cleanup_vec:
3124 r = nn->dp.num_r_vecs;
3125 err_cleanup_vec_p:
3126 while (r--)
3127 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3128 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3129 err_free_exn:
3130 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
3131 return err;
3132 }
3133
nfp_net_netdev_open(struct net_device * netdev)3134 static int nfp_net_netdev_open(struct net_device *netdev)
3135 {
3136 struct nfp_net *nn = netdev_priv(netdev);
3137 int err;
3138
3139 /* Step 1: Allocate resources for rings and the like
3140 * - Request interrupts
3141 * - Allocate RX and TX ring resources
3142 * - Setup initial RSS table
3143 */
3144 err = nfp_net_open_alloc_all(nn);
3145 if (err)
3146 return err;
3147
3148 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3149 if (err)
3150 goto err_free_all;
3151
3152 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3153 if (err)
3154 goto err_free_all;
3155
3156 /* Step 2: Configure the NFP
3157 * - Ifup the physical interface if it exists
3158 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3159 * - Write MAC address (in case it changed)
3160 * - Set the MTU
3161 * - Set the Freelist buffer size
3162 * - Enable the FW
3163 */
3164 err = nfp_port_configure(netdev, true);
3165 if (err)
3166 goto err_free_all;
3167
3168 err = nfp_net_set_config_and_enable(nn);
3169 if (err)
3170 goto err_port_disable;
3171
3172 /* Step 3: Enable for kernel
3173 * - put some freelist descriptors on each RX ring
3174 * - enable NAPI on each ring
3175 * - enable all TX queues
3176 * - set link state
3177 */
3178 nfp_net_open_stack(nn);
3179
3180 return 0;
3181
3182 err_port_disable:
3183 nfp_port_configure(netdev, false);
3184 err_free_all:
3185 nfp_net_close_free_all(nn);
3186 return err;
3187 }
3188
nfp_ctrl_open(struct nfp_net * nn)3189 int nfp_ctrl_open(struct nfp_net *nn)
3190 {
3191 int err, r;
3192
3193 /* ring dumping depends on vNICs being opened/closed under rtnl */
3194 rtnl_lock();
3195
3196 err = nfp_net_open_alloc_all(nn);
3197 if (err)
3198 goto err_unlock;
3199
3200 err = nfp_net_set_config_and_enable(nn);
3201 if (err)
3202 goto err_free_all;
3203
3204 for (r = 0; r < nn->dp.num_r_vecs; r++)
3205 enable_irq(nn->r_vecs[r].irq_vector);
3206
3207 rtnl_unlock();
3208
3209 return 0;
3210
3211 err_free_all:
3212 nfp_net_close_free_all(nn);
3213 err_unlock:
3214 rtnl_unlock();
3215 return err;
3216 }
3217
nfp_net_set_rx_mode(struct net_device * netdev)3218 static void nfp_net_set_rx_mode(struct net_device *netdev)
3219 {
3220 struct nfp_net *nn = netdev_priv(netdev);
3221 u32 new_ctrl;
3222
3223 new_ctrl = nn->dp.ctrl;
3224
3225 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3226 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3227 else
3228 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3229
3230 if (netdev->flags & IFF_PROMISC) {
3231 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3232 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3233 else
3234 nn_warn(nn, "FW does not support promiscuous mode\n");
3235 } else {
3236 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3237 }
3238
3239 if (new_ctrl == nn->dp.ctrl)
3240 return;
3241
3242 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3243 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3244
3245 nn->dp.ctrl = new_ctrl;
3246 }
3247
nfp_net_rss_init_itbl(struct nfp_net * nn)3248 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3249 {
3250 int i;
3251
3252 for (i = 0; i < sizeof(nn->rss_itbl); i++)
3253 nn->rss_itbl[i] =
3254 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3255 }
3256
nfp_net_dp_swap(struct nfp_net * nn,struct nfp_net_dp * dp)3257 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3258 {
3259 struct nfp_net_dp new_dp = *dp;
3260
3261 *dp = nn->dp;
3262 nn->dp = new_dp;
3263
3264 nn->dp.netdev->mtu = new_dp.mtu;
3265
3266 if (!netif_is_rxfh_configured(nn->dp.netdev))
3267 nfp_net_rss_init_itbl(nn);
3268 }
3269
nfp_net_dp_swap_enable(struct nfp_net * nn,struct nfp_net_dp * dp)3270 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3271 {
3272 unsigned int r;
3273 int err;
3274
3275 nfp_net_dp_swap(nn, dp);
3276
3277 for (r = 0; r < nn->max_r_vecs; r++)
3278 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3279
3280 err = netif_set_real_num_queues(nn->dp.netdev,
3281 nn->dp.num_stack_tx_rings,
3282 nn->dp.num_rx_rings);
3283 if (err)
3284 return err;
3285
3286 return nfp_net_set_config_and_enable(nn);
3287 }
3288
nfp_net_clone_dp(struct nfp_net * nn)3289 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3290 {
3291 struct nfp_net_dp *new;
3292
3293 new = kmalloc(sizeof(*new), GFP_KERNEL);
3294 if (!new)
3295 return NULL;
3296
3297 *new = nn->dp;
3298
3299 /* Clear things which need to be recomputed */
3300 new->fl_bufsz = 0;
3301 new->tx_rings = NULL;
3302 new->rx_rings = NULL;
3303 new->num_r_vecs = 0;
3304 new->num_stack_tx_rings = 0;
3305
3306 return new;
3307 }
3308
3309 static int
nfp_net_check_config(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)3310 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3311 struct netlink_ext_ack *extack)
3312 {
3313 /* XDP-enabled tests */
3314 if (!dp->xdp_prog)
3315 return 0;
3316 if (dp->fl_bufsz > PAGE_SIZE) {
3317 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3318 return -EINVAL;
3319 }
3320 if (dp->num_tx_rings > nn->max_tx_rings) {
3321 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3322 return -EINVAL;
3323 }
3324
3325 return 0;
3326 }
3327
nfp_net_ring_reconfig(struct nfp_net * nn,struct nfp_net_dp * dp,struct netlink_ext_ack * extack)3328 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3329 struct netlink_ext_ack *extack)
3330 {
3331 int r, err;
3332
3333 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3334
3335 dp->num_stack_tx_rings = dp->num_tx_rings;
3336 if (dp->xdp_prog)
3337 dp->num_stack_tx_rings -= dp->num_rx_rings;
3338
3339 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3340
3341 err = nfp_net_check_config(nn, dp, extack);
3342 if (err)
3343 goto exit_free_dp;
3344
3345 if (!netif_running(dp->netdev)) {
3346 nfp_net_dp_swap(nn, dp);
3347 err = 0;
3348 goto exit_free_dp;
3349 }
3350
3351 /* Prepare new rings */
3352 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3353 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3354 if (err) {
3355 dp->num_r_vecs = r;
3356 goto err_cleanup_vecs;
3357 }
3358 }
3359
3360 err = nfp_net_rx_rings_prepare(nn, dp);
3361 if (err)
3362 goto err_cleanup_vecs;
3363
3364 err = nfp_net_tx_rings_prepare(nn, dp);
3365 if (err)
3366 goto err_free_rx;
3367
3368 /* Stop device, swap in new rings, try to start the firmware */
3369 nfp_net_close_stack(nn);
3370 nfp_net_clear_config_and_disable(nn);
3371
3372 err = nfp_net_dp_swap_enable(nn, dp);
3373 if (err) {
3374 int err2;
3375
3376 nfp_net_clear_config_and_disable(nn);
3377
3378 /* Try with old configuration and old rings */
3379 err2 = nfp_net_dp_swap_enable(nn, dp);
3380 if (err2)
3381 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3382 err, err2);
3383 }
3384 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3385 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3386
3387 nfp_net_rx_rings_free(dp);
3388 nfp_net_tx_rings_free(dp);
3389
3390 nfp_net_open_stack(nn);
3391 exit_free_dp:
3392 kfree(dp);
3393
3394 return err;
3395
3396 err_free_rx:
3397 nfp_net_rx_rings_free(dp);
3398 err_cleanup_vecs:
3399 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3400 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3401 kfree(dp);
3402 return err;
3403 }
3404
nfp_net_change_mtu(struct net_device * netdev,int new_mtu)3405 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3406 {
3407 struct nfp_net *nn = netdev_priv(netdev);
3408 struct nfp_net_dp *dp;
3409 int err;
3410
3411 err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3412 if (err)
3413 return err;
3414
3415 dp = nfp_net_clone_dp(nn);
3416 if (!dp)
3417 return -ENOMEM;
3418
3419 dp->mtu = new_mtu;
3420
3421 return nfp_net_ring_reconfig(nn, dp, NULL);
3422 }
3423
3424 static int
nfp_net_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3425 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3426 {
3427 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3428 struct nfp_net *nn = netdev_priv(netdev);
3429 int err;
3430
3431 /* Priority tagged packets with vlan id 0 are processed by the
3432 * NFP as untagged packets
3433 */
3434 if (!vid)
3435 return 0;
3436
3437 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3438 if (err)
3439 return err;
3440
3441 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3442 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3443 ETH_P_8021Q);
3444
3445 return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3446 }
3447
3448 static int
nfp_net_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3449 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3450 {
3451 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3452 struct nfp_net *nn = netdev_priv(netdev);
3453 int err;
3454
3455 /* Priority tagged packets with vlan id 0 are processed by the
3456 * NFP as untagged packets
3457 */
3458 if (!vid)
3459 return 0;
3460
3461 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3462 if (err)
3463 return err;
3464
3465 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3466 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3467 ETH_P_8021Q);
3468
3469 return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3470 }
3471
nfp_net_stat64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3472 static void nfp_net_stat64(struct net_device *netdev,
3473 struct rtnl_link_stats64 *stats)
3474 {
3475 struct nfp_net *nn = netdev_priv(netdev);
3476 int r;
3477
3478 /* Collect software stats */
3479 for (r = 0; r < nn->max_r_vecs; r++) {
3480 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3481 u64 data[3];
3482 unsigned int start;
3483
3484 do {
3485 start = u64_stats_fetch_begin_irq(&r_vec->rx_sync);
3486 data[0] = r_vec->rx_pkts;
3487 data[1] = r_vec->rx_bytes;
3488 data[2] = r_vec->rx_drops;
3489 } while (u64_stats_fetch_retry_irq(&r_vec->rx_sync, start));
3490 stats->rx_packets += data[0];
3491 stats->rx_bytes += data[1];
3492 stats->rx_dropped += data[2];
3493
3494 do {
3495 start = u64_stats_fetch_begin_irq(&r_vec->tx_sync);
3496 data[0] = r_vec->tx_pkts;
3497 data[1] = r_vec->tx_bytes;
3498 data[2] = r_vec->tx_errors;
3499 } while (u64_stats_fetch_retry_irq(&r_vec->tx_sync, start));
3500 stats->tx_packets += data[0];
3501 stats->tx_bytes += data[1];
3502 stats->tx_errors += data[2];
3503 }
3504
3505 /* Add in device stats */
3506 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3507 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3508 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3509
3510 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3511 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3512 }
3513
nfp_net_set_features(struct net_device * netdev,netdev_features_t features)3514 static int nfp_net_set_features(struct net_device *netdev,
3515 netdev_features_t features)
3516 {
3517 netdev_features_t changed = netdev->features ^ features;
3518 struct nfp_net *nn = netdev_priv(netdev);
3519 u32 new_ctrl;
3520 int err;
3521
3522 /* Assume this is not called with features we have not advertised */
3523
3524 new_ctrl = nn->dp.ctrl;
3525
3526 if (changed & NETIF_F_RXCSUM) {
3527 if (features & NETIF_F_RXCSUM)
3528 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3529 else
3530 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3531 }
3532
3533 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3534 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3535 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3536 else
3537 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3538 }
3539
3540 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3541 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3542 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3543 NFP_NET_CFG_CTRL_LSO;
3544 else
3545 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3546 }
3547
3548 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3549 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3550 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3551 else
3552 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3553 }
3554
3555 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3556 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3557 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3558 else
3559 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3560 }
3561
3562 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3563 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3564 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3565 else
3566 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3567 }
3568
3569 if (changed & NETIF_F_SG) {
3570 if (features & NETIF_F_SG)
3571 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3572 else
3573 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3574 }
3575
3576 err = nfp_port_set_features(netdev, features);
3577 if (err)
3578 return err;
3579
3580 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3581 netdev->features, features, changed);
3582
3583 if (new_ctrl == nn->dp.ctrl)
3584 return 0;
3585
3586 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3587 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3588 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3589 if (err)
3590 return err;
3591
3592 nn->dp.ctrl = new_ctrl;
3593
3594 return 0;
3595 }
3596
3597 static netdev_features_t
nfp_net_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3598 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3599 netdev_features_t features)
3600 {
3601 u8 l4_hdr;
3602
3603 /* We can't do TSO over double tagged packets (802.1AD) */
3604 features &= vlan_features_check(skb, features);
3605
3606 if (!skb->encapsulation)
3607 return features;
3608
3609 /* Ensure that inner L4 header offset fits into TX descriptor field */
3610 if (skb_is_gso(skb)) {
3611 u32 hdrlen;
3612
3613 hdrlen = skb_inner_transport_header(skb) - skb->data +
3614 inner_tcp_hdrlen(skb);
3615
3616 /* Assume worst case scenario of having longest possible
3617 * metadata prepend - 8B
3618 */
3619 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3620 features &= ~NETIF_F_GSO_MASK;
3621 }
3622
3623 /* VXLAN/GRE check */
3624 switch (vlan_get_protocol(skb)) {
3625 case htons(ETH_P_IP):
3626 l4_hdr = ip_hdr(skb)->protocol;
3627 break;
3628 case htons(ETH_P_IPV6):
3629 l4_hdr = ipv6_hdr(skb)->nexthdr;
3630 break;
3631 default:
3632 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3633 }
3634
3635 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3636 skb->inner_protocol != htons(ETH_P_TEB) ||
3637 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3638 (l4_hdr == IPPROTO_UDP &&
3639 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3640 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3641 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3642
3643 return features;
3644 }
3645
3646 static int
nfp_net_get_phys_port_name(struct net_device * netdev,char * name,size_t len)3647 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3648 {
3649 struct nfp_net *nn = netdev_priv(netdev);
3650 int n;
3651
3652 /* If port is defined, devlink_port is registered and devlink core
3653 * is taking care of name formatting.
3654 */
3655 if (nn->port)
3656 return -EOPNOTSUPP;
3657
3658 if (nn->dp.is_vf || nn->vnic_no_name)
3659 return -EOPNOTSUPP;
3660
3661 n = snprintf(name, len, "n%d", nn->id);
3662 if (n >= len)
3663 return -EINVAL;
3664
3665 return 0;
3666 }
3667
nfp_net_xdp_setup_drv(struct nfp_net * nn,struct netdev_bpf * bpf)3668 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3669 {
3670 struct bpf_prog *prog = bpf->prog;
3671 struct nfp_net_dp *dp;
3672 int err;
3673
3674 if (!prog == !nn->dp.xdp_prog) {
3675 WRITE_ONCE(nn->dp.xdp_prog, prog);
3676 xdp_attachment_setup(&nn->xdp, bpf);
3677 return 0;
3678 }
3679
3680 dp = nfp_net_clone_dp(nn);
3681 if (!dp)
3682 return -ENOMEM;
3683
3684 dp->xdp_prog = prog;
3685 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3686 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3687 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3688
3689 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3690 err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3691 if (err)
3692 return err;
3693
3694 xdp_attachment_setup(&nn->xdp, bpf);
3695 return 0;
3696 }
3697
nfp_net_xdp_setup_hw(struct nfp_net * nn,struct netdev_bpf * bpf)3698 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3699 {
3700 int err;
3701
3702 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3703 if (err)
3704 return err;
3705
3706 xdp_attachment_setup(&nn->xdp_hw, bpf);
3707 return 0;
3708 }
3709
nfp_net_xdp(struct net_device * netdev,struct netdev_bpf * xdp)3710 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3711 {
3712 struct nfp_net *nn = netdev_priv(netdev);
3713
3714 switch (xdp->command) {
3715 case XDP_SETUP_PROG:
3716 return nfp_net_xdp_setup_drv(nn, xdp);
3717 case XDP_SETUP_PROG_HW:
3718 return nfp_net_xdp_setup_hw(nn, xdp);
3719 default:
3720 return nfp_app_bpf(nn->app, nn, xdp);
3721 }
3722 }
3723
nfp_net_set_mac_address(struct net_device * netdev,void * addr)3724 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3725 {
3726 struct nfp_net *nn = netdev_priv(netdev);
3727 struct sockaddr *saddr = addr;
3728 int err;
3729
3730 err = eth_prepare_mac_addr_change(netdev, addr);
3731 if (err)
3732 return err;
3733
3734 nfp_net_write_mac_addr(nn, saddr->sa_data);
3735
3736 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3737 if (err)
3738 return err;
3739
3740 eth_commit_mac_addr_change(netdev, addr);
3741
3742 return 0;
3743 }
3744
3745 const struct net_device_ops nfp_net_netdev_ops = {
3746 .ndo_init = nfp_app_ndo_init,
3747 .ndo_uninit = nfp_app_ndo_uninit,
3748 .ndo_open = nfp_net_netdev_open,
3749 .ndo_stop = nfp_net_netdev_close,
3750 .ndo_start_xmit = nfp_net_tx,
3751 .ndo_get_stats64 = nfp_net_stat64,
3752 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
3753 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
3754 .ndo_set_vf_mac = nfp_app_set_vf_mac,
3755 .ndo_set_vf_vlan = nfp_app_set_vf_vlan,
3756 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk,
3757 .ndo_set_vf_trust = nfp_app_set_vf_trust,
3758 .ndo_get_vf_config = nfp_app_get_vf_config,
3759 .ndo_set_vf_link_state = nfp_app_set_vf_link_state,
3760 .ndo_setup_tc = nfp_port_setup_tc,
3761 .ndo_tx_timeout = nfp_net_tx_timeout,
3762 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3763 .ndo_change_mtu = nfp_net_change_mtu,
3764 .ndo_set_mac_address = nfp_net_set_mac_address,
3765 .ndo_set_features = nfp_net_set_features,
3766 .ndo_features_check = nfp_net_features_check,
3767 .ndo_get_phys_port_name = nfp_net_get_phys_port_name,
3768 .ndo_bpf = nfp_net_xdp,
3769 .ndo_get_devlink_port = nfp_devlink_get_devlink_port,
3770 };
3771
nfp_udp_tunnel_sync(struct net_device * netdev,unsigned int table)3772 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
3773 {
3774 struct nfp_net *nn = netdev_priv(netdev);
3775 int i;
3776
3777 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3778 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) {
3779 struct udp_tunnel_info ti0, ti1;
3780
3781 udp_tunnel_nic_get_port(netdev, table, i, &ti0);
3782 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1);
3783
3784 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port),
3785 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port));
3786 }
3787
3788 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN);
3789 }
3790
3791 static const struct udp_tunnel_nic_info nfp_udp_tunnels = {
3792 .sync_table = nfp_udp_tunnel_sync,
3793 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
3794 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
3795 .tables = {
3796 {
3797 .n_entries = NFP_NET_N_VXLAN_PORTS,
3798 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,
3799 },
3800 },
3801 };
3802
3803 /**
3804 * nfp_net_info() - Print general info about the NIC
3805 * @nn: NFP Net device to reconfigure
3806 */
nfp_net_info(struct nfp_net * nn)3807 void nfp_net_info(struct nfp_net *nn)
3808 {
3809 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3810 nn->dp.is_vf ? "VF " : "",
3811 nn->dp.num_tx_rings, nn->max_tx_rings,
3812 nn->dp.num_rx_rings, nn->max_rx_rings);
3813 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3814 nn->fw_ver.resv, nn->fw_ver.class,
3815 nn->fw_ver.major, nn->fw_ver.minor,
3816 nn->max_mtu);
3817 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3818 nn->cap,
3819 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3820 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3821 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3822 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3823 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3824 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3825 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3826 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3827 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3828 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
3829 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
3830 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
3831 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
3832 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3833 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3834 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3835 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3836 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3837 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3838 "RXCSUM_COMPLETE " : "",
3839 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3840 nfp_app_extra_cap(nn->app, nn));
3841 }
3842
3843 /**
3844 * nfp_net_alloc() - Allocate netdev and related structure
3845 * @pdev: PCI device
3846 * @ctrl_bar: PCI IOMEM with vNIC config memory
3847 * @needs_netdev: Whether to allocate a netdev for this vNIC
3848 * @max_tx_rings: Maximum number of TX rings supported by device
3849 * @max_rx_rings: Maximum number of RX rings supported by device
3850 *
3851 * This function allocates a netdev device and fills in the initial
3852 * part of the @struct nfp_net structure. In case of control device
3853 * nfp_net structure is allocated without the netdev.
3854 *
3855 * Return: NFP Net device structure, or ERR_PTR on error.
3856 */
3857 struct nfp_net *
nfp_net_alloc(struct pci_dev * pdev,void __iomem * ctrl_bar,bool needs_netdev,unsigned int max_tx_rings,unsigned int max_rx_rings)3858 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3859 unsigned int max_tx_rings, unsigned int max_rx_rings)
3860 {
3861 struct nfp_net *nn;
3862 int err;
3863
3864 if (needs_netdev) {
3865 struct net_device *netdev;
3866
3867 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3868 max_tx_rings, max_rx_rings);
3869 if (!netdev)
3870 return ERR_PTR(-ENOMEM);
3871
3872 SET_NETDEV_DEV(netdev, &pdev->dev);
3873 nn = netdev_priv(netdev);
3874 nn->dp.netdev = netdev;
3875 } else {
3876 nn = vzalloc(sizeof(*nn));
3877 if (!nn)
3878 return ERR_PTR(-ENOMEM);
3879 }
3880
3881 nn->dp.dev = &pdev->dev;
3882 nn->dp.ctrl_bar = ctrl_bar;
3883 nn->pdev = pdev;
3884
3885 nn->max_tx_rings = max_tx_rings;
3886 nn->max_rx_rings = max_rx_rings;
3887
3888 nn->dp.num_tx_rings = min_t(unsigned int,
3889 max_tx_rings, num_online_cpus());
3890 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3891 netif_get_num_default_rss_queues());
3892
3893 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3894 nn->dp.num_r_vecs = min_t(unsigned int,
3895 nn->dp.num_r_vecs, num_online_cpus());
3896
3897 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3898 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3899
3900 sema_init(&nn->bar_lock, 1);
3901
3902 spin_lock_init(&nn->reconfig_lock);
3903 spin_lock_init(&nn->link_status_lock);
3904
3905 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3906
3907 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3908 &nn->tlv_caps);
3909 if (err)
3910 goto err_free_nn;
3911
3912 err = nfp_ccm_mbox_alloc(nn);
3913 if (err)
3914 goto err_free_nn;
3915
3916 return nn;
3917
3918 err_free_nn:
3919 if (nn->dp.netdev)
3920 free_netdev(nn->dp.netdev);
3921 else
3922 vfree(nn);
3923 return ERR_PTR(err);
3924 }
3925
3926 /**
3927 * nfp_net_free() - Undo what @nfp_net_alloc() did
3928 * @nn: NFP Net device to reconfigure
3929 */
nfp_net_free(struct nfp_net * nn)3930 void nfp_net_free(struct nfp_net *nn)
3931 {
3932 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3933 nfp_ccm_mbox_free(nn);
3934
3935 if (nn->dp.netdev)
3936 free_netdev(nn->dp.netdev);
3937 else
3938 vfree(nn);
3939 }
3940
3941 /**
3942 * nfp_net_rss_key_sz() - Get current size of the RSS key
3943 * @nn: NFP Net device instance
3944 *
3945 * Return: size of the RSS key for currently selected hash function.
3946 */
nfp_net_rss_key_sz(struct nfp_net * nn)3947 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3948 {
3949 switch (nn->rss_hfunc) {
3950 case ETH_RSS_HASH_TOP:
3951 return NFP_NET_CFG_RSS_KEY_SZ;
3952 case ETH_RSS_HASH_XOR:
3953 return 0;
3954 case ETH_RSS_HASH_CRC32:
3955 return 4;
3956 }
3957
3958 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3959 return 0;
3960 }
3961
3962 /**
3963 * nfp_net_rss_init() - Set the initial RSS parameters
3964 * @nn: NFP Net device to reconfigure
3965 */
nfp_net_rss_init(struct nfp_net * nn)3966 static void nfp_net_rss_init(struct nfp_net *nn)
3967 {
3968 unsigned long func_bit, rss_cap_hfunc;
3969 u32 reg;
3970
3971 /* Read the RSS function capability and select first supported func */
3972 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3973 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3974 if (!rss_cap_hfunc)
3975 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3976 NFP_NET_CFG_RSS_TOEPLITZ);
3977
3978 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3979 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3980 dev_warn(nn->dp.dev,
3981 "Bad RSS config, defaulting to Toeplitz hash\n");
3982 func_bit = ETH_RSS_HASH_TOP_BIT;
3983 }
3984 nn->rss_hfunc = 1 << func_bit;
3985
3986 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3987
3988 nfp_net_rss_init_itbl(nn);
3989
3990 /* Enable IPv4/IPv6 TCP by default */
3991 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3992 NFP_NET_CFG_RSS_IPV6_TCP |
3993 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3994 NFP_NET_CFG_RSS_MASK;
3995 }
3996
3997 /**
3998 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3999 * @nn: NFP Net device to reconfigure
4000 */
nfp_net_irqmod_init(struct nfp_net * nn)4001 static void nfp_net_irqmod_init(struct nfp_net *nn)
4002 {
4003 nn->rx_coalesce_usecs = 50;
4004 nn->rx_coalesce_max_frames = 64;
4005 nn->tx_coalesce_usecs = 50;
4006 nn->tx_coalesce_max_frames = 64;
4007
4008 nn->rx_coalesce_adapt_on = true;
4009 nn->tx_coalesce_adapt_on = true;
4010 }
4011
nfp_net_netdev_init(struct nfp_net * nn)4012 static void nfp_net_netdev_init(struct nfp_net *nn)
4013 {
4014 struct net_device *netdev = nn->dp.netdev;
4015
4016 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
4017
4018 netdev->mtu = nn->dp.mtu;
4019
4020 /* Advertise/enable offloads based on capabilities
4021 *
4022 * Note: netdev->features show the currently enabled features
4023 * and netdev->hw_features advertises which features are
4024 * supported. By default we enable most features.
4025 */
4026 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
4027 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4028
4029 netdev->hw_features = NETIF_F_HIGHDMA;
4030 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
4031 netdev->hw_features |= NETIF_F_RXCSUM;
4032 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
4033 }
4034 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
4035 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4036 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
4037 }
4038 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
4039 netdev->hw_features |= NETIF_F_SG;
4040 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
4041 }
4042 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
4043 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4044 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4045 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
4046 NFP_NET_CFG_CTRL_LSO;
4047 }
4048 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
4049 netdev->hw_features |= NETIF_F_RXHASH;
4050 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
4051 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4052 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
4053 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels;
4054 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
4055 }
4056 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
4057 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4058 netdev->hw_features |= NETIF_F_GSO_GRE;
4059 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
4060 }
4061 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
4062 netdev->hw_enc_features = netdev->hw_features;
4063
4064 netdev->vlan_features = netdev->hw_features;
4065
4066 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
4067 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4068 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
4069 }
4070 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
4071 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4072 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
4073 } else {
4074 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4075 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
4076 }
4077 }
4078 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
4079 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4080 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
4081 }
4082
4083 netdev->features = netdev->hw_features;
4084
4085 if (nfp_app_has_tc(nn->app) && nn->port)
4086 netdev->hw_features |= NETIF_F_HW_TC;
4087
4088 /* Advertise but disable TSO by default. */
4089 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
4090 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
4091
4092 /* Finalise the netdev setup */
4093 netdev->netdev_ops = &nfp_net_netdev_ops;
4094 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4095
4096 /* MTU range: 68 - hw-specific max */
4097 netdev->min_mtu = ETH_MIN_MTU;
4098 netdev->max_mtu = nn->max_mtu;
4099
4100 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
4101
4102 netif_carrier_off(netdev);
4103
4104 nfp_net_set_ethtool_ops(netdev);
4105 }
4106
nfp_net_read_caps(struct nfp_net * nn)4107 static int nfp_net_read_caps(struct nfp_net *nn)
4108 {
4109 /* Get some of the read-only fields from the BAR */
4110 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
4111 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
4112
4113 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4114 * we allow use of non-chained metadata if RSS(v1) is the only
4115 * advertised capability requiring metadata.
4116 */
4117 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4118 !nn->dp.netdev ||
4119 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4120 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4121 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4122 * it has the same meaning as RSSv2.
4123 */
4124 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4125 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4126
4127 /* Determine RX packet/metadata boundary offset */
4128 if (nn->fw_ver.major >= 2) {
4129 u32 reg;
4130
4131 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4132 if (reg > NFP_NET_MAX_PREPEND) {
4133 nn_err(nn, "Invalid rx offset: %d\n", reg);
4134 return -EINVAL;
4135 }
4136 nn->dp.rx_offset = reg;
4137 } else {
4138 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4139 }
4140
4141 /* For control vNICs mask out the capabilities app doesn't want. */
4142 if (!nn->dp.netdev)
4143 nn->cap &= nn->app->type->ctrl_cap_mask;
4144
4145 return 0;
4146 }
4147
4148 /**
4149 * nfp_net_init() - Initialise/finalise the nfp_net structure
4150 * @nn: NFP Net device structure
4151 *
4152 * Return: 0 on success or negative errno on error.
4153 */
nfp_net_init(struct nfp_net * nn)4154 int nfp_net_init(struct nfp_net *nn)
4155 {
4156 int err;
4157
4158 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4159
4160 err = nfp_net_read_caps(nn);
4161 if (err)
4162 return err;
4163
4164 /* Set default MTU and Freelist buffer size */
4165 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4166 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
4167 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4168 nn->dp.mtu = nn->max_mtu;
4169 } else {
4170 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4171 }
4172 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4173
4174 if (nfp_app_ctrl_uses_data_vnics(nn->app))
4175 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4176
4177 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4178 nfp_net_rss_init(nn);
4179 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4180 NFP_NET_CFG_CTRL_RSS;
4181 }
4182
4183 /* Allow L2 Broadcast and Multicast through by default, if supported */
4184 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4185 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4186
4187 /* Allow IRQ moderation, if supported */
4188 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4189 nfp_net_irqmod_init(nn);
4190 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4191 }
4192
4193 /* Stash the re-configuration queue away. First odd queue in TX Bar */
4194 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4195
4196 /* Make sure the FW knows the netdev is supposed to be disabled here */
4197 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4198 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4199 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4200 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4201 NFP_NET_CFG_UPDATE_GEN);
4202 if (err)
4203 return err;
4204
4205 if (nn->dp.netdev) {
4206 nfp_net_netdev_init(nn);
4207
4208 err = nfp_ccm_mbox_init(nn);
4209 if (err)
4210 return err;
4211
4212 err = nfp_net_tls_init(nn);
4213 if (err)
4214 goto err_clean_mbox;
4215 }
4216
4217 nfp_net_vecs_init(nn);
4218
4219 if (!nn->dp.netdev)
4220 return 0;
4221 return register_netdev(nn->dp.netdev);
4222
4223 err_clean_mbox:
4224 nfp_ccm_mbox_clean(nn);
4225 return err;
4226 }
4227
4228 /**
4229 * nfp_net_clean() - Undo what nfp_net_init() did.
4230 * @nn: NFP Net device structure
4231 */
nfp_net_clean(struct nfp_net * nn)4232 void nfp_net_clean(struct nfp_net *nn)
4233 {
4234 if (!nn->dp.netdev)
4235 return;
4236
4237 unregister_netdev(nn->dp.netdev);
4238 nfp_ccm_mbox_clean(nn);
4239 nfp_net_reconfig_wait_posted(nn);
4240 }
4241