1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
entry_end(struct btrfs_ordered_extent * entry)23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25 if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 return (u64)-1;
27 return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31 * in the tree
32 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34 struct rb_node *node)
35 {
36 struct rb_node **p = &root->rb_node;
37 struct rb_node *parent = NULL;
38 struct btrfs_ordered_extent *entry;
39
40 while (*p) {
41 parent = *p;
42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44 if (file_offset < entry->file_offset)
45 p = &(*p)->rb_left;
46 else if (file_offset >= entry_end(entry))
47 p = &(*p)->rb_right;
48 else
49 return parent;
50 }
51
52 rb_link_node(node, parent, p);
53 rb_insert_color(node, root);
54 return NULL;
55 }
56
57 /*
58 * look for a given offset in the tree, and if it can't be found return the
59 * first lesser offset
60 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 struct rb_node **prev_ret)
63 {
64 struct rb_node *n = root->rb_node;
65 struct rb_node *prev = NULL;
66 struct rb_node *test;
67 struct btrfs_ordered_extent *entry;
68 struct btrfs_ordered_extent *prev_entry = NULL;
69
70 while (n) {
71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 prev = n;
73 prev_entry = entry;
74
75 if (file_offset < entry->file_offset)
76 n = n->rb_left;
77 else if (file_offset >= entry_end(entry))
78 n = n->rb_right;
79 else
80 return n;
81 }
82 if (!prev_ret)
83 return NULL;
84
85 while (prev && file_offset >= entry_end(prev_entry)) {
86 test = rb_next(prev);
87 if (!test)
88 break;
89 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 rb_node);
91 if (file_offset < entry_end(prev_entry))
92 break;
93
94 prev = test;
95 }
96 if (prev)
97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 rb_node);
99 while (prev && file_offset < entry_end(prev_entry)) {
100 test = rb_prev(prev);
101 if (!test)
102 break;
103 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 rb_node);
105 prev = test;
106 }
107 *prev_ret = prev;
108 return NULL;
109 }
110
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112 u64 len)
113 {
114 if (file_offset + len <= entry->file_offset ||
115 entry->file_offset + entry->num_bytes <= file_offset)
116 return 0;
117 return 1;
118 }
119
120 /*
121 * look find the first ordered struct that has this offset, otherwise
122 * the first one less than this offset
123 */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125 u64 file_offset)
126 {
127 struct rb_root *root = &tree->tree;
128 struct rb_node *prev = NULL;
129 struct rb_node *ret;
130 struct btrfs_ordered_extent *entry;
131
132 if (tree->last) {
133 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134 rb_node);
135 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 return tree->last;
137 }
138 ret = __tree_search(root, file_offset, &prev);
139 if (!ret)
140 ret = prev;
141 if (ret)
142 tree->last = ret;
143 return ret;
144 }
145
146 /*
147 * Allocate and add a new ordered_extent into the per-inode tree.
148 *
149 * The tree is given a single reference on the ordered extent that was
150 * inserted.
151 */
__btrfs_add_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 num_bytes,u64 disk_num_bytes,int type,int dio,int compress_type)152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153 u64 disk_bytenr, u64 num_bytes,
154 u64 disk_num_bytes, int type, int dio,
155 int compress_type)
156 {
157 struct btrfs_root *root = inode->root;
158 struct btrfs_fs_info *fs_info = root->fs_info;
159 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160 struct rb_node *node;
161 struct btrfs_ordered_extent *entry;
162 int ret;
163
164 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165 /* For nocow write, we can release the qgroup rsv right now */
166 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167 if (ret < 0)
168 return ret;
169 ret = 0;
170 } else {
171 /*
172 * The ordered extent has reserved qgroup space, release now
173 * and pass the reserved number for qgroup_record to free.
174 */
175 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176 if (ret < 0)
177 return ret;
178 }
179 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180 if (!entry)
181 return -ENOMEM;
182
183 entry->file_offset = file_offset;
184 entry->disk_bytenr = disk_bytenr;
185 entry->num_bytes = num_bytes;
186 entry->disk_num_bytes = disk_num_bytes;
187 entry->bytes_left = num_bytes;
188 entry->inode = igrab(&inode->vfs_inode);
189 entry->compress_type = compress_type;
190 entry->truncated_len = (u64)-1;
191 entry->qgroup_rsv = ret;
192 entry->physical = (u64)-1;
193
194 ASSERT(type == BTRFS_ORDERED_REGULAR ||
195 type == BTRFS_ORDERED_NOCOW ||
196 type == BTRFS_ORDERED_PREALLOC ||
197 type == BTRFS_ORDERED_COMPRESSED);
198 set_bit(type, &entry->flags);
199
200 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
201 fs_info->delalloc_batch);
202
203 if (dio)
204 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
205
206 /* one ref for the tree */
207 refcount_set(&entry->refs, 1);
208 init_waitqueue_head(&entry->wait);
209 INIT_LIST_HEAD(&entry->list);
210 INIT_LIST_HEAD(&entry->log_list);
211 INIT_LIST_HEAD(&entry->root_extent_list);
212 INIT_LIST_HEAD(&entry->work_list);
213 init_completion(&entry->completion);
214
215 trace_btrfs_ordered_extent_add(inode, entry);
216
217 spin_lock_irq(&tree->lock);
218 node = tree_insert(&tree->tree, file_offset,
219 &entry->rb_node);
220 if (node)
221 btrfs_panic(fs_info, -EEXIST,
222 "inconsistency in ordered tree at offset %llu",
223 file_offset);
224 spin_unlock_irq(&tree->lock);
225
226 spin_lock(&root->ordered_extent_lock);
227 list_add_tail(&entry->root_extent_list,
228 &root->ordered_extents);
229 root->nr_ordered_extents++;
230 if (root->nr_ordered_extents == 1) {
231 spin_lock(&fs_info->ordered_root_lock);
232 BUG_ON(!list_empty(&root->ordered_root));
233 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
234 spin_unlock(&fs_info->ordered_root_lock);
235 }
236 spin_unlock(&root->ordered_extent_lock);
237
238 /*
239 * We don't need the count_max_extents here, we can assume that all of
240 * that work has been done at higher layers, so this is truly the
241 * smallest the extent is going to get.
242 */
243 spin_lock(&inode->lock);
244 btrfs_mod_outstanding_extents(inode, 1);
245 spin_unlock(&inode->lock);
246
247 return 0;
248 }
249
btrfs_add_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 num_bytes,u64 disk_num_bytes,int type)250 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
251 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
252 int type)
253 {
254 ASSERT(type == BTRFS_ORDERED_REGULAR ||
255 type == BTRFS_ORDERED_NOCOW ||
256 type == BTRFS_ORDERED_PREALLOC);
257 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
258 num_bytes, disk_num_bytes, type, 0,
259 BTRFS_COMPRESS_NONE);
260 }
261
btrfs_add_ordered_extent_dio(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 num_bytes,u64 disk_num_bytes,int type)262 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
263 u64 disk_bytenr, u64 num_bytes,
264 u64 disk_num_bytes, int type)
265 {
266 ASSERT(type == BTRFS_ORDERED_REGULAR ||
267 type == BTRFS_ORDERED_NOCOW ||
268 type == BTRFS_ORDERED_PREALLOC);
269 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270 num_bytes, disk_num_bytes, type, 1,
271 BTRFS_COMPRESS_NONE);
272 }
273
btrfs_add_ordered_extent_compress(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 num_bytes,u64 disk_num_bytes,int compress_type)274 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
275 u64 disk_bytenr, u64 num_bytes,
276 u64 disk_num_bytes, int compress_type)
277 {
278 ASSERT(compress_type != BTRFS_COMPRESS_NONE);
279 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
280 num_bytes, disk_num_bytes,
281 BTRFS_ORDERED_COMPRESSED, 0,
282 compress_type);
283 }
284
285 /*
286 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
287 * when an ordered extent is finished. If the list covers more than one
288 * ordered extent, it is split across multiples.
289 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)290 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
291 struct btrfs_ordered_sum *sum)
292 {
293 struct btrfs_ordered_inode_tree *tree;
294
295 tree = &BTRFS_I(entry->inode)->ordered_tree;
296 spin_lock_irq(&tree->lock);
297 list_add_tail(&sum->list, &entry->list);
298 spin_unlock_irq(&tree->lock);
299 }
300
301 /*
302 * Mark all ordered extents io inside the specified range finished.
303 *
304 * @page: The invovled page for the opeartion.
305 * For uncompressed buffered IO, the page status also needs to be
306 * updated to indicate whether the pending ordered io is finished.
307 * Can be NULL for direct IO and compressed write.
308 * For these cases, callers are ensured they won't execute the
309 * endio function twice.
310 * @finish_func: The function to be executed when all the IO of an ordered
311 * extent are finished.
312 *
313 * This function is called for endio, thus the range must have ordered
314 * extent(s) coveri it.
315 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct page * page,u64 file_offset,u64 num_bytes,btrfs_func_t finish_func,bool uptodate)316 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
317 struct page *page, u64 file_offset,
318 u64 num_bytes, btrfs_func_t finish_func,
319 bool uptodate)
320 {
321 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
322 struct btrfs_fs_info *fs_info = inode->root->fs_info;
323 struct btrfs_workqueue *wq;
324 struct rb_node *node;
325 struct btrfs_ordered_extent *entry = NULL;
326 unsigned long flags;
327 u64 cur = file_offset;
328
329 if (btrfs_is_free_space_inode(inode))
330 wq = fs_info->endio_freespace_worker;
331 else
332 wq = fs_info->endio_write_workers;
333
334 if (page)
335 ASSERT(page->mapping && page_offset(page) <= file_offset &&
336 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
337
338 spin_lock_irqsave(&tree->lock, flags);
339 while (cur < file_offset + num_bytes) {
340 u64 entry_end;
341 u64 end;
342 u32 len;
343
344 node = tree_search(tree, cur);
345 /* No ordered extents at all */
346 if (!node)
347 break;
348
349 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
350 entry_end = entry->file_offset + entry->num_bytes;
351 /*
352 * |<-- OE --->| |
353 * cur
354 * Go to next OE.
355 */
356 if (cur >= entry_end) {
357 node = rb_next(node);
358 /* No more ordered extents, exit */
359 if (!node)
360 break;
361 entry = rb_entry(node, struct btrfs_ordered_extent,
362 rb_node);
363
364 /* Go to next ordered extent and continue */
365 cur = entry->file_offset;
366 continue;
367 }
368 /*
369 * | |<--- OE --->|
370 * cur
371 * Go to the start of OE.
372 */
373 if (cur < entry->file_offset) {
374 cur = entry->file_offset;
375 continue;
376 }
377
378 /*
379 * Now we are definitely inside one ordered extent.
380 *
381 * |<--- OE --->|
382 * |
383 * cur
384 */
385 end = min(entry->file_offset + entry->num_bytes,
386 file_offset + num_bytes) - 1;
387 ASSERT(end + 1 - cur < U32_MAX);
388 len = end + 1 - cur;
389
390 if (page) {
391 /*
392 * Ordered (Private2) bit indicates whether we still
393 * have pending io unfinished for the ordered extent.
394 *
395 * If there's no such bit, we need to skip to next range.
396 */
397 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
398 cur += len;
399 continue;
400 }
401 btrfs_page_clear_ordered(fs_info, page, cur, len);
402 }
403
404 /* Now we're fine to update the accounting */
405 if (unlikely(len > entry->bytes_left)) {
406 WARN_ON(1);
407 btrfs_crit(fs_info,
408 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
409 inode->root->root_key.objectid,
410 btrfs_ino(inode),
411 entry->file_offset,
412 entry->num_bytes,
413 len, entry->bytes_left);
414 entry->bytes_left = 0;
415 } else {
416 entry->bytes_left -= len;
417 }
418
419 if (!uptodate)
420 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
421
422 /*
423 * All the IO of the ordered extent is finished, we need to queue
424 * the finish_func to be executed.
425 */
426 if (entry->bytes_left == 0) {
427 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
428 cond_wake_up(&entry->wait);
429 refcount_inc(&entry->refs);
430 spin_unlock_irqrestore(&tree->lock, flags);
431 btrfs_init_work(&entry->work, finish_func, NULL, NULL);
432 btrfs_queue_work(wq, &entry->work);
433 spin_lock_irqsave(&tree->lock, flags);
434 }
435 cur += len;
436 }
437 spin_unlock_irqrestore(&tree->lock, flags);
438 }
439
440 /*
441 * Finish IO for one ordered extent across a given range. The range can only
442 * contain one ordered extent.
443 *
444 * @cached: The cached ordered extent. If not NULL, we can skip the tree
445 * search and use the ordered extent directly.
446 * Will be also used to store the finished ordered extent.
447 * @file_offset: File offset for the finished IO
448 * @io_size: Length of the finish IO range
449 *
450 * Return true if the ordered extent is finished in the range, and update
451 * @cached.
452 * Return false otherwise.
453 *
454 * NOTE: The range can NOT cross multiple ordered extents.
455 * Thus caller should ensure the range doesn't cross ordered extents.
456 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)457 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
458 struct btrfs_ordered_extent **cached,
459 u64 file_offset, u64 io_size)
460 {
461 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
462 struct rb_node *node;
463 struct btrfs_ordered_extent *entry = NULL;
464 unsigned long flags;
465 bool finished = false;
466
467 spin_lock_irqsave(&tree->lock, flags);
468 if (cached && *cached) {
469 entry = *cached;
470 goto have_entry;
471 }
472
473 node = tree_search(tree, file_offset);
474 if (!node)
475 goto out;
476
477 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
478 have_entry:
479 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
480 goto out;
481
482 if (io_size > entry->bytes_left)
483 btrfs_crit(inode->root->fs_info,
484 "bad ordered accounting left %llu size %llu",
485 entry->bytes_left, io_size);
486
487 entry->bytes_left -= io_size;
488
489 if (entry->bytes_left == 0) {
490 /*
491 * Ensure only one caller can set the flag and finished_ret
492 * accordingly
493 */
494 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
495 /* test_and_set_bit implies a barrier */
496 cond_wake_up_nomb(&entry->wait);
497 }
498 out:
499 if (finished && cached && entry) {
500 *cached = entry;
501 refcount_inc(&entry->refs);
502 }
503 spin_unlock_irqrestore(&tree->lock, flags);
504 return finished;
505 }
506
507 /*
508 * used to drop a reference on an ordered extent. This will free
509 * the extent if the last reference is dropped
510 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)511 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
512 {
513 struct list_head *cur;
514 struct btrfs_ordered_sum *sum;
515
516 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
517
518 if (refcount_dec_and_test(&entry->refs)) {
519 ASSERT(list_empty(&entry->root_extent_list));
520 ASSERT(list_empty(&entry->log_list));
521 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
522 if (entry->inode)
523 btrfs_add_delayed_iput(entry->inode);
524 while (!list_empty(&entry->list)) {
525 cur = entry->list.next;
526 sum = list_entry(cur, struct btrfs_ordered_sum, list);
527 list_del(&sum->list);
528 kvfree(sum);
529 }
530 kmem_cache_free(btrfs_ordered_extent_cache, entry);
531 }
532 }
533
534 /*
535 * remove an ordered extent from the tree. No references are dropped
536 * and waiters are woken up.
537 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)538 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
539 struct btrfs_ordered_extent *entry)
540 {
541 struct btrfs_ordered_inode_tree *tree;
542 struct btrfs_root *root = btrfs_inode->root;
543 struct btrfs_fs_info *fs_info = root->fs_info;
544 struct rb_node *node;
545 bool pending;
546
547 /* This is paired with btrfs_add_ordered_extent. */
548 spin_lock(&btrfs_inode->lock);
549 btrfs_mod_outstanding_extents(btrfs_inode, -1);
550 spin_unlock(&btrfs_inode->lock);
551 if (root != fs_info->tree_root)
552 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
553 false);
554
555 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
556 fs_info->delalloc_batch);
557
558 tree = &btrfs_inode->ordered_tree;
559 spin_lock_irq(&tree->lock);
560 node = &entry->rb_node;
561 rb_erase(node, &tree->tree);
562 RB_CLEAR_NODE(node);
563 if (tree->last == node)
564 tree->last = NULL;
565 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
566 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
567 spin_unlock_irq(&tree->lock);
568
569 /*
570 * The current running transaction is waiting on us, we need to let it
571 * know that we're complete and wake it up.
572 */
573 if (pending) {
574 struct btrfs_transaction *trans;
575
576 /*
577 * The checks for trans are just a formality, it should be set,
578 * but if it isn't we don't want to deref/assert under the spin
579 * lock, so be nice and check if trans is set, but ASSERT() so
580 * if it isn't set a developer will notice.
581 */
582 spin_lock(&fs_info->trans_lock);
583 trans = fs_info->running_transaction;
584 if (trans)
585 refcount_inc(&trans->use_count);
586 spin_unlock(&fs_info->trans_lock);
587
588 ASSERT(trans);
589 if (trans) {
590 if (atomic_dec_and_test(&trans->pending_ordered))
591 wake_up(&trans->pending_wait);
592 btrfs_put_transaction(trans);
593 }
594 }
595
596 spin_lock(&root->ordered_extent_lock);
597 list_del_init(&entry->root_extent_list);
598 root->nr_ordered_extents--;
599
600 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
601
602 if (!root->nr_ordered_extents) {
603 spin_lock(&fs_info->ordered_root_lock);
604 BUG_ON(list_empty(&root->ordered_root));
605 list_del_init(&root->ordered_root);
606 spin_unlock(&fs_info->ordered_root_lock);
607 }
608 spin_unlock(&root->ordered_extent_lock);
609 wake_up(&entry->wait);
610 }
611
btrfs_run_ordered_extent_work(struct btrfs_work * work)612 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
613 {
614 struct btrfs_ordered_extent *ordered;
615
616 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
617 btrfs_start_ordered_extent(ordered, 1);
618 complete(&ordered->completion);
619 }
620
621 /*
622 * wait for all the ordered extents in a root. This is done when balancing
623 * space between drives.
624 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const u64 range_start,const u64 range_len)625 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
626 const u64 range_start, const u64 range_len)
627 {
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 LIST_HEAD(splice);
630 LIST_HEAD(skipped);
631 LIST_HEAD(works);
632 struct btrfs_ordered_extent *ordered, *next;
633 u64 count = 0;
634 const u64 range_end = range_start + range_len;
635
636 mutex_lock(&root->ordered_extent_mutex);
637 spin_lock(&root->ordered_extent_lock);
638 list_splice_init(&root->ordered_extents, &splice);
639 while (!list_empty(&splice) && nr) {
640 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
641 root_extent_list);
642
643 if (range_end <= ordered->disk_bytenr ||
644 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
645 list_move_tail(&ordered->root_extent_list, &skipped);
646 cond_resched_lock(&root->ordered_extent_lock);
647 continue;
648 }
649
650 list_move_tail(&ordered->root_extent_list,
651 &root->ordered_extents);
652 refcount_inc(&ordered->refs);
653 spin_unlock(&root->ordered_extent_lock);
654
655 btrfs_init_work(&ordered->flush_work,
656 btrfs_run_ordered_extent_work, NULL, NULL);
657 list_add_tail(&ordered->work_list, &works);
658 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
659
660 cond_resched();
661 spin_lock(&root->ordered_extent_lock);
662 if (nr != U64_MAX)
663 nr--;
664 count++;
665 }
666 list_splice_tail(&skipped, &root->ordered_extents);
667 list_splice_tail(&splice, &root->ordered_extents);
668 spin_unlock(&root->ordered_extent_lock);
669
670 list_for_each_entry_safe(ordered, next, &works, work_list) {
671 list_del_init(&ordered->work_list);
672 wait_for_completion(&ordered->completion);
673 btrfs_put_ordered_extent(ordered);
674 cond_resched();
675 }
676 mutex_unlock(&root->ordered_extent_mutex);
677
678 return count;
679 }
680
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const u64 range_start,const u64 range_len)681 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
682 const u64 range_start, const u64 range_len)
683 {
684 struct btrfs_root *root;
685 struct list_head splice;
686 u64 done;
687
688 INIT_LIST_HEAD(&splice);
689
690 mutex_lock(&fs_info->ordered_operations_mutex);
691 spin_lock(&fs_info->ordered_root_lock);
692 list_splice_init(&fs_info->ordered_roots, &splice);
693 while (!list_empty(&splice) && nr) {
694 root = list_first_entry(&splice, struct btrfs_root,
695 ordered_root);
696 root = btrfs_grab_root(root);
697 BUG_ON(!root);
698 list_move_tail(&root->ordered_root,
699 &fs_info->ordered_roots);
700 spin_unlock(&fs_info->ordered_root_lock);
701
702 done = btrfs_wait_ordered_extents(root, nr,
703 range_start, range_len);
704 btrfs_put_root(root);
705
706 spin_lock(&fs_info->ordered_root_lock);
707 if (nr != U64_MAX) {
708 nr -= done;
709 }
710 }
711 list_splice_tail(&splice, &fs_info->ordered_roots);
712 spin_unlock(&fs_info->ordered_root_lock);
713 mutex_unlock(&fs_info->ordered_operations_mutex);
714 }
715
716 /*
717 * Used to start IO or wait for a given ordered extent to finish.
718 *
719 * If wait is one, this effectively waits on page writeback for all the pages
720 * in the extent, and it waits on the io completion code to insert
721 * metadata into the btree corresponding to the extent
722 */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry,int wait)723 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
724 {
725 u64 start = entry->file_offset;
726 u64 end = start + entry->num_bytes - 1;
727 struct btrfs_inode *inode = BTRFS_I(entry->inode);
728
729 trace_btrfs_ordered_extent_start(inode, entry);
730
731 /*
732 * pages in the range can be dirty, clean or writeback. We
733 * start IO on any dirty ones so the wait doesn't stall waiting
734 * for the flusher thread to find them
735 */
736 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
737 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
738 if (wait) {
739 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
740 &entry->flags));
741 }
742 }
743
744 /*
745 * Used to wait on ordered extents across a large range of bytes.
746 */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)747 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
748 {
749 int ret = 0;
750 int ret_wb = 0;
751 u64 end;
752 u64 orig_end;
753 struct btrfs_ordered_extent *ordered;
754
755 if (start + len < start) {
756 orig_end = INT_LIMIT(loff_t);
757 } else {
758 orig_end = start + len - 1;
759 if (orig_end > INT_LIMIT(loff_t))
760 orig_end = INT_LIMIT(loff_t);
761 }
762
763 /* start IO across the range first to instantiate any delalloc
764 * extents
765 */
766 ret = btrfs_fdatawrite_range(inode, start, orig_end);
767 if (ret)
768 return ret;
769
770 /*
771 * If we have a writeback error don't return immediately. Wait first
772 * for any ordered extents that haven't completed yet. This is to make
773 * sure no one can dirty the same page ranges and call writepages()
774 * before the ordered extents complete - to avoid failures (-EEXIST)
775 * when adding the new ordered extents to the ordered tree.
776 */
777 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
778
779 end = orig_end;
780 while (1) {
781 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
782 if (!ordered)
783 break;
784 if (ordered->file_offset > orig_end) {
785 btrfs_put_ordered_extent(ordered);
786 break;
787 }
788 if (ordered->file_offset + ordered->num_bytes <= start) {
789 btrfs_put_ordered_extent(ordered);
790 break;
791 }
792 btrfs_start_ordered_extent(ordered, 1);
793 end = ordered->file_offset;
794 /*
795 * If the ordered extent had an error save the error but don't
796 * exit without waiting first for all other ordered extents in
797 * the range to complete.
798 */
799 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
800 ret = -EIO;
801 btrfs_put_ordered_extent(ordered);
802 if (end == 0 || end == start)
803 break;
804 end--;
805 }
806 return ret_wb ? ret_wb : ret;
807 }
808
809 /*
810 * find an ordered extent corresponding to file_offset. return NULL if
811 * nothing is found, otherwise take a reference on the extent and return it
812 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)813 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
814 u64 file_offset)
815 {
816 struct btrfs_ordered_inode_tree *tree;
817 struct rb_node *node;
818 struct btrfs_ordered_extent *entry = NULL;
819 unsigned long flags;
820
821 tree = &inode->ordered_tree;
822 spin_lock_irqsave(&tree->lock, flags);
823 node = tree_search(tree, file_offset);
824 if (!node)
825 goto out;
826
827 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
828 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
829 entry = NULL;
830 if (entry)
831 refcount_inc(&entry->refs);
832 out:
833 spin_unlock_irqrestore(&tree->lock, flags);
834 return entry;
835 }
836
837 /* Since the DIO code tries to lock a wide area we need to look for any ordered
838 * extents that exist in the range, rather than just the start of the range.
839 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)840 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
841 struct btrfs_inode *inode, u64 file_offset, u64 len)
842 {
843 struct btrfs_ordered_inode_tree *tree;
844 struct rb_node *node;
845 struct btrfs_ordered_extent *entry = NULL;
846
847 tree = &inode->ordered_tree;
848 spin_lock_irq(&tree->lock);
849 node = tree_search(tree, file_offset);
850 if (!node) {
851 node = tree_search(tree, file_offset + len);
852 if (!node)
853 goto out;
854 }
855
856 while (1) {
857 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
858 if (range_overlaps(entry, file_offset, len))
859 break;
860
861 if (entry->file_offset >= file_offset + len) {
862 entry = NULL;
863 break;
864 }
865 entry = NULL;
866 node = rb_next(node);
867 if (!node)
868 break;
869 }
870 out:
871 if (entry)
872 refcount_inc(&entry->refs);
873 spin_unlock_irq(&tree->lock);
874 return entry;
875 }
876
877 /*
878 * Adds all ordered extents to the given list. The list ends up sorted by the
879 * file_offset of the ordered extents.
880 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)881 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
882 struct list_head *list)
883 {
884 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
885 struct rb_node *n;
886
887 ASSERT(inode_is_locked(&inode->vfs_inode));
888
889 spin_lock_irq(&tree->lock);
890 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
891 struct btrfs_ordered_extent *ordered;
892
893 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
894
895 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
896 continue;
897
898 ASSERT(list_empty(&ordered->log_list));
899 list_add_tail(&ordered->log_list, list);
900 refcount_inc(&ordered->refs);
901 }
902 spin_unlock_irq(&tree->lock);
903 }
904
905 /*
906 * lookup and return any extent before 'file_offset'. NULL is returned
907 * if none is found
908 */
909 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)910 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
911 {
912 struct btrfs_ordered_inode_tree *tree;
913 struct rb_node *node;
914 struct btrfs_ordered_extent *entry = NULL;
915
916 tree = &inode->ordered_tree;
917 spin_lock_irq(&tree->lock);
918 node = tree_search(tree, file_offset);
919 if (!node)
920 goto out;
921
922 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
923 refcount_inc(&entry->refs);
924 out:
925 spin_unlock_irq(&tree->lock);
926 return entry;
927 }
928
929 /*
930 * Lookup the first ordered extent that overlaps the range
931 * [@file_offset, @file_offset + @len).
932 *
933 * The difference between this and btrfs_lookup_first_ordered_extent() is
934 * that this one won't return any ordered extent that does not overlap the range.
935 * And the difference against btrfs_lookup_ordered_extent() is, this function
936 * ensures the first ordered extent gets returned.
937 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)938 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
939 struct btrfs_inode *inode, u64 file_offset, u64 len)
940 {
941 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
942 struct rb_node *node;
943 struct rb_node *cur;
944 struct rb_node *prev;
945 struct rb_node *next;
946 struct btrfs_ordered_extent *entry = NULL;
947
948 spin_lock_irq(&tree->lock);
949 node = tree->tree.rb_node;
950 /*
951 * Here we don't want to use tree_search() which will use tree->last
952 * and screw up the search order.
953 * And __tree_search() can't return the adjacent ordered extents
954 * either, thus here we do our own search.
955 */
956 while (node) {
957 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
958
959 if (file_offset < entry->file_offset) {
960 node = node->rb_left;
961 } else if (file_offset >= entry_end(entry)) {
962 node = node->rb_right;
963 } else {
964 /*
965 * Direct hit, got an ordered extent that starts at
966 * @file_offset
967 */
968 goto out;
969 }
970 }
971 if (!entry) {
972 /* Empty tree */
973 goto out;
974 }
975
976 cur = &entry->rb_node;
977 /* We got an entry around @file_offset, check adjacent entries */
978 if (entry->file_offset < file_offset) {
979 prev = cur;
980 next = rb_next(cur);
981 } else {
982 prev = rb_prev(cur);
983 next = cur;
984 }
985 if (prev) {
986 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
987 if (range_overlaps(entry, file_offset, len))
988 goto out;
989 }
990 if (next) {
991 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
992 if (range_overlaps(entry, file_offset, len))
993 goto out;
994 }
995 /* No ordered extent in the range */
996 entry = NULL;
997 out:
998 if (entry)
999 refcount_inc(&entry->refs);
1000 spin_unlock_irq(&tree->lock);
1001 return entry;
1002 }
1003
1004 /*
1005 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1006 * ordered extents in it are run to completion.
1007 *
1008 * @inode: Inode whose ordered tree is to be searched
1009 * @start: Beginning of range to flush
1010 * @end: Last byte of range to lock
1011 * @cached_state: If passed, will return the extent state responsible for the
1012 * locked range. It's the caller's responsibility to free the cached state.
1013 *
1014 * This function always returns with the given range locked, ensuring after it's
1015 * called no order extent can be pending.
1016 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1017 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1018 u64 end,
1019 struct extent_state **cached_state)
1020 {
1021 struct btrfs_ordered_extent *ordered;
1022 struct extent_state *cache = NULL;
1023 struct extent_state **cachedp = &cache;
1024
1025 if (cached_state)
1026 cachedp = cached_state;
1027
1028 while (1) {
1029 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1030 ordered = btrfs_lookup_ordered_range(inode, start,
1031 end - start + 1);
1032 if (!ordered) {
1033 /*
1034 * If no external cached_state has been passed then
1035 * decrement the extra ref taken for cachedp since we
1036 * aren't exposing it outside of this function
1037 */
1038 if (!cached_state)
1039 refcount_dec(&cache->refs);
1040 break;
1041 }
1042 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1043 btrfs_start_ordered_extent(ordered, 1);
1044 btrfs_put_ordered_extent(ordered);
1045 }
1046 }
1047
clone_ordered_extent(struct btrfs_ordered_extent * ordered,u64 pos,u64 len)1048 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1049 u64 len)
1050 {
1051 struct inode *inode = ordered->inode;
1052 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1053 u64 file_offset = ordered->file_offset + pos;
1054 u64 disk_bytenr = ordered->disk_bytenr + pos;
1055 u64 num_bytes = len;
1056 u64 disk_num_bytes = len;
1057 int type;
1058 unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1059 int compress_type = ordered->compress_type;
1060 unsigned long weight;
1061 int ret;
1062
1063 weight = hweight_long(flags_masked);
1064 WARN_ON_ONCE(weight > 1);
1065 if (!weight)
1066 type = 0;
1067 else
1068 type = __ffs(flags_masked);
1069
1070 /*
1071 * The splitting extent is already counted and will be added again
1072 * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid
1073 * double counting.
1074 */
1075 percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes,
1076 fs_info->delalloc_batch);
1077 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1078 WARN_ON_ONCE(1);
1079 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1080 file_offset, disk_bytenr, num_bytes,
1081 disk_num_bytes, compress_type);
1082 } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1083 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1084 disk_bytenr, num_bytes, disk_num_bytes, type);
1085 } else {
1086 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1087 disk_bytenr, num_bytes, disk_num_bytes, type);
1088 }
1089
1090 return ret;
1091 }
1092
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 pre,u64 post)1093 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1094 u64 post)
1095 {
1096 struct inode *inode = ordered->inode;
1097 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1098 struct rb_node *node;
1099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1100 int ret = 0;
1101
1102 spin_lock_irq(&tree->lock);
1103 /* Remove from tree once */
1104 node = &ordered->rb_node;
1105 rb_erase(node, &tree->tree);
1106 RB_CLEAR_NODE(node);
1107 if (tree->last == node)
1108 tree->last = NULL;
1109
1110 ordered->file_offset += pre;
1111 ordered->disk_bytenr += pre;
1112 ordered->num_bytes -= (pre + post);
1113 ordered->disk_num_bytes -= (pre + post);
1114 ordered->bytes_left -= (pre + post);
1115
1116 /* Re-insert the node */
1117 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1118 if (node)
1119 btrfs_panic(fs_info, -EEXIST,
1120 "zoned: inconsistency in ordered tree at offset %llu",
1121 ordered->file_offset);
1122
1123 spin_unlock_irq(&tree->lock);
1124
1125 if (pre)
1126 ret = clone_ordered_extent(ordered, 0, pre);
1127 if (ret == 0 && post)
1128 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1129 post);
1130
1131 return ret;
1132 }
1133
ordered_data_init(void)1134 int __init ordered_data_init(void)
1135 {
1136 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1137 sizeof(struct btrfs_ordered_extent), 0,
1138 SLAB_MEM_SPREAD,
1139 NULL);
1140 if (!btrfs_ordered_extent_cache)
1141 return -ENOMEM;
1142
1143 return 0;
1144 }
1145
ordered_data_exit(void)1146 void __cold ordered_data_exit(void)
1147 {
1148 kmem_cache_destroy(btrfs_ordered_extent_cache);
1149 }
1150