1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49
50 unsigned int pci_pm_d3hot_delay;
51
52 static void pci_pme_list_scan(struct work_struct *work);
53
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58 struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61 };
62
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64
pci_dev_d3_sleep(struct pci_dev * dev)65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 unsigned int delay = dev->d3hot_delay;
68
69 if (delay < pci_pm_d3hot_delay)
70 delay = pci_pm_d3hot_delay;
71
72 if (delay)
73 msleep(delay);
74 }
75
pci_reset_supported(struct pci_dev * dev)76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 return dev->reset_methods[0] != 0;
79 }
80
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84
85 #define DEFAULT_CARDBUS_IO_SIZE (256)
86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90
91 #define DEFAULT_HOTPLUG_IO_SIZE (256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99 * pci=hpmemsize=nnM overrides both
100 */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103
104 #define DEFAULT_HOTPLUG_BUS_SIZE 1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106
107
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120
121 /*
122 * The default CLS is used if arch didn't set CLS explicitly and not
123 * all pci devices agree on the same value. Arch can override either
124 * the dfl or actual value as it sees fit. Don't forget this is
125 * measured in 32-bit words, not bytes.
126 */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129
130 /*
131 * If we set up a device for bus mastering, we need to check the latency
132 * timer as certain BIOSes forget to set it properly.
133 */
134 unsigned int pcibios_max_latency = 255;
135
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144
pci_ats_disabled(void)145 bool pci_ats_disabled(void)
146 {
147 return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155
pcie_port_pm_setup(char * str)156 static int __init pcie_port_pm_setup(char *str)
157 {
158 if (!strcmp(str, "off"))
159 pci_bridge_d3_disable = true;
160 else if (!strcmp(str, "force"))
161 pci_bridge_d3_force = true;
162 return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165
166 /**
167 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
168 * @bus: pointer to PCI bus structure to search
169 *
170 * Given a PCI bus, returns the highest PCI bus number present in the set
171 * including the given PCI bus and its list of child PCI buses.
172 */
pci_bus_max_busnr(struct pci_bus * bus)173 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
174 {
175 struct pci_bus *tmp;
176 unsigned char max, n;
177
178 max = bus->busn_res.end;
179 list_for_each_entry(tmp, &bus->children, node) {
180 n = pci_bus_max_busnr(tmp);
181 if (n > max)
182 max = n;
183 }
184 return max;
185 }
186 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
187
188 /**
189 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
190 * @pdev: the PCI device
191 *
192 * Returns error bits set in PCI_STATUS and clears them.
193 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)194 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
195 {
196 u16 status;
197 int ret;
198
199 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
200 if (ret != PCIBIOS_SUCCESSFUL)
201 return -EIO;
202
203 status &= PCI_STATUS_ERROR_BITS;
204 if (status)
205 pci_write_config_word(pdev, PCI_STATUS, status);
206
207 return status;
208 }
209 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
210
211 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)212 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
213 bool write_combine)
214 {
215 struct resource *res = &pdev->resource[bar];
216 resource_size_t start = res->start;
217 resource_size_t size = resource_size(res);
218
219 /*
220 * Make sure the BAR is actually a memory resource, not an IO resource
221 */
222 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
223 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
224 return NULL;
225 }
226
227 if (write_combine)
228 return ioremap_wc(start, size);
229
230 return ioremap(start, size);
231 }
232
pci_ioremap_bar(struct pci_dev * pdev,int bar)233 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
234 {
235 return __pci_ioremap_resource(pdev, bar, false);
236 }
237 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
238
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)239 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
240 {
241 return __pci_ioremap_resource(pdev, bar, true);
242 }
243 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
244 #endif
245
246 /**
247 * pci_dev_str_match_path - test if a path string matches a device
248 * @dev: the PCI device to test
249 * @path: string to match the device against
250 * @endptr: pointer to the string after the match
251 *
252 * Test if a string (typically from a kernel parameter) formatted as a
253 * path of device/function addresses matches a PCI device. The string must
254 * be of the form:
255 *
256 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
257 *
258 * A path for a device can be obtained using 'lspci -t'. Using a path
259 * is more robust against bus renumbering than using only a single bus,
260 * device and function address.
261 *
262 * Returns 1 if the string matches the device, 0 if it does not and
263 * a negative error code if it fails to parse the string.
264 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)265 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
266 const char **endptr)
267 {
268 int ret;
269 int seg, bus, slot, func;
270 char *wpath, *p;
271 char end;
272
273 *endptr = strchrnul(path, ';');
274
275 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
276 if (!wpath)
277 return -ENOMEM;
278
279 while (1) {
280 p = strrchr(wpath, '/');
281 if (!p)
282 break;
283 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
284 if (ret != 2) {
285 ret = -EINVAL;
286 goto free_and_exit;
287 }
288
289 if (dev->devfn != PCI_DEVFN(slot, func)) {
290 ret = 0;
291 goto free_and_exit;
292 }
293
294 /*
295 * Note: we don't need to get a reference to the upstream
296 * bridge because we hold a reference to the top level
297 * device which should hold a reference to the bridge,
298 * and so on.
299 */
300 dev = pci_upstream_bridge(dev);
301 if (!dev) {
302 ret = 0;
303 goto free_and_exit;
304 }
305
306 *p = 0;
307 }
308
309 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
310 &func, &end);
311 if (ret != 4) {
312 seg = 0;
313 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
314 if (ret != 3) {
315 ret = -EINVAL;
316 goto free_and_exit;
317 }
318 }
319
320 ret = (seg == pci_domain_nr(dev->bus) &&
321 bus == dev->bus->number &&
322 dev->devfn == PCI_DEVFN(slot, func));
323
324 free_and_exit:
325 kfree(wpath);
326 return ret;
327 }
328
329 /**
330 * pci_dev_str_match - test if a string matches a device
331 * @dev: the PCI device to test
332 * @p: string to match the device against
333 * @endptr: pointer to the string after the match
334 *
335 * Test if a string (typically from a kernel parameter) matches a specified
336 * PCI device. The string may be of one of the following formats:
337 *
338 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
339 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
340 *
341 * The first format specifies a PCI bus/device/function address which
342 * may change if new hardware is inserted, if motherboard firmware changes,
343 * or due to changes caused in kernel parameters. If the domain is
344 * left unspecified, it is taken to be 0. In order to be robust against
345 * bus renumbering issues, a path of PCI device/function numbers may be used
346 * to address the specific device. The path for a device can be determined
347 * through the use of 'lspci -t'.
348 *
349 * The second format matches devices using IDs in the configuration
350 * space which may match multiple devices in the system. A value of 0
351 * for any field will match all devices. (Note: this differs from
352 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
353 * legacy reasons and convenience so users don't have to specify
354 * FFFFFFFFs on the command line.)
355 *
356 * Returns 1 if the string matches the device, 0 if it does not and
357 * a negative error code if the string cannot be parsed.
358 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)359 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
360 const char **endptr)
361 {
362 int ret;
363 int count;
364 unsigned short vendor, device, subsystem_vendor, subsystem_device;
365
366 if (strncmp(p, "pci:", 4) == 0) {
367 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
368 p += 4;
369 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
370 &subsystem_vendor, &subsystem_device, &count);
371 if (ret != 4) {
372 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
373 if (ret != 2)
374 return -EINVAL;
375
376 subsystem_vendor = 0;
377 subsystem_device = 0;
378 }
379
380 p += count;
381
382 if ((!vendor || vendor == dev->vendor) &&
383 (!device || device == dev->device) &&
384 (!subsystem_vendor ||
385 subsystem_vendor == dev->subsystem_vendor) &&
386 (!subsystem_device ||
387 subsystem_device == dev->subsystem_device))
388 goto found;
389 } else {
390 /*
391 * PCI Bus, Device, Function IDs are specified
392 * (optionally, may include a path of devfns following it)
393 */
394 ret = pci_dev_str_match_path(dev, p, &p);
395 if (ret < 0)
396 return ret;
397 else if (ret)
398 goto found;
399 }
400
401 *endptr = p;
402 return 0;
403
404 found:
405 *endptr = p;
406 return 1;
407 }
408
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)409 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
410 u8 pos, int cap, int *ttl)
411 {
412 u8 id;
413 u16 ent;
414
415 pci_bus_read_config_byte(bus, devfn, pos, &pos);
416
417 while ((*ttl)--) {
418 if (pos < 0x40)
419 break;
420 pos &= ~3;
421 pci_bus_read_config_word(bus, devfn, pos, &ent);
422
423 id = ent & 0xff;
424 if (id == 0xff)
425 break;
426 if (id == cap)
427 return pos;
428 pos = (ent >> 8);
429 }
430 return 0;
431 }
432
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)433 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
434 u8 pos, int cap)
435 {
436 int ttl = PCI_FIND_CAP_TTL;
437
438 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
439 }
440
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)441 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
442 {
443 return __pci_find_next_cap(dev->bus, dev->devfn,
444 pos + PCI_CAP_LIST_NEXT, cap);
445 }
446 EXPORT_SYMBOL_GPL(pci_find_next_capability);
447
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)448 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
449 unsigned int devfn, u8 hdr_type)
450 {
451 u16 status;
452
453 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
454 if (!(status & PCI_STATUS_CAP_LIST))
455 return 0;
456
457 switch (hdr_type) {
458 case PCI_HEADER_TYPE_NORMAL:
459 case PCI_HEADER_TYPE_BRIDGE:
460 return PCI_CAPABILITY_LIST;
461 case PCI_HEADER_TYPE_CARDBUS:
462 return PCI_CB_CAPABILITY_LIST;
463 }
464
465 return 0;
466 }
467
468 /**
469 * pci_find_capability - query for devices' capabilities
470 * @dev: PCI device to query
471 * @cap: capability code
472 *
473 * Tell if a device supports a given PCI capability.
474 * Returns the address of the requested capability structure within the
475 * device's PCI configuration space or 0 in case the device does not
476 * support it. Possible values for @cap include:
477 *
478 * %PCI_CAP_ID_PM Power Management
479 * %PCI_CAP_ID_AGP Accelerated Graphics Port
480 * %PCI_CAP_ID_VPD Vital Product Data
481 * %PCI_CAP_ID_SLOTID Slot Identification
482 * %PCI_CAP_ID_MSI Message Signalled Interrupts
483 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
484 * %PCI_CAP_ID_PCIX PCI-X
485 * %PCI_CAP_ID_EXP PCI Express
486 */
pci_find_capability(struct pci_dev * dev,int cap)487 u8 pci_find_capability(struct pci_dev *dev, int cap)
488 {
489 u8 pos;
490
491 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
492 if (pos)
493 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
494
495 return pos;
496 }
497 EXPORT_SYMBOL(pci_find_capability);
498
499 /**
500 * pci_bus_find_capability - query for devices' capabilities
501 * @bus: the PCI bus to query
502 * @devfn: PCI device to query
503 * @cap: capability code
504 *
505 * Like pci_find_capability() but works for PCI devices that do not have a
506 * pci_dev structure set up yet.
507 *
508 * Returns the address of the requested capability structure within the
509 * device's PCI configuration space or 0 in case the device does not
510 * support it.
511 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)512 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
513 {
514 u8 hdr_type, pos;
515
516 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
517
518 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
519 if (pos)
520 pos = __pci_find_next_cap(bus, devfn, pos, cap);
521
522 return pos;
523 }
524 EXPORT_SYMBOL(pci_bus_find_capability);
525
526 /**
527 * pci_find_next_ext_capability - Find an extended capability
528 * @dev: PCI device to query
529 * @start: address at which to start looking (0 to start at beginning of list)
530 * @cap: capability code
531 *
532 * Returns the address of the next matching extended capability structure
533 * within the device's PCI configuration space or 0 if the device does
534 * not support it. Some capabilities can occur several times, e.g., the
535 * vendor-specific capability, and this provides a way to find them all.
536 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)537 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
538 {
539 u32 header;
540 int ttl;
541 u16 pos = PCI_CFG_SPACE_SIZE;
542
543 /* minimum 8 bytes per capability */
544 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
545
546 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
547 return 0;
548
549 if (start)
550 pos = start;
551
552 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
553 return 0;
554
555 /*
556 * If we have no capabilities, this is indicated by cap ID,
557 * cap version and next pointer all being 0.
558 */
559 if (header == 0)
560 return 0;
561
562 while (ttl-- > 0) {
563 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
564 return pos;
565
566 pos = PCI_EXT_CAP_NEXT(header);
567 if (pos < PCI_CFG_SPACE_SIZE)
568 break;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 break;
572 }
573
574 return 0;
575 }
576 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
577
578 /**
579 * pci_find_ext_capability - Find an extended capability
580 * @dev: PCI device to query
581 * @cap: capability code
582 *
583 * Returns the address of the requested extended capability structure
584 * within the device's PCI configuration space or 0 if the device does
585 * not support it. Possible values for @cap include:
586 *
587 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
588 * %PCI_EXT_CAP_ID_VC Virtual Channel
589 * %PCI_EXT_CAP_ID_DSN Device Serial Number
590 * %PCI_EXT_CAP_ID_PWR Power Budgeting
591 */
pci_find_ext_capability(struct pci_dev * dev,int cap)592 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
593 {
594 return pci_find_next_ext_capability(dev, 0, cap);
595 }
596 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
597
598 /**
599 * pci_get_dsn - Read and return the 8-byte Device Serial Number
600 * @dev: PCI device to query
601 *
602 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
603 * Number.
604 *
605 * Returns the DSN, or zero if the capability does not exist.
606 */
pci_get_dsn(struct pci_dev * dev)607 u64 pci_get_dsn(struct pci_dev *dev)
608 {
609 u32 dword;
610 u64 dsn;
611 int pos;
612
613 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
614 if (!pos)
615 return 0;
616
617 /*
618 * The Device Serial Number is two dwords offset 4 bytes from the
619 * capability position. The specification says that the first dword is
620 * the lower half, and the second dword is the upper half.
621 */
622 pos += 4;
623 pci_read_config_dword(dev, pos, &dword);
624 dsn = (u64)dword;
625 pci_read_config_dword(dev, pos + 4, &dword);
626 dsn |= ((u64)dword) << 32;
627
628 return dsn;
629 }
630 EXPORT_SYMBOL_GPL(pci_get_dsn);
631
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)632 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
633 {
634 int rc, ttl = PCI_FIND_CAP_TTL;
635 u8 cap, mask;
636
637 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
638 mask = HT_3BIT_CAP_MASK;
639 else
640 mask = HT_5BIT_CAP_MASK;
641
642 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
643 PCI_CAP_ID_HT, &ttl);
644 while (pos) {
645 rc = pci_read_config_byte(dev, pos + 3, &cap);
646 if (rc != PCIBIOS_SUCCESSFUL)
647 return 0;
648
649 if ((cap & mask) == ht_cap)
650 return pos;
651
652 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
653 pos + PCI_CAP_LIST_NEXT,
654 PCI_CAP_ID_HT, &ttl);
655 }
656
657 return 0;
658 }
659
660 /**
661 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
662 * @dev: PCI device to query
663 * @pos: Position from which to continue searching
664 * @ht_cap: HyperTransport capability code
665 *
666 * To be used in conjunction with pci_find_ht_capability() to search for
667 * all capabilities matching @ht_cap. @pos should always be a value returned
668 * from pci_find_ht_capability().
669 *
670 * NB. To be 100% safe against broken PCI devices, the caller should take
671 * steps to avoid an infinite loop.
672 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)673 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
674 {
675 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
676 }
677 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
678
679 /**
680 * pci_find_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @ht_cap: HyperTransport capability code
683 *
684 * Tell if a device supports a given HyperTransport capability.
685 * Returns an address within the device's PCI configuration space
686 * or 0 in case the device does not support the request capability.
687 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
688 * which has a HyperTransport capability matching @ht_cap.
689 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)690 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
691 {
692 u8 pos;
693
694 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
695 if (pos)
696 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
697
698 return pos;
699 }
700 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
701
702 /**
703 * pci_find_vsec_capability - Find a vendor-specific extended capability
704 * @dev: PCI device to query
705 * @vendor: Vendor ID for which capability is defined
706 * @cap: Vendor-specific capability ID
707 *
708 * If @dev has Vendor ID @vendor, search for a VSEC capability with
709 * VSEC ID @cap. If found, return the capability offset in
710 * config space; otherwise return 0.
711 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)712 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
713 {
714 u16 vsec = 0;
715 u32 header;
716
717 if (vendor != dev->vendor)
718 return 0;
719
720 while ((vsec = pci_find_next_ext_capability(dev, vsec,
721 PCI_EXT_CAP_ID_VNDR))) {
722 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
723 &header) == PCIBIOS_SUCCESSFUL &&
724 PCI_VNDR_HEADER_ID(header) == cap)
725 return vsec;
726 }
727
728 return 0;
729 }
730 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
731
732 /**
733 * pci_find_parent_resource - return resource region of parent bus of given
734 * region
735 * @dev: PCI device structure contains resources to be searched
736 * @res: child resource record for which parent is sought
737 *
738 * For given resource region of given device, return the resource region of
739 * parent bus the given region is contained in.
740 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)741 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
742 struct resource *res)
743 {
744 const struct pci_bus *bus = dev->bus;
745 struct resource *r;
746 int i;
747
748 pci_bus_for_each_resource(bus, r, i) {
749 if (!r)
750 continue;
751 if (resource_contains(r, res)) {
752
753 /*
754 * If the window is prefetchable but the BAR is
755 * not, the allocator made a mistake.
756 */
757 if (r->flags & IORESOURCE_PREFETCH &&
758 !(res->flags & IORESOURCE_PREFETCH))
759 return NULL;
760
761 /*
762 * If we're below a transparent bridge, there may
763 * be both a positively-decoded aperture and a
764 * subtractively-decoded region that contain the BAR.
765 * We want the positively-decoded one, so this depends
766 * on pci_bus_for_each_resource() giving us those
767 * first.
768 */
769 return r;
770 }
771 }
772 return NULL;
773 }
774 EXPORT_SYMBOL(pci_find_parent_resource);
775
776 /**
777 * pci_find_resource - Return matching PCI device resource
778 * @dev: PCI device to query
779 * @res: Resource to look for
780 *
781 * Goes over standard PCI resources (BARs) and checks if the given resource
782 * is partially or fully contained in any of them. In that case the
783 * matching resource is returned, %NULL otherwise.
784 */
pci_find_resource(struct pci_dev * dev,struct resource * res)785 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
786 {
787 int i;
788
789 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
790 struct resource *r = &dev->resource[i];
791
792 if (r->start && resource_contains(r, res))
793 return r;
794 }
795
796 return NULL;
797 }
798 EXPORT_SYMBOL(pci_find_resource);
799
800 /**
801 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
802 * @dev: the PCI device to operate on
803 * @pos: config space offset of status word
804 * @mask: mask of bit(s) to care about in status word
805 *
806 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
807 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)808 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
809 {
810 int i;
811
812 /* Wait for Transaction Pending bit clean */
813 for (i = 0; i < 4; i++) {
814 u16 status;
815 if (i)
816 msleep((1 << (i - 1)) * 100);
817
818 pci_read_config_word(dev, pos, &status);
819 if (!(status & mask))
820 return 1;
821 }
822
823 if (dev->bus->self)
824 pcie_aspm_pm_state_change(dev->bus->self);
825
826 return 0;
827 }
828
829 static int pci_acs_enable;
830
831 /**
832 * pci_request_acs - ask for ACS to be enabled if supported
833 */
pci_request_acs(void)834 void pci_request_acs(void)
835 {
836 pci_acs_enable = 1;
837 }
838
839 static const char *disable_acs_redir_param;
840
841 /**
842 * pci_disable_acs_redir - disable ACS redirect capabilities
843 * @dev: the PCI device
844 *
845 * For only devices specified in the disable_acs_redir parameter.
846 */
pci_disable_acs_redir(struct pci_dev * dev)847 static void pci_disable_acs_redir(struct pci_dev *dev)
848 {
849 int ret = 0;
850 const char *p;
851 int pos;
852 u16 ctrl;
853
854 if (!disable_acs_redir_param)
855 return;
856
857 p = disable_acs_redir_param;
858 while (*p) {
859 ret = pci_dev_str_match(dev, p, &p);
860 if (ret < 0) {
861 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
862 disable_acs_redir_param);
863
864 break;
865 } else if (ret == 1) {
866 /* Found a match */
867 break;
868 }
869
870 if (*p != ';' && *p != ',') {
871 /* End of param or invalid format */
872 break;
873 }
874 p++;
875 }
876
877 if (ret != 1)
878 return;
879
880 if (!pci_dev_specific_disable_acs_redir(dev))
881 return;
882
883 pos = dev->acs_cap;
884 if (!pos) {
885 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
886 return;
887 }
888
889 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
890
891 /* P2P Request & Completion Redirect */
892 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
893
894 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
895
896 pci_info(dev, "disabled ACS redirect\n");
897 }
898
899 /**
900 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
901 * @dev: the PCI device
902 */
pci_std_enable_acs(struct pci_dev * dev)903 static void pci_std_enable_acs(struct pci_dev *dev)
904 {
905 int pos;
906 u16 cap;
907 u16 ctrl;
908
909 pos = dev->acs_cap;
910 if (!pos)
911 return;
912
913 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
914 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
915
916 /* Source Validation */
917 ctrl |= (cap & PCI_ACS_SV);
918
919 /* P2P Request Redirect */
920 ctrl |= (cap & PCI_ACS_RR);
921
922 /* P2P Completion Redirect */
923 ctrl |= (cap & PCI_ACS_CR);
924
925 /* Upstream Forwarding */
926 ctrl |= (cap & PCI_ACS_UF);
927
928 /* Enable Translation Blocking for external devices and noats */
929 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
930 ctrl |= (cap & PCI_ACS_TB);
931
932 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
933 }
934
935 /**
936 * pci_enable_acs - enable ACS if hardware support it
937 * @dev: the PCI device
938 */
pci_enable_acs(struct pci_dev * dev)939 static void pci_enable_acs(struct pci_dev *dev)
940 {
941 if (!pci_acs_enable)
942 goto disable_acs_redir;
943
944 if (!pci_dev_specific_enable_acs(dev))
945 goto disable_acs_redir;
946
947 pci_std_enable_acs(dev);
948
949 disable_acs_redir:
950 /*
951 * Note: pci_disable_acs_redir() must be called even if ACS was not
952 * enabled by the kernel because it may have been enabled by
953 * platform firmware. So if we are told to disable it, we should
954 * always disable it after setting the kernel's default
955 * preferences.
956 */
957 pci_disable_acs_redir(dev);
958 }
959
960 /**
961 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
962 * @dev: PCI device to have its BARs restored
963 *
964 * Restore the BAR values for a given device, so as to make it
965 * accessible by its driver.
966 */
pci_restore_bars(struct pci_dev * dev)967 static void pci_restore_bars(struct pci_dev *dev)
968 {
969 int i;
970
971 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
972 pci_update_resource(dev, i);
973 }
974
975 static const struct pci_platform_pm_ops *pci_platform_pm;
976
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)977 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
978 {
979 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
980 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
981 return -EINVAL;
982 pci_platform_pm = ops;
983 return 0;
984 }
985
platform_pci_power_manageable(struct pci_dev * dev)986 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
987 {
988 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
989 }
990
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)991 static inline int platform_pci_set_power_state(struct pci_dev *dev,
992 pci_power_t t)
993 {
994 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
995 }
996
platform_pci_get_power_state(struct pci_dev * dev)997 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
998 {
999 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1000 }
1001
platform_pci_refresh_power_state(struct pci_dev * dev)1002 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1003 {
1004 if (pci_platform_pm && pci_platform_pm->refresh_state)
1005 pci_platform_pm->refresh_state(dev);
1006 }
1007
platform_pci_choose_state(struct pci_dev * dev)1008 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1009 {
1010 return pci_platform_pm ?
1011 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1012 }
1013
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1014 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1015 {
1016 return pci_platform_pm ?
1017 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1018 }
1019
platform_pci_need_resume(struct pci_dev * dev)1020 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1021 {
1022 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1023 }
1024
platform_pci_bridge_d3(struct pci_dev * dev)1025 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1026 {
1027 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1028 return pci_platform_pm->bridge_d3(dev);
1029 return false;
1030 }
1031
1032 /**
1033 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1034 * given PCI device
1035 * @dev: PCI device to handle.
1036 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1037 *
1038 * RETURN VALUE:
1039 * -EINVAL if the requested state is invalid.
1040 * -EIO if device does not support PCI PM or its PM capabilities register has a
1041 * wrong version, or device doesn't support the requested state.
1042 * 0 if device already is in the requested state.
1043 * 0 if device's power state has been successfully changed.
1044 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1045 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1046 {
1047 u16 pmcsr;
1048 bool need_restore = false;
1049
1050 /* Check if we're already there */
1051 if (dev->current_state == state)
1052 return 0;
1053
1054 if (!dev->pm_cap)
1055 return -EIO;
1056
1057 if (state < PCI_D0 || state > PCI_D3hot)
1058 return -EINVAL;
1059
1060 /*
1061 * Validate transition: We can enter D0 from any state, but if
1062 * we're already in a low-power state, we can only go deeper. E.g.,
1063 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1064 * we'd have to go from D3 to D0, then to D1.
1065 */
1066 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1067 && dev->current_state > state) {
1068 pci_err(dev, "invalid power transition (from %s to %s)\n",
1069 pci_power_name(dev->current_state),
1070 pci_power_name(state));
1071 return -EINVAL;
1072 }
1073
1074 /* Check if this device supports the desired state */
1075 if ((state == PCI_D1 && !dev->d1_support)
1076 || (state == PCI_D2 && !dev->d2_support))
1077 return -EIO;
1078
1079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1080 if (pmcsr == (u16) ~0) {
1081 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1082 pci_power_name(dev->current_state),
1083 pci_power_name(state));
1084 return -EIO;
1085 }
1086
1087 /*
1088 * If we're (effectively) in D3, force entire word to 0.
1089 * This doesn't affect PME_Status, disables PME_En, and
1090 * sets PowerState to 0.
1091 */
1092 switch (dev->current_state) {
1093 case PCI_D0:
1094 case PCI_D1:
1095 case PCI_D2:
1096 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1097 pmcsr |= state;
1098 break;
1099 case PCI_D3hot:
1100 case PCI_D3cold:
1101 case PCI_UNKNOWN: /* Boot-up */
1102 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1103 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1104 need_restore = true;
1105 fallthrough; /* force to D0 */
1106 default:
1107 pmcsr = 0;
1108 break;
1109 }
1110
1111 /* Enter specified state */
1112 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1113
1114 /*
1115 * Mandatory power management transition delays; see PCI PM 1.1
1116 * 5.6.1 table 18
1117 */
1118 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1119 pci_dev_d3_sleep(dev);
1120 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1121 udelay(PCI_PM_D2_DELAY);
1122
1123 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1124 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1125 if (dev->current_state != state)
1126 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1127 pci_power_name(dev->current_state),
1128 pci_power_name(state));
1129
1130 /*
1131 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1132 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1133 * from D3hot to D0 _may_ perform an internal reset, thereby
1134 * going to "D0 Uninitialized" rather than "D0 Initialized".
1135 * For example, at least some versions of the 3c905B and the
1136 * 3c556B exhibit this behaviour.
1137 *
1138 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1139 * devices in a D3hot state at boot. Consequently, we need to
1140 * restore at least the BARs so that the device will be
1141 * accessible to its driver.
1142 */
1143 if (need_restore)
1144 pci_restore_bars(dev);
1145
1146 if (dev->bus->self)
1147 pcie_aspm_pm_state_change(dev->bus->self);
1148
1149 return 0;
1150 }
1151
1152 /**
1153 * pci_update_current_state - Read power state of given device and cache it
1154 * @dev: PCI device to handle.
1155 * @state: State to cache in case the device doesn't have the PM capability
1156 *
1157 * The power state is read from the PMCSR register, which however is
1158 * inaccessible in D3cold. The platform firmware is therefore queried first
1159 * to detect accessibility of the register. In case the platform firmware
1160 * reports an incorrect state or the device isn't power manageable by the
1161 * platform at all, we try to detect D3cold by testing accessibility of the
1162 * vendor ID in config space.
1163 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1164 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1165 {
1166 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1167 !pci_device_is_present(dev)) {
1168 dev->current_state = PCI_D3cold;
1169 } else if (dev->pm_cap) {
1170 u16 pmcsr;
1171
1172 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1173 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1174 } else {
1175 dev->current_state = state;
1176 }
1177 }
1178
1179 /**
1180 * pci_refresh_power_state - Refresh the given device's power state data
1181 * @dev: Target PCI device.
1182 *
1183 * Ask the platform to refresh the devices power state information and invoke
1184 * pci_update_current_state() to update its current PCI power state.
1185 */
pci_refresh_power_state(struct pci_dev * dev)1186 void pci_refresh_power_state(struct pci_dev *dev)
1187 {
1188 if (platform_pci_power_manageable(dev))
1189 platform_pci_refresh_power_state(dev);
1190
1191 pci_update_current_state(dev, dev->current_state);
1192 }
1193
1194 /**
1195 * pci_platform_power_transition - Use platform to change device power state
1196 * @dev: PCI device to handle.
1197 * @state: State to put the device into.
1198 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1199 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1200 {
1201 int error;
1202
1203 if (platform_pci_power_manageable(dev)) {
1204 error = platform_pci_set_power_state(dev, state);
1205 if (!error)
1206 pci_update_current_state(dev, state);
1207 } else
1208 error = -ENODEV;
1209
1210 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1211 dev->current_state = PCI_D0;
1212
1213 return error;
1214 }
1215 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1216
pci_resume_one(struct pci_dev * pci_dev,void * ign)1217 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1218 {
1219 pm_request_resume(&pci_dev->dev);
1220 return 0;
1221 }
1222
1223 /**
1224 * pci_resume_bus - Walk given bus and runtime resume devices on it
1225 * @bus: Top bus of the subtree to walk.
1226 */
pci_resume_bus(struct pci_bus * bus)1227 void pci_resume_bus(struct pci_bus *bus)
1228 {
1229 if (bus)
1230 pci_walk_bus(bus, pci_resume_one, NULL);
1231 }
1232
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1233 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1234 {
1235 int delay = 1;
1236 u32 id;
1237
1238 /*
1239 * After reset, the device should not silently discard config
1240 * requests, but it may still indicate that it needs more time by
1241 * responding to them with CRS completions. The Root Port will
1242 * generally synthesize ~0 data to complete the read (except when
1243 * CRS SV is enabled and the read was for the Vendor ID; in that
1244 * case it synthesizes 0x0001 data).
1245 *
1246 * Wait for the device to return a non-CRS completion. Read the
1247 * Command register instead of Vendor ID so we don't have to
1248 * contend with the CRS SV value.
1249 */
1250 pci_read_config_dword(dev, PCI_COMMAND, &id);
1251 while (id == ~0) {
1252 if (delay > timeout) {
1253 pci_warn(dev, "not ready %dms after %s; giving up\n",
1254 delay - 1, reset_type);
1255 return -ENOTTY;
1256 }
1257
1258 if (delay > PCI_RESET_WAIT)
1259 pci_info(dev, "not ready %dms after %s; waiting\n",
1260 delay - 1, reset_type);
1261
1262 msleep(delay);
1263 delay *= 2;
1264 pci_read_config_dword(dev, PCI_COMMAND, &id);
1265 }
1266
1267 if (delay > PCI_RESET_WAIT)
1268 pci_info(dev, "ready %dms after %s\n", delay - 1,
1269 reset_type);
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * pci_power_up - Put the given device into D0
1276 * @dev: PCI device to power up
1277 */
pci_power_up(struct pci_dev * dev)1278 int pci_power_up(struct pci_dev *dev)
1279 {
1280 pci_platform_power_transition(dev, PCI_D0);
1281
1282 /*
1283 * Mandatory power management transition delays are handled in
1284 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1285 * corresponding bridge.
1286 */
1287 if (dev->runtime_d3cold) {
1288 /*
1289 * When powering on a bridge from D3cold, the whole hierarchy
1290 * may be powered on into D0uninitialized state, resume them to
1291 * give them a chance to suspend again
1292 */
1293 pci_resume_bus(dev->subordinate);
1294 }
1295
1296 return pci_raw_set_power_state(dev, PCI_D0);
1297 }
1298
1299 /**
1300 * __pci_dev_set_current_state - Set current state of a PCI device
1301 * @dev: Device to handle
1302 * @data: pointer to state to be set
1303 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1304 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1305 {
1306 pci_power_t state = *(pci_power_t *)data;
1307
1308 dev->current_state = state;
1309 return 0;
1310 }
1311
1312 /**
1313 * pci_bus_set_current_state - Walk given bus and set current state of devices
1314 * @bus: Top bus of the subtree to walk.
1315 * @state: state to be set
1316 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1317 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1318 {
1319 if (bus)
1320 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1321 }
1322
1323 /**
1324 * pci_set_power_state - Set the power state of a PCI device
1325 * @dev: PCI device to handle.
1326 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1327 *
1328 * Transition a device to a new power state, using the platform firmware and/or
1329 * the device's PCI PM registers.
1330 *
1331 * RETURN VALUE:
1332 * -EINVAL if the requested state is invalid.
1333 * -EIO if device does not support PCI PM or its PM capabilities register has a
1334 * wrong version, or device doesn't support the requested state.
1335 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1336 * 0 if device already is in the requested state.
1337 * 0 if the transition is to D3 but D3 is not supported.
1338 * 0 if device's power state has been successfully changed.
1339 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1340 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 int error;
1343
1344 /* Bound the state we're entering */
1345 if (state > PCI_D3cold)
1346 state = PCI_D3cold;
1347 else if (state < PCI_D0)
1348 state = PCI_D0;
1349 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1350
1351 /*
1352 * If the device or the parent bridge do not support PCI
1353 * PM, ignore the request if we're doing anything other
1354 * than putting it into D0 (which would only happen on
1355 * boot).
1356 */
1357 return 0;
1358
1359 /* Check if we're already there */
1360 if (dev->current_state == state)
1361 return 0;
1362
1363 if (state == PCI_D0)
1364 return pci_power_up(dev);
1365
1366 /*
1367 * This device is quirked not to be put into D3, so don't put it in
1368 * D3
1369 */
1370 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1371 return 0;
1372
1373 /*
1374 * To put device in D3cold, we put device into D3hot in native
1375 * way, then put device into D3cold with platform ops
1376 */
1377 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1378 PCI_D3hot : state);
1379
1380 if (pci_platform_power_transition(dev, state))
1381 return error;
1382
1383 /* Powering off a bridge may power off the whole hierarchy */
1384 if (state == PCI_D3cold)
1385 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1386
1387 return 0;
1388 }
1389 EXPORT_SYMBOL(pci_set_power_state);
1390
1391 /**
1392 * pci_choose_state - Choose the power state of a PCI device
1393 * @dev: PCI device to be suspended
1394 * @state: target sleep state for the whole system. This is the value
1395 * that is passed to suspend() function.
1396 *
1397 * Returns PCI power state suitable for given device and given system
1398 * message.
1399 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1400 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1401 {
1402 pci_power_t ret;
1403
1404 if (!dev->pm_cap)
1405 return PCI_D0;
1406
1407 ret = platform_pci_choose_state(dev);
1408 if (ret != PCI_POWER_ERROR)
1409 return ret;
1410
1411 switch (state.event) {
1412 case PM_EVENT_ON:
1413 return PCI_D0;
1414 case PM_EVENT_FREEZE:
1415 case PM_EVENT_PRETHAW:
1416 /* REVISIT both freeze and pre-thaw "should" use D0 */
1417 case PM_EVENT_SUSPEND:
1418 case PM_EVENT_HIBERNATE:
1419 return PCI_D3hot;
1420 default:
1421 pci_info(dev, "unrecognized suspend event %d\n",
1422 state.event);
1423 BUG();
1424 }
1425 return PCI_D0;
1426 }
1427 EXPORT_SYMBOL(pci_choose_state);
1428
1429 #define PCI_EXP_SAVE_REGS 7
1430
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1431 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1432 u16 cap, bool extended)
1433 {
1434 struct pci_cap_saved_state *tmp;
1435
1436 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1437 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1438 return tmp;
1439 }
1440 return NULL;
1441 }
1442
pci_find_saved_cap(struct pci_dev * dev,char cap)1443 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1444 {
1445 return _pci_find_saved_cap(dev, cap, false);
1446 }
1447
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1448 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1449 {
1450 return _pci_find_saved_cap(dev, cap, true);
1451 }
1452
pci_save_pcie_state(struct pci_dev * dev)1453 static int pci_save_pcie_state(struct pci_dev *dev)
1454 {
1455 int i = 0;
1456 struct pci_cap_saved_state *save_state;
1457 u16 *cap;
1458
1459 if (!pci_is_pcie(dev))
1460 return 0;
1461
1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1463 if (!save_state) {
1464 pci_err(dev, "buffer not found in %s\n", __func__);
1465 return -ENOMEM;
1466 }
1467
1468 cap = (u16 *)&save_state->cap.data[0];
1469 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1470 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1471 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1472 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1473 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1474 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1475 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1476
1477 return 0;
1478 }
1479
pci_restore_pcie_state(struct pci_dev * dev)1480 static void pci_restore_pcie_state(struct pci_dev *dev)
1481 {
1482 int i = 0;
1483 struct pci_cap_saved_state *save_state;
1484 u16 *cap;
1485
1486 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1487 if (!save_state)
1488 return;
1489
1490 cap = (u16 *)&save_state->cap.data[0];
1491 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1492 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1493 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1494 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1495 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1496 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1497 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1498 }
1499
pci_save_pcix_state(struct pci_dev * dev)1500 static int pci_save_pcix_state(struct pci_dev *dev)
1501 {
1502 int pos;
1503 struct pci_cap_saved_state *save_state;
1504
1505 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1506 if (!pos)
1507 return 0;
1508
1509 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1510 if (!save_state) {
1511 pci_err(dev, "buffer not found in %s\n", __func__);
1512 return -ENOMEM;
1513 }
1514
1515 pci_read_config_word(dev, pos + PCI_X_CMD,
1516 (u16 *)save_state->cap.data);
1517
1518 return 0;
1519 }
1520
pci_restore_pcix_state(struct pci_dev * dev)1521 static void pci_restore_pcix_state(struct pci_dev *dev)
1522 {
1523 int i = 0, pos;
1524 struct pci_cap_saved_state *save_state;
1525 u16 *cap;
1526
1527 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1528 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1529 if (!save_state || !pos)
1530 return;
1531 cap = (u16 *)&save_state->cap.data[0];
1532
1533 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1534 }
1535
pci_save_ltr_state(struct pci_dev * dev)1536 static void pci_save_ltr_state(struct pci_dev *dev)
1537 {
1538 int ltr;
1539 struct pci_cap_saved_state *save_state;
1540 u16 *cap;
1541
1542 if (!pci_is_pcie(dev))
1543 return;
1544
1545 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1546 if (!ltr)
1547 return;
1548
1549 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1550 if (!save_state) {
1551 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1552 return;
1553 }
1554
1555 cap = (u16 *)&save_state->cap.data[0];
1556 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1557 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1558 }
1559
pci_restore_ltr_state(struct pci_dev * dev)1560 static void pci_restore_ltr_state(struct pci_dev *dev)
1561 {
1562 struct pci_cap_saved_state *save_state;
1563 int ltr;
1564 u16 *cap;
1565
1566 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1567 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1568 if (!save_state || !ltr)
1569 return;
1570
1571 cap = (u16 *)&save_state->cap.data[0];
1572 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1573 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1574 }
1575
1576 /**
1577 * pci_save_state - save the PCI configuration space of a device before
1578 * suspending
1579 * @dev: PCI device that we're dealing with
1580 */
pci_save_state(struct pci_dev * dev)1581 int pci_save_state(struct pci_dev *dev)
1582 {
1583 int i;
1584 /* XXX: 100% dword access ok here? */
1585 for (i = 0; i < 16; i++) {
1586 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1587 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1588 i * 4, dev->saved_config_space[i]);
1589 }
1590 dev->state_saved = true;
1591
1592 i = pci_save_pcie_state(dev);
1593 if (i != 0)
1594 return i;
1595
1596 i = pci_save_pcix_state(dev);
1597 if (i != 0)
1598 return i;
1599
1600 pci_save_ltr_state(dev);
1601 pci_save_dpc_state(dev);
1602 pci_save_aer_state(dev);
1603 pci_save_ptm_state(dev);
1604 return pci_save_vc_state(dev);
1605 }
1606 EXPORT_SYMBOL(pci_save_state);
1607
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1608 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1609 u32 saved_val, int retry, bool force)
1610 {
1611 u32 val;
1612
1613 pci_read_config_dword(pdev, offset, &val);
1614 if (!force && val == saved_val)
1615 return;
1616
1617 for (;;) {
1618 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1619 offset, val, saved_val);
1620 pci_write_config_dword(pdev, offset, saved_val);
1621 if (retry-- <= 0)
1622 return;
1623
1624 pci_read_config_dword(pdev, offset, &val);
1625 if (val == saved_val)
1626 return;
1627
1628 mdelay(1);
1629 }
1630 }
1631
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1632 static void pci_restore_config_space_range(struct pci_dev *pdev,
1633 int start, int end, int retry,
1634 bool force)
1635 {
1636 int index;
1637
1638 for (index = end; index >= start; index--)
1639 pci_restore_config_dword(pdev, 4 * index,
1640 pdev->saved_config_space[index],
1641 retry, force);
1642 }
1643
pci_restore_config_space(struct pci_dev * pdev)1644 static void pci_restore_config_space(struct pci_dev *pdev)
1645 {
1646 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1647 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1648 /* Restore BARs before the command register. */
1649 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1650 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1651 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1652 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1653
1654 /*
1655 * Force rewriting of prefetch registers to avoid S3 resume
1656 * issues on Intel PCI bridges that occur when these
1657 * registers are not explicitly written.
1658 */
1659 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1660 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1661 } else {
1662 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1663 }
1664 }
1665
pci_restore_rebar_state(struct pci_dev * pdev)1666 static void pci_restore_rebar_state(struct pci_dev *pdev)
1667 {
1668 unsigned int pos, nbars, i;
1669 u32 ctrl;
1670
1671 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1672 if (!pos)
1673 return;
1674
1675 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1676 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1677 PCI_REBAR_CTRL_NBAR_SHIFT;
1678
1679 for (i = 0; i < nbars; i++, pos += 8) {
1680 struct resource *res;
1681 int bar_idx, size;
1682
1683 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1684 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1685 res = pdev->resource + bar_idx;
1686 size = pci_rebar_bytes_to_size(resource_size(res));
1687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1690 }
1691 }
1692
1693 /**
1694 * pci_restore_state - Restore the saved state of a PCI device
1695 * @dev: PCI device that we're dealing with
1696 */
pci_restore_state(struct pci_dev * dev)1697 void pci_restore_state(struct pci_dev *dev)
1698 {
1699 if (!dev->state_saved)
1700 return;
1701
1702 /*
1703 * Restore max latencies (in the LTR capability) before enabling
1704 * LTR itself (in the PCIe capability).
1705 */
1706 pci_restore_ltr_state(dev);
1707
1708 pci_restore_pcie_state(dev);
1709 pci_restore_pasid_state(dev);
1710 pci_restore_pri_state(dev);
1711 pci_restore_ats_state(dev);
1712 pci_restore_vc_state(dev);
1713 pci_restore_rebar_state(dev);
1714 pci_restore_dpc_state(dev);
1715 pci_restore_ptm_state(dev);
1716
1717 pci_aer_clear_status(dev);
1718 pci_restore_aer_state(dev);
1719
1720 pci_restore_config_space(dev);
1721
1722 pci_restore_pcix_state(dev);
1723 pci_restore_msi_state(dev);
1724
1725 /* Restore ACS and IOV configuration state */
1726 pci_enable_acs(dev);
1727 pci_restore_iov_state(dev);
1728
1729 dev->state_saved = false;
1730 }
1731 EXPORT_SYMBOL(pci_restore_state);
1732
1733 struct pci_saved_state {
1734 u32 config_space[16];
1735 struct pci_cap_saved_data cap[];
1736 };
1737
1738 /**
1739 * pci_store_saved_state - Allocate and return an opaque struct containing
1740 * the device saved state.
1741 * @dev: PCI device that we're dealing with
1742 *
1743 * Return NULL if no state or error.
1744 */
pci_store_saved_state(struct pci_dev * dev)1745 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1746 {
1747 struct pci_saved_state *state;
1748 struct pci_cap_saved_state *tmp;
1749 struct pci_cap_saved_data *cap;
1750 size_t size;
1751
1752 if (!dev->state_saved)
1753 return NULL;
1754
1755 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1756
1757 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1758 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1759
1760 state = kzalloc(size, GFP_KERNEL);
1761 if (!state)
1762 return NULL;
1763
1764 memcpy(state->config_space, dev->saved_config_space,
1765 sizeof(state->config_space));
1766
1767 cap = state->cap;
1768 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1769 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1770 memcpy(cap, &tmp->cap, len);
1771 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1772 }
1773 /* Empty cap_save terminates list */
1774
1775 return state;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1778
1779 /**
1780 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1781 * @dev: PCI device that we're dealing with
1782 * @state: Saved state returned from pci_store_saved_state()
1783 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1784 int pci_load_saved_state(struct pci_dev *dev,
1785 struct pci_saved_state *state)
1786 {
1787 struct pci_cap_saved_data *cap;
1788
1789 dev->state_saved = false;
1790
1791 if (!state)
1792 return 0;
1793
1794 memcpy(dev->saved_config_space, state->config_space,
1795 sizeof(state->config_space));
1796
1797 cap = state->cap;
1798 while (cap->size) {
1799 struct pci_cap_saved_state *tmp;
1800
1801 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1802 if (!tmp || tmp->cap.size != cap->size)
1803 return -EINVAL;
1804
1805 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1806 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1807 sizeof(struct pci_cap_saved_data) + cap->size);
1808 }
1809
1810 dev->state_saved = true;
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1814
1815 /**
1816 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1817 * and free the memory allocated for it.
1818 * @dev: PCI device that we're dealing with
1819 * @state: Pointer to saved state returned from pci_store_saved_state()
1820 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1821 int pci_load_and_free_saved_state(struct pci_dev *dev,
1822 struct pci_saved_state **state)
1823 {
1824 int ret = pci_load_saved_state(dev, *state);
1825 kfree(*state);
1826 *state = NULL;
1827 return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1830
pcibios_enable_device(struct pci_dev * dev,int bars)1831 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1832 {
1833 return pci_enable_resources(dev, bars);
1834 }
1835
do_pci_enable_device(struct pci_dev * dev,int bars)1836 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1837 {
1838 int err;
1839 struct pci_dev *bridge;
1840 u16 cmd;
1841 u8 pin;
1842
1843 err = pci_set_power_state(dev, PCI_D0);
1844 if (err < 0 && err != -EIO)
1845 return err;
1846
1847 bridge = pci_upstream_bridge(dev);
1848 if (bridge)
1849 pcie_aspm_powersave_config_link(bridge);
1850
1851 err = pcibios_enable_device(dev, bars);
1852 if (err < 0)
1853 return err;
1854 pci_fixup_device(pci_fixup_enable, dev);
1855
1856 if (dev->msi_enabled || dev->msix_enabled)
1857 return 0;
1858
1859 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1860 if (pin) {
1861 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1862 if (cmd & PCI_COMMAND_INTX_DISABLE)
1863 pci_write_config_word(dev, PCI_COMMAND,
1864 cmd & ~PCI_COMMAND_INTX_DISABLE);
1865 }
1866
1867 return 0;
1868 }
1869
1870 /**
1871 * pci_reenable_device - Resume abandoned device
1872 * @dev: PCI device to be resumed
1873 *
1874 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1875 * to be called by normal code, write proper resume handler and use it instead.
1876 */
pci_reenable_device(struct pci_dev * dev)1877 int pci_reenable_device(struct pci_dev *dev)
1878 {
1879 if (pci_is_enabled(dev))
1880 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1881 return 0;
1882 }
1883 EXPORT_SYMBOL(pci_reenable_device);
1884
pci_enable_bridge(struct pci_dev * dev)1885 static void pci_enable_bridge(struct pci_dev *dev)
1886 {
1887 struct pci_dev *bridge;
1888 int retval;
1889
1890 bridge = pci_upstream_bridge(dev);
1891 if (bridge)
1892 pci_enable_bridge(bridge);
1893
1894 if (pci_is_enabled(dev)) {
1895 if (!dev->is_busmaster)
1896 pci_set_master(dev);
1897 return;
1898 }
1899
1900 retval = pci_enable_device(dev);
1901 if (retval)
1902 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1903 retval);
1904 pci_set_master(dev);
1905 }
1906
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1907 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1908 {
1909 struct pci_dev *bridge;
1910 int err;
1911 int i, bars = 0;
1912
1913 /*
1914 * Power state could be unknown at this point, either due to a fresh
1915 * boot or a device removal call. So get the current power state
1916 * so that things like MSI message writing will behave as expected
1917 * (e.g. if the device really is in D0 at enable time).
1918 */
1919 pci_update_current_state(dev, dev->current_state);
1920
1921 if (atomic_inc_return(&dev->enable_cnt) > 1)
1922 return 0; /* already enabled */
1923
1924 bridge = pci_upstream_bridge(dev);
1925 if (bridge)
1926 pci_enable_bridge(bridge);
1927
1928 /* only skip sriov related */
1929 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1930 if (dev->resource[i].flags & flags)
1931 bars |= (1 << i);
1932 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1933 if (dev->resource[i].flags & flags)
1934 bars |= (1 << i);
1935
1936 err = do_pci_enable_device(dev, bars);
1937 if (err < 0)
1938 atomic_dec(&dev->enable_cnt);
1939 return err;
1940 }
1941
1942 /**
1943 * pci_enable_device_io - Initialize a device for use with IO space
1944 * @dev: PCI device to be initialized
1945 *
1946 * Initialize device before it's used by a driver. Ask low-level code
1947 * to enable I/O resources. Wake up the device if it was suspended.
1948 * Beware, this function can fail.
1949 */
pci_enable_device_io(struct pci_dev * dev)1950 int pci_enable_device_io(struct pci_dev *dev)
1951 {
1952 return pci_enable_device_flags(dev, IORESOURCE_IO);
1953 }
1954 EXPORT_SYMBOL(pci_enable_device_io);
1955
1956 /**
1957 * pci_enable_device_mem - Initialize a device for use with Memory space
1958 * @dev: PCI device to be initialized
1959 *
1960 * Initialize device before it's used by a driver. Ask low-level code
1961 * to enable Memory resources. Wake up the device if it was suspended.
1962 * Beware, this function can fail.
1963 */
pci_enable_device_mem(struct pci_dev * dev)1964 int pci_enable_device_mem(struct pci_dev *dev)
1965 {
1966 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1967 }
1968 EXPORT_SYMBOL(pci_enable_device_mem);
1969
1970 /**
1971 * pci_enable_device - Initialize device before it's used by a driver.
1972 * @dev: PCI device to be initialized
1973 *
1974 * Initialize device before it's used by a driver. Ask low-level code
1975 * to enable I/O and memory. Wake up the device if it was suspended.
1976 * Beware, this function can fail.
1977 *
1978 * Note we don't actually enable the device many times if we call
1979 * this function repeatedly (we just increment the count).
1980 */
pci_enable_device(struct pci_dev * dev)1981 int pci_enable_device(struct pci_dev *dev)
1982 {
1983 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1984 }
1985 EXPORT_SYMBOL(pci_enable_device);
1986
1987 /*
1988 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1989 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1990 * there's no need to track it separately. pci_devres is initialized
1991 * when a device is enabled using managed PCI device enable interface.
1992 */
1993 struct pci_devres {
1994 unsigned int enabled:1;
1995 unsigned int pinned:1;
1996 unsigned int orig_intx:1;
1997 unsigned int restore_intx:1;
1998 unsigned int mwi:1;
1999 u32 region_mask;
2000 };
2001
pcim_release(struct device * gendev,void * res)2002 static void pcim_release(struct device *gendev, void *res)
2003 {
2004 struct pci_dev *dev = to_pci_dev(gendev);
2005 struct pci_devres *this = res;
2006 int i;
2007
2008 if (dev->msi_enabled)
2009 pci_disable_msi(dev);
2010 if (dev->msix_enabled)
2011 pci_disable_msix(dev);
2012
2013 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2014 if (this->region_mask & (1 << i))
2015 pci_release_region(dev, i);
2016
2017 if (this->mwi)
2018 pci_clear_mwi(dev);
2019
2020 if (this->restore_intx)
2021 pci_intx(dev, this->orig_intx);
2022
2023 if (this->enabled && !this->pinned)
2024 pci_disable_device(dev);
2025 }
2026
get_pci_dr(struct pci_dev * pdev)2027 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2028 {
2029 struct pci_devres *dr, *new_dr;
2030
2031 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2032 if (dr)
2033 return dr;
2034
2035 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2036 if (!new_dr)
2037 return NULL;
2038 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2039 }
2040
find_pci_dr(struct pci_dev * pdev)2041 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2042 {
2043 if (pci_is_managed(pdev))
2044 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2045 return NULL;
2046 }
2047
2048 /**
2049 * pcim_enable_device - Managed pci_enable_device()
2050 * @pdev: PCI device to be initialized
2051 *
2052 * Managed pci_enable_device().
2053 */
pcim_enable_device(struct pci_dev * pdev)2054 int pcim_enable_device(struct pci_dev *pdev)
2055 {
2056 struct pci_devres *dr;
2057 int rc;
2058
2059 dr = get_pci_dr(pdev);
2060 if (unlikely(!dr))
2061 return -ENOMEM;
2062 if (dr->enabled)
2063 return 0;
2064
2065 rc = pci_enable_device(pdev);
2066 if (!rc) {
2067 pdev->is_managed = 1;
2068 dr->enabled = 1;
2069 }
2070 return rc;
2071 }
2072 EXPORT_SYMBOL(pcim_enable_device);
2073
2074 /**
2075 * pcim_pin_device - Pin managed PCI device
2076 * @pdev: PCI device to pin
2077 *
2078 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2079 * driver detach. @pdev must have been enabled with
2080 * pcim_enable_device().
2081 */
pcim_pin_device(struct pci_dev * pdev)2082 void pcim_pin_device(struct pci_dev *pdev)
2083 {
2084 struct pci_devres *dr;
2085
2086 dr = find_pci_dr(pdev);
2087 WARN_ON(!dr || !dr->enabled);
2088 if (dr)
2089 dr->pinned = 1;
2090 }
2091 EXPORT_SYMBOL(pcim_pin_device);
2092
2093 /*
2094 * pcibios_add_device - provide arch specific hooks when adding device dev
2095 * @dev: the PCI device being added
2096 *
2097 * Permits the platform to provide architecture specific functionality when
2098 * devices are added. This is the default implementation. Architecture
2099 * implementations can override this.
2100 */
pcibios_add_device(struct pci_dev * dev)2101 int __weak pcibios_add_device(struct pci_dev *dev)
2102 {
2103 return 0;
2104 }
2105
2106 /**
2107 * pcibios_release_device - provide arch specific hooks when releasing
2108 * device dev
2109 * @dev: the PCI device being released
2110 *
2111 * Permits the platform to provide architecture specific functionality when
2112 * devices are released. This is the default implementation. Architecture
2113 * implementations can override this.
2114 */
pcibios_release_device(struct pci_dev * dev)2115 void __weak pcibios_release_device(struct pci_dev *dev) {}
2116
2117 /**
2118 * pcibios_disable_device - disable arch specific PCI resources for device dev
2119 * @dev: the PCI device to disable
2120 *
2121 * Disables architecture specific PCI resources for the device. This
2122 * is the default implementation. Architecture implementations can
2123 * override this.
2124 */
pcibios_disable_device(struct pci_dev * dev)2125 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2126
2127 /**
2128 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2129 * @irq: ISA IRQ to penalize
2130 * @active: IRQ active or not
2131 *
2132 * Permits the platform to provide architecture-specific functionality when
2133 * penalizing ISA IRQs. This is the default implementation. Architecture
2134 * implementations can override this.
2135 */
pcibios_penalize_isa_irq(int irq,int active)2136 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2137
do_pci_disable_device(struct pci_dev * dev)2138 static void do_pci_disable_device(struct pci_dev *dev)
2139 {
2140 u16 pci_command;
2141
2142 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2143 if (pci_command & PCI_COMMAND_MASTER) {
2144 pci_command &= ~PCI_COMMAND_MASTER;
2145 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2146 }
2147
2148 pcibios_disable_device(dev);
2149 }
2150
2151 /**
2152 * pci_disable_enabled_device - Disable device without updating enable_cnt
2153 * @dev: PCI device to disable
2154 *
2155 * NOTE: This function is a backend of PCI power management routines and is
2156 * not supposed to be called drivers.
2157 */
pci_disable_enabled_device(struct pci_dev * dev)2158 void pci_disable_enabled_device(struct pci_dev *dev)
2159 {
2160 if (pci_is_enabled(dev))
2161 do_pci_disable_device(dev);
2162 }
2163
2164 /**
2165 * pci_disable_device - Disable PCI device after use
2166 * @dev: PCI device to be disabled
2167 *
2168 * Signal to the system that the PCI device is not in use by the system
2169 * anymore. This only involves disabling PCI bus-mastering, if active.
2170 *
2171 * Note we don't actually disable the device until all callers of
2172 * pci_enable_device() have called pci_disable_device().
2173 */
pci_disable_device(struct pci_dev * dev)2174 void pci_disable_device(struct pci_dev *dev)
2175 {
2176 struct pci_devres *dr;
2177
2178 dr = find_pci_dr(dev);
2179 if (dr)
2180 dr->enabled = 0;
2181
2182 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2183 "disabling already-disabled device");
2184
2185 if (atomic_dec_return(&dev->enable_cnt) != 0)
2186 return;
2187
2188 do_pci_disable_device(dev);
2189
2190 dev->is_busmaster = 0;
2191 }
2192 EXPORT_SYMBOL(pci_disable_device);
2193
2194 /**
2195 * pcibios_set_pcie_reset_state - set reset state for device dev
2196 * @dev: the PCIe device reset
2197 * @state: Reset state to enter into
2198 *
2199 * Set the PCIe reset state for the device. This is the default
2200 * implementation. Architecture implementations can override this.
2201 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2202 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2203 enum pcie_reset_state state)
2204 {
2205 return -EINVAL;
2206 }
2207
2208 /**
2209 * pci_set_pcie_reset_state - set reset state for device dev
2210 * @dev: the PCIe device reset
2211 * @state: Reset state to enter into
2212 *
2213 * Sets the PCI reset state for the device.
2214 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2215 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2216 {
2217 return pcibios_set_pcie_reset_state(dev, state);
2218 }
2219 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2220
pcie_clear_device_status(struct pci_dev * dev)2221 void pcie_clear_device_status(struct pci_dev *dev)
2222 {
2223 u16 sta;
2224
2225 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2226 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2227 }
2228
2229 /**
2230 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2231 * @dev: PCIe root port or event collector.
2232 */
pcie_clear_root_pme_status(struct pci_dev * dev)2233 void pcie_clear_root_pme_status(struct pci_dev *dev)
2234 {
2235 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2236 }
2237
2238 /**
2239 * pci_check_pme_status - Check if given device has generated PME.
2240 * @dev: Device to check.
2241 *
2242 * Check the PME status of the device and if set, clear it and clear PME enable
2243 * (if set). Return 'true' if PME status and PME enable were both set or
2244 * 'false' otherwise.
2245 */
pci_check_pme_status(struct pci_dev * dev)2246 bool pci_check_pme_status(struct pci_dev *dev)
2247 {
2248 int pmcsr_pos;
2249 u16 pmcsr;
2250 bool ret = false;
2251
2252 if (!dev->pm_cap)
2253 return false;
2254
2255 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2256 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2257 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2258 return false;
2259
2260 /* Clear PME status. */
2261 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2262 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2263 /* Disable PME to avoid interrupt flood. */
2264 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2265 ret = true;
2266 }
2267
2268 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2269
2270 return ret;
2271 }
2272
2273 /**
2274 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2275 * @dev: Device to handle.
2276 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2277 *
2278 * Check if @dev has generated PME and queue a resume request for it in that
2279 * case.
2280 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2281 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2282 {
2283 if (pme_poll_reset && dev->pme_poll)
2284 dev->pme_poll = false;
2285
2286 if (pci_check_pme_status(dev)) {
2287 pci_wakeup_event(dev);
2288 pm_request_resume(&dev->dev);
2289 }
2290 return 0;
2291 }
2292
2293 /**
2294 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2295 * @bus: Top bus of the subtree to walk.
2296 */
pci_pme_wakeup_bus(struct pci_bus * bus)2297 void pci_pme_wakeup_bus(struct pci_bus *bus)
2298 {
2299 if (bus)
2300 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2301 }
2302
2303
2304 /**
2305 * pci_pme_capable - check the capability of PCI device to generate PME#
2306 * @dev: PCI device to handle.
2307 * @state: PCI state from which device will issue PME#.
2308 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2309 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2310 {
2311 if (!dev->pm_cap)
2312 return false;
2313
2314 return !!(dev->pme_support & (1 << state));
2315 }
2316 EXPORT_SYMBOL(pci_pme_capable);
2317
pci_pme_list_scan(struct work_struct * work)2318 static void pci_pme_list_scan(struct work_struct *work)
2319 {
2320 struct pci_pme_device *pme_dev, *n;
2321
2322 mutex_lock(&pci_pme_list_mutex);
2323 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2324 if (pme_dev->dev->pme_poll) {
2325 struct pci_dev *bridge;
2326
2327 bridge = pme_dev->dev->bus->self;
2328 /*
2329 * If bridge is in low power state, the
2330 * configuration space of subordinate devices
2331 * may be not accessible
2332 */
2333 if (bridge && bridge->current_state != PCI_D0)
2334 continue;
2335 /*
2336 * If the device is in D3cold it should not be
2337 * polled either.
2338 */
2339 if (pme_dev->dev->current_state == PCI_D3cold)
2340 continue;
2341
2342 pci_pme_wakeup(pme_dev->dev, NULL);
2343 } else {
2344 list_del(&pme_dev->list);
2345 kfree(pme_dev);
2346 }
2347 }
2348 if (!list_empty(&pci_pme_list))
2349 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2350 msecs_to_jiffies(PME_TIMEOUT));
2351 mutex_unlock(&pci_pme_list_mutex);
2352 }
2353
__pci_pme_active(struct pci_dev * dev,bool enable)2354 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2355 {
2356 u16 pmcsr;
2357
2358 if (!dev->pme_support)
2359 return;
2360
2361 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2362 /* Clear PME_Status by writing 1 to it and enable PME# */
2363 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2364 if (!enable)
2365 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2366
2367 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2368 }
2369
2370 /**
2371 * pci_pme_restore - Restore PME configuration after config space restore.
2372 * @dev: PCI device to update.
2373 */
pci_pme_restore(struct pci_dev * dev)2374 void pci_pme_restore(struct pci_dev *dev)
2375 {
2376 u16 pmcsr;
2377
2378 if (!dev->pme_support)
2379 return;
2380
2381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2382 if (dev->wakeup_prepared) {
2383 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2384 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2385 } else {
2386 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2387 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2388 }
2389 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2390 }
2391
2392 /**
2393 * pci_pme_active - enable or disable PCI device's PME# function
2394 * @dev: PCI device to handle.
2395 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2396 *
2397 * The caller must verify that the device is capable of generating PME# before
2398 * calling this function with @enable equal to 'true'.
2399 */
pci_pme_active(struct pci_dev * dev,bool enable)2400 void pci_pme_active(struct pci_dev *dev, bool enable)
2401 {
2402 __pci_pme_active(dev, enable);
2403
2404 /*
2405 * PCI (as opposed to PCIe) PME requires that the device have
2406 * its PME# line hooked up correctly. Not all hardware vendors
2407 * do this, so the PME never gets delivered and the device
2408 * remains asleep. The easiest way around this is to
2409 * periodically walk the list of suspended devices and check
2410 * whether any have their PME flag set. The assumption is that
2411 * we'll wake up often enough anyway that this won't be a huge
2412 * hit, and the power savings from the devices will still be a
2413 * win.
2414 *
2415 * Although PCIe uses in-band PME message instead of PME# line
2416 * to report PME, PME does not work for some PCIe devices in
2417 * reality. For example, there are devices that set their PME
2418 * status bits, but don't really bother to send a PME message;
2419 * there are PCI Express Root Ports that don't bother to
2420 * trigger interrupts when they receive PME messages from the
2421 * devices below. So PME poll is used for PCIe devices too.
2422 */
2423
2424 if (dev->pme_poll) {
2425 struct pci_pme_device *pme_dev;
2426 if (enable) {
2427 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2428 GFP_KERNEL);
2429 if (!pme_dev) {
2430 pci_warn(dev, "can't enable PME#\n");
2431 return;
2432 }
2433 pme_dev->dev = dev;
2434 mutex_lock(&pci_pme_list_mutex);
2435 list_add(&pme_dev->list, &pci_pme_list);
2436 if (list_is_singular(&pci_pme_list))
2437 queue_delayed_work(system_freezable_wq,
2438 &pci_pme_work,
2439 msecs_to_jiffies(PME_TIMEOUT));
2440 mutex_unlock(&pci_pme_list_mutex);
2441 } else {
2442 mutex_lock(&pci_pme_list_mutex);
2443 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2444 if (pme_dev->dev == dev) {
2445 list_del(&pme_dev->list);
2446 kfree(pme_dev);
2447 break;
2448 }
2449 }
2450 mutex_unlock(&pci_pme_list_mutex);
2451 }
2452 }
2453
2454 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2455 }
2456 EXPORT_SYMBOL(pci_pme_active);
2457
2458 /**
2459 * __pci_enable_wake - enable PCI device as wakeup event source
2460 * @dev: PCI device affected
2461 * @state: PCI state from which device will issue wakeup events
2462 * @enable: True to enable event generation; false to disable
2463 *
2464 * This enables the device as a wakeup event source, or disables it.
2465 * When such events involves platform-specific hooks, those hooks are
2466 * called automatically by this routine.
2467 *
2468 * Devices with legacy power management (no standard PCI PM capabilities)
2469 * always require such platform hooks.
2470 *
2471 * RETURN VALUE:
2472 * 0 is returned on success
2473 * -EINVAL is returned if device is not supposed to wake up the system
2474 * Error code depending on the platform is returned if both the platform and
2475 * the native mechanism fail to enable the generation of wake-up events
2476 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2477 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2478 {
2479 int ret = 0;
2480
2481 /*
2482 * Bridges that are not power-manageable directly only signal
2483 * wakeup on behalf of subordinate devices which is set up
2484 * elsewhere, so skip them. However, bridges that are
2485 * power-manageable may signal wakeup for themselves (for example,
2486 * on a hotplug event) and they need to be covered here.
2487 */
2488 if (!pci_power_manageable(dev))
2489 return 0;
2490
2491 /* Don't do the same thing twice in a row for one device. */
2492 if (!!enable == !!dev->wakeup_prepared)
2493 return 0;
2494
2495 /*
2496 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2497 * Anderson we should be doing PME# wake enable followed by ACPI wake
2498 * enable. To disable wake-up we call the platform first, for symmetry.
2499 */
2500
2501 if (enable) {
2502 int error;
2503
2504 /*
2505 * Enable PME signaling if the device can signal PME from
2506 * D3cold regardless of whether or not it can signal PME from
2507 * the current target state, because that will allow it to
2508 * signal PME when the hierarchy above it goes into D3cold and
2509 * the device itself ends up in D3cold as a result of that.
2510 */
2511 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2512 pci_pme_active(dev, true);
2513 else
2514 ret = 1;
2515 error = platform_pci_set_wakeup(dev, true);
2516 if (ret)
2517 ret = error;
2518 if (!ret)
2519 dev->wakeup_prepared = true;
2520 } else {
2521 platform_pci_set_wakeup(dev, false);
2522 pci_pme_active(dev, false);
2523 dev->wakeup_prepared = false;
2524 }
2525
2526 return ret;
2527 }
2528
2529 /**
2530 * pci_enable_wake - change wakeup settings for a PCI device
2531 * @pci_dev: Target device
2532 * @state: PCI state from which device will issue wakeup events
2533 * @enable: Whether or not to enable event generation
2534 *
2535 * If @enable is set, check device_may_wakeup() for the device before calling
2536 * __pci_enable_wake() for it.
2537 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2538 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2539 {
2540 if (enable && !device_may_wakeup(&pci_dev->dev))
2541 return -EINVAL;
2542
2543 return __pci_enable_wake(pci_dev, state, enable);
2544 }
2545 EXPORT_SYMBOL(pci_enable_wake);
2546
2547 /**
2548 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2549 * @dev: PCI device to prepare
2550 * @enable: True to enable wake-up event generation; false to disable
2551 *
2552 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2553 * and this function allows them to set that up cleanly - pci_enable_wake()
2554 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2555 * ordering constraints.
2556 *
2557 * This function only returns error code if the device is not allowed to wake
2558 * up the system from sleep or it is not capable of generating PME# from both
2559 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2560 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2561 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2562 {
2563 return pci_pme_capable(dev, PCI_D3cold) ?
2564 pci_enable_wake(dev, PCI_D3cold, enable) :
2565 pci_enable_wake(dev, PCI_D3hot, enable);
2566 }
2567 EXPORT_SYMBOL(pci_wake_from_d3);
2568
2569 /**
2570 * pci_target_state - find an appropriate low power state for a given PCI dev
2571 * @dev: PCI device
2572 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2573 *
2574 * Use underlying platform code to find a supported low power state for @dev.
2575 * If the platform can't manage @dev, return the deepest state from which it
2576 * can generate wake events, based on any available PME info.
2577 */
pci_target_state(struct pci_dev * dev,bool wakeup)2578 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2579 {
2580 pci_power_t target_state = PCI_D3hot;
2581
2582 if (platform_pci_power_manageable(dev)) {
2583 /*
2584 * Call the platform to find the target state for the device.
2585 */
2586 pci_power_t state = platform_pci_choose_state(dev);
2587
2588 switch (state) {
2589 case PCI_POWER_ERROR:
2590 case PCI_UNKNOWN:
2591 break;
2592 case PCI_D1:
2593 case PCI_D2:
2594 if (pci_no_d1d2(dev))
2595 break;
2596 fallthrough;
2597 default:
2598 target_state = state;
2599 }
2600
2601 return target_state;
2602 }
2603
2604 if (!dev->pm_cap)
2605 target_state = PCI_D0;
2606
2607 /*
2608 * If the device is in D3cold even though it's not power-manageable by
2609 * the platform, it may have been powered down by non-standard means.
2610 * Best to let it slumber.
2611 */
2612 if (dev->current_state == PCI_D3cold)
2613 target_state = PCI_D3cold;
2614
2615 if (wakeup && dev->pme_support) {
2616 pci_power_t state = target_state;
2617
2618 /*
2619 * Find the deepest state from which the device can generate
2620 * PME#.
2621 */
2622 while (state && !(dev->pme_support & (1 << state)))
2623 state--;
2624
2625 if (state)
2626 return state;
2627 else if (dev->pme_support & 1)
2628 return PCI_D0;
2629 }
2630
2631 return target_state;
2632 }
2633
2634 /**
2635 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2636 * into a sleep state
2637 * @dev: Device to handle.
2638 *
2639 * Choose the power state appropriate for the device depending on whether
2640 * it can wake up the system and/or is power manageable by the platform
2641 * (PCI_D3hot is the default) and put the device into that state.
2642 */
pci_prepare_to_sleep(struct pci_dev * dev)2643 int pci_prepare_to_sleep(struct pci_dev *dev)
2644 {
2645 bool wakeup = device_may_wakeup(&dev->dev);
2646 pci_power_t target_state = pci_target_state(dev, wakeup);
2647 int error;
2648
2649 if (target_state == PCI_POWER_ERROR)
2650 return -EIO;
2651
2652 /*
2653 * There are systems (for example, Intel mobile chips since Coffee
2654 * Lake) where the power drawn while suspended can be significantly
2655 * reduced by disabling PTM on PCIe root ports as this allows the
2656 * port to enter a lower-power PM state and the SoC to reach a
2657 * lower-power idle state as a whole.
2658 */
2659 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2660 pci_disable_ptm(dev);
2661
2662 pci_enable_wake(dev, target_state, wakeup);
2663
2664 error = pci_set_power_state(dev, target_state);
2665
2666 if (error) {
2667 pci_enable_wake(dev, target_state, false);
2668 pci_restore_ptm_state(dev);
2669 }
2670
2671 return error;
2672 }
2673 EXPORT_SYMBOL(pci_prepare_to_sleep);
2674
2675 /**
2676 * pci_back_from_sleep - turn PCI device on during system-wide transition
2677 * into working state
2678 * @dev: Device to handle.
2679 *
2680 * Disable device's system wake-up capability and put it into D0.
2681 */
pci_back_from_sleep(struct pci_dev * dev)2682 int pci_back_from_sleep(struct pci_dev *dev)
2683 {
2684 pci_enable_wake(dev, PCI_D0, false);
2685 return pci_set_power_state(dev, PCI_D0);
2686 }
2687 EXPORT_SYMBOL(pci_back_from_sleep);
2688
2689 /**
2690 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2691 * @dev: PCI device being suspended.
2692 *
2693 * Prepare @dev to generate wake-up events at run time and put it into a low
2694 * power state.
2695 */
pci_finish_runtime_suspend(struct pci_dev * dev)2696 int pci_finish_runtime_suspend(struct pci_dev *dev)
2697 {
2698 pci_power_t target_state;
2699 int error;
2700
2701 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2702 if (target_state == PCI_POWER_ERROR)
2703 return -EIO;
2704
2705 dev->runtime_d3cold = target_state == PCI_D3cold;
2706
2707 /*
2708 * There are systems (for example, Intel mobile chips since Coffee
2709 * Lake) where the power drawn while suspended can be significantly
2710 * reduced by disabling PTM on PCIe root ports as this allows the
2711 * port to enter a lower-power PM state and the SoC to reach a
2712 * lower-power idle state as a whole.
2713 */
2714 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2715 pci_disable_ptm(dev);
2716
2717 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2718
2719 error = pci_set_power_state(dev, target_state);
2720
2721 if (error) {
2722 pci_enable_wake(dev, target_state, false);
2723 pci_restore_ptm_state(dev);
2724 dev->runtime_d3cold = false;
2725 }
2726
2727 return error;
2728 }
2729
2730 /**
2731 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2732 * @dev: Device to check.
2733 *
2734 * Return true if the device itself is capable of generating wake-up events
2735 * (through the platform or using the native PCIe PME) or if the device supports
2736 * PME and one of its upstream bridges can generate wake-up events.
2737 */
pci_dev_run_wake(struct pci_dev * dev)2738 bool pci_dev_run_wake(struct pci_dev *dev)
2739 {
2740 struct pci_bus *bus = dev->bus;
2741
2742 if (!dev->pme_support)
2743 return false;
2744
2745 /* PME-capable in principle, but not from the target power state */
2746 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2747 return false;
2748
2749 if (device_can_wakeup(&dev->dev))
2750 return true;
2751
2752 while (bus->parent) {
2753 struct pci_dev *bridge = bus->self;
2754
2755 if (device_can_wakeup(&bridge->dev))
2756 return true;
2757
2758 bus = bus->parent;
2759 }
2760
2761 /* We have reached the root bus. */
2762 if (bus->bridge)
2763 return device_can_wakeup(bus->bridge);
2764
2765 return false;
2766 }
2767 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2768
2769 /**
2770 * pci_dev_need_resume - Check if it is necessary to resume the device.
2771 * @pci_dev: Device to check.
2772 *
2773 * Return 'true' if the device is not runtime-suspended or it has to be
2774 * reconfigured due to wakeup settings difference between system and runtime
2775 * suspend, or the current power state of it is not suitable for the upcoming
2776 * (system-wide) transition.
2777 */
pci_dev_need_resume(struct pci_dev * pci_dev)2778 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2779 {
2780 struct device *dev = &pci_dev->dev;
2781 pci_power_t target_state;
2782
2783 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2784 return true;
2785
2786 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2787
2788 /*
2789 * If the earlier platform check has not triggered, D3cold is just power
2790 * removal on top of D3hot, so no need to resume the device in that
2791 * case.
2792 */
2793 return target_state != pci_dev->current_state &&
2794 target_state != PCI_D3cold &&
2795 pci_dev->current_state != PCI_D3hot;
2796 }
2797
2798 /**
2799 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2800 * @pci_dev: Device to check.
2801 *
2802 * If the device is suspended and it is not configured for system wakeup,
2803 * disable PME for it to prevent it from waking up the system unnecessarily.
2804 *
2805 * Note that if the device's power state is D3cold and the platform check in
2806 * pci_dev_need_resume() has not triggered, the device's configuration need not
2807 * be changed.
2808 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2809 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2810 {
2811 struct device *dev = &pci_dev->dev;
2812
2813 spin_lock_irq(&dev->power.lock);
2814
2815 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2816 pci_dev->current_state < PCI_D3cold)
2817 __pci_pme_active(pci_dev, false);
2818
2819 spin_unlock_irq(&dev->power.lock);
2820 }
2821
2822 /**
2823 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2824 * @pci_dev: Device to handle.
2825 *
2826 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2827 * it might have been disabled during the prepare phase of system suspend if
2828 * the device was not configured for system wakeup.
2829 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2830 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2831 {
2832 struct device *dev = &pci_dev->dev;
2833
2834 if (!pci_dev_run_wake(pci_dev))
2835 return;
2836
2837 spin_lock_irq(&dev->power.lock);
2838
2839 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2840 __pci_pme_active(pci_dev, true);
2841
2842 spin_unlock_irq(&dev->power.lock);
2843 }
2844
pci_config_pm_runtime_get(struct pci_dev * pdev)2845 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2846 {
2847 struct device *dev = &pdev->dev;
2848 struct device *parent = dev->parent;
2849
2850 if (parent)
2851 pm_runtime_get_sync(parent);
2852 pm_runtime_get_noresume(dev);
2853 /*
2854 * pdev->current_state is set to PCI_D3cold during suspending,
2855 * so wait until suspending completes
2856 */
2857 pm_runtime_barrier(dev);
2858 /*
2859 * Only need to resume devices in D3cold, because config
2860 * registers are still accessible for devices suspended but
2861 * not in D3cold.
2862 */
2863 if (pdev->current_state == PCI_D3cold)
2864 pm_runtime_resume(dev);
2865 }
2866
pci_config_pm_runtime_put(struct pci_dev * pdev)2867 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2868 {
2869 struct device *dev = &pdev->dev;
2870 struct device *parent = dev->parent;
2871
2872 pm_runtime_put(dev);
2873 if (parent)
2874 pm_runtime_put_sync(parent);
2875 }
2876
2877 static const struct dmi_system_id bridge_d3_blacklist[] = {
2878 #ifdef CONFIG_X86
2879 {
2880 /*
2881 * Gigabyte X299 root port is not marked as hotplug capable
2882 * which allows Linux to power manage it. However, this
2883 * confuses the BIOS SMI handler so don't power manage root
2884 * ports on that system.
2885 */
2886 .ident = "X299 DESIGNARE EX-CF",
2887 .matches = {
2888 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2889 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2890 },
2891 },
2892 {
2893 /*
2894 * Downstream device is not accessible after putting a root port
2895 * into D3cold and back into D0 on Elo Continental Z2 board
2896 */
2897 .ident = "Elo Continental Z2",
2898 .matches = {
2899 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2900 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2901 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2902 },
2903 },
2904 #endif
2905 { }
2906 };
2907
2908 /**
2909 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2910 * @bridge: Bridge to check
2911 *
2912 * This function checks if it is possible to move the bridge to D3.
2913 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2914 */
pci_bridge_d3_possible(struct pci_dev * bridge)2915 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2916 {
2917 if (!pci_is_pcie(bridge))
2918 return false;
2919
2920 switch (pci_pcie_type(bridge)) {
2921 case PCI_EXP_TYPE_ROOT_PORT:
2922 case PCI_EXP_TYPE_UPSTREAM:
2923 case PCI_EXP_TYPE_DOWNSTREAM:
2924 if (pci_bridge_d3_disable)
2925 return false;
2926
2927 /*
2928 * Hotplug ports handled by firmware in System Management Mode
2929 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2930 */
2931 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2932 return false;
2933
2934 if (pci_bridge_d3_force)
2935 return true;
2936
2937 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2938 if (bridge->is_thunderbolt)
2939 return true;
2940
2941 /* Platform might know better if the bridge supports D3 */
2942 if (platform_pci_bridge_d3(bridge))
2943 return true;
2944
2945 /*
2946 * Hotplug ports handled natively by the OS were not validated
2947 * by vendors for runtime D3 at least until 2018 because there
2948 * was no OS support.
2949 */
2950 if (bridge->is_hotplug_bridge)
2951 return false;
2952
2953 if (dmi_check_system(bridge_d3_blacklist))
2954 return false;
2955
2956 /*
2957 * It should be safe to put PCIe ports from 2015 or newer
2958 * to D3.
2959 */
2960 if (dmi_get_bios_year() >= 2015)
2961 return true;
2962 break;
2963 }
2964
2965 return false;
2966 }
2967
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2968 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2969 {
2970 bool *d3cold_ok = data;
2971
2972 if (/* The device needs to be allowed to go D3cold ... */
2973 dev->no_d3cold || !dev->d3cold_allowed ||
2974
2975 /* ... and if it is wakeup capable to do so from D3cold. */
2976 (device_may_wakeup(&dev->dev) &&
2977 !pci_pme_capable(dev, PCI_D3cold)) ||
2978
2979 /* If it is a bridge it must be allowed to go to D3. */
2980 !pci_power_manageable(dev))
2981
2982 *d3cold_ok = false;
2983
2984 return !*d3cold_ok;
2985 }
2986
2987 /*
2988 * pci_bridge_d3_update - Update bridge D3 capabilities
2989 * @dev: PCI device which is changed
2990 *
2991 * Update upstream bridge PM capabilities accordingly depending on if the
2992 * device PM configuration was changed or the device is being removed. The
2993 * change is also propagated upstream.
2994 */
pci_bridge_d3_update(struct pci_dev * dev)2995 void pci_bridge_d3_update(struct pci_dev *dev)
2996 {
2997 bool remove = !device_is_registered(&dev->dev);
2998 struct pci_dev *bridge;
2999 bool d3cold_ok = true;
3000
3001 bridge = pci_upstream_bridge(dev);
3002 if (!bridge || !pci_bridge_d3_possible(bridge))
3003 return;
3004
3005 /*
3006 * If D3 is currently allowed for the bridge, removing one of its
3007 * children won't change that.
3008 */
3009 if (remove && bridge->bridge_d3)
3010 return;
3011
3012 /*
3013 * If D3 is currently allowed for the bridge and a child is added or
3014 * changed, disallowance of D3 can only be caused by that child, so
3015 * we only need to check that single device, not any of its siblings.
3016 *
3017 * If D3 is currently not allowed for the bridge, checking the device
3018 * first may allow us to skip checking its siblings.
3019 */
3020 if (!remove)
3021 pci_dev_check_d3cold(dev, &d3cold_ok);
3022
3023 /*
3024 * If D3 is currently not allowed for the bridge, this may be caused
3025 * either by the device being changed/removed or any of its siblings,
3026 * so we need to go through all children to find out if one of them
3027 * continues to block D3.
3028 */
3029 if (d3cold_ok && !bridge->bridge_d3)
3030 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3031 &d3cold_ok);
3032
3033 if (bridge->bridge_d3 != d3cold_ok) {
3034 bridge->bridge_d3 = d3cold_ok;
3035 /* Propagate change to upstream bridges */
3036 pci_bridge_d3_update(bridge);
3037 }
3038 }
3039
3040 /**
3041 * pci_d3cold_enable - Enable D3cold for device
3042 * @dev: PCI device to handle
3043 *
3044 * This function can be used in drivers to enable D3cold from the device
3045 * they handle. It also updates upstream PCI bridge PM capabilities
3046 * accordingly.
3047 */
pci_d3cold_enable(struct pci_dev * dev)3048 void pci_d3cold_enable(struct pci_dev *dev)
3049 {
3050 if (dev->no_d3cold) {
3051 dev->no_d3cold = false;
3052 pci_bridge_d3_update(dev);
3053 }
3054 }
3055 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3056
3057 /**
3058 * pci_d3cold_disable - Disable D3cold for device
3059 * @dev: PCI device to handle
3060 *
3061 * This function can be used in drivers to disable D3cold from the device
3062 * they handle. It also updates upstream PCI bridge PM capabilities
3063 * accordingly.
3064 */
pci_d3cold_disable(struct pci_dev * dev)3065 void pci_d3cold_disable(struct pci_dev *dev)
3066 {
3067 if (!dev->no_d3cold) {
3068 dev->no_d3cold = true;
3069 pci_bridge_d3_update(dev);
3070 }
3071 }
3072 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3073
3074 /**
3075 * pci_pm_init - Initialize PM functions of given PCI device
3076 * @dev: PCI device to handle.
3077 */
pci_pm_init(struct pci_dev * dev)3078 void pci_pm_init(struct pci_dev *dev)
3079 {
3080 int pm;
3081 u16 status;
3082 u16 pmc;
3083
3084 pm_runtime_forbid(&dev->dev);
3085 pm_runtime_set_active(&dev->dev);
3086 pm_runtime_enable(&dev->dev);
3087 device_enable_async_suspend(&dev->dev);
3088 dev->wakeup_prepared = false;
3089
3090 dev->pm_cap = 0;
3091 dev->pme_support = 0;
3092
3093 /* find PCI PM capability in list */
3094 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3095 if (!pm)
3096 return;
3097 /* Check device's ability to generate PME# */
3098 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3099
3100 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3101 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3102 pmc & PCI_PM_CAP_VER_MASK);
3103 return;
3104 }
3105
3106 dev->pm_cap = pm;
3107 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3108 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3109 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3110 dev->d3cold_allowed = true;
3111
3112 dev->d1_support = false;
3113 dev->d2_support = false;
3114 if (!pci_no_d1d2(dev)) {
3115 if (pmc & PCI_PM_CAP_D1)
3116 dev->d1_support = true;
3117 if (pmc & PCI_PM_CAP_D2)
3118 dev->d2_support = true;
3119
3120 if (dev->d1_support || dev->d2_support)
3121 pci_info(dev, "supports%s%s\n",
3122 dev->d1_support ? " D1" : "",
3123 dev->d2_support ? " D2" : "");
3124 }
3125
3126 pmc &= PCI_PM_CAP_PME_MASK;
3127 if (pmc) {
3128 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3129 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3130 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3131 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3132 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3133 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3134 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3135 dev->pme_poll = true;
3136 /*
3137 * Make device's PM flags reflect the wake-up capability, but
3138 * let the user space enable it to wake up the system as needed.
3139 */
3140 device_set_wakeup_capable(&dev->dev, true);
3141 /* Disable the PME# generation functionality */
3142 pci_pme_active(dev, false);
3143 }
3144
3145 pci_read_config_word(dev, PCI_STATUS, &status);
3146 if (status & PCI_STATUS_IMM_READY)
3147 dev->imm_ready = 1;
3148 }
3149
pci_ea_flags(struct pci_dev * dev,u8 prop)3150 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3151 {
3152 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3153
3154 switch (prop) {
3155 case PCI_EA_P_MEM:
3156 case PCI_EA_P_VF_MEM:
3157 flags |= IORESOURCE_MEM;
3158 break;
3159 case PCI_EA_P_MEM_PREFETCH:
3160 case PCI_EA_P_VF_MEM_PREFETCH:
3161 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3162 break;
3163 case PCI_EA_P_IO:
3164 flags |= IORESOURCE_IO;
3165 break;
3166 default:
3167 return 0;
3168 }
3169
3170 return flags;
3171 }
3172
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3173 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3174 u8 prop)
3175 {
3176 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3177 return &dev->resource[bei];
3178 #ifdef CONFIG_PCI_IOV
3179 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3180 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3181 return &dev->resource[PCI_IOV_RESOURCES +
3182 bei - PCI_EA_BEI_VF_BAR0];
3183 #endif
3184 else if (bei == PCI_EA_BEI_ROM)
3185 return &dev->resource[PCI_ROM_RESOURCE];
3186 else
3187 return NULL;
3188 }
3189
3190 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3191 static int pci_ea_read(struct pci_dev *dev, int offset)
3192 {
3193 struct resource *res;
3194 int ent_size, ent_offset = offset;
3195 resource_size_t start, end;
3196 unsigned long flags;
3197 u32 dw0, bei, base, max_offset;
3198 u8 prop;
3199 bool support_64 = (sizeof(resource_size_t) >= 8);
3200
3201 pci_read_config_dword(dev, ent_offset, &dw0);
3202 ent_offset += 4;
3203
3204 /* Entry size field indicates DWORDs after 1st */
3205 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3206
3207 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3208 goto out;
3209
3210 bei = (dw0 & PCI_EA_BEI) >> 4;
3211 prop = (dw0 & PCI_EA_PP) >> 8;
3212
3213 /*
3214 * If the Property is in the reserved range, try the Secondary
3215 * Property instead.
3216 */
3217 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3218 prop = (dw0 & PCI_EA_SP) >> 16;
3219 if (prop > PCI_EA_P_BRIDGE_IO)
3220 goto out;
3221
3222 res = pci_ea_get_resource(dev, bei, prop);
3223 if (!res) {
3224 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3225 goto out;
3226 }
3227
3228 flags = pci_ea_flags(dev, prop);
3229 if (!flags) {
3230 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3231 goto out;
3232 }
3233
3234 /* Read Base */
3235 pci_read_config_dword(dev, ent_offset, &base);
3236 start = (base & PCI_EA_FIELD_MASK);
3237 ent_offset += 4;
3238
3239 /* Read MaxOffset */
3240 pci_read_config_dword(dev, ent_offset, &max_offset);
3241 ent_offset += 4;
3242
3243 /* Read Base MSBs (if 64-bit entry) */
3244 if (base & PCI_EA_IS_64) {
3245 u32 base_upper;
3246
3247 pci_read_config_dword(dev, ent_offset, &base_upper);
3248 ent_offset += 4;
3249
3250 flags |= IORESOURCE_MEM_64;
3251
3252 /* entry starts above 32-bit boundary, can't use */
3253 if (!support_64 && base_upper)
3254 goto out;
3255
3256 if (support_64)
3257 start |= ((u64)base_upper << 32);
3258 }
3259
3260 end = start + (max_offset | 0x03);
3261
3262 /* Read MaxOffset MSBs (if 64-bit entry) */
3263 if (max_offset & PCI_EA_IS_64) {
3264 u32 max_offset_upper;
3265
3266 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3267 ent_offset += 4;
3268
3269 flags |= IORESOURCE_MEM_64;
3270
3271 /* entry too big, can't use */
3272 if (!support_64 && max_offset_upper)
3273 goto out;
3274
3275 if (support_64)
3276 end += ((u64)max_offset_upper << 32);
3277 }
3278
3279 if (end < start) {
3280 pci_err(dev, "EA Entry crosses address boundary\n");
3281 goto out;
3282 }
3283
3284 if (ent_size != ent_offset - offset) {
3285 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3286 ent_size, ent_offset - offset);
3287 goto out;
3288 }
3289
3290 res->name = pci_name(dev);
3291 res->start = start;
3292 res->end = end;
3293 res->flags = flags;
3294
3295 if (bei <= PCI_EA_BEI_BAR5)
3296 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3297 bei, res, prop);
3298 else if (bei == PCI_EA_BEI_ROM)
3299 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3300 res, prop);
3301 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3302 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3303 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3304 else
3305 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3306 bei, res, prop);
3307
3308 out:
3309 return offset + ent_size;
3310 }
3311
3312 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3313 void pci_ea_init(struct pci_dev *dev)
3314 {
3315 int ea;
3316 u8 num_ent;
3317 int offset;
3318 int i;
3319
3320 /* find PCI EA capability in list */
3321 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3322 if (!ea)
3323 return;
3324
3325 /* determine the number of entries */
3326 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3327 &num_ent);
3328 num_ent &= PCI_EA_NUM_ENT_MASK;
3329
3330 offset = ea + PCI_EA_FIRST_ENT;
3331
3332 /* Skip DWORD 2 for type 1 functions */
3333 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3334 offset += 4;
3335
3336 /* parse each EA entry */
3337 for (i = 0; i < num_ent; ++i)
3338 offset = pci_ea_read(dev, offset);
3339 }
3340
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3341 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3342 struct pci_cap_saved_state *new_cap)
3343 {
3344 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3345 }
3346
3347 /**
3348 * _pci_add_cap_save_buffer - allocate buffer for saving given
3349 * capability registers
3350 * @dev: the PCI device
3351 * @cap: the capability to allocate the buffer for
3352 * @extended: Standard or Extended capability ID
3353 * @size: requested size of the buffer
3354 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3355 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3356 bool extended, unsigned int size)
3357 {
3358 int pos;
3359 struct pci_cap_saved_state *save_state;
3360
3361 if (extended)
3362 pos = pci_find_ext_capability(dev, cap);
3363 else
3364 pos = pci_find_capability(dev, cap);
3365
3366 if (!pos)
3367 return 0;
3368
3369 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3370 if (!save_state)
3371 return -ENOMEM;
3372
3373 save_state->cap.cap_nr = cap;
3374 save_state->cap.cap_extended = extended;
3375 save_state->cap.size = size;
3376 pci_add_saved_cap(dev, save_state);
3377
3378 return 0;
3379 }
3380
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3381 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3382 {
3383 return _pci_add_cap_save_buffer(dev, cap, false, size);
3384 }
3385
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3386 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3387 {
3388 return _pci_add_cap_save_buffer(dev, cap, true, size);
3389 }
3390
3391 /**
3392 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3393 * @dev: the PCI device
3394 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3395 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3396 {
3397 int error;
3398
3399 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3400 PCI_EXP_SAVE_REGS * sizeof(u16));
3401 if (error)
3402 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3403
3404 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3405 if (error)
3406 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3407
3408 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3409 2 * sizeof(u16));
3410 if (error)
3411 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3412
3413 pci_allocate_vc_save_buffers(dev);
3414 }
3415
pci_free_cap_save_buffers(struct pci_dev * dev)3416 void pci_free_cap_save_buffers(struct pci_dev *dev)
3417 {
3418 struct pci_cap_saved_state *tmp;
3419 struct hlist_node *n;
3420
3421 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3422 kfree(tmp);
3423 }
3424
3425 /**
3426 * pci_configure_ari - enable or disable ARI forwarding
3427 * @dev: the PCI device
3428 *
3429 * If @dev and its upstream bridge both support ARI, enable ARI in the
3430 * bridge. Otherwise, disable ARI in the bridge.
3431 */
pci_configure_ari(struct pci_dev * dev)3432 void pci_configure_ari(struct pci_dev *dev)
3433 {
3434 u32 cap;
3435 struct pci_dev *bridge;
3436
3437 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3438 return;
3439
3440 bridge = dev->bus->self;
3441 if (!bridge)
3442 return;
3443
3444 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3445 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3446 return;
3447
3448 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3449 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3450 PCI_EXP_DEVCTL2_ARI);
3451 bridge->ari_enabled = 1;
3452 } else {
3453 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3454 PCI_EXP_DEVCTL2_ARI);
3455 bridge->ari_enabled = 0;
3456 }
3457 }
3458
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3459 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3460 {
3461 int pos;
3462 u16 cap, ctrl;
3463
3464 pos = pdev->acs_cap;
3465 if (!pos)
3466 return false;
3467
3468 /*
3469 * Except for egress control, capabilities are either required
3470 * or only required if controllable. Features missing from the
3471 * capability field can therefore be assumed as hard-wired enabled.
3472 */
3473 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3474 acs_flags &= (cap | PCI_ACS_EC);
3475
3476 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3477 return (ctrl & acs_flags) == acs_flags;
3478 }
3479
3480 /**
3481 * pci_acs_enabled - test ACS against required flags for a given device
3482 * @pdev: device to test
3483 * @acs_flags: required PCI ACS flags
3484 *
3485 * Return true if the device supports the provided flags. Automatically
3486 * filters out flags that are not implemented on multifunction devices.
3487 *
3488 * Note that this interface checks the effective ACS capabilities of the
3489 * device rather than the actual capabilities. For instance, most single
3490 * function endpoints are not required to support ACS because they have no
3491 * opportunity for peer-to-peer access. We therefore return 'true'
3492 * regardless of whether the device exposes an ACS capability. This makes
3493 * it much easier for callers of this function to ignore the actual type
3494 * or topology of the device when testing ACS support.
3495 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3496 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3497 {
3498 int ret;
3499
3500 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3501 if (ret >= 0)
3502 return ret > 0;
3503
3504 /*
3505 * Conventional PCI and PCI-X devices never support ACS, either
3506 * effectively or actually. The shared bus topology implies that
3507 * any device on the bus can receive or snoop DMA.
3508 */
3509 if (!pci_is_pcie(pdev))
3510 return false;
3511
3512 switch (pci_pcie_type(pdev)) {
3513 /*
3514 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3515 * but since their primary interface is PCI/X, we conservatively
3516 * handle them as we would a non-PCIe device.
3517 */
3518 case PCI_EXP_TYPE_PCIE_BRIDGE:
3519 /*
3520 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3521 * applicable... must never implement an ACS Extended Capability...".
3522 * This seems arbitrary, but we take a conservative interpretation
3523 * of this statement.
3524 */
3525 case PCI_EXP_TYPE_PCI_BRIDGE:
3526 case PCI_EXP_TYPE_RC_EC:
3527 return false;
3528 /*
3529 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3530 * implement ACS in order to indicate their peer-to-peer capabilities,
3531 * regardless of whether they are single- or multi-function devices.
3532 */
3533 case PCI_EXP_TYPE_DOWNSTREAM:
3534 case PCI_EXP_TYPE_ROOT_PORT:
3535 return pci_acs_flags_enabled(pdev, acs_flags);
3536 /*
3537 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3538 * implemented by the remaining PCIe types to indicate peer-to-peer
3539 * capabilities, but only when they are part of a multifunction
3540 * device. The footnote for section 6.12 indicates the specific
3541 * PCIe types included here.
3542 */
3543 case PCI_EXP_TYPE_ENDPOINT:
3544 case PCI_EXP_TYPE_UPSTREAM:
3545 case PCI_EXP_TYPE_LEG_END:
3546 case PCI_EXP_TYPE_RC_END:
3547 if (!pdev->multifunction)
3548 break;
3549
3550 return pci_acs_flags_enabled(pdev, acs_flags);
3551 }
3552
3553 /*
3554 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3555 * to single function devices with the exception of downstream ports.
3556 */
3557 return true;
3558 }
3559
3560 /**
3561 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3562 * @start: starting downstream device
3563 * @end: ending upstream device or NULL to search to the root bus
3564 * @acs_flags: required flags
3565 *
3566 * Walk up a device tree from start to end testing PCI ACS support. If
3567 * any step along the way does not support the required flags, return false.
3568 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3569 bool pci_acs_path_enabled(struct pci_dev *start,
3570 struct pci_dev *end, u16 acs_flags)
3571 {
3572 struct pci_dev *pdev, *parent = start;
3573
3574 do {
3575 pdev = parent;
3576
3577 if (!pci_acs_enabled(pdev, acs_flags))
3578 return false;
3579
3580 if (pci_is_root_bus(pdev->bus))
3581 return (end == NULL);
3582
3583 parent = pdev->bus->self;
3584 } while (pdev != end);
3585
3586 return true;
3587 }
3588
3589 /**
3590 * pci_acs_init - Initialize ACS if hardware supports it
3591 * @dev: the PCI device
3592 */
pci_acs_init(struct pci_dev * dev)3593 void pci_acs_init(struct pci_dev *dev)
3594 {
3595 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3596
3597 /*
3598 * Attempt to enable ACS regardless of capability because some Root
3599 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3600 * the standard ACS capability but still support ACS via those
3601 * quirks.
3602 */
3603 pci_enable_acs(dev);
3604 }
3605
3606 /**
3607 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3608 * @pdev: PCI device
3609 * @bar: BAR to find
3610 *
3611 * Helper to find the position of the ctrl register for a BAR.
3612 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3613 * Returns -ENOENT if no ctrl register for the BAR could be found.
3614 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3615 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3616 {
3617 unsigned int pos, nbars, i;
3618 u32 ctrl;
3619
3620 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3621 if (!pos)
3622 return -ENOTSUPP;
3623
3624 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3625 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3626 PCI_REBAR_CTRL_NBAR_SHIFT;
3627
3628 for (i = 0; i < nbars; i++, pos += 8) {
3629 int bar_idx;
3630
3631 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3632 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3633 if (bar_idx == bar)
3634 return pos;
3635 }
3636
3637 return -ENOENT;
3638 }
3639
3640 /**
3641 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3642 * @pdev: PCI device
3643 * @bar: BAR to query
3644 *
3645 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3646 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3647 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3648 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3649 {
3650 int pos;
3651 u32 cap;
3652
3653 pos = pci_rebar_find_pos(pdev, bar);
3654 if (pos < 0)
3655 return 0;
3656
3657 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3658 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3659
3660 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3661 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3662 bar == 0 && cap == 0x700)
3663 return 0x3f00;
3664
3665 return cap;
3666 }
3667 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3668
3669 /**
3670 * pci_rebar_get_current_size - get the current size of a BAR
3671 * @pdev: PCI device
3672 * @bar: BAR to set size to
3673 *
3674 * Read the size of a BAR from the resizable BAR config.
3675 * Returns size if found or negative error code.
3676 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3677 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3678 {
3679 int pos;
3680 u32 ctrl;
3681
3682 pos = pci_rebar_find_pos(pdev, bar);
3683 if (pos < 0)
3684 return pos;
3685
3686 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3688 }
3689
3690 /**
3691 * pci_rebar_set_size - set a new size for a BAR
3692 * @pdev: PCI device
3693 * @bar: BAR to set size to
3694 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3695 *
3696 * Set the new size of a BAR as defined in the spec.
3697 * Returns zero if resizing was successful, error code otherwise.
3698 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3699 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3700 {
3701 int pos;
3702 u32 ctrl;
3703
3704 pos = pci_rebar_find_pos(pdev, bar);
3705 if (pos < 0)
3706 return pos;
3707
3708 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3709 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3710 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3711 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3712 return 0;
3713 }
3714
3715 /**
3716 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3717 * @dev: the PCI device
3718 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3719 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3720 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3721 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3722 *
3723 * Return 0 if all upstream bridges support AtomicOp routing, egress
3724 * blocking is disabled on all upstream ports, and the root port supports
3725 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3726 * AtomicOp completion), or negative otherwise.
3727 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3728 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3729 {
3730 struct pci_bus *bus = dev->bus;
3731 struct pci_dev *bridge;
3732 u32 cap, ctl2;
3733
3734 /*
3735 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3736 * in Device Control 2 is reserved in VFs and the PF value applies
3737 * to all associated VFs.
3738 */
3739 if (dev->is_virtfn)
3740 return -EINVAL;
3741
3742 if (!pci_is_pcie(dev))
3743 return -EINVAL;
3744
3745 /*
3746 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3747 * AtomicOp requesters. For now, we only support endpoints as
3748 * requesters and root ports as completers. No endpoints as
3749 * completers, and no peer-to-peer.
3750 */
3751
3752 switch (pci_pcie_type(dev)) {
3753 case PCI_EXP_TYPE_ENDPOINT:
3754 case PCI_EXP_TYPE_LEG_END:
3755 case PCI_EXP_TYPE_RC_END:
3756 break;
3757 default:
3758 return -EINVAL;
3759 }
3760
3761 while (bus->parent) {
3762 bridge = bus->self;
3763
3764 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3765
3766 switch (pci_pcie_type(bridge)) {
3767 /* Ensure switch ports support AtomicOp routing */
3768 case PCI_EXP_TYPE_UPSTREAM:
3769 case PCI_EXP_TYPE_DOWNSTREAM:
3770 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3771 return -EINVAL;
3772 break;
3773
3774 /* Ensure root port supports all the sizes we care about */
3775 case PCI_EXP_TYPE_ROOT_PORT:
3776 if ((cap & cap_mask) != cap_mask)
3777 return -EINVAL;
3778 break;
3779 }
3780
3781 /* Ensure upstream ports don't block AtomicOps on egress */
3782 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3783 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3784 &ctl2);
3785 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3786 return -EINVAL;
3787 }
3788
3789 bus = bus->parent;
3790 }
3791
3792 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3793 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3794 return 0;
3795 }
3796 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3797
3798 /**
3799 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3800 * @dev: the PCI device
3801 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3802 *
3803 * Perform INTx swizzling for a device behind one level of bridge. This is
3804 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3805 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3806 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3807 * the PCI Express Base Specification, Revision 2.1)
3808 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3809 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3810 {
3811 int slot;
3812
3813 if (pci_ari_enabled(dev->bus))
3814 slot = 0;
3815 else
3816 slot = PCI_SLOT(dev->devfn);
3817
3818 return (((pin - 1) + slot) % 4) + 1;
3819 }
3820
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3821 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3822 {
3823 u8 pin;
3824
3825 pin = dev->pin;
3826 if (!pin)
3827 return -1;
3828
3829 while (!pci_is_root_bus(dev->bus)) {
3830 pin = pci_swizzle_interrupt_pin(dev, pin);
3831 dev = dev->bus->self;
3832 }
3833 *bridge = dev;
3834 return pin;
3835 }
3836
3837 /**
3838 * pci_common_swizzle - swizzle INTx all the way to root bridge
3839 * @dev: the PCI device
3840 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3841 *
3842 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3843 * bridges all the way up to a PCI root bus.
3844 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3845 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3846 {
3847 u8 pin = *pinp;
3848
3849 while (!pci_is_root_bus(dev->bus)) {
3850 pin = pci_swizzle_interrupt_pin(dev, pin);
3851 dev = dev->bus->self;
3852 }
3853 *pinp = pin;
3854 return PCI_SLOT(dev->devfn);
3855 }
3856 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3857
3858 /**
3859 * pci_release_region - Release a PCI bar
3860 * @pdev: PCI device whose resources were previously reserved by
3861 * pci_request_region()
3862 * @bar: BAR to release
3863 *
3864 * Releases the PCI I/O and memory resources previously reserved by a
3865 * successful call to pci_request_region(). Call this function only
3866 * after all use of the PCI regions has ceased.
3867 */
pci_release_region(struct pci_dev * pdev,int bar)3868 void pci_release_region(struct pci_dev *pdev, int bar)
3869 {
3870 struct pci_devres *dr;
3871
3872 if (pci_resource_len(pdev, bar) == 0)
3873 return;
3874 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3875 release_region(pci_resource_start(pdev, bar),
3876 pci_resource_len(pdev, bar));
3877 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3878 release_mem_region(pci_resource_start(pdev, bar),
3879 pci_resource_len(pdev, bar));
3880
3881 dr = find_pci_dr(pdev);
3882 if (dr)
3883 dr->region_mask &= ~(1 << bar);
3884 }
3885 EXPORT_SYMBOL(pci_release_region);
3886
3887 /**
3888 * __pci_request_region - Reserved PCI I/O and memory resource
3889 * @pdev: PCI device whose resources are to be reserved
3890 * @bar: BAR to be reserved
3891 * @res_name: Name to be associated with resource.
3892 * @exclusive: whether the region access is exclusive or not
3893 *
3894 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3895 * being reserved by owner @res_name. Do not access any
3896 * address inside the PCI regions unless this call returns
3897 * successfully.
3898 *
3899 * If @exclusive is set, then the region is marked so that userspace
3900 * is explicitly not allowed to map the resource via /dev/mem or
3901 * sysfs MMIO access.
3902 *
3903 * Returns 0 on success, or %EBUSY on error. A warning
3904 * message is also printed on failure.
3905 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3906 static int __pci_request_region(struct pci_dev *pdev, int bar,
3907 const char *res_name, int exclusive)
3908 {
3909 struct pci_devres *dr;
3910
3911 if (pci_resource_len(pdev, bar) == 0)
3912 return 0;
3913
3914 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3915 if (!request_region(pci_resource_start(pdev, bar),
3916 pci_resource_len(pdev, bar), res_name))
3917 goto err_out;
3918 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3919 if (!__request_mem_region(pci_resource_start(pdev, bar),
3920 pci_resource_len(pdev, bar), res_name,
3921 exclusive))
3922 goto err_out;
3923 }
3924
3925 dr = find_pci_dr(pdev);
3926 if (dr)
3927 dr->region_mask |= 1 << bar;
3928
3929 return 0;
3930
3931 err_out:
3932 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3933 &pdev->resource[bar]);
3934 return -EBUSY;
3935 }
3936
3937 /**
3938 * pci_request_region - Reserve PCI I/O and memory resource
3939 * @pdev: PCI device whose resources are to be reserved
3940 * @bar: BAR to be reserved
3941 * @res_name: Name to be associated with resource
3942 *
3943 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3944 * being reserved by owner @res_name. Do not access any
3945 * address inside the PCI regions unless this call returns
3946 * successfully.
3947 *
3948 * Returns 0 on success, or %EBUSY on error. A warning
3949 * message is also printed on failure.
3950 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3951 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3952 {
3953 return __pci_request_region(pdev, bar, res_name, 0);
3954 }
3955 EXPORT_SYMBOL(pci_request_region);
3956
3957 /**
3958 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3959 * @pdev: PCI device whose resources were previously reserved
3960 * @bars: Bitmask of BARs to be released
3961 *
3962 * Release selected PCI I/O and memory resources previously reserved.
3963 * Call this function only after all use of the PCI regions has ceased.
3964 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3965 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3966 {
3967 int i;
3968
3969 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3970 if (bars & (1 << i))
3971 pci_release_region(pdev, i);
3972 }
3973 EXPORT_SYMBOL(pci_release_selected_regions);
3974
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3975 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3976 const char *res_name, int excl)
3977 {
3978 int i;
3979
3980 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3981 if (bars & (1 << i))
3982 if (__pci_request_region(pdev, i, res_name, excl))
3983 goto err_out;
3984 return 0;
3985
3986 err_out:
3987 while (--i >= 0)
3988 if (bars & (1 << i))
3989 pci_release_region(pdev, i);
3990
3991 return -EBUSY;
3992 }
3993
3994
3995 /**
3996 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3997 * @pdev: PCI device whose resources are to be reserved
3998 * @bars: Bitmask of BARs to be requested
3999 * @res_name: Name to be associated with resource
4000 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4001 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4002 const char *res_name)
4003 {
4004 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4005 }
4006 EXPORT_SYMBOL(pci_request_selected_regions);
4007
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4008 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4009 const char *res_name)
4010 {
4011 return __pci_request_selected_regions(pdev, bars, res_name,
4012 IORESOURCE_EXCLUSIVE);
4013 }
4014 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4015
4016 /**
4017 * pci_release_regions - Release reserved PCI I/O and memory resources
4018 * @pdev: PCI device whose resources were previously reserved by
4019 * pci_request_regions()
4020 *
4021 * Releases all PCI I/O and memory resources previously reserved by a
4022 * successful call to pci_request_regions(). Call this function only
4023 * after all use of the PCI regions has ceased.
4024 */
4025
pci_release_regions(struct pci_dev * pdev)4026 void pci_release_regions(struct pci_dev *pdev)
4027 {
4028 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4029 }
4030 EXPORT_SYMBOL(pci_release_regions);
4031
4032 /**
4033 * pci_request_regions - Reserve PCI I/O and memory resources
4034 * @pdev: PCI device whose resources are to be reserved
4035 * @res_name: Name to be associated with resource.
4036 *
4037 * Mark all PCI regions associated with PCI device @pdev as
4038 * being reserved by owner @res_name. Do not access any
4039 * address inside the PCI regions unless this call returns
4040 * successfully.
4041 *
4042 * Returns 0 on success, or %EBUSY on error. A warning
4043 * message is also printed on failure.
4044 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4045 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4046 {
4047 return pci_request_selected_regions(pdev,
4048 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4049 }
4050 EXPORT_SYMBOL(pci_request_regions);
4051
4052 /**
4053 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4054 * @pdev: PCI device whose resources are to be reserved
4055 * @res_name: Name to be associated with resource.
4056 *
4057 * Mark all PCI regions associated with PCI device @pdev as being reserved
4058 * by owner @res_name. Do not access any address inside the PCI regions
4059 * unless this call returns successfully.
4060 *
4061 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4062 * and the sysfs MMIO access will not be allowed.
4063 *
4064 * Returns 0 on success, or %EBUSY on error. A warning message is also
4065 * printed on failure.
4066 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4067 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4068 {
4069 return pci_request_selected_regions_exclusive(pdev,
4070 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4071 }
4072 EXPORT_SYMBOL(pci_request_regions_exclusive);
4073
4074 /*
4075 * Record the PCI IO range (expressed as CPU physical address + size).
4076 * Return a negative value if an error has occurred, zero otherwise
4077 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4078 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4079 resource_size_t size)
4080 {
4081 int ret = 0;
4082 #ifdef PCI_IOBASE
4083 struct logic_pio_hwaddr *range;
4084
4085 if (!size || addr + size < addr)
4086 return -EINVAL;
4087
4088 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4089 if (!range)
4090 return -ENOMEM;
4091
4092 range->fwnode = fwnode;
4093 range->size = size;
4094 range->hw_start = addr;
4095 range->flags = LOGIC_PIO_CPU_MMIO;
4096
4097 ret = logic_pio_register_range(range);
4098 if (ret)
4099 kfree(range);
4100
4101 /* Ignore duplicates due to deferred probing */
4102 if (ret == -EEXIST)
4103 ret = 0;
4104 #endif
4105
4106 return ret;
4107 }
4108
pci_pio_to_address(unsigned long pio)4109 phys_addr_t pci_pio_to_address(unsigned long pio)
4110 {
4111 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4112
4113 #ifdef PCI_IOBASE
4114 if (pio >= MMIO_UPPER_LIMIT)
4115 return address;
4116
4117 address = logic_pio_to_hwaddr(pio);
4118 #endif
4119
4120 return address;
4121 }
4122 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4123
pci_address_to_pio(phys_addr_t address)4124 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4125 {
4126 #ifdef PCI_IOBASE
4127 return logic_pio_trans_cpuaddr(address);
4128 #else
4129 if (address > IO_SPACE_LIMIT)
4130 return (unsigned long)-1;
4131
4132 return (unsigned long) address;
4133 #endif
4134 }
4135
4136 /**
4137 * pci_remap_iospace - Remap the memory mapped I/O space
4138 * @res: Resource describing the I/O space
4139 * @phys_addr: physical address of range to be mapped
4140 *
4141 * Remap the memory mapped I/O space described by the @res and the CPU
4142 * physical address @phys_addr into virtual address space. Only
4143 * architectures that have memory mapped IO functions defined (and the
4144 * PCI_IOBASE value defined) should call this function.
4145 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4146 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4147 {
4148 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4149 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4150
4151 if (!(res->flags & IORESOURCE_IO))
4152 return -EINVAL;
4153
4154 if (res->end > IO_SPACE_LIMIT)
4155 return -EINVAL;
4156
4157 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4158 pgprot_device(PAGE_KERNEL));
4159 #else
4160 /*
4161 * This architecture does not have memory mapped I/O space,
4162 * so this function should never be called
4163 */
4164 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4165 return -ENODEV;
4166 #endif
4167 }
4168 EXPORT_SYMBOL(pci_remap_iospace);
4169
4170 /**
4171 * pci_unmap_iospace - Unmap the memory mapped I/O space
4172 * @res: resource to be unmapped
4173 *
4174 * Unmap the CPU virtual address @res from virtual address space. Only
4175 * architectures that have memory mapped IO functions defined (and the
4176 * PCI_IOBASE value defined) should call this function.
4177 */
pci_unmap_iospace(struct resource * res)4178 void pci_unmap_iospace(struct resource *res)
4179 {
4180 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182
4183 vunmap_range(vaddr, vaddr + resource_size(res));
4184 #endif
4185 }
4186 EXPORT_SYMBOL(pci_unmap_iospace);
4187
devm_pci_unmap_iospace(struct device * dev,void * ptr)4188 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4189 {
4190 struct resource **res = ptr;
4191
4192 pci_unmap_iospace(*res);
4193 }
4194
4195 /**
4196 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4197 * @dev: Generic device to remap IO address for
4198 * @res: Resource describing the I/O space
4199 * @phys_addr: physical address of range to be mapped
4200 *
4201 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4202 * detach.
4203 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4204 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4205 phys_addr_t phys_addr)
4206 {
4207 const struct resource **ptr;
4208 int error;
4209
4210 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4211 if (!ptr)
4212 return -ENOMEM;
4213
4214 error = pci_remap_iospace(res, phys_addr);
4215 if (error) {
4216 devres_free(ptr);
4217 } else {
4218 *ptr = res;
4219 devres_add(dev, ptr);
4220 }
4221
4222 return error;
4223 }
4224 EXPORT_SYMBOL(devm_pci_remap_iospace);
4225
4226 /**
4227 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4228 * @dev: Generic device to remap IO address for
4229 * @offset: Resource address to map
4230 * @size: Size of map
4231 *
4232 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4233 * detach.
4234 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4235 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4236 resource_size_t offset,
4237 resource_size_t size)
4238 {
4239 void __iomem **ptr, *addr;
4240
4241 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4242 if (!ptr)
4243 return NULL;
4244
4245 addr = pci_remap_cfgspace(offset, size);
4246 if (addr) {
4247 *ptr = addr;
4248 devres_add(dev, ptr);
4249 } else
4250 devres_free(ptr);
4251
4252 return addr;
4253 }
4254 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4255
4256 /**
4257 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4258 * @dev: generic device to handle the resource for
4259 * @res: configuration space resource to be handled
4260 *
4261 * Checks that a resource is a valid memory region, requests the memory
4262 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4263 * proper PCI configuration space memory attributes are guaranteed.
4264 *
4265 * All operations are managed and will be undone on driver detach.
4266 *
4267 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4268 * on failure. Usage example::
4269 *
4270 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4271 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4272 * if (IS_ERR(base))
4273 * return PTR_ERR(base);
4274 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4275 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4276 struct resource *res)
4277 {
4278 resource_size_t size;
4279 const char *name;
4280 void __iomem *dest_ptr;
4281
4282 BUG_ON(!dev);
4283
4284 if (!res || resource_type(res) != IORESOURCE_MEM) {
4285 dev_err(dev, "invalid resource\n");
4286 return IOMEM_ERR_PTR(-EINVAL);
4287 }
4288
4289 size = resource_size(res);
4290
4291 if (res->name)
4292 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4293 res->name);
4294 else
4295 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4296 if (!name)
4297 return IOMEM_ERR_PTR(-ENOMEM);
4298
4299 if (!devm_request_mem_region(dev, res->start, size, name)) {
4300 dev_err(dev, "can't request region for resource %pR\n", res);
4301 return IOMEM_ERR_PTR(-EBUSY);
4302 }
4303
4304 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4305 if (!dest_ptr) {
4306 dev_err(dev, "ioremap failed for resource %pR\n", res);
4307 devm_release_mem_region(dev, res->start, size);
4308 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4309 }
4310
4311 return dest_ptr;
4312 }
4313 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4314
__pci_set_master(struct pci_dev * dev,bool enable)4315 static void __pci_set_master(struct pci_dev *dev, bool enable)
4316 {
4317 u16 old_cmd, cmd;
4318
4319 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4320 if (enable)
4321 cmd = old_cmd | PCI_COMMAND_MASTER;
4322 else
4323 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4324 if (cmd != old_cmd) {
4325 pci_dbg(dev, "%s bus mastering\n",
4326 enable ? "enabling" : "disabling");
4327 pci_write_config_word(dev, PCI_COMMAND, cmd);
4328 }
4329 dev->is_busmaster = enable;
4330 }
4331
4332 /**
4333 * pcibios_setup - process "pci=" kernel boot arguments
4334 * @str: string used to pass in "pci=" kernel boot arguments
4335 *
4336 * Process kernel boot arguments. This is the default implementation.
4337 * Architecture specific implementations can override this as necessary.
4338 */
pcibios_setup(char * str)4339 char * __weak __init pcibios_setup(char *str)
4340 {
4341 return str;
4342 }
4343
4344 /**
4345 * pcibios_set_master - enable PCI bus-mastering for device dev
4346 * @dev: the PCI device to enable
4347 *
4348 * Enables PCI bus-mastering for the device. This is the default
4349 * implementation. Architecture specific implementations can override
4350 * this if necessary.
4351 */
pcibios_set_master(struct pci_dev * dev)4352 void __weak pcibios_set_master(struct pci_dev *dev)
4353 {
4354 u8 lat;
4355
4356 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4357 if (pci_is_pcie(dev))
4358 return;
4359
4360 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4361 if (lat < 16)
4362 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4363 else if (lat > pcibios_max_latency)
4364 lat = pcibios_max_latency;
4365 else
4366 return;
4367
4368 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4369 }
4370
4371 /**
4372 * pci_set_master - enables bus-mastering for device dev
4373 * @dev: the PCI device to enable
4374 *
4375 * Enables bus-mastering on the device and calls pcibios_set_master()
4376 * to do the needed arch specific settings.
4377 */
pci_set_master(struct pci_dev * dev)4378 void pci_set_master(struct pci_dev *dev)
4379 {
4380 __pci_set_master(dev, true);
4381 pcibios_set_master(dev);
4382 }
4383 EXPORT_SYMBOL(pci_set_master);
4384
4385 /**
4386 * pci_clear_master - disables bus-mastering for device dev
4387 * @dev: the PCI device to disable
4388 */
pci_clear_master(struct pci_dev * dev)4389 void pci_clear_master(struct pci_dev *dev)
4390 {
4391 __pci_set_master(dev, false);
4392 }
4393 EXPORT_SYMBOL(pci_clear_master);
4394
4395 /**
4396 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4397 * @dev: the PCI device for which MWI is to be enabled
4398 *
4399 * Helper function for pci_set_mwi.
4400 * Originally copied from drivers/net/acenic.c.
4401 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4402 *
4403 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4404 */
pci_set_cacheline_size(struct pci_dev * dev)4405 int pci_set_cacheline_size(struct pci_dev *dev)
4406 {
4407 u8 cacheline_size;
4408
4409 if (!pci_cache_line_size)
4410 return -EINVAL;
4411
4412 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4413 equal to or multiple of the right value. */
4414 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4415 if (cacheline_size >= pci_cache_line_size &&
4416 (cacheline_size % pci_cache_line_size) == 0)
4417 return 0;
4418
4419 /* Write the correct value. */
4420 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4421 /* Read it back. */
4422 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4423 if (cacheline_size == pci_cache_line_size)
4424 return 0;
4425
4426 pci_dbg(dev, "cache line size of %d is not supported\n",
4427 pci_cache_line_size << 2);
4428
4429 return -EINVAL;
4430 }
4431 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4432
4433 /**
4434 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4435 * @dev: the PCI device for which MWI is enabled
4436 *
4437 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4438 *
4439 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4440 */
pci_set_mwi(struct pci_dev * dev)4441 int pci_set_mwi(struct pci_dev *dev)
4442 {
4443 #ifdef PCI_DISABLE_MWI
4444 return 0;
4445 #else
4446 int rc;
4447 u16 cmd;
4448
4449 rc = pci_set_cacheline_size(dev);
4450 if (rc)
4451 return rc;
4452
4453 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4454 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4455 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4456 cmd |= PCI_COMMAND_INVALIDATE;
4457 pci_write_config_word(dev, PCI_COMMAND, cmd);
4458 }
4459 return 0;
4460 #endif
4461 }
4462 EXPORT_SYMBOL(pci_set_mwi);
4463
4464 /**
4465 * pcim_set_mwi - a device-managed pci_set_mwi()
4466 * @dev: the PCI device for which MWI is enabled
4467 *
4468 * Managed pci_set_mwi().
4469 *
4470 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4471 */
pcim_set_mwi(struct pci_dev * dev)4472 int pcim_set_mwi(struct pci_dev *dev)
4473 {
4474 struct pci_devres *dr;
4475
4476 dr = find_pci_dr(dev);
4477 if (!dr)
4478 return -ENOMEM;
4479
4480 dr->mwi = 1;
4481 return pci_set_mwi(dev);
4482 }
4483 EXPORT_SYMBOL(pcim_set_mwi);
4484
4485 /**
4486 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4487 * @dev: the PCI device for which MWI is enabled
4488 *
4489 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4490 * Callers are not required to check the return value.
4491 *
4492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4493 */
pci_try_set_mwi(struct pci_dev * dev)4494 int pci_try_set_mwi(struct pci_dev *dev)
4495 {
4496 #ifdef PCI_DISABLE_MWI
4497 return 0;
4498 #else
4499 return pci_set_mwi(dev);
4500 #endif
4501 }
4502 EXPORT_SYMBOL(pci_try_set_mwi);
4503
4504 /**
4505 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4506 * @dev: the PCI device to disable
4507 *
4508 * Disables PCI Memory-Write-Invalidate transaction on the device
4509 */
pci_clear_mwi(struct pci_dev * dev)4510 void pci_clear_mwi(struct pci_dev *dev)
4511 {
4512 #ifndef PCI_DISABLE_MWI
4513 u16 cmd;
4514
4515 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4516 if (cmd & PCI_COMMAND_INVALIDATE) {
4517 cmd &= ~PCI_COMMAND_INVALIDATE;
4518 pci_write_config_word(dev, PCI_COMMAND, cmd);
4519 }
4520 #endif
4521 }
4522 EXPORT_SYMBOL(pci_clear_mwi);
4523
4524 /**
4525 * pci_disable_parity - disable parity checking for device
4526 * @dev: the PCI device to operate on
4527 *
4528 * Disable parity checking for device @dev
4529 */
pci_disable_parity(struct pci_dev * dev)4530 void pci_disable_parity(struct pci_dev *dev)
4531 {
4532 u16 cmd;
4533
4534 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4535 if (cmd & PCI_COMMAND_PARITY) {
4536 cmd &= ~PCI_COMMAND_PARITY;
4537 pci_write_config_word(dev, PCI_COMMAND, cmd);
4538 }
4539 }
4540
4541 /**
4542 * pci_intx - enables/disables PCI INTx for device dev
4543 * @pdev: the PCI device to operate on
4544 * @enable: boolean: whether to enable or disable PCI INTx
4545 *
4546 * Enables/disables PCI INTx for device @pdev
4547 */
pci_intx(struct pci_dev * pdev,int enable)4548 void pci_intx(struct pci_dev *pdev, int enable)
4549 {
4550 u16 pci_command, new;
4551
4552 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4553
4554 if (enable)
4555 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4556 else
4557 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4558
4559 if (new != pci_command) {
4560 struct pci_devres *dr;
4561
4562 pci_write_config_word(pdev, PCI_COMMAND, new);
4563
4564 dr = find_pci_dr(pdev);
4565 if (dr && !dr->restore_intx) {
4566 dr->restore_intx = 1;
4567 dr->orig_intx = !enable;
4568 }
4569 }
4570 }
4571 EXPORT_SYMBOL_GPL(pci_intx);
4572
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4573 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4574 {
4575 struct pci_bus *bus = dev->bus;
4576 bool mask_updated = true;
4577 u32 cmd_status_dword;
4578 u16 origcmd, newcmd;
4579 unsigned long flags;
4580 bool irq_pending;
4581
4582 /*
4583 * We do a single dword read to retrieve both command and status.
4584 * Document assumptions that make this possible.
4585 */
4586 BUILD_BUG_ON(PCI_COMMAND % 4);
4587 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4588
4589 raw_spin_lock_irqsave(&pci_lock, flags);
4590
4591 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4592
4593 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4594
4595 /*
4596 * Check interrupt status register to see whether our device
4597 * triggered the interrupt (when masking) or the next IRQ is
4598 * already pending (when unmasking).
4599 */
4600 if (mask != irq_pending) {
4601 mask_updated = false;
4602 goto done;
4603 }
4604
4605 origcmd = cmd_status_dword;
4606 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4607 if (mask)
4608 newcmd |= PCI_COMMAND_INTX_DISABLE;
4609 if (newcmd != origcmd)
4610 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4611
4612 done:
4613 raw_spin_unlock_irqrestore(&pci_lock, flags);
4614
4615 return mask_updated;
4616 }
4617
4618 /**
4619 * pci_check_and_mask_intx - mask INTx on pending interrupt
4620 * @dev: the PCI device to operate on
4621 *
4622 * Check if the device dev has its INTx line asserted, mask it and return
4623 * true in that case. False is returned if no interrupt was pending.
4624 */
pci_check_and_mask_intx(struct pci_dev * dev)4625 bool pci_check_and_mask_intx(struct pci_dev *dev)
4626 {
4627 return pci_check_and_set_intx_mask(dev, true);
4628 }
4629 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4630
4631 /**
4632 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4633 * @dev: the PCI device to operate on
4634 *
4635 * Check if the device dev has its INTx line asserted, unmask it if not and
4636 * return true. False is returned and the mask remains active if there was
4637 * still an interrupt pending.
4638 */
pci_check_and_unmask_intx(struct pci_dev * dev)4639 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4640 {
4641 return pci_check_and_set_intx_mask(dev, false);
4642 }
4643 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4644
4645 /**
4646 * pci_wait_for_pending_transaction - wait for pending transaction
4647 * @dev: the PCI device to operate on
4648 *
4649 * Return 0 if transaction is pending 1 otherwise.
4650 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4651 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4652 {
4653 if (!pci_is_pcie(dev))
4654 return 1;
4655
4656 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4657 PCI_EXP_DEVSTA_TRPND);
4658 }
4659 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4660
4661 /**
4662 * pcie_flr - initiate a PCIe function level reset
4663 * @dev: device to reset
4664 *
4665 * Initiate a function level reset unconditionally on @dev without
4666 * checking any flags and DEVCAP
4667 */
pcie_flr(struct pci_dev * dev)4668 int pcie_flr(struct pci_dev *dev)
4669 {
4670 if (!pci_wait_for_pending_transaction(dev))
4671 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4672
4673 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4674
4675 if (dev->imm_ready)
4676 return 0;
4677
4678 /*
4679 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4680 * 100ms, but may silently discard requests while the FLR is in
4681 * progress. Wait 100ms before trying to access the device.
4682 */
4683 msleep(100);
4684
4685 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4686 }
4687 EXPORT_SYMBOL_GPL(pcie_flr);
4688
4689 /**
4690 * pcie_reset_flr - initiate a PCIe function level reset
4691 * @dev: device to reset
4692 * @probe: if true, return 0 if device can be reset this way
4693 *
4694 * Initiate a function level reset on @dev.
4695 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4696 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4697 {
4698 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4699 return -ENOTTY;
4700
4701 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4702 return -ENOTTY;
4703
4704 if (probe)
4705 return 0;
4706
4707 return pcie_flr(dev);
4708 }
4709 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4710
pci_af_flr(struct pci_dev * dev,bool probe)4711 static int pci_af_flr(struct pci_dev *dev, bool probe)
4712 {
4713 int pos;
4714 u8 cap;
4715
4716 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4717 if (!pos)
4718 return -ENOTTY;
4719
4720 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4721 return -ENOTTY;
4722
4723 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4724 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4725 return -ENOTTY;
4726
4727 if (probe)
4728 return 0;
4729
4730 /*
4731 * Wait for Transaction Pending bit to clear. A word-aligned test
4732 * is used, so we use the control offset rather than status and shift
4733 * the test bit to match.
4734 */
4735 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4736 PCI_AF_STATUS_TP << 8))
4737 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4738
4739 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4740
4741 if (dev->imm_ready)
4742 return 0;
4743
4744 /*
4745 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4746 * updated 27 July 2006; a device must complete an FLR within
4747 * 100ms, but may silently discard requests while the FLR is in
4748 * progress. Wait 100ms before trying to access the device.
4749 */
4750 msleep(100);
4751
4752 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4753 }
4754
4755 /**
4756 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4757 * @dev: Device to reset.
4758 * @probe: if true, return 0 if the device can be reset this way.
4759 *
4760 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4761 * unset, it will be reinitialized internally when going from PCI_D3hot to
4762 * PCI_D0. If that's the case and the device is not in a low-power state
4763 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4764 *
4765 * NOTE: This causes the caller to sleep for twice the device power transition
4766 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4767 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4768 * Moreover, only devices in D0 can be reset by this function.
4769 */
pci_pm_reset(struct pci_dev * dev,bool probe)4770 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4771 {
4772 u16 csr;
4773
4774 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4775 return -ENOTTY;
4776
4777 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4778 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4779 return -ENOTTY;
4780
4781 if (probe)
4782 return 0;
4783
4784 if (dev->current_state != PCI_D0)
4785 return -EINVAL;
4786
4787 csr &= ~PCI_PM_CTRL_STATE_MASK;
4788 csr |= PCI_D3hot;
4789 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4790 pci_dev_d3_sleep(dev);
4791
4792 csr &= ~PCI_PM_CTRL_STATE_MASK;
4793 csr |= PCI_D0;
4794 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4795 pci_dev_d3_sleep(dev);
4796
4797 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4798 }
4799
4800 /**
4801 * pcie_wait_for_link_delay - Wait until link is active or inactive
4802 * @pdev: Bridge device
4803 * @active: waiting for active or inactive?
4804 * @delay: Delay to wait after link has become active (in ms)
4805 *
4806 * Use this to wait till link becomes active or inactive.
4807 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4808 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4809 int delay)
4810 {
4811 int timeout = 1000;
4812 bool ret;
4813 u16 lnk_status;
4814
4815 /*
4816 * Some controllers might not implement link active reporting. In this
4817 * case, we wait for 1000 ms + any delay requested by the caller.
4818 */
4819 if (!pdev->link_active_reporting) {
4820 msleep(timeout + delay);
4821 return true;
4822 }
4823
4824 /*
4825 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4826 * after which we should expect an link active if the reset was
4827 * successful. If so, software must wait a minimum 100ms before sending
4828 * configuration requests to devices downstream this port.
4829 *
4830 * If the link fails to activate, either the device was physically
4831 * removed or the link is permanently failed.
4832 */
4833 if (active)
4834 msleep(20);
4835 for (;;) {
4836 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4837 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4838 if (ret == active)
4839 break;
4840 if (timeout <= 0)
4841 break;
4842 msleep(10);
4843 timeout -= 10;
4844 }
4845 if (active && ret)
4846 msleep(delay);
4847
4848 return ret == active;
4849 }
4850
4851 /**
4852 * pcie_wait_for_link - Wait until link is active or inactive
4853 * @pdev: Bridge device
4854 * @active: waiting for active or inactive?
4855 *
4856 * Use this to wait till link becomes active or inactive.
4857 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4858 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4859 {
4860 return pcie_wait_for_link_delay(pdev, active, 100);
4861 }
4862
4863 /*
4864 * Find maximum D3cold delay required by all the devices on the bus. The
4865 * spec says 100 ms, but firmware can lower it and we allow drivers to
4866 * increase it as well.
4867 *
4868 * Called with @pci_bus_sem locked for reading.
4869 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4870 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4871 {
4872 const struct pci_dev *pdev;
4873 int min_delay = 100;
4874 int max_delay = 0;
4875
4876 list_for_each_entry(pdev, &bus->devices, bus_list) {
4877 if (pdev->d3cold_delay < min_delay)
4878 min_delay = pdev->d3cold_delay;
4879 if (pdev->d3cold_delay > max_delay)
4880 max_delay = pdev->d3cold_delay;
4881 }
4882
4883 return max(min_delay, max_delay);
4884 }
4885
4886 /**
4887 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4888 * @dev: PCI bridge
4889 * @reset_type: reset type in human-readable form
4890 * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4891 *
4892 * Handle necessary delays before access to the devices on the secondary
4893 * side of the bridge are permitted after D3cold to D0 transition
4894 * or Conventional Reset.
4895 *
4896 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4897 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4898 * 4.3.2.
4899 *
4900 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4901 * failed to become accessible.
4902 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4903 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4904 int timeout)
4905 {
4906 struct pci_dev *child;
4907 int delay;
4908
4909 if (pci_dev_is_disconnected(dev))
4910 return 0;
4911
4912 if (!pci_is_bridge(dev))
4913 return 0;
4914
4915 down_read(&pci_bus_sem);
4916
4917 /*
4918 * We only deal with devices that are present currently on the bus.
4919 * For any hot-added devices the access delay is handled in pciehp
4920 * board_added(). In case of ACPI hotplug the firmware is expected
4921 * to configure the devices before OS is notified.
4922 */
4923 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4924 up_read(&pci_bus_sem);
4925 return 0;
4926 }
4927
4928 /* Take d3cold_delay requirements into account */
4929 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4930 if (!delay) {
4931 up_read(&pci_bus_sem);
4932 return 0;
4933 }
4934
4935 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4936 bus_list);
4937 up_read(&pci_bus_sem);
4938
4939 /*
4940 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4941 * accessing the device after reset (that is 1000 ms + 100 ms).
4942 */
4943 if (!pci_is_pcie(dev)) {
4944 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4945 msleep(1000 + delay);
4946 return 0;
4947 }
4948
4949 /*
4950 * For PCIe downstream and root ports that do not support speeds
4951 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4952 * speeds (gen3) we need to wait first for the data link layer to
4953 * become active.
4954 *
4955 * However, 100 ms is the minimum and the PCIe spec says the
4956 * software must allow at least 1s before it can determine that the
4957 * device that did not respond is a broken device. There is
4958 * evidence that 100 ms is not always enough, for example certain
4959 * Titan Ridge xHCI controller does not always respond to
4960 * configuration requests if we only wait for 100 ms (see
4961 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4962 *
4963 * Therefore we wait for 100 ms and check for the device presence
4964 * until the timeout expires.
4965 */
4966 if (!pcie_downstream_port(dev))
4967 return 0;
4968
4969 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4970 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4971 msleep(delay);
4972 } else {
4973 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4974 delay);
4975 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4976 /* Did not train, no need to wait any further */
4977 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4978 return -ENOTTY;
4979 }
4980 }
4981
4982 return pci_dev_wait(child, reset_type, timeout - delay);
4983 }
4984
pci_reset_secondary_bus(struct pci_dev * dev)4985 void pci_reset_secondary_bus(struct pci_dev *dev)
4986 {
4987 u16 ctrl;
4988
4989 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4990 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4991 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4992
4993 /*
4994 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4995 * this to 2ms to ensure that we meet the minimum requirement.
4996 */
4997 msleep(2);
4998
4999 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5000 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5001 }
5002
pcibios_reset_secondary_bus(struct pci_dev * dev)5003 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5004 {
5005 pci_reset_secondary_bus(dev);
5006 }
5007
5008 /**
5009 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5010 * @dev: Bridge device
5011 *
5012 * Use the bridge control register to assert reset on the secondary bus.
5013 * Devices on the secondary bus are left in power-on state.
5014 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5015 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5016 {
5017 pcibios_reset_secondary_bus(dev);
5018
5019 return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
5020 PCIE_RESET_READY_POLL_MS);
5021 }
5022 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5023
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5024 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5025 {
5026 struct pci_dev *pdev;
5027
5028 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5029 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5030 return -ENOTTY;
5031
5032 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5033 if (pdev != dev)
5034 return -ENOTTY;
5035
5036 if (probe)
5037 return 0;
5038
5039 return pci_bridge_secondary_bus_reset(dev->bus->self);
5040 }
5041
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5042 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5043 {
5044 int rc = -ENOTTY;
5045
5046 if (!hotplug || !try_module_get(hotplug->owner))
5047 return rc;
5048
5049 if (hotplug->ops->reset_slot)
5050 rc = hotplug->ops->reset_slot(hotplug, probe);
5051
5052 module_put(hotplug->owner);
5053
5054 return rc;
5055 }
5056
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5057 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5058 {
5059 if (dev->multifunction || dev->subordinate || !dev->slot ||
5060 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5061 return -ENOTTY;
5062
5063 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5064 }
5065
pci_reset_bus_function(struct pci_dev * dev,bool probe)5066 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5067 {
5068 int rc;
5069
5070 rc = pci_dev_reset_slot_function(dev, probe);
5071 if (rc != -ENOTTY)
5072 return rc;
5073 return pci_parent_bus_reset(dev, probe);
5074 }
5075
pci_dev_lock(struct pci_dev * dev)5076 static void pci_dev_lock(struct pci_dev *dev)
5077 {
5078 /* block PM suspend, driver probe, etc. */
5079 device_lock(&dev->dev);
5080 pci_cfg_access_lock(dev);
5081 }
5082
5083 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5084 int pci_dev_trylock(struct pci_dev *dev)
5085 {
5086 if (device_trylock(&dev->dev)) {
5087 if (pci_cfg_access_trylock(dev))
5088 return 1;
5089 device_unlock(&dev->dev);
5090 }
5091
5092 return 0;
5093 }
5094 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5095
pci_dev_unlock(struct pci_dev * dev)5096 void pci_dev_unlock(struct pci_dev *dev)
5097 {
5098 pci_cfg_access_unlock(dev);
5099 device_unlock(&dev->dev);
5100 }
5101 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5102
pci_dev_save_and_disable(struct pci_dev * dev)5103 static void pci_dev_save_and_disable(struct pci_dev *dev)
5104 {
5105 const struct pci_error_handlers *err_handler =
5106 dev->driver ? dev->driver->err_handler : NULL;
5107
5108 /*
5109 * dev->driver->err_handler->reset_prepare() is protected against
5110 * races with ->remove() by the device lock, which must be held by
5111 * the caller.
5112 */
5113 if (err_handler && err_handler->reset_prepare)
5114 err_handler->reset_prepare(dev);
5115
5116 /*
5117 * Wake-up device prior to save. PM registers default to D0 after
5118 * reset and a simple register restore doesn't reliably return
5119 * to a non-D0 state anyway.
5120 */
5121 pci_set_power_state(dev, PCI_D0);
5122
5123 pci_save_state(dev);
5124 /*
5125 * Disable the device by clearing the Command register, except for
5126 * INTx-disable which is set. This not only disables MMIO and I/O port
5127 * BARs, but also prevents the device from being Bus Master, preventing
5128 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5129 * compliant devices, INTx-disable prevents legacy interrupts.
5130 */
5131 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5132 }
5133
pci_dev_restore(struct pci_dev * dev)5134 static void pci_dev_restore(struct pci_dev *dev)
5135 {
5136 const struct pci_error_handlers *err_handler =
5137 dev->driver ? dev->driver->err_handler : NULL;
5138
5139 pci_restore_state(dev);
5140
5141 /*
5142 * dev->driver->err_handler->reset_done() is protected against
5143 * races with ->remove() by the device lock, which must be held by
5144 * the caller.
5145 */
5146 if (err_handler && err_handler->reset_done)
5147 err_handler->reset_done(dev);
5148 }
5149
5150 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5151 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5152 { },
5153 { pci_dev_specific_reset, .name = "device_specific" },
5154 { pci_dev_acpi_reset, .name = "acpi" },
5155 { pcie_reset_flr, .name = "flr" },
5156 { pci_af_flr, .name = "af_flr" },
5157 { pci_pm_reset, .name = "pm" },
5158 { pci_reset_bus_function, .name = "bus" },
5159 };
5160
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5161 static ssize_t reset_method_show(struct device *dev,
5162 struct device_attribute *attr, char *buf)
5163 {
5164 struct pci_dev *pdev = to_pci_dev(dev);
5165 ssize_t len = 0;
5166 int i, m;
5167
5168 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5169 m = pdev->reset_methods[i];
5170 if (!m)
5171 break;
5172
5173 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5174 pci_reset_fn_methods[m].name);
5175 }
5176
5177 if (len)
5178 len += sysfs_emit_at(buf, len, "\n");
5179
5180 return len;
5181 }
5182
reset_method_lookup(const char * name)5183 static int reset_method_lookup(const char *name)
5184 {
5185 int m;
5186
5187 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5188 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5189 return m;
5190 }
5191
5192 return 0; /* not found */
5193 }
5194
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5195 static ssize_t reset_method_store(struct device *dev,
5196 struct device_attribute *attr,
5197 const char *buf, size_t count)
5198 {
5199 struct pci_dev *pdev = to_pci_dev(dev);
5200 char *options, *name;
5201 int m, n;
5202 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5203
5204 if (sysfs_streq(buf, "")) {
5205 pdev->reset_methods[0] = 0;
5206 pci_warn(pdev, "All device reset methods disabled by user");
5207 return count;
5208 }
5209
5210 if (sysfs_streq(buf, "default")) {
5211 pci_init_reset_methods(pdev);
5212 return count;
5213 }
5214
5215 options = kstrndup(buf, count, GFP_KERNEL);
5216 if (!options)
5217 return -ENOMEM;
5218
5219 n = 0;
5220 while ((name = strsep(&options, " ")) != NULL) {
5221 if (sysfs_streq(name, ""))
5222 continue;
5223
5224 name = strim(name);
5225
5226 m = reset_method_lookup(name);
5227 if (!m) {
5228 pci_err(pdev, "Invalid reset method '%s'", name);
5229 goto error;
5230 }
5231
5232 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5233 pci_err(pdev, "Unsupported reset method '%s'", name);
5234 goto error;
5235 }
5236
5237 if (n == PCI_NUM_RESET_METHODS - 1) {
5238 pci_err(pdev, "Too many reset methods\n");
5239 goto error;
5240 }
5241
5242 reset_methods[n++] = m;
5243 }
5244
5245 reset_methods[n] = 0;
5246
5247 /* Warn if dev-specific supported but not highest priority */
5248 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5249 reset_methods[0] != 1)
5250 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5251 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5252 kfree(options);
5253 return count;
5254
5255 error:
5256 /* Leave previous methods unchanged */
5257 kfree(options);
5258 return -EINVAL;
5259 }
5260 static DEVICE_ATTR_RW(reset_method);
5261
5262 static struct attribute *pci_dev_reset_method_attrs[] = {
5263 &dev_attr_reset_method.attr,
5264 NULL,
5265 };
5266
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5267 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5268 struct attribute *a, int n)
5269 {
5270 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5271
5272 if (!pci_reset_supported(pdev))
5273 return 0;
5274
5275 return a->mode;
5276 }
5277
5278 const struct attribute_group pci_dev_reset_method_attr_group = {
5279 .attrs = pci_dev_reset_method_attrs,
5280 .is_visible = pci_dev_reset_method_attr_is_visible,
5281 };
5282
5283 /**
5284 * __pci_reset_function_locked - reset a PCI device function while holding
5285 * the @dev mutex lock.
5286 * @dev: PCI device to reset
5287 *
5288 * Some devices allow an individual function to be reset without affecting
5289 * other functions in the same device. The PCI device must be responsive
5290 * to PCI config space in order to use this function.
5291 *
5292 * The device function is presumed to be unused and the caller is holding
5293 * the device mutex lock when this function is called.
5294 *
5295 * Resetting the device will make the contents of PCI configuration space
5296 * random, so any caller of this must be prepared to reinitialise the
5297 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5298 * etc.
5299 *
5300 * Returns 0 if the device function was successfully reset or negative if the
5301 * device doesn't support resetting a single function.
5302 */
__pci_reset_function_locked(struct pci_dev * dev)5303 int __pci_reset_function_locked(struct pci_dev *dev)
5304 {
5305 int i, m, rc = -ENOTTY;
5306
5307 might_sleep();
5308
5309 /*
5310 * A reset method returns -ENOTTY if it doesn't support this device and
5311 * we should try the next method.
5312 *
5313 * If it returns 0 (success), we're finished. If it returns any other
5314 * error, we're also finished: this indicates that further reset
5315 * mechanisms might be broken on the device.
5316 */
5317 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5318 m = dev->reset_methods[i];
5319 if (!m)
5320 return -ENOTTY;
5321
5322 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5323 if (!rc)
5324 return 0;
5325 if (rc != -ENOTTY)
5326 return rc;
5327 }
5328
5329 return -ENOTTY;
5330 }
5331 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5332
5333 /**
5334 * pci_init_reset_methods - check whether device can be safely reset
5335 * and store supported reset mechanisms.
5336 * @dev: PCI device to check for reset mechanisms
5337 *
5338 * Some devices allow an individual function to be reset without affecting
5339 * other functions in the same device. The PCI device must be in D0-D3hot
5340 * state.
5341 *
5342 * Stores reset mechanisms supported by device in reset_methods byte array
5343 * which is a member of struct pci_dev.
5344 */
pci_init_reset_methods(struct pci_dev * dev)5345 void pci_init_reset_methods(struct pci_dev *dev)
5346 {
5347 int m, i, rc;
5348
5349 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5350
5351 might_sleep();
5352
5353 i = 0;
5354 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5355 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5356 if (!rc)
5357 dev->reset_methods[i++] = m;
5358 else if (rc != -ENOTTY)
5359 break;
5360 }
5361
5362 dev->reset_methods[i] = 0;
5363 }
5364
5365 /**
5366 * pci_reset_function - quiesce and reset a PCI device function
5367 * @dev: PCI device to reset
5368 *
5369 * Some devices allow an individual function to be reset without affecting
5370 * other functions in the same device. The PCI device must be responsive
5371 * to PCI config space in order to use this function.
5372 *
5373 * This function does not just reset the PCI portion of a device, but
5374 * clears all the state associated with the device. This function differs
5375 * from __pci_reset_function_locked() in that it saves and restores device state
5376 * over the reset and takes the PCI device lock.
5377 *
5378 * Returns 0 if the device function was successfully reset or negative if the
5379 * device doesn't support resetting a single function.
5380 */
pci_reset_function(struct pci_dev * dev)5381 int pci_reset_function(struct pci_dev *dev)
5382 {
5383 int rc;
5384
5385 if (!pci_reset_supported(dev))
5386 return -ENOTTY;
5387
5388 pci_dev_lock(dev);
5389 pci_dev_save_and_disable(dev);
5390
5391 rc = __pci_reset_function_locked(dev);
5392
5393 pci_dev_restore(dev);
5394 pci_dev_unlock(dev);
5395
5396 return rc;
5397 }
5398 EXPORT_SYMBOL_GPL(pci_reset_function);
5399
5400 /**
5401 * pci_reset_function_locked - quiesce and reset a PCI device function
5402 * @dev: PCI device to reset
5403 *
5404 * Some devices allow an individual function to be reset without affecting
5405 * other functions in the same device. The PCI device must be responsive
5406 * to PCI config space in order to use this function.
5407 *
5408 * This function does not just reset the PCI portion of a device, but
5409 * clears all the state associated with the device. This function differs
5410 * from __pci_reset_function_locked() in that it saves and restores device state
5411 * over the reset. It also differs from pci_reset_function() in that it
5412 * requires the PCI device lock to be held.
5413 *
5414 * Returns 0 if the device function was successfully reset or negative if the
5415 * device doesn't support resetting a single function.
5416 */
pci_reset_function_locked(struct pci_dev * dev)5417 int pci_reset_function_locked(struct pci_dev *dev)
5418 {
5419 int rc;
5420
5421 if (!pci_reset_supported(dev))
5422 return -ENOTTY;
5423
5424 pci_dev_save_and_disable(dev);
5425
5426 rc = __pci_reset_function_locked(dev);
5427
5428 pci_dev_restore(dev);
5429
5430 return rc;
5431 }
5432 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5433
5434 /**
5435 * pci_try_reset_function - quiesce and reset a PCI device function
5436 * @dev: PCI device to reset
5437 *
5438 * Same as above, except return -EAGAIN if unable to lock device.
5439 */
pci_try_reset_function(struct pci_dev * dev)5440 int pci_try_reset_function(struct pci_dev *dev)
5441 {
5442 int rc;
5443
5444 if (!pci_reset_supported(dev))
5445 return -ENOTTY;
5446
5447 if (!pci_dev_trylock(dev))
5448 return -EAGAIN;
5449
5450 pci_dev_save_and_disable(dev);
5451 rc = __pci_reset_function_locked(dev);
5452 pci_dev_restore(dev);
5453 pci_dev_unlock(dev);
5454
5455 return rc;
5456 }
5457 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5458
5459 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5460 static bool pci_bus_resetable(struct pci_bus *bus)
5461 {
5462 struct pci_dev *dev;
5463
5464
5465 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5466 return false;
5467
5468 list_for_each_entry(dev, &bus->devices, bus_list) {
5469 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5470 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5471 return false;
5472 }
5473
5474 return true;
5475 }
5476
5477 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5478 static void pci_bus_lock(struct pci_bus *bus)
5479 {
5480 struct pci_dev *dev;
5481
5482 list_for_each_entry(dev, &bus->devices, bus_list) {
5483 pci_dev_lock(dev);
5484 if (dev->subordinate)
5485 pci_bus_lock(dev->subordinate);
5486 }
5487 }
5488
5489 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5490 static void pci_bus_unlock(struct pci_bus *bus)
5491 {
5492 struct pci_dev *dev;
5493
5494 list_for_each_entry(dev, &bus->devices, bus_list) {
5495 if (dev->subordinate)
5496 pci_bus_unlock(dev->subordinate);
5497 pci_dev_unlock(dev);
5498 }
5499 }
5500
5501 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5502 static int pci_bus_trylock(struct pci_bus *bus)
5503 {
5504 struct pci_dev *dev;
5505
5506 list_for_each_entry(dev, &bus->devices, bus_list) {
5507 if (!pci_dev_trylock(dev))
5508 goto unlock;
5509 if (dev->subordinate) {
5510 if (!pci_bus_trylock(dev->subordinate)) {
5511 pci_dev_unlock(dev);
5512 goto unlock;
5513 }
5514 }
5515 }
5516 return 1;
5517
5518 unlock:
5519 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5520 if (dev->subordinate)
5521 pci_bus_unlock(dev->subordinate);
5522 pci_dev_unlock(dev);
5523 }
5524 return 0;
5525 }
5526
5527 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5528 static bool pci_slot_resetable(struct pci_slot *slot)
5529 {
5530 struct pci_dev *dev;
5531
5532 if (slot->bus->self &&
5533 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5534 return false;
5535
5536 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5537 if (!dev->slot || dev->slot != slot)
5538 continue;
5539 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5540 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5541 return false;
5542 }
5543
5544 return true;
5545 }
5546
5547 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5548 static void pci_slot_lock(struct pci_slot *slot)
5549 {
5550 struct pci_dev *dev;
5551
5552 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5553 if (!dev->slot || dev->slot != slot)
5554 continue;
5555 pci_dev_lock(dev);
5556 if (dev->subordinate)
5557 pci_bus_lock(dev->subordinate);
5558 }
5559 }
5560
5561 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5562 static void pci_slot_unlock(struct pci_slot *slot)
5563 {
5564 struct pci_dev *dev;
5565
5566 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5567 if (!dev->slot || dev->slot != slot)
5568 continue;
5569 if (dev->subordinate)
5570 pci_bus_unlock(dev->subordinate);
5571 pci_dev_unlock(dev);
5572 }
5573 }
5574
5575 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5576 static int pci_slot_trylock(struct pci_slot *slot)
5577 {
5578 struct pci_dev *dev;
5579
5580 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5581 if (!dev->slot || dev->slot != slot)
5582 continue;
5583 if (!pci_dev_trylock(dev))
5584 goto unlock;
5585 if (dev->subordinate) {
5586 if (!pci_bus_trylock(dev->subordinate)) {
5587 pci_dev_unlock(dev);
5588 goto unlock;
5589 }
5590 }
5591 }
5592 return 1;
5593
5594 unlock:
5595 list_for_each_entry_continue_reverse(dev,
5596 &slot->bus->devices, bus_list) {
5597 if (!dev->slot || dev->slot != slot)
5598 continue;
5599 if (dev->subordinate)
5600 pci_bus_unlock(dev->subordinate);
5601 pci_dev_unlock(dev);
5602 }
5603 return 0;
5604 }
5605
5606 /*
5607 * Save and disable devices from the top of the tree down while holding
5608 * the @dev mutex lock for the entire tree.
5609 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5610 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5611 {
5612 struct pci_dev *dev;
5613
5614 list_for_each_entry(dev, &bus->devices, bus_list) {
5615 pci_dev_save_and_disable(dev);
5616 if (dev->subordinate)
5617 pci_bus_save_and_disable_locked(dev->subordinate);
5618 }
5619 }
5620
5621 /*
5622 * Restore devices from top of the tree down while holding @dev mutex lock
5623 * for the entire tree. Parent bridges need to be restored before we can
5624 * get to subordinate devices.
5625 */
pci_bus_restore_locked(struct pci_bus * bus)5626 static void pci_bus_restore_locked(struct pci_bus *bus)
5627 {
5628 struct pci_dev *dev;
5629
5630 list_for_each_entry(dev, &bus->devices, bus_list) {
5631 pci_dev_restore(dev);
5632 if (dev->subordinate)
5633 pci_bus_restore_locked(dev->subordinate);
5634 }
5635 }
5636
5637 /*
5638 * Save and disable devices from the top of the tree down while holding
5639 * the @dev mutex lock for the entire tree.
5640 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5641 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5642 {
5643 struct pci_dev *dev;
5644
5645 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5646 if (!dev->slot || dev->slot != slot)
5647 continue;
5648 pci_dev_save_and_disable(dev);
5649 if (dev->subordinate)
5650 pci_bus_save_and_disable_locked(dev->subordinate);
5651 }
5652 }
5653
5654 /*
5655 * Restore devices from top of the tree down while holding @dev mutex lock
5656 * for the entire tree. Parent bridges need to be restored before we can
5657 * get to subordinate devices.
5658 */
pci_slot_restore_locked(struct pci_slot * slot)5659 static void pci_slot_restore_locked(struct pci_slot *slot)
5660 {
5661 struct pci_dev *dev;
5662
5663 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5664 if (!dev->slot || dev->slot != slot)
5665 continue;
5666 pci_dev_restore(dev);
5667 if (dev->subordinate)
5668 pci_bus_restore_locked(dev->subordinate);
5669 }
5670 }
5671
pci_slot_reset(struct pci_slot * slot,bool probe)5672 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5673 {
5674 int rc;
5675
5676 if (!slot || !pci_slot_resetable(slot))
5677 return -ENOTTY;
5678
5679 if (!probe)
5680 pci_slot_lock(slot);
5681
5682 might_sleep();
5683
5684 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5685
5686 if (!probe)
5687 pci_slot_unlock(slot);
5688
5689 return rc;
5690 }
5691
5692 /**
5693 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5694 * @slot: PCI slot to probe
5695 *
5696 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5697 */
pci_probe_reset_slot(struct pci_slot * slot)5698 int pci_probe_reset_slot(struct pci_slot *slot)
5699 {
5700 return pci_slot_reset(slot, PCI_RESET_PROBE);
5701 }
5702 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5703
5704 /**
5705 * __pci_reset_slot - Try to reset a PCI slot
5706 * @slot: PCI slot to reset
5707 *
5708 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5709 * independent of other slots. For instance, some slots may support slot power
5710 * control. In the case of a 1:1 bus to slot architecture, this function may
5711 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5712 * Generally a slot reset should be attempted before a bus reset. All of the
5713 * function of the slot and any subordinate buses behind the slot are reset
5714 * through this function. PCI config space of all devices in the slot and
5715 * behind the slot is saved before and restored after reset.
5716 *
5717 * Same as above except return -EAGAIN if the slot cannot be locked
5718 */
__pci_reset_slot(struct pci_slot * slot)5719 static int __pci_reset_slot(struct pci_slot *slot)
5720 {
5721 int rc;
5722
5723 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5724 if (rc)
5725 return rc;
5726
5727 if (pci_slot_trylock(slot)) {
5728 pci_slot_save_and_disable_locked(slot);
5729 might_sleep();
5730 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5731 pci_slot_restore_locked(slot);
5732 pci_slot_unlock(slot);
5733 } else
5734 rc = -EAGAIN;
5735
5736 return rc;
5737 }
5738
pci_bus_reset(struct pci_bus * bus,bool probe)5739 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5740 {
5741 int ret;
5742
5743 if (!bus->self || !pci_bus_resetable(bus))
5744 return -ENOTTY;
5745
5746 if (probe)
5747 return 0;
5748
5749 pci_bus_lock(bus);
5750
5751 might_sleep();
5752
5753 ret = pci_bridge_secondary_bus_reset(bus->self);
5754
5755 pci_bus_unlock(bus);
5756
5757 return ret;
5758 }
5759
5760 /**
5761 * pci_bus_error_reset - reset the bridge's subordinate bus
5762 * @bridge: The parent device that connects to the bus to reset
5763 *
5764 * This function will first try to reset the slots on this bus if the method is
5765 * available. If slot reset fails or is not available, this will fall back to a
5766 * secondary bus reset.
5767 */
pci_bus_error_reset(struct pci_dev * bridge)5768 int pci_bus_error_reset(struct pci_dev *bridge)
5769 {
5770 struct pci_bus *bus = bridge->subordinate;
5771 struct pci_slot *slot;
5772
5773 if (!bus)
5774 return -ENOTTY;
5775
5776 mutex_lock(&pci_slot_mutex);
5777 if (list_empty(&bus->slots))
5778 goto bus_reset;
5779
5780 list_for_each_entry(slot, &bus->slots, list)
5781 if (pci_probe_reset_slot(slot))
5782 goto bus_reset;
5783
5784 list_for_each_entry(slot, &bus->slots, list)
5785 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5786 goto bus_reset;
5787
5788 mutex_unlock(&pci_slot_mutex);
5789 return 0;
5790 bus_reset:
5791 mutex_unlock(&pci_slot_mutex);
5792 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5793 }
5794
5795 /**
5796 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5797 * @bus: PCI bus to probe
5798 *
5799 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5800 */
pci_probe_reset_bus(struct pci_bus * bus)5801 int pci_probe_reset_bus(struct pci_bus *bus)
5802 {
5803 return pci_bus_reset(bus, PCI_RESET_PROBE);
5804 }
5805 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5806
5807 /**
5808 * __pci_reset_bus - Try to reset a PCI bus
5809 * @bus: top level PCI bus to reset
5810 *
5811 * Same as above except return -EAGAIN if the bus cannot be locked
5812 */
__pci_reset_bus(struct pci_bus * bus)5813 static int __pci_reset_bus(struct pci_bus *bus)
5814 {
5815 int rc;
5816
5817 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5818 if (rc)
5819 return rc;
5820
5821 if (pci_bus_trylock(bus)) {
5822 pci_bus_save_and_disable_locked(bus);
5823 might_sleep();
5824 rc = pci_bridge_secondary_bus_reset(bus->self);
5825 pci_bus_restore_locked(bus);
5826 pci_bus_unlock(bus);
5827 } else
5828 rc = -EAGAIN;
5829
5830 return rc;
5831 }
5832
5833 /**
5834 * pci_reset_bus - Try to reset a PCI bus
5835 * @pdev: top level PCI device to reset via slot/bus
5836 *
5837 * Same as above except return -EAGAIN if the bus cannot be locked
5838 */
pci_reset_bus(struct pci_dev * pdev)5839 int pci_reset_bus(struct pci_dev *pdev)
5840 {
5841 return (!pci_probe_reset_slot(pdev->slot)) ?
5842 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5843 }
5844 EXPORT_SYMBOL_GPL(pci_reset_bus);
5845
5846 /**
5847 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5848 * @dev: PCI device to query
5849 *
5850 * Returns mmrbc: maximum designed memory read count in bytes or
5851 * appropriate error value.
5852 */
pcix_get_max_mmrbc(struct pci_dev * dev)5853 int pcix_get_max_mmrbc(struct pci_dev *dev)
5854 {
5855 int cap;
5856 u32 stat;
5857
5858 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5859 if (!cap)
5860 return -EINVAL;
5861
5862 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5863 return -EINVAL;
5864
5865 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5866 }
5867 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5868
5869 /**
5870 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5871 * @dev: PCI device to query
5872 *
5873 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5874 * value.
5875 */
pcix_get_mmrbc(struct pci_dev * dev)5876 int pcix_get_mmrbc(struct pci_dev *dev)
5877 {
5878 int cap;
5879 u16 cmd;
5880
5881 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5882 if (!cap)
5883 return -EINVAL;
5884
5885 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5886 return -EINVAL;
5887
5888 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5889 }
5890 EXPORT_SYMBOL(pcix_get_mmrbc);
5891
5892 /**
5893 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5894 * @dev: PCI device to query
5895 * @mmrbc: maximum memory read count in bytes
5896 * valid values are 512, 1024, 2048, 4096
5897 *
5898 * If possible sets maximum memory read byte count, some bridges have errata
5899 * that prevent this.
5900 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5901 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5902 {
5903 int cap;
5904 u32 stat, v, o;
5905 u16 cmd;
5906
5907 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5908 return -EINVAL;
5909
5910 v = ffs(mmrbc) - 10;
5911
5912 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5913 if (!cap)
5914 return -EINVAL;
5915
5916 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5917 return -EINVAL;
5918
5919 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5920 return -E2BIG;
5921
5922 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5923 return -EINVAL;
5924
5925 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5926 if (o != v) {
5927 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5928 return -EIO;
5929
5930 cmd &= ~PCI_X_CMD_MAX_READ;
5931 cmd |= v << 2;
5932 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5933 return -EIO;
5934 }
5935 return 0;
5936 }
5937 EXPORT_SYMBOL(pcix_set_mmrbc);
5938
5939 /**
5940 * pcie_get_readrq - get PCI Express read request size
5941 * @dev: PCI device to query
5942 *
5943 * Returns maximum memory read request in bytes or appropriate error value.
5944 */
pcie_get_readrq(struct pci_dev * dev)5945 int pcie_get_readrq(struct pci_dev *dev)
5946 {
5947 u16 ctl;
5948
5949 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5950
5951 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5952 }
5953 EXPORT_SYMBOL(pcie_get_readrq);
5954
5955 /**
5956 * pcie_set_readrq - set PCI Express maximum memory read request
5957 * @dev: PCI device to query
5958 * @rq: maximum memory read count in bytes
5959 * valid values are 128, 256, 512, 1024, 2048, 4096
5960 *
5961 * If possible sets maximum memory read request in bytes
5962 */
pcie_set_readrq(struct pci_dev * dev,int rq)5963 int pcie_set_readrq(struct pci_dev *dev, int rq)
5964 {
5965 u16 v;
5966 int ret;
5967
5968 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5969 return -EINVAL;
5970
5971 /*
5972 * If using the "performance" PCIe config, we clamp the read rq
5973 * size to the max packet size to keep the host bridge from
5974 * generating requests larger than we can cope with.
5975 */
5976 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5977 int mps = pcie_get_mps(dev);
5978
5979 if (mps < rq)
5980 rq = mps;
5981 }
5982
5983 v = (ffs(rq) - 8) << 12;
5984
5985 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5986 PCI_EXP_DEVCTL_READRQ, v);
5987
5988 return pcibios_err_to_errno(ret);
5989 }
5990 EXPORT_SYMBOL(pcie_set_readrq);
5991
5992 /**
5993 * pcie_get_mps - get PCI Express maximum payload size
5994 * @dev: PCI device to query
5995 *
5996 * Returns maximum payload size in bytes
5997 */
pcie_get_mps(struct pci_dev * dev)5998 int pcie_get_mps(struct pci_dev *dev)
5999 {
6000 u16 ctl;
6001
6002 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6003
6004 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6005 }
6006 EXPORT_SYMBOL(pcie_get_mps);
6007
6008 /**
6009 * pcie_set_mps - set PCI Express maximum payload size
6010 * @dev: PCI device to query
6011 * @mps: maximum payload size in bytes
6012 * valid values are 128, 256, 512, 1024, 2048, 4096
6013 *
6014 * If possible sets maximum payload size
6015 */
pcie_set_mps(struct pci_dev * dev,int mps)6016 int pcie_set_mps(struct pci_dev *dev, int mps)
6017 {
6018 u16 v;
6019 int ret;
6020
6021 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6022 return -EINVAL;
6023
6024 v = ffs(mps) - 8;
6025 if (v > dev->pcie_mpss)
6026 return -EINVAL;
6027 v <<= 5;
6028
6029 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6030 PCI_EXP_DEVCTL_PAYLOAD, v);
6031
6032 return pcibios_err_to_errno(ret);
6033 }
6034 EXPORT_SYMBOL(pcie_set_mps);
6035
6036 /**
6037 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6038 * device and its bandwidth limitation
6039 * @dev: PCI device to query
6040 * @limiting_dev: storage for device causing the bandwidth limitation
6041 * @speed: storage for speed of limiting device
6042 * @width: storage for width of limiting device
6043 *
6044 * Walk up the PCI device chain and find the point where the minimum
6045 * bandwidth is available. Return the bandwidth available there and (if
6046 * limiting_dev, speed, and width pointers are supplied) information about
6047 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6048 * raw bandwidth.
6049 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6050 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6051 enum pci_bus_speed *speed,
6052 enum pcie_link_width *width)
6053 {
6054 u16 lnksta;
6055 enum pci_bus_speed next_speed;
6056 enum pcie_link_width next_width;
6057 u32 bw, next_bw;
6058
6059 if (speed)
6060 *speed = PCI_SPEED_UNKNOWN;
6061 if (width)
6062 *width = PCIE_LNK_WIDTH_UNKNOWN;
6063
6064 bw = 0;
6065
6066 while (dev) {
6067 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6068
6069 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6070 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6071
6072 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6073
6074 /* Check if current device limits the total bandwidth */
6075 if (!bw || next_bw <= bw) {
6076 bw = next_bw;
6077
6078 if (limiting_dev)
6079 *limiting_dev = dev;
6080 if (speed)
6081 *speed = next_speed;
6082 if (width)
6083 *width = next_width;
6084 }
6085
6086 dev = pci_upstream_bridge(dev);
6087 }
6088
6089 return bw;
6090 }
6091 EXPORT_SYMBOL(pcie_bandwidth_available);
6092
6093 /**
6094 * pcie_get_speed_cap - query for the PCI device's link speed capability
6095 * @dev: PCI device to query
6096 *
6097 * Query the PCI device speed capability. Return the maximum link speed
6098 * supported by the device.
6099 */
pcie_get_speed_cap(struct pci_dev * dev)6100 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6101 {
6102 u32 lnkcap2, lnkcap;
6103
6104 /*
6105 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6106 * implementation note there recommends using the Supported Link
6107 * Speeds Vector in Link Capabilities 2 when supported.
6108 *
6109 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6110 * should use the Supported Link Speeds field in Link Capabilities,
6111 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6112 */
6113 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6114
6115 /* PCIe r3.0-compliant */
6116 if (lnkcap2)
6117 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6118
6119 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6120 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6121 return PCIE_SPEED_5_0GT;
6122 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6123 return PCIE_SPEED_2_5GT;
6124
6125 return PCI_SPEED_UNKNOWN;
6126 }
6127 EXPORT_SYMBOL(pcie_get_speed_cap);
6128
6129 /**
6130 * pcie_get_width_cap - query for the PCI device's link width capability
6131 * @dev: PCI device to query
6132 *
6133 * Query the PCI device width capability. Return the maximum link width
6134 * supported by the device.
6135 */
pcie_get_width_cap(struct pci_dev * dev)6136 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6137 {
6138 u32 lnkcap;
6139
6140 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6141 if (lnkcap)
6142 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6143
6144 return PCIE_LNK_WIDTH_UNKNOWN;
6145 }
6146 EXPORT_SYMBOL(pcie_get_width_cap);
6147
6148 /**
6149 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6150 * @dev: PCI device
6151 * @speed: storage for link speed
6152 * @width: storage for link width
6153 *
6154 * Calculate a PCI device's link bandwidth by querying for its link speed
6155 * and width, multiplying them, and applying encoding overhead. The result
6156 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6157 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6158 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6159 enum pcie_link_width *width)
6160 {
6161 *speed = pcie_get_speed_cap(dev);
6162 *width = pcie_get_width_cap(dev);
6163
6164 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6165 return 0;
6166
6167 return *width * PCIE_SPEED2MBS_ENC(*speed);
6168 }
6169
6170 /**
6171 * __pcie_print_link_status - Report the PCI device's link speed and width
6172 * @dev: PCI device to query
6173 * @verbose: Print info even when enough bandwidth is available
6174 *
6175 * If the available bandwidth at the device is less than the device is
6176 * capable of, report the device's maximum possible bandwidth and the
6177 * upstream link that limits its performance. If @verbose, always print
6178 * the available bandwidth, even if the device isn't constrained.
6179 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6180 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6181 {
6182 enum pcie_link_width width, width_cap;
6183 enum pci_bus_speed speed, speed_cap;
6184 struct pci_dev *limiting_dev = NULL;
6185 u32 bw_avail, bw_cap;
6186
6187 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6188 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6189
6190 if (bw_avail >= bw_cap && verbose)
6191 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6192 bw_cap / 1000, bw_cap % 1000,
6193 pci_speed_string(speed_cap), width_cap);
6194 else if (bw_avail < bw_cap)
6195 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6196 bw_avail / 1000, bw_avail % 1000,
6197 pci_speed_string(speed), width,
6198 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6199 bw_cap / 1000, bw_cap % 1000,
6200 pci_speed_string(speed_cap), width_cap);
6201 }
6202
6203 /**
6204 * pcie_print_link_status - Report the PCI device's link speed and width
6205 * @dev: PCI device to query
6206 *
6207 * Report the available bandwidth at the device.
6208 */
pcie_print_link_status(struct pci_dev * dev)6209 void pcie_print_link_status(struct pci_dev *dev)
6210 {
6211 __pcie_print_link_status(dev, true);
6212 }
6213 EXPORT_SYMBOL(pcie_print_link_status);
6214
6215 /**
6216 * pci_select_bars - Make BAR mask from the type of resource
6217 * @dev: the PCI device for which BAR mask is made
6218 * @flags: resource type mask to be selected
6219 *
6220 * This helper routine makes bar mask from the type of resource.
6221 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6222 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6223 {
6224 int i, bars = 0;
6225 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6226 if (pci_resource_flags(dev, i) & flags)
6227 bars |= (1 << i);
6228 return bars;
6229 }
6230 EXPORT_SYMBOL(pci_select_bars);
6231
6232 /* Some architectures require additional programming to enable VGA */
6233 static arch_set_vga_state_t arch_set_vga_state;
6234
pci_register_set_vga_state(arch_set_vga_state_t func)6235 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6236 {
6237 arch_set_vga_state = func; /* NULL disables */
6238 }
6239
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6240 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6241 unsigned int command_bits, u32 flags)
6242 {
6243 if (arch_set_vga_state)
6244 return arch_set_vga_state(dev, decode, command_bits,
6245 flags);
6246 return 0;
6247 }
6248
6249 /**
6250 * pci_set_vga_state - set VGA decode state on device and parents if requested
6251 * @dev: the PCI device
6252 * @decode: true = enable decoding, false = disable decoding
6253 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6254 * @flags: traverse ancestors and change bridges
6255 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6256 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6257 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6258 unsigned int command_bits, u32 flags)
6259 {
6260 struct pci_bus *bus;
6261 struct pci_dev *bridge;
6262 u16 cmd;
6263 int rc;
6264
6265 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6266
6267 /* ARCH specific VGA enables */
6268 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6269 if (rc)
6270 return rc;
6271
6272 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6273 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6274 if (decode)
6275 cmd |= command_bits;
6276 else
6277 cmd &= ~command_bits;
6278 pci_write_config_word(dev, PCI_COMMAND, cmd);
6279 }
6280
6281 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6282 return 0;
6283
6284 bus = dev->bus;
6285 while (bus) {
6286 bridge = bus->self;
6287 if (bridge) {
6288 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6289 &cmd);
6290 if (decode)
6291 cmd |= PCI_BRIDGE_CTL_VGA;
6292 else
6293 cmd &= ~PCI_BRIDGE_CTL_VGA;
6294 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6295 cmd);
6296 }
6297 bus = bus->parent;
6298 }
6299 return 0;
6300 }
6301
6302 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6303 bool pci_pr3_present(struct pci_dev *pdev)
6304 {
6305 struct acpi_device *adev;
6306
6307 if (acpi_disabled)
6308 return false;
6309
6310 adev = ACPI_COMPANION(&pdev->dev);
6311 if (!adev)
6312 return false;
6313
6314 return adev->power.flags.power_resources &&
6315 acpi_has_method(adev->handle, "_PR3");
6316 }
6317 EXPORT_SYMBOL_GPL(pci_pr3_present);
6318 #endif
6319
6320 /**
6321 * pci_add_dma_alias - Add a DMA devfn alias for a device
6322 * @dev: the PCI device for which alias is added
6323 * @devfn_from: alias slot and function
6324 * @nr_devfns: number of subsequent devfns to alias
6325 *
6326 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6327 * which is used to program permissible bus-devfn source addresses for DMA
6328 * requests in an IOMMU. These aliases factor into IOMMU group creation
6329 * and are useful for devices generating DMA requests beyond or different
6330 * from their logical bus-devfn. Examples include device quirks where the
6331 * device simply uses the wrong devfn, as well as non-transparent bridges
6332 * where the alias may be a proxy for devices in another domain.
6333 *
6334 * IOMMU group creation is performed during device discovery or addition,
6335 * prior to any potential DMA mapping and therefore prior to driver probing
6336 * (especially for userspace assigned devices where IOMMU group definition
6337 * cannot be left as a userspace activity). DMA aliases should therefore
6338 * be configured via quirks, such as the PCI fixup header quirk.
6339 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6340 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6341 {
6342 int devfn_to;
6343
6344 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6345 devfn_to = devfn_from + nr_devfns - 1;
6346
6347 if (!dev->dma_alias_mask)
6348 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6349 if (!dev->dma_alias_mask) {
6350 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6351 return;
6352 }
6353
6354 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6355
6356 if (nr_devfns == 1)
6357 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6358 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6359 else if (nr_devfns > 1)
6360 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6361 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6362 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6363 }
6364
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6365 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6366 {
6367 return (dev1->dma_alias_mask &&
6368 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6369 (dev2->dma_alias_mask &&
6370 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6371 pci_real_dma_dev(dev1) == dev2 ||
6372 pci_real_dma_dev(dev2) == dev1;
6373 }
6374
pci_device_is_present(struct pci_dev * pdev)6375 bool pci_device_is_present(struct pci_dev *pdev)
6376 {
6377 u32 v;
6378
6379 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6380 pdev = pci_physfn(pdev);
6381 if (pci_dev_is_disconnected(pdev))
6382 return false;
6383 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6384 }
6385 EXPORT_SYMBOL_GPL(pci_device_is_present);
6386
pci_ignore_hotplug(struct pci_dev * dev)6387 void pci_ignore_hotplug(struct pci_dev *dev)
6388 {
6389 struct pci_dev *bridge = dev->bus->self;
6390
6391 dev->ignore_hotplug = 1;
6392 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6393 if (bridge)
6394 bridge->ignore_hotplug = 1;
6395 }
6396 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6397
6398 /**
6399 * pci_real_dma_dev - Get PCI DMA device for PCI device
6400 * @dev: the PCI device that may have a PCI DMA alias
6401 *
6402 * Permits the platform to provide architecture-specific functionality to
6403 * devices needing to alias DMA to another PCI device on another PCI bus. If
6404 * the PCI device is on the same bus, it is recommended to use
6405 * pci_add_dma_alias(). This is the default implementation. Architecture
6406 * implementations can override this.
6407 */
pci_real_dma_dev(struct pci_dev * dev)6408 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6409 {
6410 return dev;
6411 }
6412
pcibios_default_alignment(void)6413 resource_size_t __weak pcibios_default_alignment(void)
6414 {
6415 return 0;
6416 }
6417
6418 /*
6419 * Arches that don't want to expose struct resource to userland as-is in
6420 * sysfs and /proc can implement their own pci_resource_to_user().
6421 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6422 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6423 const struct resource *rsrc,
6424 resource_size_t *start, resource_size_t *end)
6425 {
6426 *start = rsrc->start;
6427 *end = rsrc->end;
6428 }
6429
6430 static char *resource_alignment_param;
6431 static DEFINE_SPINLOCK(resource_alignment_lock);
6432
6433 /**
6434 * pci_specified_resource_alignment - get resource alignment specified by user.
6435 * @dev: the PCI device to get
6436 * @resize: whether or not to change resources' size when reassigning alignment
6437 *
6438 * RETURNS: Resource alignment if it is specified.
6439 * Zero if it is not specified.
6440 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6441 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6442 bool *resize)
6443 {
6444 int align_order, count;
6445 resource_size_t align = pcibios_default_alignment();
6446 const char *p;
6447 int ret;
6448
6449 spin_lock(&resource_alignment_lock);
6450 p = resource_alignment_param;
6451 if (!p || !*p)
6452 goto out;
6453 if (pci_has_flag(PCI_PROBE_ONLY)) {
6454 align = 0;
6455 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6456 goto out;
6457 }
6458
6459 while (*p) {
6460 count = 0;
6461 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6462 p[count] == '@') {
6463 p += count + 1;
6464 if (align_order > 63) {
6465 pr_err("PCI: Invalid requested alignment (order %d)\n",
6466 align_order);
6467 align_order = PAGE_SHIFT;
6468 }
6469 } else {
6470 align_order = PAGE_SHIFT;
6471 }
6472
6473 ret = pci_dev_str_match(dev, p, &p);
6474 if (ret == 1) {
6475 *resize = true;
6476 align = 1ULL << align_order;
6477 break;
6478 } else if (ret < 0) {
6479 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6480 p);
6481 break;
6482 }
6483
6484 if (*p != ';' && *p != ',') {
6485 /* End of param or invalid format */
6486 break;
6487 }
6488 p++;
6489 }
6490 out:
6491 spin_unlock(&resource_alignment_lock);
6492 return align;
6493 }
6494
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6495 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6496 resource_size_t align, bool resize)
6497 {
6498 struct resource *r = &dev->resource[bar];
6499 resource_size_t size;
6500
6501 if (!(r->flags & IORESOURCE_MEM))
6502 return;
6503
6504 if (r->flags & IORESOURCE_PCI_FIXED) {
6505 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6506 bar, r, (unsigned long long)align);
6507 return;
6508 }
6509
6510 size = resource_size(r);
6511 if (size >= align)
6512 return;
6513
6514 /*
6515 * Increase the alignment of the resource. There are two ways we
6516 * can do this:
6517 *
6518 * 1) Increase the size of the resource. BARs are aligned on their
6519 * size, so when we reallocate space for this resource, we'll
6520 * allocate it with the larger alignment. This also prevents
6521 * assignment of any other BARs inside the alignment region, so
6522 * if we're requesting page alignment, this means no other BARs
6523 * will share the page.
6524 *
6525 * The disadvantage is that this makes the resource larger than
6526 * the hardware BAR, which may break drivers that compute things
6527 * based on the resource size, e.g., to find registers at a
6528 * fixed offset before the end of the BAR.
6529 *
6530 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6531 * set r->start to the desired alignment. By itself this
6532 * doesn't prevent other BARs being put inside the alignment
6533 * region, but if we realign *every* resource of every device in
6534 * the system, none of them will share an alignment region.
6535 *
6536 * When the user has requested alignment for only some devices via
6537 * the "pci=resource_alignment" argument, "resize" is true and we
6538 * use the first method. Otherwise we assume we're aligning all
6539 * devices and we use the second.
6540 */
6541
6542 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6543 bar, r, (unsigned long long)align);
6544
6545 if (resize) {
6546 r->start = 0;
6547 r->end = align - 1;
6548 } else {
6549 r->flags &= ~IORESOURCE_SIZEALIGN;
6550 r->flags |= IORESOURCE_STARTALIGN;
6551 r->start = align;
6552 r->end = r->start + size - 1;
6553 }
6554 r->flags |= IORESOURCE_UNSET;
6555 }
6556
6557 /*
6558 * This function disables memory decoding and releases memory resources
6559 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6560 * It also rounds up size to specified alignment.
6561 * Later on, the kernel will assign page-aligned memory resource back
6562 * to the device.
6563 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6564 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6565 {
6566 int i;
6567 struct resource *r;
6568 resource_size_t align;
6569 u16 command;
6570 bool resize = false;
6571
6572 /*
6573 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6574 * 3.4.1.11. Their resources are allocated from the space
6575 * described by the VF BARx register in the PF's SR-IOV capability.
6576 * We can't influence their alignment here.
6577 */
6578 if (dev->is_virtfn)
6579 return;
6580
6581 /* check if specified PCI is target device to reassign */
6582 align = pci_specified_resource_alignment(dev, &resize);
6583 if (!align)
6584 return;
6585
6586 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6587 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6588 pci_warn(dev, "Can't reassign resources to host bridge\n");
6589 return;
6590 }
6591
6592 pci_read_config_word(dev, PCI_COMMAND, &command);
6593 command &= ~PCI_COMMAND_MEMORY;
6594 pci_write_config_word(dev, PCI_COMMAND, command);
6595
6596 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6597 pci_request_resource_alignment(dev, i, align, resize);
6598
6599 /*
6600 * Need to disable bridge's resource window,
6601 * to enable the kernel to reassign new resource
6602 * window later on.
6603 */
6604 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6605 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6606 r = &dev->resource[i];
6607 if (!(r->flags & IORESOURCE_MEM))
6608 continue;
6609 r->flags |= IORESOURCE_UNSET;
6610 r->end = resource_size(r) - 1;
6611 r->start = 0;
6612 }
6613 pci_disable_bridge_window(dev);
6614 }
6615 }
6616
resource_alignment_show(struct bus_type * bus,char * buf)6617 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6618 {
6619 size_t count = 0;
6620
6621 spin_lock(&resource_alignment_lock);
6622 if (resource_alignment_param)
6623 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6624 spin_unlock(&resource_alignment_lock);
6625
6626 return count;
6627 }
6628
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6629 static ssize_t resource_alignment_store(struct bus_type *bus,
6630 const char *buf, size_t count)
6631 {
6632 char *param, *old, *end;
6633
6634 if (count >= (PAGE_SIZE - 1))
6635 return -EINVAL;
6636
6637 param = kstrndup(buf, count, GFP_KERNEL);
6638 if (!param)
6639 return -ENOMEM;
6640
6641 end = strchr(param, '\n');
6642 if (end)
6643 *end = '\0';
6644
6645 spin_lock(&resource_alignment_lock);
6646 old = resource_alignment_param;
6647 if (strlen(param)) {
6648 resource_alignment_param = param;
6649 } else {
6650 kfree(param);
6651 resource_alignment_param = NULL;
6652 }
6653 spin_unlock(&resource_alignment_lock);
6654
6655 kfree(old);
6656
6657 return count;
6658 }
6659
6660 static BUS_ATTR_RW(resource_alignment);
6661
pci_resource_alignment_sysfs_init(void)6662 static int __init pci_resource_alignment_sysfs_init(void)
6663 {
6664 return bus_create_file(&pci_bus_type,
6665 &bus_attr_resource_alignment);
6666 }
6667 late_initcall(pci_resource_alignment_sysfs_init);
6668
pci_no_domains(void)6669 static void pci_no_domains(void)
6670 {
6671 #ifdef CONFIG_PCI_DOMAINS
6672 pci_domains_supported = 0;
6673 #endif
6674 }
6675
6676 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6677 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6678
pci_get_new_domain_nr(void)6679 static int pci_get_new_domain_nr(void)
6680 {
6681 return atomic_inc_return(&__domain_nr);
6682 }
6683
of_pci_bus_find_domain_nr(struct device * parent)6684 static int of_pci_bus_find_domain_nr(struct device *parent)
6685 {
6686 static int use_dt_domains = -1;
6687 int domain = -1;
6688
6689 if (parent)
6690 domain = of_get_pci_domain_nr(parent->of_node);
6691
6692 /*
6693 * Check DT domain and use_dt_domains values.
6694 *
6695 * If DT domain property is valid (domain >= 0) and
6696 * use_dt_domains != 0, the DT assignment is valid since this means
6697 * we have not previously allocated a domain number by using
6698 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6699 * 1, to indicate that we have just assigned a domain number from
6700 * DT.
6701 *
6702 * If DT domain property value is not valid (ie domain < 0), and we
6703 * have not previously assigned a domain number from DT
6704 * (use_dt_domains != 1) we should assign a domain number by
6705 * using the:
6706 *
6707 * pci_get_new_domain_nr()
6708 *
6709 * API and update the use_dt_domains value to keep track of method we
6710 * are using to assign domain numbers (use_dt_domains = 0).
6711 *
6712 * All other combinations imply we have a platform that is trying
6713 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6714 * which is a recipe for domain mishandling and it is prevented by
6715 * invalidating the domain value (domain = -1) and printing a
6716 * corresponding error.
6717 */
6718 if (domain >= 0 && use_dt_domains) {
6719 use_dt_domains = 1;
6720 } else if (domain < 0 && use_dt_domains != 1) {
6721 use_dt_domains = 0;
6722 domain = pci_get_new_domain_nr();
6723 } else {
6724 if (parent)
6725 pr_err("Node %pOF has ", parent->of_node);
6726 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6727 domain = -1;
6728 }
6729
6730 return domain;
6731 }
6732
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6733 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6734 {
6735 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6736 acpi_pci_bus_find_domain_nr(bus);
6737 }
6738 #endif
6739
6740 /**
6741 * pci_ext_cfg_avail - can we access extended PCI config space?
6742 *
6743 * Returns 1 if we can access PCI extended config space (offsets
6744 * greater than 0xff). This is the default implementation. Architecture
6745 * implementations can override this.
6746 */
pci_ext_cfg_avail(void)6747 int __weak pci_ext_cfg_avail(void)
6748 {
6749 return 1;
6750 }
6751
pci_fixup_cardbus(struct pci_bus * bus)6752 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6753 {
6754 }
6755 EXPORT_SYMBOL(pci_fixup_cardbus);
6756
pci_setup(char * str)6757 static int __init pci_setup(char *str)
6758 {
6759 while (str) {
6760 char *k = strchr(str, ',');
6761 if (k)
6762 *k++ = 0;
6763 if (*str && (str = pcibios_setup(str)) && *str) {
6764 if (!strcmp(str, "nomsi")) {
6765 pci_no_msi();
6766 } else if (!strncmp(str, "noats", 5)) {
6767 pr_info("PCIe: ATS is disabled\n");
6768 pcie_ats_disabled = true;
6769 } else if (!strcmp(str, "noaer")) {
6770 pci_no_aer();
6771 } else if (!strcmp(str, "earlydump")) {
6772 pci_early_dump = true;
6773 } else if (!strncmp(str, "realloc=", 8)) {
6774 pci_realloc_get_opt(str + 8);
6775 } else if (!strncmp(str, "realloc", 7)) {
6776 pci_realloc_get_opt("on");
6777 } else if (!strcmp(str, "nodomains")) {
6778 pci_no_domains();
6779 } else if (!strncmp(str, "noari", 5)) {
6780 pcie_ari_disabled = true;
6781 } else if (!strncmp(str, "cbiosize=", 9)) {
6782 pci_cardbus_io_size = memparse(str + 9, &str);
6783 } else if (!strncmp(str, "cbmemsize=", 10)) {
6784 pci_cardbus_mem_size = memparse(str + 10, &str);
6785 } else if (!strncmp(str, "resource_alignment=", 19)) {
6786 resource_alignment_param = str + 19;
6787 } else if (!strncmp(str, "ecrc=", 5)) {
6788 pcie_ecrc_get_policy(str + 5);
6789 } else if (!strncmp(str, "hpiosize=", 9)) {
6790 pci_hotplug_io_size = memparse(str + 9, &str);
6791 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6792 pci_hotplug_mmio_size = memparse(str + 11, &str);
6793 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6794 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6795 } else if (!strncmp(str, "hpmemsize=", 10)) {
6796 pci_hotplug_mmio_size = memparse(str + 10, &str);
6797 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6798 } else if (!strncmp(str, "hpbussize=", 10)) {
6799 pci_hotplug_bus_size =
6800 simple_strtoul(str + 10, &str, 0);
6801 if (pci_hotplug_bus_size > 0xff)
6802 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6803 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6804 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6805 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6806 pcie_bus_config = PCIE_BUS_SAFE;
6807 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6808 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6809 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6810 pcie_bus_config = PCIE_BUS_PEER2PEER;
6811 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6812 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6813 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6814 disable_acs_redir_param = str + 18;
6815 } else {
6816 pr_err("PCI: Unknown option `%s'\n", str);
6817 }
6818 }
6819 str = k;
6820 }
6821 return 0;
6822 }
6823 early_param("pci", pci_setup);
6824
6825 /*
6826 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6827 * in pci_setup(), above, to point to data in the __initdata section which
6828 * will be freed after the init sequence is complete. We can't allocate memory
6829 * in pci_setup() because some architectures do not have any memory allocation
6830 * service available during an early_param() call. So we allocate memory and
6831 * copy the variable here before the init section is freed.
6832 *
6833 */
pci_realloc_setup_params(void)6834 static int __init pci_realloc_setup_params(void)
6835 {
6836 resource_alignment_param = kstrdup(resource_alignment_param,
6837 GFP_KERNEL);
6838 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6839
6840 return 0;
6841 }
6842 pure_initcall(pci_realloc_setup_params);
6843