1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fb_helper.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_scdc_helper.h>
44 #include <drm/drm_vblank.h>
45
46 #include <nvif/push507c.h>
47
48 #include <nvif/class.h>
49 #include <nvif/cl0002.h>
50 #include <nvif/cl5070.h>
51 #include <nvif/cl507d.h>
52 #include <nvif/event.h>
53 #include <nvif/timer.h>
54
55 #include <nvhw/class/cl507c.h>
56 #include <nvhw/class/cl507d.h>
57 #include <nvhw/class/cl837d.h>
58 #include <nvhw/class/cl887d.h>
59 #include <nvhw/class/cl907d.h>
60 #include <nvhw/class/cl917d.h>
61
62 #include "nouveau_drv.h"
63 #include "nouveau_dma.h"
64 #include "nouveau_gem.h"
65 #include "nouveau_connector.h"
66 #include "nouveau_encoder.h"
67 #include "nouveau_fence.h"
68 #include "nouveau_fbcon.h"
69
70 #include <subdev/bios/dp.h>
71
72 /******************************************************************************
73 * EVO channel
74 *****************************************************************************/
75
76 static int
nv50_chan_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,struct nv50_chan * chan)77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
78 const s32 *oclass, u8 head, void *data, u32 size,
79 struct nv50_chan *chan)
80 {
81 struct nvif_sclass *sclass;
82 int ret, i, n;
83
84 chan->device = device;
85
86 ret = n = nvif_object_sclass_get(disp, &sclass);
87 if (ret < 0)
88 return ret;
89
90 while (oclass[0]) {
91 for (i = 0; i < n; i++) {
92 if (sclass[i].oclass == oclass[0]) {
93 ret = nvif_object_ctor(disp, "kmsChan", 0,
94 oclass[0], data, size,
95 &chan->user);
96 if (ret == 0)
97 nvif_object_map(&chan->user, NULL, 0);
98 nvif_object_sclass_put(&sclass);
99 return ret;
100 }
101 }
102 oclass++;
103 }
104
105 nvif_object_sclass_put(&sclass);
106 return -ENOSYS;
107 }
108
109 static void
nv50_chan_destroy(struct nv50_chan * chan)110 nv50_chan_destroy(struct nv50_chan *chan)
111 {
112 nvif_object_dtor(&chan->user);
113 }
114
115 /******************************************************************************
116 * DMA EVO channel
117 *****************************************************************************/
118
119 void
nv50_dmac_destroy(struct nv50_dmac * dmac)120 nv50_dmac_destroy(struct nv50_dmac *dmac)
121 {
122 nvif_object_dtor(&dmac->vram);
123 nvif_object_dtor(&dmac->sync);
124
125 nv50_chan_destroy(&dmac->base);
126
127 nvif_mem_dtor(&dmac->_push.mem);
128 }
129
130 static void
nv50_dmac_kick(struct nvif_push * push)131 nv50_dmac_kick(struct nvif_push *push)
132 {
133 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
134
135 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
136 if (dmac->put != dmac->cur) {
137 /* Push buffer fetches are not coherent with BAR1, we need to ensure
138 * writes have been flushed right through to VRAM before writing PUT.
139 */
140 if (dmac->push->mem.type & NVIF_MEM_VRAM) {
141 struct nvif_device *device = dmac->base.device;
142 nvif_wr32(&device->object, 0x070000, 0x00000001);
143 nvif_msec(device, 2000,
144 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
145 break;
146 );
147 }
148
149 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
150 dmac->put = dmac->cur;
151 }
152
153 push->bgn = push->cur;
154 }
155
156 static int
nv50_dmac_free(struct nv50_dmac * dmac)157 nv50_dmac_free(struct nv50_dmac *dmac)
158 {
159 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
160 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
161 return get - dmac->cur - 5;
162 return dmac->max - dmac->cur;
163 }
164
165 static int
nv50_dmac_wind(struct nv50_dmac * dmac)166 nv50_dmac_wind(struct nv50_dmac *dmac)
167 {
168 /* Wait for GET to depart from the beginning of the push buffer to
169 * prevent writing PUT == GET, which would be ignored by HW.
170 */
171 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
172 if (get == 0) {
173 /* Corner-case, HW idle, but non-committed work pending. */
174 if (dmac->put == 0)
175 nv50_dmac_kick(dmac->push);
176
177 if (nvif_msec(dmac->base.device, 2000,
178 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
179 break;
180 ) < 0)
181 return -ETIMEDOUT;
182 }
183
184 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
185 dmac->cur = 0;
186 return 0;
187 }
188
189 static int
nv50_dmac_wait(struct nvif_push * push,u32 size)190 nv50_dmac_wait(struct nvif_push *push, u32 size)
191 {
192 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
193 int free;
194
195 if (WARN_ON(size > dmac->max))
196 return -EINVAL;
197
198 dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
199 if (dmac->cur + size >= dmac->max) {
200 int ret = nv50_dmac_wind(dmac);
201 if (ret)
202 return ret;
203
204 push->cur = dmac->_push.mem.object.map.ptr;
205 push->cur = push->cur + dmac->cur;
206 nv50_dmac_kick(push);
207 }
208
209 if (nvif_msec(dmac->base.device, 2000,
210 if ((free = nv50_dmac_free(dmac)) >= size)
211 break;
212 ) < 0) {
213 WARN_ON(1);
214 return -ETIMEDOUT;
215 }
216
217 push->bgn = dmac->_push.mem.object.map.ptr;
218 push->bgn = push->bgn + dmac->cur;
219 push->cur = push->bgn;
220 push->end = push->cur + free;
221 return 0;
222 }
223
224 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
225 static int nv50_dmac_vram_pushbuf = -1;
226 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
227
228 int
nv50_dmac_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,s64 syncbuf,struct nv50_dmac * dmac)229 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
230 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
231 struct nv50_dmac *dmac)
232 {
233 struct nouveau_cli *cli = (void *)device->object.client;
234 struct nv50_disp_core_channel_dma_v0 *args = data;
235 u8 type = NVIF_MEM_COHERENT;
236 int ret;
237
238 mutex_init(&dmac->lock);
239
240 /* Pascal added support for 47-bit physical addresses, but some
241 * parts of EVO still only accept 40-bit PAs.
242 *
243 * To avoid issues on systems with large amounts of RAM, and on
244 * systems where an IOMMU maps pages at a high address, we need
245 * to allocate push buffers in VRAM instead.
246 *
247 * This appears to match NVIDIA's behaviour on Pascal.
248 */
249 if ((nv50_dmac_vram_pushbuf > 0) ||
250 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
251 type |= NVIF_MEM_VRAM;
252
253 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
254 &dmac->_push.mem);
255 if (ret)
256 return ret;
257
258 dmac->ptr = dmac->_push.mem.object.map.ptr;
259 dmac->_push.wait = nv50_dmac_wait;
260 dmac->_push.kick = nv50_dmac_kick;
261 dmac->push = &dmac->_push;
262 dmac->push->bgn = dmac->_push.mem.object.map.ptr;
263 dmac->push->cur = dmac->push->bgn;
264 dmac->push->end = dmac->push->bgn;
265 dmac->max = 0x1000/4 - 1;
266
267 /* EVO channels are affected by a HW bug where the last 12 DWORDs
268 * of the push buffer aren't able to be used safely.
269 */
270 if (disp->oclass < GV100_DISP)
271 dmac->max -= 12;
272
273 args->pushbuf = nvif_handle(&dmac->_push.mem.object);
274
275 ret = nv50_chan_create(device, disp, oclass, head, data, size,
276 &dmac->base);
277 if (ret)
278 return ret;
279
280 if (syncbuf < 0)
281 return 0;
282
283 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
284 NV_DMA_IN_MEMORY,
285 &(struct nv_dma_v0) {
286 .target = NV_DMA_V0_TARGET_VRAM,
287 .access = NV_DMA_V0_ACCESS_RDWR,
288 .start = syncbuf + 0x0000,
289 .limit = syncbuf + 0x0fff,
290 }, sizeof(struct nv_dma_v0),
291 &dmac->sync);
292 if (ret)
293 return ret;
294
295 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
296 NV_DMA_IN_MEMORY,
297 &(struct nv_dma_v0) {
298 .target = NV_DMA_V0_TARGET_VRAM,
299 .access = NV_DMA_V0_ACCESS_RDWR,
300 .start = 0,
301 .limit = device->info.ram_user - 1,
302 }, sizeof(struct nv_dma_v0),
303 &dmac->vram);
304 if (ret)
305 return ret;
306
307 return ret;
308 }
309
310 /******************************************************************************
311 * Output path helpers
312 *****************************************************************************/
313 static void
nv50_outp_dump_caps(struct nouveau_drm * drm,struct nouveau_encoder * outp)314 nv50_outp_dump_caps(struct nouveau_drm *drm,
315 struct nouveau_encoder *outp)
316 {
317 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
318 outp->base.base.name, outp->caps.dp_interlace);
319 }
320
321 static void
nv50_outp_release(struct nouveau_encoder * nv_encoder)322 nv50_outp_release(struct nouveau_encoder *nv_encoder)
323 {
324 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
325 struct {
326 struct nv50_disp_mthd_v1 base;
327 } args = {
328 .base.version = 1,
329 .base.method = NV50_DISP_MTHD_V1_RELEASE,
330 .base.hasht = nv_encoder->dcb->hasht,
331 .base.hashm = nv_encoder->dcb->hashm,
332 };
333
334 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
335 nv_encoder->or = -1;
336 nv_encoder->link = 0;
337 }
338
339 static int
nv50_outp_acquire(struct nouveau_encoder * nv_encoder,bool hda)340 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
341 {
342 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
343 struct nv50_disp *disp = nv50_disp(drm->dev);
344 struct {
345 struct nv50_disp_mthd_v1 base;
346 struct nv50_disp_acquire_v0 info;
347 } args = {
348 .base.version = 1,
349 .base.method = NV50_DISP_MTHD_V1_ACQUIRE,
350 .base.hasht = nv_encoder->dcb->hasht,
351 .base.hashm = nv_encoder->dcb->hashm,
352 .info.hda = hda,
353 };
354 int ret;
355
356 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
357 if (ret) {
358 NV_ERROR(drm, "error acquiring output path: %d\n", ret);
359 return ret;
360 }
361
362 nv_encoder->or = args.info.or;
363 nv_encoder->link = args.info.link;
364 return 0;
365 }
366
367 static int
nv50_outp_atomic_check_view(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,struct drm_display_mode * native_mode)368 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
369 struct drm_crtc_state *crtc_state,
370 struct drm_connector_state *conn_state,
371 struct drm_display_mode *native_mode)
372 {
373 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
374 struct drm_display_mode *mode = &crtc_state->mode;
375 struct drm_connector *connector = conn_state->connector;
376 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
377 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
378
379 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
380 asyc->scaler.full = false;
381 if (!native_mode)
382 return 0;
383
384 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
385 switch (connector->connector_type) {
386 case DRM_MODE_CONNECTOR_LVDS:
387 case DRM_MODE_CONNECTOR_eDP:
388 /* Don't force scaler for EDID modes with
389 * same size as the native one (e.g. different
390 * refresh rate)
391 */
392 if (mode->hdisplay == native_mode->hdisplay &&
393 mode->vdisplay == native_mode->vdisplay &&
394 mode->type & DRM_MODE_TYPE_DRIVER)
395 break;
396 mode = native_mode;
397 asyc->scaler.full = true;
398 break;
399 default:
400 break;
401 }
402 } else {
403 mode = native_mode;
404 }
405
406 if (!drm_mode_equal(adjusted_mode, mode)) {
407 drm_mode_copy(adjusted_mode, mode);
408 crtc_state->mode_changed = true;
409 }
410
411 return 0;
412 }
413
414 static void
nv50_outp_atomic_fix_depth(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state)415 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
416 {
417 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
418 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
419 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
420 unsigned int max_rate, mode_rate;
421
422 switch (nv_encoder->dcb->type) {
423 case DCB_OUTPUT_DP:
424 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
425
426 /* we don't support more than 10 anyway */
427 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
428
429 /* reduce the bpc until it works out */
430 while (asyh->or.bpc > 6) {
431 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
432 if (mode_rate <= max_rate)
433 break;
434
435 asyh->or.bpc -= 2;
436 }
437 break;
438 default:
439 break;
440 }
441 }
442
443 static int
nv50_outp_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)444 nv50_outp_atomic_check(struct drm_encoder *encoder,
445 struct drm_crtc_state *crtc_state,
446 struct drm_connector_state *conn_state)
447 {
448 struct drm_connector *connector = conn_state->connector;
449 struct nouveau_connector *nv_connector = nouveau_connector(connector);
450 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
451 int ret;
452
453 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
454 nv_connector->native_mode);
455 if (ret)
456 return ret;
457
458 if (crtc_state->mode_changed || crtc_state->connectors_changed)
459 asyh->or.bpc = connector->display_info.bpc;
460
461 /* We might have to reduce the bpc */
462 nv50_outp_atomic_fix_depth(encoder, crtc_state);
463
464 return 0;
465 }
466
467 struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)468 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
469 {
470 struct drm_connector *connector;
471 struct drm_connector_state *connector_state;
472 struct drm_encoder *encoder = to_drm_encoder(outp);
473 int i;
474
475 for_each_new_connector_in_state(state, connector, connector_state, i) {
476 if (connector_state->best_encoder == encoder)
477 return nouveau_connector(connector);
478 }
479
480 return NULL;
481 }
482
483 struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)484 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
485 {
486 struct drm_connector *connector;
487 struct drm_connector_state *connector_state;
488 struct drm_encoder *encoder = to_drm_encoder(outp);
489 int i;
490
491 for_each_old_connector_in_state(state, connector, connector_state, i) {
492 if (connector_state->best_encoder == encoder)
493 return nouveau_connector(connector);
494 }
495
496 return NULL;
497 }
498
499 static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state * state,const struct nouveau_encoder * outp)500 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
501 {
502 struct drm_crtc *crtc;
503 struct drm_crtc_state *crtc_state;
504 const u32 mask = drm_encoder_mask(&outp->base.base);
505 int i;
506
507 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
508 if (crtc_state->encoder_mask & mask)
509 return nouveau_crtc(crtc);
510 }
511
512 return NULL;
513 }
514
515 /******************************************************************************
516 * DAC
517 *****************************************************************************/
518 static void
nv50_dac_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)519 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
520 {
521 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
522 struct nv50_core *core = nv50_disp(encoder->dev)->core;
523 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
524
525 core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
526 nv_encoder->crtc = NULL;
527 nv50_outp_release(nv_encoder);
528 }
529
530 static void
nv50_dac_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)531 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
532 {
533 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
534 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
535 struct nv50_head_atom *asyh =
536 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
537 struct nv50_core *core = nv50_disp(encoder->dev)->core;
538 u32 ctrl = 0;
539
540 switch (nv_crtc->index) {
541 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
542 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
543 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
544 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
545 default:
546 WARN_ON(1);
547 break;
548 }
549
550 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
551
552 nv50_outp_acquire(nv_encoder, false);
553
554 core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
555 asyh->or.depth = 0;
556
557 nv_encoder->crtc = &nv_crtc->base;
558 }
559
560 static enum drm_connector_status
nv50_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)561 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
562 {
563 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
564 struct nv50_disp *disp = nv50_disp(encoder->dev);
565 struct {
566 struct nv50_disp_mthd_v1 base;
567 struct nv50_disp_dac_load_v0 load;
568 } args = {
569 .base.version = 1,
570 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
571 .base.hasht = nv_encoder->dcb->hasht,
572 .base.hashm = nv_encoder->dcb->hashm,
573 };
574 int ret;
575
576 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
577 if (args.load.data == 0)
578 args.load.data = 340;
579
580 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
581 if (ret || !args.load.load)
582 return connector_status_disconnected;
583
584 return connector_status_connected;
585 }
586
587 static const struct drm_encoder_helper_funcs
588 nv50_dac_help = {
589 .atomic_check = nv50_outp_atomic_check,
590 .atomic_enable = nv50_dac_atomic_enable,
591 .atomic_disable = nv50_dac_atomic_disable,
592 .detect = nv50_dac_detect
593 };
594
595 static void
nv50_dac_destroy(struct drm_encoder * encoder)596 nv50_dac_destroy(struct drm_encoder *encoder)
597 {
598 drm_encoder_cleanup(encoder);
599 kfree(encoder);
600 }
601
602 static const struct drm_encoder_funcs
603 nv50_dac_func = {
604 .destroy = nv50_dac_destroy,
605 };
606
607 static int
nv50_dac_create(struct drm_connector * connector,struct dcb_output * dcbe)608 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
609 {
610 struct nouveau_drm *drm = nouveau_drm(connector->dev);
611 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
612 struct nvkm_i2c_bus *bus;
613 struct nouveau_encoder *nv_encoder;
614 struct drm_encoder *encoder;
615 int type = DRM_MODE_ENCODER_DAC;
616
617 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
618 if (!nv_encoder)
619 return -ENOMEM;
620 nv_encoder->dcb = dcbe;
621
622 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
623 if (bus)
624 nv_encoder->i2c = &bus->i2c;
625
626 encoder = to_drm_encoder(nv_encoder);
627 encoder->possible_crtcs = dcbe->heads;
628 encoder->possible_clones = 0;
629 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
630 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
631 drm_encoder_helper_add(encoder, &nv50_dac_help);
632
633 drm_connector_attach_encoder(connector, encoder);
634 return 0;
635 }
636
637 /*
638 * audio component binding for ELD notification
639 */
640 static void
nv50_audio_component_eld_notify(struct drm_audio_component * acomp,int port,int dev_id)641 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
642 int dev_id)
643 {
644 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
645 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
646 port, dev_id);
647 }
648
649 static int
nv50_audio_component_get_eld(struct device * kdev,int port,int dev_id,bool * enabled,unsigned char * buf,int max_bytes)650 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
651 bool *enabled, unsigned char *buf, int max_bytes)
652 {
653 struct drm_device *drm_dev = dev_get_drvdata(kdev);
654 struct nouveau_drm *drm = nouveau_drm(drm_dev);
655 struct drm_encoder *encoder;
656 struct nouveau_encoder *nv_encoder;
657 struct nouveau_crtc *nv_crtc;
658 int ret = 0;
659
660 *enabled = false;
661
662 mutex_lock(&drm->audio.lock);
663
664 drm_for_each_encoder(encoder, drm->dev) {
665 struct nouveau_connector *nv_connector = NULL;
666
667 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
668 continue; /* TODO */
669
670 nv_encoder = nouveau_encoder(encoder);
671 nv_connector = nouveau_connector(nv_encoder->audio.connector);
672 nv_crtc = nouveau_crtc(nv_encoder->crtc);
673
674 if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
675 continue;
676
677 *enabled = nv_encoder->audio.enabled;
678 if (*enabled) {
679 ret = drm_eld_size(nv_connector->base.eld);
680 memcpy(buf, nv_connector->base.eld,
681 min(max_bytes, ret));
682 }
683 break;
684 }
685
686 mutex_unlock(&drm->audio.lock);
687
688 return ret;
689 }
690
691 static const struct drm_audio_component_ops nv50_audio_component_ops = {
692 .get_eld = nv50_audio_component_get_eld,
693 };
694
695 static int
nv50_audio_component_bind(struct device * kdev,struct device * hda_kdev,void * data)696 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
697 void *data)
698 {
699 struct drm_device *drm_dev = dev_get_drvdata(kdev);
700 struct nouveau_drm *drm = nouveau_drm(drm_dev);
701 struct drm_audio_component *acomp = data;
702
703 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
704 return -ENOMEM;
705
706 drm_modeset_lock_all(drm_dev);
707 acomp->ops = &nv50_audio_component_ops;
708 acomp->dev = kdev;
709 drm->audio.component = acomp;
710 drm_modeset_unlock_all(drm_dev);
711 return 0;
712 }
713
714 static void
nv50_audio_component_unbind(struct device * kdev,struct device * hda_kdev,void * data)715 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
716 void *data)
717 {
718 struct drm_device *drm_dev = dev_get_drvdata(kdev);
719 struct nouveau_drm *drm = nouveau_drm(drm_dev);
720 struct drm_audio_component *acomp = data;
721
722 drm_modeset_lock_all(drm_dev);
723 drm->audio.component = NULL;
724 acomp->ops = NULL;
725 acomp->dev = NULL;
726 drm_modeset_unlock_all(drm_dev);
727 }
728
729 static const struct component_ops nv50_audio_component_bind_ops = {
730 .bind = nv50_audio_component_bind,
731 .unbind = nv50_audio_component_unbind,
732 };
733
734 static void
nv50_audio_component_init(struct nouveau_drm * drm)735 nv50_audio_component_init(struct nouveau_drm *drm)
736 {
737 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
738 return;
739
740 drm->audio.component_registered = true;
741 mutex_init(&drm->audio.lock);
742 }
743
744 static void
nv50_audio_component_fini(struct nouveau_drm * drm)745 nv50_audio_component_fini(struct nouveau_drm *drm)
746 {
747 if (!drm->audio.component_registered)
748 return;
749
750 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
751 drm->audio.component_registered = false;
752 mutex_destroy(&drm->audio.lock);
753 }
754
755 /******************************************************************************
756 * Audio
757 *****************************************************************************/
758 static void
nv50_audio_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)759 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
760 {
761 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
762 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
763 struct nv50_disp *disp = nv50_disp(encoder->dev);
764 struct {
765 struct nv50_disp_mthd_v1 base;
766 struct nv50_disp_sor_hda_eld_v0 eld;
767 } args = {
768 .base.version = 1,
769 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
770 .base.hasht = nv_encoder->dcb->hasht,
771 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
772 (0x0100 << nv_crtc->index),
773 };
774
775 mutex_lock(&drm->audio.lock);
776 if (nv_encoder->audio.enabled) {
777 nv_encoder->audio.enabled = false;
778 nv_encoder->audio.connector = NULL;
779 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
780 }
781 mutex_unlock(&drm->audio.lock);
782
783 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
784 nv_crtc->index);
785 }
786
787 static void
nv50_audio_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)788 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
789 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
790 struct drm_display_mode *mode)
791 {
792 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
793 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
794 struct nv50_disp *disp = nv50_disp(encoder->dev);
795 struct __packed {
796 struct {
797 struct nv50_disp_mthd_v1 mthd;
798 struct nv50_disp_sor_hda_eld_v0 eld;
799 } base;
800 u8 data[sizeof(nv_connector->base.eld)];
801 } args = {
802 .base.mthd.version = 1,
803 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
804 .base.mthd.hasht = nv_encoder->dcb->hasht,
805 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
806 (0x0100 << nv_crtc->index),
807 };
808
809 if (!drm_detect_monitor_audio(nv_connector->edid))
810 return;
811
812 mutex_lock(&drm->audio.lock);
813
814 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
815
816 nvif_mthd(&disp->disp->object, 0, &args,
817 sizeof(args.base) + drm_eld_size(args.data));
818 nv_encoder->audio.enabled = true;
819 nv_encoder->audio.connector = &nv_connector->base;
820
821 mutex_unlock(&drm->audio.lock);
822
823 nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
824 nv_crtc->index);
825 }
826
827 /******************************************************************************
828 * HDMI
829 *****************************************************************************/
830 static void
nv50_hdmi_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)831 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
832 {
833 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
834 struct nv50_disp *disp = nv50_disp(encoder->dev);
835 struct {
836 struct nv50_disp_mthd_v1 base;
837 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
838 } args = {
839 .base.version = 1,
840 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
841 .base.hasht = nv_encoder->dcb->hasht,
842 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
843 (0x0100 << nv_crtc->index),
844 };
845
846 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
847 }
848
849 static void
nv50_hdmi_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)850 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
851 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
852 struct drm_display_mode *mode)
853 {
854 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
855 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
856 struct nv50_disp *disp = nv50_disp(encoder->dev);
857 struct {
858 struct nv50_disp_mthd_v1 base;
859 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
860 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
861 } args = {
862 .base.version = 1,
863 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
864 .base.hasht = nv_encoder->dcb->hasht,
865 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
866 (0x0100 << nv_crtc->index),
867 .pwr.state = 1,
868 .pwr.rekey = 56, /* binary driver, and tegra, constant */
869 };
870 struct drm_hdmi_info *hdmi;
871 u32 max_ac_packet;
872 union hdmi_infoframe avi_frame;
873 union hdmi_infoframe vendor_frame;
874 bool high_tmds_clock_ratio = false, scrambling = false;
875 u8 config;
876 int ret;
877 int size;
878
879 if (!drm_detect_hdmi_monitor(nv_connector->edid))
880 return;
881
882 hdmi = &nv_connector->base.display_info.hdmi;
883
884 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
885 &nv_connector->base, mode);
886 if (!ret) {
887 /* We have an AVI InfoFrame, populate it to the display */
888 args.pwr.avi_infoframe_length
889 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
890 }
891
892 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
893 &nv_connector->base, mode);
894 if (!ret) {
895 /* We have a Vendor InfoFrame, populate it to the display */
896 args.pwr.vendor_infoframe_length
897 = hdmi_infoframe_pack(&vendor_frame,
898 args.infoframes
899 + args.pwr.avi_infoframe_length,
900 17);
901 }
902
903 max_ac_packet = mode->htotal - mode->hdisplay;
904 max_ac_packet -= args.pwr.rekey;
905 max_ac_packet -= 18; /* constant from tegra */
906 args.pwr.max_ac_packet = max_ac_packet / 32;
907
908 if (hdmi->scdc.scrambling.supported) {
909 high_tmds_clock_ratio = mode->clock > 340000;
910 scrambling = high_tmds_clock_ratio ||
911 hdmi->scdc.scrambling.low_rates;
912 }
913
914 args.pwr.scdc =
915 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
916 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
917
918 size = sizeof(args.base)
919 + sizeof(args.pwr)
920 + args.pwr.avi_infoframe_length
921 + args.pwr.vendor_infoframe_length;
922 nvif_mthd(&disp->disp->object, 0, &args, size);
923
924 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
925
926 /* If SCDC is supported by the downstream monitor, update
927 * divider / scrambling settings to what we programmed above.
928 */
929 if (!hdmi->scdc.scrambling.supported)
930 return;
931
932 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
933 if (ret < 0) {
934 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
935 return;
936 }
937 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
938 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
939 config |= SCDC_SCRAMBLING_ENABLE * scrambling;
940 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
941 if (ret < 0)
942 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
943 config, ret);
944 }
945
946 /******************************************************************************
947 * MST
948 *****************************************************************************/
949 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
950 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
951 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
952
953 struct nv50_mstc {
954 struct nv50_mstm *mstm;
955 struct drm_dp_mst_port *port;
956 struct drm_connector connector;
957
958 struct drm_display_mode *native;
959 struct edid *edid;
960 };
961
962 struct nv50_msto {
963 struct drm_encoder encoder;
964
965 /* head is statically assigned on msto creation */
966 struct nv50_head *head;
967 struct nv50_mstc *mstc;
968 bool disabled;
969 };
970
nv50_real_outp(struct drm_encoder * encoder)971 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
972 {
973 struct nv50_msto *msto;
974
975 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
976 return nouveau_encoder(encoder);
977
978 msto = nv50_msto(encoder);
979 if (!msto->mstc)
980 return NULL;
981 return msto->mstc->mstm->outp;
982 }
983
984 static struct drm_dp_payload *
nv50_msto_payload(struct nv50_msto * msto)985 nv50_msto_payload(struct nv50_msto *msto)
986 {
987 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
988 struct nv50_mstc *mstc = msto->mstc;
989 struct nv50_mstm *mstm = mstc->mstm;
990 int vcpi = mstc->port->vcpi.vcpi, i;
991
992 WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
993
994 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
995 for (i = 0; i < mstm->mgr.max_payloads; i++) {
996 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
997 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
998 mstm->outp->base.base.name, i, payload->vcpi,
999 payload->start_slot, payload->num_slots);
1000 }
1001
1002 for (i = 0; i < mstm->mgr.max_payloads; i++) {
1003 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
1004 if (payload->vcpi == vcpi)
1005 return payload;
1006 }
1007
1008 return NULL;
1009 }
1010
1011 static void
nv50_msto_cleanup(struct nv50_msto * msto)1012 nv50_msto_cleanup(struct nv50_msto *msto)
1013 {
1014 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
1015 struct nv50_mstc *mstc = msto->mstc;
1016 struct nv50_mstm *mstm = mstc->mstm;
1017
1018 if (!msto->disabled)
1019 return;
1020
1021 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
1022
1023 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
1024
1025 msto->mstc = NULL;
1026 msto->disabled = false;
1027 }
1028
1029 static void
nv50_msto_prepare(struct nv50_msto * msto)1030 nv50_msto_prepare(struct nv50_msto *msto)
1031 {
1032 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
1033 struct nv50_mstc *mstc = msto->mstc;
1034 struct nv50_mstm *mstm = mstc->mstm;
1035 struct {
1036 struct nv50_disp_mthd_v1 base;
1037 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
1038 } args = {
1039 .base.version = 1,
1040 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
1041 .base.hasht = mstm->outp->dcb->hasht,
1042 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
1043 (0x0100 << msto->head->base.index),
1044 };
1045
1046 mutex_lock(&mstm->mgr.payload_lock);
1047
1048 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
1049 if (mstc->port->vcpi.vcpi > 0) {
1050 struct drm_dp_payload *payload = nv50_msto_payload(msto);
1051 if (payload) {
1052 args.vcpi.start_slot = payload->start_slot;
1053 args.vcpi.num_slots = payload->num_slots;
1054 args.vcpi.pbn = mstc->port->vcpi.pbn;
1055 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
1056 }
1057 }
1058
1059 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1060 msto->encoder.name, msto->head->base.base.name,
1061 args.vcpi.start_slot, args.vcpi.num_slots,
1062 args.vcpi.pbn, args.vcpi.aligned_pbn);
1063
1064 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1065 mutex_unlock(&mstm->mgr.payload_lock);
1066 }
1067
1068 static int
nv50_msto_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1069 nv50_msto_atomic_check(struct drm_encoder *encoder,
1070 struct drm_crtc_state *crtc_state,
1071 struct drm_connector_state *conn_state)
1072 {
1073 struct drm_atomic_state *state = crtc_state->state;
1074 struct drm_connector *connector = conn_state->connector;
1075 struct nv50_mstc *mstc = nv50_mstc(connector);
1076 struct nv50_mstm *mstm = mstc->mstm;
1077 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1078 int slots;
1079 int ret;
1080
1081 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1082 mstc->native);
1083 if (ret)
1084 return ret;
1085
1086 if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
1087 return 0;
1088
1089 /*
1090 * When restoring duplicated states, we need to make sure that the bw
1091 * remains the same and avoid recalculating it, as the connector's bpc
1092 * may have changed after the state was duplicated
1093 */
1094 if (!state->duplicated) {
1095 const int clock = crtc_state->adjusted_mode.clock;
1096
1097 asyh->or.bpc = connector->display_info.bpc;
1098 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1099 false);
1100 }
1101
1102 slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
1103 asyh->dp.pbn, 0);
1104 if (slots < 0)
1105 return slots;
1106
1107 asyh->dp.tu = slots;
1108
1109 return 0;
1110 }
1111
1112 static u8
nv50_dp_bpc_to_depth(unsigned int bpc)1113 nv50_dp_bpc_to_depth(unsigned int bpc)
1114 {
1115 switch (bpc) {
1116 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1117 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1118 case 10:
1119 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1120 }
1121 }
1122
1123 static void
nv50_msto_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1124 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1125 {
1126 struct nv50_msto *msto = nv50_msto(encoder);
1127 struct nv50_head *head = msto->head;
1128 struct nv50_head_atom *asyh =
1129 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1130 struct nv50_mstc *mstc = NULL;
1131 struct nv50_mstm *mstm = NULL;
1132 struct drm_connector *connector;
1133 struct drm_connector_list_iter conn_iter;
1134 u8 proto;
1135 bool r;
1136
1137 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1138 drm_for_each_connector_iter(connector, &conn_iter) {
1139 if (connector->state->best_encoder == &msto->encoder) {
1140 mstc = nv50_mstc(connector);
1141 mstm = mstc->mstm;
1142 break;
1143 }
1144 }
1145 drm_connector_list_iter_end(&conn_iter);
1146
1147 if (WARN_ON(!mstc))
1148 return;
1149
1150 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, asyh->dp.pbn, asyh->dp.tu);
1151 if (!r)
1152 DRM_DEBUG_KMS("Failed to allocate VCPI\n");
1153
1154 if (!mstm->links++)
1155 nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1156
1157 if (mstm->outp->link & 1)
1158 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1159 else
1160 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1161
1162 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1163 nv50_dp_bpc_to_depth(asyh->or.bpc));
1164
1165 msto->mstc = mstc;
1166 mstm->modified = true;
1167 }
1168
1169 static void
nv50_msto_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1170 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1171 {
1172 struct nv50_msto *msto = nv50_msto(encoder);
1173 struct nv50_mstc *mstc = msto->mstc;
1174 struct nv50_mstm *mstm = mstc->mstm;
1175
1176 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
1177
1178 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1179 mstm->modified = true;
1180 if (!--mstm->links)
1181 mstm->disabled = true;
1182 msto->disabled = true;
1183 }
1184
1185 static const struct drm_encoder_helper_funcs
1186 nv50_msto_help = {
1187 .atomic_disable = nv50_msto_atomic_disable,
1188 .atomic_enable = nv50_msto_atomic_enable,
1189 .atomic_check = nv50_msto_atomic_check,
1190 };
1191
1192 static void
nv50_msto_destroy(struct drm_encoder * encoder)1193 nv50_msto_destroy(struct drm_encoder *encoder)
1194 {
1195 struct nv50_msto *msto = nv50_msto(encoder);
1196 drm_encoder_cleanup(&msto->encoder);
1197 kfree(msto);
1198 }
1199
1200 static const struct drm_encoder_funcs
1201 nv50_msto = {
1202 .destroy = nv50_msto_destroy,
1203 };
1204
1205 static struct nv50_msto *
nv50_msto_new(struct drm_device * dev,struct nv50_head * head,int id)1206 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1207 {
1208 struct nv50_msto *msto;
1209 int ret;
1210
1211 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1212 if (!msto)
1213 return ERR_PTR(-ENOMEM);
1214
1215 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1216 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1217 if (ret) {
1218 kfree(msto);
1219 return ERR_PTR(ret);
1220 }
1221
1222 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1223 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1224 msto->head = head;
1225 return msto;
1226 }
1227
1228 static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector * connector,struct drm_atomic_state * state)1229 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1230 struct drm_atomic_state *state)
1231 {
1232 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1233 connector);
1234 struct nv50_mstc *mstc = nv50_mstc(connector);
1235 struct drm_crtc *crtc = connector_state->crtc;
1236
1237 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1238 return NULL;
1239
1240 return &nv50_head(crtc)->msto->encoder;
1241 }
1242
1243 static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1244 nv50_mstc_mode_valid(struct drm_connector *connector,
1245 struct drm_display_mode *mode)
1246 {
1247 struct nv50_mstc *mstc = nv50_mstc(connector);
1248 struct nouveau_encoder *outp = mstc->mstm->outp;
1249
1250 /* TODO: calculate the PBN from the dotclock and validate against the
1251 * MSTB's max possible PBN
1252 */
1253
1254 return nv50_dp_mode_valid(connector, outp, mode, NULL);
1255 }
1256
1257 static int
nv50_mstc_get_modes(struct drm_connector * connector)1258 nv50_mstc_get_modes(struct drm_connector *connector)
1259 {
1260 struct nv50_mstc *mstc = nv50_mstc(connector);
1261 int ret = 0;
1262
1263 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1264 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1265 if (mstc->edid)
1266 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1267
1268 /*
1269 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1270 * to 8 to save bandwidth on the topology. In the future, we'll want
1271 * to properly fix this by dynamically selecting the highest possible
1272 * bpc that would fit in the topology
1273 */
1274 if (connector->display_info.bpc)
1275 connector->display_info.bpc =
1276 clamp(connector->display_info.bpc, 6U, 8U);
1277 else
1278 connector->display_info.bpc = 8;
1279
1280 if (mstc->native)
1281 drm_mode_destroy(mstc->connector.dev, mstc->native);
1282 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1283 return ret;
1284 }
1285
1286 static int
nv50_mstc_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1287 nv50_mstc_atomic_check(struct drm_connector *connector,
1288 struct drm_atomic_state *state)
1289 {
1290 struct nv50_mstc *mstc = nv50_mstc(connector);
1291 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1292 struct drm_connector_state *new_conn_state =
1293 drm_atomic_get_new_connector_state(state, connector);
1294 struct drm_connector_state *old_conn_state =
1295 drm_atomic_get_old_connector_state(state, connector);
1296 struct drm_crtc_state *crtc_state;
1297 struct drm_crtc *new_crtc = new_conn_state->crtc;
1298
1299 if (!old_conn_state->crtc)
1300 return 0;
1301
1302 /* We only want to free VCPI if this state disables the CRTC on this
1303 * connector
1304 */
1305 if (new_crtc) {
1306 crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1307
1308 if (!crtc_state ||
1309 !drm_atomic_crtc_needs_modeset(crtc_state) ||
1310 crtc_state->enable)
1311 return 0;
1312 }
1313
1314 return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1315 }
1316
1317 static int
nv50_mstc_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1318 nv50_mstc_detect(struct drm_connector *connector,
1319 struct drm_modeset_acquire_ctx *ctx, bool force)
1320 {
1321 struct nv50_mstc *mstc = nv50_mstc(connector);
1322 int ret;
1323
1324 if (drm_connector_is_unregistered(connector))
1325 return connector_status_disconnected;
1326
1327 ret = pm_runtime_get_sync(connector->dev->dev);
1328 if (ret < 0 && ret != -EACCES) {
1329 pm_runtime_put_autosuspend(connector->dev->dev);
1330 return connector_status_disconnected;
1331 }
1332
1333 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1334 mstc->port);
1335 if (ret != connector_status_connected)
1336 goto out;
1337
1338 out:
1339 pm_runtime_mark_last_busy(connector->dev->dev);
1340 pm_runtime_put_autosuspend(connector->dev->dev);
1341 return ret;
1342 }
1343
1344 static const struct drm_connector_helper_funcs
1345 nv50_mstc_help = {
1346 .get_modes = nv50_mstc_get_modes,
1347 .mode_valid = nv50_mstc_mode_valid,
1348 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1349 .atomic_check = nv50_mstc_atomic_check,
1350 .detect_ctx = nv50_mstc_detect,
1351 };
1352
1353 static void
nv50_mstc_destroy(struct drm_connector * connector)1354 nv50_mstc_destroy(struct drm_connector *connector)
1355 {
1356 struct nv50_mstc *mstc = nv50_mstc(connector);
1357
1358 drm_connector_cleanup(&mstc->connector);
1359 drm_dp_mst_put_port_malloc(mstc->port);
1360
1361 kfree(mstc);
1362 }
1363
1364 static const struct drm_connector_funcs
1365 nv50_mstc = {
1366 .reset = nouveau_conn_reset,
1367 .fill_modes = drm_helper_probe_single_connector_modes,
1368 .destroy = nv50_mstc_destroy,
1369 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1370 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1371 .atomic_set_property = nouveau_conn_atomic_set_property,
1372 .atomic_get_property = nouveau_conn_atomic_get_property,
1373 };
1374
1375 static int
nv50_mstc_new(struct nv50_mstm * mstm,struct drm_dp_mst_port * port,const char * path,struct nv50_mstc ** pmstc)1376 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1377 const char *path, struct nv50_mstc **pmstc)
1378 {
1379 struct drm_device *dev = mstm->outp->base.base.dev;
1380 struct drm_crtc *crtc;
1381 struct nv50_mstc *mstc;
1382 int ret;
1383
1384 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1385 return -ENOMEM;
1386 mstc->mstm = mstm;
1387 mstc->port = port;
1388
1389 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1390 DRM_MODE_CONNECTOR_DisplayPort);
1391 if (ret) {
1392 kfree(*pmstc);
1393 *pmstc = NULL;
1394 return ret;
1395 }
1396
1397 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1398
1399 mstc->connector.funcs->reset(&mstc->connector);
1400 nouveau_conn_attach_properties(&mstc->connector);
1401
1402 drm_for_each_crtc(crtc, dev) {
1403 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1404 continue;
1405
1406 drm_connector_attach_encoder(&mstc->connector,
1407 &nv50_head(crtc)->msto->encoder);
1408 }
1409
1410 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1411 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1412 drm_connector_set_path_property(&mstc->connector, path);
1413 drm_dp_mst_get_port_malloc(port);
1414 return 0;
1415 }
1416
1417 static void
nv50_mstm_cleanup(struct nv50_mstm * mstm)1418 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1419 {
1420 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1421 struct drm_encoder *encoder;
1422 int ret;
1423
1424 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1425 ret = drm_dp_check_act_status(&mstm->mgr);
1426
1427 ret = drm_dp_update_payload_part2(&mstm->mgr);
1428
1429 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1430 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1431 struct nv50_msto *msto = nv50_msto(encoder);
1432 struct nv50_mstc *mstc = msto->mstc;
1433 if (mstc && mstc->mstm == mstm)
1434 nv50_msto_cleanup(msto);
1435 }
1436 }
1437
1438 mstm->modified = false;
1439 }
1440
1441 static void
nv50_mstm_prepare(struct nv50_mstm * mstm)1442 nv50_mstm_prepare(struct nv50_mstm *mstm)
1443 {
1444 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1445 struct drm_encoder *encoder;
1446 int ret;
1447
1448 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1449 ret = drm_dp_update_payload_part1(&mstm->mgr);
1450
1451 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1452 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1453 struct nv50_msto *msto = nv50_msto(encoder);
1454 struct nv50_mstc *mstc = msto->mstc;
1455 if (mstc && mstc->mstm == mstm)
1456 nv50_msto_prepare(msto);
1457 }
1458 }
1459
1460 if (mstm->disabled) {
1461 if (!mstm->links)
1462 nv50_outp_release(mstm->outp);
1463 mstm->disabled = false;
1464 }
1465 }
1466
1467 static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr * mgr,struct drm_dp_mst_port * port,const char * path)1468 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1469 struct drm_dp_mst_port *port, const char *path)
1470 {
1471 struct nv50_mstm *mstm = nv50_mstm(mgr);
1472 struct nv50_mstc *mstc;
1473 int ret;
1474
1475 ret = nv50_mstc_new(mstm, port, path, &mstc);
1476 if (ret)
1477 return NULL;
1478
1479 return &mstc->connector;
1480 }
1481
1482 static const struct drm_dp_mst_topology_cbs
1483 nv50_mstm = {
1484 .add_connector = nv50_mstm_add_connector,
1485 };
1486
1487 bool
nv50_mstm_service(struct nouveau_drm * drm,struct nouveau_connector * nv_connector,struct nv50_mstm * mstm)1488 nv50_mstm_service(struct nouveau_drm *drm,
1489 struct nouveau_connector *nv_connector,
1490 struct nv50_mstm *mstm)
1491 {
1492 struct drm_dp_aux *aux = &nv_connector->aux;
1493 bool handled = true, ret = true;
1494 int rc;
1495 u8 esi[8] = {};
1496
1497 while (handled) {
1498 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1499 if (rc != 8) {
1500 ret = false;
1501 break;
1502 }
1503
1504 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1505 if (!handled)
1506 break;
1507
1508 rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1509 3);
1510 if (rc != 3) {
1511 ret = false;
1512 break;
1513 }
1514 }
1515
1516 if (!ret)
1517 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1518 nv_connector->base.name, rc);
1519
1520 return ret;
1521 }
1522
1523 void
nv50_mstm_remove(struct nv50_mstm * mstm)1524 nv50_mstm_remove(struct nv50_mstm *mstm)
1525 {
1526 mstm->is_mst = false;
1527 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1528 }
1529
1530 static int
nv50_mstm_enable(struct nv50_mstm * mstm,int state)1531 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1532 {
1533 struct nouveau_encoder *outp = mstm->outp;
1534 struct {
1535 struct nv50_disp_mthd_v1 base;
1536 struct nv50_disp_sor_dp_mst_link_v0 mst;
1537 } args = {
1538 .base.version = 1,
1539 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1540 .base.hasht = outp->dcb->hasht,
1541 .base.hashm = outp->dcb->hashm,
1542 .mst.state = state,
1543 };
1544 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1545 struct nvif_object *disp = &drm->display->disp.object;
1546
1547 return nvif_mthd(disp, 0, &args, sizeof(args));
1548 }
1549
1550 int
nv50_mstm_detect(struct nouveau_encoder * outp)1551 nv50_mstm_detect(struct nouveau_encoder *outp)
1552 {
1553 struct nv50_mstm *mstm = outp->dp.mstm;
1554 struct drm_dp_aux *aux;
1555 int ret;
1556
1557 if (!mstm || !mstm->can_mst)
1558 return 0;
1559
1560 aux = mstm->mgr.aux;
1561
1562 /* Clear any leftover MST state we didn't set ourselves by first
1563 * disabling MST if it was already enabled
1564 */
1565 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1566 if (ret < 0)
1567 return ret;
1568
1569 /* And start enabling */
1570 ret = nv50_mstm_enable(mstm, true);
1571 if (ret)
1572 return ret;
1573
1574 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1575 if (ret) {
1576 nv50_mstm_enable(mstm, false);
1577 return ret;
1578 }
1579
1580 mstm->is_mst = true;
1581 return 1;
1582 }
1583
1584 static void
nv50_mstm_fini(struct nouveau_encoder * outp)1585 nv50_mstm_fini(struct nouveau_encoder *outp)
1586 {
1587 struct nv50_mstm *mstm = outp->dp.mstm;
1588
1589 if (!mstm)
1590 return;
1591
1592 /* Don't change the MST state of this connector until we've finished
1593 * resuming, since we can't safely grab hpd_irq_lock in our resume
1594 * path to protect mstm->is_mst without potentially deadlocking
1595 */
1596 mutex_lock(&outp->dp.hpd_irq_lock);
1597 mstm->suspended = true;
1598 mutex_unlock(&outp->dp.hpd_irq_lock);
1599
1600 if (mstm->is_mst)
1601 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1602 }
1603
1604 static void
nv50_mstm_init(struct nouveau_encoder * outp,bool runtime)1605 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1606 {
1607 struct nv50_mstm *mstm = outp->dp.mstm;
1608 int ret = 0;
1609
1610 if (!mstm)
1611 return;
1612
1613 if (mstm->is_mst) {
1614 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1615 if (ret == -1)
1616 nv50_mstm_remove(mstm);
1617 }
1618
1619 mutex_lock(&outp->dp.hpd_irq_lock);
1620 mstm->suspended = false;
1621 mutex_unlock(&outp->dp.hpd_irq_lock);
1622
1623 if (ret == -1)
1624 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1625 }
1626
1627 static void
nv50_mstm_del(struct nv50_mstm ** pmstm)1628 nv50_mstm_del(struct nv50_mstm **pmstm)
1629 {
1630 struct nv50_mstm *mstm = *pmstm;
1631 if (mstm) {
1632 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1633 kfree(*pmstm);
1634 *pmstm = NULL;
1635 }
1636 }
1637
1638 static int
nv50_mstm_new(struct nouveau_encoder * outp,struct drm_dp_aux * aux,int aux_max,int conn_base_id,struct nv50_mstm ** pmstm)1639 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1640 int conn_base_id, struct nv50_mstm **pmstm)
1641 {
1642 const int max_payloads = hweight8(outp->dcb->heads);
1643 struct drm_device *dev = outp->base.base.dev;
1644 struct nv50_mstm *mstm;
1645 int ret;
1646
1647 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1648 return -ENOMEM;
1649 mstm->outp = outp;
1650 mstm->mgr.cbs = &nv50_mstm;
1651
1652 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1653 max_payloads, outp->dcb->dpconf.link_nr,
1654 drm_dp_bw_code_to_link_rate(outp->dcb->dpconf.link_bw),
1655 conn_base_id);
1656 if (ret)
1657 return ret;
1658
1659 return 0;
1660 }
1661
1662 /******************************************************************************
1663 * SOR
1664 *****************************************************************************/
1665 static void
nv50_sor_update(struct nouveau_encoder * nv_encoder,u8 head,struct nv50_head_atom * asyh,u8 proto,u8 depth)1666 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1667 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1668 {
1669 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1670 struct nv50_core *core = disp->core;
1671
1672 if (!asyh) {
1673 nv_encoder->ctrl &= ~BIT(head);
1674 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1675 nv_encoder->ctrl = 0;
1676 } else {
1677 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1678 nv_encoder->ctrl |= BIT(head);
1679 asyh->or.depth = depth;
1680 }
1681
1682 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1683 }
1684
1685 /* TODO: Should we extend this to PWM-only backlights?
1686 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1687 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1688 * fixed time delay from the vbios…
1689 */
1690 static void
nv50_sor_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1691 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1692 {
1693 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1694 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1695 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1696 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1697 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1698 struct nouveau_backlight *backlight = nv_connector->backlight;
1699 #endif
1700 struct drm_dp_aux *aux = &nv_connector->aux;
1701 int ret;
1702 u8 pwr;
1703
1704 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1705 if (backlight && backlight->uses_dpcd) {
1706 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1707 if (ret < 0)
1708 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1709 nv_connector->base.base.id, nv_connector->base.name, ret);
1710 }
1711 #endif
1712
1713 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1714 ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1715
1716 if (ret == 0) {
1717 pwr &= ~DP_SET_POWER_MASK;
1718 pwr |= DP_SET_POWER_D3;
1719 drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1720 }
1721 }
1722
1723 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1724 nv50_audio_disable(encoder, nv_crtc);
1725 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1726 nv50_outp_release(nv_encoder);
1727 nv_encoder->crtc = NULL;
1728 }
1729
1730 static void
nv50_sor_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1731 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1732 {
1733 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1734 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1735 struct nv50_head_atom *asyh =
1736 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1737 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1738 struct {
1739 struct nv50_disp_mthd_v1 base;
1740 struct nv50_disp_sor_lvds_script_v0 lvds;
1741 } lvds = {
1742 .base.version = 1,
1743 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1744 .base.hasht = nv_encoder->dcb->hasht,
1745 .base.hashm = nv_encoder->dcb->hashm,
1746 };
1747 struct nv50_disp *disp = nv50_disp(encoder->dev);
1748 struct drm_device *dev = encoder->dev;
1749 struct nouveau_drm *drm = nouveau_drm(dev);
1750 struct nouveau_connector *nv_connector;
1751 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1752 struct nouveau_backlight *backlight;
1753 #endif
1754 struct nvbios *bios = &drm->vbios;
1755 bool hda = false;
1756 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1757 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1758
1759 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1760 nv_encoder->crtc = &nv_crtc->base;
1761
1762 if ((disp->disp->object.oclass == GT214_DISP ||
1763 disp->disp->object.oclass >= GF110_DISP) &&
1764 drm_detect_monitor_audio(nv_connector->edid))
1765 hda = true;
1766 nv50_outp_acquire(nv_encoder, hda);
1767
1768 switch (nv_encoder->dcb->type) {
1769 case DCB_OUTPUT_TMDS:
1770 if (nv_encoder->link & 1) {
1771 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1772 /* Only enable dual-link if:
1773 * - Need to (i.e. rate > 165MHz)
1774 * - DCB says we can
1775 * - Not an HDMI monitor, since there's no dual-link
1776 * on HDMI.
1777 */
1778 if (mode->clock >= 165000 &&
1779 nv_encoder->dcb->duallink_possible &&
1780 !drm_detect_hdmi_monitor(nv_connector->edid))
1781 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1782 } else {
1783 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1784 }
1785
1786 nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1787 break;
1788 case DCB_OUTPUT_LVDS:
1789 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1790
1791 if (bios->fp_no_ddc) {
1792 if (bios->fp.dual_link)
1793 lvds.lvds.script |= 0x0100;
1794 if (bios->fp.if_is_24bit)
1795 lvds.lvds.script |= 0x0200;
1796 } else {
1797 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1798 if (((u8 *)nv_connector->edid)[121] == 2)
1799 lvds.lvds.script |= 0x0100;
1800 } else
1801 if (mode->clock >= bios->fp.duallink_transition_clk) {
1802 lvds.lvds.script |= 0x0100;
1803 }
1804
1805 if (lvds.lvds.script & 0x0100) {
1806 if (bios->fp.strapless_is_24bit & 2)
1807 lvds.lvds.script |= 0x0200;
1808 } else {
1809 if (bios->fp.strapless_is_24bit & 1)
1810 lvds.lvds.script |= 0x0200;
1811 }
1812
1813 if (asyh->or.bpc == 8)
1814 lvds.lvds.script |= 0x0200;
1815 }
1816
1817 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1818 break;
1819 case DCB_OUTPUT_DP:
1820 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1821
1822 if (nv_encoder->link & 1)
1823 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1824 else
1825 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1826
1827 nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1828
1829 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1830 backlight = nv_connector->backlight;
1831 if (backlight && backlight->uses_dpcd)
1832 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1833 (u16)backlight->dev->props.brightness);
1834 #endif
1835
1836 break;
1837 default:
1838 BUG();
1839 break;
1840 }
1841
1842 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1843 }
1844
1845 static const struct drm_encoder_helper_funcs
1846 nv50_sor_help = {
1847 .atomic_check = nv50_outp_atomic_check,
1848 .atomic_enable = nv50_sor_atomic_enable,
1849 .atomic_disable = nv50_sor_atomic_disable,
1850 };
1851
1852 static void
nv50_sor_destroy(struct drm_encoder * encoder)1853 nv50_sor_destroy(struct drm_encoder *encoder)
1854 {
1855 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1856 nv50_mstm_del(&nv_encoder->dp.mstm);
1857 drm_encoder_cleanup(encoder);
1858
1859 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1860 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1861
1862 kfree(encoder);
1863 }
1864
1865 static const struct drm_encoder_funcs
1866 nv50_sor_func = {
1867 .destroy = nv50_sor_destroy,
1868 };
1869
nv50_has_mst(struct nouveau_drm * drm)1870 static bool nv50_has_mst(struct nouveau_drm *drm)
1871 {
1872 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1873 u32 data;
1874 u8 ver, hdr, cnt, len;
1875
1876 data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1877 return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1878 }
1879
1880 static int
nv50_sor_create(struct drm_connector * connector,struct dcb_output * dcbe)1881 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1882 {
1883 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1884 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1885 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1886 struct nouveau_encoder *nv_encoder;
1887 struct drm_encoder *encoder;
1888 struct nv50_disp *disp = nv50_disp(connector->dev);
1889 int type, ret;
1890
1891 switch (dcbe->type) {
1892 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1893 case DCB_OUTPUT_TMDS:
1894 case DCB_OUTPUT_DP:
1895 default:
1896 type = DRM_MODE_ENCODER_TMDS;
1897 break;
1898 }
1899
1900 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1901 if (!nv_encoder)
1902 return -ENOMEM;
1903 nv_encoder->dcb = dcbe;
1904 nv_encoder->update = nv50_sor_update;
1905
1906 encoder = to_drm_encoder(nv_encoder);
1907 encoder->possible_crtcs = dcbe->heads;
1908 encoder->possible_clones = 0;
1909 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1910 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1911 drm_encoder_helper_add(encoder, &nv50_sor_help);
1912
1913 drm_connector_attach_encoder(connector, encoder);
1914
1915 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1916 nv50_outp_dump_caps(drm, nv_encoder);
1917
1918 if (dcbe->type == DCB_OUTPUT_DP) {
1919 struct nvkm_i2c_aux *aux =
1920 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1921
1922 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1923
1924 if (aux) {
1925 if (disp->disp->object.oclass < GF110_DISP) {
1926 /* HW has no support for address-only
1927 * transactions, so we're required to
1928 * use custom I2C-over-AUX code.
1929 */
1930 nv_encoder->i2c = &aux->i2c;
1931 } else {
1932 nv_encoder->i2c = &nv_connector->aux.ddc;
1933 }
1934 nv_encoder->aux = aux;
1935 }
1936
1937 if (nv_connector->type != DCB_CONNECTOR_eDP &&
1938 nv50_has_mst(drm)) {
1939 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1940 16, nv_connector->base.base.id,
1941 &nv_encoder->dp.mstm);
1942 if (ret)
1943 return ret;
1944 }
1945 } else {
1946 struct nvkm_i2c_bus *bus =
1947 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1948 if (bus)
1949 nv_encoder->i2c = &bus->i2c;
1950 }
1951
1952 return 0;
1953 }
1954
1955 /******************************************************************************
1956 * PIOR
1957 *****************************************************************************/
1958 static int
nv50_pior_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1959 nv50_pior_atomic_check(struct drm_encoder *encoder,
1960 struct drm_crtc_state *crtc_state,
1961 struct drm_connector_state *conn_state)
1962 {
1963 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1964 if (ret)
1965 return ret;
1966 crtc_state->adjusted_mode.clock *= 2;
1967 return 0;
1968 }
1969
1970 static void
nv50_pior_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1971 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1972 {
1973 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1974 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1975 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1976
1977 core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1978 nv_encoder->crtc = NULL;
1979 nv50_outp_release(nv_encoder);
1980 }
1981
1982 static void
nv50_pior_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1983 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1984 {
1985 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1986 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1987 struct nv50_head_atom *asyh =
1988 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1989 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1990 u32 ctrl = 0;
1991
1992 switch (nv_crtc->index) {
1993 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1994 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1995 default:
1996 WARN_ON(1);
1997 break;
1998 }
1999
2000 nv50_outp_acquire(nv_encoder, false);
2001
2002 switch (asyh->or.bpc) {
2003 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
2004 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
2005 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
2006 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
2007 }
2008
2009 switch (nv_encoder->dcb->type) {
2010 case DCB_OUTPUT_TMDS:
2011 case DCB_OUTPUT_DP:
2012 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
2013 break;
2014 default:
2015 BUG();
2016 break;
2017 }
2018
2019 core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
2020 nv_encoder->crtc = &nv_crtc->base;
2021 }
2022
2023 static const struct drm_encoder_helper_funcs
2024 nv50_pior_help = {
2025 .atomic_check = nv50_pior_atomic_check,
2026 .atomic_enable = nv50_pior_atomic_enable,
2027 .atomic_disable = nv50_pior_atomic_disable,
2028 };
2029
2030 static void
nv50_pior_destroy(struct drm_encoder * encoder)2031 nv50_pior_destroy(struct drm_encoder *encoder)
2032 {
2033 drm_encoder_cleanup(encoder);
2034 kfree(encoder);
2035 }
2036
2037 static const struct drm_encoder_funcs
2038 nv50_pior_func = {
2039 .destroy = nv50_pior_destroy,
2040 };
2041
2042 static int
nv50_pior_create(struct drm_connector * connector,struct dcb_output * dcbe)2043 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2044 {
2045 struct drm_device *dev = connector->dev;
2046 struct nouveau_drm *drm = nouveau_drm(dev);
2047 struct nv50_disp *disp = nv50_disp(dev);
2048 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2049 struct nvkm_i2c_bus *bus = NULL;
2050 struct nvkm_i2c_aux *aux = NULL;
2051 struct i2c_adapter *ddc;
2052 struct nouveau_encoder *nv_encoder;
2053 struct drm_encoder *encoder;
2054 int type;
2055
2056 switch (dcbe->type) {
2057 case DCB_OUTPUT_TMDS:
2058 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2059 ddc = bus ? &bus->i2c : NULL;
2060 type = DRM_MODE_ENCODER_TMDS;
2061 break;
2062 case DCB_OUTPUT_DP:
2063 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2064 ddc = aux ? &aux->i2c : NULL;
2065 type = DRM_MODE_ENCODER_TMDS;
2066 break;
2067 default:
2068 return -ENODEV;
2069 }
2070
2071 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2072 if (!nv_encoder)
2073 return -ENOMEM;
2074 nv_encoder->dcb = dcbe;
2075 nv_encoder->i2c = ddc;
2076 nv_encoder->aux = aux;
2077
2078 encoder = to_drm_encoder(nv_encoder);
2079 encoder->possible_crtcs = dcbe->heads;
2080 encoder->possible_clones = 0;
2081 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2082 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2083 drm_encoder_helper_add(encoder, &nv50_pior_help);
2084
2085 drm_connector_attach_encoder(connector, encoder);
2086
2087 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2088 nv50_outp_dump_caps(drm, nv_encoder);
2089
2090 return 0;
2091 }
2092
2093 /******************************************************************************
2094 * Atomic
2095 *****************************************************************************/
2096
2097 static void
nv50_disp_atomic_commit_core(struct drm_atomic_state * state,u32 * interlock)2098 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2099 {
2100 struct nouveau_drm *drm = nouveau_drm(state->dev);
2101 struct nv50_disp *disp = nv50_disp(drm->dev);
2102 struct nv50_core *core = disp->core;
2103 struct nv50_mstm *mstm;
2104 struct drm_encoder *encoder;
2105
2106 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2107
2108 drm_for_each_encoder(encoder, drm->dev) {
2109 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2110 mstm = nouveau_encoder(encoder)->dp.mstm;
2111 if (mstm && mstm->modified)
2112 nv50_mstm_prepare(mstm);
2113 }
2114 }
2115
2116 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2117 core->func->update(core, interlock, true);
2118 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2119 disp->core->chan.base.device))
2120 NV_ERROR(drm, "core notifier timeout\n");
2121
2122 drm_for_each_encoder(encoder, drm->dev) {
2123 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2124 mstm = nouveau_encoder(encoder)->dp.mstm;
2125 if (mstm && mstm->modified)
2126 nv50_mstm_cleanup(mstm);
2127 }
2128 }
2129 }
2130
2131 static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state * state,u32 * interlock)2132 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2133 {
2134 struct drm_plane_state *new_plane_state;
2135 struct drm_plane *plane;
2136 int i;
2137
2138 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2139 struct nv50_wndw *wndw = nv50_wndw(plane);
2140 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2141 if (wndw->func->update)
2142 wndw->func->update(wndw, interlock);
2143 }
2144 }
2145 }
2146
2147 static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state * state)2148 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2149 {
2150 struct drm_device *dev = state->dev;
2151 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2152 struct drm_crtc *crtc;
2153 struct drm_plane_state *new_plane_state;
2154 struct drm_plane *plane;
2155 struct nouveau_drm *drm = nouveau_drm(dev);
2156 struct nv50_disp *disp = nv50_disp(dev);
2157 struct nv50_atom *atom = nv50_atom(state);
2158 struct nv50_core *core = disp->core;
2159 struct nv50_outp_atom *outp, *outt;
2160 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2161 int i;
2162 bool flushed = false;
2163
2164 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2165 nv50_crc_atomic_stop_reporting(state);
2166 drm_atomic_helper_wait_for_fences(dev, state, false);
2167 drm_atomic_helper_wait_for_dependencies(state);
2168 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2169 drm_atomic_helper_calc_timestamping_constants(state);
2170
2171 if (atom->lock_core)
2172 mutex_lock(&disp->mutex);
2173
2174 /* Disable head(s). */
2175 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2176 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2177 struct nv50_head *head = nv50_head(crtc);
2178
2179 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2180 asyh->clr.mask, asyh->set.mask);
2181
2182 if (old_crtc_state->active && !new_crtc_state->active) {
2183 pm_runtime_put_noidle(dev->dev);
2184 drm_crtc_vblank_off(crtc);
2185 }
2186
2187 if (asyh->clr.mask) {
2188 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2189 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2190 }
2191 }
2192
2193 /* Disable plane(s). */
2194 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2195 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2196 struct nv50_wndw *wndw = nv50_wndw(plane);
2197
2198 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2199 asyw->clr.mask, asyw->set.mask);
2200 if (!asyw->clr.mask)
2201 continue;
2202
2203 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2204 }
2205
2206 /* Disable output path(s). */
2207 list_for_each_entry(outp, &atom->outp, head) {
2208 const struct drm_encoder_helper_funcs *help;
2209 struct drm_encoder *encoder;
2210
2211 encoder = outp->encoder;
2212 help = encoder->helper_private;
2213
2214 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2215 outp->clr.mask, outp->set.mask);
2216
2217 if (outp->clr.mask) {
2218 help->atomic_disable(encoder, state);
2219 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2220 if (outp->flush_disable) {
2221 nv50_disp_atomic_commit_wndw(state, interlock);
2222 nv50_disp_atomic_commit_core(state, interlock);
2223 memset(interlock, 0x00, sizeof(interlock));
2224
2225 flushed = true;
2226 }
2227 }
2228 }
2229
2230 /* Flush disable. */
2231 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2232 if (atom->flush_disable) {
2233 nv50_disp_atomic_commit_wndw(state, interlock);
2234 nv50_disp_atomic_commit_core(state, interlock);
2235 memset(interlock, 0x00, sizeof(interlock));
2236
2237 flushed = true;
2238 }
2239 }
2240
2241 if (flushed)
2242 nv50_crc_atomic_release_notifier_contexts(state);
2243 nv50_crc_atomic_init_notifier_contexts(state);
2244
2245 /* Update output path(s). */
2246 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2247 const struct drm_encoder_helper_funcs *help;
2248 struct drm_encoder *encoder;
2249
2250 encoder = outp->encoder;
2251 help = encoder->helper_private;
2252
2253 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2254 outp->set.mask, outp->clr.mask);
2255
2256 if (outp->set.mask) {
2257 help->atomic_enable(encoder, state);
2258 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2259 }
2260
2261 list_del(&outp->head);
2262 kfree(outp);
2263 }
2264
2265 /* Update head(s). */
2266 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2267 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2268 struct nv50_head *head = nv50_head(crtc);
2269
2270 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2271 asyh->set.mask, asyh->clr.mask);
2272
2273 if (asyh->set.mask) {
2274 nv50_head_flush_set(head, asyh);
2275 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2276 }
2277
2278 if (new_crtc_state->active) {
2279 if (!old_crtc_state->active) {
2280 drm_crtc_vblank_on(crtc);
2281 pm_runtime_get_noresume(dev->dev);
2282 }
2283 if (new_crtc_state->event)
2284 drm_crtc_vblank_get(crtc);
2285 }
2286 }
2287
2288 /* Update window->head assignment.
2289 *
2290 * This has to happen in an update that's not interlocked with
2291 * any window channels to avoid hitting HW error checks.
2292 *
2293 *TODO: Proper handling of window ownership (Turing apparently
2294 * supports non-fixed mappings).
2295 */
2296 if (core->assign_windows) {
2297 core->func->wndw.owner(core);
2298 nv50_disp_atomic_commit_core(state, interlock);
2299 core->assign_windows = false;
2300 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2301 }
2302
2303 /* Finish updating head(s)...
2304 *
2305 * NVD is rather picky about both where window assignments can change,
2306 * *and* about certain core and window channel states matching.
2307 *
2308 * The EFI GOP driver on newer GPUs configures window channels with a
2309 * different output format to what we do, and the core channel update
2310 * in the assign_windows case above would result in a state mismatch.
2311 *
2312 * Delay some of the head update until after that point to workaround
2313 * the issue. This only affects the initial modeset.
2314 *
2315 * TODO: handle this better when adding flexible window mapping
2316 */
2317 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2318 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2319 struct nv50_head *head = nv50_head(crtc);
2320
2321 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2322 asyh->set.mask, asyh->clr.mask);
2323
2324 if (asyh->set.mask) {
2325 nv50_head_flush_set_wndw(head, asyh);
2326 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2327 }
2328 }
2329
2330 /* Update plane(s). */
2331 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2332 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2333 struct nv50_wndw *wndw = nv50_wndw(plane);
2334
2335 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2336 asyw->set.mask, asyw->clr.mask);
2337 if ( !asyw->set.mask &&
2338 (!asyw->clr.mask || atom->flush_disable))
2339 continue;
2340
2341 nv50_wndw_flush_set(wndw, interlock, asyw);
2342 }
2343
2344 /* Flush update. */
2345 nv50_disp_atomic_commit_wndw(state, interlock);
2346
2347 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2348 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2349 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2350 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2351 !atom->state.legacy_cursor_update)
2352 nv50_disp_atomic_commit_core(state, interlock);
2353 else
2354 disp->core->func->update(disp->core, interlock, false);
2355 }
2356
2357 if (atom->lock_core)
2358 mutex_unlock(&disp->mutex);
2359
2360 /* Wait for HW to signal completion. */
2361 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2362 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2363 struct nv50_wndw *wndw = nv50_wndw(plane);
2364 int ret = nv50_wndw_wait_armed(wndw, asyw);
2365 if (ret)
2366 NV_ERROR(drm, "%s: timeout\n", plane->name);
2367 }
2368
2369 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2370 if (new_crtc_state->event) {
2371 unsigned long flags;
2372 /* Get correct count/ts if racing with vblank irq */
2373 if (new_crtc_state->active)
2374 drm_crtc_accurate_vblank_count(crtc);
2375 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2376 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2377 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2378
2379 new_crtc_state->event = NULL;
2380 if (new_crtc_state->active)
2381 drm_crtc_vblank_put(crtc);
2382 }
2383 }
2384
2385 nv50_crc_atomic_start_reporting(state);
2386 if (!flushed)
2387 nv50_crc_atomic_release_notifier_contexts(state);
2388
2389 drm_atomic_helper_commit_hw_done(state);
2390 drm_atomic_helper_cleanup_planes(dev, state);
2391 drm_atomic_helper_commit_cleanup_done(state);
2392 drm_atomic_state_put(state);
2393
2394 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2395 pm_runtime_mark_last_busy(dev->dev);
2396 pm_runtime_put_autosuspend(dev->dev);
2397 }
2398
2399 static void
nv50_disp_atomic_commit_work(struct work_struct * work)2400 nv50_disp_atomic_commit_work(struct work_struct *work)
2401 {
2402 struct drm_atomic_state *state =
2403 container_of(work, typeof(*state), commit_work);
2404 nv50_disp_atomic_commit_tail(state);
2405 }
2406
2407 static int
nv50_disp_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)2408 nv50_disp_atomic_commit(struct drm_device *dev,
2409 struct drm_atomic_state *state, bool nonblock)
2410 {
2411 struct drm_plane_state *new_plane_state;
2412 struct drm_plane *plane;
2413 int ret, i;
2414
2415 ret = pm_runtime_get_sync(dev->dev);
2416 if (ret < 0 && ret != -EACCES) {
2417 pm_runtime_put_autosuspend(dev->dev);
2418 return ret;
2419 }
2420
2421 ret = drm_atomic_helper_setup_commit(state, nonblock);
2422 if (ret)
2423 goto done;
2424
2425 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2426
2427 ret = drm_atomic_helper_prepare_planes(dev, state);
2428 if (ret)
2429 goto done;
2430
2431 if (!nonblock) {
2432 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2433 if (ret)
2434 goto err_cleanup;
2435 }
2436
2437 ret = drm_atomic_helper_swap_state(state, true);
2438 if (ret)
2439 goto err_cleanup;
2440
2441 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2442 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2443 struct nv50_wndw *wndw = nv50_wndw(plane);
2444
2445 if (asyw->set.image)
2446 nv50_wndw_ntfy_enable(wndw, asyw);
2447 }
2448
2449 drm_atomic_state_get(state);
2450
2451 /*
2452 * Grab another RPM ref for the commit tail, which will release the
2453 * ref when it's finished
2454 */
2455 pm_runtime_get_noresume(dev->dev);
2456
2457 if (nonblock)
2458 queue_work(system_unbound_wq, &state->commit_work);
2459 else
2460 nv50_disp_atomic_commit_tail(state);
2461
2462 err_cleanup:
2463 if (ret)
2464 drm_atomic_helper_cleanup_planes(dev, state);
2465 done:
2466 pm_runtime_put_autosuspend(dev->dev);
2467 return ret;
2468 }
2469
2470 static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom * atom,struct drm_encoder * encoder)2471 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2472 {
2473 struct nv50_outp_atom *outp;
2474
2475 list_for_each_entry(outp, &atom->outp, head) {
2476 if (outp->encoder == encoder)
2477 return outp;
2478 }
2479
2480 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2481 if (!outp)
2482 return ERR_PTR(-ENOMEM);
2483
2484 list_add(&outp->head, &atom->outp);
2485 outp->encoder = encoder;
2486 return outp;
2487 }
2488
2489 static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom * atom,struct drm_connector_state * old_connector_state)2490 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2491 struct drm_connector_state *old_connector_state)
2492 {
2493 struct drm_encoder *encoder = old_connector_state->best_encoder;
2494 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2495 struct drm_crtc *crtc;
2496 struct nv50_outp_atom *outp;
2497
2498 if (!(crtc = old_connector_state->crtc))
2499 return 0;
2500
2501 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2502 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2503 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2504 outp = nv50_disp_outp_atomic_add(atom, encoder);
2505 if (IS_ERR(outp))
2506 return PTR_ERR(outp);
2507
2508 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2509 outp->flush_disable = true;
2510 atom->flush_disable = true;
2511 }
2512 outp->clr.ctrl = true;
2513 atom->lock_core = true;
2514 }
2515
2516 return 0;
2517 }
2518
2519 static int
nv50_disp_outp_atomic_check_set(struct nv50_atom * atom,struct drm_connector_state * connector_state)2520 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2521 struct drm_connector_state *connector_state)
2522 {
2523 struct drm_encoder *encoder = connector_state->best_encoder;
2524 struct drm_crtc_state *new_crtc_state;
2525 struct drm_crtc *crtc;
2526 struct nv50_outp_atom *outp;
2527
2528 if (!(crtc = connector_state->crtc))
2529 return 0;
2530
2531 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2532 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2533 outp = nv50_disp_outp_atomic_add(atom, encoder);
2534 if (IS_ERR(outp))
2535 return PTR_ERR(outp);
2536
2537 outp->set.ctrl = true;
2538 atom->lock_core = true;
2539 }
2540
2541 return 0;
2542 }
2543
2544 static int
nv50_disp_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)2545 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2546 {
2547 struct nv50_atom *atom = nv50_atom(state);
2548 struct nv50_core *core = nv50_disp(dev)->core;
2549 struct drm_connector_state *old_connector_state, *new_connector_state;
2550 struct drm_connector *connector;
2551 struct drm_crtc_state *new_crtc_state;
2552 struct drm_crtc *crtc;
2553 struct nv50_head *head;
2554 struct nv50_head_atom *asyh;
2555 int ret, i;
2556
2557 if (core->assign_windows && core->func->head->static_wndw_map) {
2558 drm_for_each_crtc(crtc, dev) {
2559 new_crtc_state = drm_atomic_get_crtc_state(state,
2560 crtc);
2561 if (IS_ERR(new_crtc_state))
2562 return PTR_ERR(new_crtc_state);
2563
2564 head = nv50_head(crtc);
2565 asyh = nv50_head_atom(new_crtc_state);
2566 core->func->head->static_wndw_map(head, asyh);
2567 }
2568 }
2569
2570 /* We need to handle colour management on a per-plane basis. */
2571 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2572 if (new_crtc_state->color_mgmt_changed) {
2573 ret = drm_atomic_add_affected_planes(state, crtc);
2574 if (ret)
2575 return ret;
2576 }
2577 }
2578
2579 ret = drm_atomic_helper_check(dev, state);
2580 if (ret)
2581 return ret;
2582
2583 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2584 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2585 if (ret)
2586 return ret;
2587
2588 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2589 if (ret)
2590 return ret;
2591 }
2592
2593 ret = drm_dp_mst_atomic_check(state);
2594 if (ret)
2595 return ret;
2596
2597 nv50_crc_atomic_check_outp(atom);
2598
2599 return 0;
2600 }
2601
2602 static void
nv50_disp_atomic_state_clear(struct drm_atomic_state * state)2603 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2604 {
2605 struct nv50_atom *atom = nv50_atom(state);
2606 struct nv50_outp_atom *outp, *outt;
2607
2608 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2609 list_del(&outp->head);
2610 kfree(outp);
2611 }
2612
2613 drm_atomic_state_default_clear(state);
2614 }
2615
2616 static void
nv50_disp_atomic_state_free(struct drm_atomic_state * state)2617 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2618 {
2619 struct nv50_atom *atom = nv50_atom(state);
2620 drm_atomic_state_default_release(&atom->state);
2621 kfree(atom);
2622 }
2623
2624 static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device * dev)2625 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2626 {
2627 struct nv50_atom *atom;
2628 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2629 drm_atomic_state_init(dev, &atom->state) < 0) {
2630 kfree(atom);
2631 return NULL;
2632 }
2633 INIT_LIST_HEAD(&atom->outp);
2634 return &atom->state;
2635 }
2636
2637 static const struct drm_mode_config_funcs
2638 nv50_disp_func = {
2639 .fb_create = nouveau_user_framebuffer_create,
2640 .output_poll_changed = nouveau_fbcon_output_poll_changed,
2641 .atomic_check = nv50_disp_atomic_check,
2642 .atomic_commit = nv50_disp_atomic_commit,
2643 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2644 .atomic_state_clear = nv50_disp_atomic_state_clear,
2645 .atomic_state_free = nv50_disp_atomic_state_free,
2646 };
2647
2648 /******************************************************************************
2649 * Init
2650 *****************************************************************************/
2651
2652 static void
nv50_display_fini(struct drm_device * dev,bool runtime,bool suspend)2653 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2654 {
2655 struct nouveau_drm *drm = nouveau_drm(dev);
2656 struct drm_encoder *encoder;
2657
2658 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2659 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2660 nv50_mstm_fini(nouveau_encoder(encoder));
2661 }
2662
2663 if (!runtime)
2664 cancel_work_sync(&drm->hpd_work);
2665 }
2666
2667 static int
nv50_display_init(struct drm_device * dev,bool resume,bool runtime)2668 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2669 {
2670 struct nv50_core *core = nv50_disp(dev)->core;
2671 struct drm_encoder *encoder;
2672
2673 if (resume || runtime)
2674 core->func->init(core);
2675
2676 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2677 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2678 struct nouveau_encoder *nv_encoder =
2679 nouveau_encoder(encoder);
2680 nv50_mstm_init(nv_encoder, runtime);
2681 }
2682 }
2683
2684 return 0;
2685 }
2686
2687 static void
nv50_display_destroy(struct drm_device * dev)2688 nv50_display_destroy(struct drm_device *dev)
2689 {
2690 struct nv50_disp *disp = nv50_disp(dev);
2691
2692 nv50_audio_component_fini(nouveau_drm(dev));
2693
2694 nvif_object_unmap(&disp->caps);
2695 nvif_object_dtor(&disp->caps);
2696 nv50_core_del(&disp->core);
2697
2698 nouveau_bo_unmap(disp->sync);
2699 if (disp->sync)
2700 nouveau_bo_unpin(disp->sync);
2701 nouveau_bo_ref(NULL, &disp->sync);
2702
2703 nouveau_display(dev)->priv = NULL;
2704 kfree(disp);
2705 }
2706
2707 int
nv50_display_create(struct drm_device * dev)2708 nv50_display_create(struct drm_device *dev)
2709 {
2710 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2711 struct nouveau_drm *drm = nouveau_drm(dev);
2712 struct dcb_table *dcb = &drm->vbios.dcb;
2713 struct drm_connector *connector, *tmp;
2714 struct nv50_disp *disp;
2715 struct dcb_output *dcbe;
2716 int crtcs, ret, i;
2717 bool has_mst = nv50_has_mst(drm);
2718
2719 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2720 if (!disp)
2721 return -ENOMEM;
2722
2723 mutex_init(&disp->mutex);
2724
2725 nouveau_display(dev)->priv = disp;
2726 nouveau_display(dev)->dtor = nv50_display_destroy;
2727 nouveau_display(dev)->init = nv50_display_init;
2728 nouveau_display(dev)->fini = nv50_display_fini;
2729 disp->disp = &nouveau_display(dev)->disp;
2730 dev->mode_config.funcs = &nv50_disp_func;
2731 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2732 dev->mode_config.normalize_zpos = true;
2733
2734 /* small shared memory area we use for notifiers and semaphores */
2735 ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2736 NOUVEAU_GEM_DOMAIN_VRAM,
2737 0, 0x0000, NULL, NULL, &disp->sync);
2738 if (!ret) {
2739 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2740 if (!ret) {
2741 ret = nouveau_bo_map(disp->sync);
2742 if (ret)
2743 nouveau_bo_unpin(disp->sync);
2744 }
2745 if (ret)
2746 nouveau_bo_ref(NULL, &disp->sync);
2747 }
2748
2749 if (ret)
2750 goto out;
2751
2752 /* allocate master evo channel */
2753 ret = nv50_core_new(drm, &disp->core);
2754 if (ret)
2755 goto out;
2756
2757 disp->core->func->init(disp->core);
2758 if (disp->core->func->caps_init) {
2759 ret = disp->core->func->caps_init(drm, disp);
2760 if (ret)
2761 goto out;
2762 }
2763
2764 /* Assign the correct format modifiers */
2765 if (disp->disp->object.oclass >= TU102_DISP)
2766 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2767 else
2768 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2769 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2770 else
2771 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2772
2773 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2774 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2775 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2776 * small page allocations in prepare_fb(). When this is implemented, we should also force
2777 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2778 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2779 * large pages.
2780 */
2781 if (disp->disp->object.oclass >= GM107_DISP) {
2782 dev->mode_config.cursor_width = 256;
2783 dev->mode_config.cursor_height = 256;
2784 } else if (disp->disp->object.oclass >= GK104_DISP) {
2785 dev->mode_config.cursor_width = 128;
2786 dev->mode_config.cursor_height = 128;
2787 } else {
2788 dev->mode_config.cursor_width = 64;
2789 dev->mode_config.cursor_height = 64;
2790 }
2791
2792 /* create crtc objects to represent the hw heads */
2793 if (disp->disp->object.oclass >= GV100_DISP)
2794 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2795 else
2796 if (disp->disp->object.oclass >= GF110_DISP)
2797 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2798 else
2799 crtcs = 0x3;
2800
2801 for (i = 0; i < fls(crtcs); i++) {
2802 struct nv50_head *head;
2803
2804 if (!(crtcs & (1 << i)))
2805 continue;
2806
2807 head = nv50_head_create(dev, i);
2808 if (IS_ERR(head)) {
2809 ret = PTR_ERR(head);
2810 goto out;
2811 }
2812
2813 if (has_mst) {
2814 head->msto = nv50_msto_new(dev, head, i);
2815 if (IS_ERR(head->msto)) {
2816 ret = PTR_ERR(head->msto);
2817 head->msto = NULL;
2818 goto out;
2819 }
2820
2821 /*
2822 * FIXME: This is a hack to workaround the following
2823 * issues:
2824 *
2825 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2826 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2827 *
2828 * Once these issues are closed, this should be
2829 * removed
2830 */
2831 head->msto->encoder.possible_crtcs = crtcs;
2832 }
2833 }
2834
2835 /* create encoder/connector objects based on VBIOS DCB table */
2836 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2837 connector = nouveau_connector_create(dev, dcbe);
2838 if (IS_ERR(connector))
2839 continue;
2840
2841 if (dcbe->location == DCB_LOC_ON_CHIP) {
2842 switch (dcbe->type) {
2843 case DCB_OUTPUT_TMDS:
2844 case DCB_OUTPUT_LVDS:
2845 case DCB_OUTPUT_DP:
2846 ret = nv50_sor_create(connector, dcbe);
2847 break;
2848 case DCB_OUTPUT_ANALOG:
2849 ret = nv50_dac_create(connector, dcbe);
2850 break;
2851 default:
2852 ret = -ENODEV;
2853 break;
2854 }
2855 } else {
2856 ret = nv50_pior_create(connector, dcbe);
2857 }
2858
2859 if (ret) {
2860 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2861 dcbe->location, dcbe->type,
2862 ffs(dcbe->or) - 1, ret);
2863 ret = 0;
2864 }
2865 }
2866
2867 /* cull any connectors we created that don't have an encoder */
2868 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2869 if (connector->possible_encoders)
2870 continue;
2871
2872 NV_WARN(drm, "%s has no encoders, removing\n",
2873 connector->name);
2874 connector->funcs->destroy(connector);
2875 }
2876
2877 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2878 dev->vblank_disable_immediate = true;
2879
2880 nv50_audio_component_init(drm);
2881
2882 out:
2883 if (ret)
2884 nv50_display_destroy(dev);
2885 return ret;
2886 }
2887
2888 /******************************************************************************
2889 * Format modifiers
2890 *****************************************************************************/
2891
2892 /****************************************************************
2893 * Log2(block height) ----------------------------+ *
2894 * Page Kind ----------------------------------+ | *
2895 * Gob Height/Page Kind Generation ------+ | | *
2896 * Sector layout -------+ | | | *
2897 * Compression ------+ | | | | */
2898 const u64 disp50xx_modifiers[] = { /* | | | | | */
2899 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2900 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2901 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2902 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2903 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2904 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2905 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2906 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2907 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2908 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2909 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2910 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2911 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2912 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2913 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2914 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2915 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2916 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2917 DRM_FORMAT_MOD_LINEAR,
2918 DRM_FORMAT_MOD_INVALID
2919 };
2920
2921 /****************************************************************
2922 * Log2(block height) ----------------------------+ *
2923 * Page Kind ----------------------------------+ | *
2924 * Gob Height/Page Kind Generation ------+ | | *
2925 * Sector layout -------+ | | | *
2926 * Compression ------+ | | | | */
2927 const u64 disp90xx_modifiers[] = { /* | | | | | */
2928 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2929 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2930 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2931 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2932 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2933 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2934 DRM_FORMAT_MOD_LINEAR,
2935 DRM_FORMAT_MOD_INVALID
2936 };
2937