• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	void *priv;
43 };
44 
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62 
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65 
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68 
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70 
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 			    void *val, size_t bytes)
73 {
74 	if (nvmem->reg_read)
75 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76 
77 	return -EINVAL;
78 }
79 
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 			     void *val, size_t bytes)
82 {
83 	int ret;
84 
85 	if (nvmem->reg_write) {
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 		return ret;
90 	}
91 
92 	return -EINVAL;
93 }
94 
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 				      unsigned int offset, void *val,
97 				      size_t bytes, int write)
98 {
99 
100 	unsigned int end = offset + bytes;
101 	unsigned int kend, ksize;
102 	const struct nvmem_keepout *keepout = nvmem->keepout;
103 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 	int rc;
105 
106 	/*
107 	 * Skip all keepouts before the range being accessed.
108 	 * Keepouts are sorted.
109 	 */
110 	while ((keepout < keepoutend) && (keepout->end <= offset))
111 		keepout++;
112 
113 	while ((offset < end) && (keepout < keepoutend)) {
114 		/* Access the valid portion before the keepout. */
115 		if (offset < keepout->start) {
116 			kend = min(end, keepout->start);
117 			ksize = kend - offset;
118 			if (write)
119 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 			else
121 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122 
123 			if (rc)
124 				return rc;
125 
126 			offset += ksize;
127 			val += ksize;
128 		}
129 
130 		/*
131 		 * Now we're aligned to the start of this keepout zone. Go
132 		 * through it.
133 		 */
134 		kend = min(end, keepout->end);
135 		ksize = kend - offset;
136 		if (!write)
137 			memset(val, keepout->value, ksize);
138 
139 		val += ksize;
140 		offset += ksize;
141 		keepout++;
142 	}
143 
144 	/*
145 	 * If we ran out of keepouts but there's still stuff to do, send it
146 	 * down directly
147 	 */
148 	if (offset < end) {
149 		ksize = end - offset;
150 		if (write)
151 			return __nvmem_reg_write(nvmem, offset, val, ksize);
152 		else
153 			return __nvmem_reg_read(nvmem, offset, val, ksize);
154 	}
155 
156 	return 0;
157 }
158 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 			  void *val, size_t bytes)
161 {
162 	if (!nvmem->nkeepout)
163 		return __nvmem_reg_read(nvmem, offset, val, bytes);
164 
165 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 			   void *val, size_t bytes)
170 {
171 	if (!nvmem->nkeepout)
172 		return __nvmem_reg_write(nvmem, offset, val, bytes);
173 
174 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176 
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
180 	[NVMEM_TYPE_EEPROM] = "EEPROM",
181 	[NVMEM_TYPE_OTP] = "OTP",
182 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 	[NVMEM_TYPE_FRAM] = "FRAM",
184 };
185 
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189 
type_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t type_show(struct device *dev,
191 			 struct device_attribute *attr, char *buf)
192 {
193 	struct nvmem_device *nvmem = to_nvmem_device(dev);
194 
195 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197 
198 static DEVICE_ATTR_RO(type);
199 
200 static struct attribute *nvmem_attrs[] = {
201 	&dev_attr_type.attr,
202 	NULL,
203 };
204 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206 				   struct bin_attribute *attr, char *buf,
207 				   loff_t pos, size_t count)
208 {
209 	struct device *dev;
210 	struct nvmem_device *nvmem;
211 	int rc;
212 
213 	if (attr->private)
214 		dev = attr->private;
215 	else
216 		dev = kobj_to_dev(kobj);
217 	nvmem = to_nvmem_device(dev);
218 
219 	/* Stop the user from reading */
220 	if (pos >= nvmem->size)
221 		return 0;
222 
223 	if (!IS_ALIGNED(pos, nvmem->stride))
224 		return -EINVAL;
225 
226 	if (count < nvmem->word_size)
227 		return -EINVAL;
228 
229 	if (pos + count > nvmem->size)
230 		count = nvmem->size - pos;
231 
232 	count = round_down(count, nvmem->word_size);
233 
234 	if (!nvmem->reg_read)
235 		return -EPERM;
236 
237 	rc = nvmem_reg_read(nvmem, pos, buf, count);
238 
239 	if (rc)
240 		return rc;
241 
242 	return count;
243 }
244 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 				    struct bin_attribute *attr, char *buf,
247 				    loff_t pos, size_t count)
248 {
249 	struct device *dev;
250 	struct nvmem_device *nvmem;
251 	int rc;
252 
253 	if (attr->private)
254 		dev = attr->private;
255 	else
256 		dev = kobj_to_dev(kobj);
257 	nvmem = to_nvmem_device(dev);
258 
259 	/* Stop the user from writing */
260 	if (pos >= nvmem->size)
261 		return -EFBIG;
262 
263 	if (!IS_ALIGNED(pos, nvmem->stride))
264 		return -EINVAL;
265 
266 	if (count < nvmem->word_size)
267 		return -EINVAL;
268 
269 	if (pos + count > nvmem->size)
270 		count = nvmem->size - pos;
271 
272 	count = round_down(count, nvmem->word_size);
273 
274 	if (!nvmem->reg_write)
275 		return -EPERM;
276 
277 	rc = nvmem_reg_write(nvmem, pos, buf, count);
278 
279 	if (rc)
280 		return rc;
281 
282 	return count;
283 }
284 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287 	umode_t mode = 0400;
288 
289 	if (!nvmem->root_only)
290 		mode |= 0044;
291 
292 	if (!nvmem->read_only)
293 		mode |= 0200;
294 
295 	if (!nvmem->reg_write)
296 		mode &= ~0200;
297 
298 	if (!nvmem->reg_read)
299 		mode &= ~0444;
300 
301 	return mode;
302 }
303 
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305 					 struct bin_attribute *attr, int i)
306 {
307 	struct device *dev = kobj_to_dev(kobj);
308 	struct nvmem_device *nvmem = to_nvmem_device(dev);
309 
310 	attr->size = nvmem->size;
311 
312 	return nvmem_bin_attr_get_umode(nvmem);
313 }
314 
315 /* default read/write permissions */
316 static struct bin_attribute bin_attr_rw_nvmem = {
317 	.attr	= {
318 		.name	= "nvmem",
319 		.mode	= 0644,
320 	},
321 	.read	= bin_attr_nvmem_read,
322 	.write	= bin_attr_nvmem_write,
323 };
324 
325 static struct bin_attribute *nvmem_bin_attributes[] = {
326 	&bin_attr_rw_nvmem,
327 	NULL,
328 };
329 
330 static const struct attribute_group nvmem_bin_group = {
331 	.bin_attrs	= nvmem_bin_attributes,
332 	.attrs		= nvmem_attrs,
333 	.is_bin_visible = nvmem_bin_attr_is_visible,
334 };
335 
336 static const struct attribute_group *nvmem_dev_groups[] = {
337 	&nvmem_bin_group,
338 	NULL,
339 };
340 
341 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
342 	.attr	= {
343 		.name	= "eeprom",
344 	},
345 	.read	= bin_attr_nvmem_read,
346 	.write	= bin_attr_nvmem_write,
347 };
348 
349 /*
350  * nvmem_setup_compat() - Create an additional binary entry in
351  * drivers sys directory, to be backwards compatible with the older
352  * drivers/misc/eeprom drivers.
353  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)354 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
355 				    const struct nvmem_config *config)
356 {
357 	int rval;
358 
359 	if (!config->compat)
360 		return 0;
361 
362 	if (!config->base_dev)
363 		return -EINVAL;
364 
365 	if (config->type == NVMEM_TYPE_FRAM)
366 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
367 
368 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
369 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
370 	nvmem->eeprom.size = nvmem->size;
371 #ifdef CONFIG_DEBUG_LOCK_ALLOC
372 	nvmem->eeprom.attr.key = &eeprom_lock_key;
373 #endif
374 	nvmem->eeprom.private = &nvmem->dev;
375 	nvmem->base_dev = config->base_dev;
376 
377 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
378 	if (rval) {
379 		dev_err(&nvmem->dev,
380 			"Failed to create eeprom binary file %d\n", rval);
381 		return rval;
382 	}
383 
384 	nvmem->flags |= FLAG_COMPAT;
385 
386 	return 0;
387 }
388 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)389 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
390 			      const struct nvmem_config *config)
391 {
392 	if (config->compat)
393 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
394 }
395 
396 #else /* CONFIG_NVMEM_SYSFS */
397 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)398 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
399 				    const struct nvmem_config *config)
400 {
401 	return -ENOSYS;
402 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)403 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
404 				      const struct nvmem_config *config)
405 {
406 }
407 
408 #endif /* CONFIG_NVMEM_SYSFS */
409 
nvmem_release(struct device * dev)410 static void nvmem_release(struct device *dev)
411 {
412 	struct nvmem_device *nvmem = to_nvmem_device(dev);
413 
414 	ida_free(&nvmem_ida, nvmem->id);
415 	gpiod_put(nvmem->wp_gpio);
416 	kfree(nvmem);
417 }
418 
419 static const struct device_type nvmem_provider_type = {
420 	.release	= nvmem_release,
421 };
422 
423 static struct bus_type nvmem_bus_type = {
424 	.name		= "nvmem",
425 };
426 
nvmem_cell_drop(struct nvmem_cell * cell)427 static void nvmem_cell_drop(struct nvmem_cell *cell)
428 {
429 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
430 	mutex_lock(&nvmem_mutex);
431 	list_del(&cell->node);
432 	mutex_unlock(&nvmem_mutex);
433 	of_node_put(cell->np);
434 	kfree_const(cell->name);
435 	kfree(cell);
436 }
437 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)438 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
439 {
440 	struct nvmem_cell *cell, *p;
441 
442 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
443 		nvmem_cell_drop(cell);
444 }
445 
nvmem_cell_add(struct nvmem_cell * cell)446 static void nvmem_cell_add(struct nvmem_cell *cell)
447 {
448 	mutex_lock(&nvmem_mutex);
449 	list_add_tail(&cell->node, &cell->nvmem->cells);
450 	mutex_unlock(&nvmem_mutex);
451 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
452 }
453 
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)454 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
455 					const struct nvmem_cell_info *info,
456 					struct nvmem_cell *cell)
457 {
458 	cell->nvmem = nvmem;
459 	cell->offset = info->offset;
460 	cell->bytes = info->bytes;
461 	cell->name = info->name;
462 
463 	cell->bit_offset = info->bit_offset;
464 	cell->nbits = info->nbits;
465 
466 	if (cell->nbits)
467 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
468 					   BITS_PER_BYTE);
469 
470 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
471 		dev_err(&nvmem->dev,
472 			"cell %s unaligned to nvmem stride %d\n",
473 			cell->name ?: "<unknown>", nvmem->stride);
474 		return -EINVAL;
475 	}
476 
477 	return 0;
478 }
479 
nvmem_cell_info_to_nvmem_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)480 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
481 				const struct nvmem_cell_info *info,
482 				struct nvmem_cell *cell)
483 {
484 	int err;
485 
486 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
487 	if (err)
488 		return err;
489 
490 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
491 	if (!cell->name)
492 		return -ENOMEM;
493 
494 	return 0;
495 }
496 
497 /**
498  * nvmem_add_cells() - Add cell information to an nvmem device
499  *
500  * @nvmem: nvmem device to add cells to.
501  * @info: nvmem cell info to add to the device
502  * @ncells: number of cells in info
503  *
504  * Return: 0 or negative error code on failure.
505  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)506 static int nvmem_add_cells(struct nvmem_device *nvmem,
507 		    const struct nvmem_cell_info *info,
508 		    int ncells)
509 {
510 	struct nvmem_cell **cells;
511 	int i, rval;
512 
513 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
514 	if (!cells)
515 		return -ENOMEM;
516 
517 	for (i = 0; i < ncells; i++) {
518 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
519 		if (!cells[i]) {
520 			rval = -ENOMEM;
521 			goto err;
522 		}
523 
524 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
525 		if (rval) {
526 			kfree(cells[i]);
527 			goto err;
528 		}
529 
530 		nvmem_cell_add(cells[i]);
531 	}
532 
533 	/* remove tmp array */
534 	kfree(cells);
535 
536 	return 0;
537 err:
538 	while (i--)
539 		nvmem_cell_drop(cells[i]);
540 
541 	kfree(cells);
542 
543 	return rval;
544 }
545 
546 /**
547  * nvmem_register_notifier() - Register a notifier block for nvmem events.
548  *
549  * @nb: notifier block to be called on nvmem events.
550  *
551  * Return: 0 on success, negative error number on failure.
552  */
nvmem_register_notifier(struct notifier_block * nb)553 int nvmem_register_notifier(struct notifier_block *nb)
554 {
555 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
556 }
557 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
558 
559 /**
560  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
561  *
562  * @nb: notifier block to be unregistered.
563  *
564  * Return: 0 on success, negative error number on failure.
565  */
nvmem_unregister_notifier(struct notifier_block * nb)566 int nvmem_unregister_notifier(struct notifier_block *nb)
567 {
568 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
569 }
570 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
571 
nvmem_add_cells_from_table(struct nvmem_device * nvmem)572 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
573 {
574 	const struct nvmem_cell_info *info;
575 	struct nvmem_cell_table *table;
576 	struct nvmem_cell *cell;
577 	int rval = 0, i;
578 
579 	mutex_lock(&nvmem_cell_mutex);
580 	list_for_each_entry(table, &nvmem_cell_tables, node) {
581 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
582 			for (i = 0; i < table->ncells; i++) {
583 				info = &table->cells[i];
584 
585 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
586 				if (!cell) {
587 					rval = -ENOMEM;
588 					goto out;
589 				}
590 
591 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
592 								     info,
593 								     cell);
594 				if (rval) {
595 					kfree(cell);
596 					goto out;
597 				}
598 
599 				nvmem_cell_add(cell);
600 			}
601 		}
602 	}
603 
604 out:
605 	mutex_unlock(&nvmem_cell_mutex);
606 	return rval;
607 }
608 
609 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device * nvmem,const char * cell_id)610 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
611 {
612 	struct nvmem_cell *iter, *cell = NULL;
613 
614 	mutex_lock(&nvmem_mutex);
615 	list_for_each_entry(iter, &nvmem->cells, node) {
616 		if (strcmp(cell_id, iter->name) == 0) {
617 			cell = iter;
618 			break;
619 		}
620 	}
621 	mutex_unlock(&nvmem_mutex);
622 
623 	return cell;
624 }
625 
nvmem_validate_keepouts(struct nvmem_device * nvmem)626 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
627 {
628 	unsigned int cur = 0;
629 	const struct nvmem_keepout *keepout = nvmem->keepout;
630 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
631 
632 	while (keepout < keepoutend) {
633 		/* Ensure keepouts are sorted and don't overlap. */
634 		if (keepout->start < cur) {
635 			dev_err(&nvmem->dev,
636 				"Keepout regions aren't sorted or overlap.\n");
637 
638 			return -ERANGE;
639 		}
640 
641 		if (keepout->end < keepout->start) {
642 			dev_err(&nvmem->dev,
643 				"Invalid keepout region.\n");
644 
645 			return -EINVAL;
646 		}
647 
648 		/*
649 		 * Validate keepouts (and holes between) don't violate
650 		 * word_size constraints.
651 		 */
652 		if ((keepout->end - keepout->start < nvmem->word_size) ||
653 		    ((keepout->start != cur) &&
654 		     (keepout->start - cur < nvmem->word_size))) {
655 
656 			dev_err(&nvmem->dev,
657 				"Keepout regions violate word_size constraints.\n");
658 
659 			return -ERANGE;
660 		}
661 
662 		/* Validate keepouts don't violate stride (alignment). */
663 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
664 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
665 
666 			dev_err(&nvmem->dev,
667 				"Keepout regions violate stride.\n");
668 
669 			return -EINVAL;
670 		}
671 
672 		cur = keepout->end;
673 		keepout++;
674 	}
675 
676 	return 0;
677 }
678 
nvmem_add_cells_from_of(struct nvmem_device * nvmem)679 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
680 {
681 	struct device_node *parent, *child;
682 	struct device *dev = &nvmem->dev;
683 	struct nvmem_cell *cell;
684 	const __be32 *addr;
685 	int len;
686 
687 	parent = dev->of_node;
688 
689 	for_each_child_of_node(parent, child) {
690 		addr = of_get_property(child, "reg", &len);
691 		if (!addr)
692 			continue;
693 		if (len < 2 * sizeof(u32)) {
694 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
695 			of_node_put(child);
696 			return -EINVAL;
697 		}
698 
699 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
700 		if (!cell) {
701 			of_node_put(child);
702 			return -ENOMEM;
703 		}
704 
705 		cell->nvmem = nvmem;
706 		cell->offset = be32_to_cpup(addr++);
707 		cell->bytes = be32_to_cpup(addr);
708 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
709 
710 		addr = of_get_property(child, "bits", &len);
711 		if (addr && len == (2 * sizeof(u32))) {
712 			cell->bit_offset = be32_to_cpup(addr++);
713 			cell->nbits = be32_to_cpup(addr);
714 		}
715 
716 		if (cell->nbits)
717 			cell->bytes = DIV_ROUND_UP(
718 					cell->nbits + cell->bit_offset,
719 					BITS_PER_BYTE);
720 
721 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
722 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
723 				cell->name, nvmem->stride);
724 			/* Cells already added will be freed later. */
725 			kfree_const(cell->name);
726 			kfree(cell);
727 			of_node_put(child);
728 			return -EINVAL;
729 		}
730 
731 		cell->np = of_node_get(child);
732 		nvmem_cell_add(cell);
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * nvmem_register() - Register a nvmem device for given nvmem_config.
740  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
741  *
742  * @config: nvmem device configuration with which nvmem device is created.
743  *
744  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
745  * on success.
746  */
747 
nvmem_register(const struct nvmem_config * config)748 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
749 {
750 	struct nvmem_device *nvmem;
751 	int rval;
752 
753 	if (!config->dev)
754 		return ERR_PTR(-EINVAL);
755 
756 	if (!config->reg_read && !config->reg_write)
757 		return ERR_PTR(-EINVAL);
758 
759 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
760 	if (!nvmem)
761 		return ERR_PTR(-ENOMEM);
762 
763 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
764 	if (rval < 0) {
765 		kfree(nvmem);
766 		return ERR_PTR(rval);
767 	}
768 
769 	nvmem->id = rval;
770 
771 	if (config->wp_gpio)
772 		nvmem->wp_gpio = config->wp_gpio;
773 	else if (!config->ignore_wp)
774 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
775 						    GPIOD_OUT_HIGH);
776 	if (IS_ERR(nvmem->wp_gpio)) {
777 		ida_free(&nvmem_ida, nvmem->id);
778 		rval = PTR_ERR(nvmem->wp_gpio);
779 		kfree(nvmem);
780 		return ERR_PTR(rval);
781 	}
782 
783 	kref_init(&nvmem->refcnt);
784 	INIT_LIST_HEAD(&nvmem->cells);
785 
786 	nvmem->owner = config->owner;
787 	if (!nvmem->owner && config->dev->driver)
788 		nvmem->owner = config->dev->driver->owner;
789 	nvmem->stride = config->stride ?: 1;
790 	nvmem->word_size = config->word_size ?: 1;
791 	nvmem->size = config->size;
792 	nvmem->dev.type = &nvmem_provider_type;
793 	nvmem->dev.bus = &nvmem_bus_type;
794 	nvmem->dev.parent = config->dev;
795 	nvmem->root_only = config->root_only;
796 	nvmem->priv = config->priv;
797 	nvmem->type = config->type;
798 	nvmem->reg_read = config->reg_read;
799 	nvmem->reg_write = config->reg_write;
800 	nvmem->keepout = config->keepout;
801 	nvmem->nkeepout = config->nkeepout;
802 	if (config->of_node)
803 		nvmem->dev.of_node = config->of_node;
804 	else if (!config->no_of_node)
805 		nvmem->dev.of_node = config->dev->of_node;
806 
807 	switch (config->id) {
808 	case NVMEM_DEVID_NONE:
809 		rval = dev_set_name(&nvmem->dev, "%s", config->name);
810 		break;
811 	case NVMEM_DEVID_AUTO:
812 		rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
813 		break;
814 	default:
815 		rval = dev_set_name(&nvmem->dev, "%s%d",
816 			     config->name ? : "nvmem",
817 			     config->name ? config->id : nvmem->id);
818 		break;
819 	}
820 
821 	if (rval) {
822 		ida_free(&nvmem_ida, nvmem->id);
823 		kfree(nvmem);
824 		return ERR_PTR(rval);
825 	}
826 
827 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
828 			   config->read_only || !nvmem->reg_write;
829 
830 #ifdef CONFIG_NVMEM_SYSFS
831 	nvmem->dev.groups = nvmem_dev_groups;
832 #endif
833 
834 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
835 
836 	rval = device_register(&nvmem->dev);
837 	if (rval)
838 		goto err_put_device;
839 
840 	if (nvmem->nkeepout) {
841 		rval = nvmem_validate_keepouts(nvmem);
842 		if (rval)
843 			goto err_device_del;
844 	}
845 
846 	if (config->compat) {
847 		rval = nvmem_sysfs_setup_compat(nvmem, config);
848 		if (rval)
849 			goto err_device_del;
850 	}
851 
852 	if (config->cells) {
853 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
854 		if (rval)
855 			goto err_remove_cells;
856 	}
857 
858 	rval = nvmem_add_cells_from_table(nvmem);
859 	if (rval)
860 		goto err_remove_cells;
861 
862 	rval = nvmem_add_cells_from_of(nvmem);
863 	if (rval)
864 		goto err_remove_cells;
865 
866 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
867 
868 	return nvmem;
869 
870 err_remove_cells:
871 	nvmem_device_remove_all_cells(nvmem);
872 	if (config->compat)
873 		nvmem_sysfs_remove_compat(nvmem, config);
874 err_device_del:
875 	device_del(&nvmem->dev);
876 err_put_device:
877 	put_device(&nvmem->dev);
878 
879 	return ERR_PTR(rval);
880 }
881 EXPORT_SYMBOL_GPL(nvmem_register);
882 
nvmem_device_release(struct kref * kref)883 static void nvmem_device_release(struct kref *kref)
884 {
885 	struct nvmem_device *nvmem;
886 
887 	nvmem = container_of(kref, struct nvmem_device, refcnt);
888 
889 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
890 
891 	if (nvmem->flags & FLAG_COMPAT)
892 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
893 
894 	nvmem_device_remove_all_cells(nvmem);
895 	device_unregister(&nvmem->dev);
896 }
897 
898 /**
899  * nvmem_unregister() - Unregister previously registered nvmem device
900  *
901  * @nvmem: Pointer to previously registered nvmem device.
902  */
nvmem_unregister(struct nvmem_device * nvmem)903 void nvmem_unregister(struct nvmem_device *nvmem)
904 {
905 	kref_put(&nvmem->refcnt, nvmem_device_release);
906 }
907 EXPORT_SYMBOL_GPL(nvmem_unregister);
908 
devm_nvmem_release(struct device * dev,void * res)909 static void devm_nvmem_release(struct device *dev, void *res)
910 {
911 	nvmem_unregister(*(struct nvmem_device **)res);
912 }
913 
914 /**
915  * devm_nvmem_register() - Register a managed nvmem device for given
916  * nvmem_config.
917  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
918  *
919  * @dev: Device that uses the nvmem device.
920  * @config: nvmem device configuration with which nvmem device is created.
921  *
922  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
923  * on success.
924  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)925 struct nvmem_device *devm_nvmem_register(struct device *dev,
926 					 const struct nvmem_config *config)
927 {
928 	struct nvmem_device **ptr, *nvmem;
929 
930 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
931 	if (!ptr)
932 		return ERR_PTR(-ENOMEM);
933 
934 	nvmem = nvmem_register(config);
935 
936 	if (!IS_ERR(nvmem)) {
937 		*ptr = nvmem;
938 		devres_add(dev, ptr);
939 	} else {
940 		devres_free(ptr);
941 	}
942 
943 	return nvmem;
944 }
945 EXPORT_SYMBOL_GPL(devm_nvmem_register);
946 
devm_nvmem_match(struct device * dev,void * res,void * data)947 static int devm_nvmem_match(struct device *dev, void *res, void *data)
948 {
949 	struct nvmem_device **r = res;
950 
951 	return *r == data;
952 }
953 
954 /**
955  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
956  * device.
957  *
958  * @dev: Device that uses the nvmem device.
959  * @nvmem: Pointer to previously registered nvmem device.
960  *
961  * Return: Will be negative on error or zero on success.
962  */
devm_nvmem_unregister(struct device * dev,struct nvmem_device * nvmem)963 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
964 {
965 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
966 }
967 EXPORT_SYMBOL(devm_nvmem_unregister);
968 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))969 static struct nvmem_device *__nvmem_device_get(void *data,
970 			int (*match)(struct device *dev, const void *data))
971 {
972 	struct nvmem_device *nvmem = NULL;
973 	struct device *dev;
974 
975 	mutex_lock(&nvmem_mutex);
976 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
977 	if (dev)
978 		nvmem = to_nvmem_device(dev);
979 	mutex_unlock(&nvmem_mutex);
980 	if (!nvmem)
981 		return ERR_PTR(-EPROBE_DEFER);
982 
983 	if (!try_module_get(nvmem->owner)) {
984 		dev_err(&nvmem->dev,
985 			"could not increase module refcount for cell %s\n",
986 			nvmem_dev_name(nvmem));
987 
988 		put_device(&nvmem->dev);
989 		return ERR_PTR(-EINVAL);
990 	}
991 
992 	kref_get(&nvmem->refcnt);
993 
994 	return nvmem;
995 }
996 
__nvmem_device_put(struct nvmem_device * nvmem)997 static void __nvmem_device_put(struct nvmem_device *nvmem)
998 {
999 	put_device(&nvmem->dev);
1000 	module_put(nvmem->owner);
1001 	kref_put(&nvmem->refcnt, nvmem_device_release);
1002 }
1003 
1004 #if IS_ENABLED(CONFIG_OF)
1005 /**
1006  * of_nvmem_device_get() - Get nvmem device from a given id
1007  *
1008  * @np: Device tree node that uses the nvmem device.
1009  * @id: nvmem name from nvmem-names property.
1010  *
1011  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1012  * on success.
1013  */
of_nvmem_device_get(struct device_node * np,const char * id)1014 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1015 {
1016 
1017 	struct device_node *nvmem_np;
1018 	struct nvmem_device *nvmem;
1019 	int index = 0;
1020 
1021 	if (id)
1022 		index = of_property_match_string(np, "nvmem-names", id);
1023 
1024 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1025 	if (!nvmem_np)
1026 		return ERR_PTR(-ENOENT);
1027 
1028 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1029 	of_node_put(nvmem_np);
1030 	return nvmem;
1031 }
1032 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1033 #endif
1034 
1035 /**
1036  * nvmem_device_get() - Get nvmem device from a given id
1037  *
1038  * @dev: Device that uses the nvmem device.
1039  * @dev_name: name of the requested nvmem device.
1040  *
1041  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1042  * on success.
1043  */
nvmem_device_get(struct device * dev,const char * dev_name)1044 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1045 {
1046 	if (dev->of_node) { /* try dt first */
1047 		struct nvmem_device *nvmem;
1048 
1049 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1050 
1051 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1052 			return nvmem;
1053 
1054 	}
1055 
1056 	return __nvmem_device_get((void *)dev_name, device_match_name);
1057 }
1058 EXPORT_SYMBOL_GPL(nvmem_device_get);
1059 
1060 /**
1061  * nvmem_device_find() - Find nvmem device with matching function
1062  *
1063  * @data: Data to pass to match function
1064  * @match: Callback function to check device
1065  *
1066  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1067  * on success.
1068  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1069 struct nvmem_device *nvmem_device_find(void *data,
1070 			int (*match)(struct device *dev, const void *data))
1071 {
1072 	return __nvmem_device_get(data, match);
1073 }
1074 EXPORT_SYMBOL_GPL(nvmem_device_find);
1075 
devm_nvmem_device_match(struct device * dev,void * res,void * data)1076 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1077 {
1078 	struct nvmem_device **nvmem = res;
1079 
1080 	if (WARN_ON(!nvmem || !*nvmem))
1081 		return 0;
1082 
1083 	return *nvmem == data;
1084 }
1085 
devm_nvmem_device_release(struct device * dev,void * res)1086 static void devm_nvmem_device_release(struct device *dev, void *res)
1087 {
1088 	nvmem_device_put(*(struct nvmem_device **)res);
1089 }
1090 
1091 /**
1092  * devm_nvmem_device_put() - put alredy got nvmem device
1093  *
1094  * @dev: Device that uses the nvmem device.
1095  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1096  * that needs to be released.
1097  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1098 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1099 {
1100 	int ret;
1101 
1102 	ret = devres_release(dev, devm_nvmem_device_release,
1103 			     devm_nvmem_device_match, nvmem);
1104 
1105 	WARN_ON(ret);
1106 }
1107 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1108 
1109 /**
1110  * nvmem_device_put() - put alredy got nvmem device
1111  *
1112  * @nvmem: pointer to nvmem device that needs to be released.
1113  */
nvmem_device_put(struct nvmem_device * nvmem)1114 void nvmem_device_put(struct nvmem_device *nvmem)
1115 {
1116 	__nvmem_device_put(nvmem);
1117 }
1118 EXPORT_SYMBOL_GPL(nvmem_device_put);
1119 
1120 /**
1121  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1122  *
1123  * @dev: Device that requests the nvmem device.
1124  * @id: name id for the requested nvmem device.
1125  *
1126  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1127  * on success.  The nvmem_cell will be freed by the automatically once the
1128  * device is freed.
1129  */
devm_nvmem_device_get(struct device * dev,const char * id)1130 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1131 {
1132 	struct nvmem_device **ptr, *nvmem;
1133 
1134 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1135 	if (!ptr)
1136 		return ERR_PTR(-ENOMEM);
1137 
1138 	nvmem = nvmem_device_get(dev, id);
1139 	if (!IS_ERR(nvmem)) {
1140 		*ptr = nvmem;
1141 		devres_add(dev, ptr);
1142 	} else {
1143 		devres_free(ptr);
1144 	}
1145 
1146 	return nvmem;
1147 }
1148 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1149 
1150 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1151 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1152 {
1153 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1154 	struct nvmem_cell_lookup *lookup;
1155 	struct nvmem_device *nvmem;
1156 	const char *dev_id;
1157 
1158 	if (!dev)
1159 		return ERR_PTR(-EINVAL);
1160 
1161 	dev_id = dev_name(dev);
1162 
1163 	mutex_lock(&nvmem_lookup_mutex);
1164 
1165 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1166 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1167 		    (strcmp(lookup->con_id, con_id) == 0)) {
1168 			/* This is the right entry. */
1169 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1170 						   device_match_name);
1171 			if (IS_ERR(nvmem)) {
1172 				/* Provider may not be registered yet. */
1173 				cell = ERR_CAST(nvmem);
1174 				break;
1175 			}
1176 
1177 			cell = nvmem_find_cell_by_name(nvmem,
1178 						       lookup->cell_name);
1179 			if (!cell) {
1180 				__nvmem_device_put(nvmem);
1181 				cell = ERR_PTR(-ENOENT);
1182 			}
1183 			break;
1184 		}
1185 	}
1186 
1187 	mutex_unlock(&nvmem_lookup_mutex);
1188 	return cell;
1189 }
1190 
1191 #if IS_ENABLED(CONFIG_OF)
1192 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device * nvmem,struct device_node * np)1193 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1194 {
1195 	struct nvmem_cell *iter, *cell = NULL;
1196 
1197 	mutex_lock(&nvmem_mutex);
1198 	list_for_each_entry(iter, &nvmem->cells, node) {
1199 		if (np == iter->np) {
1200 			cell = iter;
1201 			break;
1202 		}
1203 	}
1204 	mutex_unlock(&nvmem_mutex);
1205 
1206 	return cell;
1207 }
1208 
1209 /**
1210  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1211  *
1212  * @np: Device tree node that uses the nvmem cell.
1213  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1214  *      for the cell at index 0 (the lone cell with no accompanying
1215  *      nvmem-cell-names property).
1216  *
1217  * Return: Will be an ERR_PTR() on error or a valid pointer
1218  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1219  * nvmem_cell_put().
1220  */
of_nvmem_cell_get(struct device_node * np,const char * id)1221 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1222 {
1223 	struct device_node *cell_np, *nvmem_np;
1224 	struct nvmem_device *nvmem;
1225 	struct nvmem_cell *cell;
1226 	int index = 0;
1227 
1228 	/* if cell name exists, find index to the name */
1229 	if (id)
1230 		index = of_property_match_string(np, "nvmem-cell-names", id);
1231 
1232 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1233 	if (!cell_np)
1234 		return ERR_PTR(-ENOENT);
1235 
1236 	nvmem_np = of_get_next_parent(cell_np);
1237 	if (!nvmem_np)
1238 		return ERR_PTR(-EINVAL);
1239 
1240 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1241 	of_node_put(nvmem_np);
1242 	if (IS_ERR(nvmem))
1243 		return ERR_CAST(nvmem);
1244 
1245 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1246 	if (!cell) {
1247 		__nvmem_device_put(nvmem);
1248 		return ERR_PTR(-ENOENT);
1249 	}
1250 
1251 	return cell;
1252 }
1253 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1254 #endif
1255 
1256 /**
1257  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1258  *
1259  * @dev: Device that requests the nvmem cell.
1260  * @id: nvmem cell name to get (this corresponds with the name from the
1261  *      nvmem-cell-names property for DT systems and with the con_id from
1262  *      the lookup entry for non-DT systems).
1263  *
1264  * Return: Will be an ERR_PTR() on error or a valid pointer
1265  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1266  * nvmem_cell_put().
1267  */
nvmem_cell_get(struct device * dev,const char * id)1268 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1269 {
1270 	struct nvmem_cell *cell;
1271 
1272 	if (dev->of_node) { /* try dt first */
1273 		cell = of_nvmem_cell_get(dev->of_node, id);
1274 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1275 			return cell;
1276 	}
1277 
1278 	/* NULL cell id only allowed for device tree; invalid otherwise */
1279 	if (!id)
1280 		return ERR_PTR(-EINVAL);
1281 
1282 	return nvmem_cell_get_from_lookup(dev, id);
1283 }
1284 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1285 
devm_nvmem_cell_release(struct device * dev,void * res)1286 static void devm_nvmem_cell_release(struct device *dev, void *res)
1287 {
1288 	nvmem_cell_put(*(struct nvmem_cell **)res);
1289 }
1290 
1291 /**
1292  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1293  *
1294  * @dev: Device that requests the nvmem cell.
1295  * @id: nvmem cell name id to get.
1296  *
1297  * Return: Will be an ERR_PTR() on error or a valid pointer
1298  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1299  * automatically once the device is freed.
1300  */
devm_nvmem_cell_get(struct device * dev,const char * id)1301 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1302 {
1303 	struct nvmem_cell **ptr, *cell;
1304 
1305 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1306 	if (!ptr)
1307 		return ERR_PTR(-ENOMEM);
1308 
1309 	cell = nvmem_cell_get(dev, id);
1310 	if (!IS_ERR(cell)) {
1311 		*ptr = cell;
1312 		devres_add(dev, ptr);
1313 	} else {
1314 		devres_free(ptr);
1315 	}
1316 
1317 	return cell;
1318 }
1319 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1320 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1321 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1322 {
1323 	struct nvmem_cell **c = res;
1324 
1325 	if (WARN_ON(!c || !*c))
1326 		return 0;
1327 
1328 	return *c == data;
1329 }
1330 
1331 /**
1332  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1333  * from devm_nvmem_cell_get.
1334  *
1335  * @dev: Device that requests the nvmem cell.
1336  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1337  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1338 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1339 {
1340 	int ret;
1341 
1342 	ret = devres_release(dev, devm_nvmem_cell_release,
1343 				devm_nvmem_cell_match, cell);
1344 
1345 	WARN_ON(ret);
1346 }
1347 EXPORT_SYMBOL(devm_nvmem_cell_put);
1348 
1349 /**
1350  * nvmem_cell_put() - Release previously allocated nvmem cell.
1351  *
1352  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1353  */
nvmem_cell_put(struct nvmem_cell * cell)1354 void nvmem_cell_put(struct nvmem_cell *cell)
1355 {
1356 	struct nvmem_device *nvmem = cell->nvmem;
1357 
1358 	__nvmem_device_put(nvmem);
1359 }
1360 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1361 
nvmem_shift_read_buffer_in_place(struct nvmem_cell * cell,void * buf)1362 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1363 {
1364 	u8 *p, *b;
1365 	int i, extra, bit_offset = cell->bit_offset;
1366 
1367 	p = b = buf;
1368 	if (bit_offset) {
1369 		/* First shift */
1370 		*b++ >>= bit_offset;
1371 
1372 		/* setup rest of the bytes if any */
1373 		for (i = 1; i < cell->bytes; i++) {
1374 			/* Get bits from next byte and shift them towards msb */
1375 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1376 
1377 			p = b;
1378 			*b++ >>= bit_offset;
1379 		}
1380 	} else {
1381 		/* point to the msb */
1382 		p += cell->bytes - 1;
1383 	}
1384 
1385 	/* result fits in less bytes */
1386 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1387 	while (--extra >= 0)
1388 		*p-- = 0;
1389 
1390 	/* clear msb bits if any leftover in the last byte */
1391 	if (cell->nbits % BITS_PER_BYTE)
1392 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1393 }
1394 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell * cell,void * buf,size_t * len)1395 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1396 		      struct nvmem_cell *cell,
1397 		      void *buf, size_t *len)
1398 {
1399 	int rc;
1400 
1401 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1402 
1403 	if (rc)
1404 		return rc;
1405 
1406 	/* shift bits in-place */
1407 	if (cell->bit_offset || cell->nbits)
1408 		nvmem_shift_read_buffer_in_place(cell, buf);
1409 
1410 	if (len)
1411 		*len = cell->bytes;
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * nvmem_cell_read() - Read a given nvmem cell
1418  *
1419  * @cell: nvmem cell to be read.
1420  * @len: pointer to length of cell which will be populated on successful read;
1421  *	 can be NULL.
1422  *
1423  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1424  * buffer should be freed by the consumer with a kfree().
1425  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1426 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1427 {
1428 	struct nvmem_device *nvmem = cell->nvmem;
1429 	u8 *buf;
1430 	int rc;
1431 
1432 	if (!nvmem)
1433 		return ERR_PTR(-EINVAL);
1434 
1435 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1436 	if (!buf)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1440 	if (rc) {
1441 		kfree(buf);
1442 		return ERR_PTR(rc);
1443 	}
1444 
1445 	return buf;
1446 }
1447 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1448 
nvmem_cell_prepare_write_buffer(struct nvmem_cell * cell,u8 * _buf,int len)1449 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1450 					     u8 *_buf, int len)
1451 {
1452 	struct nvmem_device *nvmem = cell->nvmem;
1453 	int i, rc, nbits, bit_offset = cell->bit_offset;
1454 	u8 v, *p, *buf, *b, pbyte, pbits;
1455 
1456 	nbits = cell->nbits;
1457 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1458 	if (!buf)
1459 		return ERR_PTR(-ENOMEM);
1460 
1461 	memcpy(buf, _buf, len);
1462 	p = b = buf;
1463 
1464 	if (bit_offset) {
1465 		pbyte = *b;
1466 		*b <<= bit_offset;
1467 
1468 		/* setup the first byte with lsb bits from nvmem */
1469 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1470 		if (rc)
1471 			goto err;
1472 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1473 
1474 		/* setup rest of the byte if any */
1475 		for (i = 1; i < cell->bytes; i++) {
1476 			/* Get last byte bits and shift them towards lsb */
1477 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1478 			pbyte = *b;
1479 			p = b;
1480 			*b <<= bit_offset;
1481 			*b++ |= pbits;
1482 		}
1483 	}
1484 
1485 	/* if it's not end on byte boundary */
1486 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1487 		/* setup the last byte with msb bits from nvmem */
1488 		rc = nvmem_reg_read(nvmem,
1489 				    cell->offset + cell->bytes - 1, &v, 1);
1490 		if (rc)
1491 			goto err;
1492 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1493 
1494 	}
1495 
1496 	return buf;
1497 err:
1498 	kfree(buf);
1499 	return ERR_PTR(rc);
1500 }
1501 
1502 /**
1503  * nvmem_cell_write() - Write to a given nvmem cell
1504  *
1505  * @cell: nvmem cell to be written.
1506  * @buf: Buffer to be written.
1507  * @len: length of buffer to be written to nvmem cell.
1508  *
1509  * Return: length of bytes written or negative on failure.
1510  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1511 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1512 {
1513 	struct nvmem_device *nvmem = cell->nvmem;
1514 	int rc;
1515 
1516 	if (!nvmem || nvmem->read_only ||
1517 	    (cell->bit_offset == 0 && len != cell->bytes))
1518 		return -EINVAL;
1519 
1520 	if (cell->bit_offset || cell->nbits) {
1521 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1522 		if (IS_ERR(buf))
1523 			return PTR_ERR(buf);
1524 	}
1525 
1526 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1527 
1528 	/* free the tmp buffer */
1529 	if (cell->bit_offset || cell->nbits)
1530 		kfree(buf);
1531 
1532 	if (rc)
1533 		return rc;
1534 
1535 	return len;
1536 }
1537 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1538 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1539 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1540 				  void *val, size_t count)
1541 {
1542 	struct nvmem_cell *cell;
1543 	void *buf;
1544 	size_t len;
1545 
1546 	cell = nvmem_cell_get(dev, cell_id);
1547 	if (IS_ERR(cell))
1548 		return PTR_ERR(cell);
1549 
1550 	buf = nvmem_cell_read(cell, &len);
1551 	if (IS_ERR(buf)) {
1552 		nvmem_cell_put(cell);
1553 		return PTR_ERR(buf);
1554 	}
1555 	if (len != count) {
1556 		kfree(buf);
1557 		nvmem_cell_put(cell);
1558 		return -EINVAL;
1559 	}
1560 	memcpy(val, buf, count);
1561 	kfree(buf);
1562 	nvmem_cell_put(cell);
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * nvmem_cell_read_u8() - Read a cell value as a u8
1569  *
1570  * @dev: Device that requests the nvmem cell.
1571  * @cell_id: Name of nvmem cell to read.
1572  * @val: pointer to output value.
1573  *
1574  * Return: 0 on success or negative errno.
1575  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1576 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1577 {
1578 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1579 }
1580 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1581 
1582 /**
1583  * nvmem_cell_read_u16() - Read a cell value as a u16
1584  *
1585  * @dev: Device that requests the nvmem cell.
1586  * @cell_id: Name of nvmem cell to read.
1587  * @val: pointer to output value.
1588  *
1589  * Return: 0 on success or negative errno.
1590  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1591 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1592 {
1593 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1594 }
1595 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1596 
1597 /**
1598  * nvmem_cell_read_u32() - Read a cell value as a u32
1599  *
1600  * @dev: Device that requests the nvmem cell.
1601  * @cell_id: Name of nvmem cell to read.
1602  * @val: pointer to output value.
1603  *
1604  * Return: 0 on success or negative errno.
1605  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1606 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1607 {
1608 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1609 }
1610 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1611 
1612 /**
1613  * nvmem_cell_read_u64() - Read a cell value as a u64
1614  *
1615  * @dev: Device that requests the nvmem cell.
1616  * @cell_id: Name of nvmem cell to read.
1617  * @val: pointer to output value.
1618  *
1619  * Return: 0 on success or negative errno.
1620  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1621 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1622 {
1623 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1624 }
1625 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1626 
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1627 static const void *nvmem_cell_read_variable_common(struct device *dev,
1628 						   const char *cell_id,
1629 						   size_t max_len, size_t *len)
1630 {
1631 	struct nvmem_cell *cell;
1632 	int nbits;
1633 	void *buf;
1634 
1635 	cell = nvmem_cell_get(dev, cell_id);
1636 	if (IS_ERR(cell))
1637 		return cell;
1638 
1639 	nbits = cell->nbits;
1640 	buf = nvmem_cell_read(cell, len);
1641 	nvmem_cell_put(cell);
1642 	if (IS_ERR(buf))
1643 		return buf;
1644 
1645 	/*
1646 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1647 	 * the length of the real data. Throw away the extra junk.
1648 	 */
1649 	if (nbits)
1650 		*len = DIV_ROUND_UP(nbits, 8);
1651 
1652 	if (*len > max_len) {
1653 		kfree(buf);
1654 		return ERR_PTR(-ERANGE);
1655 	}
1656 
1657 	return buf;
1658 }
1659 
1660 /**
1661  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1662  *
1663  * @dev: Device that requests the nvmem cell.
1664  * @cell_id: Name of nvmem cell to read.
1665  * @val: pointer to output value.
1666  *
1667  * Return: 0 on success or negative errno.
1668  */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1669 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1670 				    u32 *val)
1671 {
1672 	size_t len;
1673 	const u8 *buf;
1674 	int i;
1675 
1676 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1677 	if (IS_ERR(buf))
1678 		return PTR_ERR(buf);
1679 
1680 	/* Copy w/ implicit endian conversion */
1681 	*val = 0;
1682 	for (i = 0; i < len; i++)
1683 		*val |= buf[i] << (8 * i);
1684 
1685 	kfree(buf);
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1690 
1691 /**
1692  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1693  *
1694  * @dev: Device that requests the nvmem cell.
1695  * @cell_id: Name of nvmem cell to read.
1696  * @val: pointer to output value.
1697  *
1698  * Return: 0 on success or negative errno.
1699  */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1700 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1701 				    u64 *val)
1702 {
1703 	size_t len;
1704 	const u8 *buf;
1705 	int i;
1706 
1707 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1708 	if (IS_ERR(buf))
1709 		return PTR_ERR(buf);
1710 
1711 	/* Copy w/ implicit endian conversion */
1712 	*val = 0;
1713 	for (i = 0; i < len; i++)
1714 		*val |= (uint64_t)buf[i] << (8 * i);
1715 
1716 	kfree(buf);
1717 
1718 	return 0;
1719 }
1720 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1721 
1722 /**
1723  * nvmem_device_cell_read() - Read a given nvmem device and cell
1724  *
1725  * @nvmem: nvmem device to read from.
1726  * @info: nvmem cell info to be read.
1727  * @buf: buffer pointer which will be populated on successful read.
1728  *
1729  * Return: length of successful bytes read on success and negative
1730  * error code on error.
1731  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1732 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1733 			   struct nvmem_cell_info *info, void *buf)
1734 {
1735 	struct nvmem_cell cell;
1736 	int rc;
1737 	ssize_t len;
1738 
1739 	if (!nvmem)
1740 		return -EINVAL;
1741 
1742 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1743 	if (rc)
1744 		return rc;
1745 
1746 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1747 	if (rc)
1748 		return rc;
1749 
1750 	return len;
1751 }
1752 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1753 
1754 /**
1755  * nvmem_device_cell_write() - Write cell to a given nvmem device
1756  *
1757  * @nvmem: nvmem device to be written to.
1758  * @info: nvmem cell info to be written.
1759  * @buf: buffer to be written to cell.
1760  *
1761  * Return: length of bytes written or negative error code on failure.
1762  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1763 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1764 			    struct nvmem_cell_info *info, void *buf)
1765 {
1766 	struct nvmem_cell cell;
1767 	int rc;
1768 
1769 	if (!nvmem)
1770 		return -EINVAL;
1771 
1772 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1773 	if (rc)
1774 		return rc;
1775 
1776 	return nvmem_cell_write(&cell, buf, cell.bytes);
1777 }
1778 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1779 
1780 /**
1781  * nvmem_device_read() - Read from a given nvmem device
1782  *
1783  * @nvmem: nvmem device to read from.
1784  * @offset: offset in nvmem device.
1785  * @bytes: number of bytes to read.
1786  * @buf: buffer pointer which will be populated on successful read.
1787  *
1788  * Return: length of successful bytes read on success and negative
1789  * error code on error.
1790  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1791 int nvmem_device_read(struct nvmem_device *nvmem,
1792 		      unsigned int offset,
1793 		      size_t bytes, void *buf)
1794 {
1795 	int rc;
1796 
1797 	if (!nvmem)
1798 		return -EINVAL;
1799 
1800 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1801 
1802 	if (rc)
1803 		return rc;
1804 
1805 	return bytes;
1806 }
1807 EXPORT_SYMBOL_GPL(nvmem_device_read);
1808 
1809 /**
1810  * nvmem_device_write() - Write cell to a given nvmem device
1811  *
1812  * @nvmem: nvmem device to be written to.
1813  * @offset: offset in nvmem device.
1814  * @bytes: number of bytes to write.
1815  * @buf: buffer to be written.
1816  *
1817  * Return: length of bytes written or negative error code on failure.
1818  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1819 int nvmem_device_write(struct nvmem_device *nvmem,
1820 		       unsigned int offset,
1821 		       size_t bytes, void *buf)
1822 {
1823 	int rc;
1824 
1825 	if (!nvmem)
1826 		return -EINVAL;
1827 
1828 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1829 
1830 	if (rc)
1831 		return rc;
1832 
1833 
1834 	return bytes;
1835 }
1836 EXPORT_SYMBOL_GPL(nvmem_device_write);
1837 
1838 /**
1839  * nvmem_add_cell_table() - register a table of cell info entries
1840  *
1841  * @table: table of cell info entries
1842  */
nvmem_add_cell_table(struct nvmem_cell_table * table)1843 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1844 {
1845 	mutex_lock(&nvmem_cell_mutex);
1846 	list_add_tail(&table->node, &nvmem_cell_tables);
1847 	mutex_unlock(&nvmem_cell_mutex);
1848 }
1849 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1850 
1851 /**
1852  * nvmem_del_cell_table() - remove a previously registered cell info table
1853  *
1854  * @table: table of cell info entries
1855  */
nvmem_del_cell_table(struct nvmem_cell_table * table)1856 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1857 {
1858 	mutex_lock(&nvmem_cell_mutex);
1859 	list_del(&table->node);
1860 	mutex_unlock(&nvmem_cell_mutex);
1861 }
1862 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1863 
1864 /**
1865  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1866  *
1867  * @entries: array of cell lookup entries
1868  * @nentries: number of cell lookup entries in the array
1869  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1870 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1871 {
1872 	int i;
1873 
1874 	mutex_lock(&nvmem_lookup_mutex);
1875 	for (i = 0; i < nentries; i++)
1876 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1877 	mutex_unlock(&nvmem_lookup_mutex);
1878 }
1879 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1880 
1881 /**
1882  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1883  *                            entries
1884  *
1885  * @entries: array of cell lookup entries
1886  * @nentries: number of cell lookup entries in the array
1887  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1888 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1889 {
1890 	int i;
1891 
1892 	mutex_lock(&nvmem_lookup_mutex);
1893 	for (i = 0; i < nentries; i++)
1894 		list_del(&entries[i].node);
1895 	mutex_unlock(&nvmem_lookup_mutex);
1896 }
1897 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1898 
1899 /**
1900  * nvmem_dev_name() - Get the name of a given nvmem device.
1901  *
1902  * @nvmem: nvmem device.
1903  *
1904  * Return: name of the nvmem device.
1905  */
nvmem_dev_name(struct nvmem_device * nvmem)1906 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1907 {
1908 	return dev_name(&nvmem->dev);
1909 }
1910 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1911 
nvmem_init(void)1912 static int __init nvmem_init(void)
1913 {
1914 	return bus_register(&nvmem_bus_type);
1915 }
1916 
nvmem_exit(void)1917 static void __exit nvmem_exit(void)
1918 {
1919 	bus_unregister(&nvmem_bus_type);
1920 }
1921 
1922 subsys_initcall(nvmem_init);
1923 module_exit(nvmem_exit);
1924 
1925 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1926 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1927 MODULE_DESCRIPTION("nvmem Driver Core");
1928 MODULE_LICENSE("GPL v2");
1929