1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/vmalloc.h>
11
12 #include "debug.h"
13 #include "ntfs.h"
14 #include "ntfs_fs.h"
15 #ifdef CONFIG_NTFS3_LZX_XPRESS
16 #include "lib/lib.h"
17 #endif
18
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)19 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
20 CLST ino, struct rb_node *ins)
21 {
22 struct rb_node **p = &tree->rb_node;
23 struct rb_node *pr = NULL;
24
25 while (*p) {
26 struct mft_inode *mi;
27
28 pr = *p;
29 mi = rb_entry(pr, struct mft_inode, node);
30 if (mi->rno > ino)
31 p = &pr->rb_left;
32 else if (mi->rno < ino)
33 p = &pr->rb_right;
34 else
35 return mi;
36 }
37
38 if (!ins)
39 return NULL;
40
41 rb_link_node(ins, pr, p);
42 rb_insert_color(ins, tree);
43 return rb_entry(ins, struct mft_inode, node);
44 }
45
46 /*
47 * ni_find_mi - Find mft_inode by record number.
48 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)49 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
50 {
51 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
52 }
53
54 /*
55 * ni_add_mi - Add new mft_inode into ntfs_inode.
56 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)57 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
58 {
59 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
60 }
61
62 /*
63 * ni_remove_mi - Remove mft_inode from ntfs_inode.
64 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)65 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
66 {
67 rb_erase(&mi->node, &ni->mi_tree);
68 }
69
70 /*
71 * ni_std - Return: Pointer into std_info from primary record.
72 */
ni_std(struct ntfs_inode * ni)73 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
74 {
75 const struct ATTRIB *attr;
76
77 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
78 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
79 : NULL;
80 }
81
82 /*
83 * ni_std5
84 *
85 * Return: Pointer into std_info from primary record.
86 */
ni_std5(struct ntfs_inode * ni)87 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
88 {
89 const struct ATTRIB *attr;
90
91 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
92
93 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
94 : NULL;
95 }
96
97 /*
98 * ni_clear - Clear resources allocated by ntfs_inode.
99 */
ni_clear(struct ntfs_inode * ni)100 void ni_clear(struct ntfs_inode *ni)
101 {
102 struct rb_node *node;
103
104 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
105 ni_delete_all(ni);
106
107 al_destroy(ni);
108
109 for (node = rb_first(&ni->mi_tree); node;) {
110 struct rb_node *next = rb_next(node);
111 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
112
113 rb_erase(node, &ni->mi_tree);
114 mi_put(mi);
115 node = next;
116 }
117
118 /* Bad inode always has mode == S_IFREG. */
119 if (ni->ni_flags & NI_FLAG_DIR)
120 indx_clear(&ni->dir);
121 else {
122 run_close(&ni->file.run);
123 #ifdef CONFIG_NTFS3_LZX_XPRESS
124 if (ni->file.offs_page) {
125 /* On-demand allocated page for offsets. */
126 put_page(ni->file.offs_page);
127 ni->file.offs_page = NULL;
128 }
129 #endif
130 }
131
132 mi_clear(&ni->mi);
133 }
134
135 /*
136 * ni_load_mi_ex - Find mft_inode by record number.
137 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)138 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
139 {
140 int err;
141 struct mft_inode *r;
142
143 r = ni_find_mi(ni, rno);
144 if (r)
145 goto out;
146
147 err = mi_get(ni->mi.sbi, rno, &r);
148 if (err)
149 return err;
150
151 ni_add_mi(ni, r);
152
153 out:
154 if (mi)
155 *mi = r;
156 return 0;
157 }
158
159 /*
160 * ni_load_mi - Load mft_inode corresponded list_entry.
161 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)162 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
163 struct mft_inode **mi)
164 {
165 CLST rno;
166
167 if (!le) {
168 *mi = &ni->mi;
169 return 0;
170 }
171
172 rno = ino_get(&le->ref);
173 if (rno == ni->mi.rno) {
174 *mi = &ni->mi;
175 return 0;
176 }
177 return ni_load_mi_ex(ni, rno, mi);
178 }
179
180 /*
181 * ni_find_attr
182 *
183 * Return: Attribute and record this attribute belongs to.
184 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)185 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
186 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
187 const __le16 *name, u8 name_len, const CLST *vcn,
188 struct mft_inode **mi)
189 {
190 struct ATTR_LIST_ENTRY *le;
191 struct mft_inode *m;
192
193 if (!ni->attr_list.size ||
194 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
195 if (le_o)
196 *le_o = NULL;
197 if (mi)
198 *mi = &ni->mi;
199
200 /* Look for required attribute in primary record. */
201 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
202 }
203
204 /* First look for list entry of required type. */
205 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
206 if (!le)
207 return NULL;
208
209 if (le_o)
210 *le_o = le;
211
212 /* Load record that contains this attribute. */
213 if (ni_load_mi(ni, le, &m))
214 return NULL;
215
216 /* Look for required attribute. */
217 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
218
219 if (!attr)
220 goto out;
221
222 if (!attr->non_res) {
223 if (vcn && *vcn)
224 goto out;
225 } else if (!vcn) {
226 if (attr->nres.svcn)
227 goto out;
228 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
229 *vcn > le64_to_cpu(attr->nres.evcn)) {
230 goto out;
231 }
232
233 if (mi)
234 *mi = m;
235 return attr;
236
237 out:
238 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
239 return NULL;
240 }
241
242 /*
243 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
244 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)245 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
246 struct ATTR_LIST_ENTRY **le,
247 struct mft_inode **mi)
248 {
249 struct mft_inode *mi2;
250 struct ATTR_LIST_ENTRY *le2;
251
252 /* Do we have an attribute list? */
253 if (!ni->attr_list.size) {
254 *le = NULL;
255 if (mi)
256 *mi = &ni->mi;
257 /* Enum attributes in primary record. */
258 return mi_enum_attr(&ni->mi, attr);
259 }
260
261 /* Get next list entry. */
262 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
263 if (!le2)
264 return NULL;
265
266 /* Load record that contains the required attribute. */
267 if (ni_load_mi(ni, le2, &mi2))
268 return NULL;
269
270 if (mi)
271 *mi = mi2;
272
273 /* Find attribute in loaded record. */
274 return rec_find_attr_le(mi2, le2);
275 }
276
277 /*
278 * ni_load_attr - Load attribute that contains given VCN.
279 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)280 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
281 const __le16 *name, u8 name_len, CLST vcn,
282 struct mft_inode **pmi)
283 {
284 struct ATTR_LIST_ENTRY *le;
285 struct ATTRIB *attr;
286 struct mft_inode *mi;
287 struct ATTR_LIST_ENTRY *next;
288
289 if (!ni->attr_list.size) {
290 if (pmi)
291 *pmi = &ni->mi;
292 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
293 }
294
295 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
296 if (!le)
297 return NULL;
298
299 /*
300 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
301 * So to find the ATTRIB segment that contains 'vcn' we should
302 * enumerate some entries.
303 */
304 if (vcn) {
305 for (;; le = next) {
306 next = al_find_ex(ni, le, type, name, name_len, NULL);
307 if (!next || le64_to_cpu(next->vcn) > vcn)
308 break;
309 }
310 }
311
312 if (ni_load_mi(ni, le, &mi))
313 return NULL;
314
315 if (pmi)
316 *pmi = mi;
317
318 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
319 if (!attr)
320 return NULL;
321
322 if (!attr->non_res)
323 return attr;
324
325 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
326 vcn <= le64_to_cpu(attr->nres.evcn))
327 return attr;
328
329 return NULL;
330 }
331
332 /*
333 * ni_load_all_mi - Load all subrecords.
334 */
ni_load_all_mi(struct ntfs_inode * ni)335 int ni_load_all_mi(struct ntfs_inode *ni)
336 {
337 int err;
338 struct ATTR_LIST_ENTRY *le;
339
340 if (!ni->attr_list.size)
341 return 0;
342
343 le = NULL;
344
345 while ((le = al_enumerate(ni, le))) {
346 CLST rno = ino_get(&le->ref);
347
348 if (rno == ni->mi.rno)
349 continue;
350
351 err = ni_load_mi_ex(ni, rno, NULL);
352 if (err)
353 return err;
354 }
355
356 return 0;
357 }
358
359 /*
360 * ni_add_subrecord - Allocate + format + attach a new subrecord.
361 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)362 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
363 {
364 struct mft_inode *m;
365
366 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
367 if (!m)
368 return false;
369
370 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
371 mi_put(m);
372 return false;
373 }
374
375 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
376
377 ni_add_mi(ni, m);
378 *mi = m;
379 return true;
380 }
381
382 /*
383 * ni_remove_attr - Remove all attributes for the given type/name/id.
384 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,size_t name_len,bool base_only,const __le16 * id)385 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
386 const __le16 *name, size_t name_len, bool base_only,
387 const __le16 *id)
388 {
389 int err;
390 struct ATTRIB *attr;
391 struct ATTR_LIST_ENTRY *le;
392 struct mft_inode *mi;
393 u32 type_in;
394 int diff;
395
396 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
397 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
398 if (!attr)
399 return -ENOENT;
400
401 mi_remove_attr(ni, &ni->mi, attr);
402 return 0;
403 }
404
405 type_in = le32_to_cpu(type);
406 le = NULL;
407
408 for (;;) {
409 le = al_enumerate(ni, le);
410 if (!le)
411 return 0;
412
413 next_le2:
414 diff = le32_to_cpu(le->type) - type_in;
415 if (diff < 0)
416 continue;
417
418 if (diff > 0)
419 return 0;
420
421 if (le->name_len != name_len)
422 continue;
423
424 if (name_len &&
425 memcmp(le_name(le), name, name_len * sizeof(short)))
426 continue;
427
428 if (id && le->id != *id)
429 continue;
430 err = ni_load_mi(ni, le, &mi);
431 if (err)
432 return err;
433
434 al_remove_le(ni, le);
435
436 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
437 if (!attr)
438 return -ENOENT;
439
440 mi_remove_attr(ni, mi, attr);
441
442 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
443 return 0;
444 goto next_le2;
445 }
446 }
447
448 /*
449 * ni_ins_new_attr - Insert the attribute into record.
450 *
451 * Return: Not full constructed attribute or NULL if not possible to create.
452 */
453 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)454 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
455 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
456 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
457 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
458 {
459 int err;
460 struct ATTRIB *attr;
461 bool le_added = false;
462 struct MFT_REF ref;
463
464 mi_get_ref(mi, &ref);
465
466 if (type != ATTR_LIST && !le && ni->attr_list.size) {
467 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
468 &ref, &le);
469 if (err) {
470 /* No memory or no space. */
471 return NULL;
472 }
473 le_added = true;
474
475 /*
476 * al_add_le -> attr_set_size (list) -> ni_expand_list
477 * which moves some attributes out of primary record
478 * this means that name may point into moved memory
479 * reinit 'name' from le.
480 */
481 name = le->name;
482 }
483
484 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
485 if (!attr) {
486 if (le_added)
487 al_remove_le(ni, le);
488 return NULL;
489 }
490
491 if (type == ATTR_LIST) {
492 /* Attr list is not in list entry array. */
493 goto out;
494 }
495
496 if (!le)
497 goto out;
498
499 /* Update ATTRIB Id and record reference. */
500 le->id = attr->id;
501 ni->attr_list.dirty = true;
502 le->ref = ref;
503
504 out:
505 if (ins_le)
506 *ins_le = le;
507 return attr;
508 }
509
510 /*
511 * ni_repack
512 *
513 * Random write access to sparsed or compressed file may result to
514 * not optimized packed runs.
515 * Here is the place to optimize it.
516 */
ni_repack(struct ntfs_inode * ni)517 static int ni_repack(struct ntfs_inode *ni)
518 {
519 int err = 0;
520 struct ntfs_sb_info *sbi = ni->mi.sbi;
521 struct mft_inode *mi, *mi_p = NULL;
522 struct ATTRIB *attr = NULL, *attr_p;
523 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
524 CLST alloc = 0;
525 u8 cluster_bits = sbi->cluster_bits;
526 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
527 u32 roff, rs = sbi->record_size;
528 struct runs_tree run;
529
530 run_init(&run);
531
532 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
533 if (!attr->non_res)
534 continue;
535
536 svcn = le64_to_cpu(attr->nres.svcn);
537 if (svcn != le64_to_cpu(le->vcn)) {
538 err = -EINVAL;
539 break;
540 }
541
542 if (!svcn) {
543 alloc = le64_to_cpu(attr->nres.alloc_size) >>
544 cluster_bits;
545 mi_p = NULL;
546 } else if (svcn != evcn + 1) {
547 err = -EINVAL;
548 break;
549 }
550
551 evcn = le64_to_cpu(attr->nres.evcn);
552
553 if (svcn > evcn + 1) {
554 err = -EINVAL;
555 break;
556 }
557
558 if (!mi_p) {
559 /* Do not try if not enogh free space. */
560 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
561 continue;
562
563 /* Do not try if last attribute segment. */
564 if (evcn + 1 == alloc)
565 continue;
566 run_close(&run);
567 }
568
569 roff = le16_to_cpu(attr->nres.run_off);
570
571 if (roff > le32_to_cpu(attr->size)) {
572 err = -EINVAL;
573 break;
574 }
575
576 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
577 Add2Ptr(attr, roff),
578 le32_to_cpu(attr->size) - roff);
579 if (err < 0)
580 break;
581
582 if (!mi_p) {
583 mi_p = mi;
584 attr_p = attr;
585 svcn_p = svcn;
586 evcn_p = evcn;
587 le_p = le;
588 err = 0;
589 continue;
590 }
591
592 /*
593 * Run contains data from two records: mi_p and mi
594 * Try to pack in one.
595 */
596 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
597 if (err)
598 break;
599
600 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
601
602 if (next_svcn >= evcn + 1) {
603 /* We can remove this attribute segment. */
604 al_remove_le(ni, le);
605 mi_remove_attr(NULL, mi, attr);
606 le = le_p;
607 continue;
608 }
609
610 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
611 mi->dirty = true;
612 ni->attr_list.dirty = true;
613
614 if (evcn + 1 == alloc) {
615 err = mi_pack_runs(mi, attr, &run,
616 evcn + 1 - next_svcn);
617 if (err)
618 break;
619 mi_p = NULL;
620 } else {
621 mi_p = mi;
622 attr_p = attr;
623 svcn_p = next_svcn;
624 evcn_p = evcn;
625 le_p = le;
626 run_truncate_head(&run, next_svcn);
627 }
628 }
629
630 if (err) {
631 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
632 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
633
634 /* Pack loaded but not packed runs. */
635 if (mi_p)
636 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
637 }
638
639 run_close(&run);
640 return err;
641 }
642
643 /*
644 * ni_try_remove_attr_list
645 *
646 * Can we remove attribute list?
647 * Check the case when primary record contains enough space for all attributes.
648 */
ni_try_remove_attr_list(struct ntfs_inode * ni)649 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
650 {
651 int err = 0;
652 struct ntfs_sb_info *sbi = ni->mi.sbi;
653 struct ATTRIB *attr, *attr_list, *attr_ins;
654 struct ATTR_LIST_ENTRY *le;
655 struct mft_inode *mi;
656 u32 asize, free;
657 struct MFT_REF ref;
658 __le16 id;
659
660 if (!ni->attr_list.dirty)
661 return 0;
662
663 err = ni_repack(ni);
664 if (err)
665 return err;
666
667 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
668 if (!attr_list)
669 return 0;
670
671 asize = le32_to_cpu(attr_list->size);
672
673 /* Free space in primary record without attribute list. */
674 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
675 mi_get_ref(&ni->mi, &ref);
676
677 le = NULL;
678 while ((le = al_enumerate(ni, le))) {
679 if (!memcmp(&le->ref, &ref, sizeof(ref)))
680 continue;
681
682 if (le->vcn)
683 return 0;
684
685 mi = ni_find_mi(ni, ino_get(&le->ref));
686 if (!mi)
687 return 0;
688
689 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
690 le->name_len, &le->id);
691 if (!attr)
692 return 0;
693
694 asize = le32_to_cpu(attr->size);
695 if (asize > free)
696 return 0;
697
698 free -= asize;
699 }
700
701 /* It seems that attribute list can be removed from primary record. */
702 mi_remove_attr(NULL, &ni->mi, attr_list);
703
704 /*
705 * Repeat the cycle above and move all attributes to primary record.
706 * It should be success!
707 */
708 le = NULL;
709 while ((le = al_enumerate(ni, le))) {
710 if (!memcmp(&le->ref, &ref, sizeof(ref)))
711 continue;
712
713 mi = ni_find_mi(ni, ino_get(&le->ref));
714 if (!mi) {
715 /* Should never happened, 'cause already checked. */
716 goto bad;
717 }
718
719 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
720 le->name_len, &le->id);
721 if (!attr) {
722 /* Should never happened, 'cause already checked. */
723 goto bad;
724 }
725 asize = le32_to_cpu(attr->size);
726
727 /* Insert into primary record. */
728 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
729 le->name_len, asize,
730 le16_to_cpu(attr->name_off));
731 if (!attr_ins) {
732 /*
733 * Internal error.
734 * Either no space in primary record (already checked).
735 * Either tried to insert another
736 * non indexed attribute (logic error).
737 */
738 goto bad;
739 }
740
741 /* Copy all except id. */
742 id = attr_ins->id;
743 memcpy(attr_ins, attr, asize);
744 attr_ins->id = id;
745
746 /* Remove from original record. */
747 mi_remove_attr(NULL, mi, attr);
748 }
749
750 run_deallocate(sbi, &ni->attr_list.run, true);
751 run_close(&ni->attr_list.run);
752 ni->attr_list.size = 0;
753 kfree(ni->attr_list.le);
754 ni->attr_list.le = NULL;
755 ni->attr_list.dirty = false;
756
757 return 0;
758 bad:
759 ntfs_inode_err(&ni->vfs_inode, "Internal error");
760 make_bad_inode(&ni->vfs_inode);
761 return -EINVAL;
762 }
763
764 /*
765 * ni_create_attr_list - Generates an attribute list for this primary record.
766 */
ni_create_attr_list(struct ntfs_inode * ni)767 int ni_create_attr_list(struct ntfs_inode *ni)
768 {
769 struct ntfs_sb_info *sbi = ni->mi.sbi;
770 int err;
771 u32 lsize;
772 struct ATTRIB *attr;
773 struct ATTRIB *arr_move[7];
774 struct ATTR_LIST_ENTRY *le, *le_b[7];
775 struct MFT_REC *rec;
776 bool is_mft;
777 CLST rno = 0;
778 struct mft_inode *mi;
779 u32 free_b, nb, to_free, rs;
780 u16 sz;
781
782 is_mft = ni->mi.rno == MFT_REC_MFT;
783 rec = ni->mi.mrec;
784 rs = sbi->record_size;
785
786 /*
787 * Skip estimating exact memory requirement.
788 * Looks like one record_size is always enough.
789 */
790 le = kmalloc(al_aligned(rs), GFP_NOFS);
791 if (!le) {
792 err = -ENOMEM;
793 goto out;
794 }
795
796 mi_get_ref(&ni->mi, &le->ref);
797 ni->attr_list.le = le;
798
799 attr = NULL;
800 nb = 0;
801 free_b = 0;
802 attr = NULL;
803
804 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
805 sz = le_size(attr->name_len);
806 le->type = attr->type;
807 le->size = cpu_to_le16(sz);
808 le->name_len = attr->name_len;
809 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
810 le->vcn = 0;
811 if (le != ni->attr_list.le)
812 le->ref = ni->attr_list.le->ref;
813 le->id = attr->id;
814
815 if (attr->name_len)
816 memcpy(le->name, attr_name(attr),
817 sizeof(short) * attr->name_len);
818 else if (attr->type == ATTR_STD)
819 continue;
820 else if (attr->type == ATTR_LIST)
821 continue;
822 else if (is_mft && attr->type == ATTR_DATA)
823 continue;
824
825 if (!nb || nb < ARRAY_SIZE(arr_move)) {
826 le_b[nb] = le;
827 arr_move[nb++] = attr;
828 free_b += le32_to_cpu(attr->size);
829 }
830 }
831
832 lsize = PtrOffset(ni->attr_list.le, le);
833 ni->attr_list.size = lsize;
834
835 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
836 if (to_free <= rs) {
837 to_free = 0;
838 } else {
839 to_free -= rs;
840
841 if (to_free > free_b) {
842 err = -EINVAL;
843 goto out1;
844 }
845 }
846
847 /* Allocate child MFT. */
848 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
849 if (err)
850 goto out1;
851
852 err = -EINVAL;
853 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
854 while (to_free > 0) {
855 struct ATTRIB *b = arr_move[--nb];
856 u32 asize = le32_to_cpu(b->size);
857 u16 name_off = le16_to_cpu(b->name_off);
858
859 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
860 b->name_len, asize, name_off);
861 if (!attr)
862 goto out1;
863
864 mi_get_ref(mi, &le_b[nb]->ref);
865 le_b[nb]->id = attr->id;
866
867 /* Copy all except id. */
868 memcpy(attr, b, asize);
869 attr->id = le_b[nb]->id;
870
871 /* Remove from primary record. */
872 if (!mi_remove_attr(NULL, &ni->mi, b))
873 goto out1;
874
875 if (to_free <= asize)
876 break;
877 to_free -= asize;
878 if (!nb)
879 goto out1;
880 }
881
882 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
883 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
884 if (!attr)
885 goto out1;
886
887 attr->non_res = 0;
888 attr->flags = 0;
889 attr->res.data_size = cpu_to_le32(lsize);
890 attr->res.data_off = SIZEOF_RESIDENT_LE;
891 attr->res.flags = 0;
892 attr->res.res = 0;
893
894 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
895
896 ni->attr_list.dirty = false;
897
898 mark_inode_dirty(&ni->vfs_inode);
899 goto out;
900
901 out1:
902 kfree(ni->attr_list.le);
903 ni->attr_list.le = NULL;
904 ni->attr_list.size = 0;
905 return err;
906
907 out:
908 return 0;
909 }
910
911 /*
912 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
913 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)914 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
915 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
916 u32 asize, CLST svcn, u16 name_off, bool force_ext,
917 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
918 struct ATTR_LIST_ENTRY **ins_le)
919 {
920 struct ATTRIB *attr;
921 struct mft_inode *mi;
922 CLST rno;
923 u64 vbo;
924 struct rb_node *node;
925 int err;
926 bool is_mft, is_mft_data;
927 struct ntfs_sb_info *sbi = ni->mi.sbi;
928
929 is_mft = ni->mi.rno == MFT_REC_MFT;
930 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
931
932 if (asize > sbi->max_bytes_per_attr) {
933 err = -EINVAL;
934 goto out;
935 }
936
937 /*
938 * Standard information and attr_list cannot be made external.
939 * The Log File cannot have any external attributes.
940 */
941 if (type == ATTR_STD || type == ATTR_LIST ||
942 ni->mi.rno == MFT_REC_LOG) {
943 err = -EINVAL;
944 goto out;
945 }
946
947 /* Create attribute list if it is not already existed. */
948 if (!ni->attr_list.size) {
949 err = ni_create_attr_list(ni);
950 if (err)
951 goto out;
952 }
953
954 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
955
956 if (force_ext)
957 goto insert_ext;
958
959 /* Load all subrecords into memory. */
960 err = ni_load_all_mi(ni);
961 if (err)
962 goto out;
963
964 /* Check each of loaded subrecord. */
965 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
966 mi = rb_entry(node, struct mft_inode, node);
967
968 if (is_mft_data &&
969 (mi_enum_attr(mi, NULL) ||
970 vbo <= ((u64)mi->rno << sbi->record_bits))) {
971 /* We can't accept this record 'cause MFT's bootstrapping. */
972 continue;
973 }
974 if (is_mft &&
975 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
976 /*
977 * This child record already has a ATTR_DATA.
978 * So it can't accept any other records.
979 */
980 continue;
981 }
982
983 if ((type != ATTR_NAME || name_len) &&
984 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
985 /* Only indexed attributes can share same record. */
986 continue;
987 }
988
989 /*
990 * Do not try to insert this attribute
991 * if there is no room in record.
992 */
993 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
994 continue;
995
996 /* Try to insert attribute into this subrecord. */
997 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
998 name_off, svcn, ins_le);
999 if (!attr)
1000 continue;
1001
1002 if (ins_attr)
1003 *ins_attr = attr;
1004 if (ins_mi)
1005 *ins_mi = mi;
1006 return 0;
1007 }
1008
1009 insert_ext:
1010 /* We have to allocate a new child subrecord. */
1011 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1012 if (err)
1013 goto out;
1014
1015 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1016 err = -EINVAL;
1017 goto out1;
1018 }
1019
1020 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1021 name_off, svcn, ins_le);
1022 if (!attr)
1023 goto out2;
1024
1025 if (ins_attr)
1026 *ins_attr = attr;
1027 if (ins_mi)
1028 *ins_mi = mi;
1029
1030 return 0;
1031
1032 out2:
1033 ni_remove_mi(ni, mi);
1034 mi_put(mi);
1035 err = -EINVAL;
1036
1037 out1:
1038 ntfs_mark_rec_free(sbi, rno);
1039
1040 out:
1041 return err;
1042 }
1043
1044 /*
1045 * ni_insert_attr - Insert an attribute into the file.
1046 *
1047 * If the primary record has room, it will just insert the attribute.
1048 * If not, it may make the attribute external.
1049 * For $MFT::Data it may make room for the attribute by
1050 * making other attributes external.
1051 *
1052 * NOTE:
1053 * The ATTR_LIST and ATTR_STD cannot be made external.
1054 * This function does not fill new attribute full.
1055 * It only fills 'size'/'type'/'id'/'name_len' fields.
1056 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1057 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1058 const __le16 *name, u8 name_len, u32 asize,
1059 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1060 struct mft_inode **ins_mi,
1061 struct ATTR_LIST_ENTRY **ins_le)
1062 {
1063 struct ntfs_sb_info *sbi = ni->mi.sbi;
1064 int err;
1065 struct ATTRIB *attr, *eattr;
1066 struct MFT_REC *rec;
1067 bool is_mft;
1068 struct ATTR_LIST_ENTRY *le;
1069 u32 list_reserve, max_free, free, used, t32;
1070 __le16 id;
1071 u16 t16;
1072
1073 is_mft = ni->mi.rno == MFT_REC_MFT;
1074 rec = ni->mi.mrec;
1075
1076 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1077 used = le32_to_cpu(rec->used);
1078 free = sbi->record_size - used;
1079
1080 if (is_mft && type != ATTR_LIST) {
1081 /* Reserve space for the ATTRIB list. */
1082 if (free < list_reserve)
1083 free = 0;
1084 else
1085 free -= list_reserve;
1086 }
1087
1088 if (asize <= free) {
1089 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1090 asize, name_off, svcn, ins_le);
1091 if (attr) {
1092 if (ins_attr)
1093 *ins_attr = attr;
1094 if (ins_mi)
1095 *ins_mi = &ni->mi;
1096 err = 0;
1097 goto out;
1098 }
1099 }
1100
1101 if (!is_mft || type != ATTR_DATA || svcn) {
1102 /* This ATTRIB will be external. */
1103 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1104 svcn, name_off, false, ins_attr, ins_mi,
1105 ins_le);
1106 goto out;
1107 }
1108
1109 /*
1110 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1111 *
1112 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1113 * Evict as many other attributes as possible.
1114 */
1115 max_free = free;
1116
1117 /* Estimate the result of moving all possible attributes away. */
1118 attr = NULL;
1119
1120 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1121 if (attr->type == ATTR_STD)
1122 continue;
1123 if (attr->type == ATTR_LIST)
1124 continue;
1125 max_free += le32_to_cpu(attr->size);
1126 }
1127
1128 if (max_free < asize + list_reserve) {
1129 /* Impossible to insert this attribute into primary record. */
1130 err = -EINVAL;
1131 goto out;
1132 }
1133
1134 /* Start real attribute moving. */
1135 attr = NULL;
1136
1137 for (;;) {
1138 attr = mi_enum_attr(&ni->mi, attr);
1139 if (!attr) {
1140 /* We should never be here 'cause we have already check this case. */
1141 err = -EINVAL;
1142 goto out;
1143 }
1144
1145 /* Skip attributes that MUST be primary record. */
1146 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1147 continue;
1148
1149 le = NULL;
1150 if (ni->attr_list.size) {
1151 le = al_find_le(ni, NULL, attr);
1152 if (!le) {
1153 /* Really this is a serious bug. */
1154 err = -EINVAL;
1155 goto out;
1156 }
1157 }
1158
1159 t32 = le32_to_cpu(attr->size);
1160 t16 = le16_to_cpu(attr->name_off);
1161 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1162 attr->name_len, t32, attr_svcn(attr), t16,
1163 false, &eattr, NULL, NULL);
1164 if (err)
1165 return err;
1166
1167 id = eattr->id;
1168 memcpy(eattr, attr, t32);
1169 eattr->id = id;
1170
1171 /* Remove from primary record. */
1172 mi_remove_attr(NULL, &ni->mi, attr);
1173
1174 /* attr now points to next attribute. */
1175 if (attr->type == ATTR_END)
1176 goto out;
1177 }
1178 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1179 ;
1180
1181 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1182 name_off, svcn, ins_le);
1183 if (!attr) {
1184 err = -EINVAL;
1185 goto out;
1186 }
1187
1188 if (ins_attr)
1189 *ins_attr = attr;
1190 if (ins_mi)
1191 *ins_mi = &ni->mi;
1192
1193 out:
1194 return err;
1195 }
1196
1197 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1198 static int ni_expand_mft_list(struct ntfs_inode *ni)
1199 {
1200 int err = 0;
1201 struct runs_tree *run = &ni->file.run;
1202 u32 asize, run_size, done = 0;
1203 struct ATTRIB *attr;
1204 struct rb_node *node;
1205 CLST mft_min, mft_new, svcn, evcn, plen;
1206 struct mft_inode *mi, *mi_min, *mi_new;
1207 struct ntfs_sb_info *sbi = ni->mi.sbi;
1208
1209 /* Find the nearest MFT. */
1210 mft_min = 0;
1211 mft_new = 0;
1212 mi_min = NULL;
1213
1214 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1215 mi = rb_entry(node, struct mft_inode, node);
1216
1217 attr = mi_enum_attr(mi, NULL);
1218
1219 if (!attr) {
1220 mft_min = mi->rno;
1221 mi_min = mi;
1222 break;
1223 }
1224 }
1225
1226 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1227 mft_new = 0;
1228 /* Really this is not critical. */
1229 } else if (mft_min > mft_new) {
1230 mft_min = mft_new;
1231 mi_min = mi_new;
1232 } else {
1233 ntfs_mark_rec_free(sbi, mft_new);
1234 mft_new = 0;
1235 ni_remove_mi(ni, mi_new);
1236 }
1237
1238 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1239 if (!attr) {
1240 err = -EINVAL;
1241 goto out;
1242 }
1243
1244 asize = le32_to_cpu(attr->size);
1245
1246 evcn = le64_to_cpu(attr->nres.evcn);
1247 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1248 if (evcn + 1 >= svcn) {
1249 err = -EINVAL;
1250 goto out;
1251 }
1252
1253 /*
1254 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1255 *
1256 * Update first part of ATTR_DATA in 'primary MFT.
1257 */
1258 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1259 asize - SIZEOF_NONRESIDENT, &plen);
1260 if (err < 0)
1261 goto out;
1262
1263 run_size = ALIGN(err, 8);
1264 err = 0;
1265
1266 if (plen < svcn) {
1267 err = -EINVAL;
1268 goto out;
1269 }
1270
1271 attr->nres.evcn = cpu_to_le64(svcn - 1);
1272 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1273 /* 'done' - How many bytes of primary MFT becomes free. */
1274 done = asize - run_size - SIZEOF_NONRESIDENT;
1275 le32_sub_cpu(&ni->mi.mrec->used, done);
1276
1277 /* Estimate the size of second part: run_buf=NULL. */
1278 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1279 &plen);
1280 if (err < 0)
1281 goto out;
1282
1283 run_size = ALIGN(err, 8);
1284 err = 0;
1285
1286 if (plen < evcn + 1 - svcn) {
1287 err = -EINVAL;
1288 goto out;
1289 }
1290
1291 /*
1292 * This function may implicitly call expand attr_list.
1293 * Insert second part of ATTR_DATA in 'mi_min'.
1294 */
1295 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1296 SIZEOF_NONRESIDENT + run_size,
1297 SIZEOF_NONRESIDENT, svcn, NULL);
1298 if (!attr) {
1299 err = -EINVAL;
1300 goto out;
1301 }
1302
1303 attr->non_res = 1;
1304 attr->name_off = SIZEOF_NONRESIDENT_LE;
1305 attr->flags = 0;
1306
1307 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1308 run_size, &plen);
1309
1310 attr->nres.svcn = cpu_to_le64(svcn);
1311 attr->nres.evcn = cpu_to_le64(evcn);
1312 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1313
1314 out:
1315 if (mft_new) {
1316 ntfs_mark_rec_free(sbi, mft_new);
1317 ni_remove_mi(ni, mi_new);
1318 }
1319
1320 return !err && !done ? -EOPNOTSUPP : err;
1321 }
1322
1323 /*
1324 * ni_expand_list - Move all possible attributes out of primary record.
1325 */
ni_expand_list(struct ntfs_inode * ni)1326 int ni_expand_list(struct ntfs_inode *ni)
1327 {
1328 int err = 0;
1329 u32 asize, done = 0;
1330 struct ATTRIB *attr, *ins_attr;
1331 struct ATTR_LIST_ENTRY *le;
1332 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1333 struct MFT_REF ref;
1334
1335 mi_get_ref(&ni->mi, &ref);
1336 le = NULL;
1337
1338 while ((le = al_enumerate(ni, le))) {
1339 if (le->type == ATTR_STD)
1340 continue;
1341
1342 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1343 continue;
1344
1345 if (is_mft && le->type == ATTR_DATA)
1346 continue;
1347
1348 /* Find attribute in primary record. */
1349 attr = rec_find_attr_le(&ni->mi, le);
1350 if (!attr) {
1351 err = -EINVAL;
1352 goto out;
1353 }
1354
1355 asize = le32_to_cpu(attr->size);
1356
1357 /* Always insert into new record to avoid collisions (deep recursive). */
1358 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1359 attr->name_len, asize, attr_svcn(attr),
1360 le16_to_cpu(attr->name_off), true,
1361 &ins_attr, NULL, NULL);
1362
1363 if (err)
1364 goto out;
1365
1366 memcpy(ins_attr, attr, asize);
1367 ins_attr->id = le->id;
1368 /* Remove from primary record. */
1369 mi_remove_attr(NULL, &ni->mi, attr);
1370
1371 done += asize;
1372 goto out;
1373 }
1374
1375 if (!is_mft) {
1376 err = -EFBIG; /* Attr list is too big(?) */
1377 goto out;
1378 }
1379
1380 /* Split MFT data as much as possible. */
1381 err = ni_expand_mft_list(ni);
1382 if (err)
1383 goto out;
1384
1385 out:
1386 return !err && !done ? -EOPNOTSUPP : err;
1387 }
1388
1389 /*
1390 * ni_insert_nonresident - Insert new nonresident attribute.
1391 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi)1392 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1393 const __le16 *name, u8 name_len,
1394 const struct runs_tree *run, CLST svcn, CLST len,
1395 __le16 flags, struct ATTRIB **new_attr,
1396 struct mft_inode **mi)
1397 {
1398 int err;
1399 CLST plen;
1400 struct ATTRIB *attr;
1401 bool is_ext =
1402 (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1403 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1404 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1405 u32 run_off = name_off + name_size;
1406 u32 run_size, asize;
1407 struct ntfs_sb_info *sbi = ni->mi.sbi;
1408
1409 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1410 &plen);
1411 if (err < 0)
1412 goto out;
1413
1414 run_size = ALIGN(err, 8);
1415
1416 if (plen < len) {
1417 err = -EINVAL;
1418 goto out;
1419 }
1420
1421 asize = run_off + run_size;
1422
1423 if (asize > sbi->max_bytes_per_attr) {
1424 err = -EINVAL;
1425 goto out;
1426 }
1427
1428 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1429 &attr, mi, NULL);
1430
1431 if (err)
1432 goto out;
1433
1434 attr->non_res = 1;
1435 attr->name_off = cpu_to_le16(name_off);
1436 attr->flags = flags;
1437
1438 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1439
1440 attr->nres.svcn = cpu_to_le64(svcn);
1441 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1442
1443 err = 0;
1444 if (new_attr)
1445 *new_attr = attr;
1446
1447 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1448
1449 attr->nres.alloc_size =
1450 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1451 attr->nres.data_size = attr->nres.alloc_size;
1452 attr->nres.valid_size = attr->nres.alloc_size;
1453
1454 if (is_ext) {
1455 if (flags & ATTR_FLAG_COMPRESSED)
1456 attr->nres.c_unit = COMPRESSION_UNIT;
1457 attr->nres.total_size = attr->nres.alloc_size;
1458 }
1459
1460 out:
1461 return err;
1462 }
1463
1464 /*
1465 * ni_insert_resident - Inserts new resident attribute.
1466 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1467 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1468 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1469 struct ATTRIB **new_attr, struct mft_inode **mi,
1470 struct ATTR_LIST_ENTRY **le)
1471 {
1472 int err;
1473 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1474 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1475 struct ATTRIB *attr;
1476
1477 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1478 0, &attr, mi, le);
1479 if (err)
1480 return err;
1481
1482 attr->non_res = 0;
1483 attr->flags = 0;
1484
1485 attr->res.data_size = cpu_to_le32(data_size);
1486 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1487 if (type == ATTR_NAME) {
1488 attr->res.flags = RESIDENT_FLAG_INDEXED;
1489
1490 /* is_attr_indexed(attr)) == true */
1491 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1492 ni->mi.dirty = true;
1493 }
1494 attr->res.res = 0;
1495
1496 if (new_attr)
1497 *new_attr = attr;
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * ni_remove_attr_le - Remove attribute from record.
1504 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1505 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1506 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1507 {
1508 mi_remove_attr(ni, mi, attr);
1509
1510 if (le)
1511 al_remove_le(ni, le);
1512 }
1513
1514 /*
1515 * ni_delete_all - Remove all attributes and frees allocates space.
1516 *
1517 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1518 */
ni_delete_all(struct ntfs_inode * ni)1519 int ni_delete_all(struct ntfs_inode *ni)
1520 {
1521 int err;
1522 struct ATTR_LIST_ENTRY *le = NULL;
1523 struct ATTRIB *attr = NULL;
1524 struct rb_node *node;
1525 u16 roff;
1526 u32 asize;
1527 CLST svcn, evcn;
1528 struct ntfs_sb_info *sbi = ni->mi.sbi;
1529 bool nt3 = is_ntfs3(sbi);
1530 struct MFT_REF ref;
1531
1532 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1533 if (!nt3 || attr->name_len) {
1534 ;
1535 } else if (attr->type == ATTR_REPARSE) {
1536 mi_get_ref(&ni->mi, &ref);
1537 ntfs_remove_reparse(sbi, 0, &ref);
1538 } else if (attr->type == ATTR_ID && !attr->non_res &&
1539 le32_to_cpu(attr->res.data_size) >=
1540 sizeof(struct GUID)) {
1541 ntfs_objid_remove(sbi, resident_data(attr));
1542 }
1543
1544 if (!attr->non_res)
1545 continue;
1546
1547 svcn = le64_to_cpu(attr->nres.svcn);
1548 evcn = le64_to_cpu(attr->nres.evcn);
1549
1550 if (evcn + 1 <= svcn)
1551 continue;
1552
1553 asize = le32_to_cpu(attr->size);
1554 roff = le16_to_cpu(attr->nres.run_off);
1555
1556 if (roff > asize)
1557 return -EINVAL;
1558
1559 /* run==1 means unpack and deallocate. */
1560 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1561 Add2Ptr(attr, roff), asize - roff);
1562 }
1563
1564 if (ni->attr_list.size) {
1565 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1566 al_destroy(ni);
1567 }
1568
1569 /* Free all subrecords. */
1570 for (node = rb_first(&ni->mi_tree); node;) {
1571 struct rb_node *next = rb_next(node);
1572 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1573
1574 clear_rec_inuse(mi->mrec);
1575 mi->dirty = true;
1576 mi_write(mi, 0);
1577
1578 ntfs_mark_rec_free(sbi, mi->rno);
1579 ni_remove_mi(ni, mi);
1580 mi_put(mi);
1581 node = next;
1582 }
1583
1584 /* Free base record. */
1585 clear_rec_inuse(ni->mi.mrec);
1586 ni->mi.dirty = true;
1587 err = mi_write(&ni->mi, 0);
1588
1589 ntfs_mark_rec_free(sbi, ni->mi.rno);
1590
1591 return err;
1592 }
1593
1594 /* ni_fname_name
1595 *
1596 * Return: File name attribute by its value.
1597 */
ni_fname_name(struct ntfs_inode * ni,const struct cpu_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1598 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1599 const struct cpu_str *uni,
1600 const struct MFT_REF *home_dir,
1601 struct mft_inode **mi,
1602 struct ATTR_LIST_ENTRY **le)
1603 {
1604 struct ATTRIB *attr = NULL;
1605 struct ATTR_FILE_NAME *fname;
1606
1607 *le = NULL;
1608
1609 /* Enumerate all names. */
1610 next:
1611 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1612 if (!attr)
1613 return NULL;
1614
1615 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1616 if (!fname)
1617 goto next;
1618
1619 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1620 goto next;
1621
1622 if (!uni)
1623 goto next;
1624
1625 if (uni->len != fname->name_len)
1626 goto next;
1627
1628 if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1629 false))
1630 goto next;
1631
1632 return fname;
1633 }
1634
1635 /*
1636 * ni_fname_type
1637 *
1638 * Return: File name attribute with given type.
1639 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1640 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1641 struct mft_inode **mi,
1642 struct ATTR_LIST_ENTRY **le)
1643 {
1644 struct ATTRIB *attr = NULL;
1645 struct ATTR_FILE_NAME *fname;
1646
1647 *le = NULL;
1648
1649 if (name_type == FILE_NAME_POSIX)
1650 return NULL;
1651
1652 /* Enumerate all names. */
1653 for (;;) {
1654 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1655 if (!attr)
1656 return NULL;
1657
1658 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1659 if (fname && name_type == fname->type)
1660 return fname;
1661 }
1662 }
1663
1664 /*
1665 * ni_new_attr_flags
1666 *
1667 * Process compressed/sparsed in special way.
1668 * NOTE: You need to set ni->std_fa = new_fa
1669 * after this function to keep internal structures in consistency.
1670 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1671 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1672 {
1673 struct ATTRIB *attr;
1674 struct mft_inode *mi;
1675 __le16 new_aflags;
1676 u32 new_asize;
1677
1678 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1679 if (!attr)
1680 return -EINVAL;
1681
1682 new_aflags = attr->flags;
1683
1684 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1685 new_aflags |= ATTR_FLAG_SPARSED;
1686 else
1687 new_aflags &= ~ATTR_FLAG_SPARSED;
1688
1689 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1690 new_aflags |= ATTR_FLAG_COMPRESSED;
1691 else
1692 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1693
1694 if (new_aflags == attr->flags)
1695 return 0;
1696
1697 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1698 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1699 ntfs_inode_warn(&ni->vfs_inode,
1700 "file can't be sparsed and compressed");
1701 return -EOPNOTSUPP;
1702 }
1703
1704 if (!attr->non_res)
1705 goto out;
1706
1707 if (attr->nres.data_size) {
1708 ntfs_inode_warn(
1709 &ni->vfs_inode,
1710 "one can change sparsed/compressed only for empty files");
1711 return -EOPNOTSUPP;
1712 }
1713
1714 /* Resize nonresident empty attribute in-place only. */
1715 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1716 ? (SIZEOF_NONRESIDENT_EX + 8)
1717 : (SIZEOF_NONRESIDENT + 8);
1718
1719 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1720 return -EOPNOTSUPP;
1721
1722 if (new_aflags & ATTR_FLAG_SPARSED) {
1723 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1724 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1725 attr->nres.c_unit = 0;
1726 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1727 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1728 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1729 /* The only allowed: 16 clusters per frame. */
1730 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1731 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1732 } else {
1733 attr->name_off = SIZEOF_NONRESIDENT_LE;
1734 /* Normal files. */
1735 attr->nres.c_unit = 0;
1736 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1737 }
1738 attr->nres.run_off = attr->name_off;
1739 out:
1740 attr->flags = new_aflags;
1741 mi->dirty = true;
1742
1743 return 0;
1744 }
1745
1746 /*
1747 * ni_parse_reparse
1748 *
1749 * buffer - memory for reparse buffer header
1750 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1751 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1752 struct REPARSE_DATA_BUFFER *buffer)
1753 {
1754 const struct REPARSE_DATA_BUFFER *rp = NULL;
1755 u8 bits;
1756 u16 len;
1757 typeof(rp->CompressReparseBuffer) *cmpr;
1758
1759 /* Try to estimate reparse point. */
1760 if (!attr->non_res) {
1761 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1762 } else if (le64_to_cpu(attr->nres.data_size) >=
1763 sizeof(struct REPARSE_DATA_BUFFER)) {
1764 struct runs_tree run;
1765
1766 run_init(&run);
1767
1768 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1769 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1770 sizeof(struct REPARSE_DATA_BUFFER),
1771 NULL)) {
1772 rp = buffer;
1773 }
1774
1775 run_close(&run);
1776 }
1777
1778 if (!rp)
1779 return REPARSE_NONE;
1780
1781 len = le16_to_cpu(rp->ReparseDataLength);
1782 switch (rp->ReparseTag) {
1783 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1784 break; /* Symbolic link. */
1785 case IO_REPARSE_TAG_MOUNT_POINT:
1786 break; /* Mount points and junctions. */
1787 case IO_REPARSE_TAG_SYMLINK:
1788 break;
1789 case IO_REPARSE_TAG_COMPRESS:
1790 /*
1791 * WOF - Windows Overlay Filter - Used to compress files with
1792 * LZX/Xpress.
1793 *
1794 * Unlike native NTFS file compression, the Windows
1795 * Overlay Filter supports only read operations. This means
1796 * that it doesn't need to sector-align each compressed chunk,
1797 * so the compressed data can be packed more tightly together.
1798 * If you open the file for writing, the WOF just decompresses
1799 * the entire file, turning it back into a plain file.
1800 *
1801 * Ntfs3 driver decompresses the entire file only on write or
1802 * change size requests.
1803 */
1804
1805 cmpr = &rp->CompressReparseBuffer;
1806 if (len < sizeof(*cmpr) ||
1807 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1808 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1809 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1810 return REPARSE_NONE;
1811 }
1812
1813 switch (cmpr->CompressionFormat) {
1814 case WOF_COMPRESSION_XPRESS4K:
1815 bits = 0xc; // 4k
1816 break;
1817 case WOF_COMPRESSION_XPRESS8K:
1818 bits = 0xd; // 8k
1819 break;
1820 case WOF_COMPRESSION_XPRESS16K:
1821 bits = 0xe; // 16k
1822 break;
1823 case WOF_COMPRESSION_LZX32K:
1824 bits = 0xf; // 32k
1825 break;
1826 default:
1827 bits = 0x10; // 64k
1828 break;
1829 }
1830 ni_set_ext_compress_bits(ni, bits);
1831 return REPARSE_COMPRESSED;
1832
1833 case IO_REPARSE_TAG_DEDUP:
1834 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1835 return REPARSE_DEDUPLICATED;
1836
1837 default:
1838 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1839 break;
1840
1841 return REPARSE_NONE;
1842 }
1843
1844 if (buffer != rp)
1845 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1846
1847 /* Looks like normal symlink. */
1848 return REPARSE_LINK;
1849 }
1850
1851 /*
1852 * ni_fiemap - Helper for file_fiemap().
1853 *
1854 * Assumed ni_lock.
1855 * TODO: Less aggressive locks.
1856 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1857 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1858 __u64 vbo, __u64 len)
1859 {
1860 int err = 0;
1861 struct ntfs_sb_info *sbi = ni->mi.sbi;
1862 u8 cluster_bits = sbi->cluster_bits;
1863 struct runs_tree *run;
1864 struct rw_semaphore *run_lock;
1865 struct ATTRIB *attr;
1866 CLST vcn = vbo >> cluster_bits;
1867 CLST lcn, clen;
1868 u64 valid = ni->i_valid;
1869 u64 lbo, bytes;
1870 u64 end, alloc_size;
1871 size_t idx = -1;
1872 u32 flags;
1873 bool ok;
1874
1875 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1876 run = &ni->dir.alloc_run;
1877 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1878 ARRAY_SIZE(I30_NAME), NULL, NULL);
1879 run_lock = &ni->dir.run_lock;
1880 } else {
1881 run = &ni->file.run;
1882 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1883 NULL);
1884 if (!attr) {
1885 err = -EINVAL;
1886 goto out;
1887 }
1888 if (is_attr_compressed(attr)) {
1889 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1890 err = -EOPNOTSUPP;
1891 ntfs_inode_warn(
1892 &ni->vfs_inode,
1893 "fiemap is not supported for compressed file (cp -r)");
1894 goto out;
1895 }
1896 run_lock = &ni->file.run_lock;
1897 }
1898
1899 if (!attr || !attr->non_res) {
1900 err = fiemap_fill_next_extent(
1901 fieinfo, 0, 0,
1902 attr ? le32_to_cpu(attr->res.data_size) : 0,
1903 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1904 FIEMAP_EXTENT_MERGED);
1905 goto out;
1906 }
1907
1908 end = vbo + len;
1909 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1910 if (end > alloc_size)
1911 end = alloc_size;
1912
1913 down_read(run_lock);
1914
1915 while (vbo < end) {
1916 if (idx == -1) {
1917 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1918 } else {
1919 CLST vcn_next = vcn;
1920
1921 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1922 vcn == vcn_next;
1923 if (!ok)
1924 vcn = vcn_next;
1925 }
1926
1927 if (!ok) {
1928 up_read(run_lock);
1929 down_write(run_lock);
1930
1931 err = attr_load_runs_vcn(ni, attr->type,
1932 attr_name(attr),
1933 attr->name_len, run, vcn);
1934
1935 up_write(run_lock);
1936 down_read(run_lock);
1937
1938 if (err)
1939 break;
1940
1941 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1942
1943 if (!ok) {
1944 err = -EINVAL;
1945 break;
1946 }
1947 }
1948
1949 if (!clen) {
1950 err = -EINVAL; // ?
1951 break;
1952 }
1953
1954 if (lcn == SPARSE_LCN) {
1955 vcn += clen;
1956 vbo = (u64)vcn << cluster_bits;
1957 continue;
1958 }
1959
1960 flags = FIEMAP_EXTENT_MERGED;
1961 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1962 ;
1963 } else if (is_attr_compressed(attr)) {
1964 CLST clst_data;
1965
1966 err = attr_is_frame_compressed(
1967 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
1968 if (err)
1969 break;
1970 if (clst_data < NTFS_LZNT_CLUSTERS)
1971 flags |= FIEMAP_EXTENT_ENCODED;
1972 } else if (is_attr_encrypted(attr)) {
1973 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1974 }
1975
1976 vbo = (u64)vcn << cluster_bits;
1977 bytes = (u64)clen << cluster_bits;
1978 lbo = (u64)lcn << cluster_bits;
1979
1980 vcn += clen;
1981
1982 if (vbo + bytes >= end)
1983 bytes = end - vbo;
1984
1985 if (vbo + bytes <= valid) {
1986 ;
1987 } else if (vbo >= valid) {
1988 flags |= FIEMAP_EXTENT_UNWRITTEN;
1989 } else {
1990 /* vbo < valid && valid < vbo + bytes */
1991 u64 dlen = valid - vbo;
1992
1993 if (vbo + dlen >= end)
1994 flags |= FIEMAP_EXTENT_LAST;
1995
1996 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1997 flags);
1998 if (err < 0)
1999 break;
2000 if (err == 1) {
2001 err = 0;
2002 break;
2003 }
2004
2005 vbo = valid;
2006 bytes -= dlen;
2007 if (!bytes)
2008 continue;
2009
2010 lbo += dlen;
2011 flags |= FIEMAP_EXTENT_UNWRITTEN;
2012 }
2013
2014 if (vbo + bytes >= end)
2015 flags |= FIEMAP_EXTENT_LAST;
2016
2017 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2018 if (err < 0)
2019 break;
2020 if (err == 1) {
2021 err = 0;
2022 break;
2023 }
2024
2025 vbo += bytes;
2026 }
2027
2028 up_read(run_lock);
2029
2030 out:
2031 return err;
2032 }
2033
2034 /*
2035 * ni_readpage_cmpr
2036 *
2037 * When decompressing, we typically obtain more than one page per reference.
2038 * We inject the additional pages into the page cache.
2039 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2040 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2041 {
2042 int err;
2043 struct ntfs_sb_info *sbi = ni->mi.sbi;
2044 struct address_space *mapping = page->mapping;
2045 pgoff_t index = page->index;
2046 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2047 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2048 u8 frame_bits;
2049 CLST frame;
2050 u32 i, idx, frame_size, pages_per_frame;
2051 gfp_t gfp_mask;
2052 struct page *pg;
2053
2054 if (vbo >= ni->vfs_inode.i_size) {
2055 SetPageUptodate(page);
2056 err = 0;
2057 goto out;
2058 }
2059
2060 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2061 /* Xpress or LZX. */
2062 frame_bits = ni_ext_compress_bits(ni);
2063 } else {
2064 /* LZNT compression. */
2065 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2066 }
2067 frame_size = 1u << frame_bits;
2068 frame = vbo >> frame_bits;
2069 frame_vbo = (u64)frame << frame_bits;
2070 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2071
2072 pages_per_frame = frame_size >> PAGE_SHIFT;
2073 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2074 if (!pages) {
2075 err = -ENOMEM;
2076 goto out;
2077 }
2078
2079 pages[idx] = page;
2080 index = frame_vbo >> PAGE_SHIFT;
2081 gfp_mask = mapping_gfp_mask(mapping);
2082
2083 for (i = 0; i < pages_per_frame; i++, index++) {
2084 if (i == idx)
2085 continue;
2086
2087 pg = find_or_create_page(mapping, index, gfp_mask);
2088 if (!pg) {
2089 err = -ENOMEM;
2090 goto out1;
2091 }
2092 pages[i] = pg;
2093 }
2094
2095 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2096
2097 out1:
2098 if (err)
2099 SetPageError(page);
2100
2101 for (i = 0; i < pages_per_frame; i++) {
2102 pg = pages[i];
2103 if (i == idx || !pg)
2104 continue;
2105 unlock_page(pg);
2106 put_page(pg);
2107 }
2108
2109 out:
2110 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2111 kfree(pages);
2112 unlock_page(page);
2113
2114 return err;
2115 }
2116
2117 #ifdef CONFIG_NTFS3_LZX_XPRESS
2118 /*
2119 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2120 *
2121 * Remove ATTR_DATA::WofCompressedData.
2122 * Remove ATTR_REPARSE.
2123 */
ni_decompress_file(struct ntfs_inode * ni)2124 int ni_decompress_file(struct ntfs_inode *ni)
2125 {
2126 struct ntfs_sb_info *sbi = ni->mi.sbi;
2127 struct inode *inode = &ni->vfs_inode;
2128 loff_t i_size = inode->i_size;
2129 struct address_space *mapping = inode->i_mapping;
2130 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2131 struct page **pages = NULL;
2132 struct ATTR_LIST_ENTRY *le;
2133 struct ATTRIB *attr;
2134 CLST vcn, cend, lcn, clen, end;
2135 pgoff_t index;
2136 u64 vbo;
2137 u8 frame_bits;
2138 u32 i, frame_size, pages_per_frame, bytes;
2139 struct mft_inode *mi;
2140 int err;
2141
2142 /* Clusters for decompressed data. */
2143 cend = bytes_to_cluster(sbi, i_size);
2144
2145 if (!i_size)
2146 goto remove_wof;
2147
2148 /* Check in advance. */
2149 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2150 err = -ENOSPC;
2151 goto out;
2152 }
2153
2154 frame_bits = ni_ext_compress_bits(ni);
2155 frame_size = 1u << frame_bits;
2156 pages_per_frame = frame_size >> PAGE_SHIFT;
2157 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2158 if (!pages) {
2159 err = -ENOMEM;
2160 goto out;
2161 }
2162
2163 /*
2164 * Step 1: Decompress data and copy to new allocated clusters.
2165 */
2166 index = 0;
2167 for (vbo = 0; vbo < i_size; vbo += bytes) {
2168 u32 nr_pages;
2169 bool new;
2170
2171 if (vbo + frame_size > i_size) {
2172 bytes = i_size - vbo;
2173 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2174 } else {
2175 nr_pages = pages_per_frame;
2176 bytes = frame_size;
2177 }
2178
2179 end = bytes_to_cluster(sbi, vbo + bytes);
2180
2181 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2182 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2183 &clen, &new);
2184 if (err)
2185 goto out;
2186 }
2187
2188 for (i = 0; i < pages_per_frame; i++, index++) {
2189 struct page *pg;
2190
2191 pg = find_or_create_page(mapping, index, gfp_mask);
2192 if (!pg) {
2193 while (i--) {
2194 unlock_page(pages[i]);
2195 put_page(pages[i]);
2196 }
2197 err = -ENOMEM;
2198 goto out;
2199 }
2200 pages[i] = pg;
2201 }
2202
2203 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2204
2205 if (!err) {
2206 down_read(&ni->file.run_lock);
2207 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2208 nr_pages, vbo, bytes,
2209 REQ_OP_WRITE);
2210 up_read(&ni->file.run_lock);
2211 }
2212
2213 for (i = 0; i < pages_per_frame; i++) {
2214 unlock_page(pages[i]);
2215 put_page(pages[i]);
2216 }
2217
2218 if (err)
2219 goto out;
2220
2221 cond_resched();
2222 }
2223
2224 remove_wof:
2225 /*
2226 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2227 * and ATTR_REPARSE.
2228 */
2229 attr = NULL;
2230 le = NULL;
2231 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2232 CLST svcn, evcn;
2233 u32 asize, roff;
2234
2235 if (attr->type == ATTR_REPARSE) {
2236 struct MFT_REF ref;
2237
2238 mi_get_ref(&ni->mi, &ref);
2239 ntfs_remove_reparse(sbi, 0, &ref);
2240 }
2241
2242 if (!attr->non_res)
2243 continue;
2244
2245 if (attr->type != ATTR_REPARSE &&
2246 (attr->type != ATTR_DATA ||
2247 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2248 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2249 continue;
2250
2251 svcn = le64_to_cpu(attr->nres.svcn);
2252 evcn = le64_to_cpu(attr->nres.evcn);
2253
2254 if (evcn + 1 <= svcn)
2255 continue;
2256
2257 asize = le32_to_cpu(attr->size);
2258 roff = le16_to_cpu(attr->nres.run_off);
2259
2260 if (roff > asize) {
2261 err = -EINVAL;
2262 goto out;
2263 }
2264
2265 /*run==1 Means unpack and deallocate. */
2266 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2267 Add2Ptr(attr, roff), asize - roff);
2268 }
2269
2270 /*
2271 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2272 */
2273 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2274 false, NULL);
2275 if (err)
2276 goto out;
2277
2278 /*
2279 * Step 4: Remove ATTR_REPARSE.
2280 */
2281 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2282 if (err)
2283 goto out;
2284
2285 /*
2286 * Step 5: Remove sparse flag from data attribute.
2287 */
2288 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2289 if (!attr) {
2290 err = -EINVAL;
2291 goto out;
2292 }
2293
2294 if (attr->non_res && is_attr_sparsed(attr)) {
2295 /* Sparsed attribute header is 8 bytes bigger than normal. */
2296 struct MFT_REC *rec = mi->mrec;
2297 u32 used = le32_to_cpu(rec->used);
2298 u32 asize = le32_to_cpu(attr->size);
2299 u16 roff = le16_to_cpu(attr->nres.run_off);
2300 char *rbuf = Add2Ptr(attr, roff);
2301
2302 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2303 attr->size = cpu_to_le32(asize - 8);
2304 attr->flags &= ~ATTR_FLAG_SPARSED;
2305 attr->nres.run_off = cpu_to_le16(roff - 8);
2306 attr->nres.c_unit = 0;
2307 rec->used = cpu_to_le32(used - 8);
2308 mi->dirty = true;
2309 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2310 FILE_ATTRIBUTE_REPARSE_POINT);
2311
2312 mark_inode_dirty(inode);
2313 }
2314
2315 /* Clear cached flag. */
2316 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2317 if (ni->file.offs_page) {
2318 put_page(ni->file.offs_page);
2319 ni->file.offs_page = NULL;
2320 }
2321 mapping->a_ops = &ntfs_aops;
2322
2323 out:
2324 kfree(pages);
2325 if (err) {
2326 make_bad_inode(inode);
2327 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
2328 }
2329
2330 return err;
2331 }
2332
2333 /*
2334 * decompress_lzx_xpress - External compression LZX/Xpress.
2335 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2336 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2337 size_t cmpr_size, void *unc, size_t unc_size,
2338 u32 frame_size)
2339 {
2340 int err;
2341 void *ctx;
2342
2343 if (cmpr_size == unc_size) {
2344 /* Frame not compressed. */
2345 memcpy(unc, cmpr, unc_size);
2346 return 0;
2347 }
2348
2349 err = 0;
2350 if (frame_size == 0x8000) {
2351 mutex_lock(&sbi->compress.mtx_lzx);
2352 /* LZX: Frame compressed. */
2353 ctx = sbi->compress.lzx;
2354 if (!ctx) {
2355 /* Lazy initialize LZX decompress context. */
2356 ctx = lzx_allocate_decompressor();
2357 if (!ctx) {
2358 err = -ENOMEM;
2359 goto out1;
2360 }
2361
2362 sbi->compress.lzx = ctx;
2363 }
2364
2365 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2366 /* Treat all errors as "invalid argument". */
2367 err = -EINVAL;
2368 }
2369 out1:
2370 mutex_unlock(&sbi->compress.mtx_lzx);
2371 } else {
2372 /* XPRESS: Frame compressed. */
2373 mutex_lock(&sbi->compress.mtx_xpress);
2374 ctx = sbi->compress.xpress;
2375 if (!ctx) {
2376 /* Lazy initialize Xpress decompress context. */
2377 ctx = xpress_allocate_decompressor();
2378 if (!ctx) {
2379 err = -ENOMEM;
2380 goto out2;
2381 }
2382
2383 sbi->compress.xpress = ctx;
2384 }
2385
2386 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2387 /* Treat all errors as "invalid argument". */
2388 err = -EINVAL;
2389 }
2390 out2:
2391 mutex_unlock(&sbi->compress.mtx_xpress);
2392 }
2393 return err;
2394 }
2395 #endif
2396
2397 /*
2398 * ni_read_frame
2399 *
2400 * Pages - Array of locked pages.
2401 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2402 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2403 u32 pages_per_frame)
2404 {
2405 int err;
2406 struct ntfs_sb_info *sbi = ni->mi.sbi;
2407 u8 cluster_bits = sbi->cluster_bits;
2408 char *frame_ondisk = NULL;
2409 char *frame_mem = NULL;
2410 struct page **pages_disk = NULL;
2411 struct ATTR_LIST_ENTRY *le = NULL;
2412 struct runs_tree *run = &ni->file.run;
2413 u64 valid_size = ni->i_valid;
2414 u64 vbo_disk;
2415 size_t unc_size;
2416 u32 frame_size, i, npages_disk, ondisk_size;
2417 struct page *pg;
2418 struct ATTRIB *attr;
2419 CLST frame, clst_data;
2420
2421 /*
2422 * To simplify decompress algorithm do vmap for source
2423 * and target pages.
2424 */
2425 for (i = 0; i < pages_per_frame; i++)
2426 kmap(pages[i]);
2427
2428 frame_size = pages_per_frame << PAGE_SHIFT;
2429 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2430 if (!frame_mem) {
2431 err = -ENOMEM;
2432 goto out;
2433 }
2434
2435 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2436 if (!attr) {
2437 err = -ENOENT;
2438 goto out1;
2439 }
2440
2441 if (!attr->non_res) {
2442 u32 data_size = le32_to_cpu(attr->res.data_size);
2443
2444 memset(frame_mem, 0, frame_size);
2445 if (frame_vbo < data_size) {
2446 ondisk_size = data_size - frame_vbo;
2447 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2448 min(ondisk_size, frame_size));
2449 }
2450 err = 0;
2451 goto out1;
2452 }
2453
2454 if (frame_vbo >= valid_size) {
2455 memset(frame_mem, 0, frame_size);
2456 err = 0;
2457 goto out1;
2458 }
2459
2460 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2461 #ifndef CONFIG_NTFS3_LZX_XPRESS
2462 err = -EOPNOTSUPP;
2463 goto out1;
2464 #else
2465 u32 frame_bits = ni_ext_compress_bits(ni);
2466 u64 frame64 = frame_vbo >> frame_bits;
2467 u64 frames, vbo_data;
2468
2469 if (frame_size != (1u << frame_bits)) {
2470 err = -EINVAL;
2471 goto out1;
2472 }
2473 switch (frame_size) {
2474 case 0x1000:
2475 case 0x2000:
2476 case 0x4000:
2477 case 0x8000:
2478 break;
2479 default:
2480 /* Unknown compression. */
2481 err = -EOPNOTSUPP;
2482 goto out1;
2483 }
2484
2485 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2486 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2487 if (!attr) {
2488 ntfs_inode_err(
2489 &ni->vfs_inode,
2490 "external compressed file should contains data attribute \"WofCompressedData\"");
2491 err = -EINVAL;
2492 goto out1;
2493 }
2494
2495 if (!attr->non_res) {
2496 run = NULL;
2497 } else {
2498 run = run_alloc();
2499 if (!run) {
2500 err = -ENOMEM;
2501 goto out1;
2502 }
2503 }
2504
2505 frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2506
2507 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2508 frame_bits, &ondisk_size, &vbo_data);
2509 if (err)
2510 goto out2;
2511
2512 if (frame64 == frames) {
2513 unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2514 (frame_size - 1));
2515 ondisk_size = attr_size(attr) - vbo_data;
2516 } else {
2517 unc_size = frame_size;
2518 }
2519
2520 if (ondisk_size > frame_size) {
2521 err = -EINVAL;
2522 goto out2;
2523 }
2524
2525 if (!attr->non_res) {
2526 if (vbo_data + ondisk_size >
2527 le32_to_cpu(attr->res.data_size)) {
2528 err = -EINVAL;
2529 goto out1;
2530 }
2531
2532 err = decompress_lzx_xpress(
2533 sbi, Add2Ptr(resident_data(attr), vbo_data),
2534 ondisk_size, frame_mem, unc_size, frame_size);
2535 goto out1;
2536 }
2537 vbo_disk = vbo_data;
2538 /* Load all runs to read [vbo_disk-vbo_to). */
2539 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2540 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2541 vbo_data + ondisk_size);
2542 if (err)
2543 goto out2;
2544 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2545 PAGE_SIZE - 1) >>
2546 PAGE_SHIFT;
2547 #endif
2548 } else if (is_attr_compressed(attr)) {
2549 /* LZNT compression. */
2550 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2551 err = -EOPNOTSUPP;
2552 goto out1;
2553 }
2554
2555 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2556 err = -EOPNOTSUPP;
2557 goto out1;
2558 }
2559
2560 down_write(&ni->file.run_lock);
2561 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2562 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2563 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2564 up_write(&ni->file.run_lock);
2565 if (err)
2566 goto out1;
2567
2568 if (!clst_data) {
2569 memset(frame_mem, 0, frame_size);
2570 goto out1;
2571 }
2572
2573 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2574 ondisk_size = clst_data << cluster_bits;
2575
2576 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2577 /* Frame is not compressed. */
2578 down_read(&ni->file.run_lock);
2579 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2580 frame_vbo, ondisk_size,
2581 REQ_OP_READ);
2582 up_read(&ni->file.run_lock);
2583 goto out1;
2584 }
2585 vbo_disk = frame_vbo;
2586 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2587 } else {
2588 __builtin_unreachable();
2589 err = -EINVAL;
2590 goto out1;
2591 }
2592
2593 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2594 if (!pages_disk) {
2595 err = -ENOMEM;
2596 goto out2;
2597 }
2598
2599 for (i = 0; i < npages_disk; i++) {
2600 pg = alloc_page(GFP_KERNEL);
2601 if (!pg) {
2602 err = -ENOMEM;
2603 goto out3;
2604 }
2605 pages_disk[i] = pg;
2606 lock_page(pg);
2607 kmap(pg);
2608 }
2609
2610 /* Read 'ondisk_size' bytes from disk. */
2611 down_read(&ni->file.run_lock);
2612 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2613 ondisk_size, REQ_OP_READ);
2614 up_read(&ni->file.run_lock);
2615 if (err)
2616 goto out3;
2617
2618 /*
2619 * To simplify decompress algorithm do vmap for source and target pages.
2620 */
2621 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2622 if (!frame_ondisk) {
2623 err = -ENOMEM;
2624 goto out3;
2625 }
2626
2627 /* Decompress: Frame_ondisk -> frame_mem. */
2628 #ifdef CONFIG_NTFS3_LZX_XPRESS
2629 if (run != &ni->file.run) {
2630 /* LZX or XPRESS */
2631 err = decompress_lzx_xpress(
2632 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2633 ondisk_size, frame_mem, unc_size, frame_size);
2634 } else
2635 #endif
2636 {
2637 /* LZNT - Native NTFS compression. */
2638 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2639 frame_size);
2640 if ((ssize_t)unc_size < 0)
2641 err = unc_size;
2642 else if (!unc_size || unc_size > frame_size)
2643 err = -EINVAL;
2644 }
2645 if (!err && valid_size < frame_vbo + frame_size) {
2646 size_t ok = valid_size - frame_vbo;
2647
2648 memset(frame_mem + ok, 0, frame_size - ok);
2649 }
2650
2651 vunmap(frame_ondisk);
2652
2653 out3:
2654 for (i = 0; i < npages_disk; i++) {
2655 pg = pages_disk[i];
2656 if (pg) {
2657 kunmap(pg);
2658 unlock_page(pg);
2659 put_page(pg);
2660 }
2661 }
2662 kfree(pages_disk);
2663
2664 out2:
2665 #ifdef CONFIG_NTFS3_LZX_XPRESS
2666 if (run != &ni->file.run)
2667 run_free(run);
2668 #endif
2669 out1:
2670 vunmap(frame_mem);
2671 out:
2672 for (i = 0; i < pages_per_frame; i++) {
2673 pg = pages[i];
2674 kunmap(pg);
2675 ClearPageError(pg);
2676 SetPageUptodate(pg);
2677 }
2678
2679 return err;
2680 }
2681
2682 /*
2683 * ni_write_frame
2684 *
2685 * Pages - Array of locked pages.
2686 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2687 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2688 u32 pages_per_frame)
2689 {
2690 int err;
2691 struct ntfs_sb_info *sbi = ni->mi.sbi;
2692 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2693 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2694 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2695 CLST frame = frame_vbo >> frame_bits;
2696 char *frame_ondisk = NULL;
2697 struct page **pages_disk = NULL;
2698 struct ATTR_LIST_ENTRY *le = NULL;
2699 char *frame_mem;
2700 struct ATTRIB *attr;
2701 struct mft_inode *mi;
2702 u32 i;
2703 struct page *pg;
2704 size_t compr_size, ondisk_size;
2705 struct lznt *lznt;
2706
2707 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2708 if (!attr) {
2709 err = -ENOENT;
2710 goto out;
2711 }
2712
2713 if (WARN_ON(!is_attr_compressed(attr))) {
2714 err = -EINVAL;
2715 goto out;
2716 }
2717
2718 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2719 err = -EOPNOTSUPP;
2720 goto out;
2721 }
2722
2723 if (!attr->non_res) {
2724 down_write(&ni->file.run_lock);
2725 err = attr_make_nonresident(ni, attr, le, mi,
2726 le32_to_cpu(attr->res.data_size),
2727 &ni->file.run, &attr, pages[0]);
2728 up_write(&ni->file.run_lock);
2729 if (err)
2730 goto out;
2731 }
2732
2733 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2734 err = -EOPNOTSUPP;
2735 goto out;
2736 }
2737
2738 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2739 if (!pages_disk) {
2740 err = -ENOMEM;
2741 goto out;
2742 }
2743
2744 for (i = 0; i < pages_per_frame; i++) {
2745 pg = alloc_page(GFP_KERNEL);
2746 if (!pg) {
2747 err = -ENOMEM;
2748 goto out1;
2749 }
2750 pages_disk[i] = pg;
2751 lock_page(pg);
2752 kmap(pg);
2753 }
2754
2755 /* To simplify compress algorithm do vmap for source and target pages. */
2756 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2757 if (!frame_ondisk) {
2758 err = -ENOMEM;
2759 goto out1;
2760 }
2761
2762 for (i = 0; i < pages_per_frame; i++)
2763 kmap(pages[i]);
2764
2765 /* Map in-memory frame for read-only. */
2766 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2767 if (!frame_mem) {
2768 err = -ENOMEM;
2769 goto out2;
2770 }
2771
2772 mutex_lock(&sbi->compress.mtx_lznt);
2773 lznt = NULL;
2774 if (!sbi->compress.lznt) {
2775 /*
2776 * LZNT implements two levels of compression:
2777 * 0 - Standard compression
2778 * 1 - Best compression, requires a lot of cpu
2779 * use mount option?
2780 */
2781 lznt = get_lznt_ctx(0);
2782 if (!lznt) {
2783 mutex_unlock(&sbi->compress.mtx_lznt);
2784 err = -ENOMEM;
2785 goto out3;
2786 }
2787
2788 sbi->compress.lznt = lznt;
2789 lznt = NULL;
2790 }
2791
2792 /* Compress: frame_mem -> frame_ondisk */
2793 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2794 frame_size, sbi->compress.lznt);
2795 mutex_unlock(&sbi->compress.mtx_lznt);
2796 kfree(lznt);
2797
2798 if (compr_size + sbi->cluster_size > frame_size) {
2799 /* Frame is not compressed. */
2800 compr_size = frame_size;
2801 ondisk_size = frame_size;
2802 } else if (compr_size) {
2803 /* Frame is compressed. */
2804 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2805 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2806 } else {
2807 /* Frame is sparsed. */
2808 ondisk_size = 0;
2809 }
2810
2811 down_write(&ni->file.run_lock);
2812 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2813 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2814 up_write(&ni->file.run_lock);
2815 if (err)
2816 goto out2;
2817
2818 if (!ondisk_size)
2819 goto out2;
2820
2821 down_read(&ni->file.run_lock);
2822 err = ntfs_bio_pages(sbi, &ni->file.run,
2823 ondisk_size < frame_size ? pages_disk : pages,
2824 pages_per_frame, frame_vbo, ondisk_size,
2825 REQ_OP_WRITE);
2826 up_read(&ni->file.run_lock);
2827
2828 out3:
2829 vunmap(frame_mem);
2830
2831 out2:
2832 for (i = 0; i < pages_per_frame; i++)
2833 kunmap(pages[i]);
2834
2835 vunmap(frame_ondisk);
2836 out1:
2837 for (i = 0; i < pages_per_frame; i++) {
2838 pg = pages_disk[i];
2839 if (pg) {
2840 kunmap(pg);
2841 unlock_page(pg);
2842 put_page(pg);
2843 }
2844 }
2845 kfree(pages_disk);
2846 out:
2847 return err;
2848 }
2849
2850 /*
2851 * ni_remove_name - Removes name 'de' from MFT and from directory.
2852 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2853 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2854 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2855 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2856 {
2857 int err;
2858 struct ntfs_sb_info *sbi = ni->mi.sbi;
2859 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2860 struct ATTR_FILE_NAME *fname;
2861 struct ATTR_LIST_ENTRY *le;
2862 struct mft_inode *mi;
2863 u16 de_key_size = le16_to_cpu(de->key_size);
2864 u8 name_type;
2865
2866 *undo_step = 0;
2867
2868 /* Find name in record. */
2869 mi_get_ref(&dir_ni->mi, &de_name->home);
2870
2871 fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2872 &de_name->home, &mi, &le);
2873 if (!fname)
2874 return -ENOENT;
2875
2876 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2877 name_type = paired_name(fname->type);
2878
2879 /* Mark ntfs as dirty. It will be cleared at umount. */
2880 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2881
2882 /* Step 1: Remove name from directory. */
2883 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2884 if (err)
2885 return err;
2886
2887 /* Step 2: Remove name from MFT. */
2888 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2889
2890 *undo_step = 2;
2891
2892 /* Get paired name. */
2893 fname = ni_fname_type(ni, name_type, &mi, &le);
2894 if (fname) {
2895 u16 de2_key_size = fname_full_size(fname);
2896
2897 *de2 = Add2Ptr(de, 1024);
2898 (*de2)->key_size = cpu_to_le16(de2_key_size);
2899
2900 memcpy(*de2 + 1, fname, de2_key_size);
2901
2902 /* Step 3: Remove paired name from directory. */
2903 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2904 de2_key_size, sbi);
2905 if (err)
2906 return err;
2907
2908 /* Step 4: Remove paired name from MFT. */
2909 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2910
2911 *undo_step = 4;
2912 }
2913 return 0;
2914 }
2915
2916 /*
2917 * ni_remove_name_undo - Paired function for ni_remove_name.
2918 *
2919 * Return: True if ok
2920 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2921 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2922 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2923 {
2924 struct ntfs_sb_info *sbi = ni->mi.sbi;
2925 struct ATTRIB *attr;
2926 u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2927
2928 switch (undo_step) {
2929 case 4:
2930 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2931 &attr, NULL, NULL)) {
2932 return false;
2933 }
2934 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2935
2936 mi_get_ref(&ni->mi, &de2->ref);
2937 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2938 sizeof(struct NTFS_DE));
2939 de2->flags = 0;
2940 de2->res = 0;
2941
2942 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2943 1)) {
2944 return false;
2945 }
2946 fallthrough;
2947
2948 case 2:
2949 de_key_size = le16_to_cpu(de->key_size);
2950
2951 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2952 &attr, NULL, NULL)) {
2953 return false;
2954 }
2955
2956 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2957 mi_get_ref(&ni->mi, &de->ref);
2958
2959 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2960 return false;
2961 }
2962
2963 return true;
2964 }
2965
2966 /*
2967 * ni_add_name - Add new name in MFT and in directory.
2968 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)2969 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2970 struct NTFS_DE *de)
2971 {
2972 int err;
2973 struct ATTRIB *attr;
2974 struct ATTR_LIST_ENTRY *le;
2975 struct mft_inode *mi;
2976 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2977 u16 de_key_size = le16_to_cpu(de->key_size);
2978
2979 mi_get_ref(&ni->mi, &de->ref);
2980 mi_get_ref(&dir_ni->mi, &de_name->home);
2981
2982 /* Insert new name in MFT. */
2983 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
2984 &mi, &le);
2985 if (err)
2986 return err;
2987
2988 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
2989
2990 /* Insert new name in directory. */
2991 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
2992 if (err)
2993 ni_remove_attr_le(ni, attr, mi, le);
2994
2995 return err;
2996 }
2997
2998 /*
2999 * ni_rename - Remove one name and insert new name.
3000 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3001 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3002 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3003 bool *is_bad)
3004 {
3005 int err;
3006 struct NTFS_DE *de2 = NULL;
3007 int undo = 0;
3008
3009 /*
3010 * There are two possible ways to rename:
3011 * 1) Add new name and remove old name.
3012 * 2) Remove old name and add new name.
3013 *
3014 * In most cases (not all!) adding new name in MFT and in directory can
3015 * allocate additional cluster(s).
3016 * Second way may result to bad inode if we can't add new name
3017 * and then can't restore (add) old name.
3018 */
3019
3020 /*
3021 * Way 1 - Add new + remove old.
3022 */
3023 err = ni_add_name(new_dir_ni, ni, new_de);
3024 if (!err) {
3025 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3026 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3027 *is_bad = true;
3028 }
3029
3030 /*
3031 * Way 2 - Remove old + add new.
3032 */
3033 /*
3034 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3035 * if (!err) {
3036 * err = ni_add_name(new_dir_ni, ni, new_de);
3037 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3038 * *is_bad = true;
3039 * }
3040 */
3041
3042 return err;
3043 }
3044
3045 /*
3046 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3047 */
ni_is_dirty(struct inode * inode)3048 bool ni_is_dirty(struct inode *inode)
3049 {
3050 struct ntfs_inode *ni = ntfs_i(inode);
3051 struct rb_node *node;
3052
3053 if (ni->mi.dirty || ni->attr_list.dirty ||
3054 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3055 return true;
3056
3057 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3058 if (rb_entry(node, struct mft_inode, node)->dirty)
3059 return true;
3060 }
3061
3062 return false;
3063 }
3064
3065 /*
3066 * ni_update_parent
3067 *
3068 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3069 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3070 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3071 int sync)
3072 {
3073 struct ATTRIB *attr;
3074 struct mft_inode *mi;
3075 struct ATTR_LIST_ENTRY *le = NULL;
3076 struct ntfs_sb_info *sbi = ni->mi.sbi;
3077 struct super_block *sb = sbi->sb;
3078 bool re_dirty = false;
3079
3080 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3081 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3082 attr = NULL;
3083 dup->alloc_size = 0;
3084 dup->data_size = 0;
3085 } else {
3086 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3087
3088 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3089 &mi);
3090 if (!attr) {
3091 dup->alloc_size = dup->data_size = 0;
3092 } else if (!attr->non_res) {
3093 u32 data_size = le32_to_cpu(attr->res.data_size);
3094
3095 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3096 dup->data_size = cpu_to_le64(data_size);
3097 } else {
3098 u64 new_valid = ni->i_valid;
3099 u64 data_size = le64_to_cpu(attr->nres.data_size);
3100 __le64 valid_le;
3101
3102 dup->alloc_size = is_attr_ext(attr)
3103 ? attr->nres.total_size
3104 : attr->nres.alloc_size;
3105 dup->data_size = attr->nres.data_size;
3106
3107 if (new_valid > data_size)
3108 new_valid = data_size;
3109
3110 valid_le = cpu_to_le64(new_valid);
3111 if (valid_le != attr->nres.valid_size) {
3112 attr->nres.valid_size = valid_le;
3113 mi->dirty = true;
3114 }
3115 }
3116 }
3117
3118 /* TODO: Fill reparse info. */
3119 dup->reparse = 0;
3120 dup->ea_size = 0;
3121
3122 if (ni->ni_flags & NI_FLAG_EA) {
3123 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3124 NULL);
3125 if (attr) {
3126 const struct EA_INFO *info;
3127
3128 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3129 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3130 if (info)
3131 dup->ea_size = info->size_pack;
3132 }
3133 }
3134
3135 attr = NULL;
3136 le = NULL;
3137
3138 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3139 &mi))) {
3140 struct inode *dir;
3141 struct ATTR_FILE_NAME *fname;
3142
3143 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3144 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3145 continue;
3146
3147 /* Check simple case when parent inode equals current inode. */
3148 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3149 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3150 continue;
3151 }
3152
3153 /* ntfs_iget5 may sleep. */
3154 dir = ntfs_iget5(sb, &fname->home, NULL);
3155 if (IS_ERR(dir)) {
3156 ntfs_inode_warn(
3157 &ni->vfs_inode,
3158 "failed to open parent directory r=%lx to update",
3159 (long)ino_get(&fname->home));
3160 continue;
3161 }
3162
3163 if (!is_bad_inode(dir)) {
3164 struct ntfs_inode *dir_ni = ntfs_i(dir);
3165
3166 if (!ni_trylock(dir_ni)) {
3167 re_dirty = true;
3168 } else {
3169 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3170 ni_unlock(dir_ni);
3171 memcpy(&fname->dup, dup, sizeof(fname->dup));
3172 mi->dirty = true;
3173 }
3174 }
3175 iput(dir);
3176 }
3177
3178 return re_dirty;
3179 }
3180
3181 /*
3182 * ni_write_inode - Write MFT base record and all subrecords to disk.
3183 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3184 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3185 {
3186 int err = 0, err2;
3187 struct ntfs_inode *ni = ntfs_i(inode);
3188 struct super_block *sb = inode->i_sb;
3189 struct ntfs_sb_info *sbi = sb->s_fs_info;
3190 bool re_dirty = false;
3191 struct ATTR_STD_INFO *std;
3192 struct rb_node *node, *next;
3193 struct NTFS_DUP_INFO dup;
3194
3195 if (is_bad_inode(inode) || sb_rdonly(sb))
3196 return 0;
3197
3198 if (!ni_trylock(ni)) {
3199 /* 'ni' is under modification, skip for now. */
3200 mark_inode_dirty_sync(inode);
3201 return 0;
3202 }
3203
3204 if (!ni->mi.mrec)
3205 goto out;
3206
3207 if (is_rec_inuse(ni->mi.mrec) &&
3208 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3209 bool modified = false;
3210
3211 /* Update times in standard attribute. */
3212 std = ni_std(ni);
3213 if (!std) {
3214 err = -EINVAL;
3215 goto out;
3216 }
3217
3218 /* Update the access times if they have changed. */
3219 dup.m_time = kernel2nt(&inode->i_mtime);
3220 if (std->m_time != dup.m_time) {
3221 std->m_time = dup.m_time;
3222 modified = true;
3223 }
3224
3225 dup.c_time = kernel2nt(&inode->i_ctime);
3226 if (std->c_time != dup.c_time) {
3227 std->c_time = dup.c_time;
3228 modified = true;
3229 }
3230
3231 dup.a_time = kernel2nt(&inode->i_atime);
3232 if (std->a_time != dup.a_time) {
3233 std->a_time = dup.a_time;
3234 modified = true;
3235 }
3236
3237 dup.fa = ni->std_fa;
3238 if (std->fa != dup.fa) {
3239 std->fa = dup.fa;
3240 modified = true;
3241 }
3242
3243 if (modified)
3244 ni->mi.dirty = true;
3245
3246 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3247 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3248 /* Avoid __wait_on_freeing_inode(inode). */
3249 && (sb->s_flags & SB_ACTIVE)) {
3250 dup.cr_time = std->cr_time;
3251 /* Not critical if this function fail. */
3252 re_dirty = ni_update_parent(ni, &dup, sync);
3253
3254 if (re_dirty)
3255 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3256 else
3257 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3258 }
3259
3260 /* Update attribute list. */
3261 if (ni->attr_list.size && ni->attr_list.dirty) {
3262 if (inode->i_ino != MFT_REC_MFT || sync) {
3263 err = ni_try_remove_attr_list(ni);
3264 if (err)
3265 goto out;
3266 }
3267
3268 err = al_update(ni, sync);
3269 if (err)
3270 goto out;
3271 }
3272 }
3273
3274 for (node = rb_first(&ni->mi_tree); node; node = next) {
3275 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3276 bool is_empty;
3277
3278 next = rb_next(node);
3279
3280 if (!mi->dirty)
3281 continue;
3282
3283 is_empty = !mi_enum_attr(mi, NULL);
3284
3285 if (is_empty)
3286 clear_rec_inuse(mi->mrec);
3287
3288 err2 = mi_write(mi, sync);
3289 if (!err && err2)
3290 err = err2;
3291
3292 if (is_empty) {
3293 ntfs_mark_rec_free(sbi, mi->rno);
3294 rb_erase(node, &ni->mi_tree);
3295 mi_put(mi);
3296 }
3297 }
3298
3299 if (ni->mi.dirty) {
3300 err2 = mi_write(&ni->mi, sync);
3301 if (!err && err2)
3302 err = err2;
3303 }
3304 out:
3305 ni_unlock(ni);
3306
3307 if (err) {
3308 ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3309 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3310 return err;
3311 }
3312
3313 if (re_dirty)
3314 mark_inode_dirty_sync(inode);
3315
3316 return 0;
3317 }
3318