1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43
44 struct kset *of_kset;
45
46 /*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52 DEFINE_MUTEX(of_mutex);
53
54 /* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88 }
89
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 return NUMA_NO_NODE;
136 }
137 #endif
138
139 #define OF_PHANDLE_CACHE_BITS 7
140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148
149 /*
150 * Caller must hold devtree_lock.
151 */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165 }
166
of_core_init(void)167 void __init of_core_init(void)
168 {
169 struct device_node *np;
170
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191
__of_find_property(const struct device_node * np,const char * name,int * lenp)192 static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194 {
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209 }
210
of_find_property(const struct device_node * np,const char * name,int * lenp)211 struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214 {
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225
__of_find_all_nodes(struct device_node * prev)226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241 }
242
243 /**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
of_find_all_nodes(struct device_node * prev)251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264
265 /*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)269 const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271 {
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275 }
276
277 /*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
of_get_property(const struct device_node * np,const char * name,int * lenp)281 const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283 {
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289
290 /*
291 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292 *
293 * @cpu: logical cpu index of a core/thread
294 * @phys_id: physical identifier of a core/thread
295 *
296 * CPU logical to physical index mapping is architecture specific.
297 * However this __weak function provides a default match of physical
298 * id to logical cpu index. phys_id provided here is usually values read
299 * from the device tree which must match the hardware internal registers.
300 *
301 * Returns true if the physical identifier and the logical cpu index
302 * correspond to the same core/thread, false otherwise.
303 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)304 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305 {
306 return (u32)phys_id == cpu;
307 }
308
309 /*
310 * Checks if the given "prop_name" property holds the physical id of the
311 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
312 * NULL, local thread number within the core is returned in it.
313 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)314 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
315 const char *prop_name, int cpu, unsigned int *thread)
316 {
317 const __be32 *cell;
318 int ac, prop_len, tid;
319 u64 hwid;
320
321 ac = of_n_addr_cells(cpun);
322 cell = of_get_property(cpun, prop_name, &prop_len);
323 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
324 return true;
325 if (!cell || !ac)
326 return false;
327 prop_len /= sizeof(*cell) * ac;
328 for (tid = 0; tid < prop_len; tid++) {
329 hwid = of_read_number(cell, ac);
330 if (arch_match_cpu_phys_id(cpu, hwid)) {
331 if (thread)
332 *thread = tid;
333 return true;
334 }
335 cell += ac;
336 }
337 return false;
338 }
339
340 /*
341 * arch_find_n_match_cpu_physical_id - See if the given device node is
342 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
343 * else false. If 'thread' is non-NULL, the local thread number within the
344 * core is returned in it.
345 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)346 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
347 int cpu, unsigned int *thread)
348 {
349 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
350 * for thread ids on PowerPC. If it doesn't exist fallback to
351 * standard "reg" property.
352 */
353 if (IS_ENABLED(CONFIG_PPC) &&
354 __of_find_n_match_cpu_property(cpun,
355 "ibm,ppc-interrupt-server#s",
356 cpu, thread))
357 return true;
358
359 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
360 }
361
362 /**
363 * of_get_cpu_node - Get device node associated with the given logical CPU
364 *
365 * @cpu: CPU number(logical index) for which device node is required
366 * @thread: if not NULL, local thread number within the physical core is
367 * returned
368 *
369 * The main purpose of this function is to retrieve the device node for the
370 * given logical CPU index. It should be used to initialize the of_node in
371 * cpu device. Once of_node in cpu device is populated, all the further
372 * references can use that instead.
373 *
374 * CPU logical to physical index mapping is architecture specific and is built
375 * before booting secondary cores. This function uses arch_match_cpu_phys_id
376 * which can be overridden by architecture specific implementation.
377 *
378 * Return: A node pointer for the logical cpu with refcount incremented, use
379 * of_node_put() on it when done. Returns NULL if not found.
380 */
of_get_cpu_node(int cpu,unsigned int * thread)381 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382 {
383 struct device_node *cpun;
384
385 for_each_of_cpu_node(cpun) {
386 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
387 return cpun;
388 }
389 return NULL;
390 }
391 EXPORT_SYMBOL(of_get_cpu_node);
392
393 /**
394 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395 *
396 * @cpu_node: Pointer to the device_node for CPU.
397 *
398 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
399 * CPU is not found.
400 */
of_cpu_node_to_id(struct device_node * cpu_node)401 int of_cpu_node_to_id(struct device_node *cpu_node)
402 {
403 int cpu;
404 bool found = false;
405 struct device_node *np;
406
407 for_each_possible_cpu(cpu) {
408 np = of_cpu_device_node_get(cpu);
409 found = (cpu_node == np);
410 of_node_put(np);
411 if (found)
412 return cpu;
413 }
414
415 return -ENODEV;
416 }
417 EXPORT_SYMBOL(of_cpu_node_to_id);
418
419 /**
420 * of_get_cpu_state_node - Get CPU's idle state node at the given index
421 *
422 * @cpu_node: The device node for the CPU
423 * @index: The index in the list of the idle states
424 *
425 * Two generic methods can be used to describe a CPU's idle states, either via
426 * a flattened description through the "cpu-idle-states" binding or via the
427 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
428 * bindings. This function check for both and returns the idle state node for
429 * the requested index.
430 *
431 * Return: An idle state node if found at @index. The refcount is incremented
432 * for it, so call of_node_put() on it when done. Returns NULL if not found.
433 */
of_get_cpu_state_node(struct device_node * cpu_node,int index)434 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
435 int index)
436 {
437 struct of_phandle_args args;
438 int err;
439
440 err = of_parse_phandle_with_args(cpu_node, "power-domains",
441 "#power-domain-cells", 0, &args);
442 if (!err) {
443 struct device_node *state_node =
444 of_parse_phandle(args.np, "domain-idle-states", index);
445
446 of_node_put(args.np);
447 if (state_node)
448 return state_node;
449 }
450
451 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452 }
453 EXPORT_SYMBOL(of_get_cpu_state_node);
454
455 /**
456 * __of_device_is_compatible() - Check if the node matches given constraints
457 * @device: pointer to node
458 * @compat: required compatible string, NULL or "" for any match
459 * @type: required device_type value, NULL or "" for any match
460 * @name: required node name, NULL or "" for any match
461 *
462 * Checks if the given @compat, @type and @name strings match the
463 * properties of the given @device. A constraints can be skipped by
464 * passing NULL or an empty string as the constraint.
465 *
466 * Returns 0 for no match, and a positive integer on match. The return
467 * value is a relative score with larger values indicating better
468 * matches. The score is weighted for the most specific compatible value
469 * to get the highest score. Matching type is next, followed by matching
470 * name. Practically speaking, this results in the following priority
471 * order for matches:
472 *
473 * 1. specific compatible && type && name
474 * 2. specific compatible && type
475 * 3. specific compatible && name
476 * 4. specific compatible
477 * 5. general compatible && type && name
478 * 6. general compatible && type
479 * 7. general compatible && name
480 * 8. general compatible
481 * 9. type && name
482 * 10. type
483 * 11. name
484 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)485 static int __of_device_is_compatible(const struct device_node *device,
486 const char *compat, const char *type, const char *name)
487 {
488 struct property *prop;
489 const char *cp;
490 int index = 0, score = 0;
491
492 /* Compatible match has highest priority */
493 if (compat && compat[0]) {
494 prop = __of_find_property(device, "compatible", NULL);
495 for (cp = of_prop_next_string(prop, NULL); cp;
496 cp = of_prop_next_string(prop, cp), index++) {
497 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
498 score = INT_MAX/2 - (index << 2);
499 break;
500 }
501 }
502 if (!score)
503 return 0;
504 }
505
506 /* Matching type is better than matching name */
507 if (type && type[0]) {
508 if (!__of_node_is_type(device, type))
509 return 0;
510 score += 2;
511 }
512
513 /* Matching name is a bit better than not */
514 if (name && name[0]) {
515 if (!of_node_name_eq(device, name))
516 return 0;
517 score++;
518 }
519
520 return score;
521 }
522
523 /** Checks if the given "compat" string matches one of the strings in
524 * the device's "compatible" property
525 */
of_device_is_compatible(const struct device_node * device,const char * compat)526 int of_device_is_compatible(const struct device_node *device,
527 const char *compat)
528 {
529 unsigned long flags;
530 int res;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 res = __of_device_is_compatible(device, compat, NULL, NULL);
534 raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 return res;
536 }
537 EXPORT_SYMBOL(of_device_is_compatible);
538
539 /** Checks if the device is compatible with any of the entries in
540 * a NULL terminated array of strings. Returns the best match
541 * score or 0.
542 */
of_device_compatible_match(struct device_node * device,const char * const * compat)543 int of_device_compatible_match(struct device_node *device,
544 const char *const *compat)
545 {
546 unsigned int tmp, score = 0;
547
548 if (!compat)
549 return 0;
550
551 while (*compat) {
552 tmp = of_device_is_compatible(device, *compat);
553 if (tmp > score)
554 score = tmp;
555 compat++;
556 }
557
558 return score;
559 }
560
561 /**
562 * of_machine_is_compatible - Test root of device tree for a given compatible value
563 * @compat: compatible string to look for in root node's compatible property.
564 *
565 * Return: A positive integer if the root node has the given value in its
566 * compatible property.
567 */
of_machine_is_compatible(const char * compat)568 int of_machine_is_compatible(const char *compat)
569 {
570 struct device_node *root;
571 int rc = 0;
572
573 root = of_find_node_by_path("/");
574 if (root) {
575 rc = of_device_is_compatible(root, compat);
576 of_node_put(root);
577 }
578 return rc;
579 }
580 EXPORT_SYMBOL(of_machine_is_compatible);
581
582 /**
583 * __of_device_is_available - check if a device is available for use
584 *
585 * @device: Node to check for availability, with locks already held
586 *
587 * Return: True if the status property is absent or set to "okay" or "ok",
588 * false otherwise
589 */
__of_device_is_available(const struct device_node * device)590 static bool __of_device_is_available(const struct device_node *device)
591 {
592 const char *status;
593 int statlen;
594
595 if (!device)
596 return false;
597
598 status = __of_get_property(device, "status", &statlen);
599 if (status == NULL)
600 return true;
601
602 if (statlen > 0) {
603 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
604 return true;
605 }
606
607 return false;
608 }
609
610 /**
611 * of_device_is_available - check if a device is available for use
612 *
613 * @device: Node to check for availability
614 *
615 * Return: True if the status property is absent or set to "okay" or "ok",
616 * false otherwise
617 */
of_device_is_available(const struct device_node * device)618 bool of_device_is_available(const struct device_node *device)
619 {
620 unsigned long flags;
621 bool res;
622
623 raw_spin_lock_irqsave(&devtree_lock, flags);
624 res = __of_device_is_available(device);
625 raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 return res;
627
628 }
629 EXPORT_SYMBOL(of_device_is_available);
630
631 /**
632 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
633 *
634 * @device: Node to check status for, with locks already held
635 *
636 * Return: True if the status property is set to "fail" or "fail-..." (for any
637 * error code suffix), false otherwise
638 */
__of_device_is_fail(const struct device_node * device)639 static bool __of_device_is_fail(const struct device_node *device)
640 {
641 const char *status;
642
643 if (!device)
644 return false;
645
646 status = __of_get_property(device, "status", NULL);
647 if (status == NULL)
648 return false;
649
650 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
651 }
652
653 /**
654 * of_device_is_big_endian - check if a device has BE registers
655 *
656 * @device: Node to check for endianness
657 *
658 * Return: True if the device has a "big-endian" property, or if the kernel
659 * was compiled for BE *and* the device has a "native-endian" property.
660 * Returns false otherwise.
661 *
662 * Callers would nominally use ioread32be/iowrite32be if
663 * of_device_is_big_endian() == true, or readl/writel otherwise.
664 */
of_device_is_big_endian(const struct device_node * device)665 bool of_device_is_big_endian(const struct device_node *device)
666 {
667 if (of_property_read_bool(device, "big-endian"))
668 return true;
669 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
670 of_property_read_bool(device, "native-endian"))
671 return true;
672 return false;
673 }
674 EXPORT_SYMBOL(of_device_is_big_endian);
675
676 /**
677 * of_get_parent - Get a node's parent if any
678 * @node: Node to get parent
679 *
680 * Return: A node pointer with refcount incremented, use
681 * of_node_put() on it when done.
682 */
of_get_parent(const struct device_node * node)683 struct device_node *of_get_parent(const struct device_node *node)
684 {
685 struct device_node *np;
686 unsigned long flags;
687
688 if (!node)
689 return NULL;
690
691 raw_spin_lock_irqsave(&devtree_lock, flags);
692 np = of_node_get(node->parent);
693 raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 return np;
695 }
696 EXPORT_SYMBOL(of_get_parent);
697
698 /**
699 * of_get_next_parent - Iterate to a node's parent
700 * @node: Node to get parent of
701 *
702 * This is like of_get_parent() except that it drops the
703 * refcount on the passed node, making it suitable for iterating
704 * through a node's parents.
705 *
706 * Return: A node pointer with refcount incremented, use
707 * of_node_put() on it when done.
708 */
of_get_next_parent(struct device_node * node)709 struct device_node *of_get_next_parent(struct device_node *node)
710 {
711 struct device_node *parent;
712 unsigned long flags;
713
714 if (!node)
715 return NULL;
716
717 raw_spin_lock_irqsave(&devtree_lock, flags);
718 parent = of_node_get(node->parent);
719 of_node_put(node);
720 raw_spin_unlock_irqrestore(&devtree_lock, flags);
721 return parent;
722 }
723 EXPORT_SYMBOL(of_get_next_parent);
724
__of_get_next_child(const struct device_node * node,struct device_node * prev)725 static struct device_node *__of_get_next_child(const struct device_node *node,
726 struct device_node *prev)
727 {
728 struct device_node *next;
729
730 if (!node)
731 return NULL;
732
733 next = prev ? prev->sibling : node->child;
734 of_node_get(next);
735 of_node_put(prev);
736 return next;
737 }
738 #define __for_each_child_of_node(parent, child) \
739 for (child = __of_get_next_child(parent, NULL); child != NULL; \
740 child = __of_get_next_child(parent, child))
741
742 /**
743 * of_get_next_child - Iterate a node childs
744 * @node: parent node
745 * @prev: previous child of the parent node, or NULL to get first
746 *
747 * Return: A node pointer with refcount incremented, use of_node_put() on
748 * it when done. Returns NULL when prev is the last child. Decrements the
749 * refcount of prev.
750 */
of_get_next_child(const struct device_node * node,struct device_node * prev)751 struct device_node *of_get_next_child(const struct device_node *node,
752 struct device_node *prev)
753 {
754 struct device_node *next;
755 unsigned long flags;
756
757 raw_spin_lock_irqsave(&devtree_lock, flags);
758 next = __of_get_next_child(node, prev);
759 raw_spin_unlock_irqrestore(&devtree_lock, flags);
760 return next;
761 }
762 EXPORT_SYMBOL(of_get_next_child);
763
764 /**
765 * of_get_next_available_child - Find the next available child node
766 * @node: parent node
767 * @prev: previous child of the parent node, or NULL to get first
768 *
769 * This function is like of_get_next_child(), except that it
770 * automatically skips any disabled nodes (i.e. status = "disabled").
771 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)772 struct device_node *of_get_next_available_child(const struct device_node *node,
773 struct device_node *prev)
774 {
775 struct device_node *next;
776 unsigned long flags;
777
778 if (!node)
779 return NULL;
780
781 raw_spin_lock_irqsave(&devtree_lock, flags);
782 next = prev ? prev->sibling : node->child;
783 for (; next; next = next->sibling) {
784 if (!__of_device_is_available(next))
785 continue;
786 if (of_node_get(next))
787 break;
788 }
789 of_node_put(prev);
790 raw_spin_unlock_irqrestore(&devtree_lock, flags);
791 return next;
792 }
793 EXPORT_SYMBOL(of_get_next_available_child);
794
795 /**
796 * of_get_next_cpu_node - Iterate on cpu nodes
797 * @prev: previous child of the /cpus node, or NULL to get first
798 *
799 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
800 * will be skipped.
801 *
802 * Return: A cpu node pointer with refcount incremented, use of_node_put()
803 * on it when done. Returns NULL when prev is the last child. Decrements
804 * the refcount of prev.
805 */
of_get_next_cpu_node(struct device_node * prev)806 struct device_node *of_get_next_cpu_node(struct device_node *prev)
807 {
808 struct device_node *next = NULL;
809 unsigned long flags;
810 struct device_node *node;
811
812 if (!prev)
813 node = of_find_node_by_path("/cpus");
814
815 raw_spin_lock_irqsave(&devtree_lock, flags);
816 if (prev)
817 next = prev->sibling;
818 else if (node) {
819 next = node->child;
820 of_node_put(node);
821 }
822 for (; next; next = next->sibling) {
823 if (__of_device_is_fail(next))
824 continue;
825 if (!(of_node_name_eq(next, "cpu") ||
826 __of_node_is_type(next, "cpu")))
827 continue;
828 if (of_node_get(next))
829 break;
830 }
831 of_node_put(prev);
832 raw_spin_unlock_irqrestore(&devtree_lock, flags);
833 return next;
834 }
835 EXPORT_SYMBOL(of_get_next_cpu_node);
836
837 /**
838 * of_get_compatible_child - Find compatible child node
839 * @parent: parent node
840 * @compatible: compatible string
841 *
842 * Lookup child node whose compatible property contains the given compatible
843 * string.
844 *
845 * Return: a node pointer with refcount incremented, use of_node_put() on it
846 * when done; or NULL if not found.
847 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)848 struct device_node *of_get_compatible_child(const struct device_node *parent,
849 const char *compatible)
850 {
851 struct device_node *child;
852
853 for_each_child_of_node(parent, child) {
854 if (of_device_is_compatible(child, compatible))
855 break;
856 }
857
858 return child;
859 }
860 EXPORT_SYMBOL(of_get_compatible_child);
861
862 /**
863 * of_get_child_by_name - Find the child node by name for a given parent
864 * @node: parent node
865 * @name: child name to look for.
866 *
867 * This function looks for child node for given matching name
868 *
869 * Return: A node pointer if found, with refcount incremented, use
870 * of_node_put() on it when done.
871 * Returns NULL if node is not found.
872 */
of_get_child_by_name(const struct device_node * node,const char * name)873 struct device_node *of_get_child_by_name(const struct device_node *node,
874 const char *name)
875 {
876 struct device_node *child;
877
878 for_each_child_of_node(node, child)
879 if (of_node_name_eq(child, name))
880 break;
881 return child;
882 }
883 EXPORT_SYMBOL(of_get_child_by_name);
884
__of_find_node_by_path(struct device_node * parent,const char * path)885 struct device_node *__of_find_node_by_path(struct device_node *parent,
886 const char *path)
887 {
888 struct device_node *child;
889 int len;
890
891 len = strcspn(path, "/:");
892 if (!len)
893 return NULL;
894
895 __for_each_child_of_node(parent, child) {
896 const char *name = kbasename(child->full_name);
897 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
898 return child;
899 }
900 return NULL;
901 }
902
__of_find_node_by_full_path(struct device_node * node,const char * path)903 struct device_node *__of_find_node_by_full_path(struct device_node *node,
904 const char *path)
905 {
906 const char *separator = strchr(path, ':');
907
908 while (node && *path == '/') {
909 struct device_node *tmp = node;
910
911 path++; /* Increment past '/' delimiter */
912 node = __of_find_node_by_path(node, path);
913 of_node_put(tmp);
914 path = strchrnul(path, '/');
915 if (separator && separator < path)
916 break;
917 }
918 return node;
919 }
920
921 /**
922 * of_find_node_opts_by_path - Find a node matching a full OF path
923 * @path: Either the full path to match, or if the path does not
924 * start with '/', the name of a property of the /aliases
925 * node (an alias). In the case of an alias, the node
926 * matching the alias' value will be returned.
927 * @opts: Address of a pointer into which to store the start of
928 * an options string appended to the end of the path with
929 * a ':' separator.
930 *
931 * Valid paths:
932 * * /foo/bar Full path
933 * * foo Valid alias
934 * * foo/bar Valid alias + relative path
935 *
936 * Return: A node pointer with refcount incremented, use
937 * of_node_put() on it when done.
938 */
of_find_node_opts_by_path(const char * path,const char ** opts)939 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
940 {
941 struct device_node *np = NULL;
942 struct property *pp;
943 unsigned long flags;
944 const char *separator = strchr(path, ':');
945
946 if (opts)
947 *opts = separator ? separator + 1 : NULL;
948
949 if (strcmp(path, "/") == 0)
950 return of_node_get(of_root);
951
952 /* The path could begin with an alias */
953 if (*path != '/') {
954 int len;
955 const char *p = separator;
956
957 if (!p)
958 p = strchrnul(path, '/');
959 len = p - path;
960
961 /* of_aliases must not be NULL */
962 if (!of_aliases)
963 return NULL;
964
965 for_each_property_of_node(of_aliases, pp) {
966 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
967 np = of_find_node_by_path(pp->value);
968 break;
969 }
970 }
971 if (!np)
972 return NULL;
973 path = p;
974 }
975
976 /* Step down the tree matching path components */
977 raw_spin_lock_irqsave(&devtree_lock, flags);
978 if (!np)
979 np = of_node_get(of_root);
980 np = __of_find_node_by_full_path(np, path);
981 raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 return np;
983 }
984 EXPORT_SYMBOL(of_find_node_opts_by_path);
985
986 /**
987 * of_find_node_by_name - Find a node by its "name" property
988 * @from: The node to start searching from or NULL; the node
989 * you pass will not be searched, only the next one
990 * will. Typically, you pass what the previous call
991 * returned. of_node_put() will be called on @from.
992 * @name: The name string to match against
993 *
994 * Return: A node pointer with refcount incremented, use
995 * of_node_put() on it when done.
996 */
of_find_node_by_name(struct device_node * from,const char * name)997 struct device_node *of_find_node_by_name(struct device_node *from,
998 const char *name)
999 {
1000 struct device_node *np;
1001 unsigned long flags;
1002
1003 raw_spin_lock_irqsave(&devtree_lock, flags);
1004 for_each_of_allnodes_from(from, np)
1005 if (of_node_name_eq(np, name) && of_node_get(np))
1006 break;
1007 of_node_put(from);
1008 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 return np;
1010 }
1011 EXPORT_SYMBOL(of_find_node_by_name);
1012
1013 /**
1014 * of_find_node_by_type - Find a node by its "device_type" property
1015 * @from: The node to start searching from, or NULL to start searching
1016 * the entire device tree. The node you pass will not be
1017 * searched, only the next one will; typically, you pass
1018 * what the previous call returned. of_node_put() will be
1019 * called on from for you.
1020 * @type: The type string to match against
1021 *
1022 * Return: A node pointer with refcount incremented, use
1023 * of_node_put() on it when done.
1024 */
of_find_node_by_type(struct device_node * from,const char * type)1025 struct device_node *of_find_node_by_type(struct device_node *from,
1026 const char *type)
1027 {
1028 struct device_node *np;
1029 unsigned long flags;
1030
1031 raw_spin_lock_irqsave(&devtree_lock, flags);
1032 for_each_of_allnodes_from(from, np)
1033 if (__of_node_is_type(np, type) && of_node_get(np))
1034 break;
1035 of_node_put(from);
1036 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037 return np;
1038 }
1039 EXPORT_SYMBOL(of_find_node_by_type);
1040
1041 /**
1042 * of_find_compatible_node - Find a node based on type and one of the
1043 * tokens in its "compatible" property
1044 * @from: The node to start searching from or NULL, the node
1045 * you pass will not be searched, only the next one
1046 * will; typically, you pass what the previous call
1047 * returned. of_node_put() will be called on it
1048 * @type: The type string to match "device_type" or NULL to ignore
1049 * @compatible: The string to match to one of the tokens in the device
1050 * "compatible" list.
1051 *
1052 * Return: A node pointer with refcount incremented, use
1053 * of_node_put() on it when done.
1054 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1055 struct device_node *of_find_compatible_node(struct device_node *from,
1056 const char *type, const char *compatible)
1057 {
1058 struct device_node *np;
1059 unsigned long flags;
1060
1061 raw_spin_lock_irqsave(&devtree_lock, flags);
1062 for_each_of_allnodes_from(from, np)
1063 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1064 of_node_get(np))
1065 break;
1066 of_node_put(from);
1067 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068 return np;
1069 }
1070 EXPORT_SYMBOL(of_find_compatible_node);
1071
1072 /**
1073 * of_find_node_with_property - Find a node which has a property with
1074 * the given name.
1075 * @from: The node to start searching from or NULL, the node
1076 * you pass will not be searched, only the next one
1077 * will; typically, you pass what the previous call
1078 * returned. of_node_put() will be called on it
1079 * @prop_name: The name of the property to look for.
1080 *
1081 * Return: A node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1084 struct device_node *of_find_node_with_property(struct device_node *from,
1085 const char *prop_name)
1086 {
1087 struct device_node *np;
1088 struct property *pp;
1089 unsigned long flags;
1090
1091 raw_spin_lock_irqsave(&devtree_lock, flags);
1092 for_each_of_allnodes_from(from, np) {
1093 for (pp = np->properties; pp; pp = pp->next) {
1094 if (of_prop_cmp(pp->name, prop_name) == 0) {
1095 of_node_get(np);
1096 goto out;
1097 }
1098 }
1099 }
1100 out:
1101 of_node_put(from);
1102 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1103 return np;
1104 }
1105 EXPORT_SYMBOL(of_find_node_with_property);
1106
1107 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1108 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1109 const struct device_node *node)
1110 {
1111 const struct of_device_id *best_match = NULL;
1112 int score, best_score = 0;
1113
1114 if (!matches)
1115 return NULL;
1116
1117 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1118 score = __of_device_is_compatible(node, matches->compatible,
1119 matches->type, matches->name);
1120 if (score > best_score) {
1121 best_match = matches;
1122 best_score = score;
1123 }
1124 }
1125
1126 return best_match;
1127 }
1128
1129 /**
1130 * of_match_node - Tell if a device_node has a matching of_match structure
1131 * @matches: array of of device match structures to search in
1132 * @node: the of device structure to match against
1133 *
1134 * Low level utility function used by device matching.
1135 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1136 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1137 const struct device_node *node)
1138 {
1139 const struct of_device_id *match;
1140 unsigned long flags;
1141
1142 raw_spin_lock_irqsave(&devtree_lock, flags);
1143 match = __of_match_node(matches, node);
1144 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1145 return match;
1146 }
1147 EXPORT_SYMBOL(of_match_node);
1148
1149 /**
1150 * of_find_matching_node_and_match - Find a node based on an of_device_id
1151 * match table.
1152 * @from: The node to start searching from or NULL, the node
1153 * you pass will not be searched, only the next one
1154 * will; typically, you pass what the previous call
1155 * returned. of_node_put() will be called on it
1156 * @matches: array of of device match structures to search in
1157 * @match: Updated to point at the matches entry which matched
1158 *
1159 * Return: A node pointer with refcount incremented, use
1160 * of_node_put() on it when done.
1161 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1162 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1163 const struct of_device_id *matches,
1164 const struct of_device_id **match)
1165 {
1166 struct device_node *np;
1167 const struct of_device_id *m;
1168 unsigned long flags;
1169
1170 if (match)
1171 *match = NULL;
1172
1173 raw_spin_lock_irqsave(&devtree_lock, flags);
1174 for_each_of_allnodes_from(from, np) {
1175 m = __of_match_node(matches, np);
1176 if (m && of_node_get(np)) {
1177 if (match)
1178 *match = m;
1179 break;
1180 }
1181 }
1182 of_node_put(from);
1183 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1184 return np;
1185 }
1186 EXPORT_SYMBOL(of_find_matching_node_and_match);
1187
1188 /**
1189 * of_modalias_node - Lookup appropriate modalias for a device node
1190 * @node: pointer to a device tree node
1191 * @modalias: Pointer to buffer that modalias value will be copied into
1192 * @len: Length of modalias value
1193 *
1194 * Based on the value of the compatible property, this routine will attempt
1195 * to choose an appropriate modalias value for a particular device tree node.
1196 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1197 * from the first entry in the compatible list property.
1198 *
1199 * Return: This routine returns 0 on success, <0 on failure.
1200 */
of_modalias_node(struct device_node * node,char * modalias,int len)1201 int of_modalias_node(struct device_node *node, char *modalias, int len)
1202 {
1203 const char *compatible, *p;
1204 int cplen;
1205
1206 compatible = of_get_property(node, "compatible", &cplen);
1207 if (!compatible || strlen(compatible) > cplen)
1208 return -ENODEV;
1209 p = strchr(compatible, ',');
1210 strlcpy(modalias, p ? p + 1 : compatible, len);
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_modalias_node);
1214
1215 /**
1216 * of_find_node_by_phandle - Find a node given a phandle
1217 * @handle: phandle of the node to find
1218 *
1219 * Return: A node pointer with refcount incremented, use
1220 * of_node_put() on it when done.
1221 */
of_find_node_by_phandle(phandle handle)1222 struct device_node *of_find_node_by_phandle(phandle handle)
1223 {
1224 struct device_node *np = NULL;
1225 unsigned long flags;
1226 u32 handle_hash;
1227
1228 if (!handle)
1229 return NULL;
1230
1231 handle_hash = of_phandle_cache_hash(handle);
1232
1233 raw_spin_lock_irqsave(&devtree_lock, flags);
1234
1235 if (phandle_cache[handle_hash] &&
1236 handle == phandle_cache[handle_hash]->phandle)
1237 np = phandle_cache[handle_hash];
1238
1239 if (!np) {
1240 for_each_of_allnodes(np)
1241 if (np->phandle == handle &&
1242 !of_node_check_flag(np, OF_DETACHED)) {
1243 phandle_cache[handle_hash] = np;
1244 break;
1245 }
1246 }
1247
1248 of_node_get(np);
1249 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1250 return np;
1251 }
1252 EXPORT_SYMBOL(of_find_node_by_phandle);
1253
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1254 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1255 {
1256 int i;
1257 printk("%s %pOF", msg, args->np);
1258 for (i = 0; i < args->args_count; i++) {
1259 const char delim = i ? ',' : ':';
1260
1261 pr_cont("%c%08x", delim, args->args[i]);
1262 }
1263 pr_cont("\n");
1264 }
1265
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1266 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1267 const struct device_node *np,
1268 const char *list_name,
1269 const char *cells_name,
1270 int cell_count)
1271 {
1272 const __be32 *list;
1273 int size;
1274
1275 memset(it, 0, sizeof(*it));
1276
1277 /*
1278 * one of cell_count or cells_name must be provided to determine the
1279 * argument length.
1280 */
1281 if (cell_count < 0 && !cells_name)
1282 return -EINVAL;
1283
1284 list = of_get_property(np, list_name, &size);
1285 if (!list)
1286 return -ENOENT;
1287
1288 it->cells_name = cells_name;
1289 it->cell_count = cell_count;
1290 it->parent = np;
1291 it->list_end = list + size / sizeof(*list);
1292 it->phandle_end = list;
1293 it->cur = list;
1294
1295 return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1298
of_phandle_iterator_next(struct of_phandle_iterator * it)1299 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1300 {
1301 uint32_t count = 0;
1302
1303 if (it->node) {
1304 of_node_put(it->node);
1305 it->node = NULL;
1306 }
1307
1308 if (!it->cur || it->phandle_end >= it->list_end)
1309 return -ENOENT;
1310
1311 it->cur = it->phandle_end;
1312
1313 /* If phandle is 0, then it is an empty entry with no arguments. */
1314 it->phandle = be32_to_cpup(it->cur++);
1315
1316 if (it->phandle) {
1317
1318 /*
1319 * Find the provider node and parse the #*-cells property to
1320 * determine the argument length.
1321 */
1322 it->node = of_find_node_by_phandle(it->phandle);
1323
1324 if (it->cells_name) {
1325 if (!it->node) {
1326 pr_err("%pOF: could not find phandle %d\n",
1327 it->parent, it->phandle);
1328 goto err;
1329 }
1330
1331 if (of_property_read_u32(it->node, it->cells_name,
1332 &count)) {
1333 /*
1334 * If both cell_count and cells_name is given,
1335 * fall back to cell_count in absence
1336 * of the cells_name property
1337 */
1338 if (it->cell_count >= 0) {
1339 count = it->cell_count;
1340 } else {
1341 pr_err("%pOF: could not get %s for %pOF\n",
1342 it->parent,
1343 it->cells_name,
1344 it->node);
1345 goto err;
1346 }
1347 }
1348 } else {
1349 count = it->cell_count;
1350 }
1351
1352 /*
1353 * Make sure that the arguments actually fit in the remaining
1354 * property data length
1355 */
1356 if (it->cur + count > it->list_end) {
1357 if (it->cells_name)
1358 pr_err("%pOF: %s = %d found %td\n",
1359 it->parent, it->cells_name,
1360 count, it->list_end - it->cur);
1361 else
1362 pr_err("%pOF: phandle %s needs %d, found %td\n",
1363 it->parent, of_node_full_name(it->node),
1364 count, it->list_end - it->cur);
1365 goto err;
1366 }
1367 }
1368
1369 it->phandle_end = it->cur + count;
1370 it->cur_count = count;
1371
1372 return 0;
1373
1374 err:
1375 if (it->node) {
1376 of_node_put(it->node);
1377 it->node = NULL;
1378 }
1379
1380 return -EINVAL;
1381 }
1382 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1383
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1384 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1385 uint32_t *args,
1386 int size)
1387 {
1388 int i, count;
1389
1390 count = it->cur_count;
1391
1392 if (WARN_ON(size < count))
1393 count = size;
1394
1395 for (i = 0; i < count; i++)
1396 args[i] = be32_to_cpup(it->cur++);
1397
1398 return count;
1399 }
1400
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1401 static int __of_parse_phandle_with_args(const struct device_node *np,
1402 const char *list_name,
1403 const char *cells_name,
1404 int cell_count, int index,
1405 struct of_phandle_args *out_args)
1406 {
1407 struct of_phandle_iterator it;
1408 int rc, cur_index = 0;
1409
1410 /* Loop over the phandles until all the requested entry is found */
1411 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1412 /*
1413 * All of the error cases bail out of the loop, so at
1414 * this point, the parsing is successful. If the requested
1415 * index matches, then fill the out_args structure and return,
1416 * or return -ENOENT for an empty entry.
1417 */
1418 rc = -ENOENT;
1419 if (cur_index == index) {
1420 if (!it.phandle)
1421 goto err;
1422
1423 if (out_args) {
1424 int c;
1425
1426 c = of_phandle_iterator_args(&it,
1427 out_args->args,
1428 MAX_PHANDLE_ARGS);
1429 out_args->np = it.node;
1430 out_args->args_count = c;
1431 } else {
1432 of_node_put(it.node);
1433 }
1434
1435 /* Found it! return success */
1436 return 0;
1437 }
1438
1439 cur_index++;
1440 }
1441
1442 /*
1443 * Unlock node before returning result; will be one of:
1444 * -ENOENT : index is for empty phandle
1445 * -EINVAL : parsing error on data
1446 */
1447
1448 err:
1449 of_node_put(it.node);
1450 return rc;
1451 }
1452
1453 /**
1454 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1455 * @np: Pointer to device node holding phandle property
1456 * @phandle_name: Name of property holding a phandle value
1457 * @index: For properties holding a table of phandles, this is the index into
1458 * the table
1459 *
1460 * Return: The device_node pointer with refcount incremented. Use
1461 * of_node_put() on it when done.
1462 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1463 struct device_node *of_parse_phandle(const struct device_node *np,
1464 const char *phandle_name, int index)
1465 {
1466 struct of_phandle_args args;
1467
1468 if (index < 0)
1469 return NULL;
1470
1471 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1472 index, &args))
1473 return NULL;
1474
1475 return args.np;
1476 }
1477 EXPORT_SYMBOL(of_parse_phandle);
1478
1479 /**
1480 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1481 * @np: pointer to a device tree node containing a list
1482 * @list_name: property name that contains a list
1483 * @cells_name: property name that specifies phandles' arguments count
1484 * @index: index of a phandle to parse out
1485 * @out_args: optional pointer to output arguments structure (will be filled)
1486 *
1487 * This function is useful to parse lists of phandles and their arguments.
1488 * Returns 0 on success and fills out_args, on error returns appropriate
1489 * errno value.
1490 *
1491 * Caller is responsible to call of_node_put() on the returned out_args->np
1492 * pointer.
1493 *
1494 * Example::
1495 *
1496 * phandle1: node1 {
1497 * #list-cells = <2>;
1498 * };
1499 *
1500 * phandle2: node2 {
1501 * #list-cells = <1>;
1502 * };
1503 *
1504 * node3 {
1505 * list = <&phandle1 1 2 &phandle2 3>;
1506 * };
1507 *
1508 * To get a device_node of the ``node2`` node you may call this:
1509 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1510 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1511 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1512 const char *cells_name, int index,
1513 struct of_phandle_args *out_args)
1514 {
1515 int cell_count = -1;
1516
1517 if (index < 0)
1518 return -EINVAL;
1519
1520 /* If cells_name is NULL we assume a cell count of 0 */
1521 if (!cells_name)
1522 cell_count = 0;
1523
1524 return __of_parse_phandle_with_args(np, list_name, cells_name,
1525 cell_count, index, out_args);
1526 }
1527 EXPORT_SYMBOL(of_parse_phandle_with_args);
1528
1529 /**
1530 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1531 * @np: pointer to a device tree node containing a list
1532 * @list_name: property name that contains a list
1533 * @stem_name: stem of property names that specify phandles' arguments count
1534 * @index: index of a phandle to parse out
1535 * @out_args: optional pointer to output arguments structure (will be filled)
1536 *
1537 * This function is useful to parse lists of phandles and their arguments.
1538 * Returns 0 on success and fills out_args, on error returns appropriate errno
1539 * value. The difference between this function and of_parse_phandle_with_args()
1540 * is that this API remaps a phandle if the node the phandle points to has
1541 * a <@stem_name>-map property.
1542 *
1543 * Caller is responsible to call of_node_put() on the returned out_args->np
1544 * pointer.
1545 *
1546 * Example::
1547 *
1548 * phandle1: node1 {
1549 * #list-cells = <2>;
1550 * };
1551 *
1552 * phandle2: node2 {
1553 * #list-cells = <1>;
1554 * };
1555 *
1556 * phandle3: node3 {
1557 * #list-cells = <1>;
1558 * list-map = <0 &phandle2 3>,
1559 * <1 &phandle2 2>,
1560 * <2 &phandle1 5 1>;
1561 * list-map-mask = <0x3>;
1562 * };
1563 *
1564 * node4 {
1565 * list = <&phandle1 1 2 &phandle3 0>;
1566 * };
1567 *
1568 * To get a device_node of the ``node2`` node you may call this:
1569 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1570 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1571 int of_parse_phandle_with_args_map(const struct device_node *np,
1572 const char *list_name,
1573 const char *stem_name,
1574 int index, struct of_phandle_args *out_args)
1575 {
1576 char *cells_name, *map_name = NULL, *mask_name = NULL;
1577 char *pass_name = NULL;
1578 struct device_node *cur, *new = NULL;
1579 const __be32 *map, *mask, *pass;
1580 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1581 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1582 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1583 const __be32 *match_array = initial_match_array;
1584 int i, ret, map_len, match;
1585 u32 list_size, new_size;
1586
1587 if (index < 0)
1588 return -EINVAL;
1589
1590 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1591 if (!cells_name)
1592 return -ENOMEM;
1593
1594 ret = -ENOMEM;
1595 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1596 if (!map_name)
1597 goto free;
1598
1599 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1600 if (!mask_name)
1601 goto free;
1602
1603 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1604 if (!pass_name)
1605 goto free;
1606
1607 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1608 out_args);
1609 if (ret)
1610 goto free;
1611
1612 /* Get the #<list>-cells property */
1613 cur = out_args->np;
1614 ret = of_property_read_u32(cur, cells_name, &list_size);
1615 if (ret < 0)
1616 goto put;
1617
1618 /* Precalculate the match array - this simplifies match loop */
1619 for (i = 0; i < list_size; i++)
1620 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1621
1622 ret = -EINVAL;
1623 while (cur) {
1624 /* Get the <list>-map property */
1625 map = of_get_property(cur, map_name, &map_len);
1626 if (!map) {
1627 ret = 0;
1628 goto free;
1629 }
1630 map_len /= sizeof(u32);
1631
1632 /* Get the <list>-map-mask property (optional) */
1633 mask = of_get_property(cur, mask_name, NULL);
1634 if (!mask)
1635 mask = dummy_mask;
1636 /* Iterate through <list>-map property */
1637 match = 0;
1638 while (map_len > (list_size + 1) && !match) {
1639 /* Compare specifiers */
1640 match = 1;
1641 for (i = 0; i < list_size; i++, map_len--)
1642 match &= !((match_array[i] ^ *map++) & mask[i]);
1643
1644 of_node_put(new);
1645 new = of_find_node_by_phandle(be32_to_cpup(map));
1646 map++;
1647 map_len--;
1648
1649 /* Check if not found */
1650 if (!new)
1651 goto put;
1652
1653 if (!of_device_is_available(new))
1654 match = 0;
1655
1656 ret = of_property_read_u32(new, cells_name, &new_size);
1657 if (ret)
1658 goto put;
1659
1660 /* Check for malformed properties */
1661 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1662 goto put;
1663 if (map_len < new_size)
1664 goto put;
1665
1666 /* Move forward by new node's #<list>-cells amount */
1667 map += new_size;
1668 map_len -= new_size;
1669 }
1670 if (!match)
1671 goto put;
1672
1673 /* Get the <list>-map-pass-thru property (optional) */
1674 pass = of_get_property(cur, pass_name, NULL);
1675 if (!pass)
1676 pass = dummy_pass;
1677
1678 /*
1679 * Successfully parsed a <list>-map translation; copy new
1680 * specifier into the out_args structure, keeping the
1681 * bits specified in <list>-map-pass-thru.
1682 */
1683 match_array = map - new_size;
1684 for (i = 0; i < new_size; i++) {
1685 __be32 val = *(map - new_size + i);
1686
1687 if (i < list_size) {
1688 val &= ~pass[i];
1689 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1690 }
1691
1692 out_args->args[i] = be32_to_cpu(val);
1693 }
1694 out_args->args_count = list_size = new_size;
1695 /* Iterate again with new provider */
1696 out_args->np = new;
1697 of_node_put(cur);
1698 cur = new;
1699 new = NULL;
1700 }
1701 put:
1702 of_node_put(cur);
1703 of_node_put(new);
1704 free:
1705 kfree(mask_name);
1706 kfree(map_name);
1707 kfree(cells_name);
1708 kfree(pass_name);
1709
1710 return ret;
1711 }
1712 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1713
1714 /**
1715 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1716 * @np: pointer to a device tree node containing a list
1717 * @list_name: property name that contains a list
1718 * @cell_count: number of argument cells following the phandle
1719 * @index: index of a phandle to parse out
1720 * @out_args: optional pointer to output arguments structure (will be filled)
1721 *
1722 * This function is useful to parse lists of phandles and their arguments.
1723 * Returns 0 on success and fills out_args, on error returns appropriate
1724 * errno value.
1725 *
1726 * Caller is responsible to call of_node_put() on the returned out_args->np
1727 * pointer.
1728 *
1729 * Example::
1730 *
1731 * phandle1: node1 {
1732 * };
1733 *
1734 * phandle2: node2 {
1735 * };
1736 *
1737 * node3 {
1738 * list = <&phandle1 0 2 &phandle2 2 3>;
1739 * };
1740 *
1741 * To get a device_node of the ``node2`` node you may call this:
1742 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1743 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1744 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1745 const char *list_name, int cell_count,
1746 int index, struct of_phandle_args *out_args)
1747 {
1748 if (index < 0)
1749 return -EINVAL;
1750 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1751 index, out_args);
1752 }
1753 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1754
1755 /**
1756 * of_count_phandle_with_args() - Find the number of phandles references in a property
1757 * @np: pointer to a device tree node containing a list
1758 * @list_name: property name that contains a list
1759 * @cells_name: property name that specifies phandles' arguments count
1760 *
1761 * Return: The number of phandle + argument tuples within a property. It
1762 * is a typical pattern to encode a list of phandle and variable
1763 * arguments into a single property. The number of arguments is encoded
1764 * by a property in the phandle-target node. For example, a gpios
1765 * property would contain a list of GPIO specifies consisting of a
1766 * phandle and 1 or more arguments. The number of arguments are
1767 * determined by the #gpio-cells property in the node pointed to by the
1768 * phandle.
1769 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1770 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1771 const char *cells_name)
1772 {
1773 struct of_phandle_iterator it;
1774 int rc, cur_index = 0;
1775
1776 /*
1777 * If cells_name is NULL we assume a cell count of 0. This makes
1778 * counting the phandles trivial as each 32bit word in the list is a
1779 * phandle and no arguments are to consider. So we don't iterate through
1780 * the list but just use the length to determine the phandle count.
1781 */
1782 if (!cells_name) {
1783 const __be32 *list;
1784 int size;
1785
1786 list = of_get_property(np, list_name, &size);
1787 if (!list)
1788 return -ENOENT;
1789
1790 return size / sizeof(*list);
1791 }
1792
1793 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1794 if (rc)
1795 return rc;
1796
1797 while ((rc = of_phandle_iterator_next(&it)) == 0)
1798 cur_index += 1;
1799
1800 if (rc != -ENOENT)
1801 return rc;
1802
1803 return cur_index;
1804 }
1805 EXPORT_SYMBOL(of_count_phandle_with_args);
1806
1807 /**
1808 * __of_add_property - Add a property to a node without lock operations
1809 * @np: Caller's Device Node
1810 * @prop: Property to add
1811 */
__of_add_property(struct device_node * np,struct property * prop)1812 int __of_add_property(struct device_node *np, struct property *prop)
1813 {
1814 struct property **next;
1815
1816 prop->next = NULL;
1817 next = &np->properties;
1818 while (*next) {
1819 if (strcmp(prop->name, (*next)->name) == 0)
1820 /* duplicate ! don't insert it */
1821 return -EEXIST;
1822
1823 next = &(*next)->next;
1824 }
1825 *next = prop;
1826
1827 return 0;
1828 }
1829
1830 /**
1831 * of_add_property - Add a property to a node
1832 * @np: Caller's Device Node
1833 * @prop: Property to add
1834 */
of_add_property(struct device_node * np,struct property * prop)1835 int of_add_property(struct device_node *np, struct property *prop)
1836 {
1837 unsigned long flags;
1838 int rc;
1839
1840 mutex_lock(&of_mutex);
1841
1842 raw_spin_lock_irqsave(&devtree_lock, flags);
1843 rc = __of_add_property(np, prop);
1844 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1845
1846 if (!rc)
1847 __of_add_property_sysfs(np, prop);
1848
1849 mutex_unlock(&of_mutex);
1850
1851 if (!rc)
1852 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1853
1854 return rc;
1855 }
1856 EXPORT_SYMBOL_GPL(of_add_property);
1857
__of_remove_property(struct device_node * np,struct property * prop)1858 int __of_remove_property(struct device_node *np, struct property *prop)
1859 {
1860 struct property **next;
1861
1862 for (next = &np->properties; *next; next = &(*next)->next) {
1863 if (*next == prop)
1864 break;
1865 }
1866 if (*next == NULL)
1867 return -ENODEV;
1868
1869 /* found the node */
1870 *next = prop->next;
1871 prop->next = np->deadprops;
1872 np->deadprops = prop;
1873
1874 return 0;
1875 }
1876
1877 /**
1878 * of_remove_property - Remove a property from a node.
1879 * @np: Caller's Device Node
1880 * @prop: Property to remove
1881 *
1882 * Note that we don't actually remove it, since we have given out
1883 * who-knows-how-many pointers to the data using get-property.
1884 * Instead we just move the property to the "dead properties"
1885 * list, so it won't be found any more.
1886 */
of_remove_property(struct device_node * np,struct property * prop)1887 int of_remove_property(struct device_node *np, struct property *prop)
1888 {
1889 unsigned long flags;
1890 int rc;
1891
1892 if (!prop)
1893 return -ENODEV;
1894
1895 mutex_lock(&of_mutex);
1896
1897 raw_spin_lock_irqsave(&devtree_lock, flags);
1898 rc = __of_remove_property(np, prop);
1899 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1900
1901 if (!rc)
1902 __of_remove_property_sysfs(np, prop);
1903
1904 mutex_unlock(&of_mutex);
1905
1906 if (!rc)
1907 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1908
1909 return rc;
1910 }
1911 EXPORT_SYMBOL_GPL(of_remove_property);
1912
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1913 int __of_update_property(struct device_node *np, struct property *newprop,
1914 struct property **oldpropp)
1915 {
1916 struct property **next, *oldprop;
1917
1918 for (next = &np->properties; *next; next = &(*next)->next) {
1919 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1920 break;
1921 }
1922 *oldpropp = oldprop = *next;
1923
1924 if (oldprop) {
1925 /* replace the node */
1926 newprop->next = oldprop->next;
1927 *next = newprop;
1928 oldprop->next = np->deadprops;
1929 np->deadprops = oldprop;
1930 } else {
1931 /* new node */
1932 newprop->next = NULL;
1933 *next = newprop;
1934 }
1935
1936 return 0;
1937 }
1938
1939 /*
1940 * of_update_property - Update a property in a node, if the property does
1941 * not exist, add it.
1942 *
1943 * Note that we don't actually remove it, since we have given out
1944 * who-knows-how-many pointers to the data using get-property.
1945 * Instead we just move the property to the "dead properties" list,
1946 * and add the new property to the property list
1947 */
of_update_property(struct device_node * np,struct property * newprop)1948 int of_update_property(struct device_node *np, struct property *newprop)
1949 {
1950 struct property *oldprop;
1951 unsigned long flags;
1952 int rc;
1953
1954 if (!newprop->name)
1955 return -EINVAL;
1956
1957 mutex_lock(&of_mutex);
1958
1959 raw_spin_lock_irqsave(&devtree_lock, flags);
1960 rc = __of_update_property(np, newprop, &oldprop);
1961 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1962
1963 if (!rc)
1964 __of_update_property_sysfs(np, newprop, oldprop);
1965
1966 mutex_unlock(&of_mutex);
1967
1968 if (!rc)
1969 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1970
1971 return rc;
1972 }
1973
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1974 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1975 int id, const char *stem, int stem_len)
1976 {
1977 ap->np = np;
1978 ap->id = id;
1979 strncpy(ap->stem, stem, stem_len);
1980 ap->stem[stem_len] = 0;
1981 list_add_tail(&ap->link, &aliases_lookup);
1982 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1983 ap->alias, ap->stem, ap->id, np);
1984 }
1985
1986 /**
1987 * of_alias_scan - Scan all properties of the 'aliases' node
1988 * @dt_alloc: An allocator that provides a virtual address to memory
1989 * for storing the resulting tree
1990 *
1991 * The function scans all the properties of the 'aliases' node and populates
1992 * the global lookup table with the properties. It returns the
1993 * number of alias properties found, or an error code in case of failure.
1994 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1995 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1996 {
1997 struct property *pp;
1998
1999 of_aliases = of_find_node_by_path("/aliases");
2000 of_chosen = of_find_node_by_path("/chosen");
2001 if (of_chosen == NULL)
2002 of_chosen = of_find_node_by_path("/chosen@0");
2003
2004 if (of_chosen) {
2005 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2006 const char *name = NULL;
2007
2008 if (of_property_read_string(of_chosen, "stdout-path", &name))
2009 of_property_read_string(of_chosen, "linux,stdout-path",
2010 &name);
2011 if (IS_ENABLED(CONFIG_PPC) && !name)
2012 of_property_read_string(of_aliases, "stdout", &name);
2013 if (name)
2014 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2015 }
2016
2017 if (!of_aliases)
2018 return;
2019
2020 for_each_property_of_node(of_aliases, pp) {
2021 const char *start = pp->name;
2022 const char *end = start + strlen(start);
2023 struct device_node *np;
2024 struct alias_prop *ap;
2025 int id, len;
2026
2027 /* Skip those we do not want to proceed */
2028 if (!strcmp(pp->name, "name") ||
2029 !strcmp(pp->name, "phandle") ||
2030 !strcmp(pp->name, "linux,phandle"))
2031 continue;
2032
2033 np = of_find_node_by_path(pp->value);
2034 if (!np)
2035 continue;
2036
2037 /* walk the alias backwards to extract the id and work out
2038 * the 'stem' string */
2039 while (isdigit(*(end-1)) && end > start)
2040 end--;
2041 len = end - start;
2042
2043 if (kstrtoint(end, 10, &id) < 0)
2044 continue;
2045
2046 /* Allocate an alias_prop with enough space for the stem */
2047 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2048 if (!ap)
2049 continue;
2050 memset(ap, 0, sizeof(*ap) + len + 1);
2051 ap->alias = start;
2052 of_alias_add(ap, np, id, start, len);
2053 }
2054 }
2055
2056 /**
2057 * of_alias_get_id - Get alias id for the given device_node
2058 * @np: Pointer to the given device_node
2059 * @stem: Alias stem of the given device_node
2060 *
2061 * The function travels the lookup table to get the alias id for the given
2062 * device_node and alias stem.
2063 *
2064 * Return: The alias id if found.
2065 */
of_alias_get_id(struct device_node * np,const char * stem)2066 int of_alias_get_id(struct device_node *np, const char *stem)
2067 {
2068 struct alias_prop *app;
2069 int id = -ENODEV;
2070
2071 mutex_lock(&of_mutex);
2072 list_for_each_entry(app, &aliases_lookup, link) {
2073 if (strcmp(app->stem, stem) != 0)
2074 continue;
2075
2076 if (np == app->np) {
2077 id = app->id;
2078 break;
2079 }
2080 }
2081 mutex_unlock(&of_mutex);
2082
2083 return id;
2084 }
2085 EXPORT_SYMBOL_GPL(of_alias_get_id);
2086
2087 /**
2088 * of_alias_get_alias_list - Get alias list for the given device driver
2089 * @matches: Array of OF device match structures to search in
2090 * @stem: Alias stem of the given device_node
2091 * @bitmap: Bitmap field pointer
2092 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2093 *
2094 * The function travels the lookup table to record alias ids for the given
2095 * device match structures and alias stem.
2096 *
2097 * Return: 0 or -ENOSYS when !CONFIG_OF or
2098 * -EOVERFLOW if alias ID is greater then allocated nbits
2099 */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2100 int of_alias_get_alias_list(const struct of_device_id *matches,
2101 const char *stem, unsigned long *bitmap,
2102 unsigned int nbits)
2103 {
2104 struct alias_prop *app;
2105 int ret = 0;
2106
2107 /* Zero bitmap field to make sure that all the time it is clean */
2108 bitmap_zero(bitmap, nbits);
2109
2110 mutex_lock(&of_mutex);
2111 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2112 list_for_each_entry(app, &aliases_lookup, link) {
2113 pr_debug("%s: stem: %s, id: %d\n",
2114 __func__, app->stem, app->id);
2115
2116 if (strcmp(app->stem, stem) != 0) {
2117 pr_debug("%s: stem comparison didn't pass %s\n",
2118 __func__, app->stem);
2119 continue;
2120 }
2121
2122 if (of_match_node(matches, app->np)) {
2123 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2124
2125 if (app->id >= nbits) {
2126 pr_warn("%s: ID %d >= than bitmap field %d\n",
2127 __func__, app->id, nbits);
2128 ret = -EOVERFLOW;
2129 } else {
2130 set_bit(app->id, bitmap);
2131 }
2132 }
2133 }
2134 mutex_unlock(&of_mutex);
2135
2136 return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2139
2140 /**
2141 * of_alias_get_highest_id - Get highest alias id for the given stem
2142 * @stem: Alias stem to be examined
2143 *
2144 * The function travels the lookup table to get the highest alias id for the
2145 * given alias stem. It returns the alias id if found.
2146 */
of_alias_get_highest_id(const char * stem)2147 int of_alias_get_highest_id(const char *stem)
2148 {
2149 struct alias_prop *app;
2150 int id = -ENODEV;
2151
2152 mutex_lock(&of_mutex);
2153 list_for_each_entry(app, &aliases_lookup, link) {
2154 if (strcmp(app->stem, stem) != 0)
2155 continue;
2156
2157 if (app->id > id)
2158 id = app->id;
2159 }
2160 mutex_unlock(&of_mutex);
2161
2162 return id;
2163 }
2164 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2165
2166 /**
2167 * of_console_check() - Test and setup console for DT setup
2168 * @dn: Pointer to device node
2169 * @name: Name to use for preferred console without index. ex. "ttyS"
2170 * @index: Index to use for preferred console.
2171 *
2172 * Check if the given device node matches the stdout-path property in the
2173 * /chosen node. If it does then register it as the preferred console.
2174 *
2175 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2176 */
of_console_check(struct device_node * dn,char * name,int index)2177 bool of_console_check(struct device_node *dn, char *name, int index)
2178 {
2179 if (!dn || dn != of_stdout || console_set_on_cmdline)
2180 return false;
2181
2182 /*
2183 * XXX: cast `options' to char pointer to suppress complication
2184 * warnings: printk, UART and console drivers expect char pointer.
2185 */
2186 return !add_preferred_console(name, index, (char *)of_stdout_options);
2187 }
2188 EXPORT_SYMBOL_GPL(of_console_check);
2189
2190 /**
2191 * of_find_next_cache_node - Find a node's subsidiary cache
2192 * @np: node of type "cpu" or "cache"
2193 *
2194 * Return: A node pointer with refcount incremented, use
2195 * of_node_put() on it when done. Caller should hold a reference
2196 * to np.
2197 */
of_find_next_cache_node(const struct device_node * np)2198 struct device_node *of_find_next_cache_node(const struct device_node *np)
2199 {
2200 struct device_node *child, *cache_node;
2201
2202 cache_node = of_parse_phandle(np, "l2-cache", 0);
2203 if (!cache_node)
2204 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2205
2206 if (cache_node)
2207 return cache_node;
2208
2209 /* OF on pmac has nodes instead of properties named "l2-cache"
2210 * beneath CPU nodes.
2211 */
2212 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2213 for_each_child_of_node(np, child)
2214 if (of_node_is_type(child, "cache"))
2215 return child;
2216
2217 return NULL;
2218 }
2219
2220 /**
2221 * of_find_last_cache_level - Find the level at which the last cache is
2222 * present for the given logical cpu
2223 *
2224 * @cpu: cpu number(logical index) for which the last cache level is needed
2225 *
2226 * Return: The the level at which the last cache is present. It is exactly
2227 * same as the total number of cache levels for the given logical cpu.
2228 */
of_find_last_cache_level(unsigned int cpu)2229 int of_find_last_cache_level(unsigned int cpu)
2230 {
2231 u32 cache_level = 0;
2232 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2233
2234 while (np) {
2235 prev = np;
2236 of_node_put(np);
2237 np = of_find_next_cache_node(np);
2238 }
2239
2240 of_property_read_u32(prev, "cache-level", &cache_level);
2241
2242 return cache_level;
2243 }
2244
2245 /**
2246 * of_map_id - Translate an ID through a downstream mapping.
2247 * @np: root complex device node.
2248 * @id: device ID to map.
2249 * @map_name: property name of the map to use.
2250 * @map_mask_name: optional property name of the mask to use.
2251 * @target: optional pointer to a target device node.
2252 * @id_out: optional pointer to receive the translated ID.
2253 *
2254 * Given a device ID, look up the appropriate implementation-defined
2255 * platform ID and/or the target device which receives transactions on that
2256 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2257 * @id_out may be NULL if only the other is required. If @target points to
2258 * a non-NULL device node pointer, only entries targeting that node will be
2259 * matched; if it points to a NULL value, it will receive the device node of
2260 * the first matching target phandle, with a reference held.
2261 *
2262 * Return: 0 on success or a standard error code on failure.
2263 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2264 int of_map_id(struct device_node *np, u32 id,
2265 const char *map_name, const char *map_mask_name,
2266 struct device_node **target, u32 *id_out)
2267 {
2268 u32 map_mask, masked_id;
2269 int map_len;
2270 const __be32 *map = NULL;
2271
2272 if (!np || !map_name || (!target && !id_out))
2273 return -EINVAL;
2274
2275 map = of_get_property(np, map_name, &map_len);
2276 if (!map) {
2277 if (target)
2278 return -ENODEV;
2279 /* Otherwise, no map implies no translation */
2280 *id_out = id;
2281 return 0;
2282 }
2283
2284 if (!map_len || map_len % (4 * sizeof(*map))) {
2285 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2286 map_name, map_len);
2287 return -EINVAL;
2288 }
2289
2290 /* The default is to select all bits. */
2291 map_mask = 0xffffffff;
2292
2293 /*
2294 * Can be overridden by "{iommu,msi}-map-mask" property.
2295 * If of_property_read_u32() fails, the default is used.
2296 */
2297 if (map_mask_name)
2298 of_property_read_u32(np, map_mask_name, &map_mask);
2299
2300 masked_id = map_mask & id;
2301 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2302 struct device_node *phandle_node;
2303 u32 id_base = be32_to_cpup(map + 0);
2304 u32 phandle = be32_to_cpup(map + 1);
2305 u32 out_base = be32_to_cpup(map + 2);
2306 u32 id_len = be32_to_cpup(map + 3);
2307
2308 if (id_base & ~map_mask) {
2309 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2310 np, map_name, map_name,
2311 map_mask, id_base);
2312 return -EFAULT;
2313 }
2314
2315 if (masked_id < id_base || masked_id >= id_base + id_len)
2316 continue;
2317
2318 phandle_node = of_find_node_by_phandle(phandle);
2319 if (!phandle_node)
2320 return -ENODEV;
2321
2322 if (target) {
2323 if (*target)
2324 of_node_put(phandle_node);
2325 else
2326 *target = phandle_node;
2327
2328 if (*target != phandle_node)
2329 continue;
2330 }
2331
2332 if (id_out)
2333 *id_out = masked_id - id_base + out_base;
2334
2335 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2336 np, map_name, map_mask, id_base, out_base,
2337 id_len, id, masked_id - id_base + out_base);
2338 return 0;
2339 }
2340
2341 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2342 id, target && *target ? *target : NULL);
2343
2344 /* Bypasses translation */
2345 if (id_out)
2346 *id_out = id;
2347 return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(of_map_id);
2350