• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 	u32 cells;
93 
94 	for (; np; np = np->parent)
95 		if (!of_property_read_u32(np, "#address-cells", &cells))
96 			return cells;
97 
98 	/* No #address-cells property for the root node */
99 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101 
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 	if (np->parent)
105 		np = np->parent;
106 
107 	return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110 
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 	u32 cells;
114 
115 	for (; np; np = np->parent)
116 		if (!of_property_read_u32(np, "#size-cells", &cells))
117 			return cells;
118 
119 	/* No #size-cells property for the root node */
120 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122 
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 	if (np->parent)
126 		np = np->parent;
127 
128 	return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131 
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 	return NUMA_NO_NODE;
136 }
137 #endif
138 
139 #define OF_PHANDLE_CACHE_BITS	7
140 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
141 
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143 
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148 
149 /*
150  * Caller must hold devtree_lock.
151  */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 	u32 handle_hash;
155 	struct device_node *np;
156 
157 	if (!handle)
158 		return;
159 
160 	handle_hash = of_phandle_cache_hash(handle);
161 
162 	np = phandle_cache[handle_hash];
163 	if (np && handle == np->phandle)
164 		phandle_cache[handle_hash] = NULL;
165 }
166 
of_core_init(void)167 void __init of_core_init(void)
168 {
169 	struct device_node *np;
170 
171 
172 	/* Create the kset, and register existing nodes */
173 	mutex_lock(&of_mutex);
174 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 	if (!of_kset) {
176 		mutex_unlock(&of_mutex);
177 		pr_err("failed to register existing nodes\n");
178 		return;
179 	}
180 	for_each_of_allnodes(np) {
181 		__of_attach_node_sysfs(np);
182 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 	}
185 	mutex_unlock(&of_mutex);
186 
187 	/* Symlink in /proc as required by userspace ABI */
188 	if (of_root)
189 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191 
__of_find_property(const struct device_node * np,const char * name,int * lenp)192 static struct property *__of_find_property(const struct device_node *np,
193 					   const char *name, int *lenp)
194 {
195 	struct property *pp;
196 
197 	if (!np)
198 		return NULL;
199 
200 	for (pp = np->properties; pp; pp = pp->next) {
201 		if (of_prop_cmp(pp->name, name) == 0) {
202 			if (lenp)
203 				*lenp = pp->length;
204 			break;
205 		}
206 	}
207 
208 	return pp;
209 }
210 
of_find_property(const struct device_node * np,const char * name,int * lenp)211 struct property *of_find_property(const struct device_node *np,
212 				  const char *name,
213 				  int *lenp)
214 {
215 	struct property *pp;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&devtree_lock, flags);
219 	pp = __of_find_property(np, name, lenp);
220 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
221 
222 	return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225 
__of_find_all_nodes(struct device_node * prev)226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 	struct device_node *np;
229 	if (!prev) {
230 		np = of_root;
231 	} else if (prev->child) {
232 		np = prev->child;
233 	} else {
234 		/* Walk back up looking for a sibling, or the end of the structure */
235 		np = prev;
236 		while (np->parent && !np->sibling)
237 			np = np->parent;
238 		np = np->sibling; /* Might be null at the end of the tree */
239 	}
240 	return np;
241 }
242 
243 /**
244  * of_find_all_nodes - Get next node in global list
245  * @prev:	Previous node or NULL to start iteration
246  *		of_node_put() will be called on it
247  *
248  * Return: A node pointer with refcount incremented, use
249  * of_node_put() on it when done.
250  */
of_find_all_nodes(struct device_node * prev)251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 	struct device_node *np;
254 	unsigned long flags;
255 
256 	raw_spin_lock_irqsave(&devtree_lock, flags);
257 	np = __of_find_all_nodes(prev);
258 	of_node_get(np);
259 	of_node_put(prev);
260 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 	return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264 
265 /*
266  * Find a property with a given name for a given node
267  * and return the value.
268  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)269 const void *__of_get_property(const struct device_node *np,
270 			      const char *name, int *lenp)
271 {
272 	struct property *pp = __of_find_property(np, name, lenp);
273 
274 	return pp ? pp->value : NULL;
275 }
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
of_get_property(const struct device_node * np,const char * name,int * lenp)281 const void *of_get_property(const struct device_node *np, const char *name,
282 			    int *lenp)
283 {
284 	struct property *pp = of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289 
290 /*
291  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292  *
293  * @cpu: logical cpu index of a core/thread
294  * @phys_id: physical identifier of a core/thread
295  *
296  * CPU logical to physical index mapping is architecture specific.
297  * However this __weak function provides a default match of physical
298  * id to logical cpu index. phys_id provided here is usually values read
299  * from the device tree which must match the hardware internal registers.
300  *
301  * Returns true if the physical identifier and the logical cpu index
302  * correspond to the same core/thread, false otherwise.
303  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)304 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305 {
306 	return (u32)phys_id == cpu;
307 }
308 
309 /*
310  * Checks if the given "prop_name" property holds the physical id of the
311  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
312  * NULL, local thread number within the core is returned in it.
313  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)314 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
315 			const char *prop_name, int cpu, unsigned int *thread)
316 {
317 	const __be32 *cell;
318 	int ac, prop_len, tid;
319 	u64 hwid;
320 
321 	ac = of_n_addr_cells(cpun);
322 	cell = of_get_property(cpun, prop_name, &prop_len);
323 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
324 		return true;
325 	if (!cell || !ac)
326 		return false;
327 	prop_len /= sizeof(*cell) * ac;
328 	for (tid = 0; tid < prop_len; tid++) {
329 		hwid = of_read_number(cell, ac);
330 		if (arch_match_cpu_phys_id(cpu, hwid)) {
331 			if (thread)
332 				*thread = tid;
333 			return true;
334 		}
335 		cell += ac;
336 	}
337 	return false;
338 }
339 
340 /*
341  * arch_find_n_match_cpu_physical_id - See if the given device node is
342  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
343  * else false.  If 'thread' is non-NULL, the local thread number within the
344  * core is returned in it.
345  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)346 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
347 					      int cpu, unsigned int *thread)
348 {
349 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
350 	 * for thread ids on PowerPC. If it doesn't exist fallback to
351 	 * standard "reg" property.
352 	 */
353 	if (IS_ENABLED(CONFIG_PPC) &&
354 	    __of_find_n_match_cpu_property(cpun,
355 					   "ibm,ppc-interrupt-server#s",
356 					   cpu, thread))
357 		return true;
358 
359 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
360 }
361 
362 /**
363  * of_get_cpu_node - Get device node associated with the given logical CPU
364  *
365  * @cpu: CPU number(logical index) for which device node is required
366  * @thread: if not NULL, local thread number within the physical core is
367  *          returned
368  *
369  * The main purpose of this function is to retrieve the device node for the
370  * given logical CPU index. It should be used to initialize the of_node in
371  * cpu device. Once of_node in cpu device is populated, all the further
372  * references can use that instead.
373  *
374  * CPU logical to physical index mapping is architecture specific and is built
375  * before booting secondary cores. This function uses arch_match_cpu_phys_id
376  * which can be overridden by architecture specific implementation.
377  *
378  * Return: A node pointer for the logical cpu with refcount incremented, use
379  * of_node_put() on it when done. Returns NULL if not found.
380  */
of_get_cpu_node(int cpu,unsigned int * thread)381 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382 {
383 	struct device_node *cpun;
384 
385 	for_each_of_cpu_node(cpun) {
386 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
387 			return cpun;
388 	}
389 	return NULL;
390 }
391 EXPORT_SYMBOL(of_get_cpu_node);
392 
393 /**
394  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395  *
396  * @cpu_node: Pointer to the device_node for CPU.
397  *
398  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
399  * CPU is not found.
400  */
of_cpu_node_to_id(struct device_node * cpu_node)401 int of_cpu_node_to_id(struct device_node *cpu_node)
402 {
403 	int cpu;
404 	bool found = false;
405 	struct device_node *np;
406 
407 	for_each_possible_cpu(cpu) {
408 		np = of_cpu_device_node_get(cpu);
409 		found = (cpu_node == np);
410 		of_node_put(np);
411 		if (found)
412 			return cpu;
413 	}
414 
415 	return -ENODEV;
416 }
417 EXPORT_SYMBOL(of_cpu_node_to_id);
418 
419 /**
420  * of_get_cpu_state_node - Get CPU's idle state node at the given index
421  *
422  * @cpu_node: The device node for the CPU
423  * @index: The index in the list of the idle states
424  *
425  * Two generic methods can be used to describe a CPU's idle states, either via
426  * a flattened description through the "cpu-idle-states" binding or via the
427  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
428  * bindings. This function check for both and returns the idle state node for
429  * the requested index.
430  *
431  * Return: An idle state node if found at @index. The refcount is incremented
432  * for it, so call of_node_put() on it when done. Returns NULL if not found.
433  */
of_get_cpu_state_node(struct device_node * cpu_node,int index)434 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
435 					  int index)
436 {
437 	struct of_phandle_args args;
438 	int err;
439 
440 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
441 					"#power-domain-cells", 0, &args);
442 	if (!err) {
443 		struct device_node *state_node =
444 			of_parse_phandle(args.np, "domain-idle-states", index);
445 
446 		of_node_put(args.np);
447 		if (state_node)
448 			return state_node;
449 	}
450 
451 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452 }
453 EXPORT_SYMBOL(of_get_cpu_state_node);
454 
455 /**
456  * __of_device_is_compatible() - Check if the node matches given constraints
457  * @device: pointer to node
458  * @compat: required compatible string, NULL or "" for any match
459  * @type: required device_type value, NULL or "" for any match
460  * @name: required node name, NULL or "" for any match
461  *
462  * Checks if the given @compat, @type and @name strings match the
463  * properties of the given @device. A constraints can be skipped by
464  * passing NULL or an empty string as the constraint.
465  *
466  * Returns 0 for no match, and a positive integer on match. The return
467  * value is a relative score with larger values indicating better
468  * matches. The score is weighted for the most specific compatible value
469  * to get the highest score. Matching type is next, followed by matching
470  * name. Practically speaking, this results in the following priority
471  * order for matches:
472  *
473  * 1. specific compatible && type && name
474  * 2. specific compatible && type
475  * 3. specific compatible && name
476  * 4. specific compatible
477  * 5. general compatible && type && name
478  * 6. general compatible && type
479  * 7. general compatible && name
480  * 8. general compatible
481  * 9. type && name
482  * 10. type
483  * 11. name
484  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)485 static int __of_device_is_compatible(const struct device_node *device,
486 				     const char *compat, const char *type, const char *name)
487 {
488 	struct property *prop;
489 	const char *cp;
490 	int index = 0, score = 0;
491 
492 	/* Compatible match has highest priority */
493 	if (compat && compat[0]) {
494 		prop = __of_find_property(device, "compatible", NULL);
495 		for (cp = of_prop_next_string(prop, NULL); cp;
496 		     cp = of_prop_next_string(prop, cp), index++) {
497 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
498 				score = INT_MAX/2 - (index << 2);
499 				break;
500 			}
501 		}
502 		if (!score)
503 			return 0;
504 	}
505 
506 	/* Matching type is better than matching name */
507 	if (type && type[0]) {
508 		if (!__of_node_is_type(device, type))
509 			return 0;
510 		score += 2;
511 	}
512 
513 	/* Matching name is a bit better than not */
514 	if (name && name[0]) {
515 		if (!of_node_name_eq(device, name))
516 			return 0;
517 		score++;
518 	}
519 
520 	return score;
521 }
522 
523 /** Checks if the given "compat" string matches one of the strings in
524  * the device's "compatible" property
525  */
of_device_is_compatible(const struct device_node * device,const char * compat)526 int of_device_is_compatible(const struct device_node *device,
527 		const char *compat)
528 {
529 	unsigned long flags;
530 	int res;
531 
532 	raw_spin_lock_irqsave(&devtree_lock, flags);
533 	res = __of_device_is_compatible(device, compat, NULL, NULL);
534 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 	return res;
536 }
537 EXPORT_SYMBOL(of_device_is_compatible);
538 
539 /** Checks if the device is compatible with any of the entries in
540  *  a NULL terminated array of strings. Returns the best match
541  *  score or 0.
542  */
of_device_compatible_match(struct device_node * device,const char * const * compat)543 int of_device_compatible_match(struct device_node *device,
544 			       const char *const *compat)
545 {
546 	unsigned int tmp, score = 0;
547 
548 	if (!compat)
549 		return 0;
550 
551 	while (*compat) {
552 		tmp = of_device_is_compatible(device, *compat);
553 		if (tmp > score)
554 			score = tmp;
555 		compat++;
556 	}
557 
558 	return score;
559 }
560 
561 /**
562  * of_machine_is_compatible - Test root of device tree for a given compatible value
563  * @compat: compatible string to look for in root node's compatible property.
564  *
565  * Return: A positive integer if the root node has the given value in its
566  * compatible property.
567  */
of_machine_is_compatible(const char * compat)568 int of_machine_is_compatible(const char *compat)
569 {
570 	struct device_node *root;
571 	int rc = 0;
572 
573 	root = of_find_node_by_path("/");
574 	if (root) {
575 		rc = of_device_is_compatible(root, compat);
576 		of_node_put(root);
577 	}
578 	return rc;
579 }
580 EXPORT_SYMBOL(of_machine_is_compatible);
581 
582 /**
583  *  __of_device_is_available - check if a device is available for use
584  *
585  *  @device: Node to check for availability, with locks already held
586  *
587  *  Return: True if the status property is absent or set to "okay" or "ok",
588  *  false otherwise
589  */
__of_device_is_available(const struct device_node * device)590 static bool __of_device_is_available(const struct device_node *device)
591 {
592 	const char *status;
593 	int statlen;
594 
595 	if (!device)
596 		return false;
597 
598 	status = __of_get_property(device, "status", &statlen);
599 	if (status == NULL)
600 		return true;
601 
602 	if (statlen > 0) {
603 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
604 			return true;
605 	}
606 
607 	return false;
608 }
609 
610 /**
611  *  of_device_is_available - check if a device is available for use
612  *
613  *  @device: Node to check for availability
614  *
615  *  Return: True if the status property is absent or set to "okay" or "ok",
616  *  false otherwise
617  */
of_device_is_available(const struct device_node * device)618 bool of_device_is_available(const struct device_node *device)
619 {
620 	unsigned long flags;
621 	bool res;
622 
623 	raw_spin_lock_irqsave(&devtree_lock, flags);
624 	res = __of_device_is_available(device);
625 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 	return res;
627 
628 }
629 EXPORT_SYMBOL(of_device_is_available);
630 
631 /**
632  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
633  *
634  *  @device: Node to check status for, with locks already held
635  *
636  *  Return: True if the status property is set to "fail" or "fail-..." (for any
637  *  error code suffix), false otherwise
638  */
__of_device_is_fail(const struct device_node * device)639 static bool __of_device_is_fail(const struct device_node *device)
640 {
641 	const char *status;
642 
643 	if (!device)
644 		return false;
645 
646 	status = __of_get_property(device, "status", NULL);
647 	if (status == NULL)
648 		return false;
649 
650 	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
651 }
652 
653 /**
654  *  of_device_is_big_endian - check if a device has BE registers
655  *
656  *  @device: Node to check for endianness
657  *
658  *  Return: True if the device has a "big-endian" property, or if the kernel
659  *  was compiled for BE *and* the device has a "native-endian" property.
660  *  Returns false otherwise.
661  *
662  *  Callers would nominally use ioread32be/iowrite32be if
663  *  of_device_is_big_endian() == true, or readl/writel otherwise.
664  */
of_device_is_big_endian(const struct device_node * device)665 bool of_device_is_big_endian(const struct device_node *device)
666 {
667 	if (of_property_read_bool(device, "big-endian"))
668 		return true;
669 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
670 	    of_property_read_bool(device, "native-endian"))
671 		return true;
672 	return false;
673 }
674 EXPORT_SYMBOL(of_device_is_big_endian);
675 
676 /**
677  * of_get_parent - Get a node's parent if any
678  * @node:	Node to get parent
679  *
680  * Return: A node pointer with refcount incremented, use
681  * of_node_put() on it when done.
682  */
of_get_parent(const struct device_node * node)683 struct device_node *of_get_parent(const struct device_node *node)
684 {
685 	struct device_node *np;
686 	unsigned long flags;
687 
688 	if (!node)
689 		return NULL;
690 
691 	raw_spin_lock_irqsave(&devtree_lock, flags);
692 	np = of_node_get(node->parent);
693 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 	return np;
695 }
696 EXPORT_SYMBOL(of_get_parent);
697 
698 /**
699  * of_get_next_parent - Iterate to a node's parent
700  * @node:	Node to get parent of
701  *
702  * This is like of_get_parent() except that it drops the
703  * refcount on the passed node, making it suitable for iterating
704  * through a node's parents.
705  *
706  * Return: A node pointer with refcount incremented, use
707  * of_node_put() on it when done.
708  */
of_get_next_parent(struct device_node * node)709 struct device_node *of_get_next_parent(struct device_node *node)
710 {
711 	struct device_node *parent;
712 	unsigned long flags;
713 
714 	if (!node)
715 		return NULL;
716 
717 	raw_spin_lock_irqsave(&devtree_lock, flags);
718 	parent = of_node_get(node->parent);
719 	of_node_put(node);
720 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
721 	return parent;
722 }
723 EXPORT_SYMBOL(of_get_next_parent);
724 
__of_get_next_child(const struct device_node * node,struct device_node * prev)725 static struct device_node *__of_get_next_child(const struct device_node *node,
726 						struct device_node *prev)
727 {
728 	struct device_node *next;
729 
730 	if (!node)
731 		return NULL;
732 
733 	next = prev ? prev->sibling : node->child;
734 	of_node_get(next);
735 	of_node_put(prev);
736 	return next;
737 }
738 #define __for_each_child_of_node(parent, child) \
739 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
740 	     child = __of_get_next_child(parent, child))
741 
742 /**
743  * of_get_next_child - Iterate a node childs
744  * @node:	parent node
745  * @prev:	previous child of the parent node, or NULL to get first
746  *
747  * Return: A node pointer with refcount incremented, use of_node_put() on
748  * it when done. Returns NULL when prev is the last child. Decrements the
749  * refcount of prev.
750  */
of_get_next_child(const struct device_node * node,struct device_node * prev)751 struct device_node *of_get_next_child(const struct device_node *node,
752 	struct device_node *prev)
753 {
754 	struct device_node *next;
755 	unsigned long flags;
756 
757 	raw_spin_lock_irqsave(&devtree_lock, flags);
758 	next = __of_get_next_child(node, prev);
759 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
760 	return next;
761 }
762 EXPORT_SYMBOL(of_get_next_child);
763 
764 /**
765  * of_get_next_available_child - Find the next available child node
766  * @node:	parent node
767  * @prev:	previous child of the parent node, or NULL to get first
768  *
769  * This function is like of_get_next_child(), except that it
770  * automatically skips any disabled nodes (i.e. status = "disabled").
771  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)772 struct device_node *of_get_next_available_child(const struct device_node *node,
773 	struct device_node *prev)
774 {
775 	struct device_node *next;
776 	unsigned long flags;
777 
778 	if (!node)
779 		return NULL;
780 
781 	raw_spin_lock_irqsave(&devtree_lock, flags);
782 	next = prev ? prev->sibling : node->child;
783 	for (; next; next = next->sibling) {
784 		if (!__of_device_is_available(next))
785 			continue;
786 		if (of_node_get(next))
787 			break;
788 	}
789 	of_node_put(prev);
790 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
791 	return next;
792 }
793 EXPORT_SYMBOL(of_get_next_available_child);
794 
795 /**
796  * of_get_next_cpu_node - Iterate on cpu nodes
797  * @prev:	previous child of the /cpus node, or NULL to get first
798  *
799  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
800  * will be skipped.
801  *
802  * Return: A cpu node pointer with refcount incremented, use of_node_put()
803  * on it when done. Returns NULL when prev is the last child. Decrements
804  * the refcount of prev.
805  */
of_get_next_cpu_node(struct device_node * prev)806 struct device_node *of_get_next_cpu_node(struct device_node *prev)
807 {
808 	struct device_node *next = NULL;
809 	unsigned long flags;
810 	struct device_node *node;
811 
812 	if (!prev)
813 		node = of_find_node_by_path("/cpus");
814 
815 	raw_spin_lock_irqsave(&devtree_lock, flags);
816 	if (prev)
817 		next = prev->sibling;
818 	else if (node) {
819 		next = node->child;
820 		of_node_put(node);
821 	}
822 	for (; next; next = next->sibling) {
823 		if (__of_device_is_fail(next))
824 			continue;
825 		if (!(of_node_name_eq(next, "cpu") ||
826 		      __of_node_is_type(next, "cpu")))
827 			continue;
828 		if (of_node_get(next))
829 			break;
830 	}
831 	of_node_put(prev);
832 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
833 	return next;
834 }
835 EXPORT_SYMBOL(of_get_next_cpu_node);
836 
837 /**
838  * of_get_compatible_child - Find compatible child node
839  * @parent:	parent node
840  * @compatible:	compatible string
841  *
842  * Lookup child node whose compatible property contains the given compatible
843  * string.
844  *
845  * Return: a node pointer with refcount incremented, use of_node_put() on it
846  * when done; or NULL if not found.
847  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)848 struct device_node *of_get_compatible_child(const struct device_node *parent,
849 				const char *compatible)
850 {
851 	struct device_node *child;
852 
853 	for_each_child_of_node(parent, child) {
854 		if (of_device_is_compatible(child, compatible))
855 			break;
856 	}
857 
858 	return child;
859 }
860 EXPORT_SYMBOL(of_get_compatible_child);
861 
862 /**
863  * of_get_child_by_name - Find the child node by name for a given parent
864  * @node:	parent node
865  * @name:	child name to look for.
866  *
867  * This function looks for child node for given matching name
868  *
869  * Return: A node pointer if found, with refcount incremented, use
870  * of_node_put() on it when done.
871  * Returns NULL if node is not found.
872  */
of_get_child_by_name(const struct device_node * node,const char * name)873 struct device_node *of_get_child_by_name(const struct device_node *node,
874 				const char *name)
875 {
876 	struct device_node *child;
877 
878 	for_each_child_of_node(node, child)
879 		if (of_node_name_eq(child, name))
880 			break;
881 	return child;
882 }
883 EXPORT_SYMBOL(of_get_child_by_name);
884 
__of_find_node_by_path(struct device_node * parent,const char * path)885 struct device_node *__of_find_node_by_path(struct device_node *parent,
886 						const char *path)
887 {
888 	struct device_node *child;
889 	int len;
890 
891 	len = strcspn(path, "/:");
892 	if (!len)
893 		return NULL;
894 
895 	__for_each_child_of_node(parent, child) {
896 		const char *name = kbasename(child->full_name);
897 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
898 			return child;
899 	}
900 	return NULL;
901 }
902 
__of_find_node_by_full_path(struct device_node * node,const char * path)903 struct device_node *__of_find_node_by_full_path(struct device_node *node,
904 						const char *path)
905 {
906 	const char *separator = strchr(path, ':');
907 
908 	while (node && *path == '/') {
909 		struct device_node *tmp = node;
910 
911 		path++; /* Increment past '/' delimiter */
912 		node = __of_find_node_by_path(node, path);
913 		of_node_put(tmp);
914 		path = strchrnul(path, '/');
915 		if (separator && separator < path)
916 			break;
917 	}
918 	return node;
919 }
920 
921 /**
922  * of_find_node_opts_by_path - Find a node matching a full OF path
923  * @path: Either the full path to match, or if the path does not
924  *       start with '/', the name of a property of the /aliases
925  *       node (an alias).  In the case of an alias, the node
926  *       matching the alias' value will be returned.
927  * @opts: Address of a pointer into which to store the start of
928  *       an options string appended to the end of the path with
929  *       a ':' separator.
930  *
931  * Valid paths:
932  *  * /foo/bar	Full path
933  *  * foo	Valid alias
934  *  * foo/bar	Valid alias + relative path
935  *
936  * Return: A node pointer with refcount incremented, use
937  * of_node_put() on it when done.
938  */
of_find_node_opts_by_path(const char * path,const char ** opts)939 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
940 {
941 	struct device_node *np = NULL;
942 	struct property *pp;
943 	unsigned long flags;
944 	const char *separator = strchr(path, ':');
945 
946 	if (opts)
947 		*opts = separator ? separator + 1 : NULL;
948 
949 	if (strcmp(path, "/") == 0)
950 		return of_node_get(of_root);
951 
952 	/* The path could begin with an alias */
953 	if (*path != '/') {
954 		int len;
955 		const char *p = separator;
956 
957 		if (!p)
958 			p = strchrnul(path, '/');
959 		len = p - path;
960 
961 		/* of_aliases must not be NULL */
962 		if (!of_aliases)
963 			return NULL;
964 
965 		for_each_property_of_node(of_aliases, pp) {
966 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
967 				np = of_find_node_by_path(pp->value);
968 				break;
969 			}
970 		}
971 		if (!np)
972 			return NULL;
973 		path = p;
974 	}
975 
976 	/* Step down the tree matching path components */
977 	raw_spin_lock_irqsave(&devtree_lock, flags);
978 	if (!np)
979 		np = of_node_get(of_root);
980 	np = __of_find_node_by_full_path(np, path);
981 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 	return np;
983 }
984 EXPORT_SYMBOL(of_find_node_opts_by_path);
985 
986 /**
987  * of_find_node_by_name - Find a node by its "name" property
988  * @from:	The node to start searching from or NULL; the node
989  *		you pass will not be searched, only the next one
990  *		will. Typically, you pass what the previous call
991  *		returned. of_node_put() will be called on @from.
992  * @name:	The name string to match against
993  *
994  * Return: A node pointer with refcount incremented, use
995  * of_node_put() on it when done.
996  */
of_find_node_by_name(struct device_node * from,const char * name)997 struct device_node *of_find_node_by_name(struct device_node *from,
998 	const char *name)
999 {
1000 	struct device_node *np;
1001 	unsigned long flags;
1002 
1003 	raw_spin_lock_irqsave(&devtree_lock, flags);
1004 	for_each_of_allnodes_from(from, np)
1005 		if (of_node_name_eq(np, name) && of_node_get(np))
1006 			break;
1007 	of_node_put(from);
1008 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009 	return np;
1010 }
1011 EXPORT_SYMBOL(of_find_node_by_name);
1012 
1013 /**
1014  * of_find_node_by_type - Find a node by its "device_type" property
1015  * @from:	The node to start searching from, or NULL to start searching
1016  *		the entire device tree. The node you pass will not be
1017  *		searched, only the next one will; typically, you pass
1018  *		what the previous call returned. of_node_put() will be
1019  *		called on from for you.
1020  * @type:	The type string to match against
1021  *
1022  * Return: A node pointer with refcount incremented, use
1023  * of_node_put() on it when done.
1024  */
of_find_node_by_type(struct device_node * from,const char * type)1025 struct device_node *of_find_node_by_type(struct device_node *from,
1026 	const char *type)
1027 {
1028 	struct device_node *np;
1029 	unsigned long flags;
1030 
1031 	raw_spin_lock_irqsave(&devtree_lock, flags);
1032 	for_each_of_allnodes_from(from, np)
1033 		if (__of_node_is_type(np, type) && of_node_get(np))
1034 			break;
1035 	of_node_put(from);
1036 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037 	return np;
1038 }
1039 EXPORT_SYMBOL(of_find_node_by_type);
1040 
1041 /**
1042  * of_find_compatible_node - Find a node based on type and one of the
1043  *                                tokens in its "compatible" property
1044  * @from:	The node to start searching from or NULL, the node
1045  *		you pass will not be searched, only the next one
1046  *		will; typically, you pass what the previous call
1047  *		returned. of_node_put() will be called on it
1048  * @type:	The type string to match "device_type" or NULL to ignore
1049  * @compatible:	The string to match to one of the tokens in the device
1050  *		"compatible" list.
1051  *
1052  * Return: A node pointer with refcount incremented, use
1053  * of_node_put() on it when done.
1054  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1055 struct device_node *of_find_compatible_node(struct device_node *from,
1056 	const char *type, const char *compatible)
1057 {
1058 	struct device_node *np;
1059 	unsigned long flags;
1060 
1061 	raw_spin_lock_irqsave(&devtree_lock, flags);
1062 	for_each_of_allnodes_from(from, np)
1063 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1064 		    of_node_get(np))
1065 			break;
1066 	of_node_put(from);
1067 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068 	return np;
1069 }
1070 EXPORT_SYMBOL(of_find_compatible_node);
1071 
1072 /**
1073  * of_find_node_with_property - Find a node which has a property with
1074  *                              the given name.
1075  * @from:	The node to start searching from or NULL, the node
1076  *		you pass will not be searched, only the next one
1077  *		will; typically, you pass what the previous call
1078  *		returned. of_node_put() will be called on it
1079  * @prop_name:	The name of the property to look for.
1080  *
1081  * Return: A node pointer with refcount incremented, use
1082  * of_node_put() on it when done.
1083  */
of_find_node_with_property(struct device_node * from,const char * prop_name)1084 struct device_node *of_find_node_with_property(struct device_node *from,
1085 	const char *prop_name)
1086 {
1087 	struct device_node *np;
1088 	struct property *pp;
1089 	unsigned long flags;
1090 
1091 	raw_spin_lock_irqsave(&devtree_lock, flags);
1092 	for_each_of_allnodes_from(from, np) {
1093 		for (pp = np->properties; pp; pp = pp->next) {
1094 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1095 				of_node_get(np);
1096 				goto out;
1097 			}
1098 		}
1099 	}
1100 out:
1101 	of_node_put(from);
1102 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1103 	return np;
1104 }
1105 EXPORT_SYMBOL(of_find_node_with_property);
1106 
1107 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1108 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1109 					   const struct device_node *node)
1110 {
1111 	const struct of_device_id *best_match = NULL;
1112 	int score, best_score = 0;
1113 
1114 	if (!matches)
1115 		return NULL;
1116 
1117 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1118 		score = __of_device_is_compatible(node, matches->compatible,
1119 						  matches->type, matches->name);
1120 		if (score > best_score) {
1121 			best_match = matches;
1122 			best_score = score;
1123 		}
1124 	}
1125 
1126 	return best_match;
1127 }
1128 
1129 /**
1130  * of_match_node - Tell if a device_node has a matching of_match structure
1131  * @matches:	array of of device match structures to search in
1132  * @node:	the of device structure to match against
1133  *
1134  * Low level utility function used by device matching.
1135  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1136 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1137 					 const struct device_node *node)
1138 {
1139 	const struct of_device_id *match;
1140 	unsigned long flags;
1141 
1142 	raw_spin_lock_irqsave(&devtree_lock, flags);
1143 	match = __of_match_node(matches, node);
1144 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1145 	return match;
1146 }
1147 EXPORT_SYMBOL(of_match_node);
1148 
1149 /**
1150  * of_find_matching_node_and_match - Find a node based on an of_device_id
1151  *				     match table.
1152  * @from:	The node to start searching from or NULL, the node
1153  *		you pass will not be searched, only the next one
1154  *		will; typically, you pass what the previous call
1155  *		returned. of_node_put() will be called on it
1156  * @matches:	array of of device match structures to search in
1157  * @match:	Updated to point at the matches entry which matched
1158  *
1159  * Return: A node pointer with refcount incremented, use
1160  * of_node_put() on it when done.
1161  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1162 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1163 					const struct of_device_id *matches,
1164 					const struct of_device_id **match)
1165 {
1166 	struct device_node *np;
1167 	const struct of_device_id *m;
1168 	unsigned long flags;
1169 
1170 	if (match)
1171 		*match = NULL;
1172 
1173 	raw_spin_lock_irqsave(&devtree_lock, flags);
1174 	for_each_of_allnodes_from(from, np) {
1175 		m = __of_match_node(matches, np);
1176 		if (m && of_node_get(np)) {
1177 			if (match)
1178 				*match = m;
1179 			break;
1180 		}
1181 	}
1182 	of_node_put(from);
1183 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1184 	return np;
1185 }
1186 EXPORT_SYMBOL(of_find_matching_node_and_match);
1187 
1188 /**
1189  * of_modalias_node - Lookup appropriate modalias for a device node
1190  * @node:	pointer to a device tree node
1191  * @modalias:	Pointer to buffer that modalias value will be copied into
1192  * @len:	Length of modalias value
1193  *
1194  * Based on the value of the compatible property, this routine will attempt
1195  * to choose an appropriate modalias value for a particular device tree node.
1196  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1197  * from the first entry in the compatible list property.
1198  *
1199  * Return: This routine returns 0 on success, <0 on failure.
1200  */
of_modalias_node(struct device_node * node,char * modalias,int len)1201 int of_modalias_node(struct device_node *node, char *modalias, int len)
1202 {
1203 	const char *compatible, *p;
1204 	int cplen;
1205 
1206 	compatible = of_get_property(node, "compatible", &cplen);
1207 	if (!compatible || strlen(compatible) > cplen)
1208 		return -ENODEV;
1209 	p = strchr(compatible, ',');
1210 	strlcpy(modalias, p ? p + 1 : compatible, len);
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(of_modalias_node);
1214 
1215 /**
1216  * of_find_node_by_phandle - Find a node given a phandle
1217  * @handle:	phandle of the node to find
1218  *
1219  * Return: A node pointer with refcount incremented, use
1220  * of_node_put() on it when done.
1221  */
of_find_node_by_phandle(phandle handle)1222 struct device_node *of_find_node_by_phandle(phandle handle)
1223 {
1224 	struct device_node *np = NULL;
1225 	unsigned long flags;
1226 	u32 handle_hash;
1227 
1228 	if (!handle)
1229 		return NULL;
1230 
1231 	handle_hash = of_phandle_cache_hash(handle);
1232 
1233 	raw_spin_lock_irqsave(&devtree_lock, flags);
1234 
1235 	if (phandle_cache[handle_hash] &&
1236 	    handle == phandle_cache[handle_hash]->phandle)
1237 		np = phandle_cache[handle_hash];
1238 
1239 	if (!np) {
1240 		for_each_of_allnodes(np)
1241 			if (np->phandle == handle &&
1242 			    !of_node_check_flag(np, OF_DETACHED)) {
1243 				phandle_cache[handle_hash] = np;
1244 				break;
1245 			}
1246 	}
1247 
1248 	of_node_get(np);
1249 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1250 	return np;
1251 }
1252 EXPORT_SYMBOL(of_find_node_by_phandle);
1253 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1254 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1255 {
1256 	int i;
1257 	printk("%s %pOF", msg, args->np);
1258 	for (i = 0; i < args->args_count; i++) {
1259 		const char delim = i ? ',' : ':';
1260 
1261 		pr_cont("%c%08x", delim, args->args[i]);
1262 	}
1263 	pr_cont("\n");
1264 }
1265 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1266 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1267 		const struct device_node *np,
1268 		const char *list_name,
1269 		const char *cells_name,
1270 		int cell_count)
1271 {
1272 	const __be32 *list;
1273 	int size;
1274 
1275 	memset(it, 0, sizeof(*it));
1276 
1277 	/*
1278 	 * one of cell_count or cells_name must be provided to determine the
1279 	 * argument length.
1280 	 */
1281 	if (cell_count < 0 && !cells_name)
1282 		return -EINVAL;
1283 
1284 	list = of_get_property(np, list_name, &size);
1285 	if (!list)
1286 		return -ENOENT;
1287 
1288 	it->cells_name = cells_name;
1289 	it->cell_count = cell_count;
1290 	it->parent = np;
1291 	it->list_end = list + size / sizeof(*list);
1292 	it->phandle_end = list;
1293 	it->cur = list;
1294 
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1298 
of_phandle_iterator_next(struct of_phandle_iterator * it)1299 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1300 {
1301 	uint32_t count = 0;
1302 
1303 	if (it->node) {
1304 		of_node_put(it->node);
1305 		it->node = NULL;
1306 	}
1307 
1308 	if (!it->cur || it->phandle_end >= it->list_end)
1309 		return -ENOENT;
1310 
1311 	it->cur = it->phandle_end;
1312 
1313 	/* If phandle is 0, then it is an empty entry with no arguments. */
1314 	it->phandle = be32_to_cpup(it->cur++);
1315 
1316 	if (it->phandle) {
1317 
1318 		/*
1319 		 * Find the provider node and parse the #*-cells property to
1320 		 * determine the argument length.
1321 		 */
1322 		it->node = of_find_node_by_phandle(it->phandle);
1323 
1324 		if (it->cells_name) {
1325 			if (!it->node) {
1326 				pr_err("%pOF: could not find phandle %d\n",
1327 				       it->parent, it->phandle);
1328 				goto err;
1329 			}
1330 
1331 			if (of_property_read_u32(it->node, it->cells_name,
1332 						 &count)) {
1333 				/*
1334 				 * If both cell_count and cells_name is given,
1335 				 * fall back to cell_count in absence
1336 				 * of the cells_name property
1337 				 */
1338 				if (it->cell_count >= 0) {
1339 					count = it->cell_count;
1340 				} else {
1341 					pr_err("%pOF: could not get %s for %pOF\n",
1342 					       it->parent,
1343 					       it->cells_name,
1344 					       it->node);
1345 					goto err;
1346 				}
1347 			}
1348 		} else {
1349 			count = it->cell_count;
1350 		}
1351 
1352 		/*
1353 		 * Make sure that the arguments actually fit in the remaining
1354 		 * property data length
1355 		 */
1356 		if (it->cur + count > it->list_end) {
1357 			if (it->cells_name)
1358 				pr_err("%pOF: %s = %d found %td\n",
1359 					it->parent, it->cells_name,
1360 					count, it->list_end - it->cur);
1361 			else
1362 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1363 					it->parent, of_node_full_name(it->node),
1364 					count, it->list_end - it->cur);
1365 			goto err;
1366 		}
1367 	}
1368 
1369 	it->phandle_end = it->cur + count;
1370 	it->cur_count = count;
1371 
1372 	return 0;
1373 
1374 err:
1375 	if (it->node) {
1376 		of_node_put(it->node);
1377 		it->node = NULL;
1378 	}
1379 
1380 	return -EINVAL;
1381 }
1382 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1383 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1384 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1385 			     uint32_t *args,
1386 			     int size)
1387 {
1388 	int i, count;
1389 
1390 	count = it->cur_count;
1391 
1392 	if (WARN_ON(size < count))
1393 		count = size;
1394 
1395 	for (i = 0; i < count; i++)
1396 		args[i] = be32_to_cpup(it->cur++);
1397 
1398 	return count;
1399 }
1400 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1401 static int __of_parse_phandle_with_args(const struct device_node *np,
1402 					const char *list_name,
1403 					const char *cells_name,
1404 					int cell_count, int index,
1405 					struct of_phandle_args *out_args)
1406 {
1407 	struct of_phandle_iterator it;
1408 	int rc, cur_index = 0;
1409 
1410 	/* Loop over the phandles until all the requested entry is found */
1411 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1412 		/*
1413 		 * All of the error cases bail out of the loop, so at
1414 		 * this point, the parsing is successful. If the requested
1415 		 * index matches, then fill the out_args structure and return,
1416 		 * or return -ENOENT for an empty entry.
1417 		 */
1418 		rc = -ENOENT;
1419 		if (cur_index == index) {
1420 			if (!it.phandle)
1421 				goto err;
1422 
1423 			if (out_args) {
1424 				int c;
1425 
1426 				c = of_phandle_iterator_args(&it,
1427 							     out_args->args,
1428 							     MAX_PHANDLE_ARGS);
1429 				out_args->np = it.node;
1430 				out_args->args_count = c;
1431 			} else {
1432 				of_node_put(it.node);
1433 			}
1434 
1435 			/* Found it! return success */
1436 			return 0;
1437 		}
1438 
1439 		cur_index++;
1440 	}
1441 
1442 	/*
1443 	 * Unlock node before returning result; will be one of:
1444 	 * -ENOENT : index is for empty phandle
1445 	 * -EINVAL : parsing error on data
1446 	 */
1447 
1448  err:
1449 	of_node_put(it.node);
1450 	return rc;
1451 }
1452 
1453 /**
1454  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1455  * @np: Pointer to device node holding phandle property
1456  * @phandle_name: Name of property holding a phandle value
1457  * @index: For properties holding a table of phandles, this is the index into
1458  *         the table
1459  *
1460  * Return: The device_node pointer with refcount incremented.  Use
1461  * of_node_put() on it when done.
1462  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1463 struct device_node *of_parse_phandle(const struct device_node *np,
1464 				     const char *phandle_name, int index)
1465 {
1466 	struct of_phandle_args args;
1467 
1468 	if (index < 0)
1469 		return NULL;
1470 
1471 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1472 					 index, &args))
1473 		return NULL;
1474 
1475 	return args.np;
1476 }
1477 EXPORT_SYMBOL(of_parse_phandle);
1478 
1479 /**
1480  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1481  * @np:		pointer to a device tree node containing a list
1482  * @list_name:	property name that contains a list
1483  * @cells_name:	property name that specifies phandles' arguments count
1484  * @index:	index of a phandle to parse out
1485  * @out_args:	optional pointer to output arguments structure (will be filled)
1486  *
1487  * This function is useful to parse lists of phandles and their arguments.
1488  * Returns 0 on success and fills out_args, on error returns appropriate
1489  * errno value.
1490  *
1491  * Caller is responsible to call of_node_put() on the returned out_args->np
1492  * pointer.
1493  *
1494  * Example::
1495  *
1496  *  phandle1: node1 {
1497  *	#list-cells = <2>;
1498  *  };
1499  *
1500  *  phandle2: node2 {
1501  *	#list-cells = <1>;
1502  *  };
1503  *
1504  *  node3 {
1505  *	list = <&phandle1 1 2 &phandle2 3>;
1506  *  };
1507  *
1508  * To get a device_node of the ``node2`` node you may call this:
1509  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1510  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1511 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1512 				const char *cells_name, int index,
1513 				struct of_phandle_args *out_args)
1514 {
1515 	int cell_count = -1;
1516 
1517 	if (index < 0)
1518 		return -EINVAL;
1519 
1520 	/* If cells_name is NULL we assume a cell count of 0 */
1521 	if (!cells_name)
1522 		cell_count = 0;
1523 
1524 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1525 					    cell_count, index, out_args);
1526 }
1527 EXPORT_SYMBOL(of_parse_phandle_with_args);
1528 
1529 /**
1530  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1531  * @np:		pointer to a device tree node containing a list
1532  * @list_name:	property name that contains a list
1533  * @stem_name:	stem of property names that specify phandles' arguments count
1534  * @index:	index of a phandle to parse out
1535  * @out_args:	optional pointer to output arguments structure (will be filled)
1536  *
1537  * This function is useful to parse lists of phandles and their arguments.
1538  * Returns 0 on success and fills out_args, on error returns appropriate errno
1539  * value. The difference between this function and of_parse_phandle_with_args()
1540  * is that this API remaps a phandle if the node the phandle points to has
1541  * a <@stem_name>-map property.
1542  *
1543  * Caller is responsible to call of_node_put() on the returned out_args->np
1544  * pointer.
1545  *
1546  * Example::
1547  *
1548  *  phandle1: node1 {
1549  *  	#list-cells = <2>;
1550  *  };
1551  *
1552  *  phandle2: node2 {
1553  *  	#list-cells = <1>;
1554  *  };
1555  *
1556  *  phandle3: node3 {
1557  *  	#list-cells = <1>;
1558  *  	list-map = <0 &phandle2 3>,
1559  *  		   <1 &phandle2 2>,
1560  *  		   <2 &phandle1 5 1>;
1561  *  	list-map-mask = <0x3>;
1562  *  };
1563  *
1564  *  node4 {
1565  *  	list = <&phandle1 1 2 &phandle3 0>;
1566  *  };
1567  *
1568  * To get a device_node of the ``node2`` node you may call this:
1569  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1570  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1571 int of_parse_phandle_with_args_map(const struct device_node *np,
1572 				   const char *list_name,
1573 				   const char *stem_name,
1574 				   int index, struct of_phandle_args *out_args)
1575 {
1576 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1577 	char *pass_name = NULL;
1578 	struct device_node *cur, *new = NULL;
1579 	const __be32 *map, *mask, *pass;
1580 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1581 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1582 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1583 	const __be32 *match_array = initial_match_array;
1584 	int i, ret, map_len, match;
1585 	u32 list_size, new_size;
1586 
1587 	if (index < 0)
1588 		return -EINVAL;
1589 
1590 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1591 	if (!cells_name)
1592 		return -ENOMEM;
1593 
1594 	ret = -ENOMEM;
1595 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1596 	if (!map_name)
1597 		goto free;
1598 
1599 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1600 	if (!mask_name)
1601 		goto free;
1602 
1603 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1604 	if (!pass_name)
1605 		goto free;
1606 
1607 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1608 					   out_args);
1609 	if (ret)
1610 		goto free;
1611 
1612 	/* Get the #<list>-cells property */
1613 	cur = out_args->np;
1614 	ret = of_property_read_u32(cur, cells_name, &list_size);
1615 	if (ret < 0)
1616 		goto put;
1617 
1618 	/* Precalculate the match array - this simplifies match loop */
1619 	for (i = 0; i < list_size; i++)
1620 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1621 
1622 	ret = -EINVAL;
1623 	while (cur) {
1624 		/* Get the <list>-map property */
1625 		map = of_get_property(cur, map_name, &map_len);
1626 		if (!map) {
1627 			ret = 0;
1628 			goto free;
1629 		}
1630 		map_len /= sizeof(u32);
1631 
1632 		/* Get the <list>-map-mask property (optional) */
1633 		mask = of_get_property(cur, mask_name, NULL);
1634 		if (!mask)
1635 			mask = dummy_mask;
1636 		/* Iterate through <list>-map property */
1637 		match = 0;
1638 		while (map_len > (list_size + 1) && !match) {
1639 			/* Compare specifiers */
1640 			match = 1;
1641 			for (i = 0; i < list_size; i++, map_len--)
1642 				match &= !((match_array[i] ^ *map++) & mask[i]);
1643 
1644 			of_node_put(new);
1645 			new = of_find_node_by_phandle(be32_to_cpup(map));
1646 			map++;
1647 			map_len--;
1648 
1649 			/* Check if not found */
1650 			if (!new)
1651 				goto put;
1652 
1653 			if (!of_device_is_available(new))
1654 				match = 0;
1655 
1656 			ret = of_property_read_u32(new, cells_name, &new_size);
1657 			if (ret)
1658 				goto put;
1659 
1660 			/* Check for malformed properties */
1661 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1662 				goto put;
1663 			if (map_len < new_size)
1664 				goto put;
1665 
1666 			/* Move forward by new node's #<list>-cells amount */
1667 			map += new_size;
1668 			map_len -= new_size;
1669 		}
1670 		if (!match)
1671 			goto put;
1672 
1673 		/* Get the <list>-map-pass-thru property (optional) */
1674 		pass = of_get_property(cur, pass_name, NULL);
1675 		if (!pass)
1676 			pass = dummy_pass;
1677 
1678 		/*
1679 		 * Successfully parsed a <list>-map translation; copy new
1680 		 * specifier into the out_args structure, keeping the
1681 		 * bits specified in <list>-map-pass-thru.
1682 		 */
1683 		match_array = map - new_size;
1684 		for (i = 0; i < new_size; i++) {
1685 			__be32 val = *(map - new_size + i);
1686 
1687 			if (i < list_size) {
1688 				val &= ~pass[i];
1689 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1690 			}
1691 
1692 			out_args->args[i] = be32_to_cpu(val);
1693 		}
1694 		out_args->args_count = list_size = new_size;
1695 		/* Iterate again with new provider */
1696 		out_args->np = new;
1697 		of_node_put(cur);
1698 		cur = new;
1699 		new = NULL;
1700 	}
1701 put:
1702 	of_node_put(cur);
1703 	of_node_put(new);
1704 free:
1705 	kfree(mask_name);
1706 	kfree(map_name);
1707 	kfree(cells_name);
1708 	kfree(pass_name);
1709 
1710 	return ret;
1711 }
1712 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1713 
1714 /**
1715  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1716  * @np:		pointer to a device tree node containing a list
1717  * @list_name:	property name that contains a list
1718  * @cell_count: number of argument cells following the phandle
1719  * @index:	index of a phandle to parse out
1720  * @out_args:	optional pointer to output arguments structure (will be filled)
1721  *
1722  * This function is useful to parse lists of phandles and their arguments.
1723  * Returns 0 on success and fills out_args, on error returns appropriate
1724  * errno value.
1725  *
1726  * Caller is responsible to call of_node_put() on the returned out_args->np
1727  * pointer.
1728  *
1729  * Example::
1730  *
1731  *  phandle1: node1 {
1732  *  };
1733  *
1734  *  phandle2: node2 {
1735  *  };
1736  *
1737  *  node3 {
1738  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1739  *  };
1740  *
1741  * To get a device_node of the ``node2`` node you may call this:
1742  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1743  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1744 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1745 				const char *list_name, int cell_count,
1746 				int index, struct of_phandle_args *out_args)
1747 {
1748 	if (index < 0)
1749 		return -EINVAL;
1750 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1751 					   index, out_args);
1752 }
1753 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1754 
1755 /**
1756  * of_count_phandle_with_args() - Find the number of phandles references in a property
1757  * @np:		pointer to a device tree node containing a list
1758  * @list_name:	property name that contains a list
1759  * @cells_name:	property name that specifies phandles' arguments count
1760  *
1761  * Return: The number of phandle + argument tuples within a property. It
1762  * is a typical pattern to encode a list of phandle and variable
1763  * arguments into a single property. The number of arguments is encoded
1764  * by a property in the phandle-target node. For example, a gpios
1765  * property would contain a list of GPIO specifies consisting of a
1766  * phandle and 1 or more arguments. The number of arguments are
1767  * determined by the #gpio-cells property in the node pointed to by the
1768  * phandle.
1769  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1770 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1771 				const char *cells_name)
1772 {
1773 	struct of_phandle_iterator it;
1774 	int rc, cur_index = 0;
1775 
1776 	/*
1777 	 * If cells_name is NULL we assume a cell count of 0. This makes
1778 	 * counting the phandles trivial as each 32bit word in the list is a
1779 	 * phandle and no arguments are to consider. So we don't iterate through
1780 	 * the list but just use the length to determine the phandle count.
1781 	 */
1782 	if (!cells_name) {
1783 		const __be32 *list;
1784 		int size;
1785 
1786 		list = of_get_property(np, list_name, &size);
1787 		if (!list)
1788 			return -ENOENT;
1789 
1790 		return size / sizeof(*list);
1791 	}
1792 
1793 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1794 	if (rc)
1795 		return rc;
1796 
1797 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1798 		cur_index += 1;
1799 
1800 	if (rc != -ENOENT)
1801 		return rc;
1802 
1803 	return cur_index;
1804 }
1805 EXPORT_SYMBOL(of_count_phandle_with_args);
1806 
1807 /**
1808  * __of_add_property - Add a property to a node without lock operations
1809  * @np:		Caller's Device Node
1810  * @prop:	Property to add
1811  */
__of_add_property(struct device_node * np,struct property * prop)1812 int __of_add_property(struct device_node *np, struct property *prop)
1813 {
1814 	struct property **next;
1815 
1816 	prop->next = NULL;
1817 	next = &np->properties;
1818 	while (*next) {
1819 		if (strcmp(prop->name, (*next)->name) == 0)
1820 			/* duplicate ! don't insert it */
1821 			return -EEXIST;
1822 
1823 		next = &(*next)->next;
1824 	}
1825 	*next = prop;
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * of_add_property - Add a property to a node
1832  * @np:		Caller's Device Node
1833  * @prop:	Property to add
1834  */
of_add_property(struct device_node * np,struct property * prop)1835 int of_add_property(struct device_node *np, struct property *prop)
1836 {
1837 	unsigned long flags;
1838 	int rc;
1839 
1840 	mutex_lock(&of_mutex);
1841 
1842 	raw_spin_lock_irqsave(&devtree_lock, flags);
1843 	rc = __of_add_property(np, prop);
1844 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1845 
1846 	if (!rc)
1847 		__of_add_property_sysfs(np, prop);
1848 
1849 	mutex_unlock(&of_mutex);
1850 
1851 	if (!rc)
1852 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1853 
1854 	return rc;
1855 }
1856 EXPORT_SYMBOL_GPL(of_add_property);
1857 
__of_remove_property(struct device_node * np,struct property * prop)1858 int __of_remove_property(struct device_node *np, struct property *prop)
1859 {
1860 	struct property **next;
1861 
1862 	for (next = &np->properties; *next; next = &(*next)->next) {
1863 		if (*next == prop)
1864 			break;
1865 	}
1866 	if (*next == NULL)
1867 		return -ENODEV;
1868 
1869 	/* found the node */
1870 	*next = prop->next;
1871 	prop->next = np->deadprops;
1872 	np->deadprops = prop;
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  * of_remove_property - Remove a property from a node.
1879  * @np:		Caller's Device Node
1880  * @prop:	Property to remove
1881  *
1882  * Note that we don't actually remove it, since we have given out
1883  * who-knows-how-many pointers to the data using get-property.
1884  * Instead we just move the property to the "dead properties"
1885  * list, so it won't be found any more.
1886  */
of_remove_property(struct device_node * np,struct property * prop)1887 int of_remove_property(struct device_node *np, struct property *prop)
1888 {
1889 	unsigned long flags;
1890 	int rc;
1891 
1892 	if (!prop)
1893 		return -ENODEV;
1894 
1895 	mutex_lock(&of_mutex);
1896 
1897 	raw_spin_lock_irqsave(&devtree_lock, flags);
1898 	rc = __of_remove_property(np, prop);
1899 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1900 
1901 	if (!rc)
1902 		__of_remove_property_sysfs(np, prop);
1903 
1904 	mutex_unlock(&of_mutex);
1905 
1906 	if (!rc)
1907 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1908 
1909 	return rc;
1910 }
1911 EXPORT_SYMBOL_GPL(of_remove_property);
1912 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1913 int __of_update_property(struct device_node *np, struct property *newprop,
1914 		struct property **oldpropp)
1915 {
1916 	struct property **next, *oldprop;
1917 
1918 	for (next = &np->properties; *next; next = &(*next)->next) {
1919 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1920 			break;
1921 	}
1922 	*oldpropp = oldprop = *next;
1923 
1924 	if (oldprop) {
1925 		/* replace the node */
1926 		newprop->next = oldprop->next;
1927 		*next = newprop;
1928 		oldprop->next = np->deadprops;
1929 		np->deadprops = oldprop;
1930 	} else {
1931 		/* new node */
1932 		newprop->next = NULL;
1933 		*next = newprop;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 /*
1940  * of_update_property - Update a property in a node, if the property does
1941  * not exist, add it.
1942  *
1943  * Note that we don't actually remove it, since we have given out
1944  * who-knows-how-many pointers to the data using get-property.
1945  * Instead we just move the property to the "dead properties" list,
1946  * and add the new property to the property list
1947  */
of_update_property(struct device_node * np,struct property * newprop)1948 int of_update_property(struct device_node *np, struct property *newprop)
1949 {
1950 	struct property *oldprop;
1951 	unsigned long flags;
1952 	int rc;
1953 
1954 	if (!newprop->name)
1955 		return -EINVAL;
1956 
1957 	mutex_lock(&of_mutex);
1958 
1959 	raw_spin_lock_irqsave(&devtree_lock, flags);
1960 	rc = __of_update_property(np, newprop, &oldprop);
1961 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1962 
1963 	if (!rc)
1964 		__of_update_property_sysfs(np, newprop, oldprop);
1965 
1966 	mutex_unlock(&of_mutex);
1967 
1968 	if (!rc)
1969 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1970 
1971 	return rc;
1972 }
1973 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1974 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1975 			 int id, const char *stem, int stem_len)
1976 {
1977 	ap->np = np;
1978 	ap->id = id;
1979 	strncpy(ap->stem, stem, stem_len);
1980 	ap->stem[stem_len] = 0;
1981 	list_add_tail(&ap->link, &aliases_lookup);
1982 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1983 		 ap->alias, ap->stem, ap->id, np);
1984 }
1985 
1986 /**
1987  * of_alias_scan - Scan all properties of the 'aliases' node
1988  * @dt_alloc:	An allocator that provides a virtual address to memory
1989  *		for storing the resulting tree
1990  *
1991  * The function scans all the properties of the 'aliases' node and populates
1992  * the global lookup table with the properties.  It returns the
1993  * number of alias properties found, or an error code in case of failure.
1994  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1995 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1996 {
1997 	struct property *pp;
1998 
1999 	of_aliases = of_find_node_by_path("/aliases");
2000 	of_chosen = of_find_node_by_path("/chosen");
2001 	if (of_chosen == NULL)
2002 		of_chosen = of_find_node_by_path("/chosen@0");
2003 
2004 	if (of_chosen) {
2005 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2006 		const char *name = NULL;
2007 
2008 		if (of_property_read_string(of_chosen, "stdout-path", &name))
2009 			of_property_read_string(of_chosen, "linux,stdout-path",
2010 						&name);
2011 		if (IS_ENABLED(CONFIG_PPC) && !name)
2012 			of_property_read_string(of_aliases, "stdout", &name);
2013 		if (name)
2014 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2015 	}
2016 
2017 	if (!of_aliases)
2018 		return;
2019 
2020 	for_each_property_of_node(of_aliases, pp) {
2021 		const char *start = pp->name;
2022 		const char *end = start + strlen(start);
2023 		struct device_node *np;
2024 		struct alias_prop *ap;
2025 		int id, len;
2026 
2027 		/* Skip those we do not want to proceed */
2028 		if (!strcmp(pp->name, "name") ||
2029 		    !strcmp(pp->name, "phandle") ||
2030 		    !strcmp(pp->name, "linux,phandle"))
2031 			continue;
2032 
2033 		np = of_find_node_by_path(pp->value);
2034 		if (!np)
2035 			continue;
2036 
2037 		/* walk the alias backwards to extract the id and work out
2038 		 * the 'stem' string */
2039 		while (isdigit(*(end-1)) && end > start)
2040 			end--;
2041 		len = end - start;
2042 
2043 		if (kstrtoint(end, 10, &id) < 0)
2044 			continue;
2045 
2046 		/* Allocate an alias_prop with enough space for the stem */
2047 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2048 		if (!ap)
2049 			continue;
2050 		memset(ap, 0, sizeof(*ap) + len + 1);
2051 		ap->alias = start;
2052 		of_alias_add(ap, np, id, start, len);
2053 	}
2054 }
2055 
2056 /**
2057  * of_alias_get_id - Get alias id for the given device_node
2058  * @np:		Pointer to the given device_node
2059  * @stem:	Alias stem of the given device_node
2060  *
2061  * The function travels the lookup table to get the alias id for the given
2062  * device_node and alias stem.
2063  *
2064  * Return: The alias id if found.
2065  */
of_alias_get_id(struct device_node * np,const char * stem)2066 int of_alias_get_id(struct device_node *np, const char *stem)
2067 {
2068 	struct alias_prop *app;
2069 	int id = -ENODEV;
2070 
2071 	mutex_lock(&of_mutex);
2072 	list_for_each_entry(app, &aliases_lookup, link) {
2073 		if (strcmp(app->stem, stem) != 0)
2074 			continue;
2075 
2076 		if (np == app->np) {
2077 			id = app->id;
2078 			break;
2079 		}
2080 	}
2081 	mutex_unlock(&of_mutex);
2082 
2083 	return id;
2084 }
2085 EXPORT_SYMBOL_GPL(of_alias_get_id);
2086 
2087 /**
2088  * of_alias_get_alias_list - Get alias list for the given device driver
2089  * @matches:	Array of OF device match structures to search in
2090  * @stem:	Alias stem of the given device_node
2091  * @bitmap:	Bitmap field pointer
2092  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2093  *
2094  * The function travels the lookup table to record alias ids for the given
2095  * device match structures and alias stem.
2096  *
2097  * Return:	0 or -ENOSYS when !CONFIG_OF or
2098  *		-EOVERFLOW if alias ID is greater then allocated nbits
2099  */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2100 int of_alias_get_alias_list(const struct of_device_id *matches,
2101 			     const char *stem, unsigned long *bitmap,
2102 			     unsigned int nbits)
2103 {
2104 	struct alias_prop *app;
2105 	int ret = 0;
2106 
2107 	/* Zero bitmap field to make sure that all the time it is clean */
2108 	bitmap_zero(bitmap, nbits);
2109 
2110 	mutex_lock(&of_mutex);
2111 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2112 	list_for_each_entry(app, &aliases_lookup, link) {
2113 		pr_debug("%s: stem: %s, id: %d\n",
2114 			 __func__, app->stem, app->id);
2115 
2116 		if (strcmp(app->stem, stem) != 0) {
2117 			pr_debug("%s: stem comparison didn't pass %s\n",
2118 				 __func__, app->stem);
2119 			continue;
2120 		}
2121 
2122 		if (of_match_node(matches, app->np)) {
2123 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2124 
2125 			if (app->id >= nbits) {
2126 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2127 					__func__, app->id, nbits);
2128 				ret = -EOVERFLOW;
2129 			} else {
2130 				set_bit(app->id, bitmap);
2131 			}
2132 		}
2133 	}
2134 	mutex_unlock(&of_mutex);
2135 
2136 	return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2139 
2140 /**
2141  * of_alias_get_highest_id - Get highest alias id for the given stem
2142  * @stem:	Alias stem to be examined
2143  *
2144  * The function travels the lookup table to get the highest alias id for the
2145  * given alias stem.  It returns the alias id if found.
2146  */
of_alias_get_highest_id(const char * stem)2147 int of_alias_get_highest_id(const char *stem)
2148 {
2149 	struct alias_prop *app;
2150 	int id = -ENODEV;
2151 
2152 	mutex_lock(&of_mutex);
2153 	list_for_each_entry(app, &aliases_lookup, link) {
2154 		if (strcmp(app->stem, stem) != 0)
2155 			continue;
2156 
2157 		if (app->id > id)
2158 			id = app->id;
2159 	}
2160 	mutex_unlock(&of_mutex);
2161 
2162 	return id;
2163 }
2164 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2165 
2166 /**
2167  * of_console_check() - Test and setup console for DT setup
2168  * @dn: Pointer to device node
2169  * @name: Name to use for preferred console without index. ex. "ttyS"
2170  * @index: Index to use for preferred console.
2171  *
2172  * Check if the given device node matches the stdout-path property in the
2173  * /chosen node. If it does then register it as the preferred console.
2174  *
2175  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2176  */
of_console_check(struct device_node * dn,char * name,int index)2177 bool of_console_check(struct device_node *dn, char *name, int index)
2178 {
2179 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2180 		return false;
2181 
2182 	/*
2183 	 * XXX: cast `options' to char pointer to suppress complication
2184 	 * warnings: printk, UART and console drivers expect char pointer.
2185 	 */
2186 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2187 }
2188 EXPORT_SYMBOL_GPL(of_console_check);
2189 
2190 /**
2191  * of_find_next_cache_node - Find a node's subsidiary cache
2192  * @np:	node of type "cpu" or "cache"
2193  *
2194  * Return: A node pointer with refcount incremented, use
2195  * of_node_put() on it when done.  Caller should hold a reference
2196  * to np.
2197  */
of_find_next_cache_node(const struct device_node * np)2198 struct device_node *of_find_next_cache_node(const struct device_node *np)
2199 {
2200 	struct device_node *child, *cache_node;
2201 
2202 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2203 	if (!cache_node)
2204 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2205 
2206 	if (cache_node)
2207 		return cache_node;
2208 
2209 	/* OF on pmac has nodes instead of properties named "l2-cache"
2210 	 * beneath CPU nodes.
2211 	 */
2212 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2213 		for_each_child_of_node(np, child)
2214 			if (of_node_is_type(child, "cache"))
2215 				return child;
2216 
2217 	return NULL;
2218 }
2219 
2220 /**
2221  * of_find_last_cache_level - Find the level at which the last cache is
2222  * 		present for the given logical cpu
2223  *
2224  * @cpu: cpu number(logical index) for which the last cache level is needed
2225  *
2226  * Return: The the level at which the last cache is present. It is exactly
2227  * same as  the total number of cache levels for the given logical cpu.
2228  */
of_find_last_cache_level(unsigned int cpu)2229 int of_find_last_cache_level(unsigned int cpu)
2230 {
2231 	u32 cache_level = 0;
2232 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2233 
2234 	while (np) {
2235 		prev = np;
2236 		of_node_put(np);
2237 		np = of_find_next_cache_node(np);
2238 	}
2239 
2240 	of_property_read_u32(prev, "cache-level", &cache_level);
2241 
2242 	return cache_level;
2243 }
2244 
2245 /**
2246  * of_map_id - Translate an ID through a downstream mapping.
2247  * @np: root complex device node.
2248  * @id: device ID to map.
2249  * @map_name: property name of the map to use.
2250  * @map_mask_name: optional property name of the mask to use.
2251  * @target: optional pointer to a target device node.
2252  * @id_out: optional pointer to receive the translated ID.
2253  *
2254  * Given a device ID, look up the appropriate implementation-defined
2255  * platform ID and/or the target device which receives transactions on that
2256  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2257  * @id_out may be NULL if only the other is required. If @target points to
2258  * a non-NULL device node pointer, only entries targeting that node will be
2259  * matched; if it points to a NULL value, it will receive the device node of
2260  * the first matching target phandle, with a reference held.
2261  *
2262  * Return: 0 on success or a standard error code on failure.
2263  */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2264 int of_map_id(struct device_node *np, u32 id,
2265 	       const char *map_name, const char *map_mask_name,
2266 	       struct device_node **target, u32 *id_out)
2267 {
2268 	u32 map_mask, masked_id;
2269 	int map_len;
2270 	const __be32 *map = NULL;
2271 
2272 	if (!np || !map_name || (!target && !id_out))
2273 		return -EINVAL;
2274 
2275 	map = of_get_property(np, map_name, &map_len);
2276 	if (!map) {
2277 		if (target)
2278 			return -ENODEV;
2279 		/* Otherwise, no map implies no translation */
2280 		*id_out = id;
2281 		return 0;
2282 	}
2283 
2284 	if (!map_len || map_len % (4 * sizeof(*map))) {
2285 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2286 			map_name, map_len);
2287 		return -EINVAL;
2288 	}
2289 
2290 	/* The default is to select all bits. */
2291 	map_mask = 0xffffffff;
2292 
2293 	/*
2294 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2295 	 * If of_property_read_u32() fails, the default is used.
2296 	 */
2297 	if (map_mask_name)
2298 		of_property_read_u32(np, map_mask_name, &map_mask);
2299 
2300 	masked_id = map_mask & id;
2301 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2302 		struct device_node *phandle_node;
2303 		u32 id_base = be32_to_cpup(map + 0);
2304 		u32 phandle = be32_to_cpup(map + 1);
2305 		u32 out_base = be32_to_cpup(map + 2);
2306 		u32 id_len = be32_to_cpup(map + 3);
2307 
2308 		if (id_base & ~map_mask) {
2309 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2310 				np, map_name, map_name,
2311 				map_mask, id_base);
2312 			return -EFAULT;
2313 		}
2314 
2315 		if (masked_id < id_base || masked_id >= id_base + id_len)
2316 			continue;
2317 
2318 		phandle_node = of_find_node_by_phandle(phandle);
2319 		if (!phandle_node)
2320 			return -ENODEV;
2321 
2322 		if (target) {
2323 			if (*target)
2324 				of_node_put(phandle_node);
2325 			else
2326 				*target = phandle_node;
2327 
2328 			if (*target != phandle_node)
2329 				continue;
2330 		}
2331 
2332 		if (id_out)
2333 			*id_out = masked_id - id_base + out_base;
2334 
2335 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2336 			np, map_name, map_mask, id_base, out_base,
2337 			id_len, id, masked_id - id_base + out_base);
2338 		return 0;
2339 	}
2340 
2341 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2342 		id, target && *target ? *target : NULL);
2343 
2344 	/* Bypasses translation */
2345 	if (id_out)
2346 		*id_out = id;
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(of_map_id);
2350