• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
alloc_nfs_open_dir_context(struct inode * dir)71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->page_index = 0;
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfs_set_cache_invalid(dir,
86 					      NFS_INO_INVALID_DATA |
87 						      NFS_INO_REVAL_FORCED);
88 		list_add(&ctx->list, &nfsi->open_files);
89 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
90 		spin_unlock(&dir->i_lock);
91 		return ctx;
92 	}
93 	return  ERR_PTR(-ENOMEM);
94 }
95 
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
97 {
98 	spin_lock(&dir->i_lock);
99 	list_del(&ctx->list);
100 	spin_unlock(&dir->i_lock);
101 	kfree(ctx);
102 }
103 
104 /*
105  * Open file
106  */
107 static int
nfs_opendir(struct inode * inode,struct file * filp)108 nfs_opendir(struct inode *inode, struct file *filp)
109 {
110 	int res = 0;
111 	struct nfs_open_dir_context *ctx;
112 
113 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 
115 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 
117 	ctx = alloc_nfs_open_dir_context(inode);
118 	if (IS_ERR(ctx)) {
119 		res = PTR_ERR(ctx);
120 		goto out;
121 	}
122 	filp->private_data = ctx;
123 out:
124 	return res;
125 }
126 
127 static int
nfs_closedir(struct inode * inode,struct file * filp)128 nfs_closedir(struct inode *inode, struct file *filp)
129 {
130 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
131 	return 0;
132 }
133 
134 struct nfs_cache_array_entry {
135 	u64 cookie;
136 	u64 ino;
137 	const char *name;
138 	unsigned int name_len;
139 	unsigned char d_type;
140 };
141 
142 struct nfs_cache_array {
143 	u64 last_cookie;
144 	unsigned int size;
145 	unsigned char page_full : 1,
146 		      page_is_eof : 1,
147 		      cookies_are_ordered : 1;
148 	struct nfs_cache_array_entry array[];
149 };
150 
151 struct nfs_readdir_descriptor {
152 	struct file	*file;
153 	struct page	*page;
154 	struct dir_context *ctx;
155 	pgoff_t		page_index;
156 	u64		dir_cookie;
157 	u64		last_cookie;
158 	u64		dup_cookie;
159 	loff_t		current_index;
160 	loff_t		prev_index;
161 
162 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
163 	unsigned long	dir_verifier;
164 	unsigned long	timestamp;
165 	unsigned long	gencount;
166 	unsigned long	attr_gencount;
167 	unsigned int	cache_entry_index;
168 	signed char duped;
169 	bool plus;
170 	bool eof;
171 };
172 
nfs_readdir_array_init(struct nfs_cache_array * array)173 static void nfs_readdir_array_init(struct nfs_cache_array *array)
174 {
175 	memset(array, 0, sizeof(struct nfs_cache_array));
176 }
177 
nfs_readdir_page_init_array(struct page * page,u64 last_cookie)178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
179 {
180 	struct nfs_cache_array *array;
181 
182 	array = kmap_atomic(page);
183 	nfs_readdir_array_init(array);
184 	array->last_cookie = last_cookie;
185 	array->cookies_are_ordered = 1;
186 	kunmap_atomic(array);
187 }
188 
189 /*
190  * we are freeing strings created by nfs_add_to_readdir_array()
191  */
192 static
nfs_readdir_clear_array(struct page * page)193 void nfs_readdir_clear_array(struct page *page)
194 {
195 	struct nfs_cache_array *array;
196 	int i;
197 
198 	array = kmap_atomic(page);
199 	for (i = 0; i < array->size; i++)
200 		kfree(array->array[i].name);
201 	nfs_readdir_array_init(array);
202 	kunmap_atomic(array);
203 }
204 
205 static struct page *
nfs_readdir_page_array_alloc(u64 last_cookie,gfp_t gfp_flags)206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
207 {
208 	struct page *page = alloc_page(gfp_flags);
209 	if (page)
210 		nfs_readdir_page_init_array(page, last_cookie);
211 	return page;
212 }
213 
nfs_readdir_page_array_free(struct page * page)214 static void nfs_readdir_page_array_free(struct page *page)
215 {
216 	if (page) {
217 		nfs_readdir_clear_array(page);
218 		put_page(page);
219 	}
220 }
221 
nfs_readdir_array_set_eof(struct nfs_cache_array * array)222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
223 {
224 	array->page_is_eof = 1;
225 	array->page_full = 1;
226 }
227 
nfs_readdir_array_is_full(struct nfs_cache_array * array)228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
229 {
230 	return array->page_full;
231 }
232 
233 /*
234  * the caller is responsible for freeing qstr.name
235  * when called by nfs_readdir_add_to_array, the strings will be freed in
236  * nfs_clear_readdir_array()
237  */
nfs_readdir_copy_name(const char * name,unsigned int len)238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
239 {
240 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
241 
242 	/*
243 	 * Avoid a kmemleak false positive. The pointer to the name is stored
244 	 * in a page cache page which kmemleak does not scan.
245 	 */
246 	if (ret != NULL)
247 		kmemleak_not_leak(ret);
248 	return ret;
249 }
250 
251 /*
252  * Check that the next array entry lies entirely within the page bounds
253  */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
255 {
256 	struct nfs_cache_array_entry *cache_entry;
257 
258 	if (array->page_full)
259 		return -ENOSPC;
260 	cache_entry = &array->array[array->size + 1];
261 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
262 		array->page_full = 1;
263 		return -ENOSPC;
264 	}
265 	return 0;
266 }
267 
268 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
270 {
271 	struct nfs_cache_array *array;
272 	struct nfs_cache_array_entry *cache_entry;
273 	const char *name;
274 	int ret;
275 
276 	name = nfs_readdir_copy_name(entry->name, entry->len);
277 	if (!name)
278 		return -ENOMEM;
279 
280 	array = kmap_atomic(page);
281 	ret = nfs_readdir_array_can_expand(array);
282 	if (ret) {
283 		kfree(name);
284 		goto out;
285 	}
286 
287 	cache_entry = &array->array[array->size];
288 	cache_entry->cookie = entry->prev_cookie;
289 	cache_entry->ino = entry->ino;
290 	cache_entry->d_type = entry->d_type;
291 	cache_entry->name_len = entry->len;
292 	cache_entry->name = name;
293 	array->last_cookie = entry->cookie;
294 	if (array->last_cookie <= cache_entry->cookie)
295 		array->cookies_are_ordered = 0;
296 	array->size++;
297 	if (entry->eof != 0)
298 		nfs_readdir_array_set_eof(array);
299 out:
300 	kunmap_atomic(array);
301 	return ret;
302 }
303 
nfs_readdir_page_get_locked(struct address_space * mapping,pgoff_t index,u64 last_cookie)304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
305 						pgoff_t index, u64 last_cookie)
306 {
307 	struct page *page;
308 
309 	page = grab_cache_page(mapping, index);
310 	if (page && !PageUptodate(page)) {
311 		nfs_readdir_page_init_array(page, last_cookie);
312 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
313 			nfs_zap_mapping(mapping->host, mapping);
314 		SetPageUptodate(page);
315 	}
316 
317 	return page;
318 }
319 
nfs_readdir_page_last_cookie(struct page * page)320 static u64 nfs_readdir_page_last_cookie(struct page *page)
321 {
322 	struct nfs_cache_array *array;
323 	u64 ret;
324 
325 	array = kmap_atomic(page);
326 	ret = array->last_cookie;
327 	kunmap_atomic(array);
328 	return ret;
329 }
330 
nfs_readdir_page_needs_filling(struct page * page)331 static bool nfs_readdir_page_needs_filling(struct page *page)
332 {
333 	struct nfs_cache_array *array;
334 	bool ret;
335 
336 	array = kmap_atomic(page);
337 	ret = !nfs_readdir_array_is_full(array);
338 	kunmap_atomic(array);
339 	return ret;
340 }
341 
nfs_readdir_page_set_eof(struct page * page)342 static void nfs_readdir_page_set_eof(struct page *page)
343 {
344 	struct nfs_cache_array *array;
345 
346 	array = kmap_atomic(page);
347 	nfs_readdir_array_set_eof(array);
348 	kunmap_atomic(array);
349 }
350 
nfs_readdir_page_unlock_and_put(struct page * page)351 static void nfs_readdir_page_unlock_and_put(struct page *page)
352 {
353 	unlock_page(page);
354 	put_page(page);
355 }
356 
nfs_readdir_page_get_next(struct address_space * mapping,pgoff_t index,u64 cookie)357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
358 					      pgoff_t index, u64 cookie)
359 {
360 	struct page *page;
361 
362 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
363 	if (page) {
364 		if (nfs_readdir_page_last_cookie(page) == cookie)
365 			return page;
366 		nfs_readdir_page_unlock_and_put(page);
367 	}
368 	return NULL;
369 }
370 
371 static inline
is_32bit_api(void)372 int is_32bit_api(void)
373 {
374 #ifdef CONFIG_COMPAT
375 	return in_compat_syscall();
376 #else
377 	return (BITS_PER_LONG == 32);
378 #endif
379 }
380 
381 static
nfs_readdir_use_cookie(const struct file * filp)382 bool nfs_readdir_use_cookie(const struct file *filp)
383 {
384 	if ((filp->f_mode & FMODE_32BITHASH) ||
385 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
386 		return false;
387 	return true;
388 }
389 
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
391 				      struct nfs_readdir_descriptor *desc)
392 {
393 	loff_t diff = desc->ctx->pos - desc->current_index;
394 	unsigned int index;
395 
396 	if (diff < 0)
397 		goto out_eof;
398 	if (diff >= array->size) {
399 		if (array->page_is_eof)
400 			goto out_eof;
401 		return -EAGAIN;
402 	}
403 
404 	index = (unsigned int)diff;
405 	desc->dir_cookie = array->array[index].cookie;
406 	desc->cache_entry_index = index;
407 	return 0;
408 out_eof:
409 	desc->eof = true;
410 	return -EBADCOOKIE;
411 }
412 
413 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
415 {
416 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
417 		return false;
418 	smp_rmb();
419 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
420 }
421 
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)422 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
423 					      u64 cookie)
424 {
425 	if (!array->cookies_are_ordered)
426 		return true;
427 	/* Optimisation for monotonically increasing cookies */
428 	if (cookie >= array->last_cookie)
429 		return false;
430 	if (array->size && cookie < array->array[0].cookie)
431 		return false;
432 	return true;
433 }
434 
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)435 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
436 					 struct nfs_readdir_descriptor *desc)
437 {
438 	int i;
439 	loff_t new_pos;
440 	int status = -EAGAIN;
441 
442 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
443 		goto check_eof;
444 
445 	for (i = 0; i < array->size; i++) {
446 		if (array->array[i].cookie == desc->dir_cookie) {
447 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
448 
449 			new_pos = desc->current_index + i;
450 			if (desc->attr_gencount != nfsi->attr_gencount ||
451 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
452 				desc->duped = 0;
453 				desc->attr_gencount = nfsi->attr_gencount;
454 			} else if (new_pos < desc->prev_index) {
455 				if (desc->duped > 0
456 				    && desc->dup_cookie == desc->dir_cookie) {
457 					if (printk_ratelimit()) {
458 						pr_notice("NFS: directory %pD2 contains a readdir loop."
459 								"Please contact your server vendor.  "
460 								"The file: %s has duplicate cookie %llu\n",
461 								desc->file, array->array[i].name, desc->dir_cookie);
462 					}
463 					status = -ELOOP;
464 					goto out;
465 				}
466 				desc->dup_cookie = desc->dir_cookie;
467 				desc->duped = -1;
468 			}
469 			if (nfs_readdir_use_cookie(desc->file))
470 				desc->ctx->pos = desc->dir_cookie;
471 			else
472 				desc->ctx->pos = new_pos;
473 			desc->prev_index = new_pos;
474 			desc->cache_entry_index = i;
475 			return 0;
476 		}
477 	}
478 check_eof:
479 	if (array->page_is_eof) {
480 		status = -EBADCOOKIE;
481 		if (desc->dir_cookie == array->last_cookie)
482 			desc->eof = true;
483 	}
484 out:
485 	return status;
486 }
487 
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)488 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
489 {
490 	struct nfs_cache_array *array;
491 	int status;
492 
493 	array = kmap_atomic(desc->page);
494 
495 	if (desc->dir_cookie == 0)
496 		status = nfs_readdir_search_for_pos(array, desc);
497 	else
498 		status = nfs_readdir_search_for_cookie(array, desc);
499 
500 	if (status == -EAGAIN) {
501 		desc->last_cookie = array->last_cookie;
502 		desc->current_index += array->size;
503 		desc->page_index++;
504 	}
505 	kunmap_atomic(array);
506 	return status;
507 }
508 
509 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)510 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
511 				  __be32 *verf, u64 cookie,
512 				  struct page **pages, size_t bufsize,
513 				  __be32 *verf_res)
514 {
515 	struct inode *inode = file_inode(desc->file);
516 	struct nfs_readdir_arg arg = {
517 		.dentry = file_dentry(desc->file),
518 		.cred = desc->file->f_cred,
519 		.verf = verf,
520 		.cookie = cookie,
521 		.pages = pages,
522 		.page_len = bufsize,
523 		.plus = desc->plus,
524 	};
525 	struct nfs_readdir_res res = {
526 		.verf = verf_res,
527 	};
528 	unsigned long	timestamp, gencount;
529 	int		error;
530 
531  again:
532 	timestamp = jiffies;
533 	gencount = nfs_inc_attr_generation_counter();
534 	desc->dir_verifier = nfs_save_change_attribute(inode);
535 	error = NFS_PROTO(inode)->readdir(&arg, &res);
536 	if (error < 0) {
537 		/* We requested READDIRPLUS, but the server doesn't grok it */
538 		if (error == -ENOTSUPP && desc->plus) {
539 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
540 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
541 			desc->plus = arg.plus = false;
542 			goto again;
543 		}
544 		goto error;
545 	}
546 	desc->timestamp = timestamp;
547 	desc->gencount = gencount;
548 error:
549 	return error;
550 }
551 
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)552 static int xdr_decode(struct nfs_readdir_descriptor *desc,
553 		      struct nfs_entry *entry, struct xdr_stream *xdr)
554 {
555 	struct inode *inode = file_inode(desc->file);
556 	int error;
557 
558 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
559 	if (error)
560 		return error;
561 	entry->fattr->time_start = desc->timestamp;
562 	entry->fattr->gencount = desc->gencount;
563 	return 0;
564 }
565 
566 /* Match file and dirent using either filehandle or fileid
567  * Note: caller is responsible for checking the fsid
568  */
569 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)570 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
571 {
572 	struct inode *inode;
573 	struct nfs_inode *nfsi;
574 
575 	if (d_really_is_negative(dentry))
576 		return 0;
577 
578 	inode = d_inode(dentry);
579 	if (is_bad_inode(inode) || NFS_STALE(inode))
580 		return 0;
581 
582 	nfsi = NFS_I(inode);
583 	if (entry->fattr->fileid != nfsi->fileid)
584 		return 0;
585 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
586 		return 0;
587 	return 1;
588 }
589 
590 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)591 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
592 {
593 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
594 		return false;
595 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
596 		return true;
597 	if (ctx->pos == 0)
598 		return true;
599 	return false;
600 }
601 
602 /*
603  * This function is called by the lookup and getattr code to request the
604  * use of readdirplus to accelerate any future lookups in the same
605  * directory.
606  */
nfs_advise_use_readdirplus(struct inode * dir)607 void nfs_advise_use_readdirplus(struct inode *dir)
608 {
609 	struct nfs_inode *nfsi = NFS_I(dir);
610 
611 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
612 	    !list_empty(&nfsi->open_files))
613 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
614 }
615 
616 /*
617  * This function is mainly for use by nfs_getattr().
618  *
619  * If this is an 'ls -l', we want to force use of readdirplus.
620  * Do this by checking if there is an active file descriptor
621  * and calling nfs_advise_use_readdirplus, then forcing a
622  * cache flush.
623  */
nfs_force_use_readdirplus(struct inode * dir)624 void nfs_force_use_readdirplus(struct inode *dir)
625 {
626 	struct nfs_inode *nfsi = NFS_I(dir);
627 
628 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
629 	    !list_empty(&nfsi->open_files)) {
630 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
631 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
632 	}
633 }
634 
635 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)636 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
637 		unsigned long dir_verifier)
638 {
639 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
640 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
641 	struct dentry *dentry;
642 	struct dentry *alias;
643 	struct inode *inode;
644 	int status;
645 
646 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
647 		return;
648 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
649 		return;
650 	if (filename.len == 0)
651 		return;
652 	/* Validate that the name doesn't contain any illegal '\0' */
653 	if (strnlen(filename.name, filename.len) != filename.len)
654 		return;
655 	/* ...or '/' */
656 	if (strnchr(filename.name, filename.len, '/'))
657 		return;
658 	if (filename.name[0] == '.') {
659 		if (filename.len == 1)
660 			return;
661 		if (filename.len == 2 && filename.name[1] == '.')
662 			return;
663 	}
664 	filename.hash = full_name_hash(parent, filename.name, filename.len);
665 
666 	dentry = d_lookup(parent, &filename);
667 again:
668 	if (!dentry) {
669 		dentry = d_alloc_parallel(parent, &filename, &wq);
670 		if (IS_ERR(dentry))
671 			return;
672 	}
673 	if (!d_in_lookup(dentry)) {
674 		/* Is there a mountpoint here? If so, just exit */
675 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
676 					&entry->fattr->fsid))
677 			goto out;
678 		if (nfs_same_file(dentry, entry)) {
679 			if (!entry->fh->size)
680 				goto out;
681 			nfs_set_verifier(dentry, dir_verifier);
682 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
683 			if (!status)
684 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
685 			goto out;
686 		} else {
687 			d_invalidate(dentry);
688 			dput(dentry);
689 			dentry = NULL;
690 			goto again;
691 		}
692 	}
693 	if (!entry->fh->size) {
694 		d_lookup_done(dentry);
695 		goto out;
696 	}
697 
698 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
699 	alias = d_splice_alias(inode, dentry);
700 	d_lookup_done(dentry);
701 	if (alias) {
702 		if (IS_ERR(alias))
703 			goto out;
704 		dput(dentry);
705 		dentry = alias;
706 	}
707 	nfs_set_verifier(dentry, dir_verifier);
708 out:
709 	dput(dentry);
710 }
711 
712 /* Perform conversion from xdr to cache array */
nfs_readdir_page_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct page ** arrays,size_t narrays)713 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
714 				   struct nfs_entry *entry,
715 				   struct page **xdr_pages,
716 				   unsigned int buflen,
717 				   struct page **arrays,
718 				   size_t narrays)
719 {
720 	struct address_space *mapping = desc->file->f_mapping;
721 	struct xdr_stream stream;
722 	struct xdr_buf buf;
723 	struct page *scratch, *new, *page = *arrays;
724 	int status;
725 
726 	scratch = alloc_page(GFP_KERNEL);
727 	if (scratch == NULL)
728 		return -ENOMEM;
729 
730 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
731 	xdr_set_scratch_page(&stream, scratch);
732 
733 	do {
734 		if (entry->label)
735 			entry->label->len = NFS4_MAXLABELLEN;
736 
737 		status = xdr_decode(desc, entry, &stream);
738 		if (status != 0)
739 			break;
740 
741 		if (desc->plus)
742 			nfs_prime_dcache(file_dentry(desc->file), entry,
743 					desc->dir_verifier);
744 
745 		status = nfs_readdir_add_to_array(entry, page);
746 		if (status != -ENOSPC)
747 			continue;
748 
749 		if (page->mapping != mapping) {
750 			if (!--narrays)
751 				break;
752 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
753 							   GFP_KERNEL);
754 			if (!new)
755 				break;
756 			arrays++;
757 			*arrays = page = new;
758 		} else {
759 			new = nfs_readdir_page_get_next(mapping,
760 							page->index + 1,
761 							entry->prev_cookie);
762 			if (!new)
763 				break;
764 			if (page != *arrays)
765 				nfs_readdir_page_unlock_and_put(page);
766 			page = new;
767 		}
768 		status = nfs_readdir_add_to_array(entry, page);
769 	} while (!status && !entry->eof);
770 
771 	switch (status) {
772 	case -EBADCOOKIE:
773 		if (entry->eof) {
774 			nfs_readdir_page_set_eof(page);
775 			status = 0;
776 		}
777 		break;
778 	case -ENOSPC:
779 	case -EAGAIN:
780 		status = 0;
781 		break;
782 	}
783 
784 	if (page != *arrays)
785 		nfs_readdir_page_unlock_and_put(page);
786 
787 	put_page(scratch);
788 	return status;
789 }
790 
nfs_readdir_free_pages(struct page ** pages,size_t npages)791 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
792 {
793 	while (npages--)
794 		put_page(pages[npages]);
795 	kfree(pages);
796 }
797 
798 /*
799  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
800  * to nfs_readdir_free_pages()
801  */
nfs_readdir_alloc_pages(size_t npages)802 static struct page **nfs_readdir_alloc_pages(size_t npages)
803 {
804 	struct page **pages;
805 	size_t i;
806 
807 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
808 	if (!pages)
809 		return NULL;
810 	for (i = 0; i < npages; i++) {
811 		struct page *page = alloc_page(GFP_KERNEL);
812 		if (page == NULL)
813 			goto out_freepages;
814 		pages[i] = page;
815 	}
816 	return pages;
817 
818 out_freepages:
819 	nfs_readdir_free_pages(pages, i);
820 	return NULL;
821 }
822 
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct page ** arrays,size_t narrays)823 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
824 				    __be32 *verf_arg, __be32 *verf_res,
825 				    struct page **arrays, size_t narrays)
826 {
827 	struct page **pages;
828 	struct page *page = *arrays;
829 	struct nfs_entry *entry;
830 	size_t array_size;
831 	struct inode *inode = file_inode(desc->file);
832 	size_t dtsize = NFS_SERVER(inode)->dtsize;
833 	int status = -ENOMEM;
834 
835 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
836 	if (!entry)
837 		return -ENOMEM;
838 	entry->cookie = nfs_readdir_page_last_cookie(page);
839 	entry->fh = nfs_alloc_fhandle();
840 	entry->fattr = nfs_alloc_fattr();
841 	entry->server = NFS_SERVER(inode);
842 	if (entry->fh == NULL || entry->fattr == NULL)
843 		goto out;
844 
845 	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
846 	if (IS_ERR(entry->label)) {
847 		status = PTR_ERR(entry->label);
848 		goto out;
849 	}
850 
851 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
852 	pages = nfs_readdir_alloc_pages(array_size);
853 	if (!pages)
854 		goto out_release_label;
855 
856 	do {
857 		unsigned int pglen;
858 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
859 						pages, dtsize,
860 						verf_res);
861 		if (status < 0)
862 			break;
863 
864 		pglen = status;
865 		if (pglen == 0) {
866 			nfs_readdir_page_set_eof(page);
867 			break;
868 		}
869 
870 		verf_arg = verf_res;
871 
872 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
873 						 arrays, narrays);
874 	} while (!status && nfs_readdir_page_needs_filling(page) &&
875 		page_mapping(page));
876 
877 	nfs_readdir_free_pages(pages, array_size);
878 out_release_label:
879 	nfs4_label_free(entry->label);
880 out:
881 	nfs_free_fattr(entry->fattr);
882 	nfs_free_fhandle(entry->fh);
883 	kfree(entry);
884 	return status;
885 }
886 
nfs_readdir_page_put(struct nfs_readdir_descriptor * desc)887 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
888 {
889 	put_page(desc->page);
890 	desc->page = NULL;
891 }
892 
893 static void
nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)894 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
895 {
896 	unlock_page(desc->page);
897 	nfs_readdir_page_put(desc);
898 }
899 
900 static struct page *
nfs_readdir_page_get_cached(struct nfs_readdir_descriptor * desc)901 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
902 {
903 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
904 					   desc->page_index,
905 					   desc->last_cookie);
906 }
907 
908 /*
909  * Returns 0 if desc->dir_cookie was found on page desc->page_index
910  * and locks the page to prevent removal from the page cache.
911  */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)912 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
913 {
914 	struct inode *inode = file_inode(desc->file);
915 	struct nfs_inode *nfsi = NFS_I(inode);
916 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
917 	int res;
918 
919 	desc->page = nfs_readdir_page_get_cached(desc);
920 	if (!desc->page)
921 		return -ENOMEM;
922 	if (nfs_readdir_page_needs_filling(desc->page)) {
923 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
924 					       &desc->page, 1);
925 		if (res < 0) {
926 			nfs_readdir_page_unlock_and_put_cached(desc);
927 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
928 				invalidate_inode_pages2(desc->file->f_mapping);
929 				desc->page_index = 0;
930 				return -EAGAIN;
931 			}
932 			return res;
933 		}
934 		/*
935 		 * Set the cookie verifier if the page cache was empty
936 		 */
937 		if (desc->page_index == 0)
938 			memcpy(nfsi->cookieverf, verf,
939 			       sizeof(nfsi->cookieverf));
940 	}
941 	res = nfs_readdir_search_array(desc);
942 	if (res == 0)
943 		return 0;
944 	nfs_readdir_page_unlock_and_put_cached(desc);
945 	return res;
946 }
947 
nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor * desc)948 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
949 {
950 	struct address_space *mapping = desc->file->f_mapping;
951 	struct inode *dir = file_inode(desc->file);
952 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
953 	loff_t size = i_size_read(dir);
954 
955 	/*
956 	 * Default to uncached readdir if the page cache is empty, and
957 	 * we're looking for a non-zero cookie in a large directory.
958 	 */
959 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
960 }
961 
962 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)963 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
964 {
965 	int res;
966 
967 	if (nfs_readdir_dont_search_cache(desc))
968 		return -EBADCOOKIE;
969 
970 	do {
971 		if (desc->page_index == 0) {
972 			desc->current_index = 0;
973 			desc->prev_index = 0;
974 			desc->last_cookie = 0;
975 		}
976 		res = find_and_lock_cache_page(desc);
977 	} while (res == -EAGAIN);
978 	return res;
979 }
980 
981 /*
982  * Once we've found the start of the dirent within a page: fill 'er up...
983  */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)984 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
985 			   const __be32 *verf)
986 {
987 	struct file	*file = desc->file;
988 	struct nfs_cache_array *array;
989 	unsigned int i = 0;
990 
991 	array = kmap(desc->page);
992 	for (i = desc->cache_entry_index; i < array->size; i++) {
993 		struct nfs_cache_array_entry *ent;
994 
995 		ent = &array->array[i];
996 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
997 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
998 			desc->eof = true;
999 			break;
1000 		}
1001 		memcpy(desc->verf, verf, sizeof(desc->verf));
1002 		if (i < (array->size-1))
1003 			desc->dir_cookie = array->array[i+1].cookie;
1004 		else
1005 			desc->dir_cookie = array->last_cookie;
1006 		if (nfs_readdir_use_cookie(file))
1007 			desc->ctx->pos = desc->dir_cookie;
1008 		else
1009 			desc->ctx->pos++;
1010 		if (desc->duped != 0)
1011 			desc->duped = 1;
1012 	}
1013 	if (array->page_is_eof)
1014 		desc->eof = true;
1015 
1016 	kunmap(desc->page);
1017 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018 			(unsigned long long)desc->dir_cookie);
1019 }
1020 
1021 /*
1022  * If we cannot find a cookie in our cache, we suspect that this is
1023  * because it points to a deleted file, so we ask the server to return
1024  * whatever it thinks is the next entry. We then feed this to filldir.
1025  * If all goes well, we should then be able to find our way round the
1026  * cache on the next call to readdir_search_pagecache();
1027  *
1028  * NOTE: we cannot add the anonymous page to the pagecache because
1029  *	 the data it contains might not be page aligned. Besides,
1030  *	 we should already have a complete representation of the
1031  *	 directory in the page cache by the time we get here.
1032  */
uncached_readdir(struct nfs_readdir_descriptor * desc)1033 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034 {
1035 	struct page	**arrays;
1036 	size_t		i, sz = 512;
1037 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038 	int		status = -ENOMEM;
1039 
1040 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041 			(unsigned long long)desc->dir_cookie);
1042 
1043 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044 	if (!arrays)
1045 		goto out;
1046 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047 	if (!arrays[0])
1048 		goto out;
1049 
1050 	desc->page_index = 0;
1051 	desc->cache_entry_index = 0;
1052 	desc->last_cookie = desc->dir_cookie;
1053 	desc->duped = 0;
1054 
1055 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1056 
1057 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1058 		desc->page = arrays[i];
1059 		nfs_do_filldir(desc, verf);
1060 	}
1061 	desc->page = NULL;
1062 
1063 
1064 	for (i = 0; i < sz && arrays[i]; i++)
1065 		nfs_readdir_page_array_free(arrays[i]);
1066 out:
1067 	kfree(arrays);
1068 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1069 	return status;
1070 }
1071 
1072 /* The file offset position represents the dirent entry number.  A
1073    last cookie cache takes care of the common case of reading the
1074    whole directory.
1075  */
nfs_readdir(struct file * file,struct dir_context * ctx)1076 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1077 {
1078 	struct dentry	*dentry = file_dentry(file);
1079 	struct inode	*inode = d_inode(dentry);
1080 	struct nfs_inode *nfsi = NFS_I(inode);
1081 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1082 	struct nfs_readdir_descriptor *desc;
1083 	pgoff_t page_index;
1084 	int res;
1085 
1086 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1087 			file, (long long)ctx->pos);
1088 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1089 
1090 	/*
1091 	 * ctx->pos points to the dirent entry number.
1092 	 * *desc->dir_cookie has the cookie for the next entry. We have
1093 	 * to either find the entry with the appropriate number or
1094 	 * revalidate the cookie.
1095 	 */
1096 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1097 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1098 		if (res < 0)
1099 			goto out;
1100 	}
1101 
1102 	res = -ENOMEM;
1103 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1104 	if (!desc)
1105 		goto out;
1106 	desc->file = file;
1107 	desc->ctx = ctx;
1108 	desc->plus = nfs_use_readdirplus(inode, ctx);
1109 
1110 	spin_lock(&file->f_lock);
1111 	desc->dir_cookie = dir_ctx->dir_cookie;
1112 	desc->dup_cookie = dir_ctx->dup_cookie;
1113 	desc->duped = dir_ctx->duped;
1114 	page_index = dir_ctx->page_index;
1115 	desc->attr_gencount = dir_ctx->attr_gencount;
1116 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1117 	spin_unlock(&file->f_lock);
1118 
1119 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1120 	    list_is_singular(&nfsi->open_files))
1121 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1122 
1123 	do {
1124 		res = readdir_search_pagecache(desc);
1125 
1126 		if (res == -EBADCOOKIE) {
1127 			res = 0;
1128 			/* This means either end of directory */
1129 			if (desc->dir_cookie && !desc->eof) {
1130 				/* Or that the server has 'lost' a cookie */
1131 				res = uncached_readdir(desc);
1132 				if (res == 0)
1133 					continue;
1134 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1135 					res = 0;
1136 			}
1137 			break;
1138 		}
1139 		if (res == -ETOOSMALL && desc->plus) {
1140 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1141 			nfs_zap_caches(inode);
1142 			desc->page_index = 0;
1143 			desc->plus = false;
1144 			desc->eof = false;
1145 			continue;
1146 		}
1147 		if (res < 0)
1148 			break;
1149 
1150 		nfs_do_filldir(desc, nfsi->cookieverf);
1151 		nfs_readdir_page_unlock_and_put_cached(desc);
1152 	} while (!desc->eof);
1153 
1154 	spin_lock(&file->f_lock);
1155 	dir_ctx->dir_cookie = desc->dir_cookie;
1156 	dir_ctx->dup_cookie = desc->dup_cookie;
1157 	dir_ctx->duped = desc->duped;
1158 	dir_ctx->attr_gencount = desc->attr_gencount;
1159 	dir_ctx->page_index = desc->page_index;
1160 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1161 	spin_unlock(&file->f_lock);
1162 
1163 	kfree(desc);
1164 
1165 out:
1166 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1167 	return res;
1168 }
1169 
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1170 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1171 {
1172 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1173 
1174 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1175 			filp, offset, whence);
1176 
1177 	switch (whence) {
1178 	default:
1179 		return -EINVAL;
1180 	case SEEK_SET:
1181 		if (offset < 0)
1182 			return -EINVAL;
1183 		spin_lock(&filp->f_lock);
1184 		break;
1185 	case SEEK_CUR:
1186 		if (offset == 0)
1187 			return filp->f_pos;
1188 		spin_lock(&filp->f_lock);
1189 		offset += filp->f_pos;
1190 		if (offset < 0) {
1191 			spin_unlock(&filp->f_lock);
1192 			return -EINVAL;
1193 		}
1194 	}
1195 	if (offset != filp->f_pos) {
1196 		filp->f_pos = offset;
1197 		if (nfs_readdir_use_cookie(filp))
1198 			dir_ctx->dir_cookie = offset;
1199 		else
1200 			dir_ctx->dir_cookie = 0;
1201 		if (offset == 0)
1202 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1203 		dir_ctx->duped = 0;
1204 	}
1205 	spin_unlock(&filp->f_lock);
1206 	return offset;
1207 }
1208 
1209 /*
1210  * All directory operations under NFS are synchronous, so fsync()
1211  * is a dummy operation.
1212  */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1213 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1214 			 int datasync)
1215 {
1216 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1217 
1218 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1219 	return 0;
1220 }
1221 
1222 /**
1223  * nfs_force_lookup_revalidate - Mark the directory as having changed
1224  * @dir: pointer to directory inode
1225  *
1226  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1227  * full lookup on all child dentries of 'dir' whenever a change occurs
1228  * on the server that might have invalidated our dcache.
1229  *
1230  * Note that we reserve bit '0' as a tag to let us know when a dentry
1231  * was revalidated while holding a delegation on its inode.
1232  *
1233  * The caller should be holding dir->i_lock
1234  */
nfs_force_lookup_revalidate(struct inode * dir)1235 void nfs_force_lookup_revalidate(struct inode *dir)
1236 {
1237 	NFS_I(dir)->cache_change_attribute += 2;
1238 }
1239 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1240 
1241 /**
1242  * nfs_verify_change_attribute - Detects NFS remote directory changes
1243  * @dir: pointer to parent directory inode
1244  * @verf: previously saved change attribute
1245  *
1246  * Return "false" if the verifiers doesn't match the change attribute.
1247  * This would usually indicate that the directory contents have changed on
1248  * the server, and that any dentries need revalidating.
1249  */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1250 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1251 {
1252 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1253 }
1254 
nfs_set_verifier_delegated(unsigned long * verf)1255 static void nfs_set_verifier_delegated(unsigned long *verf)
1256 {
1257 	*verf |= 1UL;
1258 }
1259 
1260 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1261 static void nfs_unset_verifier_delegated(unsigned long *verf)
1262 {
1263 	*verf &= ~1UL;
1264 }
1265 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1266 
nfs_test_verifier_delegated(unsigned long verf)1267 static bool nfs_test_verifier_delegated(unsigned long verf)
1268 {
1269 	return verf & 1;
1270 }
1271 
nfs_verifier_is_delegated(struct dentry * dentry)1272 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1273 {
1274 	return nfs_test_verifier_delegated(dentry->d_time);
1275 }
1276 
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1277 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1278 {
1279 	struct inode *inode = d_inode(dentry);
1280 	struct inode *dir = d_inode(dentry->d_parent);
1281 
1282 	if (!nfs_verify_change_attribute(dir, verf))
1283 		return;
1284 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1285 		nfs_set_verifier_delegated(&verf);
1286 	dentry->d_time = verf;
1287 }
1288 
1289 /**
1290  * nfs_set_verifier - save a parent directory verifier in the dentry
1291  * @dentry: pointer to dentry
1292  * @verf: verifier to save
1293  *
1294  * Saves the parent directory verifier in @dentry. If the inode has
1295  * a delegation, we also tag the dentry as having been revalidated
1296  * while holding a delegation so that we know we don't have to
1297  * look it up again after a directory change.
1298  */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1299 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1300 {
1301 
1302 	spin_lock(&dentry->d_lock);
1303 	nfs_set_verifier_locked(dentry, verf);
1304 	spin_unlock(&dentry->d_lock);
1305 }
1306 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1307 
1308 #if IS_ENABLED(CONFIG_NFS_V4)
1309 /**
1310  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1311  * @inode: pointer to inode
1312  *
1313  * Iterates through the dentries in the inode alias list and clears
1314  * the tag used to indicate that the dentry has been revalidated
1315  * while holding a delegation.
1316  * This function is intended for use when the delegation is being
1317  * returned or revoked.
1318  */
nfs_clear_verifier_delegated(struct inode * inode)1319 void nfs_clear_verifier_delegated(struct inode *inode)
1320 {
1321 	struct dentry *alias;
1322 
1323 	if (!inode)
1324 		return;
1325 	spin_lock(&inode->i_lock);
1326 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1327 		spin_lock(&alias->d_lock);
1328 		nfs_unset_verifier_delegated(&alias->d_time);
1329 		spin_unlock(&alias->d_lock);
1330 	}
1331 	spin_unlock(&inode->i_lock);
1332 }
1333 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1334 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1335 
1336 /*
1337  * A check for whether or not the parent directory has changed.
1338  * In the case it has, we assume that the dentries are untrustworthy
1339  * and may need to be looked up again.
1340  * If rcu_walk prevents us from performing a full check, return 0.
1341  */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1342 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1343 			      int rcu_walk)
1344 {
1345 	if (IS_ROOT(dentry))
1346 		return 1;
1347 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1348 		return 0;
1349 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1350 		return 0;
1351 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1352 	if (nfs_mapping_need_revalidate_inode(dir)) {
1353 		if (rcu_walk)
1354 			return 0;
1355 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1356 			return 0;
1357 	}
1358 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1359 		return 0;
1360 	return 1;
1361 }
1362 
1363 /*
1364  * Use intent information to check whether or not we're going to do
1365  * an O_EXCL create using this path component.
1366  */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1367 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1368 {
1369 	if (NFS_PROTO(dir)->version == 2)
1370 		return 0;
1371 	return flags & LOOKUP_EXCL;
1372 }
1373 
1374 /*
1375  * Inode and filehandle revalidation for lookups.
1376  *
1377  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1378  * or if the intent information indicates that we're about to open this
1379  * particular file and the "nocto" mount flag is not set.
1380  *
1381  */
1382 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1383 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1384 {
1385 	struct nfs_server *server = NFS_SERVER(inode);
1386 	int ret;
1387 
1388 	if (IS_AUTOMOUNT(inode))
1389 		return 0;
1390 
1391 	if (flags & LOOKUP_OPEN) {
1392 		switch (inode->i_mode & S_IFMT) {
1393 		case S_IFREG:
1394 			/* A NFSv4 OPEN will revalidate later */
1395 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1396 				goto out;
1397 			fallthrough;
1398 		case S_IFDIR:
1399 			if (server->flags & NFS_MOUNT_NOCTO)
1400 				break;
1401 			/* NFS close-to-open cache consistency validation */
1402 			goto out_force;
1403 		}
1404 	}
1405 
1406 	/* VFS wants an on-the-wire revalidation */
1407 	if (flags & LOOKUP_REVAL)
1408 		goto out_force;
1409 out:
1410 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1411 out_force:
1412 	if (flags & LOOKUP_RCU)
1413 		return -ECHILD;
1414 	ret = __nfs_revalidate_inode(server, inode);
1415 	if (ret != 0)
1416 		return ret;
1417 	goto out;
1418 }
1419 
nfs_mark_dir_for_revalidate(struct inode * inode)1420 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1421 {
1422 	spin_lock(&inode->i_lock);
1423 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1424 	spin_unlock(&inode->i_lock);
1425 }
1426 
1427 /*
1428  * We judge how long we want to trust negative
1429  * dentries by looking at the parent inode mtime.
1430  *
1431  * If parent mtime has changed, we revalidate, else we wait for a
1432  * period corresponding to the parent's attribute cache timeout value.
1433  *
1434  * If LOOKUP_RCU prevents us from performing a full check, return 1
1435  * suggesting a reval is needed.
1436  *
1437  * Note that when creating a new file, or looking up a rename target,
1438  * then it shouldn't be necessary to revalidate a negative dentry.
1439  */
1440 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1441 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1442 		       unsigned int flags)
1443 {
1444 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1445 		return 0;
1446 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1447 		return 1;
1448 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1449 }
1450 
1451 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1452 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1453 			   struct inode *inode, int error)
1454 {
1455 	switch (error) {
1456 	case 1:
1457 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1458 			__func__, dentry);
1459 		return 1;
1460 	case 0:
1461 		/*
1462 		 * We can't d_drop the root of a disconnected tree:
1463 		 * its d_hash is on the s_anon list and d_drop() would hide
1464 		 * it from shrink_dcache_for_unmount(), leading to busy
1465 		 * inodes on unmount and further oopses.
1466 		 */
1467 		if (inode && IS_ROOT(dentry))
1468 			return 1;
1469 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1470 				__func__, dentry);
1471 		return 0;
1472 	}
1473 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1474 				__func__, dentry, error);
1475 	return error;
1476 }
1477 
1478 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1479 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1480 			       unsigned int flags)
1481 {
1482 	int ret = 1;
1483 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1484 		if (flags & LOOKUP_RCU)
1485 			return -ECHILD;
1486 		ret = 0;
1487 	}
1488 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1489 }
1490 
1491 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1492 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1493 				struct inode *inode)
1494 {
1495 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1496 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1497 }
1498 
1499 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1500 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1501 			     struct inode *inode)
1502 {
1503 	struct nfs_fh *fhandle;
1504 	struct nfs_fattr *fattr;
1505 	struct nfs4_label *label;
1506 	unsigned long dir_verifier;
1507 	int ret;
1508 
1509 	ret = -ENOMEM;
1510 	fhandle = nfs_alloc_fhandle();
1511 	fattr = nfs_alloc_fattr();
1512 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1513 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1514 		goto out;
1515 
1516 	dir_verifier = nfs_save_change_attribute(dir);
1517 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1518 	if (ret < 0) {
1519 		switch (ret) {
1520 		case -ESTALE:
1521 		case -ENOENT:
1522 			ret = 0;
1523 			break;
1524 		case -ETIMEDOUT:
1525 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1526 				ret = 1;
1527 		}
1528 		goto out;
1529 	}
1530 	ret = 0;
1531 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1532 		goto out;
1533 	if (nfs_refresh_inode(inode, fattr) < 0)
1534 		goto out;
1535 
1536 	nfs_setsecurity(inode, fattr, label);
1537 	nfs_set_verifier(dentry, dir_verifier);
1538 
1539 	/* set a readdirplus hint that we had a cache miss */
1540 	nfs_force_use_readdirplus(dir);
1541 	ret = 1;
1542 out:
1543 	nfs_free_fattr(fattr);
1544 	nfs_free_fhandle(fhandle);
1545 	nfs4_label_free(label);
1546 
1547 	/*
1548 	 * If the lookup failed despite the dentry change attribute being
1549 	 * a match, then we should revalidate the directory cache.
1550 	 */
1551 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1552 		nfs_mark_dir_for_revalidate(dir);
1553 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1554 }
1555 
1556 /*
1557  * This is called every time the dcache has a lookup hit,
1558  * and we should check whether we can really trust that
1559  * lookup.
1560  *
1561  * NOTE! The hit can be a negative hit too, don't assume
1562  * we have an inode!
1563  *
1564  * If the parent directory is seen to have changed, we throw out the
1565  * cached dentry and do a new lookup.
1566  */
1567 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1568 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1569 			 unsigned int flags)
1570 {
1571 	struct inode *inode;
1572 	int error;
1573 
1574 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1575 	inode = d_inode(dentry);
1576 
1577 	if (!inode)
1578 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1579 
1580 	if (is_bad_inode(inode)) {
1581 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1582 				__func__, dentry);
1583 		goto out_bad;
1584 	}
1585 
1586 	if (nfs_verifier_is_delegated(dentry))
1587 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1588 
1589 	/* Force a full look up iff the parent directory has changed */
1590 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1591 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1592 		error = nfs_lookup_verify_inode(inode, flags);
1593 		if (error) {
1594 			if (error == -ESTALE)
1595 				nfs_mark_dir_for_revalidate(dir);
1596 			goto out_bad;
1597 		}
1598 		nfs_advise_use_readdirplus(dir);
1599 		goto out_valid;
1600 	}
1601 
1602 	if (flags & LOOKUP_RCU)
1603 		return -ECHILD;
1604 
1605 	if (NFS_STALE(inode))
1606 		goto out_bad;
1607 
1608 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1609 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1610 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1611 	return error;
1612 out_valid:
1613 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1614 out_bad:
1615 	if (flags & LOOKUP_RCU)
1616 		return -ECHILD;
1617 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1618 }
1619 
1620 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1621 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1622 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1623 {
1624 	struct dentry *parent;
1625 	struct inode *dir;
1626 	int ret;
1627 
1628 	if (flags & LOOKUP_RCU) {
1629 		parent = READ_ONCE(dentry->d_parent);
1630 		dir = d_inode_rcu(parent);
1631 		if (!dir)
1632 			return -ECHILD;
1633 		ret = reval(dir, dentry, flags);
1634 		if (parent != READ_ONCE(dentry->d_parent))
1635 			return -ECHILD;
1636 	} else {
1637 		parent = dget_parent(dentry);
1638 		ret = reval(d_inode(parent), dentry, flags);
1639 		dput(parent);
1640 	}
1641 	return ret;
1642 }
1643 
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1644 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1645 {
1646 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1647 }
1648 
1649 /*
1650  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1651  * when we don't really care about the dentry name. This is called when a
1652  * pathwalk ends on a dentry that was not found via a normal lookup in the
1653  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1654  *
1655  * In this situation, we just want to verify that the inode itself is OK
1656  * since the dentry might have changed on the server.
1657  */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1658 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1659 {
1660 	struct inode *inode = d_inode(dentry);
1661 	int error = 0;
1662 
1663 	/*
1664 	 * I believe we can only get a negative dentry here in the case of a
1665 	 * procfs-style symlink. Just assume it's correct for now, but we may
1666 	 * eventually need to do something more here.
1667 	 */
1668 	if (!inode) {
1669 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1670 				__func__, dentry);
1671 		return 1;
1672 	}
1673 
1674 	if (is_bad_inode(inode)) {
1675 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1676 				__func__, dentry);
1677 		return 0;
1678 	}
1679 
1680 	error = nfs_lookup_verify_inode(inode, flags);
1681 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1682 			__func__, inode->i_ino, error ? "invalid" : "valid");
1683 	return !error;
1684 }
1685 
1686 /*
1687  * This is called from dput() when d_count is going to 0.
1688  */
nfs_dentry_delete(const struct dentry * dentry)1689 static int nfs_dentry_delete(const struct dentry *dentry)
1690 {
1691 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1692 		dentry, dentry->d_flags);
1693 
1694 	/* Unhash any dentry with a stale inode */
1695 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1696 		return 1;
1697 
1698 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699 		/* Unhash it, so that ->d_iput() would be called */
1700 		return 1;
1701 	}
1702 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1703 		/* Unhash it, so that ancestors of killed async unlink
1704 		 * files will be cleaned up during umount */
1705 		return 1;
1706 	}
1707 	return 0;
1708 
1709 }
1710 
1711 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1712 static void nfs_drop_nlink(struct inode *inode)
1713 {
1714 	spin_lock(&inode->i_lock);
1715 	/* drop the inode if we're reasonably sure this is the last link */
1716 	if (inode->i_nlink > 0)
1717 		drop_nlink(inode);
1718 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1719 	nfs_set_cache_invalid(
1720 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1721 			       NFS_INO_INVALID_NLINK);
1722 	spin_unlock(&inode->i_lock);
1723 }
1724 
1725 /*
1726  * Called when the dentry loses inode.
1727  * We use it to clean up silly-renamed files.
1728  */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1729 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1730 {
1731 	if (S_ISDIR(inode->i_mode))
1732 		/* drop any readdir cache as it could easily be old */
1733 		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1734 
1735 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1736 		nfs_complete_unlink(dentry, inode);
1737 		nfs_drop_nlink(inode);
1738 	}
1739 	iput(inode);
1740 }
1741 
nfs_d_release(struct dentry * dentry)1742 static void nfs_d_release(struct dentry *dentry)
1743 {
1744 	/* free cached devname value, if it survived that far */
1745 	if (unlikely(dentry->d_fsdata)) {
1746 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1747 			WARN_ON(1);
1748 		else
1749 			kfree(dentry->d_fsdata);
1750 	}
1751 }
1752 
1753 const struct dentry_operations nfs_dentry_operations = {
1754 	.d_revalidate	= nfs_lookup_revalidate,
1755 	.d_weak_revalidate	= nfs_weak_revalidate,
1756 	.d_delete	= nfs_dentry_delete,
1757 	.d_iput		= nfs_dentry_iput,
1758 	.d_automount	= nfs_d_automount,
1759 	.d_release	= nfs_d_release,
1760 };
1761 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1762 
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1763 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1764 {
1765 	struct dentry *res;
1766 	struct inode *inode = NULL;
1767 	struct nfs_fh *fhandle = NULL;
1768 	struct nfs_fattr *fattr = NULL;
1769 	struct nfs4_label *label = NULL;
1770 	unsigned long dir_verifier;
1771 	int error;
1772 
1773 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1774 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1775 
1776 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1777 		return ERR_PTR(-ENAMETOOLONG);
1778 
1779 	/*
1780 	 * If we're doing an exclusive create, optimize away the lookup
1781 	 * but don't hash the dentry.
1782 	 */
1783 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1784 		return NULL;
1785 
1786 	res = ERR_PTR(-ENOMEM);
1787 	fhandle = nfs_alloc_fhandle();
1788 	fattr = nfs_alloc_fattr();
1789 	if (fhandle == NULL || fattr == NULL)
1790 		goto out;
1791 
1792 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1793 	if (IS_ERR(label))
1794 		goto out;
1795 
1796 	dir_verifier = nfs_save_change_attribute(dir);
1797 	trace_nfs_lookup_enter(dir, dentry, flags);
1798 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1799 	if (error == -ENOENT)
1800 		goto no_entry;
1801 	if (error < 0) {
1802 		res = ERR_PTR(error);
1803 		goto out_label;
1804 	}
1805 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1806 	res = ERR_CAST(inode);
1807 	if (IS_ERR(res))
1808 		goto out_label;
1809 
1810 	/* Notify readdir to use READDIRPLUS */
1811 	nfs_force_use_readdirplus(dir);
1812 
1813 no_entry:
1814 	res = d_splice_alias(inode, dentry);
1815 	if (res != NULL) {
1816 		if (IS_ERR(res))
1817 			goto out_label;
1818 		dentry = res;
1819 	}
1820 	nfs_set_verifier(dentry, dir_verifier);
1821 out_label:
1822 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1823 	nfs4_label_free(label);
1824 out:
1825 	nfs_free_fattr(fattr);
1826 	nfs_free_fhandle(fhandle);
1827 	return res;
1828 }
1829 EXPORT_SYMBOL_GPL(nfs_lookup);
1830 
1831 #if IS_ENABLED(CONFIG_NFS_V4)
1832 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1833 
1834 const struct dentry_operations nfs4_dentry_operations = {
1835 	.d_revalidate	= nfs4_lookup_revalidate,
1836 	.d_weak_revalidate	= nfs_weak_revalidate,
1837 	.d_delete	= nfs_dentry_delete,
1838 	.d_iput		= nfs_dentry_iput,
1839 	.d_automount	= nfs_d_automount,
1840 	.d_release	= nfs_d_release,
1841 };
1842 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1843 
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1844 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1845 {
1846 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1847 }
1848 
do_open(struct inode * inode,struct file * filp)1849 static int do_open(struct inode *inode, struct file *filp)
1850 {
1851 	nfs_fscache_open_file(inode, filp);
1852 	return 0;
1853 }
1854 
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1855 static int nfs_finish_open(struct nfs_open_context *ctx,
1856 			   struct dentry *dentry,
1857 			   struct file *file, unsigned open_flags)
1858 {
1859 	int err;
1860 
1861 	err = finish_open(file, dentry, do_open);
1862 	if (err)
1863 		goto out;
1864 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1865 		nfs_file_set_open_context(file, ctx);
1866 	else
1867 		err = -EOPENSTALE;
1868 out:
1869 	return err;
1870 }
1871 
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1872 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1873 		    struct file *file, unsigned open_flags,
1874 		    umode_t mode)
1875 {
1876 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1877 	struct nfs_open_context *ctx;
1878 	struct dentry *res;
1879 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1880 	struct inode *inode;
1881 	unsigned int lookup_flags = 0;
1882 	bool switched = false;
1883 	int created = 0;
1884 	int err;
1885 
1886 	/* Expect a negative dentry */
1887 	BUG_ON(d_inode(dentry));
1888 
1889 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1890 			dir->i_sb->s_id, dir->i_ino, dentry);
1891 
1892 	err = nfs_check_flags(open_flags);
1893 	if (err)
1894 		return err;
1895 
1896 	/* NFS only supports OPEN on regular files */
1897 	if ((open_flags & O_DIRECTORY)) {
1898 		if (!d_in_lookup(dentry)) {
1899 			/*
1900 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1901 			 * revalidated and is fine, no need to perform lookup
1902 			 * again
1903 			 */
1904 			return -ENOENT;
1905 		}
1906 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1907 		goto no_open;
1908 	}
1909 
1910 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1911 		return -ENAMETOOLONG;
1912 
1913 	if (open_flags & O_CREAT) {
1914 		struct nfs_server *server = NFS_SERVER(dir);
1915 
1916 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1917 			mode &= ~current_umask();
1918 
1919 		attr.ia_valid |= ATTR_MODE;
1920 		attr.ia_mode = mode;
1921 	}
1922 	if (open_flags & O_TRUNC) {
1923 		attr.ia_valid |= ATTR_SIZE;
1924 		attr.ia_size = 0;
1925 	}
1926 
1927 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1928 		d_drop(dentry);
1929 		switched = true;
1930 		dentry = d_alloc_parallel(dentry->d_parent,
1931 					  &dentry->d_name, &wq);
1932 		if (IS_ERR(dentry))
1933 			return PTR_ERR(dentry);
1934 		if (unlikely(!d_in_lookup(dentry)))
1935 			return finish_no_open(file, dentry);
1936 	}
1937 
1938 	ctx = create_nfs_open_context(dentry, open_flags, file);
1939 	err = PTR_ERR(ctx);
1940 	if (IS_ERR(ctx))
1941 		goto out;
1942 
1943 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1944 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1945 	if (created)
1946 		file->f_mode |= FMODE_CREATED;
1947 	if (IS_ERR(inode)) {
1948 		err = PTR_ERR(inode);
1949 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1950 		put_nfs_open_context(ctx);
1951 		d_drop(dentry);
1952 		switch (err) {
1953 		case -ENOENT:
1954 			d_splice_alias(NULL, dentry);
1955 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1956 			break;
1957 		case -EISDIR:
1958 		case -ENOTDIR:
1959 			goto no_open;
1960 		case -ELOOP:
1961 			if (!(open_flags & O_NOFOLLOW))
1962 				goto no_open;
1963 			break;
1964 			/* case -EINVAL: */
1965 		default:
1966 			break;
1967 		}
1968 		goto out;
1969 	}
1970 
1971 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1972 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1973 	put_nfs_open_context(ctx);
1974 out:
1975 	if (unlikely(switched)) {
1976 		d_lookup_done(dentry);
1977 		dput(dentry);
1978 	}
1979 	return err;
1980 
1981 no_open:
1982 	res = nfs_lookup(dir, dentry, lookup_flags);
1983 	if (!res) {
1984 		inode = d_inode(dentry);
1985 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1986 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1987 			res = ERR_PTR(-ENOTDIR);
1988 		else if (inode && S_ISREG(inode->i_mode))
1989 			res = ERR_PTR(-EOPENSTALE);
1990 	} else if (!IS_ERR(res)) {
1991 		inode = d_inode(res);
1992 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1993 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1994 			dput(res);
1995 			res = ERR_PTR(-ENOTDIR);
1996 		} else if (inode && S_ISREG(inode->i_mode)) {
1997 			dput(res);
1998 			res = ERR_PTR(-EOPENSTALE);
1999 		}
2000 	}
2001 	if (switched) {
2002 		d_lookup_done(dentry);
2003 		if (!res)
2004 			res = dentry;
2005 		else
2006 			dput(dentry);
2007 	}
2008 	if (IS_ERR(res))
2009 		return PTR_ERR(res);
2010 	return finish_no_open(file, res);
2011 }
2012 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2013 
2014 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2015 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2016 			  unsigned int flags)
2017 {
2018 	struct inode *inode;
2019 
2020 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2021 		goto full_reval;
2022 	if (d_mountpoint(dentry))
2023 		goto full_reval;
2024 
2025 	inode = d_inode(dentry);
2026 
2027 	/* We can't create new files in nfs_open_revalidate(), so we
2028 	 * optimize away revalidation of negative dentries.
2029 	 */
2030 	if (inode == NULL)
2031 		goto full_reval;
2032 
2033 	if (nfs_verifier_is_delegated(dentry))
2034 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2035 
2036 	/* NFS only supports OPEN on regular files */
2037 	if (!S_ISREG(inode->i_mode))
2038 		goto full_reval;
2039 
2040 	/* We cannot do exclusive creation on a positive dentry */
2041 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2042 		goto reval_dentry;
2043 
2044 	/* Check if the directory changed */
2045 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2046 		goto reval_dentry;
2047 
2048 	/* Let f_op->open() actually open (and revalidate) the file */
2049 	return 1;
2050 reval_dentry:
2051 	if (flags & LOOKUP_RCU)
2052 		return -ECHILD;
2053 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2054 
2055 full_reval:
2056 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2057 }
2058 
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2059 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2060 {
2061 	return __nfs_lookup_revalidate(dentry, flags,
2062 			nfs4_do_lookup_revalidate);
2063 }
2064 
2065 #endif /* CONFIG_NFSV4 */
2066 
2067 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)2068 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2069 				struct nfs_fattr *fattr,
2070 				struct nfs4_label *label)
2071 {
2072 	struct dentry *parent = dget_parent(dentry);
2073 	struct inode *dir = d_inode(parent);
2074 	struct inode *inode;
2075 	struct dentry *d;
2076 	int error;
2077 
2078 	d_drop(dentry);
2079 
2080 	if (fhandle->size == 0) {
2081 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2082 		if (error)
2083 			goto out_error;
2084 	}
2085 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2086 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2087 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2088 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2089 				fattr, NULL, NULL);
2090 		if (error < 0)
2091 			goto out_error;
2092 	}
2093 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2094 	d = d_splice_alias(inode, dentry);
2095 out:
2096 	dput(parent);
2097 	return d;
2098 out_error:
2099 	d = ERR_PTR(error);
2100 	goto out;
2101 }
2102 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2103 
2104 /*
2105  * Code common to create, mkdir, and mknod.
2106  */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)2107 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2108 				struct nfs_fattr *fattr,
2109 				struct nfs4_label *label)
2110 {
2111 	struct dentry *d;
2112 
2113 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2114 	if (IS_ERR(d))
2115 		return PTR_ERR(d);
2116 
2117 	/* Callers don't care */
2118 	dput(d);
2119 	return 0;
2120 }
2121 EXPORT_SYMBOL_GPL(nfs_instantiate);
2122 
2123 /*
2124  * Following a failed create operation, we drop the dentry rather
2125  * than retain a negative dentry. This avoids a problem in the event
2126  * that the operation succeeded on the server, but an error in the
2127  * reply path made it appear to have failed.
2128  */
nfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2129 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2130 	       struct dentry *dentry, umode_t mode, bool excl)
2131 {
2132 	struct iattr attr;
2133 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2134 	int error;
2135 
2136 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2137 			dir->i_sb->s_id, dir->i_ino, dentry);
2138 
2139 	attr.ia_mode = mode;
2140 	attr.ia_valid = ATTR_MODE;
2141 
2142 	trace_nfs_create_enter(dir, dentry, open_flags);
2143 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2144 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2145 	if (error != 0)
2146 		goto out_err;
2147 	return 0;
2148 out_err:
2149 	d_drop(dentry);
2150 	return error;
2151 }
2152 EXPORT_SYMBOL_GPL(nfs_create);
2153 
2154 /*
2155  * See comments for nfs_proc_create regarding failed operations.
2156  */
2157 int
nfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2158 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2159 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2160 {
2161 	struct iattr attr;
2162 	int status;
2163 
2164 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2165 			dir->i_sb->s_id, dir->i_ino, dentry);
2166 
2167 	attr.ia_mode = mode;
2168 	attr.ia_valid = ATTR_MODE;
2169 
2170 	trace_nfs_mknod_enter(dir, dentry);
2171 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2172 	trace_nfs_mknod_exit(dir, dentry, status);
2173 	if (status != 0)
2174 		goto out_err;
2175 	return 0;
2176 out_err:
2177 	d_drop(dentry);
2178 	return status;
2179 }
2180 EXPORT_SYMBOL_GPL(nfs_mknod);
2181 
2182 /*
2183  * See comments for nfs_proc_create regarding failed operations.
2184  */
nfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2185 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2186 	      struct dentry *dentry, umode_t mode)
2187 {
2188 	struct iattr attr;
2189 	int error;
2190 
2191 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2192 			dir->i_sb->s_id, dir->i_ino, dentry);
2193 
2194 	attr.ia_valid = ATTR_MODE;
2195 	attr.ia_mode = mode | S_IFDIR;
2196 
2197 	trace_nfs_mkdir_enter(dir, dentry);
2198 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2199 	trace_nfs_mkdir_exit(dir, dentry, error);
2200 	if (error != 0)
2201 		goto out_err;
2202 	return 0;
2203 out_err:
2204 	d_drop(dentry);
2205 	return error;
2206 }
2207 EXPORT_SYMBOL_GPL(nfs_mkdir);
2208 
nfs_dentry_handle_enoent(struct dentry * dentry)2209 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2210 {
2211 	if (simple_positive(dentry))
2212 		d_delete(dentry);
2213 }
2214 
nfs_rmdir(struct inode * dir,struct dentry * dentry)2215 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2216 {
2217 	int error;
2218 
2219 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2220 			dir->i_sb->s_id, dir->i_ino, dentry);
2221 
2222 	trace_nfs_rmdir_enter(dir, dentry);
2223 	if (d_really_is_positive(dentry)) {
2224 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2225 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2226 		/* Ensure the VFS deletes this inode */
2227 		switch (error) {
2228 		case 0:
2229 			clear_nlink(d_inode(dentry));
2230 			break;
2231 		case -ENOENT:
2232 			nfs_dentry_handle_enoent(dentry);
2233 		}
2234 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2235 	} else
2236 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2237 	trace_nfs_rmdir_exit(dir, dentry, error);
2238 
2239 	return error;
2240 }
2241 EXPORT_SYMBOL_GPL(nfs_rmdir);
2242 
2243 /*
2244  * Remove a file after making sure there are no pending writes,
2245  * and after checking that the file has only one user.
2246  *
2247  * We invalidate the attribute cache and free the inode prior to the operation
2248  * to avoid possible races if the server reuses the inode.
2249  */
nfs_safe_remove(struct dentry * dentry)2250 static int nfs_safe_remove(struct dentry *dentry)
2251 {
2252 	struct inode *dir = d_inode(dentry->d_parent);
2253 	struct inode *inode = d_inode(dentry);
2254 	int error = -EBUSY;
2255 
2256 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2257 
2258 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2259 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2260 		error = 0;
2261 		goto out;
2262 	}
2263 
2264 	trace_nfs_remove_enter(dir, dentry);
2265 	if (inode != NULL) {
2266 		error = NFS_PROTO(dir)->remove(dir, dentry);
2267 		if (error == 0)
2268 			nfs_drop_nlink(inode);
2269 	} else
2270 		error = NFS_PROTO(dir)->remove(dir, dentry);
2271 	if (error == -ENOENT)
2272 		nfs_dentry_handle_enoent(dentry);
2273 	trace_nfs_remove_exit(dir, dentry, error);
2274 out:
2275 	return error;
2276 }
2277 
2278 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2279  *  belongs to an active ".nfs..." file and we return -EBUSY.
2280  *
2281  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2282  */
nfs_unlink(struct inode * dir,struct dentry * dentry)2283 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2284 {
2285 	int error;
2286 	int need_rehash = 0;
2287 
2288 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2289 		dir->i_ino, dentry);
2290 
2291 	trace_nfs_unlink_enter(dir, dentry);
2292 	spin_lock(&dentry->d_lock);
2293 	if (d_count(dentry) > 1) {
2294 		spin_unlock(&dentry->d_lock);
2295 		/* Start asynchronous writeout of the inode */
2296 		write_inode_now(d_inode(dentry), 0);
2297 		error = nfs_sillyrename(dir, dentry);
2298 		goto out;
2299 	}
2300 	if (!d_unhashed(dentry)) {
2301 		__d_drop(dentry);
2302 		need_rehash = 1;
2303 	}
2304 	spin_unlock(&dentry->d_lock);
2305 	error = nfs_safe_remove(dentry);
2306 	if (!error || error == -ENOENT) {
2307 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2308 	} else if (need_rehash)
2309 		d_rehash(dentry);
2310 out:
2311 	trace_nfs_unlink_exit(dir, dentry, error);
2312 	return error;
2313 }
2314 EXPORT_SYMBOL_GPL(nfs_unlink);
2315 
2316 /*
2317  * To create a symbolic link, most file systems instantiate a new inode,
2318  * add a page to it containing the path, then write it out to the disk
2319  * using prepare_write/commit_write.
2320  *
2321  * Unfortunately the NFS client can't create the in-core inode first
2322  * because it needs a file handle to create an in-core inode (see
2323  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2324  * symlink request has completed on the server.
2325  *
2326  * So instead we allocate a raw page, copy the symname into it, then do
2327  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2328  * now have a new file handle and can instantiate an in-core NFS inode
2329  * and move the raw page into its mapping.
2330  */
nfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)2331 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2332 		struct dentry *dentry, const char *symname)
2333 {
2334 	struct page *page;
2335 	char *kaddr;
2336 	struct iattr attr;
2337 	unsigned int pathlen = strlen(symname);
2338 	int error;
2339 
2340 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2341 		dir->i_ino, dentry, symname);
2342 
2343 	if (pathlen > PAGE_SIZE)
2344 		return -ENAMETOOLONG;
2345 
2346 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2347 	attr.ia_valid = ATTR_MODE;
2348 
2349 	page = alloc_page(GFP_USER);
2350 	if (!page)
2351 		return -ENOMEM;
2352 
2353 	kaddr = page_address(page);
2354 	memcpy(kaddr, symname, pathlen);
2355 	if (pathlen < PAGE_SIZE)
2356 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2357 
2358 	trace_nfs_symlink_enter(dir, dentry);
2359 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2360 	trace_nfs_symlink_exit(dir, dentry, error);
2361 	if (error != 0) {
2362 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2363 			dir->i_sb->s_id, dir->i_ino,
2364 			dentry, symname, error);
2365 		d_drop(dentry);
2366 		__free_page(page);
2367 		return error;
2368 	}
2369 
2370 	/*
2371 	 * No big deal if we can't add this page to the page cache here.
2372 	 * READLINK will get the missing page from the server if needed.
2373 	 */
2374 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2375 							GFP_KERNEL)) {
2376 		SetPageUptodate(page);
2377 		unlock_page(page);
2378 		/*
2379 		 * add_to_page_cache_lru() grabs an extra page refcount.
2380 		 * Drop it here to avoid leaking this page later.
2381 		 */
2382 		put_page(page);
2383 	} else
2384 		__free_page(page);
2385 
2386 	return 0;
2387 }
2388 EXPORT_SYMBOL_GPL(nfs_symlink);
2389 
2390 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2391 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2392 {
2393 	struct inode *inode = d_inode(old_dentry);
2394 	int error;
2395 
2396 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2397 		old_dentry, dentry);
2398 
2399 	trace_nfs_link_enter(inode, dir, dentry);
2400 	d_drop(dentry);
2401 	if (S_ISREG(inode->i_mode))
2402 		nfs_sync_inode(inode);
2403 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2404 	if (error == 0) {
2405 		ihold(inode);
2406 		d_add(dentry, inode);
2407 	}
2408 	trace_nfs_link_exit(inode, dir, dentry, error);
2409 	return error;
2410 }
2411 EXPORT_SYMBOL_GPL(nfs_link);
2412 
2413 /*
2414  * RENAME
2415  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2416  * different file handle for the same inode after a rename (e.g. when
2417  * moving to a different directory). A fail-safe method to do so would
2418  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2419  * rename the old file using the sillyrename stuff. This way, the original
2420  * file in old_dir will go away when the last process iput()s the inode.
2421  *
2422  * FIXED.
2423  *
2424  * It actually works quite well. One needs to have the possibility for
2425  * at least one ".nfs..." file in each directory the file ever gets
2426  * moved or linked to which happens automagically with the new
2427  * implementation that only depends on the dcache stuff instead of
2428  * using the inode layer
2429  *
2430  * Unfortunately, things are a little more complicated than indicated
2431  * above. For a cross-directory move, we want to make sure we can get
2432  * rid of the old inode after the operation.  This means there must be
2433  * no pending writes (if it's a file), and the use count must be 1.
2434  * If these conditions are met, we can drop the dentries before doing
2435  * the rename.
2436  */
nfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2437 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2438 	       struct dentry *old_dentry, struct inode *new_dir,
2439 	       struct dentry *new_dentry, unsigned int flags)
2440 {
2441 	struct inode *old_inode = d_inode(old_dentry);
2442 	struct inode *new_inode = d_inode(new_dentry);
2443 	struct dentry *dentry = NULL, *rehash = NULL;
2444 	struct rpc_task *task;
2445 	int error = -EBUSY;
2446 
2447 	if (flags)
2448 		return -EINVAL;
2449 
2450 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2451 		 old_dentry, new_dentry,
2452 		 d_count(new_dentry));
2453 
2454 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2455 	/*
2456 	 * For non-directories, check whether the target is busy and if so,
2457 	 * make a copy of the dentry and then do a silly-rename. If the
2458 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2459 	 * the new target.
2460 	 */
2461 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2462 		/*
2463 		 * To prevent any new references to the target during the
2464 		 * rename, we unhash the dentry in advance.
2465 		 */
2466 		if (!d_unhashed(new_dentry)) {
2467 			d_drop(new_dentry);
2468 			rehash = new_dentry;
2469 		}
2470 
2471 		if (d_count(new_dentry) > 2) {
2472 			int err;
2473 
2474 			/* copy the target dentry's name */
2475 			dentry = d_alloc(new_dentry->d_parent,
2476 					 &new_dentry->d_name);
2477 			if (!dentry)
2478 				goto out;
2479 
2480 			/* silly-rename the existing target ... */
2481 			err = nfs_sillyrename(new_dir, new_dentry);
2482 			if (err)
2483 				goto out;
2484 
2485 			new_dentry = dentry;
2486 			rehash = NULL;
2487 			new_inode = NULL;
2488 		}
2489 	}
2490 
2491 	if (S_ISREG(old_inode->i_mode))
2492 		nfs_sync_inode(old_inode);
2493 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2494 	if (IS_ERR(task)) {
2495 		error = PTR_ERR(task);
2496 		goto out;
2497 	}
2498 
2499 	error = rpc_wait_for_completion_task(task);
2500 	if (error != 0) {
2501 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2502 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2503 		smp_wmb();
2504 	} else
2505 		error = task->tk_status;
2506 	rpc_put_task(task);
2507 	/* Ensure the inode attributes are revalidated */
2508 	if (error == 0) {
2509 		spin_lock(&old_inode->i_lock);
2510 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2511 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2512 							 NFS_INO_INVALID_CTIME |
2513 							 NFS_INO_REVAL_FORCED);
2514 		spin_unlock(&old_inode->i_lock);
2515 	}
2516 out:
2517 	if (rehash)
2518 		d_rehash(rehash);
2519 	trace_nfs_rename_exit(old_dir, old_dentry,
2520 			new_dir, new_dentry, error);
2521 	if (!error) {
2522 		if (new_inode != NULL)
2523 			nfs_drop_nlink(new_inode);
2524 		/*
2525 		 * The d_move() should be here instead of in an async RPC completion
2526 		 * handler because we need the proper locks to move the dentry.  If
2527 		 * we're interrupted by a signal, the async RPC completion handler
2528 		 * should mark the directories for revalidation.
2529 		 */
2530 		d_move(old_dentry, new_dentry);
2531 		nfs_set_verifier(old_dentry,
2532 					nfs_save_change_attribute(new_dir));
2533 	} else if (error == -ENOENT)
2534 		nfs_dentry_handle_enoent(old_dentry);
2535 
2536 	/* new dentry created? */
2537 	if (dentry)
2538 		dput(dentry);
2539 	return error;
2540 }
2541 EXPORT_SYMBOL_GPL(nfs_rename);
2542 
2543 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2544 static LIST_HEAD(nfs_access_lru_list);
2545 static atomic_long_t nfs_access_nr_entries;
2546 
2547 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2548 module_param(nfs_access_max_cachesize, ulong, 0644);
2549 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2550 
nfs_access_free_entry(struct nfs_access_entry * entry)2551 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2552 {
2553 	put_cred(entry->cred);
2554 	kfree_rcu(entry, rcu_head);
2555 	smp_mb__before_atomic();
2556 	atomic_long_dec(&nfs_access_nr_entries);
2557 	smp_mb__after_atomic();
2558 }
2559 
nfs_access_free_list(struct list_head * head)2560 static void nfs_access_free_list(struct list_head *head)
2561 {
2562 	struct nfs_access_entry *cache;
2563 
2564 	while (!list_empty(head)) {
2565 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2566 		list_del(&cache->lru);
2567 		nfs_access_free_entry(cache);
2568 	}
2569 }
2570 
2571 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2572 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2573 {
2574 	LIST_HEAD(head);
2575 	struct nfs_inode *nfsi, *next;
2576 	struct nfs_access_entry *cache;
2577 	long freed = 0;
2578 
2579 	spin_lock(&nfs_access_lru_lock);
2580 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2581 		struct inode *inode;
2582 
2583 		if (nr_to_scan-- == 0)
2584 			break;
2585 		inode = &nfsi->vfs_inode;
2586 		spin_lock(&inode->i_lock);
2587 		if (list_empty(&nfsi->access_cache_entry_lru))
2588 			goto remove_lru_entry;
2589 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2590 				struct nfs_access_entry, lru);
2591 		list_move(&cache->lru, &head);
2592 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2593 		freed++;
2594 		if (!list_empty(&nfsi->access_cache_entry_lru))
2595 			list_move_tail(&nfsi->access_cache_inode_lru,
2596 					&nfs_access_lru_list);
2597 		else {
2598 remove_lru_entry:
2599 			list_del_init(&nfsi->access_cache_inode_lru);
2600 			smp_mb__before_atomic();
2601 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2602 			smp_mb__after_atomic();
2603 		}
2604 		spin_unlock(&inode->i_lock);
2605 	}
2606 	spin_unlock(&nfs_access_lru_lock);
2607 	nfs_access_free_list(&head);
2608 	return freed;
2609 }
2610 
2611 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2612 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2613 {
2614 	int nr_to_scan = sc->nr_to_scan;
2615 	gfp_t gfp_mask = sc->gfp_mask;
2616 
2617 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2618 		return SHRINK_STOP;
2619 	return nfs_do_access_cache_scan(nr_to_scan);
2620 }
2621 
2622 
2623 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2624 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2625 {
2626 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2627 }
2628 
2629 static void
nfs_access_cache_enforce_limit(void)2630 nfs_access_cache_enforce_limit(void)
2631 {
2632 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2633 	unsigned long diff;
2634 	unsigned int nr_to_scan;
2635 
2636 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2637 		return;
2638 	nr_to_scan = 100;
2639 	diff = nr_entries - nfs_access_max_cachesize;
2640 	if (diff < nr_to_scan)
2641 		nr_to_scan = diff;
2642 	nfs_do_access_cache_scan(nr_to_scan);
2643 }
2644 
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2645 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2646 {
2647 	struct rb_root *root_node = &nfsi->access_cache;
2648 	struct rb_node *n;
2649 	struct nfs_access_entry *entry;
2650 
2651 	/* Unhook entries from the cache */
2652 	while ((n = rb_first(root_node)) != NULL) {
2653 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2654 		rb_erase(n, root_node);
2655 		list_move(&entry->lru, head);
2656 	}
2657 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2658 }
2659 
nfs_access_zap_cache(struct inode * inode)2660 void nfs_access_zap_cache(struct inode *inode)
2661 {
2662 	LIST_HEAD(head);
2663 
2664 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2665 		return;
2666 	/* Remove from global LRU init */
2667 	spin_lock(&nfs_access_lru_lock);
2668 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2669 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2670 
2671 	spin_lock(&inode->i_lock);
2672 	__nfs_access_zap_cache(NFS_I(inode), &head);
2673 	spin_unlock(&inode->i_lock);
2674 	spin_unlock(&nfs_access_lru_lock);
2675 	nfs_access_free_list(&head);
2676 }
2677 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2678 
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2679 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2680 {
2681 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2682 
2683 	while (n != NULL) {
2684 		struct nfs_access_entry *entry =
2685 			rb_entry(n, struct nfs_access_entry, rb_node);
2686 		int cmp = cred_fscmp(cred, entry->cred);
2687 
2688 		if (cmp < 0)
2689 			n = n->rb_left;
2690 		else if (cmp > 0)
2691 			n = n->rb_right;
2692 		else
2693 			return entry;
2694 	}
2695 	return NULL;
2696 }
2697 
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2698 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2699 {
2700 	struct nfs_inode *nfsi = NFS_I(inode);
2701 	struct nfs_access_entry *cache;
2702 	bool retry = true;
2703 	int err;
2704 
2705 	spin_lock(&inode->i_lock);
2706 	for(;;) {
2707 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2708 			goto out_zap;
2709 		cache = nfs_access_search_rbtree(inode, cred);
2710 		err = -ENOENT;
2711 		if (cache == NULL)
2712 			goto out;
2713 		/* Found an entry, is our attribute cache valid? */
2714 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2715 			break;
2716 		if (!retry)
2717 			break;
2718 		err = -ECHILD;
2719 		if (!may_block)
2720 			goto out;
2721 		spin_unlock(&inode->i_lock);
2722 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2723 		if (err)
2724 			return err;
2725 		spin_lock(&inode->i_lock);
2726 		retry = false;
2727 	}
2728 	*mask = cache->mask;
2729 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2730 	err = 0;
2731 out:
2732 	spin_unlock(&inode->i_lock);
2733 	return err;
2734 out_zap:
2735 	spin_unlock(&inode->i_lock);
2736 	nfs_access_zap_cache(inode);
2737 	return -ENOENT;
2738 }
2739 
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)2740 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2741 {
2742 	/* Only check the most recently returned cache entry,
2743 	 * but do it without locking.
2744 	 */
2745 	struct nfs_inode *nfsi = NFS_I(inode);
2746 	struct nfs_access_entry *cache;
2747 	int err = -ECHILD;
2748 	struct list_head *lh;
2749 
2750 	rcu_read_lock();
2751 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2752 		goto out;
2753 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2754 	cache = list_entry(lh, struct nfs_access_entry, lru);
2755 	if (lh == &nfsi->access_cache_entry_lru ||
2756 	    cred_fscmp(cred, cache->cred) != 0)
2757 		cache = NULL;
2758 	if (cache == NULL)
2759 		goto out;
2760 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2761 		goto out;
2762 	*mask = cache->mask;
2763 	err = 0;
2764 out:
2765 	rcu_read_unlock();
2766 	return err;
2767 }
2768 
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2769 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2770 			  u32 *mask, bool may_block)
2771 {
2772 	int status;
2773 
2774 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2775 	if (status != 0)
2776 		status = nfs_access_get_cached_locked(inode, cred, mask,
2777 		    may_block);
2778 
2779 	return status;
2780 }
2781 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2782 
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2783 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2784 {
2785 	struct nfs_inode *nfsi = NFS_I(inode);
2786 	struct rb_root *root_node = &nfsi->access_cache;
2787 	struct rb_node **p = &root_node->rb_node;
2788 	struct rb_node *parent = NULL;
2789 	struct nfs_access_entry *entry;
2790 	int cmp;
2791 
2792 	spin_lock(&inode->i_lock);
2793 	while (*p != NULL) {
2794 		parent = *p;
2795 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2796 		cmp = cred_fscmp(set->cred, entry->cred);
2797 
2798 		if (cmp < 0)
2799 			p = &parent->rb_left;
2800 		else if (cmp > 0)
2801 			p = &parent->rb_right;
2802 		else
2803 			goto found;
2804 	}
2805 	rb_link_node(&set->rb_node, parent, p);
2806 	rb_insert_color(&set->rb_node, root_node);
2807 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2808 	spin_unlock(&inode->i_lock);
2809 	return;
2810 found:
2811 	rb_replace_node(parent, &set->rb_node, root_node);
2812 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2813 	list_del(&entry->lru);
2814 	spin_unlock(&inode->i_lock);
2815 	nfs_access_free_entry(entry);
2816 }
2817 
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2818 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2819 {
2820 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2821 	if (cache == NULL)
2822 		return;
2823 	RB_CLEAR_NODE(&cache->rb_node);
2824 	cache->cred = get_cred(set->cred);
2825 	cache->mask = set->mask;
2826 
2827 	/* The above field assignments must be visible
2828 	 * before this item appears on the lru.  We cannot easily
2829 	 * use rcu_assign_pointer, so just force the memory barrier.
2830 	 */
2831 	smp_wmb();
2832 	nfs_access_add_rbtree(inode, cache);
2833 
2834 	/* Update accounting */
2835 	smp_mb__before_atomic();
2836 	atomic_long_inc(&nfs_access_nr_entries);
2837 	smp_mb__after_atomic();
2838 
2839 	/* Add inode to global LRU list */
2840 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2841 		spin_lock(&nfs_access_lru_lock);
2842 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2843 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2844 					&nfs_access_lru_list);
2845 		spin_unlock(&nfs_access_lru_lock);
2846 	}
2847 	nfs_access_cache_enforce_limit();
2848 }
2849 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2850 
2851 #define NFS_MAY_READ (NFS_ACCESS_READ)
2852 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2853 		NFS_ACCESS_EXTEND | \
2854 		NFS_ACCESS_DELETE)
2855 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2856 		NFS_ACCESS_EXTEND)
2857 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2858 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2859 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2860 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2861 nfs_access_calc_mask(u32 access_result, umode_t umode)
2862 {
2863 	int mask = 0;
2864 
2865 	if (access_result & NFS_MAY_READ)
2866 		mask |= MAY_READ;
2867 	if (S_ISDIR(umode)) {
2868 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2869 			mask |= MAY_WRITE;
2870 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2871 			mask |= MAY_EXEC;
2872 	} else if (S_ISREG(umode)) {
2873 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2874 			mask |= MAY_WRITE;
2875 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2876 			mask |= MAY_EXEC;
2877 	} else if (access_result & NFS_MAY_WRITE)
2878 			mask |= MAY_WRITE;
2879 	return mask;
2880 }
2881 
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2882 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2883 {
2884 	entry->mask = access_result;
2885 }
2886 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2887 
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)2888 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2889 {
2890 	struct nfs_access_entry cache;
2891 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2892 	int cache_mask = -1;
2893 	int status;
2894 
2895 	trace_nfs_access_enter(inode);
2896 
2897 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2898 	if (status == 0)
2899 		goto out_cached;
2900 
2901 	status = -ECHILD;
2902 	if (!may_block)
2903 		goto out;
2904 
2905 	/*
2906 	 * Determine which access bits we want to ask for...
2907 	 */
2908 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2909 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2910 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2911 		    NFS_ACCESS_XALIST;
2912 	}
2913 	if (S_ISDIR(inode->i_mode))
2914 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2915 	else
2916 		cache.mask |= NFS_ACCESS_EXECUTE;
2917 	cache.cred = cred;
2918 	status = NFS_PROTO(inode)->access(inode, &cache);
2919 	if (status != 0) {
2920 		if (status == -ESTALE) {
2921 			if (!S_ISDIR(inode->i_mode))
2922 				nfs_set_inode_stale(inode);
2923 			else
2924 				nfs_zap_caches(inode);
2925 		}
2926 		goto out;
2927 	}
2928 	nfs_access_add_cache(inode, &cache);
2929 out_cached:
2930 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2931 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2932 		status = -EACCES;
2933 out:
2934 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2935 	return status;
2936 }
2937 
nfs_open_permission_mask(int openflags)2938 static int nfs_open_permission_mask(int openflags)
2939 {
2940 	int mask = 0;
2941 
2942 	if (openflags & __FMODE_EXEC) {
2943 		/* ONLY check exec rights */
2944 		mask = MAY_EXEC;
2945 	} else {
2946 		if ((openflags & O_ACCMODE) != O_WRONLY)
2947 			mask |= MAY_READ;
2948 		if ((openflags & O_ACCMODE) != O_RDONLY)
2949 			mask |= MAY_WRITE;
2950 	}
2951 
2952 	return mask;
2953 }
2954 
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)2955 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2956 {
2957 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2958 }
2959 EXPORT_SYMBOL_GPL(nfs_may_open);
2960 
nfs_execute_ok(struct inode * inode,int mask)2961 static int nfs_execute_ok(struct inode *inode, int mask)
2962 {
2963 	struct nfs_server *server = NFS_SERVER(inode);
2964 	int ret = 0;
2965 
2966 	if (S_ISDIR(inode->i_mode))
2967 		return 0;
2968 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2969 		if (mask & MAY_NOT_BLOCK)
2970 			return -ECHILD;
2971 		ret = __nfs_revalidate_inode(server, inode);
2972 	}
2973 	if (ret == 0 && !execute_ok(inode))
2974 		ret = -EACCES;
2975 	return ret;
2976 }
2977 
nfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)2978 int nfs_permission(struct user_namespace *mnt_userns,
2979 		   struct inode *inode,
2980 		   int mask)
2981 {
2982 	const struct cred *cred = current_cred();
2983 	int res = 0;
2984 
2985 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2986 
2987 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2988 		goto out;
2989 	/* Is this sys_access() ? */
2990 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2991 		goto force_lookup;
2992 
2993 	switch (inode->i_mode & S_IFMT) {
2994 		case S_IFLNK:
2995 			goto out;
2996 		case S_IFREG:
2997 			if ((mask & MAY_OPEN) &&
2998 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2999 				return 0;
3000 			break;
3001 		case S_IFDIR:
3002 			/*
3003 			 * Optimize away all write operations, since the server
3004 			 * will check permissions when we perform the op.
3005 			 */
3006 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3007 				goto out;
3008 	}
3009 
3010 force_lookup:
3011 	if (!NFS_PROTO(inode)->access)
3012 		goto out_notsup;
3013 
3014 	res = nfs_do_access(inode, cred, mask);
3015 out:
3016 	if (!res && (mask & MAY_EXEC))
3017 		res = nfs_execute_ok(inode, mask);
3018 
3019 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3020 		inode->i_sb->s_id, inode->i_ino, mask, res);
3021 	return res;
3022 out_notsup:
3023 	if (mask & MAY_NOT_BLOCK)
3024 		return -ECHILD;
3025 
3026 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3027 						  NFS_INO_INVALID_OTHER);
3028 	if (res == 0)
3029 		res = generic_permission(&init_user_ns, inode, mask);
3030 	goto out;
3031 }
3032 EXPORT_SYMBOL_GPL(nfs_permission);
3033