1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69 };
70
alloc_nfs_open_dir_context(struct inode * dir)71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->page_index = 0;
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfs_set_cache_invalid(dir,
86 NFS_INO_INVALID_DATA |
87 NFS_INO_REVAL_FORCED);
88 list_add(&ctx->list, &nfsi->open_files);
89 clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
90 spin_unlock(&dir->i_lock);
91 return ctx;
92 }
93 return ERR_PTR(-ENOMEM);
94 }
95
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
97 {
98 spin_lock(&dir->i_lock);
99 list_del(&ctx->list);
100 spin_unlock(&dir->i_lock);
101 kfree(ctx);
102 }
103
104 /*
105 * Open file
106 */
107 static int
nfs_opendir(struct inode * inode,struct file * filp)108 nfs_opendir(struct inode *inode, struct file *filp)
109 {
110 int res = 0;
111 struct nfs_open_dir_context *ctx;
112
113 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114
115 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116
117 ctx = alloc_nfs_open_dir_context(inode);
118 if (IS_ERR(ctx)) {
119 res = PTR_ERR(ctx);
120 goto out;
121 }
122 filp->private_data = ctx;
123 out:
124 return res;
125 }
126
127 static int
nfs_closedir(struct inode * inode,struct file * filp)128 nfs_closedir(struct inode *inode, struct file *filp)
129 {
130 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
131 return 0;
132 }
133
134 struct nfs_cache_array_entry {
135 u64 cookie;
136 u64 ino;
137 const char *name;
138 unsigned int name_len;
139 unsigned char d_type;
140 };
141
142 struct nfs_cache_array {
143 u64 last_cookie;
144 unsigned int size;
145 unsigned char page_full : 1,
146 page_is_eof : 1,
147 cookies_are_ordered : 1;
148 struct nfs_cache_array_entry array[];
149 };
150
151 struct nfs_readdir_descriptor {
152 struct file *file;
153 struct page *page;
154 struct dir_context *ctx;
155 pgoff_t page_index;
156 u64 dir_cookie;
157 u64 last_cookie;
158 u64 dup_cookie;
159 loff_t current_index;
160 loff_t prev_index;
161
162 __be32 verf[NFS_DIR_VERIFIER_SIZE];
163 unsigned long dir_verifier;
164 unsigned long timestamp;
165 unsigned long gencount;
166 unsigned long attr_gencount;
167 unsigned int cache_entry_index;
168 signed char duped;
169 bool plus;
170 bool eof;
171 };
172
nfs_readdir_array_init(struct nfs_cache_array * array)173 static void nfs_readdir_array_init(struct nfs_cache_array *array)
174 {
175 memset(array, 0, sizeof(struct nfs_cache_array));
176 }
177
nfs_readdir_page_init_array(struct page * page,u64 last_cookie)178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
179 {
180 struct nfs_cache_array *array;
181
182 array = kmap_atomic(page);
183 nfs_readdir_array_init(array);
184 array->last_cookie = last_cookie;
185 array->cookies_are_ordered = 1;
186 kunmap_atomic(array);
187 }
188
189 /*
190 * we are freeing strings created by nfs_add_to_readdir_array()
191 */
192 static
nfs_readdir_clear_array(struct page * page)193 void nfs_readdir_clear_array(struct page *page)
194 {
195 struct nfs_cache_array *array;
196 int i;
197
198 array = kmap_atomic(page);
199 for (i = 0; i < array->size; i++)
200 kfree(array->array[i].name);
201 nfs_readdir_array_init(array);
202 kunmap_atomic(array);
203 }
204
205 static struct page *
nfs_readdir_page_array_alloc(u64 last_cookie,gfp_t gfp_flags)206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
207 {
208 struct page *page = alloc_page(gfp_flags);
209 if (page)
210 nfs_readdir_page_init_array(page, last_cookie);
211 return page;
212 }
213
nfs_readdir_page_array_free(struct page * page)214 static void nfs_readdir_page_array_free(struct page *page)
215 {
216 if (page) {
217 nfs_readdir_clear_array(page);
218 put_page(page);
219 }
220 }
221
nfs_readdir_array_set_eof(struct nfs_cache_array * array)222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
223 {
224 array->page_is_eof = 1;
225 array->page_full = 1;
226 }
227
nfs_readdir_array_is_full(struct nfs_cache_array * array)228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
229 {
230 return array->page_full;
231 }
232
233 /*
234 * the caller is responsible for freeing qstr.name
235 * when called by nfs_readdir_add_to_array, the strings will be freed in
236 * nfs_clear_readdir_array()
237 */
nfs_readdir_copy_name(const char * name,unsigned int len)238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
239 {
240 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
241
242 /*
243 * Avoid a kmemleak false positive. The pointer to the name is stored
244 * in a page cache page which kmemleak does not scan.
245 */
246 if (ret != NULL)
247 kmemleak_not_leak(ret);
248 return ret;
249 }
250
251 /*
252 * Check that the next array entry lies entirely within the page bounds
253 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
255 {
256 struct nfs_cache_array_entry *cache_entry;
257
258 if (array->page_full)
259 return -ENOSPC;
260 cache_entry = &array->array[array->size + 1];
261 if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
262 array->page_full = 1;
263 return -ENOSPC;
264 }
265 return 0;
266 }
267
268 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
270 {
271 struct nfs_cache_array *array;
272 struct nfs_cache_array_entry *cache_entry;
273 const char *name;
274 int ret;
275
276 name = nfs_readdir_copy_name(entry->name, entry->len);
277 if (!name)
278 return -ENOMEM;
279
280 array = kmap_atomic(page);
281 ret = nfs_readdir_array_can_expand(array);
282 if (ret) {
283 kfree(name);
284 goto out;
285 }
286
287 cache_entry = &array->array[array->size];
288 cache_entry->cookie = entry->prev_cookie;
289 cache_entry->ino = entry->ino;
290 cache_entry->d_type = entry->d_type;
291 cache_entry->name_len = entry->len;
292 cache_entry->name = name;
293 array->last_cookie = entry->cookie;
294 if (array->last_cookie <= cache_entry->cookie)
295 array->cookies_are_ordered = 0;
296 array->size++;
297 if (entry->eof != 0)
298 nfs_readdir_array_set_eof(array);
299 out:
300 kunmap_atomic(array);
301 return ret;
302 }
303
nfs_readdir_page_get_locked(struct address_space * mapping,pgoff_t index,u64 last_cookie)304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
305 pgoff_t index, u64 last_cookie)
306 {
307 struct page *page;
308
309 page = grab_cache_page(mapping, index);
310 if (page && !PageUptodate(page)) {
311 nfs_readdir_page_init_array(page, last_cookie);
312 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
313 nfs_zap_mapping(mapping->host, mapping);
314 SetPageUptodate(page);
315 }
316
317 return page;
318 }
319
nfs_readdir_page_last_cookie(struct page * page)320 static u64 nfs_readdir_page_last_cookie(struct page *page)
321 {
322 struct nfs_cache_array *array;
323 u64 ret;
324
325 array = kmap_atomic(page);
326 ret = array->last_cookie;
327 kunmap_atomic(array);
328 return ret;
329 }
330
nfs_readdir_page_needs_filling(struct page * page)331 static bool nfs_readdir_page_needs_filling(struct page *page)
332 {
333 struct nfs_cache_array *array;
334 bool ret;
335
336 array = kmap_atomic(page);
337 ret = !nfs_readdir_array_is_full(array);
338 kunmap_atomic(array);
339 return ret;
340 }
341
nfs_readdir_page_set_eof(struct page * page)342 static void nfs_readdir_page_set_eof(struct page *page)
343 {
344 struct nfs_cache_array *array;
345
346 array = kmap_atomic(page);
347 nfs_readdir_array_set_eof(array);
348 kunmap_atomic(array);
349 }
350
nfs_readdir_page_unlock_and_put(struct page * page)351 static void nfs_readdir_page_unlock_and_put(struct page *page)
352 {
353 unlock_page(page);
354 put_page(page);
355 }
356
nfs_readdir_page_get_next(struct address_space * mapping,pgoff_t index,u64 cookie)357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
358 pgoff_t index, u64 cookie)
359 {
360 struct page *page;
361
362 page = nfs_readdir_page_get_locked(mapping, index, cookie);
363 if (page) {
364 if (nfs_readdir_page_last_cookie(page) == cookie)
365 return page;
366 nfs_readdir_page_unlock_and_put(page);
367 }
368 return NULL;
369 }
370
371 static inline
is_32bit_api(void)372 int is_32bit_api(void)
373 {
374 #ifdef CONFIG_COMPAT
375 return in_compat_syscall();
376 #else
377 return (BITS_PER_LONG == 32);
378 #endif
379 }
380
381 static
nfs_readdir_use_cookie(const struct file * filp)382 bool nfs_readdir_use_cookie(const struct file *filp)
383 {
384 if ((filp->f_mode & FMODE_32BITHASH) ||
385 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
386 return false;
387 return true;
388 }
389
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
391 struct nfs_readdir_descriptor *desc)
392 {
393 loff_t diff = desc->ctx->pos - desc->current_index;
394 unsigned int index;
395
396 if (diff < 0)
397 goto out_eof;
398 if (diff >= array->size) {
399 if (array->page_is_eof)
400 goto out_eof;
401 return -EAGAIN;
402 }
403
404 index = (unsigned int)diff;
405 desc->dir_cookie = array->array[index].cookie;
406 desc->cache_entry_index = index;
407 return 0;
408 out_eof:
409 desc->eof = true;
410 return -EBADCOOKIE;
411 }
412
413 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
415 {
416 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
417 return false;
418 smp_rmb();
419 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
420 }
421
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)422 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
423 u64 cookie)
424 {
425 if (!array->cookies_are_ordered)
426 return true;
427 /* Optimisation for monotonically increasing cookies */
428 if (cookie >= array->last_cookie)
429 return false;
430 if (array->size && cookie < array->array[0].cookie)
431 return false;
432 return true;
433 }
434
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)435 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
436 struct nfs_readdir_descriptor *desc)
437 {
438 int i;
439 loff_t new_pos;
440 int status = -EAGAIN;
441
442 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
443 goto check_eof;
444
445 for (i = 0; i < array->size; i++) {
446 if (array->array[i].cookie == desc->dir_cookie) {
447 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
448
449 new_pos = desc->current_index + i;
450 if (desc->attr_gencount != nfsi->attr_gencount ||
451 !nfs_readdir_inode_mapping_valid(nfsi)) {
452 desc->duped = 0;
453 desc->attr_gencount = nfsi->attr_gencount;
454 } else if (new_pos < desc->prev_index) {
455 if (desc->duped > 0
456 && desc->dup_cookie == desc->dir_cookie) {
457 if (printk_ratelimit()) {
458 pr_notice("NFS: directory %pD2 contains a readdir loop."
459 "Please contact your server vendor. "
460 "The file: %s has duplicate cookie %llu\n",
461 desc->file, array->array[i].name, desc->dir_cookie);
462 }
463 status = -ELOOP;
464 goto out;
465 }
466 desc->dup_cookie = desc->dir_cookie;
467 desc->duped = -1;
468 }
469 if (nfs_readdir_use_cookie(desc->file))
470 desc->ctx->pos = desc->dir_cookie;
471 else
472 desc->ctx->pos = new_pos;
473 desc->prev_index = new_pos;
474 desc->cache_entry_index = i;
475 return 0;
476 }
477 }
478 check_eof:
479 if (array->page_is_eof) {
480 status = -EBADCOOKIE;
481 if (desc->dir_cookie == array->last_cookie)
482 desc->eof = true;
483 }
484 out:
485 return status;
486 }
487
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)488 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
489 {
490 struct nfs_cache_array *array;
491 int status;
492
493 array = kmap_atomic(desc->page);
494
495 if (desc->dir_cookie == 0)
496 status = nfs_readdir_search_for_pos(array, desc);
497 else
498 status = nfs_readdir_search_for_cookie(array, desc);
499
500 if (status == -EAGAIN) {
501 desc->last_cookie = array->last_cookie;
502 desc->current_index += array->size;
503 desc->page_index++;
504 }
505 kunmap_atomic(array);
506 return status;
507 }
508
509 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)510 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
511 __be32 *verf, u64 cookie,
512 struct page **pages, size_t bufsize,
513 __be32 *verf_res)
514 {
515 struct inode *inode = file_inode(desc->file);
516 struct nfs_readdir_arg arg = {
517 .dentry = file_dentry(desc->file),
518 .cred = desc->file->f_cred,
519 .verf = verf,
520 .cookie = cookie,
521 .pages = pages,
522 .page_len = bufsize,
523 .plus = desc->plus,
524 };
525 struct nfs_readdir_res res = {
526 .verf = verf_res,
527 };
528 unsigned long timestamp, gencount;
529 int error;
530
531 again:
532 timestamp = jiffies;
533 gencount = nfs_inc_attr_generation_counter();
534 desc->dir_verifier = nfs_save_change_attribute(inode);
535 error = NFS_PROTO(inode)->readdir(&arg, &res);
536 if (error < 0) {
537 /* We requested READDIRPLUS, but the server doesn't grok it */
538 if (error == -ENOTSUPP && desc->plus) {
539 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
540 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
541 desc->plus = arg.plus = false;
542 goto again;
543 }
544 goto error;
545 }
546 desc->timestamp = timestamp;
547 desc->gencount = gencount;
548 error:
549 return error;
550 }
551
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)552 static int xdr_decode(struct nfs_readdir_descriptor *desc,
553 struct nfs_entry *entry, struct xdr_stream *xdr)
554 {
555 struct inode *inode = file_inode(desc->file);
556 int error;
557
558 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
559 if (error)
560 return error;
561 entry->fattr->time_start = desc->timestamp;
562 entry->fattr->gencount = desc->gencount;
563 return 0;
564 }
565
566 /* Match file and dirent using either filehandle or fileid
567 * Note: caller is responsible for checking the fsid
568 */
569 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)570 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
571 {
572 struct inode *inode;
573 struct nfs_inode *nfsi;
574
575 if (d_really_is_negative(dentry))
576 return 0;
577
578 inode = d_inode(dentry);
579 if (is_bad_inode(inode) || NFS_STALE(inode))
580 return 0;
581
582 nfsi = NFS_I(inode);
583 if (entry->fattr->fileid != nfsi->fileid)
584 return 0;
585 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
586 return 0;
587 return 1;
588 }
589
590 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)591 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
592 {
593 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
594 return false;
595 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
596 return true;
597 if (ctx->pos == 0)
598 return true;
599 return false;
600 }
601
602 /*
603 * This function is called by the lookup and getattr code to request the
604 * use of readdirplus to accelerate any future lookups in the same
605 * directory.
606 */
nfs_advise_use_readdirplus(struct inode * dir)607 void nfs_advise_use_readdirplus(struct inode *dir)
608 {
609 struct nfs_inode *nfsi = NFS_I(dir);
610
611 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
612 !list_empty(&nfsi->open_files))
613 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
614 }
615
616 /*
617 * This function is mainly for use by nfs_getattr().
618 *
619 * If this is an 'ls -l', we want to force use of readdirplus.
620 * Do this by checking if there is an active file descriptor
621 * and calling nfs_advise_use_readdirplus, then forcing a
622 * cache flush.
623 */
nfs_force_use_readdirplus(struct inode * dir)624 void nfs_force_use_readdirplus(struct inode *dir)
625 {
626 struct nfs_inode *nfsi = NFS_I(dir);
627
628 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
629 !list_empty(&nfsi->open_files)) {
630 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
631 set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
632 }
633 }
634
635 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)636 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
637 unsigned long dir_verifier)
638 {
639 struct qstr filename = QSTR_INIT(entry->name, entry->len);
640 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
641 struct dentry *dentry;
642 struct dentry *alias;
643 struct inode *inode;
644 int status;
645
646 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
647 return;
648 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
649 return;
650 if (filename.len == 0)
651 return;
652 /* Validate that the name doesn't contain any illegal '\0' */
653 if (strnlen(filename.name, filename.len) != filename.len)
654 return;
655 /* ...or '/' */
656 if (strnchr(filename.name, filename.len, '/'))
657 return;
658 if (filename.name[0] == '.') {
659 if (filename.len == 1)
660 return;
661 if (filename.len == 2 && filename.name[1] == '.')
662 return;
663 }
664 filename.hash = full_name_hash(parent, filename.name, filename.len);
665
666 dentry = d_lookup(parent, &filename);
667 again:
668 if (!dentry) {
669 dentry = d_alloc_parallel(parent, &filename, &wq);
670 if (IS_ERR(dentry))
671 return;
672 }
673 if (!d_in_lookup(dentry)) {
674 /* Is there a mountpoint here? If so, just exit */
675 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
676 &entry->fattr->fsid))
677 goto out;
678 if (nfs_same_file(dentry, entry)) {
679 if (!entry->fh->size)
680 goto out;
681 nfs_set_verifier(dentry, dir_verifier);
682 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
683 if (!status)
684 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
685 goto out;
686 } else {
687 d_invalidate(dentry);
688 dput(dentry);
689 dentry = NULL;
690 goto again;
691 }
692 }
693 if (!entry->fh->size) {
694 d_lookup_done(dentry);
695 goto out;
696 }
697
698 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
699 alias = d_splice_alias(inode, dentry);
700 d_lookup_done(dentry);
701 if (alias) {
702 if (IS_ERR(alias))
703 goto out;
704 dput(dentry);
705 dentry = alias;
706 }
707 nfs_set_verifier(dentry, dir_verifier);
708 out:
709 dput(dentry);
710 }
711
712 /* Perform conversion from xdr to cache array */
nfs_readdir_page_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct page ** arrays,size_t narrays)713 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
714 struct nfs_entry *entry,
715 struct page **xdr_pages,
716 unsigned int buflen,
717 struct page **arrays,
718 size_t narrays)
719 {
720 struct address_space *mapping = desc->file->f_mapping;
721 struct xdr_stream stream;
722 struct xdr_buf buf;
723 struct page *scratch, *new, *page = *arrays;
724 int status;
725
726 scratch = alloc_page(GFP_KERNEL);
727 if (scratch == NULL)
728 return -ENOMEM;
729
730 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
731 xdr_set_scratch_page(&stream, scratch);
732
733 do {
734 if (entry->label)
735 entry->label->len = NFS4_MAXLABELLEN;
736
737 status = xdr_decode(desc, entry, &stream);
738 if (status != 0)
739 break;
740
741 if (desc->plus)
742 nfs_prime_dcache(file_dentry(desc->file), entry,
743 desc->dir_verifier);
744
745 status = nfs_readdir_add_to_array(entry, page);
746 if (status != -ENOSPC)
747 continue;
748
749 if (page->mapping != mapping) {
750 if (!--narrays)
751 break;
752 new = nfs_readdir_page_array_alloc(entry->prev_cookie,
753 GFP_KERNEL);
754 if (!new)
755 break;
756 arrays++;
757 *arrays = page = new;
758 } else {
759 new = nfs_readdir_page_get_next(mapping,
760 page->index + 1,
761 entry->prev_cookie);
762 if (!new)
763 break;
764 if (page != *arrays)
765 nfs_readdir_page_unlock_and_put(page);
766 page = new;
767 }
768 status = nfs_readdir_add_to_array(entry, page);
769 } while (!status && !entry->eof);
770
771 switch (status) {
772 case -EBADCOOKIE:
773 if (entry->eof) {
774 nfs_readdir_page_set_eof(page);
775 status = 0;
776 }
777 break;
778 case -ENOSPC:
779 case -EAGAIN:
780 status = 0;
781 break;
782 }
783
784 if (page != *arrays)
785 nfs_readdir_page_unlock_and_put(page);
786
787 put_page(scratch);
788 return status;
789 }
790
nfs_readdir_free_pages(struct page ** pages,size_t npages)791 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
792 {
793 while (npages--)
794 put_page(pages[npages]);
795 kfree(pages);
796 }
797
798 /*
799 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
800 * to nfs_readdir_free_pages()
801 */
nfs_readdir_alloc_pages(size_t npages)802 static struct page **nfs_readdir_alloc_pages(size_t npages)
803 {
804 struct page **pages;
805 size_t i;
806
807 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
808 if (!pages)
809 return NULL;
810 for (i = 0; i < npages; i++) {
811 struct page *page = alloc_page(GFP_KERNEL);
812 if (page == NULL)
813 goto out_freepages;
814 pages[i] = page;
815 }
816 return pages;
817
818 out_freepages:
819 nfs_readdir_free_pages(pages, i);
820 return NULL;
821 }
822
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct page ** arrays,size_t narrays)823 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
824 __be32 *verf_arg, __be32 *verf_res,
825 struct page **arrays, size_t narrays)
826 {
827 struct page **pages;
828 struct page *page = *arrays;
829 struct nfs_entry *entry;
830 size_t array_size;
831 struct inode *inode = file_inode(desc->file);
832 size_t dtsize = NFS_SERVER(inode)->dtsize;
833 int status = -ENOMEM;
834
835 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
836 if (!entry)
837 return -ENOMEM;
838 entry->cookie = nfs_readdir_page_last_cookie(page);
839 entry->fh = nfs_alloc_fhandle();
840 entry->fattr = nfs_alloc_fattr();
841 entry->server = NFS_SERVER(inode);
842 if (entry->fh == NULL || entry->fattr == NULL)
843 goto out;
844
845 entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
846 if (IS_ERR(entry->label)) {
847 status = PTR_ERR(entry->label);
848 goto out;
849 }
850
851 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
852 pages = nfs_readdir_alloc_pages(array_size);
853 if (!pages)
854 goto out_release_label;
855
856 do {
857 unsigned int pglen;
858 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
859 pages, dtsize,
860 verf_res);
861 if (status < 0)
862 break;
863
864 pglen = status;
865 if (pglen == 0) {
866 nfs_readdir_page_set_eof(page);
867 break;
868 }
869
870 verf_arg = verf_res;
871
872 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
873 arrays, narrays);
874 } while (!status && nfs_readdir_page_needs_filling(page) &&
875 page_mapping(page));
876
877 nfs_readdir_free_pages(pages, array_size);
878 out_release_label:
879 nfs4_label_free(entry->label);
880 out:
881 nfs_free_fattr(entry->fattr);
882 nfs_free_fhandle(entry->fh);
883 kfree(entry);
884 return status;
885 }
886
nfs_readdir_page_put(struct nfs_readdir_descriptor * desc)887 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
888 {
889 put_page(desc->page);
890 desc->page = NULL;
891 }
892
893 static void
nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)894 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
895 {
896 unlock_page(desc->page);
897 nfs_readdir_page_put(desc);
898 }
899
900 static struct page *
nfs_readdir_page_get_cached(struct nfs_readdir_descriptor * desc)901 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
902 {
903 return nfs_readdir_page_get_locked(desc->file->f_mapping,
904 desc->page_index,
905 desc->last_cookie);
906 }
907
908 /*
909 * Returns 0 if desc->dir_cookie was found on page desc->page_index
910 * and locks the page to prevent removal from the page cache.
911 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)912 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
913 {
914 struct inode *inode = file_inode(desc->file);
915 struct nfs_inode *nfsi = NFS_I(inode);
916 __be32 verf[NFS_DIR_VERIFIER_SIZE];
917 int res;
918
919 desc->page = nfs_readdir_page_get_cached(desc);
920 if (!desc->page)
921 return -ENOMEM;
922 if (nfs_readdir_page_needs_filling(desc->page)) {
923 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
924 &desc->page, 1);
925 if (res < 0) {
926 nfs_readdir_page_unlock_and_put_cached(desc);
927 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
928 invalidate_inode_pages2(desc->file->f_mapping);
929 desc->page_index = 0;
930 return -EAGAIN;
931 }
932 return res;
933 }
934 /*
935 * Set the cookie verifier if the page cache was empty
936 */
937 if (desc->page_index == 0)
938 memcpy(nfsi->cookieverf, verf,
939 sizeof(nfsi->cookieverf));
940 }
941 res = nfs_readdir_search_array(desc);
942 if (res == 0)
943 return 0;
944 nfs_readdir_page_unlock_and_put_cached(desc);
945 return res;
946 }
947
nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor * desc)948 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
949 {
950 struct address_space *mapping = desc->file->f_mapping;
951 struct inode *dir = file_inode(desc->file);
952 unsigned int dtsize = NFS_SERVER(dir)->dtsize;
953 loff_t size = i_size_read(dir);
954
955 /*
956 * Default to uncached readdir if the page cache is empty, and
957 * we're looking for a non-zero cookie in a large directory.
958 */
959 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
960 }
961
962 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)963 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
964 {
965 int res;
966
967 if (nfs_readdir_dont_search_cache(desc))
968 return -EBADCOOKIE;
969
970 do {
971 if (desc->page_index == 0) {
972 desc->current_index = 0;
973 desc->prev_index = 0;
974 desc->last_cookie = 0;
975 }
976 res = find_and_lock_cache_page(desc);
977 } while (res == -EAGAIN);
978 return res;
979 }
980
981 /*
982 * Once we've found the start of the dirent within a page: fill 'er up...
983 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)984 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
985 const __be32 *verf)
986 {
987 struct file *file = desc->file;
988 struct nfs_cache_array *array;
989 unsigned int i = 0;
990
991 array = kmap(desc->page);
992 for (i = desc->cache_entry_index; i < array->size; i++) {
993 struct nfs_cache_array_entry *ent;
994
995 ent = &array->array[i];
996 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
997 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
998 desc->eof = true;
999 break;
1000 }
1001 memcpy(desc->verf, verf, sizeof(desc->verf));
1002 if (i < (array->size-1))
1003 desc->dir_cookie = array->array[i+1].cookie;
1004 else
1005 desc->dir_cookie = array->last_cookie;
1006 if (nfs_readdir_use_cookie(file))
1007 desc->ctx->pos = desc->dir_cookie;
1008 else
1009 desc->ctx->pos++;
1010 if (desc->duped != 0)
1011 desc->duped = 1;
1012 }
1013 if (array->page_is_eof)
1014 desc->eof = true;
1015
1016 kunmap(desc->page);
1017 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018 (unsigned long long)desc->dir_cookie);
1019 }
1020
1021 /*
1022 * If we cannot find a cookie in our cache, we suspect that this is
1023 * because it points to a deleted file, so we ask the server to return
1024 * whatever it thinks is the next entry. We then feed this to filldir.
1025 * If all goes well, we should then be able to find our way round the
1026 * cache on the next call to readdir_search_pagecache();
1027 *
1028 * NOTE: we cannot add the anonymous page to the pagecache because
1029 * the data it contains might not be page aligned. Besides,
1030 * we should already have a complete representation of the
1031 * directory in the page cache by the time we get here.
1032 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1033 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034 {
1035 struct page **arrays;
1036 size_t i, sz = 512;
1037 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1038 int status = -ENOMEM;
1039
1040 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041 (unsigned long long)desc->dir_cookie);
1042
1043 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044 if (!arrays)
1045 goto out;
1046 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047 if (!arrays[0])
1048 goto out;
1049
1050 desc->page_index = 0;
1051 desc->cache_entry_index = 0;
1052 desc->last_cookie = desc->dir_cookie;
1053 desc->duped = 0;
1054
1055 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1056
1057 for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1058 desc->page = arrays[i];
1059 nfs_do_filldir(desc, verf);
1060 }
1061 desc->page = NULL;
1062
1063
1064 for (i = 0; i < sz && arrays[i]; i++)
1065 nfs_readdir_page_array_free(arrays[i]);
1066 out:
1067 kfree(arrays);
1068 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1069 return status;
1070 }
1071
1072 /* The file offset position represents the dirent entry number. A
1073 last cookie cache takes care of the common case of reading the
1074 whole directory.
1075 */
nfs_readdir(struct file * file,struct dir_context * ctx)1076 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1077 {
1078 struct dentry *dentry = file_dentry(file);
1079 struct inode *inode = d_inode(dentry);
1080 struct nfs_inode *nfsi = NFS_I(inode);
1081 struct nfs_open_dir_context *dir_ctx = file->private_data;
1082 struct nfs_readdir_descriptor *desc;
1083 pgoff_t page_index;
1084 int res;
1085
1086 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1087 file, (long long)ctx->pos);
1088 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1089
1090 /*
1091 * ctx->pos points to the dirent entry number.
1092 * *desc->dir_cookie has the cookie for the next entry. We have
1093 * to either find the entry with the appropriate number or
1094 * revalidate the cookie.
1095 */
1096 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1097 res = nfs_revalidate_mapping(inode, file->f_mapping);
1098 if (res < 0)
1099 goto out;
1100 }
1101
1102 res = -ENOMEM;
1103 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1104 if (!desc)
1105 goto out;
1106 desc->file = file;
1107 desc->ctx = ctx;
1108 desc->plus = nfs_use_readdirplus(inode, ctx);
1109
1110 spin_lock(&file->f_lock);
1111 desc->dir_cookie = dir_ctx->dir_cookie;
1112 desc->dup_cookie = dir_ctx->dup_cookie;
1113 desc->duped = dir_ctx->duped;
1114 page_index = dir_ctx->page_index;
1115 desc->attr_gencount = dir_ctx->attr_gencount;
1116 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1117 spin_unlock(&file->f_lock);
1118
1119 if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1120 list_is_singular(&nfsi->open_files))
1121 invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1122
1123 do {
1124 res = readdir_search_pagecache(desc);
1125
1126 if (res == -EBADCOOKIE) {
1127 res = 0;
1128 /* This means either end of directory */
1129 if (desc->dir_cookie && !desc->eof) {
1130 /* Or that the server has 'lost' a cookie */
1131 res = uncached_readdir(desc);
1132 if (res == 0)
1133 continue;
1134 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1135 res = 0;
1136 }
1137 break;
1138 }
1139 if (res == -ETOOSMALL && desc->plus) {
1140 clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1141 nfs_zap_caches(inode);
1142 desc->page_index = 0;
1143 desc->plus = false;
1144 desc->eof = false;
1145 continue;
1146 }
1147 if (res < 0)
1148 break;
1149
1150 nfs_do_filldir(desc, nfsi->cookieverf);
1151 nfs_readdir_page_unlock_and_put_cached(desc);
1152 } while (!desc->eof);
1153
1154 spin_lock(&file->f_lock);
1155 dir_ctx->dir_cookie = desc->dir_cookie;
1156 dir_ctx->dup_cookie = desc->dup_cookie;
1157 dir_ctx->duped = desc->duped;
1158 dir_ctx->attr_gencount = desc->attr_gencount;
1159 dir_ctx->page_index = desc->page_index;
1160 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1161 spin_unlock(&file->f_lock);
1162
1163 kfree(desc);
1164
1165 out:
1166 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1167 return res;
1168 }
1169
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1170 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1171 {
1172 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1173
1174 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1175 filp, offset, whence);
1176
1177 switch (whence) {
1178 default:
1179 return -EINVAL;
1180 case SEEK_SET:
1181 if (offset < 0)
1182 return -EINVAL;
1183 spin_lock(&filp->f_lock);
1184 break;
1185 case SEEK_CUR:
1186 if (offset == 0)
1187 return filp->f_pos;
1188 spin_lock(&filp->f_lock);
1189 offset += filp->f_pos;
1190 if (offset < 0) {
1191 spin_unlock(&filp->f_lock);
1192 return -EINVAL;
1193 }
1194 }
1195 if (offset != filp->f_pos) {
1196 filp->f_pos = offset;
1197 if (nfs_readdir_use_cookie(filp))
1198 dir_ctx->dir_cookie = offset;
1199 else
1200 dir_ctx->dir_cookie = 0;
1201 if (offset == 0)
1202 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1203 dir_ctx->duped = 0;
1204 }
1205 spin_unlock(&filp->f_lock);
1206 return offset;
1207 }
1208
1209 /*
1210 * All directory operations under NFS are synchronous, so fsync()
1211 * is a dummy operation.
1212 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1213 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1214 int datasync)
1215 {
1216 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1217
1218 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1219 return 0;
1220 }
1221
1222 /**
1223 * nfs_force_lookup_revalidate - Mark the directory as having changed
1224 * @dir: pointer to directory inode
1225 *
1226 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1227 * full lookup on all child dentries of 'dir' whenever a change occurs
1228 * on the server that might have invalidated our dcache.
1229 *
1230 * Note that we reserve bit '0' as a tag to let us know when a dentry
1231 * was revalidated while holding a delegation on its inode.
1232 *
1233 * The caller should be holding dir->i_lock
1234 */
nfs_force_lookup_revalidate(struct inode * dir)1235 void nfs_force_lookup_revalidate(struct inode *dir)
1236 {
1237 NFS_I(dir)->cache_change_attribute += 2;
1238 }
1239 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1240
1241 /**
1242 * nfs_verify_change_attribute - Detects NFS remote directory changes
1243 * @dir: pointer to parent directory inode
1244 * @verf: previously saved change attribute
1245 *
1246 * Return "false" if the verifiers doesn't match the change attribute.
1247 * This would usually indicate that the directory contents have changed on
1248 * the server, and that any dentries need revalidating.
1249 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1250 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1251 {
1252 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1253 }
1254
nfs_set_verifier_delegated(unsigned long * verf)1255 static void nfs_set_verifier_delegated(unsigned long *verf)
1256 {
1257 *verf |= 1UL;
1258 }
1259
1260 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1261 static void nfs_unset_verifier_delegated(unsigned long *verf)
1262 {
1263 *verf &= ~1UL;
1264 }
1265 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1266
nfs_test_verifier_delegated(unsigned long verf)1267 static bool nfs_test_verifier_delegated(unsigned long verf)
1268 {
1269 return verf & 1;
1270 }
1271
nfs_verifier_is_delegated(struct dentry * dentry)1272 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1273 {
1274 return nfs_test_verifier_delegated(dentry->d_time);
1275 }
1276
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1277 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1278 {
1279 struct inode *inode = d_inode(dentry);
1280 struct inode *dir = d_inode(dentry->d_parent);
1281
1282 if (!nfs_verify_change_attribute(dir, verf))
1283 return;
1284 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1285 nfs_set_verifier_delegated(&verf);
1286 dentry->d_time = verf;
1287 }
1288
1289 /**
1290 * nfs_set_verifier - save a parent directory verifier in the dentry
1291 * @dentry: pointer to dentry
1292 * @verf: verifier to save
1293 *
1294 * Saves the parent directory verifier in @dentry. If the inode has
1295 * a delegation, we also tag the dentry as having been revalidated
1296 * while holding a delegation so that we know we don't have to
1297 * look it up again after a directory change.
1298 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1299 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1300 {
1301
1302 spin_lock(&dentry->d_lock);
1303 nfs_set_verifier_locked(dentry, verf);
1304 spin_unlock(&dentry->d_lock);
1305 }
1306 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1307
1308 #if IS_ENABLED(CONFIG_NFS_V4)
1309 /**
1310 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1311 * @inode: pointer to inode
1312 *
1313 * Iterates through the dentries in the inode alias list and clears
1314 * the tag used to indicate that the dentry has been revalidated
1315 * while holding a delegation.
1316 * This function is intended for use when the delegation is being
1317 * returned or revoked.
1318 */
nfs_clear_verifier_delegated(struct inode * inode)1319 void nfs_clear_verifier_delegated(struct inode *inode)
1320 {
1321 struct dentry *alias;
1322
1323 if (!inode)
1324 return;
1325 spin_lock(&inode->i_lock);
1326 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1327 spin_lock(&alias->d_lock);
1328 nfs_unset_verifier_delegated(&alias->d_time);
1329 spin_unlock(&alias->d_lock);
1330 }
1331 spin_unlock(&inode->i_lock);
1332 }
1333 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1334 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1335
1336 /*
1337 * A check for whether or not the parent directory has changed.
1338 * In the case it has, we assume that the dentries are untrustworthy
1339 * and may need to be looked up again.
1340 * If rcu_walk prevents us from performing a full check, return 0.
1341 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1342 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1343 int rcu_walk)
1344 {
1345 if (IS_ROOT(dentry))
1346 return 1;
1347 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1348 return 0;
1349 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1350 return 0;
1351 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1352 if (nfs_mapping_need_revalidate_inode(dir)) {
1353 if (rcu_walk)
1354 return 0;
1355 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1356 return 0;
1357 }
1358 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1359 return 0;
1360 return 1;
1361 }
1362
1363 /*
1364 * Use intent information to check whether or not we're going to do
1365 * an O_EXCL create using this path component.
1366 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1367 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1368 {
1369 if (NFS_PROTO(dir)->version == 2)
1370 return 0;
1371 return flags & LOOKUP_EXCL;
1372 }
1373
1374 /*
1375 * Inode and filehandle revalidation for lookups.
1376 *
1377 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1378 * or if the intent information indicates that we're about to open this
1379 * particular file and the "nocto" mount flag is not set.
1380 *
1381 */
1382 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1383 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1384 {
1385 struct nfs_server *server = NFS_SERVER(inode);
1386 int ret;
1387
1388 if (IS_AUTOMOUNT(inode))
1389 return 0;
1390
1391 if (flags & LOOKUP_OPEN) {
1392 switch (inode->i_mode & S_IFMT) {
1393 case S_IFREG:
1394 /* A NFSv4 OPEN will revalidate later */
1395 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1396 goto out;
1397 fallthrough;
1398 case S_IFDIR:
1399 if (server->flags & NFS_MOUNT_NOCTO)
1400 break;
1401 /* NFS close-to-open cache consistency validation */
1402 goto out_force;
1403 }
1404 }
1405
1406 /* VFS wants an on-the-wire revalidation */
1407 if (flags & LOOKUP_REVAL)
1408 goto out_force;
1409 out:
1410 return (inode->i_nlink == 0) ? -ESTALE : 0;
1411 out_force:
1412 if (flags & LOOKUP_RCU)
1413 return -ECHILD;
1414 ret = __nfs_revalidate_inode(server, inode);
1415 if (ret != 0)
1416 return ret;
1417 goto out;
1418 }
1419
nfs_mark_dir_for_revalidate(struct inode * inode)1420 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1421 {
1422 spin_lock(&inode->i_lock);
1423 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1424 spin_unlock(&inode->i_lock);
1425 }
1426
1427 /*
1428 * We judge how long we want to trust negative
1429 * dentries by looking at the parent inode mtime.
1430 *
1431 * If parent mtime has changed, we revalidate, else we wait for a
1432 * period corresponding to the parent's attribute cache timeout value.
1433 *
1434 * If LOOKUP_RCU prevents us from performing a full check, return 1
1435 * suggesting a reval is needed.
1436 *
1437 * Note that when creating a new file, or looking up a rename target,
1438 * then it shouldn't be necessary to revalidate a negative dentry.
1439 */
1440 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1441 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1442 unsigned int flags)
1443 {
1444 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1445 return 0;
1446 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1447 return 1;
1448 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1449 }
1450
1451 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1452 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1453 struct inode *inode, int error)
1454 {
1455 switch (error) {
1456 case 1:
1457 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1458 __func__, dentry);
1459 return 1;
1460 case 0:
1461 /*
1462 * We can't d_drop the root of a disconnected tree:
1463 * its d_hash is on the s_anon list and d_drop() would hide
1464 * it from shrink_dcache_for_unmount(), leading to busy
1465 * inodes on unmount and further oopses.
1466 */
1467 if (inode && IS_ROOT(dentry))
1468 return 1;
1469 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1470 __func__, dentry);
1471 return 0;
1472 }
1473 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1474 __func__, dentry, error);
1475 return error;
1476 }
1477
1478 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1479 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1480 unsigned int flags)
1481 {
1482 int ret = 1;
1483 if (nfs_neg_need_reval(dir, dentry, flags)) {
1484 if (flags & LOOKUP_RCU)
1485 return -ECHILD;
1486 ret = 0;
1487 }
1488 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1489 }
1490
1491 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1492 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1493 struct inode *inode)
1494 {
1495 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1496 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1497 }
1498
1499 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1500 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1501 struct inode *inode)
1502 {
1503 struct nfs_fh *fhandle;
1504 struct nfs_fattr *fattr;
1505 struct nfs4_label *label;
1506 unsigned long dir_verifier;
1507 int ret;
1508
1509 ret = -ENOMEM;
1510 fhandle = nfs_alloc_fhandle();
1511 fattr = nfs_alloc_fattr();
1512 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1513 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1514 goto out;
1515
1516 dir_verifier = nfs_save_change_attribute(dir);
1517 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1518 if (ret < 0) {
1519 switch (ret) {
1520 case -ESTALE:
1521 case -ENOENT:
1522 ret = 0;
1523 break;
1524 case -ETIMEDOUT:
1525 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1526 ret = 1;
1527 }
1528 goto out;
1529 }
1530 ret = 0;
1531 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1532 goto out;
1533 if (nfs_refresh_inode(inode, fattr) < 0)
1534 goto out;
1535
1536 nfs_setsecurity(inode, fattr, label);
1537 nfs_set_verifier(dentry, dir_verifier);
1538
1539 /* set a readdirplus hint that we had a cache miss */
1540 nfs_force_use_readdirplus(dir);
1541 ret = 1;
1542 out:
1543 nfs_free_fattr(fattr);
1544 nfs_free_fhandle(fhandle);
1545 nfs4_label_free(label);
1546
1547 /*
1548 * If the lookup failed despite the dentry change attribute being
1549 * a match, then we should revalidate the directory cache.
1550 */
1551 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1552 nfs_mark_dir_for_revalidate(dir);
1553 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1554 }
1555
1556 /*
1557 * This is called every time the dcache has a lookup hit,
1558 * and we should check whether we can really trust that
1559 * lookup.
1560 *
1561 * NOTE! The hit can be a negative hit too, don't assume
1562 * we have an inode!
1563 *
1564 * If the parent directory is seen to have changed, we throw out the
1565 * cached dentry and do a new lookup.
1566 */
1567 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1568 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1569 unsigned int flags)
1570 {
1571 struct inode *inode;
1572 int error;
1573
1574 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1575 inode = d_inode(dentry);
1576
1577 if (!inode)
1578 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1579
1580 if (is_bad_inode(inode)) {
1581 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1582 __func__, dentry);
1583 goto out_bad;
1584 }
1585
1586 if (nfs_verifier_is_delegated(dentry))
1587 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1588
1589 /* Force a full look up iff the parent directory has changed */
1590 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1591 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1592 error = nfs_lookup_verify_inode(inode, flags);
1593 if (error) {
1594 if (error == -ESTALE)
1595 nfs_mark_dir_for_revalidate(dir);
1596 goto out_bad;
1597 }
1598 nfs_advise_use_readdirplus(dir);
1599 goto out_valid;
1600 }
1601
1602 if (flags & LOOKUP_RCU)
1603 return -ECHILD;
1604
1605 if (NFS_STALE(inode))
1606 goto out_bad;
1607
1608 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1609 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1610 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1611 return error;
1612 out_valid:
1613 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1614 out_bad:
1615 if (flags & LOOKUP_RCU)
1616 return -ECHILD;
1617 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1618 }
1619
1620 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1621 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1622 int (*reval)(struct inode *, struct dentry *, unsigned int))
1623 {
1624 struct dentry *parent;
1625 struct inode *dir;
1626 int ret;
1627
1628 if (flags & LOOKUP_RCU) {
1629 parent = READ_ONCE(dentry->d_parent);
1630 dir = d_inode_rcu(parent);
1631 if (!dir)
1632 return -ECHILD;
1633 ret = reval(dir, dentry, flags);
1634 if (parent != READ_ONCE(dentry->d_parent))
1635 return -ECHILD;
1636 } else {
1637 parent = dget_parent(dentry);
1638 ret = reval(d_inode(parent), dentry, flags);
1639 dput(parent);
1640 }
1641 return ret;
1642 }
1643
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1644 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1645 {
1646 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1647 }
1648
1649 /*
1650 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1651 * when we don't really care about the dentry name. This is called when a
1652 * pathwalk ends on a dentry that was not found via a normal lookup in the
1653 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1654 *
1655 * In this situation, we just want to verify that the inode itself is OK
1656 * since the dentry might have changed on the server.
1657 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1658 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1659 {
1660 struct inode *inode = d_inode(dentry);
1661 int error = 0;
1662
1663 /*
1664 * I believe we can only get a negative dentry here in the case of a
1665 * procfs-style symlink. Just assume it's correct for now, but we may
1666 * eventually need to do something more here.
1667 */
1668 if (!inode) {
1669 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1670 __func__, dentry);
1671 return 1;
1672 }
1673
1674 if (is_bad_inode(inode)) {
1675 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1676 __func__, dentry);
1677 return 0;
1678 }
1679
1680 error = nfs_lookup_verify_inode(inode, flags);
1681 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1682 __func__, inode->i_ino, error ? "invalid" : "valid");
1683 return !error;
1684 }
1685
1686 /*
1687 * This is called from dput() when d_count is going to 0.
1688 */
nfs_dentry_delete(const struct dentry * dentry)1689 static int nfs_dentry_delete(const struct dentry *dentry)
1690 {
1691 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1692 dentry, dentry->d_flags);
1693
1694 /* Unhash any dentry with a stale inode */
1695 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1696 return 1;
1697
1698 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699 /* Unhash it, so that ->d_iput() would be called */
1700 return 1;
1701 }
1702 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1703 /* Unhash it, so that ancestors of killed async unlink
1704 * files will be cleaned up during umount */
1705 return 1;
1706 }
1707 return 0;
1708
1709 }
1710
1711 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1712 static void nfs_drop_nlink(struct inode *inode)
1713 {
1714 spin_lock(&inode->i_lock);
1715 /* drop the inode if we're reasonably sure this is the last link */
1716 if (inode->i_nlink > 0)
1717 drop_nlink(inode);
1718 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1719 nfs_set_cache_invalid(
1720 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1721 NFS_INO_INVALID_NLINK);
1722 spin_unlock(&inode->i_lock);
1723 }
1724
1725 /*
1726 * Called when the dentry loses inode.
1727 * We use it to clean up silly-renamed files.
1728 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1729 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1730 {
1731 if (S_ISDIR(inode->i_mode))
1732 /* drop any readdir cache as it could easily be old */
1733 nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1734
1735 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1736 nfs_complete_unlink(dentry, inode);
1737 nfs_drop_nlink(inode);
1738 }
1739 iput(inode);
1740 }
1741
nfs_d_release(struct dentry * dentry)1742 static void nfs_d_release(struct dentry *dentry)
1743 {
1744 /* free cached devname value, if it survived that far */
1745 if (unlikely(dentry->d_fsdata)) {
1746 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1747 WARN_ON(1);
1748 else
1749 kfree(dentry->d_fsdata);
1750 }
1751 }
1752
1753 const struct dentry_operations nfs_dentry_operations = {
1754 .d_revalidate = nfs_lookup_revalidate,
1755 .d_weak_revalidate = nfs_weak_revalidate,
1756 .d_delete = nfs_dentry_delete,
1757 .d_iput = nfs_dentry_iput,
1758 .d_automount = nfs_d_automount,
1759 .d_release = nfs_d_release,
1760 };
1761 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1762
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1763 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1764 {
1765 struct dentry *res;
1766 struct inode *inode = NULL;
1767 struct nfs_fh *fhandle = NULL;
1768 struct nfs_fattr *fattr = NULL;
1769 struct nfs4_label *label = NULL;
1770 unsigned long dir_verifier;
1771 int error;
1772
1773 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1774 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1775
1776 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1777 return ERR_PTR(-ENAMETOOLONG);
1778
1779 /*
1780 * If we're doing an exclusive create, optimize away the lookup
1781 * but don't hash the dentry.
1782 */
1783 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1784 return NULL;
1785
1786 res = ERR_PTR(-ENOMEM);
1787 fhandle = nfs_alloc_fhandle();
1788 fattr = nfs_alloc_fattr();
1789 if (fhandle == NULL || fattr == NULL)
1790 goto out;
1791
1792 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1793 if (IS_ERR(label))
1794 goto out;
1795
1796 dir_verifier = nfs_save_change_attribute(dir);
1797 trace_nfs_lookup_enter(dir, dentry, flags);
1798 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1799 if (error == -ENOENT)
1800 goto no_entry;
1801 if (error < 0) {
1802 res = ERR_PTR(error);
1803 goto out_label;
1804 }
1805 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1806 res = ERR_CAST(inode);
1807 if (IS_ERR(res))
1808 goto out_label;
1809
1810 /* Notify readdir to use READDIRPLUS */
1811 nfs_force_use_readdirplus(dir);
1812
1813 no_entry:
1814 res = d_splice_alias(inode, dentry);
1815 if (res != NULL) {
1816 if (IS_ERR(res))
1817 goto out_label;
1818 dentry = res;
1819 }
1820 nfs_set_verifier(dentry, dir_verifier);
1821 out_label:
1822 trace_nfs_lookup_exit(dir, dentry, flags, error);
1823 nfs4_label_free(label);
1824 out:
1825 nfs_free_fattr(fattr);
1826 nfs_free_fhandle(fhandle);
1827 return res;
1828 }
1829 EXPORT_SYMBOL_GPL(nfs_lookup);
1830
1831 #if IS_ENABLED(CONFIG_NFS_V4)
1832 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1833
1834 const struct dentry_operations nfs4_dentry_operations = {
1835 .d_revalidate = nfs4_lookup_revalidate,
1836 .d_weak_revalidate = nfs_weak_revalidate,
1837 .d_delete = nfs_dentry_delete,
1838 .d_iput = nfs_dentry_iput,
1839 .d_automount = nfs_d_automount,
1840 .d_release = nfs_d_release,
1841 };
1842 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1843
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1844 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1845 {
1846 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1847 }
1848
do_open(struct inode * inode,struct file * filp)1849 static int do_open(struct inode *inode, struct file *filp)
1850 {
1851 nfs_fscache_open_file(inode, filp);
1852 return 0;
1853 }
1854
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1855 static int nfs_finish_open(struct nfs_open_context *ctx,
1856 struct dentry *dentry,
1857 struct file *file, unsigned open_flags)
1858 {
1859 int err;
1860
1861 err = finish_open(file, dentry, do_open);
1862 if (err)
1863 goto out;
1864 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1865 nfs_file_set_open_context(file, ctx);
1866 else
1867 err = -EOPENSTALE;
1868 out:
1869 return err;
1870 }
1871
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1872 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1873 struct file *file, unsigned open_flags,
1874 umode_t mode)
1875 {
1876 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1877 struct nfs_open_context *ctx;
1878 struct dentry *res;
1879 struct iattr attr = { .ia_valid = ATTR_OPEN };
1880 struct inode *inode;
1881 unsigned int lookup_flags = 0;
1882 bool switched = false;
1883 int created = 0;
1884 int err;
1885
1886 /* Expect a negative dentry */
1887 BUG_ON(d_inode(dentry));
1888
1889 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1890 dir->i_sb->s_id, dir->i_ino, dentry);
1891
1892 err = nfs_check_flags(open_flags);
1893 if (err)
1894 return err;
1895
1896 /* NFS only supports OPEN on regular files */
1897 if ((open_flags & O_DIRECTORY)) {
1898 if (!d_in_lookup(dentry)) {
1899 /*
1900 * Hashed negative dentry with O_DIRECTORY: dentry was
1901 * revalidated and is fine, no need to perform lookup
1902 * again
1903 */
1904 return -ENOENT;
1905 }
1906 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1907 goto no_open;
1908 }
1909
1910 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1911 return -ENAMETOOLONG;
1912
1913 if (open_flags & O_CREAT) {
1914 struct nfs_server *server = NFS_SERVER(dir);
1915
1916 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1917 mode &= ~current_umask();
1918
1919 attr.ia_valid |= ATTR_MODE;
1920 attr.ia_mode = mode;
1921 }
1922 if (open_flags & O_TRUNC) {
1923 attr.ia_valid |= ATTR_SIZE;
1924 attr.ia_size = 0;
1925 }
1926
1927 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1928 d_drop(dentry);
1929 switched = true;
1930 dentry = d_alloc_parallel(dentry->d_parent,
1931 &dentry->d_name, &wq);
1932 if (IS_ERR(dentry))
1933 return PTR_ERR(dentry);
1934 if (unlikely(!d_in_lookup(dentry)))
1935 return finish_no_open(file, dentry);
1936 }
1937
1938 ctx = create_nfs_open_context(dentry, open_flags, file);
1939 err = PTR_ERR(ctx);
1940 if (IS_ERR(ctx))
1941 goto out;
1942
1943 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1944 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1945 if (created)
1946 file->f_mode |= FMODE_CREATED;
1947 if (IS_ERR(inode)) {
1948 err = PTR_ERR(inode);
1949 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1950 put_nfs_open_context(ctx);
1951 d_drop(dentry);
1952 switch (err) {
1953 case -ENOENT:
1954 d_splice_alias(NULL, dentry);
1955 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1956 break;
1957 case -EISDIR:
1958 case -ENOTDIR:
1959 goto no_open;
1960 case -ELOOP:
1961 if (!(open_flags & O_NOFOLLOW))
1962 goto no_open;
1963 break;
1964 /* case -EINVAL: */
1965 default:
1966 break;
1967 }
1968 goto out;
1969 }
1970
1971 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1972 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1973 put_nfs_open_context(ctx);
1974 out:
1975 if (unlikely(switched)) {
1976 d_lookup_done(dentry);
1977 dput(dentry);
1978 }
1979 return err;
1980
1981 no_open:
1982 res = nfs_lookup(dir, dentry, lookup_flags);
1983 if (!res) {
1984 inode = d_inode(dentry);
1985 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1986 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1987 res = ERR_PTR(-ENOTDIR);
1988 else if (inode && S_ISREG(inode->i_mode))
1989 res = ERR_PTR(-EOPENSTALE);
1990 } else if (!IS_ERR(res)) {
1991 inode = d_inode(res);
1992 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1993 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1994 dput(res);
1995 res = ERR_PTR(-ENOTDIR);
1996 } else if (inode && S_ISREG(inode->i_mode)) {
1997 dput(res);
1998 res = ERR_PTR(-EOPENSTALE);
1999 }
2000 }
2001 if (switched) {
2002 d_lookup_done(dentry);
2003 if (!res)
2004 res = dentry;
2005 else
2006 dput(dentry);
2007 }
2008 if (IS_ERR(res))
2009 return PTR_ERR(res);
2010 return finish_no_open(file, res);
2011 }
2012 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2013
2014 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2015 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2016 unsigned int flags)
2017 {
2018 struct inode *inode;
2019
2020 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2021 goto full_reval;
2022 if (d_mountpoint(dentry))
2023 goto full_reval;
2024
2025 inode = d_inode(dentry);
2026
2027 /* We can't create new files in nfs_open_revalidate(), so we
2028 * optimize away revalidation of negative dentries.
2029 */
2030 if (inode == NULL)
2031 goto full_reval;
2032
2033 if (nfs_verifier_is_delegated(dentry))
2034 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2035
2036 /* NFS only supports OPEN on regular files */
2037 if (!S_ISREG(inode->i_mode))
2038 goto full_reval;
2039
2040 /* We cannot do exclusive creation on a positive dentry */
2041 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2042 goto reval_dentry;
2043
2044 /* Check if the directory changed */
2045 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2046 goto reval_dentry;
2047
2048 /* Let f_op->open() actually open (and revalidate) the file */
2049 return 1;
2050 reval_dentry:
2051 if (flags & LOOKUP_RCU)
2052 return -ECHILD;
2053 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2054
2055 full_reval:
2056 return nfs_do_lookup_revalidate(dir, dentry, flags);
2057 }
2058
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2059 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2060 {
2061 return __nfs_lookup_revalidate(dentry, flags,
2062 nfs4_do_lookup_revalidate);
2063 }
2064
2065 #endif /* CONFIG_NFSV4 */
2066
2067 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)2068 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2069 struct nfs_fattr *fattr,
2070 struct nfs4_label *label)
2071 {
2072 struct dentry *parent = dget_parent(dentry);
2073 struct inode *dir = d_inode(parent);
2074 struct inode *inode;
2075 struct dentry *d;
2076 int error;
2077
2078 d_drop(dentry);
2079
2080 if (fhandle->size == 0) {
2081 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2082 if (error)
2083 goto out_error;
2084 }
2085 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2086 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2087 struct nfs_server *server = NFS_SB(dentry->d_sb);
2088 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2089 fattr, NULL, NULL);
2090 if (error < 0)
2091 goto out_error;
2092 }
2093 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2094 d = d_splice_alias(inode, dentry);
2095 out:
2096 dput(parent);
2097 return d;
2098 out_error:
2099 d = ERR_PTR(error);
2100 goto out;
2101 }
2102 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2103
2104 /*
2105 * Code common to create, mkdir, and mknod.
2106 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)2107 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2108 struct nfs_fattr *fattr,
2109 struct nfs4_label *label)
2110 {
2111 struct dentry *d;
2112
2113 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2114 if (IS_ERR(d))
2115 return PTR_ERR(d);
2116
2117 /* Callers don't care */
2118 dput(d);
2119 return 0;
2120 }
2121 EXPORT_SYMBOL_GPL(nfs_instantiate);
2122
2123 /*
2124 * Following a failed create operation, we drop the dentry rather
2125 * than retain a negative dentry. This avoids a problem in the event
2126 * that the operation succeeded on the server, but an error in the
2127 * reply path made it appear to have failed.
2128 */
nfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2129 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2130 struct dentry *dentry, umode_t mode, bool excl)
2131 {
2132 struct iattr attr;
2133 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2134 int error;
2135
2136 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2137 dir->i_sb->s_id, dir->i_ino, dentry);
2138
2139 attr.ia_mode = mode;
2140 attr.ia_valid = ATTR_MODE;
2141
2142 trace_nfs_create_enter(dir, dentry, open_flags);
2143 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2144 trace_nfs_create_exit(dir, dentry, open_flags, error);
2145 if (error != 0)
2146 goto out_err;
2147 return 0;
2148 out_err:
2149 d_drop(dentry);
2150 return error;
2151 }
2152 EXPORT_SYMBOL_GPL(nfs_create);
2153
2154 /*
2155 * See comments for nfs_proc_create regarding failed operations.
2156 */
2157 int
nfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2158 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2159 struct dentry *dentry, umode_t mode, dev_t rdev)
2160 {
2161 struct iattr attr;
2162 int status;
2163
2164 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2165 dir->i_sb->s_id, dir->i_ino, dentry);
2166
2167 attr.ia_mode = mode;
2168 attr.ia_valid = ATTR_MODE;
2169
2170 trace_nfs_mknod_enter(dir, dentry);
2171 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2172 trace_nfs_mknod_exit(dir, dentry, status);
2173 if (status != 0)
2174 goto out_err;
2175 return 0;
2176 out_err:
2177 d_drop(dentry);
2178 return status;
2179 }
2180 EXPORT_SYMBOL_GPL(nfs_mknod);
2181
2182 /*
2183 * See comments for nfs_proc_create regarding failed operations.
2184 */
nfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2185 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2186 struct dentry *dentry, umode_t mode)
2187 {
2188 struct iattr attr;
2189 int error;
2190
2191 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2192 dir->i_sb->s_id, dir->i_ino, dentry);
2193
2194 attr.ia_valid = ATTR_MODE;
2195 attr.ia_mode = mode | S_IFDIR;
2196
2197 trace_nfs_mkdir_enter(dir, dentry);
2198 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2199 trace_nfs_mkdir_exit(dir, dentry, error);
2200 if (error != 0)
2201 goto out_err;
2202 return 0;
2203 out_err:
2204 d_drop(dentry);
2205 return error;
2206 }
2207 EXPORT_SYMBOL_GPL(nfs_mkdir);
2208
nfs_dentry_handle_enoent(struct dentry * dentry)2209 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2210 {
2211 if (simple_positive(dentry))
2212 d_delete(dentry);
2213 }
2214
nfs_rmdir(struct inode * dir,struct dentry * dentry)2215 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2216 {
2217 int error;
2218
2219 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2220 dir->i_sb->s_id, dir->i_ino, dentry);
2221
2222 trace_nfs_rmdir_enter(dir, dentry);
2223 if (d_really_is_positive(dentry)) {
2224 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2225 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2226 /* Ensure the VFS deletes this inode */
2227 switch (error) {
2228 case 0:
2229 clear_nlink(d_inode(dentry));
2230 break;
2231 case -ENOENT:
2232 nfs_dentry_handle_enoent(dentry);
2233 }
2234 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2235 } else
2236 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2237 trace_nfs_rmdir_exit(dir, dentry, error);
2238
2239 return error;
2240 }
2241 EXPORT_SYMBOL_GPL(nfs_rmdir);
2242
2243 /*
2244 * Remove a file after making sure there are no pending writes,
2245 * and after checking that the file has only one user.
2246 *
2247 * We invalidate the attribute cache and free the inode prior to the operation
2248 * to avoid possible races if the server reuses the inode.
2249 */
nfs_safe_remove(struct dentry * dentry)2250 static int nfs_safe_remove(struct dentry *dentry)
2251 {
2252 struct inode *dir = d_inode(dentry->d_parent);
2253 struct inode *inode = d_inode(dentry);
2254 int error = -EBUSY;
2255
2256 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2257
2258 /* If the dentry was sillyrenamed, we simply call d_delete() */
2259 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2260 error = 0;
2261 goto out;
2262 }
2263
2264 trace_nfs_remove_enter(dir, dentry);
2265 if (inode != NULL) {
2266 error = NFS_PROTO(dir)->remove(dir, dentry);
2267 if (error == 0)
2268 nfs_drop_nlink(inode);
2269 } else
2270 error = NFS_PROTO(dir)->remove(dir, dentry);
2271 if (error == -ENOENT)
2272 nfs_dentry_handle_enoent(dentry);
2273 trace_nfs_remove_exit(dir, dentry, error);
2274 out:
2275 return error;
2276 }
2277
2278 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2279 * belongs to an active ".nfs..." file and we return -EBUSY.
2280 *
2281 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2282 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2283 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2284 {
2285 int error;
2286 int need_rehash = 0;
2287
2288 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2289 dir->i_ino, dentry);
2290
2291 trace_nfs_unlink_enter(dir, dentry);
2292 spin_lock(&dentry->d_lock);
2293 if (d_count(dentry) > 1) {
2294 spin_unlock(&dentry->d_lock);
2295 /* Start asynchronous writeout of the inode */
2296 write_inode_now(d_inode(dentry), 0);
2297 error = nfs_sillyrename(dir, dentry);
2298 goto out;
2299 }
2300 if (!d_unhashed(dentry)) {
2301 __d_drop(dentry);
2302 need_rehash = 1;
2303 }
2304 spin_unlock(&dentry->d_lock);
2305 error = nfs_safe_remove(dentry);
2306 if (!error || error == -ENOENT) {
2307 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2308 } else if (need_rehash)
2309 d_rehash(dentry);
2310 out:
2311 trace_nfs_unlink_exit(dir, dentry, error);
2312 return error;
2313 }
2314 EXPORT_SYMBOL_GPL(nfs_unlink);
2315
2316 /*
2317 * To create a symbolic link, most file systems instantiate a new inode,
2318 * add a page to it containing the path, then write it out to the disk
2319 * using prepare_write/commit_write.
2320 *
2321 * Unfortunately the NFS client can't create the in-core inode first
2322 * because it needs a file handle to create an in-core inode (see
2323 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2324 * symlink request has completed on the server.
2325 *
2326 * So instead we allocate a raw page, copy the symname into it, then do
2327 * the SYMLINK request with the page as the buffer. If it succeeds, we
2328 * now have a new file handle and can instantiate an in-core NFS inode
2329 * and move the raw page into its mapping.
2330 */
nfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)2331 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2332 struct dentry *dentry, const char *symname)
2333 {
2334 struct page *page;
2335 char *kaddr;
2336 struct iattr attr;
2337 unsigned int pathlen = strlen(symname);
2338 int error;
2339
2340 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2341 dir->i_ino, dentry, symname);
2342
2343 if (pathlen > PAGE_SIZE)
2344 return -ENAMETOOLONG;
2345
2346 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2347 attr.ia_valid = ATTR_MODE;
2348
2349 page = alloc_page(GFP_USER);
2350 if (!page)
2351 return -ENOMEM;
2352
2353 kaddr = page_address(page);
2354 memcpy(kaddr, symname, pathlen);
2355 if (pathlen < PAGE_SIZE)
2356 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2357
2358 trace_nfs_symlink_enter(dir, dentry);
2359 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2360 trace_nfs_symlink_exit(dir, dentry, error);
2361 if (error != 0) {
2362 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2363 dir->i_sb->s_id, dir->i_ino,
2364 dentry, symname, error);
2365 d_drop(dentry);
2366 __free_page(page);
2367 return error;
2368 }
2369
2370 /*
2371 * No big deal if we can't add this page to the page cache here.
2372 * READLINK will get the missing page from the server if needed.
2373 */
2374 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2375 GFP_KERNEL)) {
2376 SetPageUptodate(page);
2377 unlock_page(page);
2378 /*
2379 * add_to_page_cache_lru() grabs an extra page refcount.
2380 * Drop it here to avoid leaking this page later.
2381 */
2382 put_page(page);
2383 } else
2384 __free_page(page);
2385
2386 return 0;
2387 }
2388 EXPORT_SYMBOL_GPL(nfs_symlink);
2389
2390 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2391 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2392 {
2393 struct inode *inode = d_inode(old_dentry);
2394 int error;
2395
2396 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2397 old_dentry, dentry);
2398
2399 trace_nfs_link_enter(inode, dir, dentry);
2400 d_drop(dentry);
2401 if (S_ISREG(inode->i_mode))
2402 nfs_sync_inode(inode);
2403 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2404 if (error == 0) {
2405 ihold(inode);
2406 d_add(dentry, inode);
2407 }
2408 trace_nfs_link_exit(inode, dir, dentry, error);
2409 return error;
2410 }
2411 EXPORT_SYMBOL_GPL(nfs_link);
2412
2413 /*
2414 * RENAME
2415 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2416 * different file handle for the same inode after a rename (e.g. when
2417 * moving to a different directory). A fail-safe method to do so would
2418 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2419 * rename the old file using the sillyrename stuff. This way, the original
2420 * file in old_dir will go away when the last process iput()s the inode.
2421 *
2422 * FIXED.
2423 *
2424 * It actually works quite well. One needs to have the possibility for
2425 * at least one ".nfs..." file in each directory the file ever gets
2426 * moved or linked to which happens automagically with the new
2427 * implementation that only depends on the dcache stuff instead of
2428 * using the inode layer
2429 *
2430 * Unfortunately, things are a little more complicated than indicated
2431 * above. For a cross-directory move, we want to make sure we can get
2432 * rid of the old inode after the operation. This means there must be
2433 * no pending writes (if it's a file), and the use count must be 1.
2434 * If these conditions are met, we can drop the dentries before doing
2435 * the rename.
2436 */
nfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2437 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2438 struct dentry *old_dentry, struct inode *new_dir,
2439 struct dentry *new_dentry, unsigned int flags)
2440 {
2441 struct inode *old_inode = d_inode(old_dentry);
2442 struct inode *new_inode = d_inode(new_dentry);
2443 struct dentry *dentry = NULL, *rehash = NULL;
2444 struct rpc_task *task;
2445 int error = -EBUSY;
2446
2447 if (flags)
2448 return -EINVAL;
2449
2450 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2451 old_dentry, new_dentry,
2452 d_count(new_dentry));
2453
2454 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2455 /*
2456 * For non-directories, check whether the target is busy and if so,
2457 * make a copy of the dentry and then do a silly-rename. If the
2458 * silly-rename succeeds, the copied dentry is hashed and becomes
2459 * the new target.
2460 */
2461 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2462 /*
2463 * To prevent any new references to the target during the
2464 * rename, we unhash the dentry in advance.
2465 */
2466 if (!d_unhashed(new_dentry)) {
2467 d_drop(new_dentry);
2468 rehash = new_dentry;
2469 }
2470
2471 if (d_count(new_dentry) > 2) {
2472 int err;
2473
2474 /* copy the target dentry's name */
2475 dentry = d_alloc(new_dentry->d_parent,
2476 &new_dentry->d_name);
2477 if (!dentry)
2478 goto out;
2479
2480 /* silly-rename the existing target ... */
2481 err = nfs_sillyrename(new_dir, new_dentry);
2482 if (err)
2483 goto out;
2484
2485 new_dentry = dentry;
2486 rehash = NULL;
2487 new_inode = NULL;
2488 }
2489 }
2490
2491 if (S_ISREG(old_inode->i_mode))
2492 nfs_sync_inode(old_inode);
2493 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2494 if (IS_ERR(task)) {
2495 error = PTR_ERR(task);
2496 goto out;
2497 }
2498
2499 error = rpc_wait_for_completion_task(task);
2500 if (error != 0) {
2501 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2502 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2503 smp_wmb();
2504 } else
2505 error = task->tk_status;
2506 rpc_put_task(task);
2507 /* Ensure the inode attributes are revalidated */
2508 if (error == 0) {
2509 spin_lock(&old_inode->i_lock);
2510 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2511 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2512 NFS_INO_INVALID_CTIME |
2513 NFS_INO_REVAL_FORCED);
2514 spin_unlock(&old_inode->i_lock);
2515 }
2516 out:
2517 if (rehash)
2518 d_rehash(rehash);
2519 trace_nfs_rename_exit(old_dir, old_dentry,
2520 new_dir, new_dentry, error);
2521 if (!error) {
2522 if (new_inode != NULL)
2523 nfs_drop_nlink(new_inode);
2524 /*
2525 * The d_move() should be here instead of in an async RPC completion
2526 * handler because we need the proper locks to move the dentry. If
2527 * we're interrupted by a signal, the async RPC completion handler
2528 * should mark the directories for revalidation.
2529 */
2530 d_move(old_dentry, new_dentry);
2531 nfs_set_verifier(old_dentry,
2532 nfs_save_change_attribute(new_dir));
2533 } else if (error == -ENOENT)
2534 nfs_dentry_handle_enoent(old_dentry);
2535
2536 /* new dentry created? */
2537 if (dentry)
2538 dput(dentry);
2539 return error;
2540 }
2541 EXPORT_SYMBOL_GPL(nfs_rename);
2542
2543 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2544 static LIST_HEAD(nfs_access_lru_list);
2545 static atomic_long_t nfs_access_nr_entries;
2546
2547 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2548 module_param(nfs_access_max_cachesize, ulong, 0644);
2549 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2550
nfs_access_free_entry(struct nfs_access_entry * entry)2551 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2552 {
2553 put_cred(entry->cred);
2554 kfree_rcu(entry, rcu_head);
2555 smp_mb__before_atomic();
2556 atomic_long_dec(&nfs_access_nr_entries);
2557 smp_mb__after_atomic();
2558 }
2559
nfs_access_free_list(struct list_head * head)2560 static void nfs_access_free_list(struct list_head *head)
2561 {
2562 struct nfs_access_entry *cache;
2563
2564 while (!list_empty(head)) {
2565 cache = list_entry(head->next, struct nfs_access_entry, lru);
2566 list_del(&cache->lru);
2567 nfs_access_free_entry(cache);
2568 }
2569 }
2570
2571 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2572 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2573 {
2574 LIST_HEAD(head);
2575 struct nfs_inode *nfsi, *next;
2576 struct nfs_access_entry *cache;
2577 long freed = 0;
2578
2579 spin_lock(&nfs_access_lru_lock);
2580 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2581 struct inode *inode;
2582
2583 if (nr_to_scan-- == 0)
2584 break;
2585 inode = &nfsi->vfs_inode;
2586 spin_lock(&inode->i_lock);
2587 if (list_empty(&nfsi->access_cache_entry_lru))
2588 goto remove_lru_entry;
2589 cache = list_entry(nfsi->access_cache_entry_lru.next,
2590 struct nfs_access_entry, lru);
2591 list_move(&cache->lru, &head);
2592 rb_erase(&cache->rb_node, &nfsi->access_cache);
2593 freed++;
2594 if (!list_empty(&nfsi->access_cache_entry_lru))
2595 list_move_tail(&nfsi->access_cache_inode_lru,
2596 &nfs_access_lru_list);
2597 else {
2598 remove_lru_entry:
2599 list_del_init(&nfsi->access_cache_inode_lru);
2600 smp_mb__before_atomic();
2601 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2602 smp_mb__after_atomic();
2603 }
2604 spin_unlock(&inode->i_lock);
2605 }
2606 spin_unlock(&nfs_access_lru_lock);
2607 nfs_access_free_list(&head);
2608 return freed;
2609 }
2610
2611 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2612 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2613 {
2614 int nr_to_scan = sc->nr_to_scan;
2615 gfp_t gfp_mask = sc->gfp_mask;
2616
2617 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2618 return SHRINK_STOP;
2619 return nfs_do_access_cache_scan(nr_to_scan);
2620 }
2621
2622
2623 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2624 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2625 {
2626 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2627 }
2628
2629 static void
nfs_access_cache_enforce_limit(void)2630 nfs_access_cache_enforce_limit(void)
2631 {
2632 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2633 unsigned long diff;
2634 unsigned int nr_to_scan;
2635
2636 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2637 return;
2638 nr_to_scan = 100;
2639 diff = nr_entries - nfs_access_max_cachesize;
2640 if (diff < nr_to_scan)
2641 nr_to_scan = diff;
2642 nfs_do_access_cache_scan(nr_to_scan);
2643 }
2644
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2645 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2646 {
2647 struct rb_root *root_node = &nfsi->access_cache;
2648 struct rb_node *n;
2649 struct nfs_access_entry *entry;
2650
2651 /* Unhook entries from the cache */
2652 while ((n = rb_first(root_node)) != NULL) {
2653 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2654 rb_erase(n, root_node);
2655 list_move(&entry->lru, head);
2656 }
2657 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2658 }
2659
nfs_access_zap_cache(struct inode * inode)2660 void nfs_access_zap_cache(struct inode *inode)
2661 {
2662 LIST_HEAD(head);
2663
2664 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2665 return;
2666 /* Remove from global LRU init */
2667 spin_lock(&nfs_access_lru_lock);
2668 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2669 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2670
2671 spin_lock(&inode->i_lock);
2672 __nfs_access_zap_cache(NFS_I(inode), &head);
2673 spin_unlock(&inode->i_lock);
2674 spin_unlock(&nfs_access_lru_lock);
2675 nfs_access_free_list(&head);
2676 }
2677 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2678
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2679 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2680 {
2681 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2682
2683 while (n != NULL) {
2684 struct nfs_access_entry *entry =
2685 rb_entry(n, struct nfs_access_entry, rb_node);
2686 int cmp = cred_fscmp(cred, entry->cred);
2687
2688 if (cmp < 0)
2689 n = n->rb_left;
2690 else if (cmp > 0)
2691 n = n->rb_right;
2692 else
2693 return entry;
2694 }
2695 return NULL;
2696 }
2697
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2698 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2699 {
2700 struct nfs_inode *nfsi = NFS_I(inode);
2701 struct nfs_access_entry *cache;
2702 bool retry = true;
2703 int err;
2704
2705 spin_lock(&inode->i_lock);
2706 for(;;) {
2707 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2708 goto out_zap;
2709 cache = nfs_access_search_rbtree(inode, cred);
2710 err = -ENOENT;
2711 if (cache == NULL)
2712 goto out;
2713 /* Found an entry, is our attribute cache valid? */
2714 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2715 break;
2716 if (!retry)
2717 break;
2718 err = -ECHILD;
2719 if (!may_block)
2720 goto out;
2721 spin_unlock(&inode->i_lock);
2722 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2723 if (err)
2724 return err;
2725 spin_lock(&inode->i_lock);
2726 retry = false;
2727 }
2728 *mask = cache->mask;
2729 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2730 err = 0;
2731 out:
2732 spin_unlock(&inode->i_lock);
2733 return err;
2734 out_zap:
2735 spin_unlock(&inode->i_lock);
2736 nfs_access_zap_cache(inode);
2737 return -ENOENT;
2738 }
2739
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)2740 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2741 {
2742 /* Only check the most recently returned cache entry,
2743 * but do it without locking.
2744 */
2745 struct nfs_inode *nfsi = NFS_I(inode);
2746 struct nfs_access_entry *cache;
2747 int err = -ECHILD;
2748 struct list_head *lh;
2749
2750 rcu_read_lock();
2751 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2752 goto out;
2753 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2754 cache = list_entry(lh, struct nfs_access_entry, lru);
2755 if (lh == &nfsi->access_cache_entry_lru ||
2756 cred_fscmp(cred, cache->cred) != 0)
2757 cache = NULL;
2758 if (cache == NULL)
2759 goto out;
2760 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2761 goto out;
2762 *mask = cache->mask;
2763 err = 0;
2764 out:
2765 rcu_read_unlock();
2766 return err;
2767 }
2768
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2769 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2770 u32 *mask, bool may_block)
2771 {
2772 int status;
2773
2774 status = nfs_access_get_cached_rcu(inode, cred, mask);
2775 if (status != 0)
2776 status = nfs_access_get_cached_locked(inode, cred, mask,
2777 may_block);
2778
2779 return status;
2780 }
2781 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2782
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2783 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2784 {
2785 struct nfs_inode *nfsi = NFS_I(inode);
2786 struct rb_root *root_node = &nfsi->access_cache;
2787 struct rb_node **p = &root_node->rb_node;
2788 struct rb_node *parent = NULL;
2789 struct nfs_access_entry *entry;
2790 int cmp;
2791
2792 spin_lock(&inode->i_lock);
2793 while (*p != NULL) {
2794 parent = *p;
2795 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2796 cmp = cred_fscmp(set->cred, entry->cred);
2797
2798 if (cmp < 0)
2799 p = &parent->rb_left;
2800 else if (cmp > 0)
2801 p = &parent->rb_right;
2802 else
2803 goto found;
2804 }
2805 rb_link_node(&set->rb_node, parent, p);
2806 rb_insert_color(&set->rb_node, root_node);
2807 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2808 spin_unlock(&inode->i_lock);
2809 return;
2810 found:
2811 rb_replace_node(parent, &set->rb_node, root_node);
2812 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2813 list_del(&entry->lru);
2814 spin_unlock(&inode->i_lock);
2815 nfs_access_free_entry(entry);
2816 }
2817
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2818 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2819 {
2820 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2821 if (cache == NULL)
2822 return;
2823 RB_CLEAR_NODE(&cache->rb_node);
2824 cache->cred = get_cred(set->cred);
2825 cache->mask = set->mask;
2826
2827 /* The above field assignments must be visible
2828 * before this item appears on the lru. We cannot easily
2829 * use rcu_assign_pointer, so just force the memory barrier.
2830 */
2831 smp_wmb();
2832 nfs_access_add_rbtree(inode, cache);
2833
2834 /* Update accounting */
2835 smp_mb__before_atomic();
2836 atomic_long_inc(&nfs_access_nr_entries);
2837 smp_mb__after_atomic();
2838
2839 /* Add inode to global LRU list */
2840 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2841 spin_lock(&nfs_access_lru_lock);
2842 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2843 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2844 &nfs_access_lru_list);
2845 spin_unlock(&nfs_access_lru_lock);
2846 }
2847 nfs_access_cache_enforce_limit();
2848 }
2849 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2850
2851 #define NFS_MAY_READ (NFS_ACCESS_READ)
2852 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2853 NFS_ACCESS_EXTEND | \
2854 NFS_ACCESS_DELETE)
2855 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2856 NFS_ACCESS_EXTEND)
2857 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2858 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2859 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2860 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2861 nfs_access_calc_mask(u32 access_result, umode_t umode)
2862 {
2863 int mask = 0;
2864
2865 if (access_result & NFS_MAY_READ)
2866 mask |= MAY_READ;
2867 if (S_ISDIR(umode)) {
2868 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2869 mask |= MAY_WRITE;
2870 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2871 mask |= MAY_EXEC;
2872 } else if (S_ISREG(umode)) {
2873 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2874 mask |= MAY_WRITE;
2875 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2876 mask |= MAY_EXEC;
2877 } else if (access_result & NFS_MAY_WRITE)
2878 mask |= MAY_WRITE;
2879 return mask;
2880 }
2881
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2882 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2883 {
2884 entry->mask = access_result;
2885 }
2886 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2887
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)2888 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2889 {
2890 struct nfs_access_entry cache;
2891 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2892 int cache_mask = -1;
2893 int status;
2894
2895 trace_nfs_access_enter(inode);
2896
2897 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2898 if (status == 0)
2899 goto out_cached;
2900
2901 status = -ECHILD;
2902 if (!may_block)
2903 goto out;
2904
2905 /*
2906 * Determine which access bits we want to ask for...
2907 */
2908 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2909 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2910 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2911 NFS_ACCESS_XALIST;
2912 }
2913 if (S_ISDIR(inode->i_mode))
2914 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2915 else
2916 cache.mask |= NFS_ACCESS_EXECUTE;
2917 cache.cred = cred;
2918 status = NFS_PROTO(inode)->access(inode, &cache);
2919 if (status != 0) {
2920 if (status == -ESTALE) {
2921 if (!S_ISDIR(inode->i_mode))
2922 nfs_set_inode_stale(inode);
2923 else
2924 nfs_zap_caches(inode);
2925 }
2926 goto out;
2927 }
2928 nfs_access_add_cache(inode, &cache);
2929 out_cached:
2930 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2931 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2932 status = -EACCES;
2933 out:
2934 trace_nfs_access_exit(inode, mask, cache_mask, status);
2935 return status;
2936 }
2937
nfs_open_permission_mask(int openflags)2938 static int nfs_open_permission_mask(int openflags)
2939 {
2940 int mask = 0;
2941
2942 if (openflags & __FMODE_EXEC) {
2943 /* ONLY check exec rights */
2944 mask = MAY_EXEC;
2945 } else {
2946 if ((openflags & O_ACCMODE) != O_WRONLY)
2947 mask |= MAY_READ;
2948 if ((openflags & O_ACCMODE) != O_RDONLY)
2949 mask |= MAY_WRITE;
2950 }
2951
2952 return mask;
2953 }
2954
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)2955 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2956 {
2957 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2958 }
2959 EXPORT_SYMBOL_GPL(nfs_may_open);
2960
nfs_execute_ok(struct inode * inode,int mask)2961 static int nfs_execute_ok(struct inode *inode, int mask)
2962 {
2963 struct nfs_server *server = NFS_SERVER(inode);
2964 int ret = 0;
2965
2966 if (S_ISDIR(inode->i_mode))
2967 return 0;
2968 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2969 if (mask & MAY_NOT_BLOCK)
2970 return -ECHILD;
2971 ret = __nfs_revalidate_inode(server, inode);
2972 }
2973 if (ret == 0 && !execute_ok(inode))
2974 ret = -EACCES;
2975 return ret;
2976 }
2977
nfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)2978 int nfs_permission(struct user_namespace *mnt_userns,
2979 struct inode *inode,
2980 int mask)
2981 {
2982 const struct cred *cred = current_cred();
2983 int res = 0;
2984
2985 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2986
2987 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2988 goto out;
2989 /* Is this sys_access() ? */
2990 if (mask & (MAY_ACCESS | MAY_CHDIR))
2991 goto force_lookup;
2992
2993 switch (inode->i_mode & S_IFMT) {
2994 case S_IFLNK:
2995 goto out;
2996 case S_IFREG:
2997 if ((mask & MAY_OPEN) &&
2998 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2999 return 0;
3000 break;
3001 case S_IFDIR:
3002 /*
3003 * Optimize away all write operations, since the server
3004 * will check permissions when we perform the op.
3005 */
3006 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3007 goto out;
3008 }
3009
3010 force_lookup:
3011 if (!NFS_PROTO(inode)->access)
3012 goto out_notsup;
3013
3014 res = nfs_do_access(inode, cred, mask);
3015 out:
3016 if (!res && (mask & MAY_EXEC))
3017 res = nfs_execute_ok(inode, mask);
3018
3019 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3020 inode->i_sb->s_id, inode->i_ino, mask, res);
3021 return res;
3022 out_notsup:
3023 if (mask & MAY_NOT_BLOCK)
3024 return -ECHILD;
3025
3026 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3027 NFS_INO_INVALID_OTHER);
3028 if (res == 0)
3029 res = generic_permission(&init_user_ns, inode, mask);
3030 goto out;
3031 }
3032 EXPORT_SYMBOL_GPL(nfs_permission);
3033