• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/vmalloc.h>
11 
12 #include "debug.h"
13 #include "ntfs.h"
14 #include "ntfs_fs.h"
15 #ifdef CONFIG_NTFS3_LZX_XPRESS
16 #include "lib/lib.h"
17 #endif
18 
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)19 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
20 				   CLST ino, struct rb_node *ins)
21 {
22 	struct rb_node **p = &tree->rb_node;
23 	struct rb_node *pr = NULL;
24 
25 	while (*p) {
26 		struct mft_inode *mi;
27 
28 		pr = *p;
29 		mi = rb_entry(pr, struct mft_inode, node);
30 		if (mi->rno > ino)
31 			p = &pr->rb_left;
32 		else if (mi->rno < ino)
33 			p = &pr->rb_right;
34 		else
35 			return mi;
36 	}
37 
38 	if (!ins)
39 		return NULL;
40 
41 	rb_link_node(ins, pr, p);
42 	rb_insert_color(ins, tree);
43 	return rb_entry(ins, struct mft_inode, node);
44 }
45 
46 /*
47  * ni_find_mi - Find mft_inode by record number.
48  */
ni_find_mi(struct ntfs_inode * ni,CLST rno)49 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
50 {
51 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
52 }
53 
54 /*
55  * ni_add_mi - Add new mft_inode into ntfs_inode.
56  */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)57 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
58 {
59 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
60 }
61 
62 /*
63  * ni_remove_mi - Remove mft_inode from ntfs_inode.
64  */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)65 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
66 {
67 	rb_erase(&mi->node, &ni->mi_tree);
68 }
69 
70 /*
71  * ni_std - Return: Pointer into std_info from primary record.
72  */
ni_std(struct ntfs_inode * ni)73 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
74 {
75 	const struct ATTRIB *attr;
76 
77 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
78 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
79 		    : NULL;
80 }
81 
82 /*
83  * ni_std5
84  *
85  * Return: Pointer into std_info from primary record.
86  */
ni_std5(struct ntfs_inode * ni)87 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
88 {
89 	const struct ATTRIB *attr;
90 
91 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
92 
93 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
94 		    : NULL;
95 }
96 
97 /*
98  * ni_clear - Clear resources allocated by ntfs_inode.
99  */
ni_clear(struct ntfs_inode * ni)100 void ni_clear(struct ntfs_inode *ni)
101 {
102 	struct rb_node *node;
103 
104 	if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
105 		ni_delete_all(ni);
106 
107 	al_destroy(ni);
108 
109 	for (node = rb_first(&ni->mi_tree); node;) {
110 		struct rb_node *next = rb_next(node);
111 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
112 
113 		rb_erase(node, &ni->mi_tree);
114 		mi_put(mi);
115 		node = next;
116 	}
117 
118 	/* Bad inode always has mode == S_IFREG. */
119 	if (ni->ni_flags & NI_FLAG_DIR)
120 		indx_clear(&ni->dir);
121 	else {
122 		run_close(&ni->file.run);
123 #ifdef CONFIG_NTFS3_LZX_XPRESS
124 		if (ni->file.offs_page) {
125 			/* On-demand allocated page for offsets. */
126 			put_page(ni->file.offs_page);
127 			ni->file.offs_page = NULL;
128 		}
129 #endif
130 	}
131 
132 	mi_clear(&ni->mi);
133 }
134 
135 /*
136  * ni_load_mi_ex - Find mft_inode by record number.
137  */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)138 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
139 {
140 	int err;
141 	struct mft_inode *r;
142 
143 	r = ni_find_mi(ni, rno);
144 	if (r)
145 		goto out;
146 
147 	err = mi_get(ni->mi.sbi, rno, &r);
148 	if (err)
149 		return err;
150 
151 	ni_add_mi(ni, r);
152 
153 out:
154 	if (mi)
155 		*mi = r;
156 	return 0;
157 }
158 
159 /*
160  * ni_load_mi - Load mft_inode corresponded list_entry.
161  */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)162 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
163 	       struct mft_inode **mi)
164 {
165 	CLST rno;
166 
167 	if (!le) {
168 		*mi = &ni->mi;
169 		return 0;
170 	}
171 
172 	rno = ino_get(&le->ref);
173 	if (rno == ni->mi.rno) {
174 		*mi = &ni->mi;
175 		return 0;
176 	}
177 	return ni_load_mi_ex(ni, rno, mi);
178 }
179 
180 /*
181  * ni_find_attr
182  *
183  * Return: Attribute and record this attribute belongs to.
184  */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)185 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
186 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
187 			    const __le16 *name, u8 name_len, const CLST *vcn,
188 			    struct mft_inode **mi)
189 {
190 	struct ATTR_LIST_ENTRY *le;
191 	struct mft_inode *m;
192 
193 	if (!ni->attr_list.size ||
194 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
195 		if (le_o)
196 			*le_o = NULL;
197 		if (mi)
198 			*mi = &ni->mi;
199 
200 		/* Look for required attribute in primary record. */
201 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
202 	}
203 
204 	/* First look for list entry of required type. */
205 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
206 	if (!le)
207 		return NULL;
208 
209 	if (le_o)
210 		*le_o = le;
211 
212 	/* Load record that contains this attribute. */
213 	if (ni_load_mi(ni, le, &m))
214 		return NULL;
215 
216 	/* Look for required attribute. */
217 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
218 
219 	if (!attr)
220 		goto out;
221 
222 	if (!attr->non_res) {
223 		if (vcn && *vcn)
224 			goto out;
225 	} else if (!vcn) {
226 		if (attr->nres.svcn)
227 			goto out;
228 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
229 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
230 		goto out;
231 	}
232 
233 	if (mi)
234 		*mi = m;
235 	return attr;
236 
237 out:
238 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
239 	return NULL;
240 }
241 
242 /*
243  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
244  */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)245 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
246 			       struct ATTR_LIST_ENTRY **le,
247 			       struct mft_inode **mi)
248 {
249 	struct mft_inode *mi2;
250 	struct ATTR_LIST_ENTRY *le2;
251 
252 	/* Do we have an attribute list? */
253 	if (!ni->attr_list.size) {
254 		*le = NULL;
255 		if (mi)
256 			*mi = &ni->mi;
257 		/* Enum attributes in primary record. */
258 		return mi_enum_attr(&ni->mi, attr);
259 	}
260 
261 	/* Get next list entry. */
262 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
263 	if (!le2)
264 		return NULL;
265 
266 	/* Load record that contains the required attribute. */
267 	if (ni_load_mi(ni, le2, &mi2))
268 		return NULL;
269 
270 	if (mi)
271 		*mi = mi2;
272 
273 	/* Find attribute in loaded record. */
274 	return rec_find_attr_le(mi2, le2);
275 }
276 
277 /*
278  * ni_load_attr - Load attribute that contains given VCN.
279  */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)280 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
281 			    const __le16 *name, u8 name_len, CLST vcn,
282 			    struct mft_inode **pmi)
283 {
284 	struct ATTR_LIST_ENTRY *le;
285 	struct ATTRIB *attr;
286 	struct mft_inode *mi;
287 	struct ATTR_LIST_ENTRY *next;
288 
289 	if (!ni->attr_list.size) {
290 		if (pmi)
291 			*pmi = &ni->mi;
292 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
293 	}
294 
295 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
296 	if (!le)
297 		return NULL;
298 
299 	/*
300 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
301 	 * So to find the ATTRIB segment that contains 'vcn' we should
302 	 * enumerate some entries.
303 	 */
304 	if (vcn) {
305 		for (;; le = next) {
306 			next = al_find_ex(ni, le, type, name, name_len, NULL);
307 			if (!next || le64_to_cpu(next->vcn) > vcn)
308 				break;
309 		}
310 	}
311 
312 	if (ni_load_mi(ni, le, &mi))
313 		return NULL;
314 
315 	if (pmi)
316 		*pmi = mi;
317 
318 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
319 	if (!attr)
320 		return NULL;
321 
322 	if (!attr->non_res)
323 		return attr;
324 
325 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
326 	    vcn <= le64_to_cpu(attr->nres.evcn))
327 		return attr;
328 
329 	return NULL;
330 }
331 
332 /*
333  * ni_load_all_mi - Load all subrecords.
334  */
ni_load_all_mi(struct ntfs_inode * ni)335 int ni_load_all_mi(struct ntfs_inode *ni)
336 {
337 	int err;
338 	struct ATTR_LIST_ENTRY *le;
339 
340 	if (!ni->attr_list.size)
341 		return 0;
342 
343 	le = NULL;
344 
345 	while ((le = al_enumerate(ni, le))) {
346 		CLST rno = ino_get(&le->ref);
347 
348 		if (rno == ni->mi.rno)
349 			continue;
350 
351 		err = ni_load_mi_ex(ni, rno, NULL);
352 		if (err)
353 			return err;
354 	}
355 
356 	return 0;
357 }
358 
359 /*
360  * ni_add_subrecord - Allocate + format + attach a new subrecord.
361  */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)362 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
363 {
364 	struct mft_inode *m;
365 
366 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
367 	if (!m)
368 		return false;
369 
370 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
371 		mi_put(m);
372 		return false;
373 	}
374 
375 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
376 
377 	ni_add_mi(ni, m);
378 	*mi = m;
379 	return true;
380 }
381 
382 /*
383  * ni_remove_attr - Remove all attributes for the given type/name/id.
384  */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,size_t name_len,bool base_only,const __le16 * id)385 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
386 		   const __le16 *name, size_t name_len, bool base_only,
387 		   const __le16 *id)
388 {
389 	int err;
390 	struct ATTRIB *attr;
391 	struct ATTR_LIST_ENTRY *le;
392 	struct mft_inode *mi;
393 	u32 type_in;
394 	int diff;
395 
396 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
397 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
398 		if (!attr)
399 			return -ENOENT;
400 
401 		mi_remove_attr(ni, &ni->mi, attr);
402 		return 0;
403 	}
404 
405 	type_in = le32_to_cpu(type);
406 	le = NULL;
407 
408 	for (;;) {
409 		le = al_enumerate(ni, le);
410 		if (!le)
411 			return 0;
412 
413 next_le2:
414 		diff = le32_to_cpu(le->type) - type_in;
415 		if (diff < 0)
416 			continue;
417 
418 		if (diff > 0)
419 			return 0;
420 
421 		if (le->name_len != name_len)
422 			continue;
423 
424 		if (name_len &&
425 		    memcmp(le_name(le), name, name_len * sizeof(short)))
426 			continue;
427 
428 		if (id && le->id != *id)
429 			continue;
430 		err = ni_load_mi(ni, le, &mi);
431 		if (err)
432 			return err;
433 
434 		al_remove_le(ni, le);
435 
436 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
437 		if (!attr)
438 			return -ENOENT;
439 
440 		mi_remove_attr(ni, mi, attr);
441 
442 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
443 			return 0;
444 		goto next_le2;
445 	}
446 }
447 
448 /*
449  * ni_ins_new_attr - Insert the attribute into record.
450  *
451  * Return: Not full constructed attribute or NULL if not possible to create.
452  */
453 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)454 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
455 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
456 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
457 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
458 {
459 	int err;
460 	struct ATTRIB *attr;
461 	bool le_added = false;
462 	struct MFT_REF ref;
463 
464 	mi_get_ref(mi, &ref);
465 
466 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
467 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
468 				&ref, &le);
469 		if (err) {
470 			/* No memory or no space. */
471 			return NULL;
472 		}
473 		le_added = true;
474 
475 		/*
476 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
477 		 * which moves some attributes out of primary record
478 		 * this means that name may point into moved memory
479 		 * reinit 'name' from le.
480 		 */
481 		name = le->name;
482 	}
483 
484 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
485 	if (!attr) {
486 		if (le_added)
487 			al_remove_le(ni, le);
488 		return NULL;
489 	}
490 
491 	if (type == ATTR_LIST) {
492 		/* Attr list is not in list entry array. */
493 		goto out;
494 	}
495 
496 	if (!le)
497 		goto out;
498 
499 	/* Update ATTRIB Id and record reference. */
500 	le->id = attr->id;
501 	ni->attr_list.dirty = true;
502 	le->ref = ref;
503 
504 out:
505 	if (ins_le)
506 		*ins_le = le;
507 	return attr;
508 }
509 
510 /*
511  * ni_repack
512  *
513  * Random write access to sparsed or compressed file may result to
514  * not optimized packed runs.
515  * Here is the place to optimize it.
516  */
ni_repack(struct ntfs_inode * ni)517 static int ni_repack(struct ntfs_inode *ni)
518 {
519 	int err = 0;
520 	struct ntfs_sb_info *sbi = ni->mi.sbi;
521 	struct mft_inode *mi, *mi_p = NULL;
522 	struct ATTRIB *attr = NULL, *attr_p;
523 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
524 	CLST alloc = 0;
525 	u8 cluster_bits = sbi->cluster_bits;
526 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
527 	u32 roff, rs = sbi->record_size;
528 	struct runs_tree run;
529 
530 	run_init(&run);
531 
532 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
533 		if (!attr->non_res)
534 			continue;
535 
536 		svcn = le64_to_cpu(attr->nres.svcn);
537 		if (svcn != le64_to_cpu(le->vcn)) {
538 			err = -EINVAL;
539 			break;
540 		}
541 
542 		if (!svcn) {
543 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
544 				cluster_bits;
545 			mi_p = NULL;
546 		} else if (svcn != evcn + 1) {
547 			err = -EINVAL;
548 			break;
549 		}
550 
551 		evcn = le64_to_cpu(attr->nres.evcn);
552 
553 		if (svcn > evcn + 1) {
554 			err = -EINVAL;
555 			break;
556 		}
557 
558 		if (!mi_p) {
559 			/* Do not try if not enogh free space. */
560 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
561 				continue;
562 
563 			/* Do not try if last attribute segment. */
564 			if (evcn + 1 == alloc)
565 				continue;
566 			run_close(&run);
567 		}
568 
569 		roff = le16_to_cpu(attr->nres.run_off);
570 
571 		if (roff > le32_to_cpu(attr->size)) {
572 			err = -EINVAL;
573 			break;
574 		}
575 
576 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
577 				 Add2Ptr(attr, roff),
578 				 le32_to_cpu(attr->size) - roff);
579 		if (err < 0)
580 			break;
581 
582 		if (!mi_p) {
583 			mi_p = mi;
584 			attr_p = attr;
585 			svcn_p = svcn;
586 			evcn_p = evcn;
587 			le_p = le;
588 			err = 0;
589 			continue;
590 		}
591 
592 		/*
593 		 * Run contains data from two records: mi_p and mi
594 		 * Try to pack in one.
595 		 */
596 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
597 		if (err)
598 			break;
599 
600 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
601 
602 		if (next_svcn >= evcn + 1) {
603 			/* We can remove this attribute segment. */
604 			al_remove_le(ni, le);
605 			mi_remove_attr(NULL, mi, attr);
606 			le = le_p;
607 			continue;
608 		}
609 
610 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
611 		mi->dirty = true;
612 		ni->attr_list.dirty = true;
613 
614 		if (evcn + 1 == alloc) {
615 			err = mi_pack_runs(mi, attr, &run,
616 					   evcn + 1 - next_svcn);
617 			if (err)
618 				break;
619 			mi_p = NULL;
620 		} else {
621 			mi_p = mi;
622 			attr_p = attr;
623 			svcn_p = next_svcn;
624 			evcn_p = evcn;
625 			le_p = le;
626 			run_truncate_head(&run, next_svcn);
627 		}
628 	}
629 
630 	if (err) {
631 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
632 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
633 
634 		/* Pack loaded but not packed runs. */
635 		if (mi_p)
636 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
637 	}
638 
639 	run_close(&run);
640 	return err;
641 }
642 
643 /*
644  * ni_try_remove_attr_list
645  *
646  * Can we remove attribute list?
647  * Check the case when primary record contains enough space for all attributes.
648  */
ni_try_remove_attr_list(struct ntfs_inode * ni)649 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
650 {
651 	int err = 0;
652 	struct ntfs_sb_info *sbi = ni->mi.sbi;
653 	struct ATTRIB *attr, *attr_list, *attr_ins;
654 	struct ATTR_LIST_ENTRY *le;
655 	struct mft_inode *mi;
656 	u32 asize, free;
657 	struct MFT_REF ref;
658 	__le16 id;
659 
660 	if (!ni->attr_list.dirty)
661 		return 0;
662 
663 	err = ni_repack(ni);
664 	if (err)
665 		return err;
666 
667 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
668 	if (!attr_list)
669 		return 0;
670 
671 	asize = le32_to_cpu(attr_list->size);
672 
673 	/* Free space in primary record without attribute list. */
674 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
675 	mi_get_ref(&ni->mi, &ref);
676 
677 	le = NULL;
678 	while ((le = al_enumerate(ni, le))) {
679 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
680 			continue;
681 
682 		if (le->vcn)
683 			return 0;
684 
685 		mi = ni_find_mi(ni, ino_get(&le->ref));
686 		if (!mi)
687 			return 0;
688 
689 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
690 				    le->name_len, &le->id);
691 		if (!attr)
692 			return 0;
693 
694 		asize = le32_to_cpu(attr->size);
695 		if (asize > free)
696 			return 0;
697 
698 		free -= asize;
699 	}
700 
701 	/* It seems that attribute list can be removed from primary record. */
702 	mi_remove_attr(NULL, &ni->mi, attr_list);
703 
704 	/*
705 	 * Repeat the cycle above and move all attributes to primary record.
706 	 * It should be success!
707 	 */
708 	le = NULL;
709 	while ((le = al_enumerate(ni, le))) {
710 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
711 			continue;
712 
713 		mi = ni_find_mi(ni, ino_get(&le->ref));
714 		if (!mi) {
715 			/* Should never happened, 'cause already checked. */
716 			goto bad;
717 		}
718 
719 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
720 				    le->name_len, &le->id);
721 		if (!attr) {
722 			/* Should never happened, 'cause already checked. */
723 			goto bad;
724 		}
725 		asize = le32_to_cpu(attr->size);
726 
727 		/* Insert into primary record. */
728 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
729 					  le->name_len, asize,
730 					  le16_to_cpu(attr->name_off));
731 		if (!attr_ins) {
732 			/*
733 			 * Internal error.
734 			 * Either no space in primary record (already checked).
735 			 * Either tried to insert another
736 			 * non indexed attribute (logic error).
737 			 */
738 			goto bad;
739 		}
740 
741 		/* Copy all except id. */
742 		id = attr_ins->id;
743 		memcpy(attr_ins, attr, asize);
744 		attr_ins->id = id;
745 
746 		/* Remove from original record. */
747 		mi_remove_attr(NULL, mi, attr);
748 	}
749 
750 	run_deallocate(sbi, &ni->attr_list.run, true);
751 	run_close(&ni->attr_list.run);
752 	ni->attr_list.size = 0;
753 	kfree(ni->attr_list.le);
754 	ni->attr_list.le = NULL;
755 	ni->attr_list.dirty = false;
756 
757 	return 0;
758 bad:
759 	ntfs_inode_err(&ni->vfs_inode, "Internal error");
760 	make_bad_inode(&ni->vfs_inode);
761 	return -EINVAL;
762 }
763 
764 /*
765  * ni_create_attr_list - Generates an attribute list for this primary record.
766  */
ni_create_attr_list(struct ntfs_inode * ni)767 int ni_create_attr_list(struct ntfs_inode *ni)
768 {
769 	struct ntfs_sb_info *sbi = ni->mi.sbi;
770 	int err;
771 	u32 lsize;
772 	struct ATTRIB *attr;
773 	struct ATTRIB *arr_move[7];
774 	struct ATTR_LIST_ENTRY *le, *le_b[7];
775 	struct MFT_REC *rec;
776 	bool is_mft;
777 	CLST rno = 0;
778 	struct mft_inode *mi;
779 	u32 free_b, nb, to_free, rs;
780 	u16 sz;
781 
782 	is_mft = ni->mi.rno == MFT_REC_MFT;
783 	rec = ni->mi.mrec;
784 	rs = sbi->record_size;
785 
786 	/*
787 	 * Skip estimating exact memory requirement.
788 	 * Looks like one record_size is always enough.
789 	 */
790 	le = kmalloc(al_aligned(rs), GFP_NOFS);
791 	if (!le) {
792 		err = -ENOMEM;
793 		goto out;
794 	}
795 
796 	mi_get_ref(&ni->mi, &le->ref);
797 	ni->attr_list.le = le;
798 
799 	attr = NULL;
800 	nb = 0;
801 	free_b = 0;
802 	attr = NULL;
803 
804 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
805 		sz = le_size(attr->name_len);
806 		le->type = attr->type;
807 		le->size = cpu_to_le16(sz);
808 		le->name_len = attr->name_len;
809 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
810 		le->vcn = 0;
811 		if (le != ni->attr_list.le)
812 			le->ref = ni->attr_list.le->ref;
813 		le->id = attr->id;
814 
815 		if (attr->name_len)
816 			memcpy(le->name, attr_name(attr),
817 			       sizeof(short) * attr->name_len);
818 		else if (attr->type == ATTR_STD)
819 			continue;
820 		else if (attr->type == ATTR_LIST)
821 			continue;
822 		else if (is_mft && attr->type == ATTR_DATA)
823 			continue;
824 
825 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
826 			le_b[nb] = le;
827 			arr_move[nb++] = attr;
828 			free_b += le32_to_cpu(attr->size);
829 		}
830 	}
831 
832 	lsize = PtrOffset(ni->attr_list.le, le);
833 	ni->attr_list.size = lsize;
834 
835 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
836 	if (to_free <= rs) {
837 		to_free = 0;
838 	} else {
839 		to_free -= rs;
840 
841 		if (to_free > free_b) {
842 			err = -EINVAL;
843 			goto out1;
844 		}
845 	}
846 
847 	/* Allocate child MFT. */
848 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
849 	if (err)
850 		goto out1;
851 
852 	err = -EINVAL;
853 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
854 	while (to_free > 0) {
855 		struct ATTRIB *b = arr_move[--nb];
856 		u32 asize = le32_to_cpu(b->size);
857 		u16 name_off = le16_to_cpu(b->name_off);
858 
859 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
860 				      b->name_len, asize, name_off);
861 		if (!attr)
862 			goto out1;
863 
864 		mi_get_ref(mi, &le_b[nb]->ref);
865 		le_b[nb]->id = attr->id;
866 
867 		/* Copy all except id. */
868 		memcpy(attr, b, asize);
869 		attr->id = le_b[nb]->id;
870 
871 		/* Remove from primary record. */
872 		if (!mi_remove_attr(NULL, &ni->mi, b))
873 			goto out1;
874 
875 		if (to_free <= asize)
876 			break;
877 		to_free -= asize;
878 		if (!nb)
879 			goto out1;
880 	}
881 
882 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
883 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
884 	if (!attr)
885 		goto out1;
886 
887 	attr->non_res = 0;
888 	attr->flags = 0;
889 	attr->res.data_size = cpu_to_le32(lsize);
890 	attr->res.data_off = SIZEOF_RESIDENT_LE;
891 	attr->res.flags = 0;
892 	attr->res.res = 0;
893 
894 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
895 
896 	ni->attr_list.dirty = false;
897 
898 	mark_inode_dirty(&ni->vfs_inode);
899 	goto out;
900 
901 out1:
902 	kfree(ni->attr_list.le);
903 	ni->attr_list.le = NULL;
904 	ni->attr_list.size = 0;
905 	return err;
906 
907 out:
908 	return 0;
909 }
910 
911 /*
912  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
913  */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)914 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
915 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
916 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
917 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
918 			   struct ATTR_LIST_ENTRY **ins_le)
919 {
920 	struct ATTRIB *attr;
921 	struct mft_inode *mi;
922 	CLST rno;
923 	u64 vbo;
924 	struct rb_node *node;
925 	int err;
926 	bool is_mft, is_mft_data;
927 	struct ntfs_sb_info *sbi = ni->mi.sbi;
928 
929 	is_mft = ni->mi.rno == MFT_REC_MFT;
930 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
931 
932 	if (asize > sbi->max_bytes_per_attr) {
933 		err = -EINVAL;
934 		goto out;
935 	}
936 
937 	/*
938 	 * Standard information and attr_list cannot be made external.
939 	 * The Log File cannot have any external attributes.
940 	 */
941 	if (type == ATTR_STD || type == ATTR_LIST ||
942 	    ni->mi.rno == MFT_REC_LOG) {
943 		err = -EINVAL;
944 		goto out;
945 	}
946 
947 	/* Create attribute list if it is not already existed. */
948 	if (!ni->attr_list.size) {
949 		err = ni_create_attr_list(ni);
950 		if (err)
951 			goto out;
952 	}
953 
954 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
955 
956 	if (force_ext)
957 		goto insert_ext;
958 
959 	/* Load all subrecords into memory. */
960 	err = ni_load_all_mi(ni);
961 	if (err)
962 		goto out;
963 
964 	/* Check each of loaded subrecord. */
965 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
966 		mi = rb_entry(node, struct mft_inode, node);
967 
968 		if (is_mft_data &&
969 		    (mi_enum_attr(mi, NULL) ||
970 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
971 			/* We can't accept this record 'cause MFT's bootstrapping. */
972 			continue;
973 		}
974 		if (is_mft &&
975 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
976 			/*
977 			 * This child record already has a ATTR_DATA.
978 			 * So it can't accept any other records.
979 			 */
980 			continue;
981 		}
982 
983 		if ((type != ATTR_NAME || name_len) &&
984 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
985 			/* Only indexed attributes can share same record. */
986 			continue;
987 		}
988 
989 		/*
990 		 * Do not try to insert this attribute
991 		 * if there is no room in record.
992 		 */
993 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
994 			continue;
995 
996 		/* Try to insert attribute into this subrecord. */
997 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
998 				       name_off, svcn, ins_le);
999 		if (!attr)
1000 			continue;
1001 
1002 		if (ins_attr)
1003 			*ins_attr = attr;
1004 		if (ins_mi)
1005 			*ins_mi = mi;
1006 		return 0;
1007 	}
1008 
1009 insert_ext:
1010 	/* We have to allocate a new child subrecord. */
1011 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1012 	if (err)
1013 		goto out;
1014 
1015 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1016 		err = -EINVAL;
1017 		goto out1;
1018 	}
1019 
1020 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1021 			       name_off, svcn, ins_le);
1022 	if (!attr)
1023 		goto out2;
1024 
1025 	if (ins_attr)
1026 		*ins_attr = attr;
1027 	if (ins_mi)
1028 		*ins_mi = mi;
1029 
1030 	return 0;
1031 
1032 out2:
1033 	ni_remove_mi(ni, mi);
1034 	mi_put(mi);
1035 	err = -EINVAL;
1036 
1037 out1:
1038 	ntfs_mark_rec_free(sbi, rno);
1039 
1040 out:
1041 	return err;
1042 }
1043 
1044 /*
1045  * ni_insert_attr - Insert an attribute into the file.
1046  *
1047  * If the primary record has room, it will just insert the attribute.
1048  * If not, it may make the attribute external.
1049  * For $MFT::Data it may make room for the attribute by
1050  * making other attributes external.
1051  *
1052  * NOTE:
1053  * The ATTR_LIST and ATTR_STD cannot be made external.
1054  * This function does not fill new attribute full.
1055  * It only fills 'size'/'type'/'id'/'name_len' fields.
1056  */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1057 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1058 			  const __le16 *name, u8 name_len, u32 asize,
1059 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1060 			  struct mft_inode **ins_mi,
1061 			  struct ATTR_LIST_ENTRY **ins_le)
1062 {
1063 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1064 	int err;
1065 	struct ATTRIB *attr, *eattr;
1066 	struct MFT_REC *rec;
1067 	bool is_mft;
1068 	struct ATTR_LIST_ENTRY *le;
1069 	u32 list_reserve, max_free, free, used, t32;
1070 	__le16 id;
1071 	u16 t16;
1072 
1073 	is_mft = ni->mi.rno == MFT_REC_MFT;
1074 	rec = ni->mi.mrec;
1075 
1076 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1077 	used = le32_to_cpu(rec->used);
1078 	free = sbi->record_size - used;
1079 
1080 	if (is_mft && type != ATTR_LIST) {
1081 		/* Reserve space for the ATTRIB list. */
1082 		if (free < list_reserve)
1083 			free = 0;
1084 		else
1085 			free -= list_reserve;
1086 	}
1087 
1088 	if (asize <= free) {
1089 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1090 				       asize, name_off, svcn, ins_le);
1091 		if (attr) {
1092 			if (ins_attr)
1093 				*ins_attr = attr;
1094 			if (ins_mi)
1095 				*ins_mi = &ni->mi;
1096 			err = 0;
1097 			goto out;
1098 		}
1099 	}
1100 
1101 	if (!is_mft || type != ATTR_DATA || svcn) {
1102 		/* This ATTRIB will be external. */
1103 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1104 				      svcn, name_off, false, ins_attr, ins_mi,
1105 				      ins_le);
1106 		goto out;
1107 	}
1108 
1109 	/*
1110 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1111 	 *
1112 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1113 	 * Evict as many other attributes as possible.
1114 	 */
1115 	max_free = free;
1116 
1117 	/* Estimate the result of moving all possible attributes away. */
1118 	attr = NULL;
1119 
1120 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1121 		if (attr->type == ATTR_STD)
1122 			continue;
1123 		if (attr->type == ATTR_LIST)
1124 			continue;
1125 		max_free += le32_to_cpu(attr->size);
1126 	}
1127 
1128 	if (max_free < asize + list_reserve) {
1129 		/* Impossible to insert this attribute into primary record. */
1130 		err = -EINVAL;
1131 		goto out;
1132 	}
1133 
1134 	/* Start real attribute moving. */
1135 	attr = NULL;
1136 
1137 	for (;;) {
1138 		attr = mi_enum_attr(&ni->mi, attr);
1139 		if (!attr) {
1140 			/* We should never be here 'cause we have already check this case. */
1141 			err = -EINVAL;
1142 			goto out;
1143 		}
1144 
1145 		/* Skip attributes that MUST be primary record. */
1146 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1147 			continue;
1148 
1149 		le = NULL;
1150 		if (ni->attr_list.size) {
1151 			le = al_find_le(ni, NULL, attr);
1152 			if (!le) {
1153 				/* Really this is a serious bug. */
1154 				err = -EINVAL;
1155 				goto out;
1156 			}
1157 		}
1158 
1159 		t32 = le32_to_cpu(attr->size);
1160 		t16 = le16_to_cpu(attr->name_off);
1161 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1162 				      attr->name_len, t32, attr_svcn(attr), t16,
1163 				      false, &eattr, NULL, NULL);
1164 		if (err)
1165 			return err;
1166 
1167 		id = eattr->id;
1168 		memcpy(eattr, attr, t32);
1169 		eattr->id = id;
1170 
1171 		/* Remove from primary record. */
1172 		mi_remove_attr(NULL, &ni->mi, attr);
1173 
1174 		/* attr now points to next attribute. */
1175 		if (attr->type == ATTR_END)
1176 			goto out;
1177 	}
1178 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1179 		;
1180 
1181 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1182 			       name_off, svcn, ins_le);
1183 	if (!attr) {
1184 		err = -EINVAL;
1185 		goto out;
1186 	}
1187 
1188 	if (ins_attr)
1189 		*ins_attr = attr;
1190 	if (ins_mi)
1191 		*ins_mi = &ni->mi;
1192 
1193 out:
1194 	return err;
1195 }
1196 
1197 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1198 static int ni_expand_mft_list(struct ntfs_inode *ni)
1199 {
1200 	int err = 0;
1201 	struct runs_tree *run = &ni->file.run;
1202 	u32 asize, run_size, done = 0;
1203 	struct ATTRIB *attr;
1204 	struct rb_node *node;
1205 	CLST mft_min, mft_new, svcn, evcn, plen;
1206 	struct mft_inode *mi, *mi_min, *mi_new;
1207 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1208 
1209 	/* Find the nearest MFT. */
1210 	mft_min = 0;
1211 	mft_new = 0;
1212 	mi_min = NULL;
1213 
1214 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1215 		mi = rb_entry(node, struct mft_inode, node);
1216 
1217 		attr = mi_enum_attr(mi, NULL);
1218 
1219 		if (!attr) {
1220 			mft_min = mi->rno;
1221 			mi_min = mi;
1222 			break;
1223 		}
1224 	}
1225 
1226 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1227 		mft_new = 0;
1228 		/* Really this is not critical. */
1229 	} else if (mft_min > mft_new) {
1230 		mft_min = mft_new;
1231 		mi_min = mi_new;
1232 	} else {
1233 		ntfs_mark_rec_free(sbi, mft_new);
1234 		mft_new = 0;
1235 		ni_remove_mi(ni, mi_new);
1236 	}
1237 
1238 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1239 	if (!attr) {
1240 		err = -EINVAL;
1241 		goto out;
1242 	}
1243 
1244 	asize = le32_to_cpu(attr->size);
1245 
1246 	evcn = le64_to_cpu(attr->nres.evcn);
1247 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1248 	if (evcn + 1 >= svcn) {
1249 		err = -EINVAL;
1250 		goto out;
1251 	}
1252 
1253 	/*
1254 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1255 	 *
1256 	 * Update first part of ATTR_DATA in 'primary MFT.
1257 	 */
1258 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1259 		       asize - SIZEOF_NONRESIDENT, &plen);
1260 	if (err < 0)
1261 		goto out;
1262 
1263 	run_size = ALIGN(err, 8);
1264 	err = 0;
1265 
1266 	if (plen < svcn) {
1267 		err = -EINVAL;
1268 		goto out;
1269 	}
1270 
1271 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1272 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1273 	/* 'done' - How many bytes of primary MFT becomes free. */
1274 	done = asize - run_size - SIZEOF_NONRESIDENT;
1275 	le32_sub_cpu(&ni->mi.mrec->used, done);
1276 
1277 	/* Estimate the size of second part: run_buf=NULL. */
1278 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1279 		       &plen);
1280 	if (err < 0)
1281 		goto out;
1282 
1283 	run_size = ALIGN(err, 8);
1284 	err = 0;
1285 
1286 	if (plen < evcn + 1 - svcn) {
1287 		err = -EINVAL;
1288 		goto out;
1289 	}
1290 
1291 	/*
1292 	 * This function may implicitly call expand attr_list.
1293 	 * Insert second part of ATTR_DATA in 'mi_min'.
1294 	 */
1295 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1296 			       SIZEOF_NONRESIDENT + run_size,
1297 			       SIZEOF_NONRESIDENT, svcn, NULL);
1298 	if (!attr) {
1299 		err = -EINVAL;
1300 		goto out;
1301 	}
1302 
1303 	attr->non_res = 1;
1304 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1305 	attr->flags = 0;
1306 
1307 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1308 		 run_size, &plen);
1309 
1310 	attr->nres.svcn = cpu_to_le64(svcn);
1311 	attr->nres.evcn = cpu_to_le64(evcn);
1312 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1313 
1314 out:
1315 	if (mft_new) {
1316 		ntfs_mark_rec_free(sbi, mft_new);
1317 		ni_remove_mi(ni, mi_new);
1318 	}
1319 
1320 	return !err && !done ? -EOPNOTSUPP : err;
1321 }
1322 
1323 /*
1324  * ni_expand_list - Move all possible attributes out of primary record.
1325  */
ni_expand_list(struct ntfs_inode * ni)1326 int ni_expand_list(struct ntfs_inode *ni)
1327 {
1328 	int err = 0;
1329 	u32 asize, done = 0;
1330 	struct ATTRIB *attr, *ins_attr;
1331 	struct ATTR_LIST_ENTRY *le;
1332 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1333 	struct MFT_REF ref;
1334 
1335 	mi_get_ref(&ni->mi, &ref);
1336 	le = NULL;
1337 
1338 	while ((le = al_enumerate(ni, le))) {
1339 		if (le->type == ATTR_STD)
1340 			continue;
1341 
1342 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1343 			continue;
1344 
1345 		if (is_mft && le->type == ATTR_DATA)
1346 			continue;
1347 
1348 		/* Find attribute in primary record. */
1349 		attr = rec_find_attr_le(&ni->mi, le);
1350 		if (!attr) {
1351 			err = -EINVAL;
1352 			goto out;
1353 		}
1354 
1355 		asize = le32_to_cpu(attr->size);
1356 
1357 		/* Always insert into new record to avoid collisions (deep recursive). */
1358 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1359 				      attr->name_len, asize, attr_svcn(attr),
1360 				      le16_to_cpu(attr->name_off), true,
1361 				      &ins_attr, NULL, NULL);
1362 
1363 		if (err)
1364 			goto out;
1365 
1366 		memcpy(ins_attr, attr, asize);
1367 		ins_attr->id = le->id;
1368 		/* Remove from primary record. */
1369 		mi_remove_attr(NULL, &ni->mi, attr);
1370 
1371 		done += asize;
1372 		goto out;
1373 	}
1374 
1375 	if (!is_mft) {
1376 		err = -EFBIG; /* Attr list is too big(?) */
1377 		goto out;
1378 	}
1379 
1380 	/* Split MFT data as much as possible. */
1381 	err = ni_expand_mft_list(ni);
1382 	if (err)
1383 		goto out;
1384 
1385 out:
1386 	return !err && !done ? -EOPNOTSUPP : err;
1387 }
1388 
1389 /*
1390  * ni_insert_nonresident - Insert new nonresident attribute.
1391  */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi)1392 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1393 			  const __le16 *name, u8 name_len,
1394 			  const struct runs_tree *run, CLST svcn, CLST len,
1395 			  __le16 flags, struct ATTRIB **new_attr,
1396 			  struct mft_inode **mi)
1397 {
1398 	int err;
1399 	CLST plen;
1400 	struct ATTRIB *attr;
1401 	bool is_ext =
1402 		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1403 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1404 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1405 	u32 run_off = name_off + name_size;
1406 	u32 run_size, asize;
1407 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1408 
1409 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1410 		       &plen);
1411 	if (err < 0)
1412 		goto out;
1413 
1414 	run_size = ALIGN(err, 8);
1415 
1416 	if (plen < len) {
1417 		err = -EINVAL;
1418 		goto out;
1419 	}
1420 
1421 	asize = run_off + run_size;
1422 
1423 	if (asize > sbi->max_bytes_per_attr) {
1424 		err = -EINVAL;
1425 		goto out;
1426 	}
1427 
1428 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1429 			     &attr, mi, NULL);
1430 
1431 	if (err)
1432 		goto out;
1433 
1434 	attr->non_res = 1;
1435 	attr->name_off = cpu_to_le16(name_off);
1436 	attr->flags = flags;
1437 
1438 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1439 
1440 	attr->nres.svcn = cpu_to_le64(svcn);
1441 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1442 
1443 	err = 0;
1444 	if (new_attr)
1445 		*new_attr = attr;
1446 
1447 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1448 
1449 	attr->nres.alloc_size =
1450 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1451 	attr->nres.data_size = attr->nres.alloc_size;
1452 	attr->nres.valid_size = attr->nres.alloc_size;
1453 
1454 	if (is_ext) {
1455 		if (flags & ATTR_FLAG_COMPRESSED)
1456 			attr->nres.c_unit = COMPRESSION_UNIT;
1457 		attr->nres.total_size = attr->nres.alloc_size;
1458 	}
1459 
1460 out:
1461 	return err;
1462 }
1463 
1464 /*
1465  * ni_insert_resident - Inserts new resident attribute.
1466  */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1467 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1468 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1469 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1470 		       struct ATTR_LIST_ENTRY **le)
1471 {
1472 	int err;
1473 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1474 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1475 	struct ATTRIB *attr;
1476 
1477 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1478 			     0, &attr, mi, le);
1479 	if (err)
1480 		return err;
1481 
1482 	attr->non_res = 0;
1483 	attr->flags = 0;
1484 
1485 	attr->res.data_size = cpu_to_le32(data_size);
1486 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1487 	if (type == ATTR_NAME) {
1488 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1489 
1490 		/* is_attr_indexed(attr)) == true */
1491 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1492 		ni->mi.dirty = true;
1493 	}
1494 	attr->res.res = 0;
1495 
1496 	if (new_attr)
1497 		*new_attr = attr;
1498 
1499 	return 0;
1500 }
1501 
1502 /*
1503  * ni_remove_attr_le - Remove attribute from record.
1504  */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1505 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1506 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1507 {
1508 	mi_remove_attr(ni, mi, attr);
1509 
1510 	if (le)
1511 		al_remove_le(ni, le);
1512 }
1513 
1514 /*
1515  * ni_delete_all - Remove all attributes and frees allocates space.
1516  *
1517  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1518  */
ni_delete_all(struct ntfs_inode * ni)1519 int ni_delete_all(struct ntfs_inode *ni)
1520 {
1521 	int err;
1522 	struct ATTR_LIST_ENTRY *le = NULL;
1523 	struct ATTRIB *attr = NULL;
1524 	struct rb_node *node;
1525 	u16 roff;
1526 	u32 asize;
1527 	CLST svcn, evcn;
1528 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1529 	bool nt3 = is_ntfs3(sbi);
1530 	struct MFT_REF ref;
1531 
1532 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1533 		if (!nt3 || attr->name_len) {
1534 			;
1535 		} else if (attr->type == ATTR_REPARSE) {
1536 			mi_get_ref(&ni->mi, &ref);
1537 			ntfs_remove_reparse(sbi, 0, &ref);
1538 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1539 			   le32_to_cpu(attr->res.data_size) >=
1540 				   sizeof(struct GUID)) {
1541 			ntfs_objid_remove(sbi, resident_data(attr));
1542 		}
1543 
1544 		if (!attr->non_res)
1545 			continue;
1546 
1547 		svcn = le64_to_cpu(attr->nres.svcn);
1548 		evcn = le64_to_cpu(attr->nres.evcn);
1549 
1550 		if (evcn + 1 <= svcn)
1551 			continue;
1552 
1553 		asize = le32_to_cpu(attr->size);
1554 		roff = le16_to_cpu(attr->nres.run_off);
1555 
1556 		if (roff > asize)
1557 			return -EINVAL;
1558 
1559 		/* run==1 means unpack and deallocate. */
1560 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1561 			      Add2Ptr(attr, roff), asize - roff);
1562 	}
1563 
1564 	if (ni->attr_list.size) {
1565 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1566 		al_destroy(ni);
1567 	}
1568 
1569 	/* Free all subrecords. */
1570 	for (node = rb_first(&ni->mi_tree); node;) {
1571 		struct rb_node *next = rb_next(node);
1572 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1573 
1574 		clear_rec_inuse(mi->mrec);
1575 		mi->dirty = true;
1576 		mi_write(mi, 0);
1577 
1578 		ntfs_mark_rec_free(sbi, mi->rno);
1579 		ni_remove_mi(ni, mi);
1580 		mi_put(mi);
1581 		node = next;
1582 	}
1583 
1584 	/* Free base record. */
1585 	clear_rec_inuse(ni->mi.mrec);
1586 	ni->mi.dirty = true;
1587 	err = mi_write(&ni->mi, 0);
1588 
1589 	ntfs_mark_rec_free(sbi, ni->mi.rno);
1590 
1591 	return err;
1592 }
1593 
1594 /* ni_fname_name
1595  *
1596  * Return: File name attribute by its value.
1597  */
ni_fname_name(struct ntfs_inode * ni,const struct cpu_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1598 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1599 				     const struct cpu_str *uni,
1600 				     const struct MFT_REF *home_dir,
1601 				     struct mft_inode **mi,
1602 				     struct ATTR_LIST_ENTRY **le)
1603 {
1604 	struct ATTRIB *attr = NULL;
1605 	struct ATTR_FILE_NAME *fname;
1606 
1607 	*le = NULL;
1608 
1609 	/* Enumerate all names. */
1610 next:
1611 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1612 	if (!attr)
1613 		return NULL;
1614 
1615 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1616 	if (!fname)
1617 		goto next;
1618 
1619 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1620 		goto next;
1621 
1622 	if (!uni)
1623 		goto next;
1624 
1625 	if (uni->len != fname->name_len)
1626 		goto next;
1627 
1628 	if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1629 			       false))
1630 		goto next;
1631 
1632 	return fname;
1633 }
1634 
1635 /*
1636  * ni_fname_type
1637  *
1638  * Return: File name attribute with given type.
1639  */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1640 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1641 				     struct mft_inode **mi,
1642 				     struct ATTR_LIST_ENTRY **le)
1643 {
1644 	struct ATTRIB *attr = NULL;
1645 	struct ATTR_FILE_NAME *fname;
1646 
1647 	*le = NULL;
1648 
1649 	if (name_type == FILE_NAME_POSIX)
1650 		return NULL;
1651 
1652 	/* Enumerate all names. */
1653 	for (;;) {
1654 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1655 		if (!attr)
1656 			return NULL;
1657 
1658 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1659 		if (fname && name_type == fname->type)
1660 			return fname;
1661 	}
1662 }
1663 
1664 /*
1665  * ni_new_attr_flags
1666  *
1667  * Process compressed/sparsed in special way.
1668  * NOTE: You need to set ni->std_fa = new_fa
1669  * after this function to keep internal structures in consistency.
1670  */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1671 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1672 {
1673 	struct ATTRIB *attr;
1674 	struct mft_inode *mi;
1675 	__le16 new_aflags;
1676 	u32 new_asize;
1677 
1678 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1679 	if (!attr)
1680 		return -EINVAL;
1681 
1682 	new_aflags = attr->flags;
1683 
1684 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1685 		new_aflags |= ATTR_FLAG_SPARSED;
1686 	else
1687 		new_aflags &= ~ATTR_FLAG_SPARSED;
1688 
1689 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1690 		new_aflags |= ATTR_FLAG_COMPRESSED;
1691 	else
1692 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1693 
1694 	if (new_aflags == attr->flags)
1695 		return 0;
1696 
1697 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1698 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1699 		ntfs_inode_warn(&ni->vfs_inode,
1700 				"file can't be sparsed and compressed");
1701 		return -EOPNOTSUPP;
1702 	}
1703 
1704 	if (!attr->non_res)
1705 		goto out;
1706 
1707 	if (attr->nres.data_size) {
1708 		ntfs_inode_warn(
1709 			&ni->vfs_inode,
1710 			"one can change sparsed/compressed only for empty files");
1711 		return -EOPNOTSUPP;
1712 	}
1713 
1714 	/* Resize nonresident empty attribute in-place only. */
1715 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1716 			    ? (SIZEOF_NONRESIDENT_EX + 8)
1717 			    : (SIZEOF_NONRESIDENT + 8);
1718 
1719 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1720 		return -EOPNOTSUPP;
1721 
1722 	if (new_aflags & ATTR_FLAG_SPARSED) {
1723 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1724 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1725 		attr->nres.c_unit = 0;
1726 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1727 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1728 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1729 		/* The only allowed: 16 clusters per frame. */
1730 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1731 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1732 	} else {
1733 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1734 		/* Normal files. */
1735 		attr->nres.c_unit = 0;
1736 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1737 	}
1738 	attr->nres.run_off = attr->name_off;
1739 out:
1740 	attr->flags = new_aflags;
1741 	mi->dirty = true;
1742 
1743 	return 0;
1744 }
1745 
1746 /*
1747  * ni_parse_reparse
1748  *
1749  * buffer - memory for reparse buffer header
1750  */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1751 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1752 				   struct REPARSE_DATA_BUFFER *buffer)
1753 {
1754 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1755 	u8 bits;
1756 	u16 len;
1757 	typeof(rp->CompressReparseBuffer) *cmpr;
1758 
1759 	/* Try to estimate reparse point. */
1760 	if (!attr->non_res) {
1761 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1762 	} else if (le64_to_cpu(attr->nres.data_size) >=
1763 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1764 		struct runs_tree run;
1765 
1766 		run_init(&run);
1767 
1768 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1769 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1770 				      sizeof(struct REPARSE_DATA_BUFFER),
1771 				      NULL)) {
1772 			rp = buffer;
1773 		}
1774 
1775 		run_close(&run);
1776 	}
1777 
1778 	if (!rp)
1779 		return REPARSE_NONE;
1780 
1781 	len = le16_to_cpu(rp->ReparseDataLength);
1782 	switch (rp->ReparseTag) {
1783 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1784 		break; /* Symbolic link. */
1785 	case IO_REPARSE_TAG_MOUNT_POINT:
1786 		break; /* Mount points and junctions. */
1787 	case IO_REPARSE_TAG_SYMLINK:
1788 		break;
1789 	case IO_REPARSE_TAG_COMPRESS:
1790 		/*
1791 		 * WOF - Windows Overlay Filter - Used to compress files with
1792 		 * LZX/Xpress.
1793 		 *
1794 		 * Unlike native NTFS file compression, the Windows
1795 		 * Overlay Filter supports only read operations. This means
1796 		 * that it doesn't need to sector-align each compressed chunk,
1797 		 * so the compressed data can be packed more tightly together.
1798 		 * If you open the file for writing, the WOF just decompresses
1799 		 * the entire file, turning it back into a plain file.
1800 		 *
1801 		 * Ntfs3 driver decompresses the entire file only on write or
1802 		 * change size requests.
1803 		 */
1804 
1805 		cmpr = &rp->CompressReparseBuffer;
1806 		if (len < sizeof(*cmpr) ||
1807 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1808 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1809 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1810 			return REPARSE_NONE;
1811 		}
1812 
1813 		switch (cmpr->CompressionFormat) {
1814 		case WOF_COMPRESSION_XPRESS4K:
1815 			bits = 0xc; // 4k
1816 			break;
1817 		case WOF_COMPRESSION_XPRESS8K:
1818 			bits = 0xd; // 8k
1819 			break;
1820 		case WOF_COMPRESSION_XPRESS16K:
1821 			bits = 0xe; // 16k
1822 			break;
1823 		case WOF_COMPRESSION_LZX32K:
1824 			bits = 0xf; // 32k
1825 			break;
1826 		default:
1827 			bits = 0x10; // 64k
1828 			break;
1829 		}
1830 		ni_set_ext_compress_bits(ni, bits);
1831 		return REPARSE_COMPRESSED;
1832 
1833 	case IO_REPARSE_TAG_DEDUP:
1834 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1835 		return REPARSE_DEDUPLICATED;
1836 
1837 	default:
1838 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1839 			break;
1840 
1841 		return REPARSE_NONE;
1842 	}
1843 
1844 	if (buffer != rp)
1845 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1846 
1847 	/* Looks like normal symlink. */
1848 	return REPARSE_LINK;
1849 }
1850 
1851 /*
1852  * ni_fiemap - Helper for file_fiemap().
1853  *
1854  * Assumed ni_lock.
1855  * TODO: Less aggressive locks.
1856  */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1857 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1858 	      __u64 vbo, __u64 len)
1859 {
1860 	int err = 0;
1861 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1862 	u8 cluster_bits = sbi->cluster_bits;
1863 	struct runs_tree *run;
1864 	struct rw_semaphore *run_lock;
1865 	struct ATTRIB *attr;
1866 	CLST vcn = vbo >> cluster_bits;
1867 	CLST lcn, clen;
1868 	u64 valid = ni->i_valid;
1869 	u64 lbo, bytes;
1870 	u64 end, alloc_size;
1871 	size_t idx = -1;
1872 	u32 flags;
1873 	bool ok;
1874 
1875 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1876 		run = &ni->dir.alloc_run;
1877 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1878 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1879 		run_lock = &ni->dir.run_lock;
1880 	} else {
1881 		run = &ni->file.run;
1882 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1883 				    NULL);
1884 		if (!attr) {
1885 			err = -EINVAL;
1886 			goto out;
1887 		}
1888 		if (is_attr_compressed(attr)) {
1889 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1890 			err = -EOPNOTSUPP;
1891 			ntfs_inode_warn(
1892 				&ni->vfs_inode,
1893 				"fiemap is not supported for compressed file (cp -r)");
1894 			goto out;
1895 		}
1896 		run_lock = &ni->file.run_lock;
1897 	}
1898 
1899 	if (!attr || !attr->non_res) {
1900 		err = fiemap_fill_next_extent(
1901 			fieinfo, 0, 0,
1902 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1903 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1904 				FIEMAP_EXTENT_MERGED);
1905 		goto out;
1906 	}
1907 
1908 	end = vbo + len;
1909 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1910 	if (end > alloc_size)
1911 		end = alloc_size;
1912 
1913 	down_read(run_lock);
1914 
1915 	while (vbo < end) {
1916 		if (idx == -1) {
1917 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1918 		} else {
1919 			CLST vcn_next = vcn;
1920 
1921 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1922 			     vcn == vcn_next;
1923 			if (!ok)
1924 				vcn = vcn_next;
1925 		}
1926 
1927 		if (!ok) {
1928 			up_read(run_lock);
1929 			down_write(run_lock);
1930 
1931 			err = attr_load_runs_vcn(ni, attr->type,
1932 						 attr_name(attr),
1933 						 attr->name_len, run, vcn);
1934 
1935 			up_write(run_lock);
1936 			down_read(run_lock);
1937 
1938 			if (err)
1939 				break;
1940 
1941 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1942 
1943 			if (!ok) {
1944 				err = -EINVAL;
1945 				break;
1946 			}
1947 		}
1948 
1949 		if (!clen) {
1950 			err = -EINVAL; // ?
1951 			break;
1952 		}
1953 
1954 		if (lcn == SPARSE_LCN) {
1955 			vcn += clen;
1956 			vbo = (u64)vcn << cluster_bits;
1957 			continue;
1958 		}
1959 
1960 		flags = FIEMAP_EXTENT_MERGED;
1961 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
1962 			;
1963 		} else if (is_attr_compressed(attr)) {
1964 			CLST clst_data;
1965 
1966 			err = attr_is_frame_compressed(
1967 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
1968 			if (err)
1969 				break;
1970 			if (clst_data < NTFS_LZNT_CLUSTERS)
1971 				flags |= FIEMAP_EXTENT_ENCODED;
1972 		} else if (is_attr_encrypted(attr)) {
1973 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1974 		}
1975 
1976 		vbo = (u64)vcn << cluster_bits;
1977 		bytes = (u64)clen << cluster_bits;
1978 		lbo = (u64)lcn << cluster_bits;
1979 
1980 		vcn += clen;
1981 
1982 		if (vbo + bytes >= end)
1983 			bytes = end - vbo;
1984 
1985 		if (vbo + bytes <= valid) {
1986 			;
1987 		} else if (vbo >= valid) {
1988 			flags |= FIEMAP_EXTENT_UNWRITTEN;
1989 		} else {
1990 			/* vbo < valid && valid < vbo + bytes */
1991 			u64 dlen = valid - vbo;
1992 
1993 			if (vbo + dlen >= end)
1994 				flags |= FIEMAP_EXTENT_LAST;
1995 
1996 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1997 						      flags);
1998 			if (err < 0)
1999 				break;
2000 			if (err == 1) {
2001 				err = 0;
2002 				break;
2003 			}
2004 
2005 			vbo = valid;
2006 			bytes -= dlen;
2007 			if (!bytes)
2008 				continue;
2009 
2010 			lbo += dlen;
2011 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2012 		}
2013 
2014 		if (vbo + bytes >= end)
2015 			flags |= FIEMAP_EXTENT_LAST;
2016 
2017 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2018 		if (err < 0)
2019 			break;
2020 		if (err == 1) {
2021 			err = 0;
2022 			break;
2023 		}
2024 
2025 		vbo += bytes;
2026 	}
2027 
2028 	up_read(run_lock);
2029 
2030 out:
2031 	return err;
2032 }
2033 
2034 /*
2035  * ni_readpage_cmpr
2036  *
2037  * When decompressing, we typically obtain more than one page per reference.
2038  * We inject the additional pages into the page cache.
2039  */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2040 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2041 {
2042 	int err;
2043 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2044 	struct address_space *mapping = page->mapping;
2045 	pgoff_t index = page->index;
2046 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2047 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2048 	u8 frame_bits;
2049 	CLST frame;
2050 	u32 i, idx, frame_size, pages_per_frame;
2051 	gfp_t gfp_mask;
2052 	struct page *pg;
2053 
2054 	if (vbo >= ni->vfs_inode.i_size) {
2055 		SetPageUptodate(page);
2056 		err = 0;
2057 		goto out;
2058 	}
2059 
2060 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2061 		/* Xpress or LZX. */
2062 		frame_bits = ni_ext_compress_bits(ni);
2063 	} else {
2064 		/* LZNT compression. */
2065 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2066 	}
2067 	frame_size = 1u << frame_bits;
2068 	frame = vbo >> frame_bits;
2069 	frame_vbo = (u64)frame << frame_bits;
2070 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2071 
2072 	pages_per_frame = frame_size >> PAGE_SHIFT;
2073 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2074 	if (!pages) {
2075 		err = -ENOMEM;
2076 		goto out;
2077 	}
2078 
2079 	pages[idx] = page;
2080 	index = frame_vbo >> PAGE_SHIFT;
2081 	gfp_mask = mapping_gfp_mask(mapping);
2082 
2083 	for (i = 0; i < pages_per_frame; i++, index++) {
2084 		if (i == idx)
2085 			continue;
2086 
2087 		pg = find_or_create_page(mapping, index, gfp_mask);
2088 		if (!pg) {
2089 			err = -ENOMEM;
2090 			goto out1;
2091 		}
2092 		pages[i] = pg;
2093 	}
2094 
2095 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2096 
2097 out1:
2098 	if (err)
2099 		SetPageError(page);
2100 
2101 	for (i = 0; i < pages_per_frame; i++) {
2102 		pg = pages[i];
2103 		if (i == idx || !pg)
2104 			continue;
2105 		unlock_page(pg);
2106 		put_page(pg);
2107 	}
2108 
2109 out:
2110 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2111 	kfree(pages);
2112 	unlock_page(page);
2113 
2114 	return err;
2115 }
2116 
2117 #ifdef CONFIG_NTFS3_LZX_XPRESS
2118 /*
2119  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2120  *
2121  * Remove ATTR_DATA::WofCompressedData.
2122  * Remove ATTR_REPARSE.
2123  */
ni_decompress_file(struct ntfs_inode * ni)2124 int ni_decompress_file(struct ntfs_inode *ni)
2125 {
2126 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2127 	struct inode *inode = &ni->vfs_inode;
2128 	loff_t i_size = inode->i_size;
2129 	struct address_space *mapping = inode->i_mapping;
2130 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2131 	struct page **pages = NULL;
2132 	struct ATTR_LIST_ENTRY *le;
2133 	struct ATTRIB *attr;
2134 	CLST vcn, cend, lcn, clen, end;
2135 	pgoff_t index;
2136 	u64 vbo;
2137 	u8 frame_bits;
2138 	u32 i, frame_size, pages_per_frame, bytes;
2139 	struct mft_inode *mi;
2140 	int err;
2141 
2142 	/* Clusters for decompressed data. */
2143 	cend = bytes_to_cluster(sbi, i_size);
2144 
2145 	if (!i_size)
2146 		goto remove_wof;
2147 
2148 	/* Check in advance. */
2149 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2150 		err = -ENOSPC;
2151 		goto out;
2152 	}
2153 
2154 	frame_bits = ni_ext_compress_bits(ni);
2155 	frame_size = 1u << frame_bits;
2156 	pages_per_frame = frame_size >> PAGE_SHIFT;
2157 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2158 	if (!pages) {
2159 		err = -ENOMEM;
2160 		goto out;
2161 	}
2162 
2163 	/*
2164 	 * Step 1: Decompress data and copy to new allocated clusters.
2165 	 */
2166 	index = 0;
2167 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2168 		u32 nr_pages;
2169 		bool new;
2170 
2171 		if (vbo + frame_size > i_size) {
2172 			bytes = i_size - vbo;
2173 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2174 		} else {
2175 			nr_pages = pages_per_frame;
2176 			bytes = frame_size;
2177 		}
2178 
2179 		end = bytes_to_cluster(sbi, vbo + bytes);
2180 
2181 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2182 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2183 						  &clen, &new);
2184 			if (err)
2185 				goto out;
2186 		}
2187 
2188 		for (i = 0; i < pages_per_frame; i++, index++) {
2189 			struct page *pg;
2190 
2191 			pg = find_or_create_page(mapping, index, gfp_mask);
2192 			if (!pg) {
2193 				while (i--) {
2194 					unlock_page(pages[i]);
2195 					put_page(pages[i]);
2196 				}
2197 				err = -ENOMEM;
2198 				goto out;
2199 			}
2200 			pages[i] = pg;
2201 		}
2202 
2203 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2204 
2205 		if (!err) {
2206 			down_read(&ni->file.run_lock);
2207 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2208 					     nr_pages, vbo, bytes,
2209 					     REQ_OP_WRITE);
2210 			up_read(&ni->file.run_lock);
2211 		}
2212 
2213 		for (i = 0; i < pages_per_frame; i++) {
2214 			unlock_page(pages[i]);
2215 			put_page(pages[i]);
2216 		}
2217 
2218 		if (err)
2219 			goto out;
2220 
2221 		cond_resched();
2222 	}
2223 
2224 remove_wof:
2225 	/*
2226 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2227 	 * and ATTR_REPARSE.
2228 	 */
2229 	attr = NULL;
2230 	le = NULL;
2231 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2232 		CLST svcn, evcn;
2233 		u32 asize, roff;
2234 
2235 		if (attr->type == ATTR_REPARSE) {
2236 			struct MFT_REF ref;
2237 
2238 			mi_get_ref(&ni->mi, &ref);
2239 			ntfs_remove_reparse(sbi, 0, &ref);
2240 		}
2241 
2242 		if (!attr->non_res)
2243 			continue;
2244 
2245 		if (attr->type != ATTR_REPARSE &&
2246 		    (attr->type != ATTR_DATA ||
2247 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2248 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2249 			continue;
2250 
2251 		svcn = le64_to_cpu(attr->nres.svcn);
2252 		evcn = le64_to_cpu(attr->nres.evcn);
2253 
2254 		if (evcn + 1 <= svcn)
2255 			continue;
2256 
2257 		asize = le32_to_cpu(attr->size);
2258 		roff = le16_to_cpu(attr->nres.run_off);
2259 
2260 		if (roff > asize) {
2261 			err = -EINVAL;
2262 			goto out;
2263 		}
2264 
2265 		/*run==1  Means unpack and deallocate. */
2266 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2267 			      Add2Ptr(attr, roff), asize - roff);
2268 	}
2269 
2270 	/*
2271 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2272 	 */
2273 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2274 			     false, NULL);
2275 	if (err)
2276 		goto out;
2277 
2278 	/*
2279 	 * Step 4: Remove ATTR_REPARSE.
2280 	 */
2281 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2282 	if (err)
2283 		goto out;
2284 
2285 	/*
2286 	 * Step 5: Remove sparse flag from data attribute.
2287 	 */
2288 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2289 	if (!attr) {
2290 		err = -EINVAL;
2291 		goto out;
2292 	}
2293 
2294 	if (attr->non_res && is_attr_sparsed(attr)) {
2295 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2296 		struct MFT_REC *rec = mi->mrec;
2297 		u32 used = le32_to_cpu(rec->used);
2298 		u32 asize = le32_to_cpu(attr->size);
2299 		u16 roff = le16_to_cpu(attr->nres.run_off);
2300 		char *rbuf = Add2Ptr(attr, roff);
2301 
2302 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2303 		attr->size = cpu_to_le32(asize - 8);
2304 		attr->flags &= ~ATTR_FLAG_SPARSED;
2305 		attr->nres.run_off = cpu_to_le16(roff - 8);
2306 		attr->nres.c_unit = 0;
2307 		rec->used = cpu_to_le32(used - 8);
2308 		mi->dirty = true;
2309 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2310 				FILE_ATTRIBUTE_REPARSE_POINT);
2311 
2312 		mark_inode_dirty(inode);
2313 	}
2314 
2315 	/* Clear cached flag. */
2316 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2317 	if (ni->file.offs_page) {
2318 		put_page(ni->file.offs_page);
2319 		ni->file.offs_page = NULL;
2320 	}
2321 	mapping->a_ops = &ntfs_aops;
2322 
2323 out:
2324 	kfree(pages);
2325 	if (err) {
2326 		make_bad_inode(inode);
2327 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
2328 	}
2329 
2330 	return err;
2331 }
2332 
2333 /*
2334  * decompress_lzx_xpress - External compression LZX/Xpress.
2335  */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2336 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2337 				 size_t cmpr_size, void *unc, size_t unc_size,
2338 				 u32 frame_size)
2339 {
2340 	int err;
2341 	void *ctx;
2342 
2343 	if (cmpr_size == unc_size) {
2344 		/* Frame not compressed. */
2345 		memcpy(unc, cmpr, unc_size);
2346 		return 0;
2347 	}
2348 
2349 	err = 0;
2350 	if (frame_size == 0x8000) {
2351 		mutex_lock(&sbi->compress.mtx_lzx);
2352 		/* LZX: Frame compressed. */
2353 		ctx = sbi->compress.lzx;
2354 		if (!ctx) {
2355 			/* Lazy initialize LZX decompress context. */
2356 			ctx = lzx_allocate_decompressor();
2357 			if (!ctx) {
2358 				err = -ENOMEM;
2359 				goto out1;
2360 			}
2361 
2362 			sbi->compress.lzx = ctx;
2363 		}
2364 
2365 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2366 			/* Treat all errors as "invalid argument". */
2367 			err = -EINVAL;
2368 		}
2369 out1:
2370 		mutex_unlock(&sbi->compress.mtx_lzx);
2371 	} else {
2372 		/* XPRESS: Frame compressed. */
2373 		mutex_lock(&sbi->compress.mtx_xpress);
2374 		ctx = sbi->compress.xpress;
2375 		if (!ctx) {
2376 			/* Lazy initialize Xpress decompress context. */
2377 			ctx = xpress_allocate_decompressor();
2378 			if (!ctx) {
2379 				err = -ENOMEM;
2380 				goto out2;
2381 			}
2382 
2383 			sbi->compress.xpress = ctx;
2384 		}
2385 
2386 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2387 			/* Treat all errors as "invalid argument". */
2388 			err = -EINVAL;
2389 		}
2390 out2:
2391 		mutex_unlock(&sbi->compress.mtx_xpress);
2392 	}
2393 	return err;
2394 }
2395 #endif
2396 
2397 /*
2398  * ni_read_frame
2399  *
2400  * Pages - Array of locked pages.
2401  */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2402 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2403 		  u32 pages_per_frame)
2404 {
2405 	int err;
2406 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2407 	u8 cluster_bits = sbi->cluster_bits;
2408 	char *frame_ondisk = NULL;
2409 	char *frame_mem = NULL;
2410 	struct page **pages_disk = NULL;
2411 	struct ATTR_LIST_ENTRY *le = NULL;
2412 	struct runs_tree *run = &ni->file.run;
2413 	u64 valid_size = ni->i_valid;
2414 	u64 vbo_disk;
2415 	size_t unc_size;
2416 	u32 frame_size, i, npages_disk, ondisk_size;
2417 	struct page *pg;
2418 	struct ATTRIB *attr;
2419 	CLST frame, clst_data;
2420 
2421 	/*
2422 	 * To simplify decompress algorithm do vmap for source
2423 	 * and target pages.
2424 	 */
2425 	for (i = 0; i < pages_per_frame; i++)
2426 		kmap(pages[i]);
2427 
2428 	frame_size = pages_per_frame << PAGE_SHIFT;
2429 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2430 	if (!frame_mem) {
2431 		err = -ENOMEM;
2432 		goto out;
2433 	}
2434 
2435 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2436 	if (!attr) {
2437 		err = -ENOENT;
2438 		goto out1;
2439 	}
2440 
2441 	if (!attr->non_res) {
2442 		u32 data_size = le32_to_cpu(attr->res.data_size);
2443 
2444 		memset(frame_mem, 0, frame_size);
2445 		if (frame_vbo < data_size) {
2446 			ondisk_size = data_size - frame_vbo;
2447 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2448 			       min(ondisk_size, frame_size));
2449 		}
2450 		err = 0;
2451 		goto out1;
2452 	}
2453 
2454 	if (frame_vbo >= valid_size) {
2455 		memset(frame_mem, 0, frame_size);
2456 		err = 0;
2457 		goto out1;
2458 	}
2459 
2460 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2461 #ifndef CONFIG_NTFS3_LZX_XPRESS
2462 		err = -EOPNOTSUPP;
2463 		goto out1;
2464 #else
2465 		u32 frame_bits = ni_ext_compress_bits(ni);
2466 		u64 frame64 = frame_vbo >> frame_bits;
2467 		u64 frames, vbo_data;
2468 
2469 		if (frame_size != (1u << frame_bits)) {
2470 			err = -EINVAL;
2471 			goto out1;
2472 		}
2473 		switch (frame_size) {
2474 		case 0x1000:
2475 		case 0x2000:
2476 		case 0x4000:
2477 		case 0x8000:
2478 			break;
2479 		default:
2480 			/* Unknown compression. */
2481 			err = -EOPNOTSUPP;
2482 			goto out1;
2483 		}
2484 
2485 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2486 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2487 		if (!attr) {
2488 			ntfs_inode_err(
2489 				&ni->vfs_inode,
2490 				"external compressed file should contains data attribute \"WofCompressedData\"");
2491 			err = -EINVAL;
2492 			goto out1;
2493 		}
2494 
2495 		if (!attr->non_res) {
2496 			run = NULL;
2497 		} else {
2498 			run = run_alloc();
2499 			if (!run) {
2500 				err = -ENOMEM;
2501 				goto out1;
2502 			}
2503 		}
2504 
2505 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2506 
2507 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2508 					  frame_bits, &ondisk_size, &vbo_data);
2509 		if (err)
2510 			goto out2;
2511 
2512 		if (frame64 == frames) {
2513 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2514 					(frame_size - 1));
2515 			ondisk_size = attr_size(attr) - vbo_data;
2516 		} else {
2517 			unc_size = frame_size;
2518 		}
2519 
2520 		if (ondisk_size > frame_size) {
2521 			err = -EINVAL;
2522 			goto out2;
2523 		}
2524 
2525 		if (!attr->non_res) {
2526 			if (vbo_data + ondisk_size >
2527 			    le32_to_cpu(attr->res.data_size)) {
2528 				err = -EINVAL;
2529 				goto out1;
2530 			}
2531 
2532 			err = decompress_lzx_xpress(
2533 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2534 				ondisk_size, frame_mem, unc_size, frame_size);
2535 			goto out1;
2536 		}
2537 		vbo_disk = vbo_data;
2538 		/* Load all runs to read [vbo_disk-vbo_to). */
2539 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2540 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2541 					   vbo_data + ondisk_size);
2542 		if (err)
2543 			goto out2;
2544 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2545 			       PAGE_SIZE - 1) >>
2546 			      PAGE_SHIFT;
2547 #endif
2548 	} else if (is_attr_compressed(attr)) {
2549 		/* LZNT compression. */
2550 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2551 			err = -EOPNOTSUPP;
2552 			goto out1;
2553 		}
2554 
2555 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2556 			err = -EOPNOTSUPP;
2557 			goto out1;
2558 		}
2559 
2560 		down_write(&ni->file.run_lock);
2561 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2562 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2563 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2564 		up_write(&ni->file.run_lock);
2565 		if (err)
2566 			goto out1;
2567 
2568 		if (!clst_data) {
2569 			memset(frame_mem, 0, frame_size);
2570 			goto out1;
2571 		}
2572 
2573 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2574 		ondisk_size = clst_data << cluster_bits;
2575 
2576 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2577 			/* Frame is not compressed. */
2578 			down_read(&ni->file.run_lock);
2579 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2580 					     frame_vbo, ondisk_size,
2581 					     REQ_OP_READ);
2582 			up_read(&ni->file.run_lock);
2583 			goto out1;
2584 		}
2585 		vbo_disk = frame_vbo;
2586 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2587 	} else {
2588 		__builtin_unreachable();
2589 		err = -EINVAL;
2590 		goto out1;
2591 	}
2592 
2593 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2594 	if (!pages_disk) {
2595 		err = -ENOMEM;
2596 		goto out2;
2597 	}
2598 
2599 	for (i = 0; i < npages_disk; i++) {
2600 		pg = alloc_page(GFP_KERNEL);
2601 		if (!pg) {
2602 			err = -ENOMEM;
2603 			goto out3;
2604 		}
2605 		pages_disk[i] = pg;
2606 		lock_page(pg);
2607 		kmap(pg);
2608 	}
2609 
2610 	/* Read 'ondisk_size' bytes from disk. */
2611 	down_read(&ni->file.run_lock);
2612 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2613 			     ondisk_size, REQ_OP_READ);
2614 	up_read(&ni->file.run_lock);
2615 	if (err)
2616 		goto out3;
2617 
2618 	/*
2619 	 * To simplify decompress algorithm do vmap for source and target pages.
2620 	 */
2621 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2622 	if (!frame_ondisk) {
2623 		err = -ENOMEM;
2624 		goto out3;
2625 	}
2626 
2627 	/* Decompress: Frame_ondisk -> frame_mem. */
2628 #ifdef CONFIG_NTFS3_LZX_XPRESS
2629 	if (run != &ni->file.run) {
2630 		/* LZX or XPRESS */
2631 		err = decompress_lzx_xpress(
2632 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2633 			ondisk_size, frame_mem, unc_size, frame_size);
2634 	} else
2635 #endif
2636 	{
2637 		/* LZNT - Native NTFS compression. */
2638 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2639 					   frame_size);
2640 		if ((ssize_t)unc_size < 0)
2641 			err = unc_size;
2642 		else if (!unc_size || unc_size > frame_size)
2643 			err = -EINVAL;
2644 	}
2645 	if (!err && valid_size < frame_vbo + frame_size) {
2646 		size_t ok = valid_size - frame_vbo;
2647 
2648 		memset(frame_mem + ok, 0, frame_size - ok);
2649 	}
2650 
2651 	vunmap(frame_ondisk);
2652 
2653 out3:
2654 	for (i = 0; i < npages_disk; i++) {
2655 		pg = pages_disk[i];
2656 		if (pg) {
2657 			kunmap(pg);
2658 			unlock_page(pg);
2659 			put_page(pg);
2660 		}
2661 	}
2662 	kfree(pages_disk);
2663 
2664 out2:
2665 #ifdef CONFIG_NTFS3_LZX_XPRESS
2666 	if (run != &ni->file.run)
2667 		run_free(run);
2668 #endif
2669 out1:
2670 	vunmap(frame_mem);
2671 out:
2672 	for (i = 0; i < pages_per_frame; i++) {
2673 		pg = pages[i];
2674 		kunmap(pg);
2675 		ClearPageError(pg);
2676 		SetPageUptodate(pg);
2677 	}
2678 
2679 	return err;
2680 }
2681 
2682 /*
2683  * ni_write_frame
2684  *
2685  * Pages - Array of locked pages.
2686  */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2687 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2688 		   u32 pages_per_frame)
2689 {
2690 	int err;
2691 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2692 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2693 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2694 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2695 	CLST frame = frame_vbo >> frame_bits;
2696 	char *frame_ondisk = NULL;
2697 	struct page **pages_disk = NULL;
2698 	struct ATTR_LIST_ENTRY *le = NULL;
2699 	char *frame_mem;
2700 	struct ATTRIB *attr;
2701 	struct mft_inode *mi;
2702 	u32 i;
2703 	struct page *pg;
2704 	size_t compr_size, ondisk_size;
2705 	struct lznt *lznt;
2706 
2707 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2708 	if (!attr) {
2709 		err = -ENOENT;
2710 		goto out;
2711 	}
2712 
2713 	if (WARN_ON(!is_attr_compressed(attr))) {
2714 		err = -EINVAL;
2715 		goto out;
2716 	}
2717 
2718 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2719 		err = -EOPNOTSUPP;
2720 		goto out;
2721 	}
2722 
2723 	if (!attr->non_res) {
2724 		down_write(&ni->file.run_lock);
2725 		err = attr_make_nonresident(ni, attr, le, mi,
2726 					    le32_to_cpu(attr->res.data_size),
2727 					    &ni->file.run, &attr, pages[0]);
2728 		up_write(&ni->file.run_lock);
2729 		if (err)
2730 			goto out;
2731 	}
2732 
2733 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2734 		err = -EOPNOTSUPP;
2735 		goto out;
2736 	}
2737 
2738 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2739 	if (!pages_disk) {
2740 		err = -ENOMEM;
2741 		goto out;
2742 	}
2743 
2744 	for (i = 0; i < pages_per_frame; i++) {
2745 		pg = alloc_page(GFP_KERNEL);
2746 		if (!pg) {
2747 			err = -ENOMEM;
2748 			goto out1;
2749 		}
2750 		pages_disk[i] = pg;
2751 		lock_page(pg);
2752 		kmap(pg);
2753 	}
2754 
2755 	/* To simplify compress algorithm do vmap for source and target pages. */
2756 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2757 	if (!frame_ondisk) {
2758 		err = -ENOMEM;
2759 		goto out1;
2760 	}
2761 
2762 	for (i = 0; i < pages_per_frame; i++)
2763 		kmap(pages[i]);
2764 
2765 	/* Map in-memory frame for read-only. */
2766 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2767 	if (!frame_mem) {
2768 		err = -ENOMEM;
2769 		goto out2;
2770 	}
2771 
2772 	mutex_lock(&sbi->compress.mtx_lznt);
2773 	lznt = NULL;
2774 	if (!sbi->compress.lznt) {
2775 		/*
2776 		 * LZNT implements two levels of compression:
2777 		 * 0 - Standard compression
2778 		 * 1 - Best compression, requires a lot of cpu
2779 		 * use mount option?
2780 		 */
2781 		lznt = get_lznt_ctx(0);
2782 		if (!lznt) {
2783 			mutex_unlock(&sbi->compress.mtx_lznt);
2784 			err = -ENOMEM;
2785 			goto out3;
2786 		}
2787 
2788 		sbi->compress.lznt = lznt;
2789 		lznt = NULL;
2790 	}
2791 
2792 	/* Compress: frame_mem -> frame_ondisk */
2793 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2794 				   frame_size, sbi->compress.lznt);
2795 	mutex_unlock(&sbi->compress.mtx_lznt);
2796 	kfree(lznt);
2797 
2798 	if (compr_size + sbi->cluster_size > frame_size) {
2799 		/* Frame is not compressed. */
2800 		compr_size = frame_size;
2801 		ondisk_size = frame_size;
2802 	} else if (compr_size) {
2803 		/* Frame is compressed. */
2804 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2805 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2806 	} else {
2807 		/* Frame is sparsed. */
2808 		ondisk_size = 0;
2809 	}
2810 
2811 	down_write(&ni->file.run_lock);
2812 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2813 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2814 	up_write(&ni->file.run_lock);
2815 	if (err)
2816 		goto out2;
2817 
2818 	if (!ondisk_size)
2819 		goto out2;
2820 
2821 	down_read(&ni->file.run_lock);
2822 	err = ntfs_bio_pages(sbi, &ni->file.run,
2823 			     ondisk_size < frame_size ? pages_disk : pages,
2824 			     pages_per_frame, frame_vbo, ondisk_size,
2825 			     REQ_OP_WRITE);
2826 	up_read(&ni->file.run_lock);
2827 
2828 out3:
2829 	vunmap(frame_mem);
2830 
2831 out2:
2832 	for (i = 0; i < pages_per_frame; i++)
2833 		kunmap(pages[i]);
2834 
2835 	vunmap(frame_ondisk);
2836 out1:
2837 	for (i = 0; i < pages_per_frame; i++) {
2838 		pg = pages_disk[i];
2839 		if (pg) {
2840 			kunmap(pg);
2841 			unlock_page(pg);
2842 			put_page(pg);
2843 		}
2844 	}
2845 	kfree(pages_disk);
2846 out:
2847 	return err;
2848 }
2849 
2850 /*
2851  * ni_remove_name - Removes name 'de' from MFT and from directory.
2852  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2853  */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2854 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2855 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2856 {
2857 	int err;
2858 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2859 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2860 	struct ATTR_FILE_NAME *fname;
2861 	struct ATTR_LIST_ENTRY *le;
2862 	struct mft_inode *mi;
2863 	u16 de_key_size = le16_to_cpu(de->key_size);
2864 	u8 name_type;
2865 
2866 	*undo_step = 0;
2867 
2868 	/* Find name in record. */
2869 	mi_get_ref(&dir_ni->mi, &de_name->home);
2870 
2871 	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2872 			      &de_name->home, &mi, &le);
2873 	if (!fname)
2874 		return -ENOENT;
2875 
2876 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2877 	name_type = paired_name(fname->type);
2878 
2879 	/* Mark ntfs as dirty. It will be cleared at umount. */
2880 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2881 
2882 	/* Step 1: Remove name from directory. */
2883 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2884 	if (err)
2885 		return err;
2886 
2887 	/* Step 2: Remove name from MFT. */
2888 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2889 
2890 	*undo_step = 2;
2891 
2892 	/* Get paired name. */
2893 	fname = ni_fname_type(ni, name_type, &mi, &le);
2894 	if (fname) {
2895 		u16 de2_key_size = fname_full_size(fname);
2896 
2897 		*de2 = Add2Ptr(de, 1024);
2898 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2899 
2900 		memcpy(*de2 + 1, fname, de2_key_size);
2901 
2902 		/* Step 3: Remove paired name from directory. */
2903 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2904 					de2_key_size, sbi);
2905 		if (err)
2906 			return err;
2907 
2908 		/* Step 4: Remove paired name from MFT. */
2909 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2910 
2911 		*undo_step = 4;
2912 	}
2913 	return 0;
2914 }
2915 
2916 /*
2917  * ni_remove_name_undo - Paired function for ni_remove_name.
2918  *
2919  * Return: True if ok
2920  */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2921 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2922 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2923 {
2924 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2925 	struct ATTRIB *attr;
2926 	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2927 
2928 	switch (undo_step) {
2929 	case 4:
2930 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2931 				       &attr, NULL, NULL)) {
2932 			return false;
2933 		}
2934 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2935 
2936 		mi_get_ref(&ni->mi, &de2->ref);
2937 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2938 					sizeof(struct NTFS_DE));
2939 		de2->flags = 0;
2940 		de2->res = 0;
2941 
2942 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2943 				      1)) {
2944 			return false;
2945 		}
2946 		fallthrough;
2947 
2948 	case 2:
2949 		de_key_size = le16_to_cpu(de->key_size);
2950 
2951 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2952 				       &attr, NULL, NULL)) {
2953 			return false;
2954 		}
2955 
2956 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2957 		mi_get_ref(&ni->mi, &de->ref);
2958 
2959 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2960 			return false;
2961 	}
2962 
2963 	return true;
2964 }
2965 
2966 /*
2967  * ni_add_name - Add new name in MFT and in directory.
2968  */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)2969 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2970 		struct NTFS_DE *de)
2971 {
2972 	int err;
2973 	struct ATTRIB *attr;
2974 	struct ATTR_LIST_ENTRY *le;
2975 	struct mft_inode *mi;
2976 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2977 	u16 de_key_size = le16_to_cpu(de->key_size);
2978 
2979 	mi_get_ref(&ni->mi, &de->ref);
2980 	mi_get_ref(&dir_ni->mi, &de_name->home);
2981 
2982 	/* Insert new name in MFT. */
2983 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
2984 				 &mi, &le);
2985 	if (err)
2986 		return err;
2987 
2988 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
2989 
2990 	/* Insert new name in directory. */
2991 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
2992 	if (err)
2993 		ni_remove_attr_le(ni, attr, mi, le);
2994 
2995 	return err;
2996 }
2997 
2998 /*
2999  * ni_rename - Remove one name and insert new name.
3000  */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3001 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3002 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3003 	      bool *is_bad)
3004 {
3005 	int err;
3006 	struct NTFS_DE *de2 = NULL;
3007 	int undo = 0;
3008 
3009 	/*
3010 	 * There are two possible ways to rename:
3011 	 * 1) Add new name and remove old name.
3012 	 * 2) Remove old name and add new name.
3013 	 *
3014 	 * In most cases (not all!) adding new name in MFT and in directory can
3015 	 * allocate additional cluster(s).
3016 	 * Second way may result to bad inode if we can't add new name
3017 	 * and then can't restore (add) old name.
3018 	 */
3019 
3020 	/*
3021 	 * Way 1 - Add new + remove old.
3022 	 */
3023 	err = ni_add_name(new_dir_ni, ni, new_de);
3024 	if (!err) {
3025 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3026 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3027 			*is_bad = true;
3028 	}
3029 
3030 	/*
3031 	 * Way 2 - Remove old + add new.
3032 	 */
3033 	/*
3034 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3035 	 *	if (!err) {
3036 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3037 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3038 	 *			*is_bad = true;
3039 	 *	}
3040 	 */
3041 
3042 	return err;
3043 }
3044 
3045 /*
3046  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3047  */
ni_is_dirty(struct inode * inode)3048 bool ni_is_dirty(struct inode *inode)
3049 {
3050 	struct ntfs_inode *ni = ntfs_i(inode);
3051 	struct rb_node *node;
3052 
3053 	if (ni->mi.dirty || ni->attr_list.dirty ||
3054 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3055 		return true;
3056 
3057 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3058 		if (rb_entry(node, struct mft_inode, node)->dirty)
3059 			return true;
3060 	}
3061 
3062 	return false;
3063 }
3064 
3065 /*
3066  * ni_update_parent
3067  *
3068  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3069  */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3070 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3071 			     int sync)
3072 {
3073 	struct ATTRIB *attr;
3074 	struct mft_inode *mi;
3075 	struct ATTR_LIST_ENTRY *le = NULL;
3076 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3077 	struct super_block *sb = sbi->sb;
3078 	bool re_dirty = false;
3079 
3080 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3081 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3082 		attr = NULL;
3083 		dup->alloc_size = 0;
3084 		dup->data_size = 0;
3085 	} else {
3086 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3087 
3088 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3089 				    &mi);
3090 		if (!attr) {
3091 			dup->alloc_size = dup->data_size = 0;
3092 		} else if (!attr->non_res) {
3093 			u32 data_size = le32_to_cpu(attr->res.data_size);
3094 
3095 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3096 			dup->data_size = cpu_to_le64(data_size);
3097 		} else {
3098 			u64 new_valid = ni->i_valid;
3099 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3100 			__le64 valid_le;
3101 
3102 			dup->alloc_size = is_attr_ext(attr)
3103 						  ? attr->nres.total_size
3104 						  : attr->nres.alloc_size;
3105 			dup->data_size = attr->nres.data_size;
3106 
3107 			if (new_valid > data_size)
3108 				new_valid = data_size;
3109 
3110 			valid_le = cpu_to_le64(new_valid);
3111 			if (valid_le != attr->nres.valid_size) {
3112 				attr->nres.valid_size = valid_le;
3113 				mi->dirty = true;
3114 			}
3115 		}
3116 	}
3117 
3118 	/* TODO: Fill reparse info. */
3119 	dup->reparse = 0;
3120 	dup->ea_size = 0;
3121 
3122 	if (ni->ni_flags & NI_FLAG_EA) {
3123 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3124 				    NULL);
3125 		if (attr) {
3126 			const struct EA_INFO *info;
3127 
3128 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3129 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3130 			if (info)
3131 				dup->ea_size = info->size_pack;
3132 		}
3133 	}
3134 
3135 	attr = NULL;
3136 	le = NULL;
3137 
3138 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3139 				    &mi))) {
3140 		struct inode *dir;
3141 		struct ATTR_FILE_NAME *fname;
3142 
3143 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3144 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3145 			continue;
3146 
3147 		/* Check simple case when parent inode equals current inode. */
3148 		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3149 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3150 			continue;
3151 		}
3152 
3153 		/* ntfs_iget5 may sleep. */
3154 		dir = ntfs_iget5(sb, &fname->home, NULL);
3155 		if (IS_ERR(dir)) {
3156 			ntfs_inode_warn(
3157 				&ni->vfs_inode,
3158 				"failed to open parent directory r=%lx to update",
3159 				(long)ino_get(&fname->home));
3160 			continue;
3161 		}
3162 
3163 		if (!is_bad_inode(dir)) {
3164 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3165 
3166 			if (!ni_trylock(dir_ni)) {
3167 				re_dirty = true;
3168 			} else {
3169 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3170 				ni_unlock(dir_ni);
3171 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3172 				mi->dirty = true;
3173 			}
3174 		}
3175 		iput(dir);
3176 	}
3177 
3178 	return re_dirty;
3179 }
3180 
3181 /*
3182  * ni_write_inode - Write MFT base record and all subrecords to disk.
3183  */
ni_write_inode(struct inode * inode,int sync,const char * hint)3184 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3185 {
3186 	int err = 0, err2;
3187 	struct ntfs_inode *ni = ntfs_i(inode);
3188 	struct super_block *sb = inode->i_sb;
3189 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3190 	bool re_dirty = false;
3191 	struct ATTR_STD_INFO *std;
3192 	struct rb_node *node, *next;
3193 	struct NTFS_DUP_INFO dup;
3194 
3195 	if (is_bad_inode(inode) || sb_rdonly(sb))
3196 		return 0;
3197 
3198 	if (!ni_trylock(ni)) {
3199 		/* 'ni' is under modification, skip for now. */
3200 		mark_inode_dirty_sync(inode);
3201 		return 0;
3202 	}
3203 
3204 	if (!ni->mi.mrec)
3205 		goto out;
3206 
3207 	if (is_rec_inuse(ni->mi.mrec) &&
3208 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3209 		bool modified = false;
3210 
3211 		/* Update times in standard attribute. */
3212 		std = ni_std(ni);
3213 		if (!std) {
3214 			err = -EINVAL;
3215 			goto out;
3216 		}
3217 
3218 		/* Update the access times if they have changed. */
3219 		dup.m_time = kernel2nt(&inode->i_mtime);
3220 		if (std->m_time != dup.m_time) {
3221 			std->m_time = dup.m_time;
3222 			modified = true;
3223 		}
3224 
3225 		dup.c_time = kernel2nt(&inode->i_ctime);
3226 		if (std->c_time != dup.c_time) {
3227 			std->c_time = dup.c_time;
3228 			modified = true;
3229 		}
3230 
3231 		dup.a_time = kernel2nt(&inode->i_atime);
3232 		if (std->a_time != dup.a_time) {
3233 			std->a_time = dup.a_time;
3234 			modified = true;
3235 		}
3236 
3237 		dup.fa = ni->std_fa;
3238 		if (std->fa != dup.fa) {
3239 			std->fa = dup.fa;
3240 			modified = true;
3241 		}
3242 
3243 		if (modified)
3244 			ni->mi.dirty = true;
3245 
3246 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3247 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3248 		    /* Avoid __wait_on_freeing_inode(inode). */
3249 		    && (sb->s_flags & SB_ACTIVE)) {
3250 			dup.cr_time = std->cr_time;
3251 			/* Not critical if this function fail. */
3252 			re_dirty = ni_update_parent(ni, &dup, sync);
3253 
3254 			if (re_dirty)
3255 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3256 			else
3257 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3258 		}
3259 
3260 		/* Update attribute list. */
3261 		if (ni->attr_list.size && ni->attr_list.dirty) {
3262 			if (inode->i_ino != MFT_REC_MFT || sync) {
3263 				err = ni_try_remove_attr_list(ni);
3264 				if (err)
3265 					goto out;
3266 			}
3267 
3268 			err = al_update(ni, sync);
3269 			if (err)
3270 				goto out;
3271 		}
3272 	}
3273 
3274 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3275 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3276 		bool is_empty;
3277 
3278 		next = rb_next(node);
3279 
3280 		if (!mi->dirty)
3281 			continue;
3282 
3283 		is_empty = !mi_enum_attr(mi, NULL);
3284 
3285 		if (is_empty)
3286 			clear_rec_inuse(mi->mrec);
3287 
3288 		err2 = mi_write(mi, sync);
3289 		if (!err && err2)
3290 			err = err2;
3291 
3292 		if (is_empty) {
3293 			ntfs_mark_rec_free(sbi, mi->rno);
3294 			rb_erase(node, &ni->mi_tree);
3295 			mi_put(mi);
3296 		}
3297 	}
3298 
3299 	if (ni->mi.dirty) {
3300 		err2 = mi_write(&ni->mi, sync);
3301 		if (!err && err2)
3302 			err = err2;
3303 	}
3304 out:
3305 	ni_unlock(ni);
3306 
3307 	if (err) {
3308 		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3309 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3310 		return err;
3311 	}
3312 
3313 	if (re_dirty)
3314 		mark_inode_dirty_sync(inode);
3315 
3316 	return 0;
3317 }
3318