1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Common code for 32 and 64-bit NUMA */
3 #include <linux/acpi.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/string.h>
7 #include <linux/init.h>
8 #include <linux/memblock.h>
9 #include <linux/mmzone.h>
10 #include <linux/ctype.h>
11 #include <linux/nodemask.h>
12 #include <linux/sched.h>
13 #include <linux/topology.h>
14
15 #include <asm/e820/api.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/amd_nb.h>
19
20 #include "numa_internal.h"
21
22 int numa_off;
23 nodemask_t numa_nodes_parsed __initdata;
24
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
27
28 static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
29 static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
30
31 static int numa_distance_cnt;
32 static u8 *numa_distance;
33
numa_setup(char * opt)34 static __init int numa_setup(char *opt)
35 {
36 if (!opt)
37 return -EINVAL;
38 if (!strncmp(opt, "off", 3))
39 numa_off = 1;
40 if (!strncmp(opt, "fake=", 5))
41 return numa_emu_cmdline(opt + 5);
42 if (!strncmp(opt, "noacpi", 6))
43 disable_srat();
44 if (!strncmp(opt, "nohmat", 6))
45 disable_hmat();
46 return 0;
47 }
48 early_param("numa", numa_setup);
49
50 /*
51 * apicid, cpu, node mappings
52 */
53 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
54 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
55 };
56
numa_cpu_node(int cpu)57 int numa_cpu_node(int cpu)
58 {
59 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
60
61 if (apicid != BAD_APICID)
62 return __apicid_to_node[apicid];
63 return NUMA_NO_NODE;
64 }
65
66 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
67 EXPORT_SYMBOL(node_to_cpumask_map);
68
69 /*
70 * Map cpu index to node index
71 */
72 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
73 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
74
numa_set_node(int cpu,int node)75 void numa_set_node(int cpu, int node)
76 {
77 int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
78
79 /* early setting, no percpu area yet */
80 if (cpu_to_node_map) {
81 cpu_to_node_map[cpu] = node;
82 return;
83 }
84
85 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
86 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
87 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
88 dump_stack();
89 return;
90 }
91 #endif
92 per_cpu(x86_cpu_to_node_map, cpu) = node;
93
94 set_cpu_numa_node(cpu, node);
95 }
96
numa_clear_node(int cpu)97 void numa_clear_node(int cpu)
98 {
99 numa_set_node(cpu, NUMA_NO_NODE);
100 }
101
102 /*
103 * Allocate node_to_cpumask_map based on number of available nodes
104 * Requires node_possible_map to be valid.
105 *
106 * Note: cpumask_of_node() is not valid until after this is done.
107 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
108 */
setup_node_to_cpumask_map(void)109 void __init setup_node_to_cpumask_map(void)
110 {
111 unsigned int node;
112
113 /* setup nr_node_ids if not done yet */
114 if (nr_node_ids == MAX_NUMNODES)
115 setup_nr_node_ids();
116
117 /* allocate the map */
118 for (node = 0; node < nr_node_ids; node++)
119 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
120
121 /* cpumask_of_node() will now work */
122 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
123 }
124
numa_add_memblk_to(int nid,u64 start,u64 end,struct numa_meminfo * mi)125 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
126 struct numa_meminfo *mi)
127 {
128 /* ignore zero length blks */
129 if (start == end)
130 return 0;
131
132 /* whine about and ignore invalid blks */
133 if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
134 pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
135 nid, start, end - 1);
136 return 0;
137 }
138
139 if (mi->nr_blks >= NR_NODE_MEMBLKS) {
140 pr_err("too many memblk ranges\n");
141 return -EINVAL;
142 }
143
144 mi->blk[mi->nr_blks].start = start;
145 mi->blk[mi->nr_blks].end = end;
146 mi->blk[mi->nr_blks].nid = nid;
147 mi->nr_blks++;
148 return 0;
149 }
150
151 /**
152 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
153 * @idx: Index of memblk to remove
154 * @mi: numa_meminfo to remove memblk from
155 *
156 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
157 * decrementing @mi->nr_blks.
158 */
numa_remove_memblk_from(int idx,struct numa_meminfo * mi)159 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
160 {
161 mi->nr_blks--;
162 memmove(&mi->blk[idx], &mi->blk[idx + 1],
163 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
164 }
165
166 /**
167 * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
168 * @dst: numa_meminfo to append block to
169 * @idx: Index of memblk to remove
170 * @src: numa_meminfo to remove memblk from
171 */
numa_move_tail_memblk(struct numa_meminfo * dst,int idx,struct numa_meminfo * src)172 static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
173 struct numa_meminfo *src)
174 {
175 dst->blk[dst->nr_blks++] = src->blk[idx];
176 numa_remove_memblk_from(idx, src);
177 }
178
179 /**
180 * numa_add_memblk - Add one numa_memblk to numa_meminfo
181 * @nid: NUMA node ID of the new memblk
182 * @start: Start address of the new memblk
183 * @end: End address of the new memblk
184 *
185 * Add a new memblk to the default numa_meminfo.
186 *
187 * RETURNS:
188 * 0 on success, -errno on failure.
189 */
numa_add_memblk(int nid,u64 start,u64 end)190 int __init numa_add_memblk(int nid, u64 start, u64 end)
191 {
192 return numa_add_memblk_to(nid, start, end, &numa_meminfo);
193 }
194
195 /* Allocate NODE_DATA for a node on the local memory */
alloc_node_data(int nid)196 static void __init alloc_node_data(int nid)
197 {
198 const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
199 u64 nd_pa;
200 void *nd;
201 int tnid;
202
203 /*
204 * Allocate node data. Try node-local memory and then any node.
205 * Never allocate in DMA zone.
206 */
207 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
208 if (!nd_pa) {
209 pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
210 nd_size, nid);
211 return;
212 }
213 nd = __va(nd_pa);
214
215 /* report and initialize */
216 printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
217 nd_pa, nd_pa + nd_size - 1);
218 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
219 if (tnid != nid)
220 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
221
222 node_data[nid] = nd;
223 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
224
225 node_set_online(nid);
226 }
227
228 /**
229 * numa_cleanup_meminfo - Cleanup a numa_meminfo
230 * @mi: numa_meminfo to clean up
231 *
232 * Sanitize @mi by merging and removing unnecessary memblks. Also check for
233 * conflicts and clear unused memblks.
234 *
235 * RETURNS:
236 * 0 on success, -errno on failure.
237 */
numa_cleanup_meminfo(struct numa_meminfo * mi)238 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
239 {
240 const u64 low = 0;
241 const u64 high = PFN_PHYS(max_pfn);
242 int i, j, k;
243
244 /* first, trim all entries */
245 for (i = 0; i < mi->nr_blks; i++) {
246 struct numa_memblk *bi = &mi->blk[i];
247
248 /* move / save reserved memory ranges */
249 if (!memblock_overlaps_region(&memblock.memory,
250 bi->start, bi->end - bi->start)) {
251 numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
252 continue;
253 }
254
255 /* make sure all non-reserved blocks are inside the limits */
256 bi->start = max(bi->start, low);
257
258 /* preserve info for non-RAM areas above 'max_pfn': */
259 if (bi->end > high) {
260 numa_add_memblk_to(bi->nid, high, bi->end,
261 &numa_reserved_meminfo);
262 bi->end = high;
263 }
264
265 /* and there's no empty block */
266 if (bi->start >= bi->end)
267 numa_remove_memblk_from(i--, mi);
268 }
269
270 /* merge neighboring / overlapping entries */
271 for (i = 0; i < mi->nr_blks; i++) {
272 struct numa_memblk *bi = &mi->blk[i];
273
274 for (j = i + 1; j < mi->nr_blks; j++) {
275 struct numa_memblk *bj = &mi->blk[j];
276 u64 start, end;
277
278 /*
279 * See whether there are overlapping blocks. Whine
280 * about but allow overlaps of the same nid. They
281 * will be merged below.
282 */
283 if (bi->end > bj->start && bi->start < bj->end) {
284 if (bi->nid != bj->nid) {
285 pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
286 bi->nid, bi->start, bi->end - 1,
287 bj->nid, bj->start, bj->end - 1);
288 return -EINVAL;
289 }
290 pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
291 bi->nid, bi->start, bi->end - 1,
292 bj->start, bj->end - 1);
293 }
294
295 /*
296 * Join together blocks on the same node, holes
297 * between which don't overlap with memory on other
298 * nodes.
299 */
300 if (bi->nid != bj->nid)
301 continue;
302 start = min(bi->start, bj->start);
303 end = max(bi->end, bj->end);
304 for (k = 0; k < mi->nr_blks; k++) {
305 struct numa_memblk *bk = &mi->blk[k];
306
307 if (bi->nid == bk->nid)
308 continue;
309 if (start < bk->end && end > bk->start)
310 break;
311 }
312 if (k < mi->nr_blks)
313 continue;
314 printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
315 bi->nid, bi->start, bi->end - 1, bj->start,
316 bj->end - 1, start, end - 1);
317 bi->start = start;
318 bi->end = end;
319 numa_remove_memblk_from(j--, mi);
320 }
321 }
322
323 /* clear unused ones */
324 for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
325 mi->blk[i].start = mi->blk[i].end = 0;
326 mi->blk[i].nid = NUMA_NO_NODE;
327 }
328
329 return 0;
330 }
331
332 /*
333 * Set nodes, which have memory in @mi, in *@nodemask.
334 */
numa_nodemask_from_meminfo(nodemask_t * nodemask,const struct numa_meminfo * mi)335 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
336 const struct numa_meminfo *mi)
337 {
338 int i;
339
340 for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
341 if (mi->blk[i].start != mi->blk[i].end &&
342 mi->blk[i].nid != NUMA_NO_NODE)
343 node_set(mi->blk[i].nid, *nodemask);
344 }
345
346 /**
347 * numa_reset_distance - Reset NUMA distance table
348 *
349 * The current table is freed. The next numa_set_distance() call will
350 * create a new one.
351 */
numa_reset_distance(void)352 void __init numa_reset_distance(void)
353 {
354 size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
355
356 /* numa_distance could be 1LU marking allocation failure, test cnt */
357 if (numa_distance_cnt)
358 memblock_free_ptr(numa_distance, size);
359 numa_distance_cnt = 0;
360 numa_distance = NULL; /* enable table creation */
361 }
362
numa_alloc_distance(void)363 static int __init numa_alloc_distance(void)
364 {
365 nodemask_t nodes_parsed;
366 size_t size;
367 int i, j, cnt = 0;
368 u64 phys;
369
370 /* size the new table and allocate it */
371 nodes_parsed = numa_nodes_parsed;
372 numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
373
374 for_each_node_mask(i, nodes_parsed)
375 cnt = i;
376 cnt++;
377 size = cnt * cnt * sizeof(numa_distance[0]);
378
379 phys = memblock_phys_alloc_range(size, PAGE_SIZE, 0,
380 PFN_PHYS(max_pfn_mapped));
381 if (!phys) {
382 pr_warn("Warning: can't allocate distance table!\n");
383 /* don't retry until explicitly reset */
384 numa_distance = (void *)1LU;
385 return -ENOMEM;
386 }
387
388 numa_distance = __va(phys);
389 numa_distance_cnt = cnt;
390
391 /* fill with the default distances */
392 for (i = 0; i < cnt; i++)
393 for (j = 0; j < cnt; j++)
394 numa_distance[i * cnt + j] = i == j ?
395 LOCAL_DISTANCE : REMOTE_DISTANCE;
396 printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
397
398 return 0;
399 }
400
401 /**
402 * numa_set_distance - Set NUMA distance from one NUMA to another
403 * @from: the 'from' node to set distance
404 * @to: the 'to' node to set distance
405 * @distance: NUMA distance
406 *
407 * Set the distance from node @from to @to to @distance. If distance table
408 * doesn't exist, one which is large enough to accommodate all the currently
409 * known nodes will be created.
410 *
411 * If such table cannot be allocated, a warning is printed and further
412 * calls are ignored until the distance table is reset with
413 * numa_reset_distance().
414 *
415 * If @from or @to is higher than the highest known node or lower than zero
416 * at the time of table creation or @distance doesn't make sense, the call
417 * is ignored.
418 * This is to allow simplification of specific NUMA config implementations.
419 */
numa_set_distance(int from,int to,int distance)420 void __init numa_set_distance(int from, int to, int distance)
421 {
422 if (!numa_distance && numa_alloc_distance() < 0)
423 return;
424
425 if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
426 from < 0 || to < 0) {
427 pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
428 from, to, distance);
429 return;
430 }
431
432 if ((u8)distance != distance ||
433 (from == to && distance != LOCAL_DISTANCE)) {
434 pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
435 from, to, distance);
436 return;
437 }
438
439 numa_distance[from * numa_distance_cnt + to] = distance;
440 }
441
__node_distance(int from,int to)442 int __node_distance(int from, int to)
443 {
444 if (from >= numa_distance_cnt || to >= numa_distance_cnt)
445 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
446 return numa_distance[from * numa_distance_cnt + to];
447 }
448 EXPORT_SYMBOL(__node_distance);
449
450 /*
451 * Sanity check to catch more bad NUMA configurations (they are amazingly
452 * common). Make sure the nodes cover all memory.
453 */
numa_meminfo_cover_memory(const struct numa_meminfo * mi)454 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
455 {
456 u64 numaram, e820ram;
457 int i;
458
459 numaram = 0;
460 for (i = 0; i < mi->nr_blks; i++) {
461 u64 s = mi->blk[i].start >> PAGE_SHIFT;
462 u64 e = mi->blk[i].end >> PAGE_SHIFT;
463 numaram += e - s;
464 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
465 if ((s64)numaram < 0)
466 numaram = 0;
467 }
468
469 e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
470
471 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
472 if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
473 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
474 (numaram << PAGE_SHIFT) >> 20,
475 (e820ram << PAGE_SHIFT) >> 20);
476 return false;
477 }
478 return true;
479 }
480
481 /*
482 * Mark all currently memblock-reserved physical memory (which covers the
483 * kernel's own memory ranges) as hot-unswappable.
484 */
numa_clear_kernel_node_hotplug(void)485 static void __init numa_clear_kernel_node_hotplug(void)
486 {
487 nodemask_t reserved_nodemask = NODE_MASK_NONE;
488 struct memblock_region *mb_region;
489 int i;
490
491 /*
492 * We have to do some preprocessing of memblock regions, to
493 * make them suitable for reservation.
494 *
495 * At this time, all memory regions reserved by memblock are
496 * used by the kernel, but those regions are not split up
497 * along node boundaries yet, and don't necessarily have their
498 * node ID set yet either.
499 *
500 * So iterate over all memory known to the x86 architecture,
501 * and use those ranges to set the nid in memblock.reserved.
502 * This will split up the memblock regions along node
503 * boundaries and will set the node IDs as well.
504 */
505 for (i = 0; i < numa_meminfo.nr_blks; i++) {
506 struct numa_memblk *mb = numa_meminfo.blk + i;
507 int ret;
508
509 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
510 WARN_ON_ONCE(ret);
511 }
512
513 /*
514 * Now go over all reserved memblock regions, to construct a
515 * node mask of all kernel reserved memory areas.
516 *
517 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
518 * numa_meminfo might not include all memblock.reserved
519 * memory ranges, because quirks such as trim_snb_memory()
520 * reserve specific pages for Sandy Bridge graphics. ]
521 */
522 for_each_reserved_mem_region(mb_region) {
523 int nid = memblock_get_region_node(mb_region);
524
525 if (nid != MAX_NUMNODES)
526 node_set(nid, reserved_nodemask);
527 }
528
529 /*
530 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
531 * belonging to the reserved node mask.
532 *
533 * Note that this will include memory regions that reside
534 * on nodes that contain kernel memory - entire nodes
535 * become hot-unpluggable:
536 */
537 for (i = 0; i < numa_meminfo.nr_blks; i++) {
538 struct numa_memblk *mb = numa_meminfo.blk + i;
539
540 if (!node_isset(mb->nid, reserved_nodemask))
541 continue;
542
543 memblock_clear_hotplug(mb->start, mb->end - mb->start);
544 }
545 }
546
numa_register_memblks(struct numa_meminfo * mi)547 static int __init numa_register_memblks(struct numa_meminfo *mi)
548 {
549 int i, nid;
550
551 /* Account for nodes with cpus and no memory */
552 node_possible_map = numa_nodes_parsed;
553 numa_nodemask_from_meminfo(&node_possible_map, mi);
554 if (WARN_ON(nodes_empty(node_possible_map)))
555 return -EINVAL;
556
557 for (i = 0; i < mi->nr_blks; i++) {
558 struct numa_memblk *mb = &mi->blk[i];
559 memblock_set_node(mb->start, mb->end - mb->start,
560 &memblock.memory, mb->nid);
561 }
562
563 /*
564 * At very early time, the kernel have to use some memory such as
565 * loading the kernel image. We cannot prevent this anyway. So any
566 * node the kernel resides in should be un-hotpluggable.
567 *
568 * And when we come here, alloc node data won't fail.
569 */
570 numa_clear_kernel_node_hotplug();
571
572 /*
573 * If sections array is gonna be used for pfn -> nid mapping, check
574 * whether its granularity is fine enough.
575 */
576 if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
577 unsigned long pfn_align = node_map_pfn_alignment();
578
579 if (pfn_align && pfn_align < PAGES_PER_SECTION) {
580 pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
581 PFN_PHYS(pfn_align) >> 20,
582 PFN_PHYS(PAGES_PER_SECTION) >> 20);
583 return -EINVAL;
584 }
585 }
586 if (!numa_meminfo_cover_memory(mi))
587 return -EINVAL;
588
589 /* Finally register nodes. */
590 for_each_node_mask(nid, node_possible_map) {
591 u64 start = PFN_PHYS(max_pfn);
592 u64 end = 0;
593
594 for (i = 0; i < mi->nr_blks; i++) {
595 if (nid != mi->blk[i].nid)
596 continue;
597 start = min(mi->blk[i].start, start);
598 end = max(mi->blk[i].end, end);
599 }
600
601 if (start >= end)
602 continue;
603
604 alloc_node_data(nid);
605 }
606
607 /* Dump memblock with node info and return. */
608 memblock_dump_all();
609 return 0;
610 }
611
612 /*
613 * There are unfortunately some poorly designed mainboards around that
614 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
615 * mapping. To avoid this fill in the mapping for all possible CPUs,
616 * as the number of CPUs is not known yet. We round robin the existing
617 * nodes.
618 */
numa_init_array(void)619 static void __init numa_init_array(void)
620 {
621 int rr, i;
622
623 rr = first_node(node_online_map);
624 for (i = 0; i < nr_cpu_ids; i++) {
625 if (early_cpu_to_node(i) != NUMA_NO_NODE)
626 continue;
627 numa_set_node(i, rr);
628 rr = next_node_in(rr, node_online_map);
629 }
630 }
631
numa_init(int (* init_func)(void))632 static int __init numa_init(int (*init_func)(void))
633 {
634 int i;
635 int ret;
636
637 for (i = 0; i < MAX_LOCAL_APIC; i++)
638 set_apicid_to_node(i, NUMA_NO_NODE);
639
640 nodes_clear(numa_nodes_parsed);
641 nodes_clear(node_possible_map);
642 nodes_clear(node_online_map);
643 memset(&numa_meminfo, 0, sizeof(numa_meminfo));
644 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
645 MAX_NUMNODES));
646 WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
647 MAX_NUMNODES));
648 /* In case that parsing SRAT failed. */
649 WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
650 numa_reset_distance();
651
652 ret = init_func();
653 if (ret < 0)
654 return ret;
655
656 /*
657 * We reset memblock back to the top-down direction
658 * here because if we configured ACPI_NUMA, we have
659 * parsed SRAT in init_func(). It is ok to have the
660 * reset here even if we did't configure ACPI_NUMA
661 * or acpi numa init fails and fallbacks to dummy
662 * numa init.
663 */
664 memblock_set_bottom_up(false);
665
666 ret = numa_cleanup_meminfo(&numa_meminfo);
667 if (ret < 0)
668 return ret;
669
670 numa_emulation(&numa_meminfo, numa_distance_cnt);
671
672 ret = numa_register_memblks(&numa_meminfo);
673 if (ret < 0)
674 return ret;
675
676 for (i = 0; i < nr_cpu_ids; i++) {
677 int nid = early_cpu_to_node(i);
678
679 if (nid == NUMA_NO_NODE)
680 continue;
681 if (!node_online(nid))
682 numa_clear_node(i);
683 }
684 numa_init_array();
685
686 return 0;
687 }
688
689 /**
690 * dummy_numa_init - Fallback dummy NUMA init
691 *
692 * Used if there's no underlying NUMA architecture, NUMA initialization
693 * fails, or NUMA is disabled on the command line.
694 *
695 * Must online at least one node and add memory blocks that cover all
696 * allowed memory. This function must not fail.
697 */
dummy_numa_init(void)698 static int __init dummy_numa_init(void)
699 {
700 printk(KERN_INFO "%s\n",
701 numa_off ? "NUMA turned off" : "No NUMA configuration found");
702 printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
703 0LLU, PFN_PHYS(max_pfn) - 1);
704
705 node_set(0, numa_nodes_parsed);
706 numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
707
708 return 0;
709 }
710
711 /**
712 * x86_numa_init - Initialize NUMA
713 *
714 * Try each configured NUMA initialization method until one succeeds. The
715 * last fallback is dummy single node config encompassing whole memory and
716 * never fails.
717 */
x86_numa_init(void)718 void __init x86_numa_init(void)
719 {
720 if (!numa_off) {
721 #ifdef CONFIG_ACPI_NUMA
722 if (!numa_init(x86_acpi_numa_init))
723 return;
724 #endif
725 #ifdef CONFIG_AMD_NUMA
726 if (!numa_init(amd_numa_init))
727 return;
728 #endif
729 }
730
731 numa_init(dummy_numa_init);
732 }
733
init_memory_less_node(int nid)734 static void __init init_memory_less_node(int nid)
735 {
736 /* Allocate and initialize node data. Memory-less node is now online.*/
737 alloc_node_data(nid);
738 free_area_init_memoryless_node(nid);
739
740 /*
741 * All zonelists will be built later in start_kernel() after per cpu
742 * areas are initialized.
743 */
744 }
745
746 /*
747 * A node may exist which has one or more Generic Initiators but no CPUs and no
748 * memory.
749 *
750 * This function must be called after init_cpu_to_node(), to ensure that any
751 * memoryless CPU nodes have already been brought online, and before the
752 * node_data[nid] is needed for zone list setup in build_all_zonelists().
753 *
754 * When this function is called, any nodes containing either memory and/or CPUs
755 * will already be online and there is no need to do anything extra, even if
756 * they also contain one or more Generic Initiators.
757 */
init_gi_nodes(void)758 void __init init_gi_nodes(void)
759 {
760 int nid;
761
762 for_each_node_state(nid, N_GENERIC_INITIATOR)
763 if (!node_online(nid))
764 init_memory_less_node(nid);
765 }
766
767 /*
768 * Setup early cpu_to_node.
769 *
770 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
771 * and apicid_to_node[] tables have valid entries for a CPU.
772 * This means we skip cpu_to_node[] initialisation for NUMA
773 * emulation and faking node case (when running a kernel compiled
774 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
775 * is already initialized in a round robin manner at numa_init_array,
776 * prior to this call, and this initialization is good enough
777 * for the fake NUMA cases.
778 *
779 * Called before the per_cpu areas are setup.
780 */
init_cpu_to_node(void)781 void __init init_cpu_to_node(void)
782 {
783 int cpu;
784 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
785
786 BUG_ON(cpu_to_apicid == NULL);
787
788 for_each_possible_cpu(cpu) {
789 int node = numa_cpu_node(cpu);
790
791 if (node == NUMA_NO_NODE)
792 continue;
793
794 if (!node_online(node))
795 init_memory_less_node(node);
796
797 numa_set_node(cpu, node);
798 }
799 }
800
801 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
802
803 # ifndef CONFIG_NUMA_EMU
numa_add_cpu(int cpu)804 void numa_add_cpu(int cpu)
805 {
806 cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
807 }
808
numa_remove_cpu(int cpu)809 void numa_remove_cpu(int cpu)
810 {
811 cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
812 }
813 # endif /* !CONFIG_NUMA_EMU */
814
815 #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
816
__cpu_to_node(int cpu)817 int __cpu_to_node(int cpu)
818 {
819 if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
820 printk(KERN_WARNING
821 "cpu_to_node(%d): usage too early!\n", cpu);
822 dump_stack();
823 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
824 }
825 return per_cpu(x86_cpu_to_node_map, cpu);
826 }
827 EXPORT_SYMBOL(__cpu_to_node);
828
829 /*
830 * Same function as cpu_to_node() but used if called before the
831 * per_cpu areas are setup.
832 */
early_cpu_to_node(int cpu)833 int early_cpu_to_node(int cpu)
834 {
835 if (early_per_cpu_ptr(x86_cpu_to_node_map))
836 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
837
838 if (!cpu_possible(cpu)) {
839 printk(KERN_WARNING
840 "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
841 dump_stack();
842 return NUMA_NO_NODE;
843 }
844 return per_cpu(x86_cpu_to_node_map, cpu);
845 }
846
debug_cpumask_set_cpu(int cpu,int node,bool enable)847 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
848 {
849 struct cpumask *mask;
850
851 if (node == NUMA_NO_NODE) {
852 /* early_cpu_to_node() already emits a warning and trace */
853 return;
854 }
855 mask = node_to_cpumask_map[node];
856 if (!cpumask_available(mask)) {
857 pr_err("node_to_cpumask_map[%i] NULL\n", node);
858 dump_stack();
859 return;
860 }
861
862 if (enable)
863 cpumask_set_cpu(cpu, mask);
864 else
865 cpumask_clear_cpu(cpu, mask);
866
867 printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
868 enable ? "numa_add_cpu" : "numa_remove_cpu",
869 cpu, node, cpumask_pr_args(mask));
870 return;
871 }
872
873 # ifndef CONFIG_NUMA_EMU
numa_set_cpumask(int cpu,bool enable)874 static void numa_set_cpumask(int cpu, bool enable)
875 {
876 debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
877 }
878
numa_add_cpu(int cpu)879 void numa_add_cpu(int cpu)
880 {
881 numa_set_cpumask(cpu, true);
882 }
883
numa_remove_cpu(int cpu)884 void numa_remove_cpu(int cpu)
885 {
886 numa_set_cpumask(cpu, false);
887 }
888 # endif /* !CONFIG_NUMA_EMU */
889
890 /*
891 * Returns a pointer to the bitmask of CPUs on Node 'node'.
892 */
cpumask_of_node(int node)893 const struct cpumask *cpumask_of_node(int node)
894 {
895 if ((unsigned)node >= nr_node_ids) {
896 printk(KERN_WARNING
897 "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n",
898 node, nr_node_ids);
899 dump_stack();
900 return cpu_none_mask;
901 }
902 if (!cpumask_available(node_to_cpumask_map[node])) {
903 printk(KERN_WARNING
904 "cpumask_of_node(%d): no node_to_cpumask_map!\n",
905 node);
906 dump_stack();
907 return cpu_online_mask;
908 }
909 return node_to_cpumask_map[node];
910 }
911 EXPORT_SYMBOL(cpumask_of_node);
912
913 #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
914
915 #ifdef CONFIG_NUMA_KEEP_MEMINFO
meminfo_to_nid(struct numa_meminfo * mi,u64 start)916 static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
917 {
918 int i;
919
920 for (i = 0; i < mi->nr_blks; i++)
921 if (mi->blk[i].start <= start && mi->blk[i].end > start)
922 return mi->blk[i].nid;
923 return NUMA_NO_NODE;
924 }
925
phys_to_target_node(phys_addr_t start)926 int phys_to_target_node(phys_addr_t start)
927 {
928 int nid = meminfo_to_nid(&numa_meminfo, start);
929
930 /*
931 * Prefer online nodes, but if reserved memory might be
932 * hot-added continue the search with reserved ranges.
933 */
934 if (nid != NUMA_NO_NODE)
935 return nid;
936
937 return meminfo_to_nid(&numa_reserved_meminfo, start);
938 }
939 EXPORT_SYMBOL_GPL(phys_to_target_node);
940
memory_add_physaddr_to_nid(u64 start)941 int memory_add_physaddr_to_nid(u64 start)
942 {
943 int nid = meminfo_to_nid(&numa_meminfo, start);
944
945 if (nid == NUMA_NO_NODE)
946 nid = numa_meminfo.blk[0].nid;
947 return nid;
948 }
949 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
950 #endif
951