• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * aops.c - NTFS kernel address space operations and page cache handling.
4  *
5  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6  * Copyright (c) 2002 Richard Russon
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/fs.h>
11 #include <linux/gfp.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/bit_spinlock.h>
18 #include <linux/bio.h>
19 
20 #include "aops.h"
21 #include "attrib.h"
22 #include "debug.h"
23 #include "inode.h"
24 #include "mft.h"
25 #include "runlist.h"
26 #include "types.h"
27 #include "ntfs.h"
28 
29 /**
30  * ntfs_end_buffer_async_read - async io completion for reading attributes
31  * @bh:		buffer head on which io is completed
32  * @uptodate:	whether @bh is now uptodate or not
33  *
34  * Asynchronous I/O completion handler for reading pages belonging to the
35  * attribute address space of an inode.  The inodes can either be files or
36  * directories or they can be fake inodes describing some attribute.
37  *
38  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
39  * page has been completed and mark the page uptodate or set the error bit on
40  * the page.  To determine the size of the records that need fixing up, we
41  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
42  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
43  * record size.
44  */
ntfs_end_buffer_async_read(struct buffer_head * bh,int uptodate)45 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
46 {
47 	unsigned long flags;
48 	struct buffer_head *first, *tmp;
49 	struct page *page;
50 	struct inode *vi;
51 	ntfs_inode *ni;
52 	int page_uptodate = 1;
53 
54 	page = bh->b_page;
55 	vi = page->mapping->host;
56 	ni = NTFS_I(vi);
57 
58 	if (likely(uptodate)) {
59 		loff_t i_size;
60 		s64 file_ofs, init_size;
61 
62 		set_buffer_uptodate(bh);
63 
64 		file_ofs = ((s64)page->index << PAGE_SHIFT) +
65 				bh_offset(bh);
66 		read_lock_irqsave(&ni->size_lock, flags);
67 		init_size = ni->initialized_size;
68 		i_size = i_size_read(vi);
69 		read_unlock_irqrestore(&ni->size_lock, flags);
70 		if (unlikely(init_size > i_size)) {
71 			/* Race with shrinking truncate. */
72 			init_size = i_size;
73 		}
74 		/* Check for the current buffer head overflowing. */
75 		if (unlikely(file_ofs + bh->b_size > init_size)) {
76 			int ofs;
77 			void *kaddr;
78 
79 			ofs = 0;
80 			if (file_ofs < init_size)
81 				ofs = init_size - file_ofs;
82 			kaddr = kmap_atomic(page);
83 			memset(kaddr + bh_offset(bh) + ofs, 0,
84 					bh->b_size - ofs);
85 			flush_dcache_page(page);
86 			kunmap_atomic(kaddr);
87 		}
88 	} else {
89 		clear_buffer_uptodate(bh);
90 		SetPageError(page);
91 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
92 				"0x%llx.", (unsigned long long)bh->b_blocknr);
93 	}
94 	first = page_buffers(page);
95 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
96 	clear_buffer_async_read(bh);
97 	unlock_buffer(bh);
98 	tmp = bh;
99 	do {
100 		if (!buffer_uptodate(tmp))
101 			page_uptodate = 0;
102 		if (buffer_async_read(tmp)) {
103 			if (likely(buffer_locked(tmp)))
104 				goto still_busy;
105 			/* Async buffers must be locked. */
106 			BUG();
107 		}
108 		tmp = tmp->b_this_page;
109 	} while (tmp != bh);
110 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
111 	/*
112 	 * If none of the buffers had errors then we can set the page uptodate,
113 	 * but we first have to perform the post read mst fixups, if the
114 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
115 	 * Note we ignore fixup errors as those are detected when
116 	 * map_mft_record() is called which gives us per record granularity
117 	 * rather than per page granularity.
118 	 */
119 	if (!NInoMstProtected(ni)) {
120 		if (likely(page_uptodate && !PageError(page)))
121 			SetPageUptodate(page);
122 	} else {
123 		u8 *kaddr;
124 		unsigned int i, recs;
125 		u32 rec_size;
126 
127 		rec_size = ni->itype.index.block_size;
128 		recs = PAGE_SIZE / rec_size;
129 		/* Should have been verified before we got here... */
130 		BUG_ON(!recs);
131 		kaddr = kmap_atomic(page);
132 		for (i = 0; i < recs; i++)
133 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
134 					i * rec_size), rec_size);
135 		kunmap_atomic(kaddr);
136 		flush_dcache_page(page);
137 		if (likely(page_uptodate && !PageError(page)))
138 			SetPageUptodate(page);
139 	}
140 	unlock_page(page);
141 	return;
142 still_busy:
143 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
144 	return;
145 }
146 
147 /**
148  * ntfs_read_block - fill a @page of an address space with data
149  * @page:	page cache page to fill with data
150  *
151  * Fill the page @page of the address space belonging to the @page->host inode.
152  * We read each buffer asynchronously and when all buffers are read in, our io
153  * completion handler ntfs_end_buffer_read_async(), if required, automatically
154  * applies the mst fixups to the page before finally marking it uptodate and
155  * unlocking it.
156  *
157  * We only enforce allocated_size limit because i_size is checked for in
158  * generic_file_read().
159  *
160  * Return 0 on success and -errno on error.
161  *
162  * Contains an adapted version of fs/buffer.c::block_read_full_page().
163  */
ntfs_read_block(struct page * page)164 static int ntfs_read_block(struct page *page)
165 {
166 	loff_t i_size;
167 	VCN vcn;
168 	LCN lcn;
169 	s64 init_size;
170 	struct inode *vi;
171 	ntfs_inode *ni;
172 	ntfs_volume *vol;
173 	runlist_element *rl;
174 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
175 	sector_t iblock, lblock, zblock;
176 	unsigned long flags;
177 	unsigned int blocksize, vcn_ofs;
178 	int i, nr;
179 	unsigned char blocksize_bits;
180 
181 	vi = page->mapping->host;
182 	ni = NTFS_I(vi);
183 	vol = ni->vol;
184 
185 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
186 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
187 
188 	blocksize = vol->sb->s_blocksize;
189 	blocksize_bits = vol->sb->s_blocksize_bits;
190 
191 	if (!page_has_buffers(page)) {
192 		create_empty_buffers(page, blocksize, 0);
193 		if (unlikely(!page_has_buffers(page))) {
194 			unlock_page(page);
195 			return -ENOMEM;
196 		}
197 	}
198 	bh = head = page_buffers(page);
199 	BUG_ON(!bh);
200 
201 	/*
202 	 * We may be racing with truncate.  To avoid some of the problems we
203 	 * now take a snapshot of the various sizes and use those for the whole
204 	 * of the function.  In case of an extending truncate it just means we
205 	 * may leave some buffers unmapped which are now allocated.  This is
206 	 * not a problem since these buffers will just get mapped when a write
207 	 * occurs.  In case of a shrinking truncate, we will detect this later
208 	 * on due to the runlist being incomplete and if the page is being
209 	 * fully truncated, truncate will throw it away as soon as we unlock
210 	 * it so no need to worry what we do with it.
211 	 */
212 	iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
213 	read_lock_irqsave(&ni->size_lock, flags);
214 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
215 	init_size = ni->initialized_size;
216 	i_size = i_size_read(vi);
217 	read_unlock_irqrestore(&ni->size_lock, flags);
218 	if (unlikely(init_size > i_size)) {
219 		/* Race with shrinking truncate. */
220 		init_size = i_size;
221 	}
222 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
223 
224 	/* Loop through all the buffers in the page. */
225 	rl = NULL;
226 	nr = i = 0;
227 	do {
228 		int err = 0;
229 
230 		if (unlikely(buffer_uptodate(bh)))
231 			continue;
232 		if (unlikely(buffer_mapped(bh))) {
233 			arr[nr++] = bh;
234 			continue;
235 		}
236 		bh->b_bdev = vol->sb->s_bdev;
237 		/* Is the block within the allowed limits? */
238 		if (iblock < lblock) {
239 			bool is_retry = false;
240 
241 			/* Convert iblock into corresponding vcn and offset. */
242 			vcn = (VCN)iblock << blocksize_bits >>
243 					vol->cluster_size_bits;
244 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
245 					vol->cluster_size_mask;
246 			if (!rl) {
247 lock_retry_remap:
248 				down_read(&ni->runlist.lock);
249 				rl = ni->runlist.rl;
250 			}
251 			if (likely(rl != NULL)) {
252 				/* Seek to element containing target vcn. */
253 				while (rl->length && rl[1].vcn <= vcn)
254 					rl++;
255 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
256 			} else
257 				lcn = LCN_RL_NOT_MAPPED;
258 			/* Successful remap. */
259 			if (lcn >= 0) {
260 				/* Setup buffer head to correct block. */
261 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
262 						+ vcn_ofs) >> blocksize_bits;
263 				set_buffer_mapped(bh);
264 				/* Only read initialized data blocks. */
265 				if (iblock < zblock) {
266 					arr[nr++] = bh;
267 					continue;
268 				}
269 				/* Fully non-initialized data block, zero it. */
270 				goto handle_zblock;
271 			}
272 			/* It is a hole, need to zero it. */
273 			if (lcn == LCN_HOLE)
274 				goto handle_hole;
275 			/* If first try and runlist unmapped, map and retry. */
276 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
277 				is_retry = true;
278 				/*
279 				 * Attempt to map runlist, dropping lock for
280 				 * the duration.
281 				 */
282 				up_read(&ni->runlist.lock);
283 				err = ntfs_map_runlist(ni, vcn);
284 				if (likely(!err))
285 					goto lock_retry_remap;
286 				rl = NULL;
287 			} else if (!rl)
288 				up_read(&ni->runlist.lock);
289 			/*
290 			 * If buffer is outside the runlist, treat it as a
291 			 * hole.  This can happen due to concurrent truncate
292 			 * for example.
293 			 */
294 			if (err == -ENOENT || lcn == LCN_ENOENT) {
295 				err = 0;
296 				goto handle_hole;
297 			}
298 			/* Hard error, zero out region. */
299 			if (!err)
300 				err = -EIO;
301 			bh->b_blocknr = -1;
302 			SetPageError(page);
303 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
304 					"attribute type 0x%x, vcn 0x%llx, "
305 					"offset 0x%x because its location on "
306 					"disk could not be determined%s "
307 					"(error code %i).", ni->mft_no,
308 					ni->type, (unsigned long long)vcn,
309 					vcn_ofs, is_retry ? " even after "
310 					"retrying" : "", err);
311 		}
312 		/*
313 		 * Either iblock was outside lblock limits or
314 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
315 		 * of the page and set the buffer uptodate.
316 		 */
317 handle_hole:
318 		bh->b_blocknr = -1UL;
319 		clear_buffer_mapped(bh);
320 handle_zblock:
321 		zero_user(page, i * blocksize, blocksize);
322 		if (likely(!err))
323 			set_buffer_uptodate(bh);
324 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
325 
326 	/* Release the lock if we took it. */
327 	if (rl)
328 		up_read(&ni->runlist.lock);
329 
330 	/* Check we have at least one buffer ready for i/o. */
331 	if (nr) {
332 		struct buffer_head *tbh;
333 
334 		/* Lock the buffers. */
335 		for (i = 0; i < nr; i++) {
336 			tbh = arr[i];
337 			lock_buffer(tbh);
338 			tbh->b_end_io = ntfs_end_buffer_async_read;
339 			set_buffer_async_read(tbh);
340 		}
341 		/* Finally, start i/o on the buffers. */
342 		for (i = 0; i < nr; i++) {
343 			tbh = arr[i];
344 			if (likely(!buffer_uptodate(tbh)))
345 				submit_bh(REQ_OP_READ, 0, tbh);
346 			else
347 				ntfs_end_buffer_async_read(tbh, 1);
348 		}
349 		return 0;
350 	}
351 	/* No i/o was scheduled on any of the buffers. */
352 	if (likely(!PageError(page)))
353 		SetPageUptodate(page);
354 	else /* Signal synchronous i/o error. */
355 		nr = -EIO;
356 	unlock_page(page);
357 	return nr;
358 }
359 
360 /**
361  * ntfs_readpage - fill a @page of a @file with data from the device
362  * @file:	open file to which the page @page belongs or NULL
363  * @page:	page cache page to fill with data
364  *
365  * For non-resident attributes, ntfs_readpage() fills the @page of the open
366  * file @file by calling the ntfs version of the generic block_read_full_page()
367  * function, ntfs_read_block(), which in turn creates and reads in the buffers
368  * associated with the page asynchronously.
369  *
370  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
371  * data from the mft record (which at this stage is most likely in memory) and
372  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
373  * even if the mft record is not cached at this point in time, we need to wait
374  * for it to be read in before we can do the copy.
375  *
376  * Return 0 on success and -errno on error.
377  */
ntfs_readpage(struct file * file,struct page * page)378 static int ntfs_readpage(struct file *file, struct page *page)
379 {
380 	loff_t i_size;
381 	struct inode *vi;
382 	ntfs_inode *ni, *base_ni;
383 	u8 *addr;
384 	ntfs_attr_search_ctx *ctx;
385 	MFT_RECORD *mrec;
386 	unsigned long flags;
387 	u32 attr_len;
388 	int err = 0;
389 
390 retry_readpage:
391 	BUG_ON(!PageLocked(page));
392 	vi = page->mapping->host;
393 	i_size = i_size_read(vi);
394 	/* Is the page fully outside i_size? (truncate in progress) */
395 	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
396 			PAGE_SHIFT)) {
397 		zero_user(page, 0, PAGE_SIZE);
398 		ntfs_debug("Read outside i_size - truncated?");
399 		goto done;
400 	}
401 	/*
402 	 * This can potentially happen because we clear PageUptodate() during
403 	 * ntfs_writepage() of MstProtected() attributes.
404 	 */
405 	if (PageUptodate(page)) {
406 		unlock_page(page);
407 		return 0;
408 	}
409 	ni = NTFS_I(vi);
410 	/*
411 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
412 	 * attributes can be compressed.  Index root can have the flags set but
413 	 * this means to create compressed/encrypted files, not that the
414 	 * attribute is compressed/encrypted.  Note we need to check for
415 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
416 	 * index inodes.
417 	 */
418 	if (ni->type != AT_INDEX_ALLOCATION) {
419 		/* If attribute is encrypted, deny access, just like NT4. */
420 		if (NInoEncrypted(ni)) {
421 			BUG_ON(ni->type != AT_DATA);
422 			err = -EACCES;
423 			goto err_out;
424 		}
425 		/* Compressed data streams are handled in compress.c. */
426 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
427 			BUG_ON(ni->type != AT_DATA);
428 			BUG_ON(ni->name_len);
429 			return ntfs_read_compressed_block(page);
430 		}
431 	}
432 	/* NInoNonResident() == NInoIndexAllocPresent() */
433 	if (NInoNonResident(ni)) {
434 		/* Normal, non-resident data stream. */
435 		return ntfs_read_block(page);
436 	}
437 	/*
438 	 * Attribute is resident, implying it is not compressed or encrypted.
439 	 * This also means the attribute is smaller than an mft record and
440 	 * hence smaller than a page, so can simply zero out any pages with
441 	 * index above 0.  Note the attribute can actually be marked compressed
442 	 * but if it is resident the actual data is not compressed so we are
443 	 * ok to ignore the compressed flag here.
444 	 */
445 	if (unlikely(page->index > 0)) {
446 		zero_user(page, 0, PAGE_SIZE);
447 		goto done;
448 	}
449 	if (!NInoAttr(ni))
450 		base_ni = ni;
451 	else
452 		base_ni = ni->ext.base_ntfs_ino;
453 	/* Map, pin, and lock the mft record. */
454 	mrec = map_mft_record(base_ni);
455 	if (IS_ERR(mrec)) {
456 		err = PTR_ERR(mrec);
457 		goto err_out;
458 	}
459 	/*
460 	 * If a parallel write made the attribute non-resident, drop the mft
461 	 * record and retry the readpage.
462 	 */
463 	if (unlikely(NInoNonResident(ni))) {
464 		unmap_mft_record(base_ni);
465 		goto retry_readpage;
466 	}
467 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
468 	if (unlikely(!ctx)) {
469 		err = -ENOMEM;
470 		goto unm_err_out;
471 	}
472 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
473 			CASE_SENSITIVE, 0, NULL, 0, ctx);
474 	if (unlikely(err))
475 		goto put_unm_err_out;
476 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
477 	read_lock_irqsave(&ni->size_lock, flags);
478 	if (unlikely(attr_len > ni->initialized_size))
479 		attr_len = ni->initialized_size;
480 	i_size = i_size_read(vi);
481 	read_unlock_irqrestore(&ni->size_lock, flags);
482 	if (unlikely(attr_len > i_size)) {
483 		/* Race with shrinking truncate. */
484 		attr_len = i_size;
485 	}
486 	addr = kmap_atomic(page);
487 	/* Copy the data to the page. */
488 	memcpy(addr, (u8*)ctx->attr +
489 			le16_to_cpu(ctx->attr->data.resident.value_offset),
490 			attr_len);
491 	/* Zero the remainder of the page. */
492 	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
493 	flush_dcache_page(page);
494 	kunmap_atomic(addr);
495 put_unm_err_out:
496 	ntfs_attr_put_search_ctx(ctx);
497 unm_err_out:
498 	unmap_mft_record(base_ni);
499 done:
500 	SetPageUptodate(page);
501 err_out:
502 	unlock_page(page);
503 	return err;
504 }
505 
506 #ifdef NTFS_RW
507 
508 /**
509  * ntfs_write_block - write a @page to the backing store
510  * @page:	page cache page to write out
511  * @wbc:	writeback control structure
512  *
513  * This function is for writing pages belonging to non-resident, non-mst
514  * protected attributes to their backing store.
515  *
516  * For a page with buffers, map and write the dirty buffers asynchronously
517  * under page writeback. For a page without buffers, create buffers for the
518  * page, then proceed as above.
519  *
520  * If a page doesn't have buffers the page dirty state is definitive. If a page
521  * does have buffers, the page dirty state is just a hint, and the buffer dirty
522  * state is definitive. (A hint which has rules: dirty buffers against a clean
523  * page is illegal. Other combinations are legal and need to be handled. In
524  * particular a dirty page containing clean buffers for example.)
525  *
526  * Return 0 on success and -errno on error.
527  *
528  * Based on ntfs_read_block() and __block_write_full_page().
529  */
ntfs_write_block(struct page * page,struct writeback_control * wbc)530 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
531 {
532 	VCN vcn;
533 	LCN lcn;
534 	s64 initialized_size;
535 	loff_t i_size;
536 	sector_t block, dblock, iblock;
537 	struct inode *vi;
538 	ntfs_inode *ni;
539 	ntfs_volume *vol;
540 	runlist_element *rl;
541 	struct buffer_head *bh, *head;
542 	unsigned long flags;
543 	unsigned int blocksize, vcn_ofs;
544 	int err;
545 	bool need_end_writeback;
546 	unsigned char blocksize_bits;
547 
548 	vi = page->mapping->host;
549 	ni = NTFS_I(vi);
550 	vol = ni->vol;
551 
552 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
553 			"0x%lx.", ni->mft_no, ni->type, page->index);
554 
555 	BUG_ON(!NInoNonResident(ni));
556 	BUG_ON(NInoMstProtected(ni));
557 	blocksize = vol->sb->s_blocksize;
558 	blocksize_bits = vol->sb->s_blocksize_bits;
559 	if (!page_has_buffers(page)) {
560 		BUG_ON(!PageUptodate(page));
561 		create_empty_buffers(page, blocksize,
562 				(1 << BH_Uptodate) | (1 << BH_Dirty));
563 		if (unlikely(!page_has_buffers(page))) {
564 			ntfs_warning(vol->sb, "Error allocating page "
565 					"buffers.  Redirtying page so we try "
566 					"again later.");
567 			/*
568 			 * Put the page back on mapping->dirty_pages, but leave
569 			 * its buffers' dirty state as-is.
570 			 */
571 			redirty_page_for_writepage(wbc, page);
572 			unlock_page(page);
573 			return 0;
574 		}
575 	}
576 	bh = head = page_buffers(page);
577 	BUG_ON(!bh);
578 
579 	/* NOTE: Different naming scheme to ntfs_read_block()! */
580 
581 	/* The first block in the page. */
582 	block = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
583 
584 	read_lock_irqsave(&ni->size_lock, flags);
585 	i_size = i_size_read(vi);
586 	initialized_size = ni->initialized_size;
587 	read_unlock_irqrestore(&ni->size_lock, flags);
588 
589 	/* The first out of bounds block for the data size. */
590 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
591 
592 	/* The last (fully or partially) initialized block. */
593 	iblock = initialized_size >> blocksize_bits;
594 
595 	/*
596 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
597 	 * here, and the (potentially unmapped) buffers may become dirty at
598 	 * any time.  If a buffer becomes dirty here after we've inspected it
599 	 * then we just miss that fact, and the page stays dirty.
600 	 *
601 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
602 	 * handle that here by just cleaning them.
603 	 */
604 
605 	/*
606 	 * Loop through all the buffers in the page, mapping all the dirty
607 	 * buffers to disk addresses and handling any aliases from the
608 	 * underlying block device's mapping.
609 	 */
610 	rl = NULL;
611 	err = 0;
612 	do {
613 		bool is_retry = false;
614 
615 		if (unlikely(block >= dblock)) {
616 			/*
617 			 * Mapped buffers outside i_size will occur, because
618 			 * this page can be outside i_size when there is a
619 			 * truncate in progress. The contents of such buffers
620 			 * were zeroed by ntfs_writepage().
621 			 *
622 			 * FIXME: What about the small race window where
623 			 * ntfs_writepage() has not done any clearing because
624 			 * the page was within i_size but before we get here,
625 			 * vmtruncate() modifies i_size?
626 			 */
627 			clear_buffer_dirty(bh);
628 			set_buffer_uptodate(bh);
629 			continue;
630 		}
631 
632 		/* Clean buffers are not written out, so no need to map them. */
633 		if (!buffer_dirty(bh))
634 			continue;
635 
636 		/* Make sure we have enough initialized size. */
637 		if (unlikely((block >= iblock) &&
638 				(initialized_size < i_size))) {
639 			/*
640 			 * If this page is fully outside initialized size, zero
641 			 * out all pages between the current initialized size
642 			 * and the current page. Just use ntfs_readpage() to do
643 			 * the zeroing transparently.
644 			 */
645 			if (block > iblock) {
646 				// TODO:
647 				// For each page do:
648 				// - read_cache_page()
649 				// Again for each page do:
650 				// - wait_on_page_locked()
651 				// - Check (PageUptodate(page) &&
652 				//			!PageError(page))
653 				// Update initialized size in the attribute and
654 				// in the inode.
655 				// Again, for each page do:
656 				//	__set_page_dirty_buffers();
657 				// put_page()
658 				// We don't need to wait on the writes.
659 				// Update iblock.
660 			}
661 			/*
662 			 * The current page straddles initialized size. Zero
663 			 * all non-uptodate buffers and set them uptodate (and
664 			 * dirty?). Note, there aren't any non-uptodate buffers
665 			 * if the page is uptodate.
666 			 * FIXME: For an uptodate page, the buffers may need to
667 			 * be written out because they were not initialized on
668 			 * disk before.
669 			 */
670 			if (!PageUptodate(page)) {
671 				// TODO:
672 				// Zero any non-uptodate buffers up to i_size.
673 				// Set them uptodate and dirty.
674 			}
675 			// TODO:
676 			// Update initialized size in the attribute and in the
677 			// inode (up to i_size).
678 			// Update iblock.
679 			// FIXME: This is inefficient. Try to batch the two
680 			// size changes to happen in one go.
681 			ntfs_error(vol->sb, "Writing beyond initialized size "
682 					"is not supported yet. Sorry.");
683 			err = -EOPNOTSUPP;
684 			break;
685 			// Do NOT set_buffer_new() BUT DO clear buffer range
686 			// outside write request range.
687 			// set_buffer_uptodate() on complete buffers as well as
688 			// set_buffer_dirty().
689 		}
690 
691 		/* No need to map buffers that are already mapped. */
692 		if (buffer_mapped(bh))
693 			continue;
694 
695 		/* Unmapped, dirty buffer. Need to map it. */
696 		bh->b_bdev = vol->sb->s_bdev;
697 
698 		/* Convert block into corresponding vcn and offset. */
699 		vcn = (VCN)block << blocksize_bits;
700 		vcn_ofs = vcn & vol->cluster_size_mask;
701 		vcn >>= vol->cluster_size_bits;
702 		if (!rl) {
703 lock_retry_remap:
704 			down_read(&ni->runlist.lock);
705 			rl = ni->runlist.rl;
706 		}
707 		if (likely(rl != NULL)) {
708 			/* Seek to element containing target vcn. */
709 			while (rl->length && rl[1].vcn <= vcn)
710 				rl++;
711 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
712 		} else
713 			lcn = LCN_RL_NOT_MAPPED;
714 		/* Successful remap. */
715 		if (lcn >= 0) {
716 			/* Setup buffer head to point to correct block. */
717 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
718 					vcn_ofs) >> blocksize_bits;
719 			set_buffer_mapped(bh);
720 			continue;
721 		}
722 		/* It is a hole, need to instantiate it. */
723 		if (lcn == LCN_HOLE) {
724 			u8 *kaddr;
725 			unsigned long *bpos, *bend;
726 
727 			/* Check if the buffer is zero. */
728 			kaddr = kmap_atomic(page);
729 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
730 			bend = (unsigned long *)((u8*)bpos + blocksize);
731 			do {
732 				if (unlikely(*bpos))
733 					break;
734 			} while (likely(++bpos < bend));
735 			kunmap_atomic(kaddr);
736 			if (bpos == bend) {
737 				/*
738 				 * Buffer is zero and sparse, no need to write
739 				 * it.
740 				 */
741 				bh->b_blocknr = -1;
742 				clear_buffer_dirty(bh);
743 				continue;
744 			}
745 			// TODO: Instantiate the hole.
746 			// clear_buffer_new(bh);
747 			// clean_bdev_bh_alias(bh);
748 			ntfs_error(vol->sb, "Writing into sparse regions is "
749 					"not supported yet. Sorry.");
750 			err = -EOPNOTSUPP;
751 			break;
752 		}
753 		/* If first try and runlist unmapped, map and retry. */
754 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
755 			is_retry = true;
756 			/*
757 			 * Attempt to map runlist, dropping lock for
758 			 * the duration.
759 			 */
760 			up_read(&ni->runlist.lock);
761 			err = ntfs_map_runlist(ni, vcn);
762 			if (likely(!err))
763 				goto lock_retry_remap;
764 			rl = NULL;
765 		} else if (!rl)
766 			up_read(&ni->runlist.lock);
767 		/*
768 		 * If buffer is outside the runlist, truncate has cut it out
769 		 * of the runlist.  Just clean and clear the buffer and set it
770 		 * uptodate so it can get discarded by the VM.
771 		 */
772 		if (err == -ENOENT || lcn == LCN_ENOENT) {
773 			bh->b_blocknr = -1;
774 			clear_buffer_dirty(bh);
775 			zero_user(page, bh_offset(bh), blocksize);
776 			set_buffer_uptodate(bh);
777 			err = 0;
778 			continue;
779 		}
780 		/* Failed to map the buffer, even after retrying. */
781 		if (!err)
782 			err = -EIO;
783 		bh->b_blocknr = -1;
784 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
785 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
786 				"because its location on disk could not be "
787 				"determined%s (error code %i).", ni->mft_no,
788 				ni->type, (unsigned long long)vcn,
789 				vcn_ofs, is_retry ? " even after "
790 				"retrying" : "", err);
791 		break;
792 	} while (block++, (bh = bh->b_this_page) != head);
793 
794 	/* Release the lock if we took it. */
795 	if (rl)
796 		up_read(&ni->runlist.lock);
797 
798 	/* For the error case, need to reset bh to the beginning. */
799 	bh = head;
800 
801 	/* Just an optimization, so ->readpage() is not called later. */
802 	if (unlikely(!PageUptodate(page))) {
803 		int uptodate = 1;
804 		do {
805 			if (!buffer_uptodate(bh)) {
806 				uptodate = 0;
807 				bh = head;
808 				break;
809 			}
810 		} while ((bh = bh->b_this_page) != head);
811 		if (uptodate)
812 			SetPageUptodate(page);
813 	}
814 
815 	/* Setup all mapped, dirty buffers for async write i/o. */
816 	do {
817 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
818 			lock_buffer(bh);
819 			if (test_clear_buffer_dirty(bh)) {
820 				BUG_ON(!buffer_uptodate(bh));
821 				mark_buffer_async_write(bh);
822 			} else
823 				unlock_buffer(bh);
824 		} else if (unlikely(err)) {
825 			/*
826 			 * For the error case. The buffer may have been set
827 			 * dirty during attachment to a dirty page.
828 			 */
829 			if (err != -ENOMEM)
830 				clear_buffer_dirty(bh);
831 		}
832 	} while ((bh = bh->b_this_page) != head);
833 
834 	if (unlikely(err)) {
835 		// TODO: Remove the -EOPNOTSUPP check later on...
836 		if (unlikely(err == -EOPNOTSUPP))
837 			err = 0;
838 		else if (err == -ENOMEM) {
839 			ntfs_warning(vol->sb, "Error allocating memory. "
840 					"Redirtying page so we try again "
841 					"later.");
842 			/*
843 			 * Put the page back on mapping->dirty_pages, but
844 			 * leave its buffer's dirty state as-is.
845 			 */
846 			redirty_page_for_writepage(wbc, page);
847 			err = 0;
848 		} else
849 			SetPageError(page);
850 	}
851 
852 	BUG_ON(PageWriteback(page));
853 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
854 
855 	/* Submit the prepared buffers for i/o. */
856 	need_end_writeback = true;
857 	do {
858 		struct buffer_head *next = bh->b_this_page;
859 		if (buffer_async_write(bh)) {
860 			submit_bh(REQ_OP_WRITE, 0, bh);
861 			need_end_writeback = false;
862 		}
863 		bh = next;
864 	} while (bh != head);
865 	unlock_page(page);
866 
867 	/* If no i/o was started, need to end_page_writeback(). */
868 	if (unlikely(need_end_writeback))
869 		end_page_writeback(page);
870 
871 	ntfs_debug("Done.");
872 	return err;
873 }
874 
875 /**
876  * ntfs_write_mst_block - write a @page to the backing store
877  * @page:	page cache page to write out
878  * @wbc:	writeback control structure
879  *
880  * This function is for writing pages belonging to non-resident, mst protected
881  * attributes to their backing store.  The only supported attributes are index
882  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
883  * supported for the index allocation case.
884  *
885  * The page must remain locked for the duration of the write because we apply
886  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
887  * page before undoing the fixups, any other user of the page will see the
888  * page contents as corrupt.
889  *
890  * We clear the page uptodate flag for the duration of the function to ensure
891  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
892  * are about to apply the mst fixups to.
893  *
894  * Return 0 on success and -errno on error.
895  *
896  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
897  * write_mft_record_nolock().
898  */
ntfs_write_mst_block(struct page * page,struct writeback_control * wbc)899 static int ntfs_write_mst_block(struct page *page,
900 		struct writeback_control *wbc)
901 {
902 	sector_t block, dblock, rec_block;
903 	struct inode *vi = page->mapping->host;
904 	ntfs_inode *ni = NTFS_I(vi);
905 	ntfs_volume *vol = ni->vol;
906 	u8 *kaddr;
907 	unsigned int rec_size = ni->itype.index.block_size;
908 	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
909 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
910 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
911 	runlist_element *rl;
912 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
913 	unsigned bh_size, rec_size_bits;
914 	bool sync, is_mft, page_is_dirty, rec_is_dirty;
915 	unsigned char bh_size_bits;
916 
917 	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
918 		return -EINVAL;
919 
920 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
921 			"0x%lx.", vi->i_ino, ni->type, page->index);
922 	BUG_ON(!NInoNonResident(ni));
923 	BUG_ON(!NInoMstProtected(ni));
924 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
925 	/*
926 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
927 	 * in its page cache were to be marked dirty.  However this should
928 	 * never happen with the current driver and considering we do not
929 	 * handle this case here we do want to BUG(), at least for now.
930 	 */
931 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
932 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
933 	bh_size = vol->sb->s_blocksize;
934 	bh_size_bits = vol->sb->s_blocksize_bits;
935 	max_bhs = PAGE_SIZE / bh_size;
936 	BUG_ON(!max_bhs);
937 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
938 
939 	/* Were we called for sync purposes? */
940 	sync = (wbc->sync_mode == WB_SYNC_ALL);
941 
942 	/* Make sure we have mapped buffers. */
943 	bh = head = page_buffers(page);
944 	BUG_ON(!bh);
945 
946 	rec_size_bits = ni->itype.index.block_size_bits;
947 	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
948 	bhs_per_rec = rec_size >> bh_size_bits;
949 	BUG_ON(!bhs_per_rec);
950 
951 	/* The first block in the page. */
952 	rec_block = block = (sector_t)page->index <<
953 			(PAGE_SHIFT - bh_size_bits);
954 
955 	/* The first out of bounds block for the data size. */
956 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
957 
958 	rl = NULL;
959 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
960 	page_is_dirty = rec_is_dirty = false;
961 	rec_start_bh = NULL;
962 	do {
963 		bool is_retry = false;
964 
965 		if (likely(block < rec_block)) {
966 			if (unlikely(block >= dblock)) {
967 				clear_buffer_dirty(bh);
968 				set_buffer_uptodate(bh);
969 				continue;
970 			}
971 			/*
972 			 * This block is not the first one in the record.  We
973 			 * ignore the buffer's dirty state because we could
974 			 * have raced with a parallel mark_ntfs_record_dirty().
975 			 */
976 			if (!rec_is_dirty)
977 				continue;
978 			if (unlikely(err2)) {
979 				if (err2 != -ENOMEM)
980 					clear_buffer_dirty(bh);
981 				continue;
982 			}
983 		} else /* if (block == rec_block) */ {
984 			BUG_ON(block > rec_block);
985 			/* This block is the first one in the record. */
986 			rec_block += bhs_per_rec;
987 			err2 = 0;
988 			if (unlikely(block >= dblock)) {
989 				clear_buffer_dirty(bh);
990 				continue;
991 			}
992 			if (!buffer_dirty(bh)) {
993 				/* Clean records are not written out. */
994 				rec_is_dirty = false;
995 				continue;
996 			}
997 			rec_is_dirty = true;
998 			rec_start_bh = bh;
999 		}
1000 		/* Need to map the buffer if it is not mapped already. */
1001 		if (unlikely(!buffer_mapped(bh))) {
1002 			VCN vcn;
1003 			LCN lcn;
1004 			unsigned int vcn_ofs;
1005 
1006 			bh->b_bdev = vol->sb->s_bdev;
1007 			/* Obtain the vcn and offset of the current block. */
1008 			vcn = (VCN)block << bh_size_bits;
1009 			vcn_ofs = vcn & vol->cluster_size_mask;
1010 			vcn >>= vol->cluster_size_bits;
1011 			if (!rl) {
1012 lock_retry_remap:
1013 				down_read(&ni->runlist.lock);
1014 				rl = ni->runlist.rl;
1015 			}
1016 			if (likely(rl != NULL)) {
1017 				/* Seek to element containing target vcn. */
1018 				while (rl->length && rl[1].vcn <= vcn)
1019 					rl++;
1020 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1021 			} else
1022 				lcn = LCN_RL_NOT_MAPPED;
1023 			/* Successful remap. */
1024 			if (likely(lcn >= 0)) {
1025 				/* Setup buffer head to correct block. */
1026 				bh->b_blocknr = ((lcn <<
1027 						vol->cluster_size_bits) +
1028 						vcn_ofs) >> bh_size_bits;
1029 				set_buffer_mapped(bh);
1030 			} else {
1031 				/*
1032 				 * Remap failed.  Retry to map the runlist once
1033 				 * unless we are working on $MFT which always
1034 				 * has the whole of its runlist in memory.
1035 				 */
1036 				if (!is_mft && !is_retry &&
1037 						lcn == LCN_RL_NOT_MAPPED) {
1038 					is_retry = true;
1039 					/*
1040 					 * Attempt to map runlist, dropping
1041 					 * lock for the duration.
1042 					 */
1043 					up_read(&ni->runlist.lock);
1044 					err2 = ntfs_map_runlist(ni, vcn);
1045 					if (likely(!err2))
1046 						goto lock_retry_remap;
1047 					if (err2 == -ENOMEM)
1048 						page_is_dirty = true;
1049 					lcn = err2;
1050 				} else {
1051 					err2 = -EIO;
1052 					if (!rl)
1053 						up_read(&ni->runlist.lock);
1054 				}
1055 				/* Hard error.  Abort writing this record. */
1056 				if (!err || err == -ENOMEM)
1057 					err = err2;
1058 				bh->b_blocknr = -1;
1059 				ntfs_error(vol->sb, "Cannot write ntfs record "
1060 						"0x%llx (inode 0x%lx, "
1061 						"attribute type 0x%x) because "
1062 						"its location on disk could "
1063 						"not be determined (error "
1064 						"code %lli).",
1065 						(long long)block <<
1066 						bh_size_bits >>
1067 						vol->mft_record_size_bits,
1068 						ni->mft_no, ni->type,
1069 						(long long)lcn);
1070 				/*
1071 				 * If this is not the first buffer, remove the
1072 				 * buffers in this record from the list of
1073 				 * buffers to write and clear their dirty bit
1074 				 * if not error -ENOMEM.
1075 				 */
1076 				if (rec_start_bh != bh) {
1077 					while (bhs[--nr_bhs] != rec_start_bh)
1078 						;
1079 					if (err2 != -ENOMEM) {
1080 						do {
1081 							clear_buffer_dirty(
1082 								rec_start_bh);
1083 						} while ((rec_start_bh =
1084 								rec_start_bh->
1085 								b_this_page) !=
1086 								bh);
1087 					}
1088 				}
1089 				continue;
1090 			}
1091 		}
1092 		BUG_ON(!buffer_uptodate(bh));
1093 		BUG_ON(nr_bhs >= max_bhs);
1094 		bhs[nr_bhs++] = bh;
1095 	} while (block++, (bh = bh->b_this_page) != head);
1096 	if (unlikely(rl))
1097 		up_read(&ni->runlist.lock);
1098 	/* If there were no dirty buffers, we are done. */
1099 	if (!nr_bhs)
1100 		goto done;
1101 	/* Map the page so we can access its contents. */
1102 	kaddr = kmap(page);
1103 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1104 	BUG_ON(!PageUptodate(page));
1105 	ClearPageUptodate(page);
1106 	for (i = 0; i < nr_bhs; i++) {
1107 		unsigned int ofs;
1108 
1109 		/* Skip buffers which are not at the beginning of records. */
1110 		if (i % bhs_per_rec)
1111 			continue;
1112 		tbh = bhs[i];
1113 		ofs = bh_offset(tbh);
1114 		if (is_mft) {
1115 			ntfs_inode *tni;
1116 			unsigned long mft_no;
1117 
1118 			/* Get the mft record number. */
1119 			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1120 					>> rec_size_bits;
1121 			/* Check whether to write this mft record. */
1122 			tni = NULL;
1123 			if (!ntfs_may_write_mft_record(vol, mft_no,
1124 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1125 				/*
1126 				 * The record should not be written.  This
1127 				 * means we need to redirty the page before
1128 				 * returning.
1129 				 */
1130 				page_is_dirty = true;
1131 				/*
1132 				 * Remove the buffers in this mft record from
1133 				 * the list of buffers to write.
1134 				 */
1135 				do {
1136 					bhs[i] = NULL;
1137 				} while (++i % bhs_per_rec);
1138 				continue;
1139 			}
1140 			/*
1141 			 * The record should be written.  If a locked ntfs
1142 			 * inode was returned, add it to the array of locked
1143 			 * ntfs inodes.
1144 			 */
1145 			if (tni)
1146 				locked_nis[nr_locked_nis++] = tni;
1147 		}
1148 		/* Apply the mst protection fixups. */
1149 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1150 				rec_size);
1151 		if (unlikely(err2)) {
1152 			if (!err || err == -ENOMEM)
1153 				err = -EIO;
1154 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1155 					"(inode 0x%lx, attribute type 0x%x, "
1156 					"page index 0x%lx, page offset 0x%x)!"
1157 					"  Unmount and run chkdsk.", vi->i_ino,
1158 					ni->type, page->index, ofs);
1159 			/*
1160 			 * Mark all the buffers in this record clean as we do
1161 			 * not want to write corrupt data to disk.
1162 			 */
1163 			do {
1164 				clear_buffer_dirty(bhs[i]);
1165 				bhs[i] = NULL;
1166 			} while (++i % bhs_per_rec);
1167 			continue;
1168 		}
1169 		nr_recs++;
1170 	}
1171 	/* If no records are to be written out, we are done. */
1172 	if (!nr_recs)
1173 		goto unm_done;
1174 	flush_dcache_page(page);
1175 	/* Lock buffers and start synchronous write i/o on them. */
1176 	for (i = 0; i < nr_bhs; i++) {
1177 		tbh = bhs[i];
1178 		if (!tbh)
1179 			continue;
1180 		if (!trylock_buffer(tbh))
1181 			BUG();
1182 		/* The buffer dirty state is now irrelevant, just clean it. */
1183 		clear_buffer_dirty(tbh);
1184 		BUG_ON(!buffer_uptodate(tbh));
1185 		BUG_ON(!buffer_mapped(tbh));
1186 		get_bh(tbh);
1187 		tbh->b_end_io = end_buffer_write_sync;
1188 		submit_bh(REQ_OP_WRITE, 0, tbh);
1189 	}
1190 	/* Synchronize the mft mirror now if not @sync. */
1191 	if (is_mft && !sync)
1192 		goto do_mirror;
1193 do_wait:
1194 	/* Wait on i/o completion of buffers. */
1195 	for (i = 0; i < nr_bhs; i++) {
1196 		tbh = bhs[i];
1197 		if (!tbh)
1198 			continue;
1199 		wait_on_buffer(tbh);
1200 		if (unlikely(!buffer_uptodate(tbh))) {
1201 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1202 					"record buffer (inode 0x%lx, "
1203 					"attribute type 0x%x, page index "
1204 					"0x%lx, page offset 0x%lx)!  Unmount "
1205 					"and run chkdsk.", vi->i_ino, ni->type,
1206 					page->index, bh_offset(tbh));
1207 			if (!err || err == -ENOMEM)
1208 				err = -EIO;
1209 			/*
1210 			 * Set the buffer uptodate so the page and buffer
1211 			 * states do not become out of sync.
1212 			 */
1213 			set_buffer_uptodate(tbh);
1214 		}
1215 	}
1216 	/* If @sync, now synchronize the mft mirror. */
1217 	if (is_mft && sync) {
1218 do_mirror:
1219 		for (i = 0; i < nr_bhs; i++) {
1220 			unsigned long mft_no;
1221 			unsigned int ofs;
1222 
1223 			/*
1224 			 * Skip buffers which are not at the beginning of
1225 			 * records.
1226 			 */
1227 			if (i % bhs_per_rec)
1228 				continue;
1229 			tbh = bhs[i];
1230 			/* Skip removed buffers (and hence records). */
1231 			if (!tbh)
1232 				continue;
1233 			ofs = bh_offset(tbh);
1234 			/* Get the mft record number. */
1235 			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1236 					>> rec_size_bits;
1237 			if (mft_no < vol->mftmirr_size)
1238 				ntfs_sync_mft_mirror(vol, mft_no,
1239 						(MFT_RECORD*)(kaddr + ofs),
1240 						sync);
1241 		}
1242 		if (!sync)
1243 			goto do_wait;
1244 	}
1245 	/* Remove the mst protection fixups again. */
1246 	for (i = 0; i < nr_bhs; i++) {
1247 		if (!(i % bhs_per_rec)) {
1248 			tbh = bhs[i];
1249 			if (!tbh)
1250 				continue;
1251 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1252 					bh_offset(tbh)));
1253 		}
1254 	}
1255 	flush_dcache_page(page);
1256 unm_done:
1257 	/* Unlock any locked inodes. */
1258 	while (nr_locked_nis-- > 0) {
1259 		ntfs_inode *tni, *base_tni;
1260 
1261 		tni = locked_nis[nr_locked_nis];
1262 		/* Get the base inode. */
1263 		mutex_lock(&tni->extent_lock);
1264 		if (tni->nr_extents >= 0)
1265 			base_tni = tni;
1266 		else {
1267 			base_tni = tni->ext.base_ntfs_ino;
1268 			BUG_ON(!base_tni);
1269 		}
1270 		mutex_unlock(&tni->extent_lock);
1271 		ntfs_debug("Unlocking %s inode 0x%lx.",
1272 				tni == base_tni ? "base" : "extent",
1273 				tni->mft_no);
1274 		mutex_unlock(&tni->mrec_lock);
1275 		atomic_dec(&tni->count);
1276 		iput(VFS_I(base_tni));
1277 	}
1278 	SetPageUptodate(page);
1279 	kunmap(page);
1280 done:
1281 	if (unlikely(err && err != -ENOMEM)) {
1282 		/*
1283 		 * Set page error if there is only one ntfs record in the page.
1284 		 * Otherwise we would loose per-record granularity.
1285 		 */
1286 		if (ni->itype.index.block_size == PAGE_SIZE)
1287 			SetPageError(page);
1288 		NVolSetErrors(vol);
1289 	}
1290 	if (page_is_dirty) {
1291 		ntfs_debug("Page still contains one or more dirty ntfs "
1292 				"records.  Redirtying the page starting at "
1293 				"record 0x%lx.", page->index <<
1294 				(PAGE_SHIFT - rec_size_bits));
1295 		redirty_page_for_writepage(wbc, page);
1296 		unlock_page(page);
1297 	} else {
1298 		/*
1299 		 * Keep the VM happy.  This must be done otherwise the
1300 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1301 		 * the page is clean.
1302 		 */
1303 		BUG_ON(PageWriteback(page));
1304 		set_page_writeback(page);
1305 		unlock_page(page);
1306 		end_page_writeback(page);
1307 	}
1308 	if (likely(!err))
1309 		ntfs_debug("Done.");
1310 	return err;
1311 }
1312 
1313 /**
1314  * ntfs_writepage - write a @page to the backing store
1315  * @page:	page cache page to write out
1316  * @wbc:	writeback control structure
1317  *
1318  * This is called from the VM when it wants to have a dirty ntfs page cache
1319  * page cleaned.  The VM has already locked the page and marked it clean.
1320  *
1321  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1322  * the ntfs version of the generic block_write_full_page() function,
1323  * ntfs_write_block(), which in turn if necessary creates and writes the
1324  * buffers associated with the page asynchronously.
1325  *
1326  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1327  * the data to the mft record (which at this stage is most likely in memory).
1328  * The mft record is then marked dirty and written out asynchronously via the
1329  * vfs inode dirty code path for the inode the mft record belongs to or via the
1330  * vm page dirty code path for the page the mft record is in.
1331  *
1332  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1333  *
1334  * Return 0 on success and -errno on error.
1335  */
ntfs_writepage(struct page * page,struct writeback_control * wbc)1336 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1337 {
1338 	loff_t i_size;
1339 	struct inode *vi = page->mapping->host;
1340 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1341 	char *addr;
1342 	ntfs_attr_search_ctx *ctx = NULL;
1343 	MFT_RECORD *m = NULL;
1344 	u32 attr_len;
1345 	int err;
1346 
1347 retry_writepage:
1348 	BUG_ON(!PageLocked(page));
1349 	i_size = i_size_read(vi);
1350 	/* Is the page fully outside i_size? (truncate in progress) */
1351 	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
1352 			PAGE_SHIFT)) {
1353 		/*
1354 		 * The page may have dirty, unmapped buffers.  Make them
1355 		 * freeable here, so the page does not leak.
1356 		 */
1357 		block_invalidatepage(page, 0, PAGE_SIZE);
1358 		unlock_page(page);
1359 		ntfs_debug("Write outside i_size - truncated?");
1360 		return 0;
1361 	}
1362 	/*
1363 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1364 	 * attributes can be compressed.  Index root can have the flags set but
1365 	 * this means to create compressed/encrypted files, not that the
1366 	 * attribute is compressed/encrypted.  Note we need to check for
1367 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1368 	 * index inodes.
1369 	 */
1370 	if (ni->type != AT_INDEX_ALLOCATION) {
1371 		/* If file is encrypted, deny access, just like NT4. */
1372 		if (NInoEncrypted(ni)) {
1373 			unlock_page(page);
1374 			BUG_ON(ni->type != AT_DATA);
1375 			ntfs_debug("Denying write access to encrypted file.");
1376 			return -EACCES;
1377 		}
1378 		/* Compressed data streams are handled in compress.c. */
1379 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1380 			BUG_ON(ni->type != AT_DATA);
1381 			BUG_ON(ni->name_len);
1382 			// TODO: Implement and replace this with
1383 			// return ntfs_write_compressed_block(page);
1384 			unlock_page(page);
1385 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1386 					"not supported yet.  Sorry.");
1387 			return -EOPNOTSUPP;
1388 		}
1389 		// TODO: Implement and remove this check.
1390 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1391 			unlock_page(page);
1392 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1393 					"supported yet.  Sorry.");
1394 			return -EOPNOTSUPP;
1395 		}
1396 	}
1397 	/* NInoNonResident() == NInoIndexAllocPresent() */
1398 	if (NInoNonResident(ni)) {
1399 		/* We have to zero every time due to mmap-at-end-of-file. */
1400 		if (page->index >= (i_size >> PAGE_SHIFT)) {
1401 			/* The page straddles i_size. */
1402 			unsigned int ofs = i_size & ~PAGE_MASK;
1403 			zero_user_segment(page, ofs, PAGE_SIZE);
1404 		}
1405 		/* Handle mst protected attributes. */
1406 		if (NInoMstProtected(ni))
1407 			return ntfs_write_mst_block(page, wbc);
1408 		/* Normal, non-resident data stream. */
1409 		return ntfs_write_block(page, wbc);
1410 	}
1411 	/*
1412 	 * Attribute is resident, implying it is not compressed, encrypted, or
1413 	 * mst protected.  This also means the attribute is smaller than an mft
1414 	 * record and hence smaller than a page, so can simply return error on
1415 	 * any pages with index above 0.  Note the attribute can actually be
1416 	 * marked compressed but if it is resident the actual data is not
1417 	 * compressed so we are ok to ignore the compressed flag here.
1418 	 */
1419 	BUG_ON(page_has_buffers(page));
1420 	BUG_ON(!PageUptodate(page));
1421 	if (unlikely(page->index > 0)) {
1422 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1423 				"Aborting write.", page->index);
1424 		BUG_ON(PageWriteback(page));
1425 		set_page_writeback(page);
1426 		unlock_page(page);
1427 		end_page_writeback(page);
1428 		return -EIO;
1429 	}
1430 	if (!NInoAttr(ni))
1431 		base_ni = ni;
1432 	else
1433 		base_ni = ni->ext.base_ntfs_ino;
1434 	/* Map, pin, and lock the mft record. */
1435 	m = map_mft_record(base_ni);
1436 	if (IS_ERR(m)) {
1437 		err = PTR_ERR(m);
1438 		m = NULL;
1439 		ctx = NULL;
1440 		goto err_out;
1441 	}
1442 	/*
1443 	 * If a parallel write made the attribute non-resident, drop the mft
1444 	 * record and retry the writepage.
1445 	 */
1446 	if (unlikely(NInoNonResident(ni))) {
1447 		unmap_mft_record(base_ni);
1448 		goto retry_writepage;
1449 	}
1450 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1451 	if (unlikely(!ctx)) {
1452 		err = -ENOMEM;
1453 		goto err_out;
1454 	}
1455 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1456 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1457 	if (unlikely(err))
1458 		goto err_out;
1459 	/*
1460 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1461 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1462 	 */
1463 	BUG_ON(PageWriteback(page));
1464 	set_page_writeback(page);
1465 	unlock_page(page);
1466 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1467 	i_size = i_size_read(vi);
1468 	if (unlikely(attr_len > i_size)) {
1469 		/* Race with shrinking truncate or a failed truncate. */
1470 		attr_len = i_size;
1471 		/*
1472 		 * If the truncate failed, fix it up now.  If a concurrent
1473 		 * truncate, we do its job, so it does not have to do anything.
1474 		 */
1475 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1476 				attr_len);
1477 		/* Shrinking cannot fail. */
1478 		BUG_ON(err);
1479 	}
1480 	addr = kmap_atomic(page);
1481 	/* Copy the data from the page to the mft record. */
1482 	memcpy((u8*)ctx->attr +
1483 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1484 			addr, attr_len);
1485 	/* Zero out of bounds area in the page cache page. */
1486 	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
1487 	kunmap_atomic(addr);
1488 	flush_dcache_page(page);
1489 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1490 	/* We are done with the page. */
1491 	end_page_writeback(page);
1492 	/* Finally, mark the mft record dirty, so it gets written back. */
1493 	mark_mft_record_dirty(ctx->ntfs_ino);
1494 	ntfs_attr_put_search_ctx(ctx);
1495 	unmap_mft_record(base_ni);
1496 	return 0;
1497 err_out:
1498 	if (err == -ENOMEM) {
1499 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1500 				"page so we try again later.");
1501 		/*
1502 		 * Put the page back on mapping->dirty_pages, but leave its
1503 		 * buffers' dirty state as-is.
1504 		 */
1505 		redirty_page_for_writepage(wbc, page);
1506 		err = 0;
1507 	} else {
1508 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1509 				"error %i.", err);
1510 		SetPageError(page);
1511 		NVolSetErrors(ni->vol);
1512 	}
1513 	unlock_page(page);
1514 	if (ctx)
1515 		ntfs_attr_put_search_ctx(ctx);
1516 	if (m)
1517 		unmap_mft_record(base_ni);
1518 	return err;
1519 }
1520 
1521 #endif	/* NTFS_RW */
1522 
1523 /**
1524  * ntfs_bmap - map logical file block to physical device block
1525  * @mapping:	address space mapping to which the block to be mapped belongs
1526  * @block:	logical block to map to its physical device block
1527  *
1528  * For regular, non-resident files (i.e. not compressed and not encrypted), map
1529  * the logical @block belonging to the file described by the address space
1530  * mapping @mapping to its physical device block.
1531  *
1532  * The size of the block is equal to the @s_blocksize field of the super block
1533  * of the mounted file system which is guaranteed to be smaller than or equal
1534  * to the cluster size thus the block is guaranteed to fit entirely inside the
1535  * cluster which means we do not need to care how many contiguous bytes are
1536  * available after the beginning of the block.
1537  *
1538  * Return the physical device block if the mapping succeeded or 0 if the block
1539  * is sparse or there was an error.
1540  *
1541  * Note: This is a problem if someone tries to run bmap() on $Boot system file
1542  * as that really is in block zero but there is nothing we can do.  bmap() is
1543  * just broken in that respect (just like it cannot distinguish sparse from
1544  * not available or error).
1545  */
ntfs_bmap(struct address_space * mapping,sector_t block)1546 static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
1547 {
1548 	s64 ofs, size;
1549 	loff_t i_size;
1550 	LCN lcn;
1551 	unsigned long blocksize, flags;
1552 	ntfs_inode *ni = NTFS_I(mapping->host);
1553 	ntfs_volume *vol = ni->vol;
1554 	unsigned delta;
1555 	unsigned char blocksize_bits, cluster_size_shift;
1556 
1557 	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
1558 			ni->mft_no, (unsigned long long)block);
1559 	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
1560 		ntfs_error(vol->sb, "BMAP does not make sense for %s "
1561 				"attributes, returning 0.",
1562 				(ni->type != AT_DATA) ? "non-data" :
1563 				(!NInoNonResident(ni) ? "resident" :
1564 				"encrypted"));
1565 		return 0;
1566 	}
1567 	/* None of these can happen. */
1568 	BUG_ON(NInoCompressed(ni));
1569 	BUG_ON(NInoMstProtected(ni));
1570 	blocksize = vol->sb->s_blocksize;
1571 	blocksize_bits = vol->sb->s_blocksize_bits;
1572 	ofs = (s64)block << blocksize_bits;
1573 	read_lock_irqsave(&ni->size_lock, flags);
1574 	size = ni->initialized_size;
1575 	i_size = i_size_read(VFS_I(ni));
1576 	read_unlock_irqrestore(&ni->size_lock, flags);
1577 	/*
1578 	 * If the offset is outside the initialized size or the block straddles
1579 	 * the initialized size then pretend it is a hole unless the
1580 	 * initialized size equals the file size.
1581 	 */
1582 	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
1583 		goto hole;
1584 	cluster_size_shift = vol->cluster_size_bits;
1585 	down_read(&ni->runlist.lock);
1586 	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
1587 	up_read(&ni->runlist.lock);
1588 	if (unlikely(lcn < LCN_HOLE)) {
1589 		/*
1590 		 * Step down to an integer to avoid gcc doing a long long
1591 		 * comparision in the switch when we know @lcn is between
1592 		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
1593 		 *
1594 		 * Otherwise older gcc (at least on some architectures) will
1595 		 * try to use __cmpdi2() which is of course not available in
1596 		 * the kernel.
1597 		 */
1598 		switch ((int)lcn) {
1599 		case LCN_ENOENT:
1600 			/*
1601 			 * If the offset is out of bounds then pretend it is a
1602 			 * hole.
1603 			 */
1604 			goto hole;
1605 		case LCN_ENOMEM:
1606 			ntfs_error(vol->sb, "Not enough memory to complete "
1607 					"mapping for inode 0x%lx.  "
1608 					"Returning 0.", ni->mft_no);
1609 			break;
1610 		default:
1611 			ntfs_error(vol->sb, "Failed to complete mapping for "
1612 					"inode 0x%lx.  Run chkdsk.  "
1613 					"Returning 0.", ni->mft_no);
1614 			break;
1615 		}
1616 		return 0;
1617 	}
1618 	if (lcn < 0) {
1619 		/* It is a hole. */
1620 hole:
1621 		ntfs_debug("Done (returning hole).");
1622 		return 0;
1623 	}
1624 	/*
1625 	 * The block is really allocated and fullfils all our criteria.
1626 	 * Convert the cluster to units of block size and return the result.
1627 	 */
1628 	delta = ofs & vol->cluster_size_mask;
1629 	if (unlikely(sizeof(block) < sizeof(lcn))) {
1630 		block = lcn = ((lcn << cluster_size_shift) + delta) >>
1631 				blocksize_bits;
1632 		/* If the block number was truncated return 0. */
1633 		if (unlikely(block != lcn)) {
1634 			ntfs_error(vol->sb, "Physical block 0x%llx is too "
1635 					"large to be returned, returning 0.",
1636 					(long long)lcn);
1637 			return 0;
1638 		}
1639 	} else
1640 		block = ((lcn << cluster_size_shift) + delta) >>
1641 				blocksize_bits;
1642 	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
1643 	return block;
1644 }
1645 
1646 /**
1647  * ntfs_normal_aops - address space operations for normal inodes and attributes
1648  *
1649  * Note these are not used for compressed or mst protected inodes and
1650  * attributes.
1651  */
1652 const struct address_space_operations ntfs_normal_aops = {
1653 	.readpage	= ntfs_readpage,
1654 #ifdef NTFS_RW
1655 	.writepage	= ntfs_writepage,
1656 	.set_page_dirty	= __set_page_dirty_buffers,
1657 #endif /* NTFS_RW */
1658 	.bmap		= ntfs_bmap,
1659 	.migratepage	= buffer_migrate_page,
1660 	.is_partially_uptodate = block_is_partially_uptodate,
1661 	.error_remove_page = generic_error_remove_page,
1662 };
1663 
1664 /**
1665  * ntfs_compressed_aops - address space operations for compressed inodes
1666  */
1667 const struct address_space_operations ntfs_compressed_aops = {
1668 	.readpage	= ntfs_readpage,
1669 #ifdef NTFS_RW
1670 	.writepage	= ntfs_writepage,
1671 	.set_page_dirty	= __set_page_dirty_buffers,
1672 #endif /* NTFS_RW */
1673 	.migratepage	= buffer_migrate_page,
1674 	.is_partially_uptodate = block_is_partially_uptodate,
1675 	.error_remove_page = generic_error_remove_page,
1676 };
1677 
1678 /**
1679  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1680  *		   and attributes
1681  */
1682 const struct address_space_operations ntfs_mst_aops = {
1683 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1684 #ifdef NTFS_RW
1685 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1686 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1687 						   without touching the buffers
1688 						   belonging to the page. */
1689 #endif /* NTFS_RW */
1690 	.migratepage	= buffer_migrate_page,
1691 	.is_partially_uptodate	= block_is_partially_uptodate,
1692 	.error_remove_page = generic_error_remove_page,
1693 };
1694 
1695 #ifdef NTFS_RW
1696 
1697 /**
1698  * mark_ntfs_record_dirty - mark an ntfs record dirty
1699  * @page:	page containing the ntfs record to mark dirty
1700  * @ofs:	byte offset within @page at which the ntfs record begins
1701  *
1702  * Set the buffers and the page in which the ntfs record is located dirty.
1703  *
1704  * The latter also marks the vfs inode the ntfs record belongs to dirty
1705  * (I_DIRTY_PAGES only).
1706  *
1707  * If the page does not have buffers, we create them and set them uptodate.
1708  * The page may not be locked which is why we need to handle the buffers under
1709  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1710  * need the lock since try_to_free_buffers() does not free dirty buffers.
1711  */
mark_ntfs_record_dirty(struct page * page,const unsigned int ofs)1712 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1713 	struct address_space *mapping = page->mapping;
1714 	ntfs_inode *ni = NTFS_I(mapping->host);
1715 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1716 	unsigned int end, bh_size, bh_ofs;
1717 
1718 	BUG_ON(!PageUptodate(page));
1719 	end = ofs + ni->itype.index.block_size;
1720 	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1721 	spin_lock(&mapping->private_lock);
1722 	if (unlikely(!page_has_buffers(page))) {
1723 		spin_unlock(&mapping->private_lock);
1724 		bh = head = alloc_page_buffers(page, bh_size, true);
1725 		spin_lock(&mapping->private_lock);
1726 		if (likely(!page_has_buffers(page))) {
1727 			struct buffer_head *tail;
1728 
1729 			do {
1730 				set_buffer_uptodate(bh);
1731 				tail = bh;
1732 				bh = bh->b_this_page;
1733 			} while (bh);
1734 			tail->b_this_page = head;
1735 			attach_page_private(page, head);
1736 		} else
1737 			buffers_to_free = bh;
1738 	}
1739 	bh = head = page_buffers(page);
1740 	BUG_ON(!bh);
1741 	do {
1742 		bh_ofs = bh_offset(bh);
1743 		if (bh_ofs + bh_size <= ofs)
1744 			continue;
1745 		if (unlikely(bh_ofs >= end))
1746 			break;
1747 		set_buffer_dirty(bh);
1748 	} while ((bh = bh->b_this_page) != head);
1749 	spin_unlock(&mapping->private_lock);
1750 	__set_page_dirty_nobuffers(page);
1751 	if (unlikely(buffers_to_free)) {
1752 		do {
1753 			bh = buffers_to_free->b_this_page;
1754 			free_buffer_head(buffers_to_free);
1755 			buffers_to_free = bh;
1756 		} while (buffers_to_free);
1757 	}
1758 }
1759 
1760 #endif /* NTFS_RW */
1761