1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17
18 #include <cluster/masklog.h>
19
20 #include "ocfs2.h"
21
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42 {
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115 bail:
116 brelse(bh);
117
118 return err;
119 }
120
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123 {
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132 }
133
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
136 {
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
162 goto bail;
163 }
164
165 if (max_blocks < count)
166 count = max_blocks;
167
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
172 * allows __block_write_begin() to zero.
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
178 */
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
184
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
189 bh_result->b_size = count << inode->i_blkbits;
190
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
201 goto bail;
202 }
203 }
204
205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
212 bail:
213 if (err < 0)
214 err = -EIO;
215
216 return err;
217 }
218
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
221 {
222 void *kaddr;
223 loff_t size;
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
234 if (size > PAGE_SIZE ||
235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 ocfs2_error(inode->i_sb,
237 "Inode %llu has with inline data has bad size: %Lu\n",
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
240 return -EROFS;
241 }
242
243 kaddr = kmap_atomic(page);
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
247 memset(kaddr + size, 0, PAGE_SIZE - size);
248 flush_dcache_page(page);
249 kunmap_atomic(kaddr);
250
251 SetPageUptodate(page);
252
253 return 0;
254 }
255
ocfs2_readpage_inline(struct inode * inode,struct page * page)256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258 int ret;
259 struct buffer_head *di_bh = NULL;
260
261 BUG_ON(!PageLocked(page));
262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264 ret = ocfs2_read_inode_block(inode, &di_bh);
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276 }
277
ocfs2_readpage(struct file * file,struct page * page)278 static int ocfs2_readpage(struct file *file, struct page *page)
279 {
280 struct inode *inode = page->mapping->host;
281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 loff_t start = (loff_t)page->index << PAGE_SHIFT;
283 int ret, unlock = 1;
284
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
286 (page ? page->index : 0));
287
288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
289 if (ret != 0) {
290 if (ret == AOP_TRUNCATED_PAGE)
291 unlock = 0;
292 mlog_errno(ret);
293 goto out;
294 }
295
296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
297 /*
298 * Unlock the page and cycle ip_alloc_sem so that we don't
299 * busyloop waiting for ip_alloc_sem to unlock
300 */
301 ret = AOP_TRUNCATED_PAGE;
302 unlock_page(page);
303 unlock = 0;
304 down_read(&oi->ip_alloc_sem);
305 up_read(&oi->ip_alloc_sem);
306 goto out_inode_unlock;
307 }
308
309 /*
310 * i_size might have just been updated as we grabed the meta lock. We
311 * might now be discovering a truncate that hit on another node.
312 * block_read_full_page->get_block freaks out if it is asked to read
313 * beyond the end of a file, so we check here. Callers
314 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
315 * and notice that the page they just read isn't needed.
316 *
317 * XXX sys_readahead() seems to get that wrong?
318 */
319 if (start >= i_size_read(inode)) {
320 zero_user(page, 0, PAGE_SIZE);
321 SetPageUptodate(page);
322 ret = 0;
323 goto out_alloc;
324 }
325
326 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
327 ret = ocfs2_readpage_inline(inode, page);
328 else
329 ret = block_read_full_page(page, ocfs2_get_block);
330 unlock = 0;
331
332 out_alloc:
333 up_read(&oi->ip_alloc_sem);
334 out_inode_unlock:
335 ocfs2_inode_unlock(inode, 0);
336 out:
337 if (unlock)
338 unlock_page(page);
339 return ret;
340 }
341
342 /*
343 * This is used only for read-ahead. Failures or difficult to handle
344 * situations are safe to ignore.
345 *
346 * Right now, we don't bother with BH_Boundary - in-inode extent lists
347 * are quite large (243 extents on 4k blocks), so most inodes don't
348 * grow out to a tree. If need be, detecting boundary extents could
349 * trivially be added in a future version of ocfs2_get_block().
350 */
ocfs2_readahead(struct readahead_control * rac)351 static void ocfs2_readahead(struct readahead_control *rac)
352 {
353 int ret;
354 struct inode *inode = rac->mapping->host;
355 struct ocfs2_inode_info *oi = OCFS2_I(inode);
356
357 /*
358 * Use the nonblocking flag for the dlm code to avoid page
359 * lock inversion, but don't bother with retrying.
360 */
361 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
362 if (ret)
363 return;
364
365 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
366 goto out_unlock;
367
368 /*
369 * Don't bother with inline-data. There isn't anything
370 * to read-ahead in that case anyway...
371 */
372 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
373 goto out_up;
374
375 /*
376 * Check whether a remote node truncated this file - we just
377 * drop out in that case as it's not worth handling here.
378 */
379 if (readahead_pos(rac) >= i_size_read(inode))
380 goto out_up;
381
382 mpage_readahead(rac, ocfs2_get_block);
383
384 out_up:
385 up_read(&oi->ip_alloc_sem);
386 out_unlock:
387 ocfs2_inode_unlock(inode, 0);
388 }
389
390 /* Note: Because we don't support holes, our allocation has
391 * already happened (allocation writes zeros to the file data)
392 * so we don't have to worry about ordered writes in
393 * ocfs2_writepage.
394 *
395 * ->writepage is called during the process of invalidating the page cache
396 * during blocked lock processing. It can't block on any cluster locks
397 * to during block mapping. It's relying on the fact that the block
398 * mapping can't have disappeared under the dirty pages that it is
399 * being asked to write back.
400 */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)401 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
402 {
403 trace_ocfs2_writepage(
404 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
405 page->index);
406
407 return block_write_full_page(page, ocfs2_get_block, wbc);
408 }
409
410 /* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))414 int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
416 unsigned from,
417 unsigned to,
418 int *partial,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
421 {
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
425 int err, ret = 0;
426 struct buffer_head *next;
427
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
431 {
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
436 *partial = 1;
437 continue;
438 }
439 err = (*fn)(handle, bh);
440 if (!ret)
441 ret = err;
442 }
443 return ret;
444 }
445
ocfs2_bmap(struct address_space * mapping,sector_t block)446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447 {
448 sector_t status;
449 u64 p_blkno = 0;
450 int err = 0;
451 struct inode *inode = mapping->host;
452
453 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
454 (unsigned long long)block);
455
456 /*
457 * The swap code (ab-)uses ->bmap to get a block mapping and then
458 * bypasseѕ the file system for actual I/O. We really can't allow
459 * that on refcounted inodes, so we have to skip out here. And yes,
460 * 0 is the magic code for a bmap error..
461 */
462 if (ocfs2_is_refcount_inode(inode))
463 return 0;
464
465 /* We don't need to lock journal system files, since they aren't
466 * accessed concurrently from multiple nodes.
467 */
468 if (!INODE_JOURNAL(inode)) {
469 err = ocfs2_inode_lock(inode, NULL, 0);
470 if (err) {
471 if (err != -ENOENT)
472 mlog_errno(err);
473 goto bail;
474 }
475 down_read(&OCFS2_I(inode)->ip_alloc_sem);
476 }
477
478 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
479 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
480 NULL);
481
482 if (!INODE_JOURNAL(inode)) {
483 up_read(&OCFS2_I(inode)->ip_alloc_sem);
484 ocfs2_inode_unlock(inode, 0);
485 }
486
487 if (err) {
488 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
489 (unsigned long long)block);
490 mlog_errno(err);
491 goto bail;
492 }
493
494 bail:
495 status = err ? 0 : p_blkno;
496
497 return status;
498 }
499
ocfs2_releasepage(struct page * page,gfp_t wait)500 static int ocfs2_releasepage(struct page *page, gfp_t wait)
501 {
502 if (!page_has_buffers(page))
503 return 0;
504 return try_to_free_buffers(page);
505 }
506
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)507 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
508 u32 cpos,
509 unsigned int *start,
510 unsigned int *end)
511 {
512 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
513
514 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
515 unsigned int cpp;
516
517 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
518
519 cluster_start = cpos % cpp;
520 cluster_start = cluster_start << osb->s_clustersize_bits;
521
522 cluster_end = cluster_start + osb->s_clustersize;
523 }
524
525 BUG_ON(cluster_start > PAGE_SIZE);
526 BUG_ON(cluster_end > PAGE_SIZE);
527
528 if (start)
529 *start = cluster_start;
530 if (end)
531 *end = cluster_end;
532 }
533
534 /*
535 * 'from' and 'to' are the region in the page to avoid zeroing.
536 *
537 * If pagesize > clustersize, this function will avoid zeroing outside
538 * of the cluster boundary.
539 *
540 * from == to == 0 is code for "zero the entire cluster region"
541 */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)542 static void ocfs2_clear_page_regions(struct page *page,
543 struct ocfs2_super *osb, u32 cpos,
544 unsigned from, unsigned to)
545 {
546 void *kaddr;
547 unsigned int cluster_start, cluster_end;
548
549 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
550
551 kaddr = kmap_atomic(page);
552
553 if (from || to) {
554 if (from > cluster_start)
555 memset(kaddr + cluster_start, 0, from - cluster_start);
556 if (to < cluster_end)
557 memset(kaddr + to, 0, cluster_end - to);
558 } else {
559 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
560 }
561
562 kunmap_atomic(kaddr);
563 }
564
565 /*
566 * Nonsparse file systems fully allocate before we get to the write
567 * code. This prevents ocfs2_write() from tagging the write as an
568 * allocating one, which means ocfs2_map_page_blocks() might try to
569 * read-in the blocks at the tail of our file. Avoid reading them by
570 * testing i_size against each block offset.
571 */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)572 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
573 unsigned int block_start)
574 {
575 u64 offset = page_offset(page) + block_start;
576
577 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
578 return 1;
579
580 if (i_size_read(inode) > offset)
581 return 1;
582
583 return 0;
584 }
585
586 /*
587 * Some of this taken from __block_write_begin(). We already have our
588 * mapping by now though, and the entire write will be allocating or
589 * it won't, so not much need to use BH_New.
590 *
591 * This will also skip zeroing, which is handled externally.
592 */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)593 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
594 struct inode *inode, unsigned int from,
595 unsigned int to, int new)
596 {
597 int ret = 0;
598 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
599 unsigned int block_end, block_start;
600 unsigned int bsize = i_blocksize(inode);
601
602 if (!page_has_buffers(page))
603 create_empty_buffers(page, bsize, 0);
604
605 head = page_buffers(page);
606 for (bh = head, block_start = 0; bh != head || !block_start;
607 bh = bh->b_this_page, block_start += bsize) {
608 block_end = block_start + bsize;
609
610 clear_buffer_new(bh);
611
612 /*
613 * Ignore blocks outside of our i/o range -
614 * they may belong to unallocated clusters.
615 */
616 if (block_start >= to || block_end <= from) {
617 if (PageUptodate(page))
618 set_buffer_uptodate(bh);
619 continue;
620 }
621
622 /*
623 * For an allocating write with cluster size >= page
624 * size, we always write the entire page.
625 */
626 if (new)
627 set_buffer_new(bh);
628
629 if (!buffer_mapped(bh)) {
630 map_bh(bh, inode->i_sb, *p_blkno);
631 clean_bdev_bh_alias(bh);
632 }
633
634 if (PageUptodate(page)) {
635 set_buffer_uptodate(bh);
636 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
637 !buffer_new(bh) &&
638 ocfs2_should_read_blk(inode, page, block_start) &&
639 (block_start < from || block_end > to)) {
640 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
641 *wait_bh++=bh;
642 }
643
644 *p_blkno = *p_blkno + 1;
645 }
646
647 /*
648 * If we issued read requests - let them complete.
649 */
650 while(wait_bh > wait) {
651 wait_on_buffer(*--wait_bh);
652 if (!buffer_uptodate(*wait_bh))
653 ret = -EIO;
654 }
655
656 if (ret == 0 || !new)
657 return ret;
658
659 /*
660 * If we get -EIO above, zero out any newly allocated blocks
661 * to avoid exposing stale data.
662 */
663 bh = head;
664 block_start = 0;
665 do {
666 block_end = block_start + bsize;
667 if (block_end <= from)
668 goto next_bh;
669 if (block_start >= to)
670 break;
671
672 zero_user(page, block_start, bh->b_size);
673 set_buffer_uptodate(bh);
674 mark_buffer_dirty(bh);
675
676 next_bh:
677 block_start = block_end;
678 bh = bh->b_this_page;
679 } while (bh != head);
680
681 return ret;
682 }
683
684 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
685 #define OCFS2_MAX_CTXT_PAGES 1
686 #else
687 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
688 #endif
689
690 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
691
692 struct ocfs2_unwritten_extent {
693 struct list_head ue_node;
694 struct list_head ue_ip_node;
695 u32 ue_cpos;
696 u32 ue_phys;
697 };
698
699 /*
700 * Describe the state of a single cluster to be written to.
701 */
702 struct ocfs2_write_cluster_desc {
703 u32 c_cpos;
704 u32 c_phys;
705 /*
706 * Give this a unique field because c_phys eventually gets
707 * filled.
708 */
709 unsigned c_new;
710 unsigned c_clear_unwritten;
711 unsigned c_needs_zero;
712 };
713
714 struct ocfs2_write_ctxt {
715 /* Logical cluster position / len of write */
716 u32 w_cpos;
717 u32 w_clen;
718
719 /* First cluster allocated in a nonsparse extend */
720 u32 w_first_new_cpos;
721
722 /* Type of caller. Must be one of buffer, mmap, direct. */
723 ocfs2_write_type_t w_type;
724
725 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
726
727 /*
728 * This is true if page_size > cluster_size.
729 *
730 * It triggers a set of special cases during write which might
731 * have to deal with allocating writes to partial pages.
732 */
733 unsigned int w_large_pages;
734
735 /*
736 * Pages involved in this write.
737 *
738 * w_target_page is the page being written to by the user.
739 *
740 * w_pages is an array of pages which always contains
741 * w_target_page, and in the case of an allocating write with
742 * page_size < cluster size, it will contain zero'd and mapped
743 * pages adjacent to w_target_page which need to be written
744 * out in so that future reads from that region will get
745 * zero's.
746 */
747 unsigned int w_num_pages;
748 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
749 struct page *w_target_page;
750
751 /*
752 * w_target_locked is used for page_mkwrite path indicating no unlocking
753 * against w_target_page in ocfs2_write_end_nolock.
754 */
755 unsigned int w_target_locked:1;
756
757 /*
758 * ocfs2_write_end() uses this to know what the real range to
759 * write in the target should be.
760 */
761 unsigned int w_target_from;
762 unsigned int w_target_to;
763
764 /*
765 * We could use journal_current_handle() but this is cleaner,
766 * IMHO -Mark
767 */
768 handle_t *w_handle;
769
770 struct buffer_head *w_di_bh;
771
772 struct ocfs2_cached_dealloc_ctxt w_dealloc;
773
774 struct list_head w_unwritten_list;
775 unsigned int w_unwritten_count;
776 };
777
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)778 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
779 {
780 int i;
781
782 for(i = 0; i < num_pages; i++) {
783 if (pages[i]) {
784 unlock_page(pages[i]);
785 mark_page_accessed(pages[i]);
786 put_page(pages[i]);
787 }
788 }
789 }
790
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)791 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
792 {
793 int i;
794
795 /*
796 * w_target_locked is only set to true in the page_mkwrite() case.
797 * The intent is to allow us to lock the target page from write_begin()
798 * to write_end(). The caller must hold a ref on w_target_page.
799 */
800 if (wc->w_target_locked) {
801 BUG_ON(!wc->w_target_page);
802 for (i = 0; i < wc->w_num_pages; i++) {
803 if (wc->w_target_page == wc->w_pages[i]) {
804 wc->w_pages[i] = NULL;
805 break;
806 }
807 }
808 mark_page_accessed(wc->w_target_page);
809 put_page(wc->w_target_page);
810 }
811 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
812 }
813
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)814 static void ocfs2_free_unwritten_list(struct inode *inode,
815 struct list_head *head)
816 {
817 struct ocfs2_inode_info *oi = OCFS2_I(inode);
818 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
819
820 list_for_each_entry_safe(ue, tmp, head, ue_node) {
821 list_del(&ue->ue_node);
822 spin_lock(&oi->ip_lock);
823 list_del(&ue->ue_ip_node);
824 spin_unlock(&oi->ip_lock);
825 kfree(ue);
826 }
827 }
828
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)829 static void ocfs2_free_write_ctxt(struct inode *inode,
830 struct ocfs2_write_ctxt *wc)
831 {
832 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
833 ocfs2_unlock_pages(wc);
834 brelse(wc->w_di_bh);
835 kfree(wc);
836 }
837
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)838 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
839 struct ocfs2_super *osb, loff_t pos,
840 unsigned len, ocfs2_write_type_t type,
841 struct buffer_head *di_bh)
842 {
843 u32 cend;
844 struct ocfs2_write_ctxt *wc;
845
846 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
847 if (!wc)
848 return -ENOMEM;
849
850 wc->w_cpos = pos >> osb->s_clustersize_bits;
851 wc->w_first_new_cpos = UINT_MAX;
852 cend = (pos + len - 1) >> osb->s_clustersize_bits;
853 wc->w_clen = cend - wc->w_cpos + 1;
854 get_bh(di_bh);
855 wc->w_di_bh = di_bh;
856 wc->w_type = type;
857
858 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
859 wc->w_large_pages = 1;
860 else
861 wc->w_large_pages = 0;
862
863 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
864 INIT_LIST_HEAD(&wc->w_unwritten_list);
865
866 *wcp = wc;
867
868 return 0;
869 }
870
871 /*
872 * If a page has any new buffers, zero them out here, and mark them uptodate
873 * and dirty so they'll be written out (in order to prevent uninitialised
874 * block data from leaking). And clear the new bit.
875 */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)876 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
877 {
878 unsigned int block_start, block_end;
879 struct buffer_head *head, *bh;
880
881 BUG_ON(!PageLocked(page));
882 if (!page_has_buffers(page))
883 return;
884
885 bh = head = page_buffers(page);
886 block_start = 0;
887 do {
888 block_end = block_start + bh->b_size;
889
890 if (buffer_new(bh)) {
891 if (block_end > from && block_start < to) {
892 if (!PageUptodate(page)) {
893 unsigned start, end;
894
895 start = max(from, block_start);
896 end = min(to, block_end);
897
898 zero_user_segment(page, start, end);
899 set_buffer_uptodate(bh);
900 }
901
902 clear_buffer_new(bh);
903 mark_buffer_dirty(bh);
904 }
905 }
906
907 block_start = block_end;
908 bh = bh->b_this_page;
909 } while (bh != head);
910 }
911
912 /*
913 * Only called when we have a failure during allocating write to write
914 * zero's to the newly allocated region.
915 */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)916 static void ocfs2_write_failure(struct inode *inode,
917 struct ocfs2_write_ctxt *wc,
918 loff_t user_pos, unsigned user_len)
919 {
920 int i;
921 unsigned from = user_pos & (PAGE_SIZE - 1),
922 to = user_pos + user_len;
923 struct page *tmppage;
924
925 if (wc->w_target_page)
926 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
927
928 for(i = 0; i < wc->w_num_pages; i++) {
929 tmppage = wc->w_pages[i];
930
931 if (tmppage && page_has_buffers(tmppage)) {
932 if (ocfs2_should_order_data(inode))
933 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
934 user_pos, user_len);
935
936 block_commit_write(tmppage, from, to);
937 }
938 }
939 }
940
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)941 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
942 struct ocfs2_write_ctxt *wc,
943 struct page *page, u32 cpos,
944 loff_t user_pos, unsigned user_len,
945 int new)
946 {
947 int ret;
948 unsigned int map_from = 0, map_to = 0;
949 unsigned int cluster_start, cluster_end;
950 unsigned int user_data_from = 0, user_data_to = 0;
951
952 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
953 &cluster_start, &cluster_end);
954
955 /* treat the write as new if the a hole/lseek spanned across
956 * the page boundary.
957 */
958 new = new | ((i_size_read(inode) <= page_offset(page)) &&
959 (page_offset(page) <= user_pos));
960
961 if (page == wc->w_target_page) {
962 map_from = user_pos & (PAGE_SIZE - 1);
963 map_to = map_from + user_len;
964
965 if (new)
966 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967 cluster_start, cluster_end,
968 new);
969 else
970 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
971 map_from, map_to, new);
972 if (ret) {
973 mlog_errno(ret);
974 goto out;
975 }
976
977 user_data_from = map_from;
978 user_data_to = map_to;
979 if (new) {
980 map_from = cluster_start;
981 map_to = cluster_end;
982 }
983 } else {
984 /*
985 * If we haven't allocated the new page yet, we
986 * shouldn't be writing it out without copying user
987 * data. This is likely a math error from the caller.
988 */
989 BUG_ON(!new);
990
991 map_from = cluster_start;
992 map_to = cluster_end;
993
994 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
995 cluster_start, cluster_end, new);
996 if (ret) {
997 mlog_errno(ret);
998 goto out;
999 }
1000 }
1001
1002 /*
1003 * Parts of newly allocated pages need to be zero'd.
1004 *
1005 * Above, we have also rewritten 'to' and 'from' - as far as
1006 * the rest of the function is concerned, the entire cluster
1007 * range inside of a page needs to be written.
1008 *
1009 * We can skip this if the page is up to date - it's already
1010 * been zero'd from being read in as a hole.
1011 */
1012 if (new && !PageUptodate(page))
1013 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1014 cpos, user_data_from, user_data_to);
1015
1016 flush_dcache_page(page);
1017
1018 out:
1019 return ret;
1020 }
1021
1022 /*
1023 * This function will only grab one clusters worth of pages.
1024 */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1025 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1026 struct ocfs2_write_ctxt *wc,
1027 u32 cpos, loff_t user_pos,
1028 unsigned user_len, int new,
1029 struct page *mmap_page)
1030 {
1031 int ret = 0, i;
1032 unsigned long start, target_index, end_index, index;
1033 struct inode *inode = mapping->host;
1034 loff_t last_byte;
1035
1036 target_index = user_pos >> PAGE_SHIFT;
1037
1038 /*
1039 * Figure out how many pages we'll be manipulating here. For
1040 * non allocating write, we just change the one
1041 * page. Otherwise, we'll need a whole clusters worth. If we're
1042 * writing past i_size, we only need enough pages to cover the
1043 * last page of the write.
1044 */
1045 if (new) {
1046 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1047 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1048 /*
1049 * We need the index *past* the last page we could possibly
1050 * touch. This is the page past the end of the write or
1051 * i_size, whichever is greater.
1052 */
1053 last_byte = max(user_pos + user_len, i_size_read(inode));
1054 BUG_ON(last_byte < 1);
1055 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1056 if ((start + wc->w_num_pages) > end_index)
1057 wc->w_num_pages = end_index - start;
1058 } else {
1059 wc->w_num_pages = 1;
1060 start = target_index;
1061 }
1062 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1063
1064 for(i = 0; i < wc->w_num_pages; i++) {
1065 index = start + i;
1066
1067 if (index >= target_index && index <= end_index &&
1068 wc->w_type == OCFS2_WRITE_MMAP) {
1069 /*
1070 * ocfs2_pagemkwrite() is a little different
1071 * and wants us to directly use the page
1072 * passed in.
1073 */
1074 lock_page(mmap_page);
1075
1076 /* Exit and let the caller retry */
1077 if (mmap_page->mapping != mapping) {
1078 WARN_ON(mmap_page->mapping);
1079 unlock_page(mmap_page);
1080 ret = -EAGAIN;
1081 goto out;
1082 }
1083
1084 get_page(mmap_page);
1085 wc->w_pages[i] = mmap_page;
1086 wc->w_target_locked = true;
1087 } else if (index >= target_index && index <= end_index &&
1088 wc->w_type == OCFS2_WRITE_DIRECT) {
1089 /* Direct write has no mapping page. */
1090 wc->w_pages[i] = NULL;
1091 continue;
1092 } else {
1093 wc->w_pages[i] = find_or_create_page(mapping, index,
1094 GFP_NOFS);
1095 if (!wc->w_pages[i]) {
1096 ret = -ENOMEM;
1097 mlog_errno(ret);
1098 goto out;
1099 }
1100 }
1101 wait_for_stable_page(wc->w_pages[i]);
1102
1103 if (index == target_index)
1104 wc->w_target_page = wc->w_pages[i];
1105 }
1106 out:
1107 if (ret)
1108 wc->w_target_locked = false;
1109 return ret;
1110 }
1111
1112 /*
1113 * Prepare a single cluster for write one cluster into the file.
1114 */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1115 static int ocfs2_write_cluster(struct address_space *mapping,
1116 u32 *phys, unsigned int new,
1117 unsigned int clear_unwritten,
1118 unsigned int should_zero,
1119 struct ocfs2_alloc_context *data_ac,
1120 struct ocfs2_alloc_context *meta_ac,
1121 struct ocfs2_write_ctxt *wc, u32 cpos,
1122 loff_t user_pos, unsigned user_len)
1123 {
1124 int ret, i;
1125 u64 p_blkno;
1126 struct inode *inode = mapping->host;
1127 struct ocfs2_extent_tree et;
1128 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1129
1130 if (new) {
1131 u32 tmp_pos;
1132
1133 /*
1134 * This is safe to call with the page locks - it won't take
1135 * any additional semaphores or cluster locks.
1136 */
1137 tmp_pos = cpos;
1138 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1139 &tmp_pos, 1, !clear_unwritten,
1140 wc->w_di_bh, wc->w_handle,
1141 data_ac, meta_ac, NULL);
1142 /*
1143 * This shouldn't happen because we must have already
1144 * calculated the correct meta data allocation required. The
1145 * internal tree allocation code should know how to increase
1146 * transaction credits itself.
1147 *
1148 * If need be, we could handle -EAGAIN for a
1149 * RESTART_TRANS here.
1150 */
1151 mlog_bug_on_msg(ret == -EAGAIN,
1152 "Inode %llu: EAGAIN return during allocation.\n",
1153 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1154 if (ret < 0) {
1155 mlog_errno(ret);
1156 goto out;
1157 }
1158 } else if (clear_unwritten) {
1159 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1160 wc->w_di_bh);
1161 ret = ocfs2_mark_extent_written(inode, &et,
1162 wc->w_handle, cpos, 1, *phys,
1163 meta_ac, &wc->w_dealloc);
1164 if (ret < 0) {
1165 mlog_errno(ret);
1166 goto out;
1167 }
1168 }
1169
1170 /*
1171 * The only reason this should fail is due to an inability to
1172 * find the extent added.
1173 */
1174 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1175 if (ret < 0) {
1176 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1177 "at logical cluster %u",
1178 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1179 goto out;
1180 }
1181
1182 BUG_ON(*phys == 0);
1183
1184 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1185 if (!should_zero)
1186 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1187
1188 for(i = 0; i < wc->w_num_pages; i++) {
1189 int tmpret;
1190
1191 /* This is the direct io target page. */
1192 if (wc->w_pages[i] == NULL) {
1193 p_blkno++;
1194 continue;
1195 }
1196
1197 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1198 wc->w_pages[i], cpos,
1199 user_pos, user_len,
1200 should_zero);
1201 if (tmpret) {
1202 mlog_errno(tmpret);
1203 if (ret == 0)
1204 ret = tmpret;
1205 }
1206 }
1207
1208 /*
1209 * We only have cleanup to do in case of allocating write.
1210 */
1211 if (ret && new)
1212 ocfs2_write_failure(inode, wc, user_pos, user_len);
1213
1214 out:
1215
1216 return ret;
1217 }
1218
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1219 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1220 struct ocfs2_alloc_context *data_ac,
1221 struct ocfs2_alloc_context *meta_ac,
1222 struct ocfs2_write_ctxt *wc,
1223 loff_t pos, unsigned len)
1224 {
1225 int ret, i;
1226 loff_t cluster_off;
1227 unsigned int local_len = len;
1228 struct ocfs2_write_cluster_desc *desc;
1229 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1230
1231 for (i = 0; i < wc->w_clen; i++) {
1232 desc = &wc->w_desc[i];
1233
1234 /*
1235 * We have to make sure that the total write passed in
1236 * doesn't extend past a single cluster.
1237 */
1238 local_len = len;
1239 cluster_off = pos & (osb->s_clustersize - 1);
1240 if ((cluster_off + local_len) > osb->s_clustersize)
1241 local_len = osb->s_clustersize - cluster_off;
1242
1243 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1244 desc->c_new,
1245 desc->c_clear_unwritten,
1246 desc->c_needs_zero,
1247 data_ac, meta_ac,
1248 wc, desc->c_cpos, pos, local_len);
1249 if (ret) {
1250 mlog_errno(ret);
1251 goto out;
1252 }
1253
1254 len -= local_len;
1255 pos += local_len;
1256 }
1257
1258 ret = 0;
1259 out:
1260 return ret;
1261 }
1262
1263 /*
1264 * ocfs2_write_end() wants to know which parts of the target page it
1265 * should complete the write on. It's easiest to compute them ahead of
1266 * time when a more complete view of the write is available.
1267 */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1268 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1269 struct ocfs2_write_ctxt *wc,
1270 loff_t pos, unsigned len, int alloc)
1271 {
1272 struct ocfs2_write_cluster_desc *desc;
1273
1274 wc->w_target_from = pos & (PAGE_SIZE - 1);
1275 wc->w_target_to = wc->w_target_from + len;
1276
1277 if (alloc == 0)
1278 return;
1279
1280 /*
1281 * Allocating write - we may have different boundaries based
1282 * on page size and cluster size.
1283 *
1284 * NOTE: We can no longer compute one value from the other as
1285 * the actual write length and user provided length may be
1286 * different.
1287 */
1288
1289 if (wc->w_large_pages) {
1290 /*
1291 * We only care about the 1st and last cluster within
1292 * our range and whether they should be zero'd or not. Either
1293 * value may be extended out to the start/end of a
1294 * newly allocated cluster.
1295 */
1296 desc = &wc->w_desc[0];
1297 if (desc->c_needs_zero)
1298 ocfs2_figure_cluster_boundaries(osb,
1299 desc->c_cpos,
1300 &wc->w_target_from,
1301 NULL);
1302
1303 desc = &wc->w_desc[wc->w_clen - 1];
1304 if (desc->c_needs_zero)
1305 ocfs2_figure_cluster_boundaries(osb,
1306 desc->c_cpos,
1307 NULL,
1308 &wc->w_target_to);
1309 } else {
1310 wc->w_target_from = 0;
1311 wc->w_target_to = PAGE_SIZE;
1312 }
1313 }
1314
1315 /*
1316 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1317 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1318 * by the direct io procedure.
1319 * If this is a new extent that allocated by direct io, we should mark it in
1320 * the ip_unwritten_list.
1321 */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1322 static int ocfs2_unwritten_check(struct inode *inode,
1323 struct ocfs2_write_ctxt *wc,
1324 struct ocfs2_write_cluster_desc *desc)
1325 {
1326 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1327 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1328 int ret = 0;
1329
1330 if (!desc->c_needs_zero)
1331 return 0;
1332
1333 retry:
1334 spin_lock(&oi->ip_lock);
1335 /* Needs not to zero no metter buffer or direct. The one who is zero
1336 * the cluster is doing zero. And he will clear unwritten after all
1337 * cluster io finished. */
1338 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1339 if (desc->c_cpos == ue->ue_cpos) {
1340 BUG_ON(desc->c_new);
1341 desc->c_needs_zero = 0;
1342 desc->c_clear_unwritten = 0;
1343 goto unlock;
1344 }
1345 }
1346
1347 if (wc->w_type != OCFS2_WRITE_DIRECT)
1348 goto unlock;
1349
1350 if (new == NULL) {
1351 spin_unlock(&oi->ip_lock);
1352 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1353 GFP_NOFS);
1354 if (new == NULL) {
1355 ret = -ENOMEM;
1356 goto out;
1357 }
1358 goto retry;
1359 }
1360 /* This direct write will doing zero. */
1361 new->ue_cpos = desc->c_cpos;
1362 new->ue_phys = desc->c_phys;
1363 desc->c_clear_unwritten = 0;
1364 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1365 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1366 wc->w_unwritten_count++;
1367 new = NULL;
1368 unlock:
1369 spin_unlock(&oi->ip_lock);
1370 out:
1371 kfree(new);
1372 return ret;
1373 }
1374
1375 /*
1376 * Populate each single-cluster write descriptor in the write context
1377 * with information about the i/o to be done.
1378 *
1379 * Returns the number of clusters that will have to be allocated, as
1380 * well as a worst case estimate of the number of extent records that
1381 * would have to be created during a write to an unwritten region.
1382 */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1383 static int ocfs2_populate_write_desc(struct inode *inode,
1384 struct ocfs2_write_ctxt *wc,
1385 unsigned int *clusters_to_alloc,
1386 unsigned int *extents_to_split)
1387 {
1388 int ret;
1389 struct ocfs2_write_cluster_desc *desc;
1390 unsigned int num_clusters = 0;
1391 unsigned int ext_flags = 0;
1392 u32 phys = 0;
1393 int i;
1394
1395 *clusters_to_alloc = 0;
1396 *extents_to_split = 0;
1397
1398 for (i = 0; i < wc->w_clen; i++) {
1399 desc = &wc->w_desc[i];
1400 desc->c_cpos = wc->w_cpos + i;
1401
1402 if (num_clusters == 0) {
1403 /*
1404 * Need to look up the next extent record.
1405 */
1406 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1407 &num_clusters, &ext_flags);
1408 if (ret) {
1409 mlog_errno(ret);
1410 goto out;
1411 }
1412
1413 /* We should already CoW the refcountd extent. */
1414 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1415
1416 /*
1417 * Assume worst case - that we're writing in
1418 * the middle of the extent.
1419 *
1420 * We can assume that the write proceeds from
1421 * left to right, in which case the extent
1422 * insert code is smart enough to coalesce the
1423 * next splits into the previous records created.
1424 */
1425 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1426 *extents_to_split = *extents_to_split + 2;
1427 } else if (phys) {
1428 /*
1429 * Only increment phys if it doesn't describe
1430 * a hole.
1431 */
1432 phys++;
1433 }
1434
1435 /*
1436 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1437 * file that got extended. w_first_new_cpos tells us
1438 * where the newly allocated clusters are so we can
1439 * zero them.
1440 */
1441 if (desc->c_cpos >= wc->w_first_new_cpos) {
1442 BUG_ON(phys == 0);
1443 desc->c_needs_zero = 1;
1444 }
1445
1446 desc->c_phys = phys;
1447 if (phys == 0) {
1448 desc->c_new = 1;
1449 desc->c_needs_zero = 1;
1450 desc->c_clear_unwritten = 1;
1451 *clusters_to_alloc = *clusters_to_alloc + 1;
1452 }
1453
1454 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1455 desc->c_clear_unwritten = 1;
1456 desc->c_needs_zero = 1;
1457 }
1458
1459 ret = ocfs2_unwritten_check(inode, wc, desc);
1460 if (ret) {
1461 mlog_errno(ret);
1462 goto out;
1463 }
1464
1465 num_clusters--;
1466 }
1467
1468 ret = 0;
1469 out:
1470 return ret;
1471 }
1472
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1473 static int ocfs2_write_begin_inline(struct address_space *mapping,
1474 struct inode *inode,
1475 struct ocfs2_write_ctxt *wc)
1476 {
1477 int ret;
1478 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1479 struct page *page;
1480 handle_t *handle;
1481 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1482
1483 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1486 mlog_errno(ret);
1487 goto out;
1488 }
1489
1490 page = find_or_create_page(mapping, 0, GFP_NOFS);
1491 if (!page) {
1492 ocfs2_commit_trans(osb, handle);
1493 ret = -ENOMEM;
1494 mlog_errno(ret);
1495 goto out;
1496 }
1497 /*
1498 * If we don't set w_num_pages then this page won't get unlocked
1499 * and freed on cleanup of the write context.
1500 */
1501 wc->w_pages[0] = wc->w_target_page = page;
1502 wc->w_num_pages = 1;
1503
1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505 OCFS2_JOURNAL_ACCESS_WRITE);
1506 if (ret) {
1507 ocfs2_commit_trans(osb, handle);
1508
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512
1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 ocfs2_set_inode_data_inline(inode, di);
1515
1516 if (!PageUptodate(page)) {
1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 goto out;
1522 }
1523 }
1524
1525 wc->w_handle = handle;
1526 out:
1527 return ret;
1528 }
1529
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531 {
1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535 return 1;
1536 return 0;
1537 }
1538
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 struct inode *inode, loff_t pos,
1541 unsigned len, struct page *mmap_page,
1542 struct ocfs2_write_ctxt *wc)
1543 {
1544 int ret, written = 0;
1545 loff_t end = pos + len;
1546 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547 struct ocfs2_dinode *di = NULL;
1548
1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550 len, (unsigned long long)pos,
1551 oi->ip_dyn_features);
1552
1553 /*
1554 * Handle inodes which already have inline data 1st.
1555 */
1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 if (mmap_page == NULL &&
1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 goto do_inline_write;
1560
1561 /*
1562 * The write won't fit - we have to give this inode an
1563 * inline extent list now.
1564 */
1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 if (ret)
1567 mlog_errno(ret);
1568 goto out;
1569 }
1570
1571 /*
1572 * Check whether the inode can accept inline data.
1573 */
1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 return 0;
1576
1577 /*
1578 * Check whether the write can fit.
1579 */
1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 if (mmap_page ||
1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583 return 0;
1584
1585 do_inline_write:
1586 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 if (ret) {
1588 mlog_errno(ret);
1589 goto out;
1590 }
1591
1592 /*
1593 * This signals to the caller that the data can be written
1594 * inline.
1595 */
1596 written = 1;
1597 out:
1598 return written ? written : ret;
1599 }
1600
1601 /*
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1604 *
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1609 */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 struct buffer_head *di_bh,
1612 loff_t pos, unsigned len,
1613 struct ocfs2_write_ctxt *wc)
1614 {
1615 int ret;
1616 loff_t newsize = pos + len;
1617
1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619
1620 if (newsize <= i_size_read(inode))
1621 return 0;
1622
1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624 if (ret)
1625 mlog_errno(ret);
1626
1627 /* There is no wc if this is call from direct. */
1628 if (wc)
1629 wc->w_first_new_cpos =
1630 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1631
1632 return ret;
1633 }
1634
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1635 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1636 loff_t pos)
1637 {
1638 int ret = 0;
1639
1640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641 if (pos > i_size_read(inode))
1642 ret = ocfs2_zero_extend(inode, di_bh, pos);
1643
1644 return ret;
1645 }
1646
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1647 int ocfs2_write_begin_nolock(struct address_space *mapping,
1648 loff_t pos, unsigned len, ocfs2_write_type_t type,
1649 struct page **pagep, void **fsdata,
1650 struct buffer_head *di_bh, struct page *mmap_page)
1651 {
1652 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1653 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1654 struct ocfs2_write_ctxt *wc;
1655 struct inode *inode = mapping->host;
1656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657 struct ocfs2_dinode *di;
1658 struct ocfs2_alloc_context *data_ac = NULL;
1659 struct ocfs2_alloc_context *meta_ac = NULL;
1660 handle_t *handle;
1661 struct ocfs2_extent_tree et;
1662 int try_free = 1, ret1;
1663
1664 try_again:
1665 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1666 if (ret) {
1667 mlog_errno(ret);
1668 return ret;
1669 }
1670
1671 if (ocfs2_supports_inline_data(osb)) {
1672 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1673 mmap_page, wc);
1674 if (ret == 1) {
1675 ret = 0;
1676 goto success;
1677 }
1678 if (ret < 0) {
1679 mlog_errno(ret);
1680 goto out;
1681 }
1682 }
1683
1684 /* Direct io change i_size late, should not zero tail here. */
1685 if (type != OCFS2_WRITE_DIRECT) {
1686 if (ocfs2_sparse_alloc(osb))
1687 ret = ocfs2_zero_tail(inode, di_bh, pos);
1688 else
1689 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1690 len, wc);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1694 }
1695 }
1696
1697 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1698 if (ret < 0) {
1699 mlog_errno(ret);
1700 goto out;
1701 } else if (ret == 1) {
1702 clusters_need = wc->w_clen;
1703 ret = ocfs2_refcount_cow(inode, di_bh,
1704 wc->w_cpos, wc->w_clen, UINT_MAX);
1705 if (ret) {
1706 mlog_errno(ret);
1707 goto out;
1708 }
1709 }
1710
1711 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1712 &extents_to_split);
1713 if (ret) {
1714 mlog_errno(ret);
1715 goto out;
1716 }
1717 clusters_need += clusters_to_alloc;
1718
1719 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1720
1721 trace_ocfs2_write_begin_nolock(
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode),
1724 le32_to_cpu(di->i_clusters),
1725 pos, len, type, mmap_page,
1726 clusters_to_alloc, extents_to_split);
1727
1728 /*
1729 * We set w_target_from, w_target_to here so that
1730 * ocfs2_write_end() knows which range in the target page to
1731 * write out. An allocation requires that we write the entire
1732 * cluster range.
1733 */
1734 if (clusters_to_alloc || extents_to_split) {
1735 /*
1736 * XXX: We are stretching the limits of
1737 * ocfs2_lock_allocators(). It greatly over-estimates
1738 * the work to be done.
1739 */
1740 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1741 wc->w_di_bh);
1742 ret = ocfs2_lock_allocators(inode, &et,
1743 clusters_to_alloc, extents_to_split,
1744 &data_ac, &meta_ac);
1745 if (ret) {
1746 mlog_errno(ret);
1747 goto out;
1748 }
1749
1750 if (data_ac)
1751 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1752
1753 credits = ocfs2_calc_extend_credits(inode->i_sb,
1754 &di->id2.i_list);
1755 } else if (type == OCFS2_WRITE_DIRECT)
1756 /* direct write needs not to start trans if no extents alloc. */
1757 goto success;
1758
1759 /*
1760 * We have to zero sparse allocated clusters, unwritten extent clusters,
1761 * and non-sparse clusters we just extended. For non-sparse writes,
1762 * we know zeros will only be needed in the first and/or last cluster.
1763 */
1764 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1765 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1766 cluster_of_pages = 1;
1767 else
1768 cluster_of_pages = 0;
1769
1770 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1771
1772 handle = ocfs2_start_trans(osb, credits);
1773 if (IS_ERR(handle)) {
1774 ret = PTR_ERR(handle);
1775 mlog_errno(ret);
1776 goto out;
1777 }
1778
1779 wc->w_handle = handle;
1780
1781 if (clusters_to_alloc) {
1782 ret = dquot_alloc_space_nodirty(inode,
1783 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1784 if (ret)
1785 goto out_commit;
1786 }
1787
1788 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1789 OCFS2_JOURNAL_ACCESS_WRITE);
1790 if (ret) {
1791 mlog_errno(ret);
1792 goto out_quota;
1793 }
1794
1795 /*
1796 * Fill our page array first. That way we've grabbed enough so
1797 * that we can zero and flush if we error after adding the
1798 * extent.
1799 */
1800 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1801 cluster_of_pages, mmap_page);
1802 if (ret && ret != -EAGAIN) {
1803 mlog_errno(ret);
1804 goto out_quota;
1805 }
1806
1807 /*
1808 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1809 * the target page. In this case, we exit with no error and no target
1810 * page. This will trigger the caller, page_mkwrite(), to re-try
1811 * the operation.
1812 */
1813 if (ret == -EAGAIN) {
1814 BUG_ON(wc->w_target_page);
1815 ret = 0;
1816 goto out_quota;
1817 }
1818
1819 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1820 len);
1821 if (ret) {
1822 mlog_errno(ret);
1823 goto out_quota;
1824 }
1825
1826 if (data_ac)
1827 ocfs2_free_alloc_context(data_ac);
1828 if (meta_ac)
1829 ocfs2_free_alloc_context(meta_ac);
1830
1831 success:
1832 if (pagep)
1833 *pagep = wc->w_target_page;
1834 *fsdata = wc;
1835 return 0;
1836 out_quota:
1837 if (clusters_to_alloc)
1838 dquot_free_space(inode,
1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840 out_commit:
1841 ocfs2_commit_trans(osb, handle);
1842
1843 out:
1844 /*
1845 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1846 * even in case of error here like ENOSPC and ENOMEM. So, we need
1847 * to unlock the target page manually to prevent deadlocks when
1848 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1849 * to VM code.
1850 */
1851 if (wc->w_target_locked)
1852 unlock_page(mmap_page);
1853
1854 ocfs2_free_write_ctxt(inode, wc);
1855
1856 if (data_ac) {
1857 ocfs2_free_alloc_context(data_ac);
1858 data_ac = NULL;
1859 }
1860 if (meta_ac) {
1861 ocfs2_free_alloc_context(meta_ac);
1862 meta_ac = NULL;
1863 }
1864
1865 if (ret == -ENOSPC && try_free) {
1866 /*
1867 * Try to free some truncate log so that we can have enough
1868 * clusters to allocate.
1869 */
1870 try_free = 0;
1871
1872 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1873 if (ret1 == 1)
1874 goto try_again;
1875
1876 if (ret1 < 0)
1877 mlog_errno(ret1);
1878 }
1879
1880 return ret;
1881 }
1882
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1883 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1884 loff_t pos, unsigned len, unsigned flags,
1885 struct page **pagep, void **fsdata)
1886 {
1887 int ret;
1888 struct buffer_head *di_bh = NULL;
1889 struct inode *inode = mapping->host;
1890
1891 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1892 if (ret) {
1893 mlog_errno(ret);
1894 return ret;
1895 }
1896
1897 /*
1898 * Take alloc sem here to prevent concurrent lookups. That way
1899 * the mapping, zeroing and tree manipulation within
1900 * ocfs2_write() will be safe against ->readpage(). This
1901 * should also serve to lock out allocation from a shared
1902 * writeable region.
1903 */
1904 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1905
1906 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1907 pagep, fsdata, di_bh, NULL);
1908 if (ret) {
1909 mlog_errno(ret);
1910 goto out_fail;
1911 }
1912
1913 brelse(di_bh);
1914
1915 return 0;
1916
1917 out_fail:
1918 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1919
1920 brelse(di_bh);
1921 ocfs2_inode_unlock(inode, 1);
1922
1923 return ret;
1924 }
1925
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1926 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1927 unsigned len, unsigned *copied,
1928 struct ocfs2_dinode *di,
1929 struct ocfs2_write_ctxt *wc)
1930 {
1931 void *kaddr;
1932
1933 if (unlikely(*copied < len)) {
1934 if (!PageUptodate(wc->w_target_page)) {
1935 *copied = 0;
1936 return;
1937 }
1938 }
1939
1940 kaddr = kmap_atomic(wc->w_target_page);
1941 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1942 kunmap_atomic(kaddr);
1943
1944 trace_ocfs2_write_end_inline(
1945 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1946 (unsigned long long)pos, *copied,
1947 le16_to_cpu(di->id2.i_data.id_count),
1948 le16_to_cpu(di->i_dyn_features));
1949 }
1950
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1951 int ocfs2_write_end_nolock(struct address_space *mapping,
1952 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1953 {
1954 int i, ret;
1955 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1956 struct inode *inode = mapping->host;
1957 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1958 struct ocfs2_write_ctxt *wc = fsdata;
1959 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1960 handle_t *handle = wc->w_handle;
1961 struct page *tmppage;
1962
1963 BUG_ON(!list_empty(&wc->w_unwritten_list));
1964
1965 if (handle) {
1966 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1967 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1968 if (ret) {
1969 copied = ret;
1970 mlog_errno(ret);
1971 goto out;
1972 }
1973 }
1974
1975 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1976 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1977 goto out_write_size;
1978 }
1979
1980 if (unlikely(copied < len) && wc->w_target_page) {
1981 loff_t new_isize;
1982
1983 if (!PageUptodate(wc->w_target_page))
1984 copied = 0;
1985
1986 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1987 if (new_isize > page_offset(wc->w_target_page))
1988 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1989 start+len);
1990 else {
1991 /*
1992 * When page is fully beyond new isize (data copy
1993 * failed), do not bother zeroing the page. Invalidate
1994 * it instead so that writeback does not get confused
1995 * put page & buffer dirty bits into inconsistent
1996 * state.
1997 */
1998 block_invalidatepage(wc->w_target_page, 0, PAGE_SIZE);
1999 }
2000 }
2001 if (wc->w_target_page)
2002 flush_dcache_page(wc->w_target_page);
2003
2004 for(i = 0; i < wc->w_num_pages; i++) {
2005 tmppage = wc->w_pages[i];
2006
2007 /* This is the direct io target page. */
2008 if (tmppage == NULL)
2009 continue;
2010
2011 if (tmppage == wc->w_target_page) {
2012 from = wc->w_target_from;
2013 to = wc->w_target_to;
2014
2015 BUG_ON(from > PAGE_SIZE ||
2016 to > PAGE_SIZE ||
2017 to < from);
2018 } else {
2019 /*
2020 * Pages adjacent to the target (if any) imply
2021 * a hole-filling write in which case we want
2022 * to flush their entire range.
2023 */
2024 from = 0;
2025 to = PAGE_SIZE;
2026 }
2027
2028 if (page_has_buffers(tmppage)) {
2029 if (handle && ocfs2_should_order_data(inode)) {
2030 loff_t start_byte =
2031 ((loff_t)tmppage->index << PAGE_SHIFT) +
2032 from;
2033 loff_t length = to - from;
2034 ocfs2_jbd2_inode_add_write(handle, inode,
2035 start_byte, length);
2036 }
2037 block_commit_write(tmppage, from, to);
2038 }
2039 }
2040
2041 out_write_size:
2042 /* Direct io do not update i_size here. */
2043 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2044 pos += copied;
2045 if (pos > i_size_read(inode)) {
2046 i_size_write(inode, pos);
2047 mark_inode_dirty(inode);
2048 }
2049 inode->i_blocks = ocfs2_inode_sector_count(inode);
2050 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2051 inode->i_mtime = inode->i_ctime = current_time(inode);
2052 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2053 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2054 if (handle)
2055 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2056 }
2057 if (handle)
2058 ocfs2_journal_dirty(handle, wc->w_di_bh);
2059
2060 out:
2061 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2062 * lock, or it will cause a deadlock since journal commit threads holds
2063 * this lock and will ask for the page lock when flushing the data.
2064 * put it here to preserve the unlock order.
2065 */
2066 ocfs2_unlock_pages(wc);
2067
2068 if (handle)
2069 ocfs2_commit_trans(osb, handle);
2070
2071 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2072
2073 brelse(wc->w_di_bh);
2074 kfree(wc);
2075
2076 return copied;
2077 }
2078
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2079 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2080 loff_t pos, unsigned len, unsigned copied,
2081 struct page *page, void *fsdata)
2082 {
2083 int ret;
2084 struct inode *inode = mapping->host;
2085
2086 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2087
2088 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2089 ocfs2_inode_unlock(inode, 1);
2090
2091 return ret;
2092 }
2093
2094 struct ocfs2_dio_write_ctxt {
2095 struct list_head dw_zero_list;
2096 unsigned dw_zero_count;
2097 int dw_orphaned;
2098 pid_t dw_writer_pid;
2099 };
2100
2101 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2102 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2103 {
2104 struct ocfs2_dio_write_ctxt *dwc = NULL;
2105
2106 if (bh->b_private)
2107 return bh->b_private;
2108
2109 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2110 if (dwc == NULL)
2111 return NULL;
2112 INIT_LIST_HEAD(&dwc->dw_zero_list);
2113 dwc->dw_zero_count = 0;
2114 dwc->dw_orphaned = 0;
2115 dwc->dw_writer_pid = task_pid_nr(current);
2116 bh->b_private = dwc;
2117 *alloc = 1;
2118
2119 return dwc;
2120 }
2121
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2122 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2123 struct ocfs2_dio_write_ctxt *dwc)
2124 {
2125 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2126 kfree(dwc);
2127 }
2128
2129 /*
2130 * TODO: Make this into a generic get_blocks function.
2131 *
2132 * From do_direct_io in direct-io.c:
2133 * "So what we do is to permit the ->get_blocks function to populate
2134 * bh.b_size with the size of IO which is permitted at this offset and
2135 * this i_blkbits."
2136 *
2137 * This function is called directly from get_more_blocks in direct-io.c.
2138 *
2139 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2140 * fs_count, map_bh, dio->rw == WRITE);
2141 */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2142 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2143 struct buffer_head *bh_result, int create)
2144 {
2145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2146 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2147 struct ocfs2_write_ctxt *wc;
2148 struct ocfs2_write_cluster_desc *desc = NULL;
2149 struct ocfs2_dio_write_ctxt *dwc = NULL;
2150 struct buffer_head *di_bh = NULL;
2151 u64 p_blkno;
2152 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2153 loff_t pos = iblock << i_blkbits;
2154 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2155 unsigned len, total_len = bh_result->b_size;
2156 int ret = 0, first_get_block = 0;
2157
2158 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2159 len = min(total_len, len);
2160
2161 /*
2162 * bh_result->b_size is count in get_more_blocks according to write
2163 * "pos" and "end", we need map twice to return different buffer state:
2164 * 1. area in file size, not set NEW;
2165 * 2. area out file size, set NEW.
2166 *
2167 * iblock endblk
2168 * |--------|---------|---------|---------
2169 * |<-------area in file------->|
2170 */
2171
2172 if ((iblock <= endblk) &&
2173 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2174 len = (endblk - iblock + 1) << i_blkbits;
2175
2176 mlog(0, "get block of %lu at %llu:%u req %u\n",
2177 inode->i_ino, pos, len, total_len);
2178
2179 /*
2180 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2181 * we may need to add it to orphan dir. So can not fall to fast path
2182 * while file size will be changed.
2183 */
2184 if (pos + total_len <= i_size_read(inode)) {
2185
2186 /* This is the fast path for re-write. */
2187 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2188 if (buffer_mapped(bh_result) &&
2189 !buffer_new(bh_result) &&
2190 ret == 0)
2191 goto out;
2192
2193 /* Clear state set by ocfs2_get_block. */
2194 bh_result->b_state = 0;
2195 }
2196
2197 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2198 if (unlikely(dwc == NULL)) {
2199 ret = -ENOMEM;
2200 mlog_errno(ret);
2201 goto out;
2202 }
2203
2204 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2205 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2206 !dwc->dw_orphaned) {
2207 /*
2208 * when we are going to alloc extents beyond file size, add the
2209 * inode to orphan dir, so we can recall those spaces when
2210 * system crashed during write.
2211 */
2212 ret = ocfs2_add_inode_to_orphan(osb, inode);
2213 if (ret < 0) {
2214 mlog_errno(ret);
2215 goto out;
2216 }
2217 dwc->dw_orphaned = 1;
2218 }
2219
2220 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2221 if (ret) {
2222 mlog_errno(ret);
2223 goto out;
2224 }
2225
2226 down_write(&oi->ip_alloc_sem);
2227
2228 if (first_get_block) {
2229 if (ocfs2_sparse_alloc(osb))
2230 ret = ocfs2_zero_tail(inode, di_bh, pos);
2231 else
2232 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2233 total_len, NULL);
2234 if (ret < 0) {
2235 mlog_errno(ret);
2236 goto unlock;
2237 }
2238 }
2239
2240 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2241 OCFS2_WRITE_DIRECT, NULL,
2242 (void **)&wc, di_bh, NULL);
2243 if (ret) {
2244 mlog_errno(ret);
2245 goto unlock;
2246 }
2247
2248 desc = &wc->w_desc[0];
2249
2250 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2251 BUG_ON(p_blkno == 0);
2252 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2253
2254 map_bh(bh_result, inode->i_sb, p_blkno);
2255 bh_result->b_size = len;
2256 if (desc->c_needs_zero)
2257 set_buffer_new(bh_result);
2258
2259 if (iblock > endblk)
2260 set_buffer_new(bh_result);
2261
2262 /* May sleep in end_io. It should not happen in a irq context. So defer
2263 * it to dio work queue. */
2264 set_buffer_defer_completion(bh_result);
2265
2266 if (!list_empty(&wc->w_unwritten_list)) {
2267 struct ocfs2_unwritten_extent *ue = NULL;
2268
2269 ue = list_first_entry(&wc->w_unwritten_list,
2270 struct ocfs2_unwritten_extent,
2271 ue_node);
2272 BUG_ON(ue->ue_cpos != desc->c_cpos);
2273 /* The physical address may be 0, fill it. */
2274 ue->ue_phys = desc->c_phys;
2275
2276 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2277 dwc->dw_zero_count += wc->w_unwritten_count;
2278 }
2279
2280 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2281 BUG_ON(ret != len);
2282 ret = 0;
2283 unlock:
2284 up_write(&oi->ip_alloc_sem);
2285 ocfs2_inode_unlock(inode, 1);
2286 brelse(di_bh);
2287 out:
2288 if (ret < 0)
2289 ret = -EIO;
2290 return ret;
2291 }
2292
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2293 static int ocfs2_dio_end_io_write(struct inode *inode,
2294 struct ocfs2_dio_write_ctxt *dwc,
2295 loff_t offset,
2296 ssize_t bytes)
2297 {
2298 struct ocfs2_cached_dealloc_ctxt dealloc;
2299 struct ocfs2_extent_tree et;
2300 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2301 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2302 struct ocfs2_unwritten_extent *ue = NULL;
2303 struct buffer_head *di_bh = NULL;
2304 struct ocfs2_dinode *di;
2305 struct ocfs2_alloc_context *data_ac = NULL;
2306 struct ocfs2_alloc_context *meta_ac = NULL;
2307 handle_t *handle = NULL;
2308 loff_t end = offset + bytes;
2309 int ret = 0, credits = 0;
2310
2311 ocfs2_init_dealloc_ctxt(&dealloc);
2312
2313 /* We do clear unwritten, delete orphan, change i_size here. If neither
2314 * of these happen, we can skip all this. */
2315 if (list_empty(&dwc->dw_zero_list) &&
2316 end <= i_size_read(inode) &&
2317 !dwc->dw_orphaned)
2318 goto out;
2319
2320 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2321 if (ret < 0) {
2322 mlog_errno(ret);
2323 goto out;
2324 }
2325
2326 down_write(&oi->ip_alloc_sem);
2327
2328 /* Delete orphan before acquire i_mutex. */
2329 if (dwc->dw_orphaned) {
2330 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2331
2332 end = end > i_size_read(inode) ? end : 0;
2333
2334 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2335 !!end, end);
2336 if (ret < 0)
2337 mlog_errno(ret);
2338 }
2339
2340 di = (struct ocfs2_dinode *)di_bh->b_data;
2341
2342 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2343
2344 /* Attach dealloc with extent tree in case that we may reuse extents
2345 * which are already unlinked from current extent tree due to extent
2346 * rotation and merging.
2347 */
2348 et.et_dealloc = &dealloc;
2349
2350 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2351 &data_ac, &meta_ac);
2352 if (ret) {
2353 mlog_errno(ret);
2354 goto unlock;
2355 }
2356
2357 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2358
2359 handle = ocfs2_start_trans(osb, credits);
2360 if (IS_ERR(handle)) {
2361 ret = PTR_ERR(handle);
2362 mlog_errno(ret);
2363 goto unlock;
2364 }
2365 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2366 OCFS2_JOURNAL_ACCESS_WRITE);
2367 if (ret) {
2368 mlog_errno(ret);
2369 goto commit;
2370 }
2371
2372 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2373 ret = ocfs2_mark_extent_written(inode, &et, handle,
2374 ue->ue_cpos, 1,
2375 ue->ue_phys,
2376 meta_ac, &dealloc);
2377 if (ret < 0) {
2378 mlog_errno(ret);
2379 break;
2380 }
2381 }
2382
2383 if (end > i_size_read(inode)) {
2384 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2385 if (ret < 0)
2386 mlog_errno(ret);
2387 }
2388 commit:
2389 ocfs2_commit_trans(osb, handle);
2390 unlock:
2391 up_write(&oi->ip_alloc_sem);
2392 ocfs2_inode_unlock(inode, 1);
2393 brelse(di_bh);
2394 out:
2395 if (data_ac)
2396 ocfs2_free_alloc_context(data_ac);
2397 if (meta_ac)
2398 ocfs2_free_alloc_context(meta_ac);
2399 ocfs2_run_deallocs(osb, &dealloc);
2400 ocfs2_dio_free_write_ctx(inode, dwc);
2401
2402 return ret;
2403 }
2404
2405 /*
2406 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2407 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2408 * to protect io on one node from truncation on another.
2409 */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2410 static int ocfs2_dio_end_io(struct kiocb *iocb,
2411 loff_t offset,
2412 ssize_t bytes,
2413 void *private)
2414 {
2415 struct inode *inode = file_inode(iocb->ki_filp);
2416 int level;
2417 int ret = 0;
2418
2419 /* this io's submitter should not have unlocked this before we could */
2420 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2421
2422 if (bytes <= 0)
2423 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2424 (long long)bytes);
2425 if (private) {
2426 if (bytes > 0)
2427 ret = ocfs2_dio_end_io_write(inode, private, offset,
2428 bytes);
2429 else
2430 ocfs2_dio_free_write_ctx(inode, private);
2431 }
2432
2433 ocfs2_iocb_clear_rw_locked(iocb);
2434
2435 level = ocfs2_iocb_rw_locked_level(iocb);
2436 ocfs2_rw_unlock(inode, level);
2437 return ret;
2438 }
2439
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2440 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2441 {
2442 struct file *file = iocb->ki_filp;
2443 struct inode *inode = file->f_mapping->host;
2444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2445 get_block_t *get_block;
2446
2447 /*
2448 * Fallback to buffered I/O if we see an inode without
2449 * extents.
2450 */
2451 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2452 return 0;
2453
2454 /* Fallback to buffered I/O if we do not support append dio. */
2455 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2456 !ocfs2_supports_append_dio(osb))
2457 return 0;
2458
2459 if (iov_iter_rw(iter) == READ)
2460 get_block = ocfs2_lock_get_block;
2461 else
2462 get_block = ocfs2_dio_wr_get_block;
2463
2464 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2465 iter, get_block,
2466 ocfs2_dio_end_io, NULL, 0);
2467 }
2468
2469 const struct address_space_operations ocfs2_aops = {
2470 .set_page_dirty = __set_page_dirty_buffers,
2471 .readpage = ocfs2_readpage,
2472 .readahead = ocfs2_readahead,
2473 .writepage = ocfs2_writepage,
2474 .write_begin = ocfs2_write_begin,
2475 .write_end = ocfs2_write_end,
2476 .bmap = ocfs2_bmap,
2477 .direct_IO = ocfs2_direct_IO,
2478 .invalidatepage = block_invalidatepage,
2479 .releasepage = ocfs2_releasepage,
2480 .migratepage = buffer_migrate_page,
2481 .is_partially_uptodate = block_is_partially_uptodate,
2482 .error_remove_page = generic_error_remove_page,
2483 };
2484