• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
pci_dev_d3_sleep(struct pci_dev * dev)65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
pci_reset_supported(struct pci_dev * dev)76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 	return dev->reset_methods[0] != 0;
79 }
80 
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84 
85 #define DEFAULT_CARDBUS_IO_SIZE		(256)
86 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99  * pci=hpmemsize=nnM overrides both
100  */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 
104 #define DEFAULT_HOTPLUG_BUS_SIZE	1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 
107 
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120 
121 /*
122  * The default CLS is used if arch didn't set CLS explicitly and not
123  * all pci devices agree on the same value.  Arch can override either
124  * the dfl or actual value as it sees fit.  Don't forget this is
125  * measured in 32-bit words, not bytes.
126  */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129 
130 /*
131  * If we set up a device for bus mastering, we need to check the latency
132  * timer as certain BIOSes forget to set it properly.
133  */
134 unsigned int pcibios_max_latency = 255;
135 
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138 
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141 
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144 
pci_ats_disabled(void)145 bool pci_ats_disabled(void)
146 {
147 	return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155 
pcie_port_pm_setup(char * str)156 static int __init pcie_port_pm_setup(char *str)
157 {
158 	if (!strcmp(str, "off"))
159 		pci_bridge_d3_disable = true;
160 	else if (!strcmp(str, "force"))
161 		pci_bridge_d3_force = true;
162 	return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165 
166 /**
167  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
168  * @bus: pointer to PCI bus structure to search
169  *
170  * Given a PCI bus, returns the highest PCI bus number present in the set
171  * including the given PCI bus and its list of child PCI buses.
172  */
pci_bus_max_busnr(struct pci_bus * bus)173 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
174 {
175 	struct pci_bus *tmp;
176 	unsigned char max, n;
177 
178 	max = bus->busn_res.end;
179 	list_for_each_entry(tmp, &bus->children, node) {
180 		n = pci_bus_max_busnr(tmp);
181 		if (n > max)
182 			max = n;
183 	}
184 	return max;
185 }
186 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
187 
188 /**
189  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
190  * @pdev: the PCI device
191  *
192  * Returns error bits set in PCI_STATUS and clears them.
193  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)194 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
195 {
196 	u16 status;
197 	int ret;
198 
199 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
200 	if (ret != PCIBIOS_SUCCESSFUL)
201 		return -EIO;
202 
203 	status &= PCI_STATUS_ERROR_BITS;
204 	if (status)
205 		pci_write_config_word(pdev, PCI_STATUS, status);
206 
207 	return status;
208 }
209 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
210 
211 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)212 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
213 					    bool write_combine)
214 {
215 	struct resource *res = &pdev->resource[bar];
216 	resource_size_t start = res->start;
217 	resource_size_t size = resource_size(res);
218 
219 	/*
220 	 * Make sure the BAR is actually a memory resource, not an IO resource
221 	 */
222 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
223 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
224 		return NULL;
225 	}
226 
227 	if (write_combine)
228 		return ioremap_wc(start, size);
229 
230 	return ioremap(start, size);
231 }
232 
pci_ioremap_bar(struct pci_dev * pdev,int bar)233 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
234 {
235 	return __pci_ioremap_resource(pdev, bar, false);
236 }
237 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
238 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)239 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
240 {
241 	return __pci_ioremap_resource(pdev, bar, true);
242 }
243 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
244 #endif
245 
246 /**
247  * pci_dev_str_match_path - test if a path string matches a device
248  * @dev: the PCI device to test
249  * @path: string to match the device against
250  * @endptr: pointer to the string after the match
251  *
252  * Test if a string (typically from a kernel parameter) formatted as a
253  * path of device/function addresses matches a PCI device. The string must
254  * be of the form:
255  *
256  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
257  *
258  * A path for a device can be obtained using 'lspci -t'.  Using a path
259  * is more robust against bus renumbering than using only a single bus,
260  * device and function address.
261  *
262  * Returns 1 if the string matches the device, 0 if it does not and
263  * a negative error code if it fails to parse the string.
264  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)265 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
266 				  const char **endptr)
267 {
268 	int ret;
269 	int seg, bus, slot, func;
270 	char *wpath, *p;
271 	char end;
272 
273 	*endptr = strchrnul(path, ';');
274 
275 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
276 	if (!wpath)
277 		return -ENOMEM;
278 
279 	while (1) {
280 		p = strrchr(wpath, '/');
281 		if (!p)
282 			break;
283 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
284 		if (ret != 2) {
285 			ret = -EINVAL;
286 			goto free_and_exit;
287 		}
288 
289 		if (dev->devfn != PCI_DEVFN(slot, func)) {
290 			ret = 0;
291 			goto free_and_exit;
292 		}
293 
294 		/*
295 		 * Note: we don't need to get a reference to the upstream
296 		 * bridge because we hold a reference to the top level
297 		 * device which should hold a reference to the bridge,
298 		 * and so on.
299 		 */
300 		dev = pci_upstream_bridge(dev);
301 		if (!dev) {
302 			ret = 0;
303 			goto free_and_exit;
304 		}
305 
306 		*p = 0;
307 	}
308 
309 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
310 		     &func, &end);
311 	if (ret != 4) {
312 		seg = 0;
313 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
314 		if (ret != 3) {
315 			ret = -EINVAL;
316 			goto free_and_exit;
317 		}
318 	}
319 
320 	ret = (seg == pci_domain_nr(dev->bus) &&
321 	       bus == dev->bus->number &&
322 	       dev->devfn == PCI_DEVFN(slot, func));
323 
324 free_and_exit:
325 	kfree(wpath);
326 	return ret;
327 }
328 
329 /**
330  * pci_dev_str_match - test if a string matches a device
331  * @dev: the PCI device to test
332  * @p: string to match the device against
333  * @endptr: pointer to the string after the match
334  *
335  * Test if a string (typically from a kernel parameter) matches a specified
336  * PCI device. The string may be of one of the following formats:
337  *
338  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
339  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
340  *
341  * The first format specifies a PCI bus/device/function address which
342  * may change if new hardware is inserted, if motherboard firmware changes,
343  * or due to changes caused in kernel parameters. If the domain is
344  * left unspecified, it is taken to be 0.  In order to be robust against
345  * bus renumbering issues, a path of PCI device/function numbers may be used
346  * to address the specific device.  The path for a device can be determined
347  * through the use of 'lspci -t'.
348  *
349  * The second format matches devices using IDs in the configuration
350  * space which may match multiple devices in the system. A value of 0
351  * for any field will match all devices. (Note: this differs from
352  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
353  * legacy reasons and convenience so users don't have to specify
354  * FFFFFFFFs on the command line.)
355  *
356  * Returns 1 if the string matches the device, 0 if it does not and
357  * a negative error code if the string cannot be parsed.
358  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)359 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
360 			     const char **endptr)
361 {
362 	int ret;
363 	int count;
364 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
365 
366 	if (strncmp(p, "pci:", 4) == 0) {
367 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
368 		p += 4;
369 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
370 			     &subsystem_vendor, &subsystem_device, &count);
371 		if (ret != 4) {
372 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
373 			if (ret != 2)
374 				return -EINVAL;
375 
376 			subsystem_vendor = 0;
377 			subsystem_device = 0;
378 		}
379 
380 		p += count;
381 
382 		if ((!vendor || vendor == dev->vendor) &&
383 		    (!device || device == dev->device) &&
384 		    (!subsystem_vendor ||
385 			    subsystem_vendor == dev->subsystem_vendor) &&
386 		    (!subsystem_device ||
387 			    subsystem_device == dev->subsystem_device))
388 			goto found;
389 	} else {
390 		/*
391 		 * PCI Bus, Device, Function IDs are specified
392 		 * (optionally, may include a path of devfns following it)
393 		 */
394 		ret = pci_dev_str_match_path(dev, p, &p);
395 		if (ret < 0)
396 			return ret;
397 		else if (ret)
398 			goto found;
399 	}
400 
401 	*endptr = p;
402 	return 0;
403 
404 found:
405 	*endptr = p;
406 	return 1;
407 }
408 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)409 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
410 				  u8 pos, int cap, int *ttl)
411 {
412 	u8 id;
413 	u16 ent;
414 
415 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
416 
417 	while ((*ttl)--) {
418 		if (pos < 0x40)
419 			break;
420 		pos &= ~3;
421 		pci_bus_read_config_word(bus, devfn, pos, &ent);
422 
423 		id = ent & 0xff;
424 		if (id == 0xff)
425 			break;
426 		if (id == cap)
427 			return pos;
428 		pos = (ent >> 8);
429 	}
430 	return 0;
431 }
432 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)433 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
434 			      u8 pos, int cap)
435 {
436 	int ttl = PCI_FIND_CAP_TTL;
437 
438 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
439 }
440 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)441 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
442 {
443 	return __pci_find_next_cap(dev->bus, dev->devfn,
444 				   pos + PCI_CAP_LIST_NEXT, cap);
445 }
446 EXPORT_SYMBOL_GPL(pci_find_next_capability);
447 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)448 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
449 				    unsigned int devfn, u8 hdr_type)
450 {
451 	u16 status;
452 
453 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
454 	if (!(status & PCI_STATUS_CAP_LIST))
455 		return 0;
456 
457 	switch (hdr_type) {
458 	case PCI_HEADER_TYPE_NORMAL:
459 	case PCI_HEADER_TYPE_BRIDGE:
460 		return PCI_CAPABILITY_LIST;
461 	case PCI_HEADER_TYPE_CARDBUS:
462 		return PCI_CB_CAPABILITY_LIST;
463 	}
464 
465 	return 0;
466 }
467 
468 /**
469  * pci_find_capability - query for devices' capabilities
470  * @dev: PCI device to query
471  * @cap: capability code
472  *
473  * Tell if a device supports a given PCI capability.
474  * Returns the address of the requested capability structure within the
475  * device's PCI configuration space or 0 in case the device does not
476  * support it.  Possible values for @cap include:
477  *
478  *  %PCI_CAP_ID_PM           Power Management
479  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
480  *  %PCI_CAP_ID_VPD          Vital Product Data
481  *  %PCI_CAP_ID_SLOTID       Slot Identification
482  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
483  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
484  *  %PCI_CAP_ID_PCIX         PCI-X
485  *  %PCI_CAP_ID_EXP          PCI Express
486  */
pci_find_capability(struct pci_dev * dev,int cap)487 u8 pci_find_capability(struct pci_dev *dev, int cap)
488 {
489 	u8 pos;
490 
491 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
492 	if (pos)
493 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
494 
495 	return pos;
496 }
497 EXPORT_SYMBOL(pci_find_capability);
498 
499 /**
500  * pci_bus_find_capability - query for devices' capabilities
501  * @bus: the PCI bus to query
502  * @devfn: PCI device to query
503  * @cap: capability code
504  *
505  * Like pci_find_capability() but works for PCI devices that do not have a
506  * pci_dev structure set up yet.
507  *
508  * Returns the address of the requested capability structure within the
509  * device's PCI configuration space or 0 in case the device does not
510  * support it.
511  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)512 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
513 {
514 	u8 hdr_type, pos;
515 
516 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
517 
518 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
519 	if (pos)
520 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
521 
522 	return pos;
523 }
524 EXPORT_SYMBOL(pci_bus_find_capability);
525 
526 /**
527  * pci_find_next_ext_capability - Find an extended capability
528  * @dev: PCI device to query
529  * @start: address at which to start looking (0 to start at beginning of list)
530  * @cap: capability code
531  *
532  * Returns the address of the next matching extended capability structure
533  * within the device's PCI configuration space or 0 if the device does
534  * not support it.  Some capabilities can occur several times, e.g., the
535  * vendor-specific capability, and this provides a way to find them all.
536  */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)537 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
538 {
539 	u32 header;
540 	int ttl;
541 	u16 pos = PCI_CFG_SPACE_SIZE;
542 
543 	/* minimum 8 bytes per capability */
544 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
545 
546 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
547 		return 0;
548 
549 	if (start)
550 		pos = start;
551 
552 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
553 		return 0;
554 
555 	/*
556 	 * If we have no capabilities, this is indicated by cap ID,
557 	 * cap version and next pointer all being 0.
558 	 */
559 	if (header == 0)
560 		return 0;
561 
562 	while (ttl-- > 0) {
563 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
564 			return pos;
565 
566 		pos = PCI_EXT_CAP_NEXT(header);
567 		if (pos < PCI_CFG_SPACE_SIZE)
568 			break;
569 
570 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 			break;
572 	}
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
577 
578 /**
579  * pci_find_ext_capability - Find an extended capability
580  * @dev: PCI device to query
581  * @cap: capability code
582  *
583  * Returns the address of the requested extended capability structure
584  * within the device's PCI configuration space or 0 if the device does
585  * not support it.  Possible values for @cap include:
586  *
587  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
588  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
589  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
590  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
591  */
pci_find_ext_capability(struct pci_dev * dev,int cap)592 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
593 {
594 	return pci_find_next_ext_capability(dev, 0, cap);
595 }
596 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
597 
598 /**
599  * pci_get_dsn - Read and return the 8-byte Device Serial Number
600  * @dev: PCI device to query
601  *
602  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
603  * Number.
604  *
605  * Returns the DSN, or zero if the capability does not exist.
606  */
pci_get_dsn(struct pci_dev * dev)607 u64 pci_get_dsn(struct pci_dev *dev)
608 {
609 	u32 dword;
610 	u64 dsn;
611 	int pos;
612 
613 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
614 	if (!pos)
615 		return 0;
616 
617 	/*
618 	 * The Device Serial Number is two dwords offset 4 bytes from the
619 	 * capability position. The specification says that the first dword is
620 	 * the lower half, and the second dword is the upper half.
621 	 */
622 	pos += 4;
623 	pci_read_config_dword(dev, pos, &dword);
624 	dsn = (u64)dword;
625 	pci_read_config_dword(dev, pos + 4, &dword);
626 	dsn |= ((u64)dword) << 32;
627 
628 	return dsn;
629 }
630 EXPORT_SYMBOL_GPL(pci_get_dsn);
631 
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)632 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
633 {
634 	int rc, ttl = PCI_FIND_CAP_TTL;
635 	u8 cap, mask;
636 
637 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
638 		mask = HT_3BIT_CAP_MASK;
639 	else
640 		mask = HT_5BIT_CAP_MASK;
641 
642 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
643 				      PCI_CAP_ID_HT, &ttl);
644 	while (pos) {
645 		rc = pci_read_config_byte(dev, pos + 3, &cap);
646 		if (rc != PCIBIOS_SUCCESSFUL)
647 			return 0;
648 
649 		if ((cap & mask) == ht_cap)
650 			return pos;
651 
652 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
653 					      pos + PCI_CAP_LIST_NEXT,
654 					      PCI_CAP_ID_HT, &ttl);
655 	}
656 
657 	return 0;
658 }
659 
660 /**
661  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
662  * @dev: PCI device to query
663  * @pos: Position from which to continue searching
664  * @ht_cap: HyperTransport capability code
665  *
666  * To be used in conjunction with pci_find_ht_capability() to search for
667  * all capabilities matching @ht_cap. @pos should always be a value returned
668  * from pci_find_ht_capability().
669  *
670  * NB. To be 100% safe against broken PCI devices, the caller should take
671  * steps to avoid an infinite loop.
672  */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)673 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
674 {
675 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
676 }
677 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
678 
679 /**
680  * pci_find_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @ht_cap: HyperTransport capability code
683  *
684  * Tell if a device supports a given HyperTransport capability.
685  * Returns an address within the device's PCI configuration space
686  * or 0 in case the device does not support the request capability.
687  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
688  * which has a HyperTransport capability matching @ht_cap.
689  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)690 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
691 {
692 	u8 pos;
693 
694 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
695 	if (pos)
696 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
697 
698 	return pos;
699 }
700 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
701 
702 /**
703  * pci_find_vsec_capability - Find a vendor-specific extended capability
704  * @dev: PCI device to query
705  * @vendor: Vendor ID for which capability is defined
706  * @cap: Vendor-specific capability ID
707  *
708  * If @dev has Vendor ID @vendor, search for a VSEC capability with
709  * VSEC ID @cap. If found, return the capability offset in
710  * config space; otherwise return 0.
711  */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)712 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
713 {
714 	u16 vsec = 0;
715 	u32 header;
716 
717 	if (vendor != dev->vendor)
718 		return 0;
719 
720 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
721 						     PCI_EXT_CAP_ID_VNDR))) {
722 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
723 					  &header) == PCIBIOS_SUCCESSFUL &&
724 		    PCI_VNDR_HEADER_ID(header) == cap)
725 			return vsec;
726 	}
727 
728 	return 0;
729 }
730 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
731 
732 /**
733  * pci_find_parent_resource - return resource region of parent bus of given
734  *			      region
735  * @dev: PCI device structure contains resources to be searched
736  * @res: child resource record for which parent is sought
737  *
738  * For given resource region of given device, return the resource region of
739  * parent bus the given region is contained in.
740  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)741 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
742 					  struct resource *res)
743 {
744 	const struct pci_bus *bus = dev->bus;
745 	struct resource *r;
746 	int i;
747 
748 	pci_bus_for_each_resource(bus, r, i) {
749 		if (!r)
750 			continue;
751 		if (resource_contains(r, res)) {
752 
753 			/*
754 			 * If the window is prefetchable but the BAR is
755 			 * not, the allocator made a mistake.
756 			 */
757 			if (r->flags & IORESOURCE_PREFETCH &&
758 			    !(res->flags & IORESOURCE_PREFETCH))
759 				return NULL;
760 
761 			/*
762 			 * If we're below a transparent bridge, there may
763 			 * be both a positively-decoded aperture and a
764 			 * subtractively-decoded region that contain the BAR.
765 			 * We want the positively-decoded one, so this depends
766 			 * on pci_bus_for_each_resource() giving us those
767 			 * first.
768 			 */
769 			return r;
770 		}
771 	}
772 	return NULL;
773 }
774 EXPORT_SYMBOL(pci_find_parent_resource);
775 
776 /**
777  * pci_find_resource - Return matching PCI device resource
778  * @dev: PCI device to query
779  * @res: Resource to look for
780  *
781  * Goes over standard PCI resources (BARs) and checks if the given resource
782  * is partially or fully contained in any of them. In that case the
783  * matching resource is returned, %NULL otherwise.
784  */
pci_find_resource(struct pci_dev * dev,struct resource * res)785 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
786 {
787 	int i;
788 
789 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
790 		struct resource *r = &dev->resource[i];
791 
792 		if (r->start && resource_contains(r, res))
793 			return r;
794 	}
795 
796 	return NULL;
797 }
798 EXPORT_SYMBOL(pci_find_resource);
799 
800 /**
801  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
802  * @dev: the PCI device to operate on
803  * @pos: config space offset of status word
804  * @mask: mask of bit(s) to care about in status word
805  *
806  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
807  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)808 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
809 {
810 	int i;
811 
812 	/* Wait for Transaction Pending bit clean */
813 	for (i = 0; i < 4; i++) {
814 		u16 status;
815 		if (i)
816 			msleep((1 << (i - 1)) * 100);
817 
818 		pci_read_config_word(dev, pos, &status);
819 		if (!(status & mask))
820 			return 1;
821 	}
822 
823 	if (dev->bus->self)
824 		pcie_aspm_pm_state_change(dev->bus->self);
825 
826 	return 0;
827 }
828 
829 static int pci_acs_enable;
830 
831 /**
832  * pci_request_acs - ask for ACS to be enabled if supported
833  */
pci_request_acs(void)834 void pci_request_acs(void)
835 {
836 	pci_acs_enable = 1;
837 }
838 
839 static const char *disable_acs_redir_param;
840 
841 /**
842  * pci_disable_acs_redir - disable ACS redirect capabilities
843  * @dev: the PCI device
844  *
845  * For only devices specified in the disable_acs_redir parameter.
846  */
pci_disable_acs_redir(struct pci_dev * dev)847 static void pci_disable_acs_redir(struct pci_dev *dev)
848 {
849 	int ret = 0;
850 	const char *p;
851 	int pos;
852 	u16 ctrl;
853 
854 	if (!disable_acs_redir_param)
855 		return;
856 
857 	p = disable_acs_redir_param;
858 	while (*p) {
859 		ret = pci_dev_str_match(dev, p, &p);
860 		if (ret < 0) {
861 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
862 				     disable_acs_redir_param);
863 
864 			break;
865 		} else if (ret == 1) {
866 			/* Found a match */
867 			break;
868 		}
869 
870 		if (*p != ';' && *p != ',') {
871 			/* End of param or invalid format */
872 			break;
873 		}
874 		p++;
875 	}
876 
877 	if (ret != 1)
878 		return;
879 
880 	if (!pci_dev_specific_disable_acs_redir(dev))
881 		return;
882 
883 	pos = dev->acs_cap;
884 	if (!pos) {
885 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
886 		return;
887 	}
888 
889 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
890 
891 	/* P2P Request & Completion Redirect */
892 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
893 
894 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
895 
896 	pci_info(dev, "disabled ACS redirect\n");
897 }
898 
899 /**
900  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
901  * @dev: the PCI device
902  */
pci_std_enable_acs(struct pci_dev * dev)903 static void pci_std_enable_acs(struct pci_dev *dev)
904 {
905 	int pos;
906 	u16 cap;
907 	u16 ctrl;
908 
909 	pos = dev->acs_cap;
910 	if (!pos)
911 		return;
912 
913 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
914 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
915 
916 	/* Source Validation */
917 	ctrl |= (cap & PCI_ACS_SV);
918 
919 	/* P2P Request Redirect */
920 	ctrl |= (cap & PCI_ACS_RR);
921 
922 	/* P2P Completion Redirect */
923 	ctrl |= (cap & PCI_ACS_CR);
924 
925 	/* Upstream Forwarding */
926 	ctrl |= (cap & PCI_ACS_UF);
927 
928 	/* Enable Translation Blocking for external devices and noats */
929 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
930 		ctrl |= (cap & PCI_ACS_TB);
931 
932 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
933 }
934 
935 /**
936  * pci_enable_acs - enable ACS if hardware support it
937  * @dev: the PCI device
938  */
pci_enable_acs(struct pci_dev * dev)939 static void pci_enable_acs(struct pci_dev *dev)
940 {
941 	if (!pci_acs_enable)
942 		goto disable_acs_redir;
943 
944 	if (!pci_dev_specific_enable_acs(dev))
945 		goto disable_acs_redir;
946 
947 	pci_std_enable_acs(dev);
948 
949 disable_acs_redir:
950 	/*
951 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
952 	 * enabled by the kernel because it may have been enabled by
953 	 * platform firmware.  So if we are told to disable it, we should
954 	 * always disable it after setting the kernel's default
955 	 * preferences.
956 	 */
957 	pci_disable_acs_redir(dev);
958 }
959 
960 /**
961  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
962  * @dev: PCI device to have its BARs restored
963  *
964  * Restore the BAR values for a given device, so as to make it
965  * accessible by its driver.
966  */
pci_restore_bars(struct pci_dev * dev)967 static void pci_restore_bars(struct pci_dev *dev)
968 {
969 	int i;
970 
971 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
972 		pci_update_resource(dev, i);
973 }
974 
975 static const struct pci_platform_pm_ops *pci_platform_pm;
976 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)977 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
978 {
979 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
980 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
981 		return -EINVAL;
982 	pci_platform_pm = ops;
983 	return 0;
984 }
985 
platform_pci_power_manageable(struct pci_dev * dev)986 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
987 {
988 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
989 }
990 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)991 static inline int platform_pci_set_power_state(struct pci_dev *dev,
992 					       pci_power_t t)
993 {
994 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
995 }
996 
platform_pci_get_power_state(struct pci_dev * dev)997 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
998 {
999 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1000 }
1001 
platform_pci_refresh_power_state(struct pci_dev * dev)1002 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1003 {
1004 	if (pci_platform_pm && pci_platform_pm->refresh_state)
1005 		pci_platform_pm->refresh_state(dev);
1006 }
1007 
platform_pci_choose_state(struct pci_dev * dev)1008 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1009 {
1010 	return pci_platform_pm ?
1011 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1012 }
1013 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1014 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1015 {
1016 	return pci_platform_pm ?
1017 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1018 }
1019 
platform_pci_need_resume(struct pci_dev * dev)1020 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1021 {
1022 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1023 }
1024 
platform_pci_bridge_d3(struct pci_dev * dev)1025 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1026 {
1027 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1028 		return pci_platform_pm->bridge_d3(dev);
1029 	return false;
1030 }
1031 
1032 /**
1033  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1034  *			     given PCI device
1035  * @dev: PCI device to handle.
1036  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1037  *
1038  * RETURN VALUE:
1039  * -EINVAL if the requested state is invalid.
1040  * -EIO if device does not support PCI PM or its PM capabilities register has a
1041  * wrong version, or device doesn't support the requested state.
1042  * 0 if device already is in the requested state.
1043  * 0 if device's power state has been successfully changed.
1044  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1045 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1046 {
1047 	u16 pmcsr;
1048 	bool need_restore = false;
1049 
1050 	/* Check if we're already there */
1051 	if (dev->current_state == state)
1052 		return 0;
1053 
1054 	if (!dev->pm_cap)
1055 		return -EIO;
1056 
1057 	if (state < PCI_D0 || state > PCI_D3hot)
1058 		return -EINVAL;
1059 
1060 	/*
1061 	 * Validate transition: We can enter D0 from any state, but if
1062 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1063 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1064 	 * we'd have to go from D3 to D0, then to D1.
1065 	 */
1066 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1067 	    && dev->current_state > state) {
1068 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1069 			pci_power_name(dev->current_state),
1070 			pci_power_name(state));
1071 		return -EINVAL;
1072 	}
1073 
1074 	/* Check if this device supports the desired state */
1075 	if ((state == PCI_D1 && !dev->d1_support)
1076 	   || (state == PCI_D2 && !dev->d2_support))
1077 		return -EIO;
1078 
1079 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1080 	if (pmcsr == (u16) ~0) {
1081 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1082 			pci_power_name(dev->current_state),
1083 			pci_power_name(state));
1084 		return -EIO;
1085 	}
1086 
1087 	/*
1088 	 * If we're (effectively) in D3, force entire word to 0.
1089 	 * This doesn't affect PME_Status, disables PME_En, and
1090 	 * sets PowerState to 0.
1091 	 */
1092 	switch (dev->current_state) {
1093 	case PCI_D0:
1094 	case PCI_D1:
1095 	case PCI_D2:
1096 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1097 		pmcsr |= state;
1098 		break;
1099 	case PCI_D3hot:
1100 	case PCI_D3cold:
1101 	case PCI_UNKNOWN: /* Boot-up */
1102 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1103 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1104 			need_restore = true;
1105 		fallthrough;	/* force to D0 */
1106 	default:
1107 		pmcsr = 0;
1108 		break;
1109 	}
1110 
1111 	/* Enter specified state */
1112 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1113 
1114 	/*
1115 	 * Mandatory power management transition delays; see PCI PM 1.1
1116 	 * 5.6.1 table 18
1117 	 */
1118 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1119 		pci_dev_d3_sleep(dev);
1120 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1121 		udelay(PCI_PM_D2_DELAY);
1122 
1123 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1124 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1125 	if (dev->current_state != state)
1126 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1127 			 pci_power_name(dev->current_state),
1128 			 pci_power_name(state));
1129 
1130 	/*
1131 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1132 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1133 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1134 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1135 	 * For example, at least some versions of the 3c905B and the
1136 	 * 3c556B exhibit this behaviour.
1137 	 *
1138 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1139 	 * devices in a D3hot state at boot.  Consequently, we need to
1140 	 * restore at least the BARs so that the device will be
1141 	 * accessible to its driver.
1142 	 */
1143 	if (need_restore)
1144 		pci_restore_bars(dev);
1145 
1146 	if (dev->bus->self)
1147 		pcie_aspm_pm_state_change(dev->bus->self);
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * pci_update_current_state - Read power state of given device and cache it
1154  * @dev: PCI device to handle.
1155  * @state: State to cache in case the device doesn't have the PM capability
1156  *
1157  * The power state is read from the PMCSR register, which however is
1158  * inaccessible in D3cold.  The platform firmware is therefore queried first
1159  * to detect accessibility of the register.  In case the platform firmware
1160  * reports an incorrect state or the device isn't power manageable by the
1161  * platform at all, we try to detect D3cold by testing accessibility of the
1162  * vendor ID in config space.
1163  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1164 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1165 {
1166 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1167 	    !pci_device_is_present(dev)) {
1168 		dev->current_state = PCI_D3cold;
1169 	} else if (dev->pm_cap) {
1170 		u16 pmcsr;
1171 
1172 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1173 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1174 	} else {
1175 		dev->current_state = state;
1176 	}
1177 }
1178 
1179 /**
1180  * pci_refresh_power_state - Refresh the given device's power state data
1181  * @dev: Target PCI device.
1182  *
1183  * Ask the platform to refresh the devices power state information and invoke
1184  * pci_update_current_state() to update its current PCI power state.
1185  */
pci_refresh_power_state(struct pci_dev * dev)1186 void pci_refresh_power_state(struct pci_dev *dev)
1187 {
1188 	if (platform_pci_power_manageable(dev))
1189 		platform_pci_refresh_power_state(dev);
1190 
1191 	pci_update_current_state(dev, dev->current_state);
1192 }
1193 
1194 /**
1195  * pci_platform_power_transition - Use platform to change device power state
1196  * @dev: PCI device to handle.
1197  * @state: State to put the device into.
1198  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1199 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1200 {
1201 	int error;
1202 
1203 	if (platform_pci_power_manageable(dev)) {
1204 		error = platform_pci_set_power_state(dev, state);
1205 		if (!error)
1206 			pci_update_current_state(dev, state);
1207 	} else
1208 		error = -ENODEV;
1209 
1210 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1211 		dev->current_state = PCI_D0;
1212 
1213 	return error;
1214 }
1215 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1216 
pci_resume_one(struct pci_dev * pci_dev,void * ign)1217 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1218 {
1219 	pm_request_resume(&pci_dev->dev);
1220 	return 0;
1221 }
1222 
1223 /**
1224  * pci_resume_bus - Walk given bus and runtime resume devices on it
1225  * @bus: Top bus of the subtree to walk.
1226  */
pci_resume_bus(struct pci_bus * bus)1227 void pci_resume_bus(struct pci_bus *bus)
1228 {
1229 	if (bus)
1230 		pci_walk_bus(bus, pci_resume_one, NULL);
1231 }
1232 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1233 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1234 {
1235 	int delay = 1;
1236 	u32 id;
1237 
1238 	/*
1239 	 * After reset, the device should not silently discard config
1240 	 * requests, but it may still indicate that it needs more time by
1241 	 * responding to them with CRS completions.  The Root Port will
1242 	 * generally synthesize ~0 data to complete the read (except when
1243 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1244 	 * case it synthesizes 0x0001 data).
1245 	 *
1246 	 * Wait for the device to return a non-CRS completion.  Read the
1247 	 * Command register instead of Vendor ID so we don't have to
1248 	 * contend with the CRS SV value.
1249 	 */
1250 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1251 	while (id == ~0) {
1252 		if (delay > timeout) {
1253 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1254 				 delay - 1, reset_type);
1255 			return -ENOTTY;
1256 		}
1257 
1258 		if (delay > PCI_RESET_WAIT)
1259 			pci_info(dev, "not ready %dms after %s; waiting\n",
1260 				 delay - 1, reset_type);
1261 
1262 		msleep(delay);
1263 		delay *= 2;
1264 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1265 	}
1266 
1267 	if (delay > PCI_RESET_WAIT)
1268 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1269 			 reset_type);
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  * pci_power_up - Put the given device into D0
1276  * @dev: PCI device to power up
1277  */
pci_power_up(struct pci_dev * dev)1278 int pci_power_up(struct pci_dev *dev)
1279 {
1280 	pci_platform_power_transition(dev, PCI_D0);
1281 
1282 	/*
1283 	 * Mandatory power management transition delays are handled in
1284 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1285 	 * corresponding bridge.
1286 	 */
1287 	if (dev->runtime_d3cold) {
1288 		/*
1289 		 * When powering on a bridge from D3cold, the whole hierarchy
1290 		 * may be powered on into D0uninitialized state, resume them to
1291 		 * give them a chance to suspend again
1292 		 */
1293 		pci_resume_bus(dev->subordinate);
1294 	}
1295 
1296 	return pci_raw_set_power_state(dev, PCI_D0);
1297 }
1298 
1299 /**
1300  * __pci_dev_set_current_state - Set current state of a PCI device
1301  * @dev: Device to handle
1302  * @data: pointer to state to be set
1303  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1304 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1305 {
1306 	pci_power_t state = *(pci_power_t *)data;
1307 
1308 	dev->current_state = state;
1309 	return 0;
1310 }
1311 
1312 /**
1313  * pci_bus_set_current_state - Walk given bus and set current state of devices
1314  * @bus: Top bus of the subtree to walk.
1315  * @state: state to be set
1316  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1317 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1318 {
1319 	if (bus)
1320 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1321 }
1322 
1323 /**
1324  * pci_set_power_state - Set the power state of a PCI device
1325  * @dev: PCI device to handle.
1326  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1327  *
1328  * Transition a device to a new power state, using the platform firmware and/or
1329  * the device's PCI PM registers.
1330  *
1331  * RETURN VALUE:
1332  * -EINVAL if the requested state is invalid.
1333  * -EIO if device does not support PCI PM or its PM capabilities register has a
1334  * wrong version, or device doesn't support the requested state.
1335  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1336  * 0 if device already is in the requested state.
1337  * 0 if the transition is to D3 but D3 is not supported.
1338  * 0 if device's power state has been successfully changed.
1339  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1340 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 	int error;
1343 
1344 	/* Bound the state we're entering */
1345 	if (state > PCI_D3cold)
1346 		state = PCI_D3cold;
1347 	else if (state < PCI_D0)
1348 		state = PCI_D0;
1349 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1350 
1351 		/*
1352 		 * If the device or the parent bridge do not support PCI
1353 		 * PM, ignore the request if we're doing anything other
1354 		 * than putting it into D0 (which would only happen on
1355 		 * boot).
1356 		 */
1357 		return 0;
1358 
1359 	/* Check if we're already there */
1360 	if (dev->current_state == state)
1361 		return 0;
1362 
1363 	if (state == PCI_D0)
1364 		return pci_power_up(dev);
1365 
1366 	/*
1367 	 * This device is quirked not to be put into D3, so don't put it in
1368 	 * D3
1369 	 */
1370 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1371 		return 0;
1372 
1373 	/*
1374 	 * To put device in D3cold, we put device into D3hot in native
1375 	 * way, then put device into D3cold with platform ops
1376 	 */
1377 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1378 					PCI_D3hot : state);
1379 
1380 	if (pci_platform_power_transition(dev, state))
1381 		return error;
1382 
1383 	/* Powering off a bridge may power off the whole hierarchy */
1384 	if (state == PCI_D3cold)
1385 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1386 
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL(pci_set_power_state);
1390 
1391 /**
1392  * pci_choose_state - Choose the power state of a PCI device
1393  * @dev: PCI device to be suspended
1394  * @state: target sleep state for the whole system. This is the value
1395  *	   that is passed to suspend() function.
1396  *
1397  * Returns PCI power state suitable for given device and given system
1398  * message.
1399  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1400 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1401 {
1402 	pci_power_t ret;
1403 
1404 	if (!dev->pm_cap)
1405 		return PCI_D0;
1406 
1407 	ret = platform_pci_choose_state(dev);
1408 	if (ret != PCI_POWER_ERROR)
1409 		return ret;
1410 
1411 	switch (state.event) {
1412 	case PM_EVENT_ON:
1413 		return PCI_D0;
1414 	case PM_EVENT_FREEZE:
1415 	case PM_EVENT_PRETHAW:
1416 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1417 	case PM_EVENT_SUSPEND:
1418 	case PM_EVENT_HIBERNATE:
1419 		return PCI_D3hot;
1420 	default:
1421 		pci_info(dev, "unrecognized suspend event %d\n",
1422 			 state.event);
1423 		BUG();
1424 	}
1425 	return PCI_D0;
1426 }
1427 EXPORT_SYMBOL(pci_choose_state);
1428 
1429 #define PCI_EXP_SAVE_REGS	7
1430 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1431 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1432 						       u16 cap, bool extended)
1433 {
1434 	struct pci_cap_saved_state *tmp;
1435 
1436 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1437 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1438 			return tmp;
1439 	}
1440 	return NULL;
1441 }
1442 
pci_find_saved_cap(struct pci_dev * dev,char cap)1443 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1444 {
1445 	return _pci_find_saved_cap(dev, cap, false);
1446 }
1447 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1448 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1449 {
1450 	return _pci_find_saved_cap(dev, cap, true);
1451 }
1452 
pci_save_pcie_state(struct pci_dev * dev)1453 static int pci_save_pcie_state(struct pci_dev *dev)
1454 {
1455 	int i = 0;
1456 	struct pci_cap_saved_state *save_state;
1457 	u16 *cap;
1458 
1459 	if (!pci_is_pcie(dev))
1460 		return 0;
1461 
1462 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1463 	if (!save_state) {
1464 		pci_err(dev, "buffer not found in %s\n", __func__);
1465 		return -ENOMEM;
1466 	}
1467 
1468 	cap = (u16 *)&save_state->cap.data[0];
1469 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1470 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1471 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1472 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1473 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1474 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1475 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1476 
1477 	return 0;
1478 }
1479 
pci_restore_pcie_state(struct pci_dev * dev)1480 static void pci_restore_pcie_state(struct pci_dev *dev)
1481 {
1482 	int i = 0;
1483 	struct pci_cap_saved_state *save_state;
1484 	u16 *cap;
1485 
1486 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1487 	if (!save_state)
1488 		return;
1489 
1490 	cap = (u16 *)&save_state->cap.data[0];
1491 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1492 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1493 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1494 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1495 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1496 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1497 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1498 }
1499 
pci_save_pcix_state(struct pci_dev * dev)1500 static int pci_save_pcix_state(struct pci_dev *dev)
1501 {
1502 	int pos;
1503 	struct pci_cap_saved_state *save_state;
1504 
1505 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1506 	if (!pos)
1507 		return 0;
1508 
1509 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1510 	if (!save_state) {
1511 		pci_err(dev, "buffer not found in %s\n", __func__);
1512 		return -ENOMEM;
1513 	}
1514 
1515 	pci_read_config_word(dev, pos + PCI_X_CMD,
1516 			     (u16 *)save_state->cap.data);
1517 
1518 	return 0;
1519 }
1520 
pci_restore_pcix_state(struct pci_dev * dev)1521 static void pci_restore_pcix_state(struct pci_dev *dev)
1522 {
1523 	int i = 0, pos;
1524 	struct pci_cap_saved_state *save_state;
1525 	u16 *cap;
1526 
1527 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1528 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1529 	if (!save_state || !pos)
1530 		return;
1531 	cap = (u16 *)&save_state->cap.data[0];
1532 
1533 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1534 }
1535 
pci_save_ltr_state(struct pci_dev * dev)1536 static void pci_save_ltr_state(struct pci_dev *dev)
1537 {
1538 	int ltr;
1539 	struct pci_cap_saved_state *save_state;
1540 	u16 *cap;
1541 
1542 	if (!pci_is_pcie(dev))
1543 		return;
1544 
1545 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1546 	if (!ltr)
1547 		return;
1548 
1549 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1550 	if (!save_state) {
1551 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1552 		return;
1553 	}
1554 
1555 	cap = (u16 *)&save_state->cap.data[0];
1556 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1557 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1558 }
1559 
pci_restore_ltr_state(struct pci_dev * dev)1560 static void pci_restore_ltr_state(struct pci_dev *dev)
1561 {
1562 	struct pci_cap_saved_state *save_state;
1563 	int ltr;
1564 	u16 *cap;
1565 
1566 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1567 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1568 	if (!save_state || !ltr)
1569 		return;
1570 
1571 	cap = (u16 *)&save_state->cap.data[0];
1572 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1573 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1574 }
1575 
1576 /**
1577  * pci_save_state - save the PCI configuration space of a device before
1578  *		    suspending
1579  * @dev: PCI device that we're dealing with
1580  */
pci_save_state(struct pci_dev * dev)1581 int pci_save_state(struct pci_dev *dev)
1582 {
1583 	int i;
1584 	/* XXX: 100% dword access ok here? */
1585 	for (i = 0; i < 16; i++) {
1586 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1587 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1588 			i * 4, dev->saved_config_space[i]);
1589 	}
1590 	dev->state_saved = true;
1591 
1592 	i = pci_save_pcie_state(dev);
1593 	if (i != 0)
1594 		return i;
1595 
1596 	i = pci_save_pcix_state(dev);
1597 	if (i != 0)
1598 		return i;
1599 
1600 	pci_save_ltr_state(dev);
1601 	pci_save_dpc_state(dev);
1602 	pci_save_aer_state(dev);
1603 	pci_save_ptm_state(dev);
1604 	return pci_save_vc_state(dev);
1605 }
1606 EXPORT_SYMBOL(pci_save_state);
1607 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1608 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1609 				     u32 saved_val, int retry, bool force)
1610 {
1611 	u32 val;
1612 
1613 	pci_read_config_dword(pdev, offset, &val);
1614 	if (!force && val == saved_val)
1615 		return;
1616 
1617 	for (;;) {
1618 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1619 			offset, val, saved_val);
1620 		pci_write_config_dword(pdev, offset, saved_val);
1621 		if (retry-- <= 0)
1622 			return;
1623 
1624 		pci_read_config_dword(pdev, offset, &val);
1625 		if (val == saved_val)
1626 			return;
1627 
1628 		mdelay(1);
1629 	}
1630 }
1631 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1632 static void pci_restore_config_space_range(struct pci_dev *pdev,
1633 					   int start, int end, int retry,
1634 					   bool force)
1635 {
1636 	int index;
1637 
1638 	for (index = end; index >= start; index--)
1639 		pci_restore_config_dword(pdev, 4 * index,
1640 					 pdev->saved_config_space[index],
1641 					 retry, force);
1642 }
1643 
pci_restore_config_space(struct pci_dev * pdev)1644 static void pci_restore_config_space(struct pci_dev *pdev)
1645 {
1646 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1647 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1648 		/* Restore BARs before the command register. */
1649 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1650 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1651 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1652 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1653 
1654 		/*
1655 		 * Force rewriting of prefetch registers to avoid S3 resume
1656 		 * issues on Intel PCI bridges that occur when these
1657 		 * registers are not explicitly written.
1658 		 */
1659 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1660 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1661 	} else {
1662 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1663 	}
1664 }
1665 
pci_restore_rebar_state(struct pci_dev * pdev)1666 static void pci_restore_rebar_state(struct pci_dev *pdev)
1667 {
1668 	unsigned int pos, nbars, i;
1669 	u32 ctrl;
1670 
1671 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1672 	if (!pos)
1673 		return;
1674 
1675 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1676 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1677 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1678 
1679 	for (i = 0; i < nbars; i++, pos += 8) {
1680 		struct resource *res;
1681 		int bar_idx, size;
1682 
1683 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1684 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1685 		res = pdev->resource + bar_idx;
1686 		size = pci_rebar_bytes_to_size(resource_size(res));
1687 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1688 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1689 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1690 	}
1691 }
1692 
1693 /**
1694  * pci_restore_state - Restore the saved state of a PCI device
1695  * @dev: PCI device that we're dealing with
1696  */
pci_restore_state(struct pci_dev * dev)1697 void pci_restore_state(struct pci_dev *dev)
1698 {
1699 	if (!dev->state_saved)
1700 		return;
1701 
1702 	/*
1703 	 * Restore max latencies (in the LTR capability) before enabling
1704 	 * LTR itself (in the PCIe capability).
1705 	 */
1706 	pci_restore_ltr_state(dev);
1707 
1708 	pci_restore_pcie_state(dev);
1709 	pci_restore_pasid_state(dev);
1710 	pci_restore_pri_state(dev);
1711 	pci_restore_ats_state(dev);
1712 	pci_restore_vc_state(dev);
1713 	pci_restore_rebar_state(dev);
1714 	pci_restore_dpc_state(dev);
1715 	pci_restore_ptm_state(dev);
1716 
1717 	pci_aer_clear_status(dev);
1718 	pci_restore_aer_state(dev);
1719 
1720 	pci_restore_config_space(dev);
1721 
1722 	pci_restore_pcix_state(dev);
1723 	pci_restore_msi_state(dev);
1724 
1725 	/* Restore ACS and IOV configuration state */
1726 	pci_enable_acs(dev);
1727 	pci_restore_iov_state(dev);
1728 
1729 	dev->state_saved = false;
1730 }
1731 EXPORT_SYMBOL(pci_restore_state);
1732 
1733 struct pci_saved_state {
1734 	u32 config_space[16];
1735 	struct pci_cap_saved_data cap[];
1736 };
1737 
1738 /**
1739  * pci_store_saved_state - Allocate and return an opaque struct containing
1740  *			   the device saved state.
1741  * @dev: PCI device that we're dealing with
1742  *
1743  * Return NULL if no state or error.
1744  */
pci_store_saved_state(struct pci_dev * dev)1745 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1746 {
1747 	struct pci_saved_state *state;
1748 	struct pci_cap_saved_state *tmp;
1749 	struct pci_cap_saved_data *cap;
1750 	size_t size;
1751 
1752 	if (!dev->state_saved)
1753 		return NULL;
1754 
1755 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1756 
1757 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1758 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1759 
1760 	state = kzalloc(size, GFP_KERNEL);
1761 	if (!state)
1762 		return NULL;
1763 
1764 	memcpy(state->config_space, dev->saved_config_space,
1765 	       sizeof(state->config_space));
1766 
1767 	cap = state->cap;
1768 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1769 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1770 		memcpy(cap, &tmp->cap, len);
1771 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1772 	}
1773 	/* Empty cap_save terminates list */
1774 
1775 	return state;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1778 
1779 /**
1780  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1781  * @dev: PCI device that we're dealing with
1782  * @state: Saved state returned from pci_store_saved_state()
1783  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1784 int pci_load_saved_state(struct pci_dev *dev,
1785 			 struct pci_saved_state *state)
1786 {
1787 	struct pci_cap_saved_data *cap;
1788 
1789 	dev->state_saved = false;
1790 
1791 	if (!state)
1792 		return 0;
1793 
1794 	memcpy(dev->saved_config_space, state->config_space,
1795 	       sizeof(state->config_space));
1796 
1797 	cap = state->cap;
1798 	while (cap->size) {
1799 		struct pci_cap_saved_state *tmp;
1800 
1801 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1802 		if (!tmp || tmp->cap.size != cap->size)
1803 			return -EINVAL;
1804 
1805 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1806 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1807 		       sizeof(struct pci_cap_saved_data) + cap->size);
1808 	}
1809 
1810 	dev->state_saved = true;
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1814 
1815 /**
1816  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1817  *				   and free the memory allocated for it.
1818  * @dev: PCI device that we're dealing with
1819  * @state: Pointer to saved state returned from pci_store_saved_state()
1820  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1821 int pci_load_and_free_saved_state(struct pci_dev *dev,
1822 				  struct pci_saved_state **state)
1823 {
1824 	int ret = pci_load_saved_state(dev, *state);
1825 	kfree(*state);
1826 	*state = NULL;
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1830 
pcibios_enable_device(struct pci_dev * dev,int bars)1831 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1832 {
1833 	return pci_enable_resources(dev, bars);
1834 }
1835 
do_pci_enable_device(struct pci_dev * dev,int bars)1836 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1837 {
1838 	int err;
1839 	struct pci_dev *bridge;
1840 	u16 cmd;
1841 	u8 pin;
1842 
1843 	err = pci_set_power_state(dev, PCI_D0);
1844 	if (err < 0 && err != -EIO)
1845 		return err;
1846 
1847 	bridge = pci_upstream_bridge(dev);
1848 	if (bridge)
1849 		pcie_aspm_powersave_config_link(bridge);
1850 
1851 	err = pcibios_enable_device(dev, bars);
1852 	if (err < 0)
1853 		return err;
1854 	pci_fixup_device(pci_fixup_enable, dev);
1855 
1856 	if (dev->msi_enabled || dev->msix_enabled)
1857 		return 0;
1858 
1859 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1860 	if (pin) {
1861 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1862 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1863 			pci_write_config_word(dev, PCI_COMMAND,
1864 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 /**
1871  * pci_reenable_device - Resume abandoned device
1872  * @dev: PCI device to be resumed
1873  *
1874  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1875  * to be called by normal code, write proper resume handler and use it instead.
1876  */
pci_reenable_device(struct pci_dev * dev)1877 int pci_reenable_device(struct pci_dev *dev)
1878 {
1879 	if (pci_is_enabled(dev))
1880 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(pci_reenable_device);
1884 
pci_enable_bridge(struct pci_dev * dev)1885 static void pci_enable_bridge(struct pci_dev *dev)
1886 {
1887 	struct pci_dev *bridge;
1888 	int retval;
1889 
1890 	bridge = pci_upstream_bridge(dev);
1891 	if (bridge)
1892 		pci_enable_bridge(bridge);
1893 
1894 	if (pci_is_enabled(dev)) {
1895 		if (!dev->is_busmaster)
1896 			pci_set_master(dev);
1897 		return;
1898 	}
1899 
1900 	retval = pci_enable_device(dev);
1901 	if (retval)
1902 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1903 			retval);
1904 	pci_set_master(dev);
1905 }
1906 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1907 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1908 {
1909 	struct pci_dev *bridge;
1910 	int err;
1911 	int i, bars = 0;
1912 
1913 	/*
1914 	 * Power state could be unknown at this point, either due to a fresh
1915 	 * boot or a device removal call.  So get the current power state
1916 	 * so that things like MSI message writing will behave as expected
1917 	 * (e.g. if the device really is in D0 at enable time).
1918 	 */
1919 	pci_update_current_state(dev, dev->current_state);
1920 
1921 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1922 		return 0;		/* already enabled */
1923 
1924 	bridge = pci_upstream_bridge(dev);
1925 	if (bridge)
1926 		pci_enable_bridge(bridge);
1927 
1928 	/* only skip sriov related */
1929 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1930 		if (dev->resource[i].flags & flags)
1931 			bars |= (1 << i);
1932 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1933 		if (dev->resource[i].flags & flags)
1934 			bars |= (1 << i);
1935 
1936 	err = do_pci_enable_device(dev, bars);
1937 	if (err < 0)
1938 		atomic_dec(&dev->enable_cnt);
1939 	return err;
1940 }
1941 
1942 /**
1943  * pci_enable_device_io - Initialize a device for use with IO space
1944  * @dev: PCI device to be initialized
1945  *
1946  * Initialize device before it's used by a driver. Ask low-level code
1947  * to enable I/O resources. Wake up the device if it was suspended.
1948  * Beware, this function can fail.
1949  */
pci_enable_device_io(struct pci_dev * dev)1950 int pci_enable_device_io(struct pci_dev *dev)
1951 {
1952 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1953 }
1954 EXPORT_SYMBOL(pci_enable_device_io);
1955 
1956 /**
1957  * pci_enable_device_mem - Initialize a device for use with Memory space
1958  * @dev: PCI device to be initialized
1959  *
1960  * Initialize device before it's used by a driver. Ask low-level code
1961  * to enable Memory resources. Wake up the device if it was suspended.
1962  * Beware, this function can fail.
1963  */
pci_enable_device_mem(struct pci_dev * dev)1964 int pci_enable_device_mem(struct pci_dev *dev)
1965 {
1966 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1967 }
1968 EXPORT_SYMBOL(pci_enable_device_mem);
1969 
1970 /**
1971  * pci_enable_device - Initialize device before it's used by a driver.
1972  * @dev: PCI device to be initialized
1973  *
1974  * Initialize device before it's used by a driver. Ask low-level code
1975  * to enable I/O and memory. Wake up the device if it was suspended.
1976  * Beware, this function can fail.
1977  *
1978  * Note we don't actually enable the device many times if we call
1979  * this function repeatedly (we just increment the count).
1980  */
pci_enable_device(struct pci_dev * dev)1981 int pci_enable_device(struct pci_dev *dev)
1982 {
1983 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1984 }
1985 EXPORT_SYMBOL(pci_enable_device);
1986 
1987 /*
1988  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1989  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1990  * there's no need to track it separately.  pci_devres is initialized
1991  * when a device is enabled using managed PCI device enable interface.
1992  */
1993 struct pci_devres {
1994 	unsigned int enabled:1;
1995 	unsigned int pinned:1;
1996 	unsigned int orig_intx:1;
1997 	unsigned int restore_intx:1;
1998 	unsigned int mwi:1;
1999 	u32 region_mask;
2000 };
2001 
pcim_release(struct device * gendev,void * res)2002 static void pcim_release(struct device *gendev, void *res)
2003 {
2004 	struct pci_dev *dev = to_pci_dev(gendev);
2005 	struct pci_devres *this = res;
2006 	int i;
2007 
2008 	if (dev->msi_enabled)
2009 		pci_disable_msi(dev);
2010 	if (dev->msix_enabled)
2011 		pci_disable_msix(dev);
2012 
2013 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2014 		if (this->region_mask & (1 << i))
2015 			pci_release_region(dev, i);
2016 
2017 	if (this->mwi)
2018 		pci_clear_mwi(dev);
2019 
2020 	if (this->restore_intx)
2021 		pci_intx(dev, this->orig_intx);
2022 
2023 	if (this->enabled && !this->pinned)
2024 		pci_disable_device(dev);
2025 }
2026 
get_pci_dr(struct pci_dev * pdev)2027 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2028 {
2029 	struct pci_devres *dr, *new_dr;
2030 
2031 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2032 	if (dr)
2033 		return dr;
2034 
2035 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2036 	if (!new_dr)
2037 		return NULL;
2038 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2039 }
2040 
find_pci_dr(struct pci_dev * pdev)2041 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2042 {
2043 	if (pci_is_managed(pdev))
2044 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2045 	return NULL;
2046 }
2047 
2048 /**
2049  * pcim_enable_device - Managed pci_enable_device()
2050  * @pdev: PCI device to be initialized
2051  *
2052  * Managed pci_enable_device().
2053  */
pcim_enable_device(struct pci_dev * pdev)2054 int pcim_enable_device(struct pci_dev *pdev)
2055 {
2056 	struct pci_devres *dr;
2057 	int rc;
2058 
2059 	dr = get_pci_dr(pdev);
2060 	if (unlikely(!dr))
2061 		return -ENOMEM;
2062 	if (dr->enabled)
2063 		return 0;
2064 
2065 	rc = pci_enable_device(pdev);
2066 	if (!rc) {
2067 		pdev->is_managed = 1;
2068 		dr->enabled = 1;
2069 	}
2070 	return rc;
2071 }
2072 EXPORT_SYMBOL(pcim_enable_device);
2073 
2074 /**
2075  * pcim_pin_device - Pin managed PCI device
2076  * @pdev: PCI device to pin
2077  *
2078  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2079  * driver detach.  @pdev must have been enabled with
2080  * pcim_enable_device().
2081  */
pcim_pin_device(struct pci_dev * pdev)2082 void pcim_pin_device(struct pci_dev *pdev)
2083 {
2084 	struct pci_devres *dr;
2085 
2086 	dr = find_pci_dr(pdev);
2087 	WARN_ON(!dr || !dr->enabled);
2088 	if (dr)
2089 		dr->pinned = 1;
2090 }
2091 EXPORT_SYMBOL(pcim_pin_device);
2092 
2093 /*
2094  * pcibios_add_device - provide arch specific hooks when adding device dev
2095  * @dev: the PCI device being added
2096  *
2097  * Permits the platform to provide architecture specific functionality when
2098  * devices are added. This is the default implementation. Architecture
2099  * implementations can override this.
2100  */
pcibios_add_device(struct pci_dev * dev)2101 int __weak pcibios_add_device(struct pci_dev *dev)
2102 {
2103 	return 0;
2104 }
2105 
2106 /**
2107  * pcibios_release_device - provide arch specific hooks when releasing
2108  *			    device dev
2109  * @dev: the PCI device being released
2110  *
2111  * Permits the platform to provide architecture specific functionality when
2112  * devices are released. This is the default implementation. Architecture
2113  * implementations can override this.
2114  */
pcibios_release_device(struct pci_dev * dev)2115 void __weak pcibios_release_device(struct pci_dev *dev) {}
2116 
2117 /**
2118  * pcibios_disable_device - disable arch specific PCI resources for device dev
2119  * @dev: the PCI device to disable
2120  *
2121  * Disables architecture specific PCI resources for the device. This
2122  * is the default implementation. Architecture implementations can
2123  * override this.
2124  */
pcibios_disable_device(struct pci_dev * dev)2125 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2126 
2127 /**
2128  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2129  * @irq: ISA IRQ to penalize
2130  * @active: IRQ active or not
2131  *
2132  * Permits the platform to provide architecture-specific functionality when
2133  * penalizing ISA IRQs. This is the default implementation. Architecture
2134  * implementations can override this.
2135  */
pcibios_penalize_isa_irq(int irq,int active)2136 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2137 
do_pci_disable_device(struct pci_dev * dev)2138 static void do_pci_disable_device(struct pci_dev *dev)
2139 {
2140 	u16 pci_command;
2141 
2142 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2143 	if (pci_command & PCI_COMMAND_MASTER) {
2144 		pci_command &= ~PCI_COMMAND_MASTER;
2145 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2146 	}
2147 
2148 	pcibios_disable_device(dev);
2149 }
2150 
2151 /**
2152  * pci_disable_enabled_device - Disable device without updating enable_cnt
2153  * @dev: PCI device to disable
2154  *
2155  * NOTE: This function is a backend of PCI power management routines and is
2156  * not supposed to be called drivers.
2157  */
pci_disable_enabled_device(struct pci_dev * dev)2158 void pci_disable_enabled_device(struct pci_dev *dev)
2159 {
2160 	if (pci_is_enabled(dev))
2161 		do_pci_disable_device(dev);
2162 }
2163 
2164 /**
2165  * pci_disable_device - Disable PCI device after use
2166  * @dev: PCI device to be disabled
2167  *
2168  * Signal to the system that the PCI device is not in use by the system
2169  * anymore.  This only involves disabling PCI bus-mastering, if active.
2170  *
2171  * Note we don't actually disable the device until all callers of
2172  * pci_enable_device() have called pci_disable_device().
2173  */
pci_disable_device(struct pci_dev * dev)2174 void pci_disable_device(struct pci_dev *dev)
2175 {
2176 	struct pci_devres *dr;
2177 
2178 	dr = find_pci_dr(dev);
2179 	if (dr)
2180 		dr->enabled = 0;
2181 
2182 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2183 		      "disabling already-disabled device");
2184 
2185 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2186 		return;
2187 
2188 	do_pci_disable_device(dev);
2189 
2190 	dev->is_busmaster = 0;
2191 }
2192 EXPORT_SYMBOL(pci_disable_device);
2193 
2194 /**
2195  * pcibios_set_pcie_reset_state - set reset state for device dev
2196  * @dev: the PCIe device reset
2197  * @state: Reset state to enter into
2198  *
2199  * Set the PCIe reset state for the device. This is the default
2200  * implementation. Architecture implementations can override this.
2201  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2202 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2203 					enum pcie_reset_state state)
2204 {
2205 	return -EINVAL;
2206 }
2207 
2208 /**
2209  * pci_set_pcie_reset_state - set reset state for device dev
2210  * @dev: the PCIe device reset
2211  * @state: Reset state to enter into
2212  *
2213  * Sets the PCI reset state for the device.
2214  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2215 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2216 {
2217 	return pcibios_set_pcie_reset_state(dev, state);
2218 }
2219 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2220 
pcie_clear_device_status(struct pci_dev * dev)2221 void pcie_clear_device_status(struct pci_dev *dev)
2222 {
2223 	u16 sta;
2224 
2225 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2226 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2227 }
2228 
2229 /**
2230  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2231  * @dev: PCIe root port or event collector.
2232  */
pcie_clear_root_pme_status(struct pci_dev * dev)2233 void pcie_clear_root_pme_status(struct pci_dev *dev)
2234 {
2235 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2236 }
2237 
2238 /**
2239  * pci_check_pme_status - Check if given device has generated PME.
2240  * @dev: Device to check.
2241  *
2242  * Check the PME status of the device and if set, clear it and clear PME enable
2243  * (if set).  Return 'true' if PME status and PME enable were both set or
2244  * 'false' otherwise.
2245  */
pci_check_pme_status(struct pci_dev * dev)2246 bool pci_check_pme_status(struct pci_dev *dev)
2247 {
2248 	int pmcsr_pos;
2249 	u16 pmcsr;
2250 	bool ret = false;
2251 
2252 	if (!dev->pm_cap)
2253 		return false;
2254 
2255 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2256 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2257 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2258 		return false;
2259 
2260 	/* Clear PME status. */
2261 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2262 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2263 		/* Disable PME to avoid interrupt flood. */
2264 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2265 		ret = true;
2266 	}
2267 
2268 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2269 
2270 	return ret;
2271 }
2272 
2273 /**
2274  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2275  * @dev: Device to handle.
2276  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2277  *
2278  * Check if @dev has generated PME and queue a resume request for it in that
2279  * case.
2280  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2281 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2282 {
2283 	if (pme_poll_reset && dev->pme_poll)
2284 		dev->pme_poll = false;
2285 
2286 	if (pci_check_pme_status(dev)) {
2287 		pci_wakeup_event(dev);
2288 		pm_request_resume(&dev->dev);
2289 	}
2290 	return 0;
2291 }
2292 
2293 /**
2294  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2295  * @bus: Top bus of the subtree to walk.
2296  */
pci_pme_wakeup_bus(struct pci_bus * bus)2297 void pci_pme_wakeup_bus(struct pci_bus *bus)
2298 {
2299 	if (bus)
2300 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2301 }
2302 
2303 
2304 /**
2305  * pci_pme_capable - check the capability of PCI device to generate PME#
2306  * @dev: PCI device to handle.
2307  * @state: PCI state from which device will issue PME#.
2308  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2309 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2310 {
2311 	if (!dev->pm_cap)
2312 		return false;
2313 
2314 	return !!(dev->pme_support & (1 << state));
2315 }
2316 EXPORT_SYMBOL(pci_pme_capable);
2317 
pci_pme_list_scan(struct work_struct * work)2318 static void pci_pme_list_scan(struct work_struct *work)
2319 {
2320 	struct pci_pme_device *pme_dev, *n;
2321 
2322 	mutex_lock(&pci_pme_list_mutex);
2323 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2324 		if (pme_dev->dev->pme_poll) {
2325 			struct pci_dev *bridge;
2326 
2327 			bridge = pme_dev->dev->bus->self;
2328 			/*
2329 			 * If bridge is in low power state, the
2330 			 * configuration space of subordinate devices
2331 			 * may be not accessible
2332 			 */
2333 			if (bridge && bridge->current_state != PCI_D0)
2334 				continue;
2335 			/*
2336 			 * If the device is in D3cold it should not be
2337 			 * polled either.
2338 			 */
2339 			if (pme_dev->dev->current_state == PCI_D3cold)
2340 				continue;
2341 
2342 			pci_pme_wakeup(pme_dev->dev, NULL);
2343 		} else {
2344 			list_del(&pme_dev->list);
2345 			kfree(pme_dev);
2346 		}
2347 	}
2348 	if (!list_empty(&pci_pme_list))
2349 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2350 				   msecs_to_jiffies(PME_TIMEOUT));
2351 	mutex_unlock(&pci_pme_list_mutex);
2352 }
2353 
__pci_pme_active(struct pci_dev * dev,bool enable)2354 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2355 {
2356 	u16 pmcsr;
2357 
2358 	if (!dev->pme_support)
2359 		return;
2360 
2361 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2362 	/* Clear PME_Status by writing 1 to it and enable PME# */
2363 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2364 	if (!enable)
2365 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2366 
2367 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2368 }
2369 
2370 /**
2371  * pci_pme_restore - Restore PME configuration after config space restore.
2372  * @dev: PCI device to update.
2373  */
pci_pme_restore(struct pci_dev * dev)2374 void pci_pme_restore(struct pci_dev *dev)
2375 {
2376 	u16 pmcsr;
2377 
2378 	if (!dev->pme_support)
2379 		return;
2380 
2381 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2382 	if (dev->wakeup_prepared) {
2383 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2384 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2385 	} else {
2386 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2387 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2388 	}
2389 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2390 }
2391 
2392 /**
2393  * pci_pme_active - enable or disable PCI device's PME# function
2394  * @dev: PCI device to handle.
2395  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2396  *
2397  * The caller must verify that the device is capable of generating PME# before
2398  * calling this function with @enable equal to 'true'.
2399  */
pci_pme_active(struct pci_dev * dev,bool enable)2400 void pci_pme_active(struct pci_dev *dev, bool enable)
2401 {
2402 	__pci_pme_active(dev, enable);
2403 
2404 	/*
2405 	 * PCI (as opposed to PCIe) PME requires that the device have
2406 	 * its PME# line hooked up correctly. Not all hardware vendors
2407 	 * do this, so the PME never gets delivered and the device
2408 	 * remains asleep. The easiest way around this is to
2409 	 * periodically walk the list of suspended devices and check
2410 	 * whether any have their PME flag set. The assumption is that
2411 	 * we'll wake up often enough anyway that this won't be a huge
2412 	 * hit, and the power savings from the devices will still be a
2413 	 * win.
2414 	 *
2415 	 * Although PCIe uses in-band PME message instead of PME# line
2416 	 * to report PME, PME does not work for some PCIe devices in
2417 	 * reality.  For example, there are devices that set their PME
2418 	 * status bits, but don't really bother to send a PME message;
2419 	 * there are PCI Express Root Ports that don't bother to
2420 	 * trigger interrupts when they receive PME messages from the
2421 	 * devices below.  So PME poll is used for PCIe devices too.
2422 	 */
2423 
2424 	if (dev->pme_poll) {
2425 		struct pci_pme_device *pme_dev;
2426 		if (enable) {
2427 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2428 					  GFP_KERNEL);
2429 			if (!pme_dev) {
2430 				pci_warn(dev, "can't enable PME#\n");
2431 				return;
2432 			}
2433 			pme_dev->dev = dev;
2434 			mutex_lock(&pci_pme_list_mutex);
2435 			list_add(&pme_dev->list, &pci_pme_list);
2436 			if (list_is_singular(&pci_pme_list))
2437 				queue_delayed_work(system_freezable_wq,
2438 						   &pci_pme_work,
2439 						   msecs_to_jiffies(PME_TIMEOUT));
2440 			mutex_unlock(&pci_pme_list_mutex);
2441 		} else {
2442 			mutex_lock(&pci_pme_list_mutex);
2443 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2444 				if (pme_dev->dev == dev) {
2445 					list_del(&pme_dev->list);
2446 					kfree(pme_dev);
2447 					break;
2448 				}
2449 			}
2450 			mutex_unlock(&pci_pme_list_mutex);
2451 		}
2452 	}
2453 
2454 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2455 }
2456 EXPORT_SYMBOL(pci_pme_active);
2457 
2458 /**
2459  * __pci_enable_wake - enable PCI device as wakeup event source
2460  * @dev: PCI device affected
2461  * @state: PCI state from which device will issue wakeup events
2462  * @enable: True to enable event generation; false to disable
2463  *
2464  * This enables the device as a wakeup event source, or disables it.
2465  * When such events involves platform-specific hooks, those hooks are
2466  * called automatically by this routine.
2467  *
2468  * Devices with legacy power management (no standard PCI PM capabilities)
2469  * always require such platform hooks.
2470  *
2471  * RETURN VALUE:
2472  * 0 is returned on success
2473  * -EINVAL is returned if device is not supposed to wake up the system
2474  * Error code depending on the platform is returned if both the platform and
2475  * the native mechanism fail to enable the generation of wake-up events
2476  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2477 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2478 {
2479 	int ret = 0;
2480 
2481 	/*
2482 	 * Bridges that are not power-manageable directly only signal
2483 	 * wakeup on behalf of subordinate devices which is set up
2484 	 * elsewhere, so skip them. However, bridges that are
2485 	 * power-manageable may signal wakeup for themselves (for example,
2486 	 * on a hotplug event) and they need to be covered here.
2487 	 */
2488 	if (!pci_power_manageable(dev))
2489 		return 0;
2490 
2491 	/* Don't do the same thing twice in a row for one device. */
2492 	if (!!enable == !!dev->wakeup_prepared)
2493 		return 0;
2494 
2495 	/*
2496 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2497 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2498 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2499 	 */
2500 
2501 	if (enable) {
2502 		int error;
2503 
2504 		/*
2505 		 * Enable PME signaling if the device can signal PME from
2506 		 * D3cold regardless of whether or not it can signal PME from
2507 		 * the current target state, because that will allow it to
2508 		 * signal PME when the hierarchy above it goes into D3cold and
2509 		 * the device itself ends up in D3cold as a result of that.
2510 		 */
2511 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2512 			pci_pme_active(dev, true);
2513 		else
2514 			ret = 1;
2515 		error = platform_pci_set_wakeup(dev, true);
2516 		if (ret)
2517 			ret = error;
2518 		if (!ret)
2519 			dev->wakeup_prepared = true;
2520 	} else {
2521 		platform_pci_set_wakeup(dev, false);
2522 		pci_pme_active(dev, false);
2523 		dev->wakeup_prepared = false;
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 /**
2530  * pci_enable_wake - change wakeup settings for a PCI device
2531  * @pci_dev: Target device
2532  * @state: PCI state from which device will issue wakeup events
2533  * @enable: Whether or not to enable event generation
2534  *
2535  * If @enable is set, check device_may_wakeup() for the device before calling
2536  * __pci_enable_wake() for it.
2537  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2538 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2539 {
2540 	if (enable && !device_may_wakeup(&pci_dev->dev))
2541 		return -EINVAL;
2542 
2543 	return __pci_enable_wake(pci_dev, state, enable);
2544 }
2545 EXPORT_SYMBOL(pci_enable_wake);
2546 
2547 /**
2548  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2549  * @dev: PCI device to prepare
2550  * @enable: True to enable wake-up event generation; false to disable
2551  *
2552  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2553  * and this function allows them to set that up cleanly - pci_enable_wake()
2554  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2555  * ordering constraints.
2556  *
2557  * This function only returns error code if the device is not allowed to wake
2558  * up the system from sleep or it is not capable of generating PME# from both
2559  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2560  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2561 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2562 {
2563 	return pci_pme_capable(dev, PCI_D3cold) ?
2564 			pci_enable_wake(dev, PCI_D3cold, enable) :
2565 			pci_enable_wake(dev, PCI_D3hot, enable);
2566 }
2567 EXPORT_SYMBOL(pci_wake_from_d3);
2568 
2569 /**
2570  * pci_target_state - find an appropriate low power state for a given PCI dev
2571  * @dev: PCI device
2572  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2573  *
2574  * Use underlying platform code to find a supported low power state for @dev.
2575  * If the platform can't manage @dev, return the deepest state from which it
2576  * can generate wake events, based on any available PME info.
2577  */
pci_target_state(struct pci_dev * dev,bool wakeup)2578 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2579 {
2580 	pci_power_t target_state = PCI_D3hot;
2581 
2582 	if (platform_pci_power_manageable(dev)) {
2583 		/*
2584 		 * Call the platform to find the target state for the device.
2585 		 */
2586 		pci_power_t state = platform_pci_choose_state(dev);
2587 
2588 		switch (state) {
2589 		case PCI_POWER_ERROR:
2590 		case PCI_UNKNOWN:
2591 			break;
2592 		case PCI_D1:
2593 		case PCI_D2:
2594 			if (pci_no_d1d2(dev))
2595 				break;
2596 			fallthrough;
2597 		default:
2598 			target_state = state;
2599 		}
2600 
2601 		return target_state;
2602 	}
2603 
2604 	if (!dev->pm_cap)
2605 		target_state = PCI_D0;
2606 
2607 	/*
2608 	 * If the device is in D3cold even though it's not power-manageable by
2609 	 * the platform, it may have been powered down by non-standard means.
2610 	 * Best to let it slumber.
2611 	 */
2612 	if (dev->current_state == PCI_D3cold)
2613 		target_state = PCI_D3cold;
2614 
2615 	if (wakeup && dev->pme_support) {
2616 		pci_power_t state = target_state;
2617 
2618 		/*
2619 		 * Find the deepest state from which the device can generate
2620 		 * PME#.
2621 		 */
2622 		while (state && !(dev->pme_support & (1 << state)))
2623 			state--;
2624 
2625 		if (state)
2626 			return state;
2627 		else if (dev->pme_support & 1)
2628 			return PCI_D0;
2629 	}
2630 
2631 	return target_state;
2632 }
2633 
2634 /**
2635  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2636  *			  into a sleep state
2637  * @dev: Device to handle.
2638  *
2639  * Choose the power state appropriate for the device depending on whether
2640  * it can wake up the system and/or is power manageable by the platform
2641  * (PCI_D3hot is the default) and put the device into that state.
2642  */
pci_prepare_to_sleep(struct pci_dev * dev)2643 int pci_prepare_to_sleep(struct pci_dev *dev)
2644 {
2645 	bool wakeup = device_may_wakeup(&dev->dev);
2646 	pci_power_t target_state = pci_target_state(dev, wakeup);
2647 	int error;
2648 
2649 	if (target_state == PCI_POWER_ERROR)
2650 		return -EIO;
2651 
2652 	/*
2653 	 * There are systems (for example, Intel mobile chips since Coffee
2654 	 * Lake) where the power drawn while suspended can be significantly
2655 	 * reduced by disabling PTM on PCIe root ports as this allows the
2656 	 * port to enter a lower-power PM state and the SoC to reach a
2657 	 * lower-power idle state as a whole.
2658 	 */
2659 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2660 		pci_disable_ptm(dev);
2661 
2662 	pci_enable_wake(dev, target_state, wakeup);
2663 
2664 	error = pci_set_power_state(dev, target_state);
2665 
2666 	if (error) {
2667 		pci_enable_wake(dev, target_state, false);
2668 		pci_restore_ptm_state(dev);
2669 	}
2670 
2671 	return error;
2672 }
2673 EXPORT_SYMBOL(pci_prepare_to_sleep);
2674 
2675 /**
2676  * pci_back_from_sleep - turn PCI device on during system-wide transition
2677  *			 into working state
2678  * @dev: Device to handle.
2679  *
2680  * Disable device's system wake-up capability and put it into D0.
2681  */
pci_back_from_sleep(struct pci_dev * dev)2682 int pci_back_from_sleep(struct pci_dev *dev)
2683 {
2684 	pci_enable_wake(dev, PCI_D0, false);
2685 	return pci_set_power_state(dev, PCI_D0);
2686 }
2687 EXPORT_SYMBOL(pci_back_from_sleep);
2688 
2689 /**
2690  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2691  * @dev: PCI device being suspended.
2692  *
2693  * Prepare @dev to generate wake-up events at run time and put it into a low
2694  * power state.
2695  */
pci_finish_runtime_suspend(struct pci_dev * dev)2696 int pci_finish_runtime_suspend(struct pci_dev *dev)
2697 {
2698 	pci_power_t target_state;
2699 	int error;
2700 
2701 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2702 	if (target_state == PCI_POWER_ERROR)
2703 		return -EIO;
2704 
2705 	dev->runtime_d3cold = target_state == PCI_D3cold;
2706 
2707 	/*
2708 	 * There are systems (for example, Intel mobile chips since Coffee
2709 	 * Lake) where the power drawn while suspended can be significantly
2710 	 * reduced by disabling PTM on PCIe root ports as this allows the
2711 	 * port to enter a lower-power PM state and the SoC to reach a
2712 	 * lower-power idle state as a whole.
2713 	 */
2714 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2715 		pci_disable_ptm(dev);
2716 
2717 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2718 
2719 	error = pci_set_power_state(dev, target_state);
2720 
2721 	if (error) {
2722 		pci_enable_wake(dev, target_state, false);
2723 		pci_restore_ptm_state(dev);
2724 		dev->runtime_d3cold = false;
2725 	}
2726 
2727 	return error;
2728 }
2729 
2730 /**
2731  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2732  * @dev: Device to check.
2733  *
2734  * Return true if the device itself is capable of generating wake-up events
2735  * (through the platform or using the native PCIe PME) or if the device supports
2736  * PME and one of its upstream bridges can generate wake-up events.
2737  */
pci_dev_run_wake(struct pci_dev * dev)2738 bool pci_dev_run_wake(struct pci_dev *dev)
2739 {
2740 	struct pci_bus *bus = dev->bus;
2741 
2742 	if (!dev->pme_support)
2743 		return false;
2744 
2745 	/* PME-capable in principle, but not from the target power state */
2746 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2747 		return false;
2748 
2749 	if (device_can_wakeup(&dev->dev))
2750 		return true;
2751 
2752 	while (bus->parent) {
2753 		struct pci_dev *bridge = bus->self;
2754 
2755 		if (device_can_wakeup(&bridge->dev))
2756 			return true;
2757 
2758 		bus = bus->parent;
2759 	}
2760 
2761 	/* We have reached the root bus. */
2762 	if (bus->bridge)
2763 		return device_can_wakeup(bus->bridge);
2764 
2765 	return false;
2766 }
2767 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2768 
2769 /**
2770  * pci_dev_need_resume - Check if it is necessary to resume the device.
2771  * @pci_dev: Device to check.
2772  *
2773  * Return 'true' if the device is not runtime-suspended or it has to be
2774  * reconfigured due to wakeup settings difference between system and runtime
2775  * suspend, or the current power state of it is not suitable for the upcoming
2776  * (system-wide) transition.
2777  */
pci_dev_need_resume(struct pci_dev * pci_dev)2778 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2779 {
2780 	struct device *dev = &pci_dev->dev;
2781 	pci_power_t target_state;
2782 
2783 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2784 		return true;
2785 
2786 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2787 
2788 	/*
2789 	 * If the earlier platform check has not triggered, D3cold is just power
2790 	 * removal on top of D3hot, so no need to resume the device in that
2791 	 * case.
2792 	 */
2793 	return target_state != pci_dev->current_state &&
2794 		target_state != PCI_D3cold &&
2795 		pci_dev->current_state != PCI_D3hot;
2796 }
2797 
2798 /**
2799  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2800  * @pci_dev: Device to check.
2801  *
2802  * If the device is suspended and it is not configured for system wakeup,
2803  * disable PME for it to prevent it from waking up the system unnecessarily.
2804  *
2805  * Note that if the device's power state is D3cold and the platform check in
2806  * pci_dev_need_resume() has not triggered, the device's configuration need not
2807  * be changed.
2808  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2809 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2810 {
2811 	struct device *dev = &pci_dev->dev;
2812 
2813 	spin_lock_irq(&dev->power.lock);
2814 
2815 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2816 	    pci_dev->current_state < PCI_D3cold)
2817 		__pci_pme_active(pci_dev, false);
2818 
2819 	spin_unlock_irq(&dev->power.lock);
2820 }
2821 
2822 /**
2823  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2824  * @pci_dev: Device to handle.
2825  *
2826  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2827  * it might have been disabled during the prepare phase of system suspend if
2828  * the device was not configured for system wakeup.
2829  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2830 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2831 {
2832 	struct device *dev = &pci_dev->dev;
2833 
2834 	if (!pci_dev_run_wake(pci_dev))
2835 		return;
2836 
2837 	spin_lock_irq(&dev->power.lock);
2838 
2839 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2840 		__pci_pme_active(pci_dev, true);
2841 
2842 	spin_unlock_irq(&dev->power.lock);
2843 }
2844 
pci_config_pm_runtime_get(struct pci_dev * pdev)2845 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2846 {
2847 	struct device *dev = &pdev->dev;
2848 	struct device *parent = dev->parent;
2849 
2850 	if (parent)
2851 		pm_runtime_get_sync(parent);
2852 	pm_runtime_get_noresume(dev);
2853 	/*
2854 	 * pdev->current_state is set to PCI_D3cold during suspending,
2855 	 * so wait until suspending completes
2856 	 */
2857 	pm_runtime_barrier(dev);
2858 	/*
2859 	 * Only need to resume devices in D3cold, because config
2860 	 * registers are still accessible for devices suspended but
2861 	 * not in D3cold.
2862 	 */
2863 	if (pdev->current_state == PCI_D3cold)
2864 		pm_runtime_resume(dev);
2865 }
2866 
pci_config_pm_runtime_put(struct pci_dev * pdev)2867 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2868 {
2869 	struct device *dev = &pdev->dev;
2870 	struct device *parent = dev->parent;
2871 
2872 	pm_runtime_put(dev);
2873 	if (parent)
2874 		pm_runtime_put_sync(parent);
2875 }
2876 
2877 static const struct dmi_system_id bridge_d3_blacklist[] = {
2878 #ifdef CONFIG_X86
2879 	{
2880 		/*
2881 		 * Gigabyte X299 root port is not marked as hotplug capable
2882 		 * which allows Linux to power manage it.  However, this
2883 		 * confuses the BIOS SMI handler so don't power manage root
2884 		 * ports on that system.
2885 		 */
2886 		.ident = "X299 DESIGNARE EX-CF",
2887 		.matches = {
2888 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2889 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2890 		},
2891 	},
2892 	{
2893 		/*
2894 		 * Downstream device is not accessible after putting a root port
2895 		 * into D3cold and back into D0 on Elo Continental Z2 board
2896 		 */
2897 		.ident = "Elo Continental Z2",
2898 		.matches = {
2899 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2900 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2901 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2902 		},
2903 	},
2904 #endif
2905 	{ }
2906 };
2907 
2908 /**
2909  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2910  * @bridge: Bridge to check
2911  *
2912  * This function checks if it is possible to move the bridge to D3.
2913  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2914  */
pci_bridge_d3_possible(struct pci_dev * bridge)2915 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2916 {
2917 	if (!pci_is_pcie(bridge))
2918 		return false;
2919 
2920 	switch (pci_pcie_type(bridge)) {
2921 	case PCI_EXP_TYPE_ROOT_PORT:
2922 	case PCI_EXP_TYPE_UPSTREAM:
2923 	case PCI_EXP_TYPE_DOWNSTREAM:
2924 		if (pci_bridge_d3_disable)
2925 			return false;
2926 
2927 		/*
2928 		 * Hotplug ports handled by firmware in System Management Mode
2929 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2930 		 */
2931 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2932 			return false;
2933 
2934 		if (pci_bridge_d3_force)
2935 			return true;
2936 
2937 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2938 		if (bridge->is_thunderbolt)
2939 			return true;
2940 
2941 		/* Platform might know better if the bridge supports D3 */
2942 		if (platform_pci_bridge_d3(bridge))
2943 			return true;
2944 
2945 		/*
2946 		 * Hotplug ports handled natively by the OS were not validated
2947 		 * by vendors for runtime D3 at least until 2018 because there
2948 		 * was no OS support.
2949 		 */
2950 		if (bridge->is_hotplug_bridge)
2951 			return false;
2952 
2953 		if (dmi_check_system(bridge_d3_blacklist))
2954 			return false;
2955 
2956 		/*
2957 		 * It should be safe to put PCIe ports from 2015 or newer
2958 		 * to D3.
2959 		 */
2960 		if (dmi_get_bios_year() >= 2015)
2961 			return true;
2962 		break;
2963 	}
2964 
2965 	return false;
2966 }
2967 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2968 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2969 {
2970 	bool *d3cold_ok = data;
2971 
2972 	if (/* The device needs to be allowed to go D3cold ... */
2973 	    dev->no_d3cold || !dev->d3cold_allowed ||
2974 
2975 	    /* ... and if it is wakeup capable to do so from D3cold. */
2976 	    (device_may_wakeup(&dev->dev) &&
2977 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2978 
2979 	    /* If it is a bridge it must be allowed to go to D3. */
2980 	    !pci_power_manageable(dev))
2981 
2982 		*d3cold_ok = false;
2983 
2984 	return !*d3cold_ok;
2985 }
2986 
2987 /*
2988  * pci_bridge_d3_update - Update bridge D3 capabilities
2989  * @dev: PCI device which is changed
2990  *
2991  * Update upstream bridge PM capabilities accordingly depending on if the
2992  * device PM configuration was changed or the device is being removed.  The
2993  * change is also propagated upstream.
2994  */
pci_bridge_d3_update(struct pci_dev * dev)2995 void pci_bridge_d3_update(struct pci_dev *dev)
2996 {
2997 	bool remove = !device_is_registered(&dev->dev);
2998 	struct pci_dev *bridge;
2999 	bool d3cold_ok = true;
3000 
3001 	bridge = pci_upstream_bridge(dev);
3002 	if (!bridge || !pci_bridge_d3_possible(bridge))
3003 		return;
3004 
3005 	/*
3006 	 * If D3 is currently allowed for the bridge, removing one of its
3007 	 * children won't change that.
3008 	 */
3009 	if (remove && bridge->bridge_d3)
3010 		return;
3011 
3012 	/*
3013 	 * If D3 is currently allowed for the bridge and a child is added or
3014 	 * changed, disallowance of D3 can only be caused by that child, so
3015 	 * we only need to check that single device, not any of its siblings.
3016 	 *
3017 	 * If D3 is currently not allowed for the bridge, checking the device
3018 	 * first may allow us to skip checking its siblings.
3019 	 */
3020 	if (!remove)
3021 		pci_dev_check_d3cold(dev, &d3cold_ok);
3022 
3023 	/*
3024 	 * If D3 is currently not allowed for the bridge, this may be caused
3025 	 * either by the device being changed/removed or any of its siblings,
3026 	 * so we need to go through all children to find out if one of them
3027 	 * continues to block D3.
3028 	 */
3029 	if (d3cold_ok && !bridge->bridge_d3)
3030 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3031 			     &d3cold_ok);
3032 
3033 	if (bridge->bridge_d3 != d3cold_ok) {
3034 		bridge->bridge_d3 = d3cold_ok;
3035 		/* Propagate change to upstream bridges */
3036 		pci_bridge_d3_update(bridge);
3037 	}
3038 }
3039 
3040 /**
3041  * pci_d3cold_enable - Enable D3cold for device
3042  * @dev: PCI device to handle
3043  *
3044  * This function can be used in drivers to enable D3cold from the device
3045  * they handle.  It also updates upstream PCI bridge PM capabilities
3046  * accordingly.
3047  */
pci_d3cold_enable(struct pci_dev * dev)3048 void pci_d3cold_enable(struct pci_dev *dev)
3049 {
3050 	if (dev->no_d3cold) {
3051 		dev->no_d3cold = false;
3052 		pci_bridge_d3_update(dev);
3053 	}
3054 }
3055 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3056 
3057 /**
3058  * pci_d3cold_disable - Disable D3cold for device
3059  * @dev: PCI device to handle
3060  *
3061  * This function can be used in drivers to disable D3cold from the device
3062  * they handle.  It also updates upstream PCI bridge PM capabilities
3063  * accordingly.
3064  */
pci_d3cold_disable(struct pci_dev * dev)3065 void pci_d3cold_disable(struct pci_dev *dev)
3066 {
3067 	if (!dev->no_d3cold) {
3068 		dev->no_d3cold = true;
3069 		pci_bridge_d3_update(dev);
3070 	}
3071 }
3072 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3073 
3074 /**
3075  * pci_pm_init - Initialize PM functions of given PCI device
3076  * @dev: PCI device to handle.
3077  */
pci_pm_init(struct pci_dev * dev)3078 void pci_pm_init(struct pci_dev *dev)
3079 {
3080 	int pm;
3081 	u16 status;
3082 	u16 pmc;
3083 
3084 	pm_runtime_forbid(&dev->dev);
3085 	pm_runtime_set_active(&dev->dev);
3086 	pm_runtime_enable(&dev->dev);
3087 	device_enable_async_suspend(&dev->dev);
3088 	dev->wakeup_prepared = false;
3089 
3090 	dev->pm_cap = 0;
3091 	dev->pme_support = 0;
3092 
3093 	/* find PCI PM capability in list */
3094 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3095 	if (!pm)
3096 		return;
3097 	/* Check device's ability to generate PME# */
3098 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3099 
3100 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3101 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3102 			pmc & PCI_PM_CAP_VER_MASK);
3103 		return;
3104 	}
3105 
3106 	dev->pm_cap = pm;
3107 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3108 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3109 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3110 	dev->d3cold_allowed = true;
3111 
3112 	dev->d1_support = false;
3113 	dev->d2_support = false;
3114 	if (!pci_no_d1d2(dev)) {
3115 		if (pmc & PCI_PM_CAP_D1)
3116 			dev->d1_support = true;
3117 		if (pmc & PCI_PM_CAP_D2)
3118 			dev->d2_support = true;
3119 
3120 		if (dev->d1_support || dev->d2_support)
3121 			pci_info(dev, "supports%s%s\n",
3122 				   dev->d1_support ? " D1" : "",
3123 				   dev->d2_support ? " D2" : "");
3124 	}
3125 
3126 	pmc &= PCI_PM_CAP_PME_MASK;
3127 	if (pmc) {
3128 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3129 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3130 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3131 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3132 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3133 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3134 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3135 		dev->pme_poll = true;
3136 		/*
3137 		 * Make device's PM flags reflect the wake-up capability, but
3138 		 * let the user space enable it to wake up the system as needed.
3139 		 */
3140 		device_set_wakeup_capable(&dev->dev, true);
3141 		/* Disable the PME# generation functionality */
3142 		pci_pme_active(dev, false);
3143 	}
3144 
3145 	pci_read_config_word(dev, PCI_STATUS, &status);
3146 	if (status & PCI_STATUS_IMM_READY)
3147 		dev->imm_ready = 1;
3148 }
3149 
pci_ea_flags(struct pci_dev * dev,u8 prop)3150 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3151 {
3152 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3153 
3154 	switch (prop) {
3155 	case PCI_EA_P_MEM:
3156 	case PCI_EA_P_VF_MEM:
3157 		flags |= IORESOURCE_MEM;
3158 		break;
3159 	case PCI_EA_P_MEM_PREFETCH:
3160 	case PCI_EA_P_VF_MEM_PREFETCH:
3161 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3162 		break;
3163 	case PCI_EA_P_IO:
3164 		flags |= IORESOURCE_IO;
3165 		break;
3166 	default:
3167 		return 0;
3168 	}
3169 
3170 	return flags;
3171 }
3172 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3173 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3174 					    u8 prop)
3175 {
3176 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3177 		return &dev->resource[bei];
3178 #ifdef CONFIG_PCI_IOV
3179 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3180 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3181 		return &dev->resource[PCI_IOV_RESOURCES +
3182 				      bei - PCI_EA_BEI_VF_BAR0];
3183 #endif
3184 	else if (bei == PCI_EA_BEI_ROM)
3185 		return &dev->resource[PCI_ROM_RESOURCE];
3186 	else
3187 		return NULL;
3188 }
3189 
3190 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3191 static int pci_ea_read(struct pci_dev *dev, int offset)
3192 {
3193 	struct resource *res;
3194 	int ent_size, ent_offset = offset;
3195 	resource_size_t start, end;
3196 	unsigned long flags;
3197 	u32 dw0, bei, base, max_offset;
3198 	u8 prop;
3199 	bool support_64 = (sizeof(resource_size_t) >= 8);
3200 
3201 	pci_read_config_dword(dev, ent_offset, &dw0);
3202 	ent_offset += 4;
3203 
3204 	/* Entry size field indicates DWORDs after 1st */
3205 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3206 
3207 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3208 		goto out;
3209 
3210 	bei = (dw0 & PCI_EA_BEI) >> 4;
3211 	prop = (dw0 & PCI_EA_PP) >> 8;
3212 
3213 	/*
3214 	 * If the Property is in the reserved range, try the Secondary
3215 	 * Property instead.
3216 	 */
3217 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3218 		prop = (dw0 & PCI_EA_SP) >> 16;
3219 	if (prop > PCI_EA_P_BRIDGE_IO)
3220 		goto out;
3221 
3222 	res = pci_ea_get_resource(dev, bei, prop);
3223 	if (!res) {
3224 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3225 		goto out;
3226 	}
3227 
3228 	flags = pci_ea_flags(dev, prop);
3229 	if (!flags) {
3230 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3231 		goto out;
3232 	}
3233 
3234 	/* Read Base */
3235 	pci_read_config_dword(dev, ent_offset, &base);
3236 	start = (base & PCI_EA_FIELD_MASK);
3237 	ent_offset += 4;
3238 
3239 	/* Read MaxOffset */
3240 	pci_read_config_dword(dev, ent_offset, &max_offset);
3241 	ent_offset += 4;
3242 
3243 	/* Read Base MSBs (if 64-bit entry) */
3244 	if (base & PCI_EA_IS_64) {
3245 		u32 base_upper;
3246 
3247 		pci_read_config_dword(dev, ent_offset, &base_upper);
3248 		ent_offset += 4;
3249 
3250 		flags |= IORESOURCE_MEM_64;
3251 
3252 		/* entry starts above 32-bit boundary, can't use */
3253 		if (!support_64 && base_upper)
3254 			goto out;
3255 
3256 		if (support_64)
3257 			start |= ((u64)base_upper << 32);
3258 	}
3259 
3260 	end = start + (max_offset | 0x03);
3261 
3262 	/* Read MaxOffset MSBs (if 64-bit entry) */
3263 	if (max_offset & PCI_EA_IS_64) {
3264 		u32 max_offset_upper;
3265 
3266 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3267 		ent_offset += 4;
3268 
3269 		flags |= IORESOURCE_MEM_64;
3270 
3271 		/* entry too big, can't use */
3272 		if (!support_64 && max_offset_upper)
3273 			goto out;
3274 
3275 		if (support_64)
3276 			end += ((u64)max_offset_upper << 32);
3277 	}
3278 
3279 	if (end < start) {
3280 		pci_err(dev, "EA Entry crosses address boundary\n");
3281 		goto out;
3282 	}
3283 
3284 	if (ent_size != ent_offset - offset) {
3285 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3286 			ent_size, ent_offset - offset);
3287 		goto out;
3288 	}
3289 
3290 	res->name = pci_name(dev);
3291 	res->start = start;
3292 	res->end = end;
3293 	res->flags = flags;
3294 
3295 	if (bei <= PCI_EA_BEI_BAR5)
3296 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3297 			   bei, res, prop);
3298 	else if (bei == PCI_EA_BEI_ROM)
3299 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3300 			   res, prop);
3301 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3302 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3303 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3304 	else
3305 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3306 			   bei, res, prop);
3307 
3308 out:
3309 	return offset + ent_size;
3310 }
3311 
3312 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3313 void pci_ea_init(struct pci_dev *dev)
3314 {
3315 	int ea;
3316 	u8 num_ent;
3317 	int offset;
3318 	int i;
3319 
3320 	/* find PCI EA capability in list */
3321 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3322 	if (!ea)
3323 		return;
3324 
3325 	/* determine the number of entries */
3326 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3327 					&num_ent);
3328 	num_ent &= PCI_EA_NUM_ENT_MASK;
3329 
3330 	offset = ea + PCI_EA_FIRST_ENT;
3331 
3332 	/* Skip DWORD 2 for type 1 functions */
3333 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3334 		offset += 4;
3335 
3336 	/* parse each EA entry */
3337 	for (i = 0; i < num_ent; ++i)
3338 		offset = pci_ea_read(dev, offset);
3339 }
3340 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3341 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3342 	struct pci_cap_saved_state *new_cap)
3343 {
3344 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3345 }
3346 
3347 /**
3348  * _pci_add_cap_save_buffer - allocate buffer for saving given
3349  *			      capability registers
3350  * @dev: the PCI device
3351  * @cap: the capability to allocate the buffer for
3352  * @extended: Standard or Extended capability ID
3353  * @size: requested size of the buffer
3354  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3355 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3356 				    bool extended, unsigned int size)
3357 {
3358 	int pos;
3359 	struct pci_cap_saved_state *save_state;
3360 
3361 	if (extended)
3362 		pos = pci_find_ext_capability(dev, cap);
3363 	else
3364 		pos = pci_find_capability(dev, cap);
3365 
3366 	if (!pos)
3367 		return 0;
3368 
3369 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3370 	if (!save_state)
3371 		return -ENOMEM;
3372 
3373 	save_state->cap.cap_nr = cap;
3374 	save_state->cap.cap_extended = extended;
3375 	save_state->cap.size = size;
3376 	pci_add_saved_cap(dev, save_state);
3377 
3378 	return 0;
3379 }
3380 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3381 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3382 {
3383 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3384 }
3385 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3386 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3387 {
3388 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3389 }
3390 
3391 /**
3392  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3393  * @dev: the PCI device
3394  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3395 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3396 {
3397 	int error;
3398 
3399 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3400 					PCI_EXP_SAVE_REGS * sizeof(u16));
3401 	if (error)
3402 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3403 
3404 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3405 	if (error)
3406 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3407 
3408 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3409 					    2 * sizeof(u16));
3410 	if (error)
3411 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3412 
3413 	pci_allocate_vc_save_buffers(dev);
3414 }
3415 
pci_free_cap_save_buffers(struct pci_dev * dev)3416 void pci_free_cap_save_buffers(struct pci_dev *dev)
3417 {
3418 	struct pci_cap_saved_state *tmp;
3419 	struct hlist_node *n;
3420 
3421 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3422 		kfree(tmp);
3423 }
3424 
3425 /**
3426  * pci_configure_ari - enable or disable ARI forwarding
3427  * @dev: the PCI device
3428  *
3429  * If @dev and its upstream bridge both support ARI, enable ARI in the
3430  * bridge.  Otherwise, disable ARI in the bridge.
3431  */
pci_configure_ari(struct pci_dev * dev)3432 void pci_configure_ari(struct pci_dev *dev)
3433 {
3434 	u32 cap;
3435 	struct pci_dev *bridge;
3436 
3437 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3438 		return;
3439 
3440 	bridge = dev->bus->self;
3441 	if (!bridge)
3442 		return;
3443 
3444 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3445 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3446 		return;
3447 
3448 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3449 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3450 					 PCI_EXP_DEVCTL2_ARI);
3451 		bridge->ari_enabled = 1;
3452 	} else {
3453 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3454 					   PCI_EXP_DEVCTL2_ARI);
3455 		bridge->ari_enabled = 0;
3456 	}
3457 }
3458 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3459 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3460 {
3461 	int pos;
3462 	u16 cap, ctrl;
3463 
3464 	pos = pdev->acs_cap;
3465 	if (!pos)
3466 		return false;
3467 
3468 	/*
3469 	 * Except for egress control, capabilities are either required
3470 	 * or only required if controllable.  Features missing from the
3471 	 * capability field can therefore be assumed as hard-wired enabled.
3472 	 */
3473 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3474 	acs_flags &= (cap | PCI_ACS_EC);
3475 
3476 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3477 	return (ctrl & acs_flags) == acs_flags;
3478 }
3479 
3480 /**
3481  * pci_acs_enabled - test ACS against required flags for a given device
3482  * @pdev: device to test
3483  * @acs_flags: required PCI ACS flags
3484  *
3485  * Return true if the device supports the provided flags.  Automatically
3486  * filters out flags that are not implemented on multifunction devices.
3487  *
3488  * Note that this interface checks the effective ACS capabilities of the
3489  * device rather than the actual capabilities.  For instance, most single
3490  * function endpoints are not required to support ACS because they have no
3491  * opportunity for peer-to-peer access.  We therefore return 'true'
3492  * regardless of whether the device exposes an ACS capability.  This makes
3493  * it much easier for callers of this function to ignore the actual type
3494  * or topology of the device when testing ACS support.
3495  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3496 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3497 {
3498 	int ret;
3499 
3500 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3501 	if (ret >= 0)
3502 		return ret > 0;
3503 
3504 	/*
3505 	 * Conventional PCI and PCI-X devices never support ACS, either
3506 	 * effectively or actually.  The shared bus topology implies that
3507 	 * any device on the bus can receive or snoop DMA.
3508 	 */
3509 	if (!pci_is_pcie(pdev))
3510 		return false;
3511 
3512 	switch (pci_pcie_type(pdev)) {
3513 	/*
3514 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3515 	 * but since their primary interface is PCI/X, we conservatively
3516 	 * handle them as we would a non-PCIe device.
3517 	 */
3518 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3519 	/*
3520 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3521 	 * applicable... must never implement an ACS Extended Capability...".
3522 	 * This seems arbitrary, but we take a conservative interpretation
3523 	 * of this statement.
3524 	 */
3525 	case PCI_EXP_TYPE_PCI_BRIDGE:
3526 	case PCI_EXP_TYPE_RC_EC:
3527 		return false;
3528 	/*
3529 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3530 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3531 	 * regardless of whether they are single- or multi-function devices.
3532 	 */
3533 	case PCI_EXP_TYPE_DOWNSTREAM:
3534 	case PCI_EXP_TYPE_ROOT_PORT:
3535 		return pci_acs_flags_enabled(pdev, acs_flags);
3536 	/*
3537 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3538 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3539 	 * capabilities, but only when they are part of a multifunction
3540 	 * device.  The footnote for section 6.12 indicates the specific
3541 	 * PCIe types included here.
3542 	 */
3543 	case PCI_EXP_TYPE_ENDPOINT:
3544 	case PCI_EXP_TYPE_UPSTREAM:
3545 	case PCI_EXP_TYPE_LEG_END:
3546 	case PCI_EXP_TYPE_RC_END:
3547 		if (!pdev->multifunction)
3548 			break;
3549 
3550 		return pci_acs_flags_enabled(pdev, acs_flags);
3551 	}
3552 
3553 	/*
3554 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3555 	 * to single function devices with the exception of downstream ports.
3556 	 */
3557 	return true;
3558 }
3559 
3560 /**
3561  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3562  * @start: starting downstream device
3563  * @end: ending upstream device or NULL to search to the root bus
3564  * @acs_flags: required flags
3565  *
3566  * Walk up a device tree from start to end testing PCI ACS support.  If
3567  * any step along the way does not support the required flags, return false.
3568  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3569 bool pci_acs_path_enabled(struct pci_dev *start,
3570 			  struct pci_dev *end, u16 acs_flags)
3571 {
3572 	struct pci_dev *pdev, *parent = start;
3573 
3574 	do {
3575 		pdev = parent;
3576 
3577 		if (!pci_acs_enabled(pdev, acs_flags))
3578 			return false;
3579 
3580 		if (pci_is_root_bus(pdev->bus))
3581 			return (end == NULL);
3582 
3583 		parent = pdev->bus->self;
3584 	} while (pdev != end);
3585 
3586 	return true;
3587 }
3588 
3589 /**
3590  * pci_acs_init - Initialize ACS if hardware supports it
3591  * @dev: the PCI device
3592  */
pci_acs_init(struct pci_dev * dev)3593 void pci_acs_init(struct pci_dev *dev)
3594 {
3595 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3596 
3597 	/*
3598 	 * Attempt to enable ACS regardless of capability because some Root
3599 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3600 	 * the standard ACS capability but still support ACS via those
3601 	 * quirks.
3602 	 */
3603 	pci_enable_acs(dev);
3604 }
3605 
3606 /**
3607  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3608  * @pdev: PCI device
3609  * @bar: BAR to find
3610  *
3611  * Helper to find the position of the ctrl register for a BAR.
3612  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3613  * Returns -ENOENT if no ctrl register for the BAR could be found.
3614  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3615 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3616 {
3617 	unsigned int pos, nbars, i;
3618 	u32 ctrl;
3619 
3620 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3621 	if (!pos)
3622 		return -ENOTSUPP;
3623 
3624 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3625 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3626 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3627 
3628 	for (i = 0; i < nbars; i++, pos += 8) {
3629 		int bar_idx;
3630 
3631 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3632 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3633 		if (bar_idx == bar)
3634 			return pos;
3635 	}
3636 
3637 	return -ENOENT;
3638 }
3639 
3640 /**
3641  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3642  * @pdev: PCI device
3643  * @bar: BAR to query
3644  *
3645  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3646  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3647  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3648 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3649 {
3650 	int pos;
3651 	u32 cap;
3652 
3653 	pos = pci_rebar_find_pos(pdev, bar);
3654 	if (pos < 0)
3655 		return 0;
3656 
3657 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3658 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3659 
3660 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3661 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3662 	    bar == 0 && cap == 0x700)
3663 		return 0x3f00;
3664 
3665 	return cap;
3666 }
3667 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3668 
3669 /**
3670  * pci_rebar_get_current_size - get the current size of a BAR
3671  * @pdev: PCI device
3672  * @bar: BAR to set size to
3673  *
3674  * Read the size of a BAR from the resizable BAR config.
3675  * Returns size if found or negative error code.
3676  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3677 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3678 {
3679 	int pos;
3680 	u32 ctrl;
3681 
3682 	pos = pci_rebar_find_pos(pdev, bar);
3683 	if (pos < 0)
3684 		return pos;
3685 
3686 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3688 }
3689 
3690 /**
3691  * pci_rebar_set_size - set a new size for a BAR
3692  * @pdev: PCI device
3693  * @bar: BAR to set size to
3694  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3695  *
3696  * Set the new size of a BAR as defined in the spec.
3697  * Returns zero if resizing was successful, error code otherwise.
3698  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3699 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3700 {
3701 	int pos;
3702 	u32 ctrl;
3703 
3704 	pos = pci_rebar_find_pos(pdev, bar);
3705 	if (pos < 0)
3706 		return pos;
3707 
3708 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3709 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3710 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3711 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3712 	return 0;
3713 }
3714 
3715 /**
3716  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3717  * @dev: the PCI device
3718  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3719  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3720  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3721  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3722  *
3723  * Return 0 if all upstream bridges support AtomicOp routing, egress
3724  * blocking is disabled on all upstream ports, and the root port supports
3725  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3726  * AtomicOp completion), or negative otherwise.
3727  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3728 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3729 {
3730 	struct pci_bus *bus = dev->bus;
3731 	struct pci_dev *bridge;
3732 	u32 cap, ctl2;
3733 
3734 	/*
3735 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3736 	 * in Device Control 2 is reserved in VFs and the PF value applies
3737 	 * to all associated VFs.
3738 	 */
3739 	if (dev->is_virtfn)
3740 		return -EINVAL;
3741 
3742 	if (!pci_is_pcie(dev))
3743 		return -EINVAL;
3744 
3745 	/*
3746 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3747 	 * AtomicOp requesters.  For now, we only support endpoints as
3748 	 * requesters and root ports as completers.  No endpoints as
3749 	 * completers, and no peer-to-peer.
3750 	 */
3751 
3752 	switch (pci_pcie_type(dev)) {
3753 	case PCI_EXP_TYPE_ENDPOINT:
3754 	case PCI_EXP_TYPE_LEG_END:
3755 	case PCI_EXP_TYPE_RC_END:
3756 		break;
3757 	default:
3758 		return -EINVAL;
3759 	}
3760 
3761 	while (bus->parent) {
3762 		bridge = bus->self;
3763 
3764 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3765 
3766 		switch (pci_pcie_type(bridge)) {
3767 		/* Ensure switch ports support AtomicOp routing */
3768 		case PCI_EXP_TYPE_UPSTREAM:
3769 		case PCI_EXP_TYPE_DOWNSTREAM:
3770 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3771 				return -EINVAL;
3772 			break;
3773 
3774 		/* Ensure root port supports all the sizes we care about */
3775 		case PCI_EXP_TYPE_ROOT_PORT:
3776 			if ((cap & cap_mask) != cap_mask)
3777 				return -EINVAL;
3778 			break;
3779 		}
3780 
3781 		/* Ensure upstream ports don't block AtomicOps on egress */
3782 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3783 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3784 						   &ctl2);
3785 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3786 				return -EINVAL;
3787 		}
3788 
3789 		bus = bus->parent;
3790 	}
3791 
3792 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3793 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3794 	return 0;
3795 }
3796 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3797 
3798 /**
3799  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3800  * @dev: the PCI device
3801  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3802  *
3803  * Perform INTx swizzling for a device behind one level of bridge.  This is
3804  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3805  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3806  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3807  * the PCI Express Base Specification, Revision 2.1)
3808  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3809 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3810 {
3811 	int slot;
3812 
3813 	if (pci_ari_enabled(dev->bus))
3814 		slot = 0;
3815 	else
3816 		slot = PCI_SLOT(dev->devfn);
3817 
3818 	return (((pin - 1) + slot) % 4) + 1;
3819 }
3820 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3821 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3822 {
3823 	u8 pin;
3824 
3825 	pin = dev->pin;
3826 	if (!pin)
3827 		return -1;
3828 
3829 	while (!pci_is_root_bus(dev->bus)) {
3830 		pin = pci_swizzle_interrupt_pin(dev, pin);
3831 		dev = dev->bus->self;
3832 	}
3833 	*bridge = dev;
3834 	return pin;
3835 }
3836 
3837 /**
3838  * pci_common_swizzle - swizzle INTx all the way to root bridge
3839  * @dev: the PCI device
3840  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3841  *
3842  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3843  * bridges all the way up to a PCI root bus.
3844  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3845 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3846 {
3847 	u8 pin = *pinp;
3848 
3849 	while (!pci_is_root_bus(dev->bus)) {
3850 		pin = pci_swizzle_interrupt_pin(dev, pin);
3851 		dev = dev->bus->self;
3852 	}
3853 	*pinp = pin;
3854 	return PCI_SLOT(dev->devfn);
3855 }
3856 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3857 
3858 /**
3859  * pci_release_region - Release a PCI bar
3860  * @pdev: PCI device whose resources were previously reserved by
3861  *	  pci_request_region()
3862  * @bar: BAR to release
3863  *
3864  * Releases the PCI I/O and memory resources previously reserved by a
3865  * successful call to pci_request_region().  Call this function only
3866  * after all use of the PCI regions has ceased.
3867  */
pci_release_region(struct pci_dev * pdev,int bar)3868 void pci_release_region(struct pci_dev *pdev, int bar)
3869 {
3870 	struct pci_devres *dr;
3871 
3872 	if (pci_resource_len(pdev, bar) == 0)
3873 		return;
3874 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3875 		release_region(pci_resource_start(pdev, bar),
3876 				pci_resource_len(pdev, bar));
3877 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3878 		release_mem_region(pci_resource_start(pdev, bar),
3879 				pci_resource_len(pdev, bar));
3880 
3881 	dr = find_pci_dr(pdev);
3882 	if (dr)
3883 		dr->region_mask &= ~(1 << bar);
3884 }
3885 EXPORT_SYMBOL(pci_release_region);
3886 
3887 /**
3888  * __pci_request_region - Reserved PCI I/O and memory resource
3889  * @pdev: PCI device whose resources are to be reserved
3890  * @bar: BAR to be reserved
3891  * @res_name: Name to be associated with resource.
3892  * @exclusive: whether the region access is exclusive or not
3893  *
3894  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3895  * being reserved by owner @res_name.  Do not access any
3896  * address inside the PCI regions unless this call returns
3897  * successfully.
3898  *
3899  * If @exclusive is set, then the region is marked so that userspace
3900  * is explicitly not allowed to map the resource via /dev/mem or
3901  * sysfs MMIO access.
3902  *
3903  * Returns 0 on success, or %EBUSY on error.  A warning
3904  * message is also printed on failure.
3905  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3906 static int __pci_request_region(struct pci_dev *pdev, int bar,
3907 				const char *res_name, int exclusive)
3908 {
3909 	struct pci_devres *dr;
3910 
3911 	if (pci_resource_len(pdev, bar) == 0)
3912 		return 0;
3913 
3914 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3915 		if (!request_region(pci_resource_start(pdev, bar),
3916 			    pci_resource_len(pdev, bar), res_name))
3917 			goto err_out;
3918 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3919 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3920 					pci_resource_len(pdev, bar), res_name,
3921 					exclusive))
3922 			goto err_out;
3923 	}
3924 
3925 	dr = find_pci_dr(pdev);
3926 	if (dr)
3927 		dr->region_mask |= 1 << bar;
3928 
3929 	return 0;
3930 
3931 err_out:
3932 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3933 		 &pdev->resource[bar]);
3934 	return -EBUSY;
3935 }
3936 
3937 /**
3938  * pci_request_region - Reserve PCI I/O and memory resource
3939  * @pdev: PCI device whose resources are to be reserved
3940  * @bar: BAR to be reserved
3941  * @res_name: Name to be associated with resource
3942  *
3943  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3944  * being reserved by owner @res_name.  Do not access any
3945  * address inside the PCI regions unless this call returns
3946  * successfully.
3947  *
3948  * Returns 0 on success, or %EBUSY on error.  A warning
3949  * message is also printed on failure.
3950  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3951 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3952 {
3953 	return __pci_request_region(pdev, bar, res_name, 0);
3954 }
3955 EXPORT_SYMBOL(pci_request_region);
3956 
3957 /**
3958  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3959  * @pdev: PCI device whose resources were previously reserved
3960  * @bars: Bitmask of BARs to be released
3961  *
3962  * Release selected PCI I/O and memory resources previously reserved.
3963  * Call this function only after all use of the PCI regions has ceased.
3964  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3965 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3966 {
3967 	int i;
3968 
3969 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3970 		if (bars & (1 << i))
3971 			pci_release_region(pdev, i);
3972 }
3973 EXPORT_SYMBOL(pci_release_selected_regions);
3974 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3975 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3976 					  const char *res_name, int excl)
3977 {
3978 	int i;
3979 
3980 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3981 		if (bars & (1 << i))
3982 			if (__pci_request_region(pdev, i, res_name, excl))
3983 				goto err_out;
3984 	return 0;
3985 
3986 err_out:
3987 	while (--i >= 0)
3988 		if (bars & (1 << i))
3989 			pci_release_region(pdev, i);
3990 
3991 	return -EBUSY;
3992 }
3993 
3994 
3995 /**
3996  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3997  * @pdev: PCI device whose resources are to be reserved
3998  * @bars: Bitmask of BARs to be requested
3999  * @res_name: Name to be associated with resource
4000  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4001 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4002 				 const char *res_name)
4003 {
4004 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4005 }
4006 EXPORT_SYMBOL(pci_request_selected_regions);
4007 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4008 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4009 					   const char *res_name)
4010 {
4011 	return __pci_request_selected_regions(pdev, bars, res_name,
4012 			IORESOURCE_EXCLUSIVE);
4013 }
4014 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4015 
4016 /**
4017  * pci_release_regions - Release reserved PCI I/O and memory resources
4018  * @pdev: PCI device whose resources were previously reserved by
4019  *	  pci_request_regions()
4020  *
4021  * Releases all PCI I/O and memory resources previously reserved by a
4022  * successful call to pci_request_regions().  Call this function only
4023  * after all use of the PCI regions has ceased.
4024  */
4025 
pci_release_regions(struct pci_dev * pdev)4026 void pci_release_regions(struct pci_dev *pdev)
4027 {
4028 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4029 }
4030 EXPORT_SYMBOL(pci_release_regions);
4031 
4032 /**
4033  * pci_request_regions - Reserve PCI I/O and memory resources
4034  * @pdev: PCI device whose resources are to be reserved
4035  * @res_name: Name to be associated with resource.
4036  *
4037  * Mark all PCI regions associated with PCI device @pdev as
4038  * being reserved by owner @res_name.  Do not access any
4039  * address inside the PCI regions unless this call returns
4040  * successfully.
4041  *
4042  * Returns 0 on success, or %EBUSY on error.  A warning
4043  * message is also printed on failure.
4044  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4045 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4046 {
4047 	return pci_request_selected_regions(pdev,
4048 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4049 }
4050 EXPORT_SYMBOL(pci_request_regions);
4051 
4052 /**
4053  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4054  * @pdev: PCI device whose resources are to be reserved
4055  * @res_name: Name to be associated with resource.
4056  *
4057  * Mark all PCI regions associated with PCI device @pdev as being reserved
4058  * by owner @res_name.  Do not access any address inside the PCI regions
4059  * unless this call returns successfully.
4060  *
4061  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4062  * and the sysfs MMIO access will not be allowed.
4063  *
4064  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4065  * printed on failure.
4066  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4067 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4068 {
4069 	return pci_request_selected_regions_exclusive(pdev,
4070 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4071 }
4072 EXPORT_SYMBOL(pci_request_regions_exclusive);
4073 
4074 /*
4075  * Record the PCI IO range (expressed as CPU physical address + size).
4076  * Return a negative value if an error has occurred, zero otherwise
4077  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4078 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4079 			resource_size_t	size)
4080 {
4081 	int ret = 0;
4082 #ifdef PCI_IOBASE
4083 	struct logic_pio_hwaddr *range;
4084 
4085 	if (!size || addr + size < addr)
4086 		return -EINVAL;
4087 
4088 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4089 	if (!range)
4090 		return -ENOMEM;
4091 
4092 	range->fwnode = fwnode;
4093 	range->size = size;
4094 	range->hw_start = addr;
4095 	range->flags = LOGIC_PIO_CPU_MMIO;
4096 
4097 	ret = logic_pio_register_range(range);
4098 	if (ret)
4099 		kfree(range);
4100 
4101 	/* Ignore duplicates due to deferred probing */
4102 	if (ret == -EEXIST)
4103 		ret = 0;
4104 #endif
4105 
4106 	return ret;
4107 }
4108 
pci_pio_to_address(unsigned long pio)4109 phys_addr_t pci_pio_to_address(unsigned long pio)
4110 {
4111 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4112 
4113 #ifdef PCI_IOBASE
4114 	if (pio >= MMIO_UPPER_LIMIT)
4115 		return address;
4116 
4117 	address = logic_pio_to_hwaddr(pio);
4118 #endif
4119 
4120 	return address;
4121 }
4122 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4123 
pci_address_to_pio(phys_addr_t address)4124 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4125 {
4126 #ifdef PCI_IOBASE
4127 	return logic_pio_trans_cpuaddr(address);
4128 #else
4129 	if (address > IO_SPACE_LIMIT)
4130 		return (unsigned long)-1;
4131 
4132 	return (unsigned long) address;
4133 #endif
4134 }
4135 
4136 /**
4137  * pci_remap_iospace - Remap the memory mapped I/O space
4138  * @res: Resource describing the I/O space
4139  * @phys_addr: physical address of range to be mapped
4140  *
4141  * Remap the memory mapped I/O space described by the @res and the CPU
4142  * physical address @phys_addr into virtual address space.  Only
4143  * architectures that have memory mapped IO functions defined (and the
4144  * PCI_IOBASE value defined) should call this function.
4145  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4146 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4147 {
4148 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4149 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4150 
4151 	if (!(res->flags & IORESOURCE_IO))
4152 		return -EINVAL;
4153 
4154 	if (res->end > IO_SPACE_LIMIT)
4155 		return -EINVAL;
4156 
4157 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4158 				  pgprot_device(PAGE_KERNEL));
4159 #else
4160 	/*
4161 	 * This architecture does not have memory mapped I/O space,
4162 	 * so this function should never be called
4163 	 */
4164 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4165 	return -ENODEV;
4166 #endif
4167 }
4168 EXPORT_SYMBOL(pci_remap_iospace);
4169 
4170 /**
4171  * pci_unmap_iospace - Unmap the memory mapped I/O space
4172  * @res: resource to be unmapped
4173  *
4174  * Unmap the CPU virtual address @res from virtual address space.  Only
4175  * architectures that have memory mapped IO functions defined (and the
4176  * PCI_IOBASE value defined) should call this function.
4177  */
pci_unmap_iospace(struct resource * res)4178 void pci_unmap_iospace(struct resource *res)
4179 {
4180 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182 
4183 	vunmap_range(vaddr, vaddr + resource_size(res));
4184 #endif
4185 }
4186 EXPORT_SYMBOL(pci_unmap_iospace);
4187 
devm_pci_unmap_iospace(struct device * dev,void * ptr)4188 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4189 {
4190 	struct resource **res = ptr;
4191 
4192 	pci_unmap_iospace(*res);
4193 }
4194 
4195 /**
4196  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4197  * @dev: Generic device to remap IO address for
4198  * @res: Resource describing the I/O space
4199  * @phys_addr: physical address of range to be mapped
4200  *
4201  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4202  * detach.
4203  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4204 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4205 			   phys_addr_t phys_addr)
4206 {
4207 	const struct resource **ptr;
4208 	int error;
4209 
4210 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4211 	if (!ptr)
4212 		return -ENOMEM;
4213 
4214 	error = pci_remap_iospace(res, phys_addr);
4215 	if (error) {
4216 		devres_free(ptr);
4217 	} else	{
4218 		*ptr = res;
4219 		devres_add(dev, ptr);
4220 	}
4221 
4222 	return error;
4223 }
4224 EXPORT_SYMBOL(devm_pci_remap_iospace);
4225 
4226 /**
4227  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4228  * @dev: Generic device to remap IO address for
4229  * @offset: Resource address to map
4230  * @size: Size of map
4231  *
4232  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4233  * detach.
4234  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4235 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4236 				      resource_size_t offset,
4237 				      resource_size_t size)
4238 {
4239 	void __iomem **ptr, *addr;
4240 
4241 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4242 	if (!ptr)
4243 		return NULL;
4244 
4245 	addr = pci_remap_cfgspace(offset, size);
4246 	if (addr) {
4247 		*ptr = addr;
4248 		devres_add(dev, ptr);
4249 	} else
4250 		devres_free(ptr);
4251 
4252 	return addr;
4253 }
4254 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4255 
4256 /**
4257  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4258  * @dev: generic device to handle the resource for
4259  * @res: configuration space resource to be handled
4260  *
4261  * Checks that a resource is a valid memory region, requests the memory
4262  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4263  * proper PCI configuration space memory attributes are guaranteed.
4264  *
4265  * All operations are managed and will be undone on driver detach.
4266  *
4267  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4268  * on failure. Usage example::
4269  *
4270  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4271  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4272  *	if (IS_ERR(base))
4273  *		return PTR_ERR(base);
4274  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4275 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4276 					  struct resource *res)
4277 {
4278 	resource_size_t size;
4279 	const char *name;
4280 	void __iomem *dest_ptr;
4281 
4282 	BUG_ON(!dev);
4283 
4284 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4285 		dev_err(dev, "invalid resource\n");
4286 		return IOMEM_ERR_PTR(-EINVAL);
4287 	}
4288 
4289 	size = resource_size(res);
4290 
4291 	if (res->name)
4292 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4293 				      res->name);
4294 	else
4295 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4296 	if (!name)
4297 		return IOMEM_ERR_PTR(-ENOMEM);
4298 
4299 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4300 		dev_err(dev, "can't request region for resource %pR\n", res);
4301 		return IOMEM_ERR_PTR(-EBUSY);
4302 	}
4303 
4304 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4305 	if (!dest_ptr) {
4306 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4307 		devm_release_mem_region(dev, res->start, size);
4308 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4309 	}
4310 
4311 	return dest_ptr;
4312 }
4313 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4314 
__pci_set_master(struct pci_dev * dev,bool enable)4315 static void __pci_set_master(struct pci_dev *dev, bool enable)
4316 {
4317 	u16 old_cmd, cmd;
4318 
4319 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4320 	if (enable)
4321 		cmd = old_cmd | PCI_COMMAND_MASTER;
4322 	else
4323 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4324 	if (cmd != old_cmd) {
4325 		pci_dbg(dev, "%s bus mastering\n",
4326 			enable ? "enabling" : "disabling");
4327 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4328 	}
4329 	dev->is_busmaster = enable;
4330 }
4331 
4332 /**
4333  * pcibios_setup - process "pci=" kernel boot arguments
4334  * @str: string used to pass in "pci=" kernel boot arguments
4335  *
4336  * Process kernel boot arguments.  This is the default implementation.
4337  * Architecture specific implementations can override this as necessary.
4338  */
pcibios_setup(char * str)4339 char * __weak __init pcibios_setup(char *str)
4340 {
4341 	return str;
4342 }
4343 
4344 /**
4345  * pcibios_set_master - enable PCI bus-mastering for device dev
4346  * @dev: the PCI device to enable
4347  *
4348  * Enables PCI bus-mastering for the device.  This is the default
4349  * implementation.  Architecture specific implementations can override
4350  * this if necessary.
4351  */
pcibios_set_master(struct pci_dev * dev)4352 void __weak pcibios_set_master(struct pci_dev *dev)
4353 {
4354 	u8 lat;
4355 
4356 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4357 	if (pci_is_pcie(dev))
4358 		return;
4359 
4360 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4361 	if (lat < 16)
4362 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4363 	else if (lat > pcibios_max_latency)
4364 		lat = pcibios_max_latency;
4365 	else
4366 		return;
4367 
4368 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4369 }
4370 
4371 /**
4372  * pci_set_master - enables bus-mastering for device dev
4373  * @dev: the PCI device to enable
4374  *
4375  * Enables bus-mastering on the device and calls pcibios_set_master()
4376  * to do the needed arch specific settings.
4377  */
pci_set_master(struct pci_dev * dev)4378 void pci_set_master(struct pci_dev *dev)
4379 {
4380 	__pci_set_master(dev, true);
4381 	pcibios_set_master(dev);
4382 }
4383 EXPORT_SYMBOL(pci_set_master);
4384 
4385 /**
4386  * pci_clear_master - disables bus-mastering for device dev
4387  * @dev: the PCI device to disable
4388  */
pci_clear_master(struct pci_dev * dev)4389 void pci_clear_master(struct pci_dev *dev)
4390 {
4391 	__pci_set_master(dev, false);
4392 }
4393 EXPORT_SYMBOL(pci_clear_master);
4394 
4395 /**
4396  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4397  * @dev: the PCI device for which MWI is to be enabled
4398  *
4399  * Helper function for pci_set_mwi.
4400  * Originally copied from drivers/net/acenic.c.
4401  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4402  *
4403  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4404  */
pci_set_cacheline_size(struct pci_dev * dev)4405 int pci_set_cacheline_size(struct pci_dev *dev)
4406 {
4407 	u8 cacheline_size;
4408 
4409 	if (!pci_cache_line_size)
4410 		return -EINVAL;
4411 
4412 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4413 	   equal to or multiple of the right value. */
4414 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4415 	if (cacheline_size >= pci_cache_line_size &&
4416 	    (cacheline_size % pci_cache_line_size) == 0)
4417 		return 0;
4418 
4419 	/* Write the correct value. */
4420 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4421 	/* Read it back. */
4422 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4423 	if (cacheline_size == pci_cache_line_size)
4424 		return 0;
4425 
4426 	pci_dbg(dev, "cache line size of %d is not supported\n",
4427 		   pci_cache_line_size << 2);
4428 
4429 	return -EINVAL;
4430 }
4431 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4432 
4433 /**
4434  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4435  * @dev: the PCI device for which MWI is enabled
4436  *
4437  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4438  *
4439  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4440  */
pci_set_mwi(struct pci_dev * dev)4441 int pci_set_mwi(struct pci_dev *dev)
4442 {
4443 #ifdef PCI_DISABLE_MWI
4444 	return 0;
4445 #else
4446 	int rc;
4447 	u16 cmd;
4448 
4449 	rc = pci_set_cacheline_size(dev);
4450 	if (rc)
4451 		return rc;
4452 
4453 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4454 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4455 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4456 		cmd |= PCI_COMMAND_INVALIDATE;
4457 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4458 	}
4459 	return 0;
4460 #endif
4461 }
4462 EXPORT_SYMBOL(pci_set_mwi);
4463 
4464 /**
4465  * pcim_set_mwi - a device-managed pci_set_mwi()
4466  * @dev: the PCI device for which MWI is enabled
4467  *
4468  * Managed pci_set_mwi().
4469  *
4470  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4471  */
pcim_set_mwi(struct pci_dev * dev)4472 int pcim_set_mwi(struct pci_dev *dev)
4473 {
4474 	struct pci_devres *dr;
4475 
4476 	dr = find_pci_dr(dev);
4477 	if (!dr)
4478 		return -ENOMEM;
4479 
4480 	dr->mwi = 1;
4481 	return pci_set_mwi(dev);
4482 }
4483 EXPORT_SYMBOL(pcim_set_mwi);
4484 
4485 /**
4486  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4487  * @dev: the PCI device for which MWI is enabled
4488  *
4489  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4490  * Callers are not required to check the return value.
4491  *
4492  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4493  */
pci_try_set_mwi(struct pci_dev * dev)4494 int pci_try_set_mwi(struct pci_dev *dev)
4495 {
4496 #ifdef PCI_DISABLE_MWI
4497 	return 0;
4498 #else
4499 	return pci_set_mwi(dev);
4500 #endif
4501 }
4502 EXPORT_SYMBOL(pci_try_set_mwi);
4503 
4504 /**
4505  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4506  * @dev: the PCI device to disable
4507  *
4508  * Disables PCI Memory-Write-Invalidate transaction on the device
4509  */
pci_clear_mwi(struct pci_dev * dev)4510 void pci_clear_mwi(struct pci_dev *dev)
4511 {
4512 #ifndef PCI_DISABLE_MWI
4513 	u16 cmd;
4514 
4515 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4516 	if (cmd & PCI_COMMAND_INVALIDATE) {
4517 		cmd &= ~PCI_COMMAND_INVALIDATE;
4518 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4519 	}
4520 #endif
4521 }
4522 EXPORT_SYMBOL(pci_clear_mwi);
4523 
4524 /**
4525  * pci_disable_parity - disable parity checking for device
4526  * @dev: the PCI device to operate on
4527  *
4528  * Disable parity checking for device @dev
4529  */
pci_disable_parity(struct pci_dev * dev)4530 void pci_disable_parity(struct pci_dev *dev)
4531 {
4532 	u16 cmd;
4533 
4534 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4535 	if (cmd & PCI_COMMAND_PARITY) {
4536 		cmd &= ~PCI_COMMAND_PARITY;
4537 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4538 	}
4539 }
4540 
4541 /**
4542  * pci_intx - enables/disables PCI INTx for device dev
4543  * @pdev: the PCI device to operate on
4544  * @enable: boolean: whether to enable or disable PCI INTx
4545  *
4546  * Enables/disables PCI INTx for device @pdev
4547  */
pci_intx(struct pci_dev * pdev,int enable)4548 void pci_intx(struct pci_dev *pdev, int enable)
4549 {
4550 	u16 pci_command, new;
4551 
4552 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4553 
4554 	if (enable)
4555 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4556 	else
4557 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4558 
4559 	if (new != pci_command) {
4560 		struct pci_devres *dr;
4561 
4562 		pci_write_config_word(pdev, PCI_COMMAND, new);
4563 
4564 		dr = find_pci_dr(pdev);
4565 		if (dr && !dr->restore_intx) {
4566 			dr->restore_intx = 1;
4567 			dr->orig_intx = !enable;
4568 		}
4569 	}
4570 }
4571 EXPORT_SYMBOL_GPL(pci_intx);
4572 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4573 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4574 {
4575 	struct pci_bus *bus = dev->bus;
4576 	bool mask_updated = true;
4577 	u32 cmd_status_dword;
4578 	u16 origcmd, newcmd;
4579 	unsigned long flags;
4580 	bool irq_pending;
4581 
4582 	/*
4583 	 * We do a single dword read to retrieve both command and status.
4584 	 * Document assumptions that make this possible.
4585 	 */
4586 	BUILD_BUG_ON(PCI_COMMAND % 4);
4587 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4588 
4589 	raw_spin_lock_irqsave(&pci_lock, flags);
4590 
4591 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4592 
4593 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4594 
4595 	/*
4596 	 * Check interrupt status register to see whether our device
4597 	 * triggered the interrupt (when masking) or the next IRQ is
4598 	 * already pending (when unmasking).
4599 	 */
4600 	if (mask != irq_pending) {
4601 		mask_updated = false;
4602 		goto done;
4603 	}
4604 
4605 	origcmd = cmd_status_dword;
4606 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4607 	if (mask)
4608 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4609 	if (newcmd != origcmd)
4610 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4611 
4612 done:
4613 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4614 
4615 	return mask_updated;
4616 }
4617 
4618 /**
4619  * pci_check_and_mask_intx - mask INTx on pending interrupt
4620  * @dev: the PCI device to operate on
4621  *
4622  * Check if the device dev has its INTx line asserted, mask it and return
4623  * true in that case. False is returned if no interrupt was pending.
4624  */
pci_check_and_mask_intx(struct pci_dev * dev)4625 bool pci_check_and_mask_intx(struct pci_dev *dev)
4626 {
4627 	return pci_check_and_set_intx_mask(dev, true);
4628 }
4629 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4630 
4631 /**
4632  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4633  * @dev: the PCI device to operate on
4634  *
4635  * Check if the device dev has its INTx line asserted, unmask it if not and
4636  * return true. False is returned and the mask remains active if there was
4637  * still an interrupt pending.
4638  */
pci_check_and_unmask_intx(struct pci_dev * dev)4639 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4640 {
4641 	return pci_check_and_set_intx_mask(dev, false);
4642 }
4643 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4644 
4645 /**
4646  * pci_wait_for_pending_transaction - wait for pending transaction
4647  * @dev: the PCI device to operate on
4648  *
4649  * Return 0 if transaction is pending 1 otherwise.
4650  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4651 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4652 {
4653 	if (!pci_is_pcie(dev))
4654 		return 1;
4655 
4656 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4657 				    PCI_EXP_DEVSTA_TRPND);
4658 }
4659 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4660 
4661 /**
4662  * pcie_flr - initiate a PCIe function level reset
4663  * @dev: device to reset
4664  *
4665  * Initiate a function level reset unconditionally on @dev without
4666  * checking any flags and DEVCAP
4667  */
pcie_flr(struct pci_dev * dev)4668 int pcie_flr(struct pci_dev *dev)
4669 {
4670 	if (!pci_wait_for_pending_transaction(dev))
4671 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4672 
4673 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4674 
4675 	if (dev->imm_ready)
4676 		return 0;
4677 
4678 	/*
4679 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4680 	 * 100ms, but may silently discard requests while the FLR is in
4681 	 * progress.  Wait 100ms before trying to access the device.
4682 	 */
4683 	msleep(100);
4684 
4685 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4686 }
4687 EXPORT_SYMBOL_GPL(pcie_flr);
4688 
4689 /**
4690  * pcie_reset_flr - initiate a PCIe function level reset
4691  * @dev: device to reset
4692  * @probe: if true, return 0 if device can be reset this way
4693  *
4694  * Initiate a function level reset on @dev.
4695  */
pcie_reset_flr(struct pci_dev * dev,bool probe)4696 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4697 {
4698 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4699 		return -ENOTTY;
4700 
4701 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4702 		return -ENOTTY;
4703 
4704 	if (probe)
4705 		return 0;
4706 
4707 	return pcie_flr(dev);
4708 }
4709 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4710 
pci_af_flr(struct pci_dev * dev,bool probe)4711 static int pci_af_flr(struct pci_dev *dev, bool probe)
4712 {
4713 	int pos;
4714 	u8 cap;
4715 
4716 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4717 	if (!pos)
4718 		return -ENOTTY;
4719 
4720 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4721 		return -ENOTTY;
4722 
4723 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4724 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4725 		return -ENOTTY;
4726 
4727 	if (probe)
4728 		return 0;
4729 
4730 	/*
4731 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4732 	 * is used, so we use the control offset rather than status and shift
4733 	 * the test bit to match.
4734 	 */
4735 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4736 				 PCI_AF_STATUS_TP << 8))
4737 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4738 
4739 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4740 
4741 	if (dev->imm_ready)
4742 		return 0;
4743 
4744 	/*
4745 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4746 	 * updated 27 July 2006; a device must complete an FLR within
4747 	 * 100ms, but may silently discard requests while the FLR is in
4748 	 * progress.  Wait 100ms before trying to access the device.
4749 	 */
4750 	msleep(100);
4751 
4752 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4753 }
4754 
4755 /**
4756  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4757  * @dev: Device to reset.
4758  * @probe: if true, return 0 if the device can be reset this way.
4759  *
4760  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4761  * unset, it will be reinitialized internally when going from PCI_D3hot to
4762  * PCI_D0.  If that's the case and the device is not in a low-power state
4763  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4764  *
4765  * NOTE: This causes the caller to sleep for twice the device power transition
4766  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4767  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4768  * Moreover, only devices in D0 can be reset by this function.
4769  */
pci_pm_reset(struct pci_dev * dev,bool probe)4770 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4771 {
4772 	u16 csr;
4773 
4774 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4775 		return -ENOTTY;
4776 
4777 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4778 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4779 		return -ENOTTY;
4780 
4781 	if (probe)
4782 		return 0;
4783 
4784 	if (dev->current_state != PCI_D0)
4785 		return -EINVAL;
4786 
4787 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4788 	csr |= PCI_D3hot;
4789 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4790 	pci_dev_d3_sleep(dev);
4791 
4792 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4793 	csr |= PCI_D0;
4794 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4795 	pci_dev_d3_sleep(dev);
4796 
4797 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4798 }
4799 
4800 /**
4801  * pcie_wait_for_link_delay - Wait until link is active or inactive
4802  * @pdev: Bridge device
4803  * @active: waiting for active or inactive?
4804  * @delay: Delay to wait after link has become active (in ms)
4805  *
4806  * Use this to wait till link becomes active or inactive.
4807  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4808 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4809 				     int delay)
4810 {
4811 	int timeout = 1000;
4812 	bool ret;
4813 	u16 lnk_status;
4814 
4815 	/*
4816 	 * Some controllers might not implement link active reporting. In this
4817 	 * case, we wait for 1000 ms + any delay requested by the caller.
4818 	 */
4819 	if (!pdev->link_active_reporting) {
4820 		msleep(timeout + delay);
4821 		return true;
4822 	}
4823 
4824 	/*
4825 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4826 	 * after which we should expect an link active if the reset was
4827 	 * successful. If so, software must wait a minimum 100ms before sending
4828 	 * configuration requests to devices downstream this port.
4829 	 *
4830 	 * If the link fails to activate, either the device was physically
4831 	 * removed or the link is permanently failed.
4832 	 */
4833 	if (active)
4834 		msleep(20);
4835 	for (;;) {
4836 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4837 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4838 		if (ret == active)
4839 			break;
4840 		if (timeout <= 0)
4841 			break;
4842 		msleep(10);
4843 		timeout -= 10;
4844 	}
4845 	if (active && ret)
4846 		msleep(delay);
4847 
4848 	return ret == active;
4849 }
4850 
4851 /**
4852  * pcie_wait_for_link - Wait until link is active or inactive
4853  * @pdev: Bridge device
4854  * @active: waiting for active or inactive?
4855  *
4856  * Use this to wait till link becomes active or inactive.
4857  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4858 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4859 {
4860 	return pcie_wait_for_link_delay(pdev, active, 100);
4861 }
4862 
4863 /*
4864  * Find maximum D3cold delay required by all the devices on the bus.  The
4865  * spec says 100 ms, but firmware can lower it and we allow drivers to
4866  * increase it as well.
4867  *
4868  * Called with @pci_bus_sem locked for reading.
4869  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4870 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4871 {
4872 	const struct pci_dev *pdev;
4873 	int min_delay = 100;
4874 	int max_delay = 0;
4875 
4876 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4877 		if (pdev->d3cold_delay < min_delay)
4878 			min_delay = pdev->d3cold_delay;
4879 		if (pdev->d3cold_delay > max_delay)
4880 			max_delay = pdev->d3cold_delay;
4881 	}
4882 
4883 	return max(min_delay, max_delay);
4884 }
4885 
4886 /**
4887  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4888  * @dev: PCI bridge
4889  * @reset_type: reset type in human-readable form
4890  * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4891  *
4892  * Handle necessary delays before access to the devices on the secondary
4893  * side of the bridge are permitted after D3cold to D0 transition
4894  * or Conventional Reset.
4895  *
4896  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4897  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4898  * 4.3.2.
4899  *
4900  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4901  * failed to become accessible.
4902  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4903 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4904 				      int timeout)
4905 {
4906 	struct pci_dev *child;
4907 	int delay;
4908 
4909 	if (pci_dev_is_disconnected(dev))
4910 		return 0;
4911 
4912 	if (!pci_is_bridge(dev))
4913 		return 0;
4914 
4915 	down_read(&pci_bus_sem);
4916 
4917 	/*
4918 	 * We only deal with devices that are present currently on the bus.
4919 	 * For any hot-added devices the access delay is handled in pciehp
4920 	 * board_added(). In case of ACPI hotplug the firmware is expected
4921 	 * to configure the devices before OS is notified.
4922 	 */
4923 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4924 		up_read(&pci_bus_sem);
4925 		return 0;
4926 	}
4927 
4928 	/* Take d3cold_delay requirements into account */
4929 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4930 	if (!delay) {
4931 		up_read(&pci_bus_sem);
4932 		return 0;
4933 	}
4934 
4935 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4936 				 bus_list);
4937 	up_read(&pci_bus_sem);
4938 
4939 	/*
4940 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4941 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4942 	 */
4943 	if (!pci_is_pcie(dev)) {
4944 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4945 		msleep(1000 + delay);
4946 		return 0;
4947 	}
4948 
4949 	/*
4950 	 * For PCIe downstream and root ports that do not support speeds
4951 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4952 	 * speeds (gen3) we need to wait first for the data link layer to
4953 	 * become active.
4954 	 *
4955 	 * However, 100 ms is the minimum and the PCIe spec says the
4956 	 * software must allow at least 1s before it can determine that the
4957 	 * device that did not respond is a broken device. There is
4958 	 * evidence that 100 ms is not always enough, for example certain
4959 	 * Titan Ridge xHCI controller does not always respond to
4960 	 * configuration requests if we only wait for 100 ms (see
4961 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4962 	 *
4963 	 * Therefore we wait for 100 ms and check for the device presence
4964 	 * until the timeout expires.
4965 	 */
4966 	if (!pcie_downstream_port(dev))
4967 		return 0;
4968 
4969 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4970 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4971 		msleep(delay);
4972 	} else {
4973 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4974 			delay);
4975 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4976 			/* Did not train, no need to wait any further */
4977 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4978 			return -ENOTTY;
4979 		}
4980 	}
4981 
4982 	return pci_dev_wait(child, reset_type, timeout - delay);
4983 }
4984 
pci_reset_secondary_bus(struct pci_dev * dev)4985 void pci_reset_secondary_bus(struct pci_dev *dev)
4986 {
4987 	u16 ctrl;
4988 
4989 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4990 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4991 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4992 
4993 	/*
4994 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4995 	 * this to 2ms to ensure that we meet the minimum requirement.
4996 	 */
4997 	msleep(2);
4998 
4999 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5000 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5001 }
5002 
pcibios_reset_secondary_bus(struct pci_dev * dev)5003 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5004 {
5005 	pci_reset_secondary_bus(dev);
5006 }
5007 
5008 /**
5009  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5010  * @dev: Bridge device
5011  *
5012  * Use the bridge control register to assert reset on the secondary bus.
5013  * Devices on the secondary bus are left in power-on state.
5014  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5015 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5016 {
5017 	pcibios_reset_secondary_bus(dev);
5018 
5019 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
5020 						 PCIE_RESET_READY_POLL_MS);
5021 }
5022 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5023 
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5024 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5025 {
5026 	struct pci_dev *pdev;
5027 
5028 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5029 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5030 		return -ENOTTY;
5031 
5032 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5033 		if (pdev != dev)
5034 			return -ENOTTY;
5035 
5036 	if (probe)
5037 		return 0;
5038 
5039 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5040 }
5041 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5042 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5043 {
5044 	int rc = -ENOTTY;
5045 
5046 	if (!hotplug || !try_module_get(hotplug->owner))
5047 		return rc;
5048 
5049 	if (hotplug->ops->reset_slot)
5050 		rc = hotplug->ops->reset_slot(hotplug, probe);
5051 
5052 	module_put(hotplug->owner);
5053 
5054 	return rc;
5055 }
5056 
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5057 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5058 {
5059 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5060 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5061 		return -ENOTTY;
5062 
5063 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5064 }
5065 
pci_reset_bus_function(struct pci_dev * dev,bool probe)5066 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5067 {
5068 	int rc;
5069 
5070 	rc = pci_dev_reset_slot_function(dev, probe);
5071 	if (rc != -ENOTTY)
5072 		return rc;
5073 	return pci_parent_bus_reset(dev, probe);
5074 }
5075 
pci_dev_lock(struct pci_dev * dev)5076 static void pci_dev_lock(struct pci_dev *dev)
5077 {
5078 	/* block PM suspend, driver probe, etc. */
5079 	device_lock(&dev->dev);
5080 	pci_cfg_access_lock(dev);
5081 }
5082 
5083 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5084 int pci_dev_trylock(struct pci_dev *dev)
5085 {
5086 	if (device_trylock(&dev->dev)) {
5087 		if (pci_cfg_access_trylock(dev))
5088 			return 1;
5089 		device_unlock(&dev->dev);
5090 	}
5091 
5092 	return 0;
5093 }
5094 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5095 
pci_dev_unlock(struct pci_dev * dev)5096 void pci_dev_unlock(struct pci_dev *dev)
5097 {
5098 	pci_cfg_access_unlock(dev);
5099 	device_unlock(&dev->dev);
5100 }
5101 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5102 
pci_dev_save_and_disable(struct pci_dev * dev)5103 static void pci_dev_save_and_disable(struct pci_dev *dev)
5104 {
5105 	const struct pci_error_handlers *err_handler =
5106 			dev->driver ? dev->driver->err_handler : NULL;
5107 
5108 	/*
5109 	 * dev->driver->err_handler->reset_prepare() is protected against
5110 	 * races with ->remove() by the device lock, which must be held by
5111 	 * the caller.
5112 	 */
5113 	if (err_handler && err_handler->reset_prepare)
5114 		err_handler->reset_prepare(dev);
5115 
5116 	/*
5117 	 * Wake-up device prior to save.  PM registers default to D0 after
5118 	 * reset and a simple register restore doesn't reliably return
5119 	 * to a non-D0 state anyway.
5120 	 */
5121 	pci_set_power_state(dev, PCI_D0);
5122 
5123 	pci_save_state(dev);
5124 	/*
5125 	 * Disable the device by clearing the Command register, except for
5126 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5127 	 * BARs, but also prevents the device from being Bus Master, preventing
5128 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5129 	 * compliant devices, INTx-disable prevents legacy interrupts.
5130 	 */
5131 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5132 }
5133 
pci_dev_restore(struct pci_dev * dev)5134 static void pci_dev_restore(struct pci_dev *dev)
5135 {
5136 	const struct pci_error_handlers *err_handler =
5137 			dev->driver ? dev->driver->err_handler : NULL;
5138 
5139 	pci_restore_state(dev);
5140 
5141 	/*
5142 	 * dev->driver->err_handler->reset_done() is protected against
5143 	 * races with ->remove() by the device lock, which must be held by
5144 	 * the caller.
5145 	 */
5146 	if (err_handler && err_handler->reset_done)
5147 		err_handler->reset_done(dev);
5148 }
5149 
5150 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5151 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5152 	{ },
5153 	{ pci_dev_specific_reset, .name = "device_specific" },
5154 	{ pci_dev_acpi_reset, .name = "acpi" },
5155 	{ pcie_reset_flr, .name = "flr" },
5156 	{ pci_af_flr, .name = "af_flr" },
5157 	{ pci_pm_reset, .name = "pm" },
5158 	{ pci_reset_bus_function, .name = "bus" },
5159 };
5160 
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5161 static ssize_t reset_method_show(struct device *dev,
5162 				 struct device_attribute *attr, char *buf)
5163 {
5164 	struct pci_dev *pdev = to_pci_dev(dev);
5165 	ssize_t len = 0;
5166 	int i, m;
5167 
5168 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5169 		m = pdev->reset_methods[i];
5170 		if (!m)
5171 			break;
5172 
5173 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5174 				     pci_reset_fn_methods[m].name);
5175 	}
5176 
5177 	if (len)
5178 		len += sysfs_emit_at(buf, len, "\n");
5179 
5180 	return len;
5181 }
5182 
reset_method_lookup(const char * name)5183 static int reset_method_lookup(const char *name)
5184 {
5185 	int m;
5186 
5187 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5188 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5189 			return m;
5190 	}
5191 
5192 	return 0;	/* not found */
5193 }
5194 
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5195 static ssize_t reset_method_store(struct device *dev,
5196 				  struct device_attribute *attr,
5197 				  const char *buf, size_t count)
5198 {
5199 	struct pci_dev *pdev = to_pci_dev(dev);
5200 	char *options, *name;
5201 	int m, n;
5202 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5203 
5204 	if (sysfs_streq(buf, "")) {
5205 		pdev->reset_methods[0] = 0;
5206 		pci_warn(pdev, "All device reset methods disabled by user");
5207 		return count;
5208 	}
5209 
5210 	if (sysfs_streq(buf, "default")) {
5211 		pci_init_reset_methods(pdev);
5212 		return count;
5213 	}
5214 
5215 	options = kstrndup(buf, count, GFP_KERNEL);
5216 	if (!options)
5217 		return -ENOMEM;
5218 
5219 	n = 0;
5220 	while ((name = strsep(&options, " ")) != NULL) {
5221 		if (sysfs_streq(name, ""))
5222 			continue;
5223 
5224 		name = strim(name);
5225 
5226 		m = reset_method_lookup(name);
5227 		if (!m) {
5228 			pci_err(pdev, "Invalid reset method '%s'", name);
5229 			goto error;
5230 		}
5231 
5232 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5233 			pci_err(pdev, "Unsupported reset method '%s'", name);
5234 			goto error;
5235 		}
5236 
5237 		if (n == PCI_NUM_RESET_METHODS - 1) {
5238 			pci_err(pdev, "Too many reset methods\n");
5239 			goto error;
5240 		}
5241 
5242 		reset_methods[n++] = m;
5243 	}
5244 
5245 	reset_methods[n] = 0;
5246 
5247 	/* Warn if dev-specific supported but not highest priority */
5248 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5249 	    reset_methods[0] != 1)
5250 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5251 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5252 	kfree(options);
5253 	return count;
5254 
5255 error:
5256 	/* Leave previous methods unchanged */
5257 	kfree(options);
5258 	return -EINVAL;
5259 }
5260 static DEVICE_ATTR_RW(reset_method);
5261 
5262 static struct attribute *pci_dev_reset_method_attrs[] = {
5263 	&dev_attr_reset_method.attr,
5264 	NULL,
5265 };
5266 
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5267 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5268 						    struct attribute *a, int n)
5269 {
5270 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5271 
5272 	if (!pci_reset_supported(pdev))
5273 		return 0;
5274 
5275 	return a->mode;
5276 }
5277 
5278 const struct attribute_group pci_dev_reset_method_attr_group = {
5279 	.attrs = pci_dev_reset_method_attrs,
5280 	.is_visible = pci_dev_reset_method_attr_is_visible,
5281 };
5282 
5283 /**
5284  * __pci_reset_function_locked - reset a PCI device function while holding
5285  * the @dev mutex lock.
5286  * @dev: PCI device to reset
5287  *
5288  * Some devices allow an individual function to be reset without affecting
5289  * other functions in the same device.  The PCI device must be responsive
5290  * to PCI config space in order to use this function.
5291  *
5292  * The device function is presumed to be unused and the caller is holding
5293  * the device mutex lock when this function is called.
5294  *
5295  * Resetting the device will make the contents of PCI configuration space
5296  * random, so any caller of this must be prepared to reinitialise the
5297  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5298  * etc.
5299  *
5300  * Returns 0 if the device function was successfully reset or negative if the
5301  * device doesn't support resetting a single function.
5302  */
__pci_reset_function_locked(struct pci_dev * dev)5303 int __pci_reset_function_locked(struct pci_dev *dev)
5304 {
5305 	int i, m, rc = -ENOTTY;
5306 
5307 	might_sleep();
5308 
5309 	/*
5310 	 * A reset method returns -ENOTTY if it doesn't support this device and
5311 	 * we should try the next method.
5312 	 *
5313 	 * If it returns 0 (success), we're finished.  If it returns any other
5314 	 * error, we're also finished: this indicates that further reset
5315 	 * mechanisms might be broken on the device.
5316 	 */
5317 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5318 		m = dev->reset_methods[i];
5319 		if (!m)
5320 			return -ENOTTY;
5321 
5322 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5323 		if (!rc)
5324 			return 0;
5325 		if (rc != -ENOTTY)
5326 			return rc;
5327 	}
5328 
5329 	return -ENOTTY;
5330 }
5331 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5332 
5333 /**
5334  * pci_init_reset_methods - check whether device can be safely reset
5335  * and store supported reset mechanisms.
5336  * @dev: PCI device to check for reset mechanisms
5337  *
5338  * Some devices allow an individual function to be reset without affecting
5339  * other functions in the same device.  The PCI device must be in D0-D3hot
5340  * state.
5341  *
5342  * Stores reset mechanisms supported by device in reset_methods byte array
5343  * which is a member of struct pci_dev.
5344  */
pci_init_reset_methods(struct pci_dev * dev)5345 void pci_init_reset_methods(struct pci_dev *dev)
5346 {
5347 	int m, i, rc;
5348 
5349 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5350 
5351 	might_sleep();
5352 
5353 	i = 0;
5354 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5355 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5356 		if (!rc)
5357 			dev->reset_methods[i++] = m;
5358 		else if (rc != -ENOTTY)
5359 			break;
5360 	}
5361 
5362 	dev->reset_methods[i] = 0;
5363 }
5364 
5365 /**
5366  * pci_reset_function - quiesce and reset a PCI device function
5367  * @dev: PCI device to reset
5368  *
5369  * Some devices allow an individual function to be reset without affecting
5370  * other functions in the same device.  The PCI device must be responsive
5371  * to PCI config space in order to use this function.
5372  *
5373  * This function does not just reset the PCI portion of a device, but
5374  * clears all the state associated with the device.  This function differs
5375  * from __pci_reset_function_locked() in that it saves and restores device state
5376  * over the reset and takes the PCI device lock.
5377  *
5378  * Returns 0 if the device function was successfully reset or negative if the
5379  * device doesn't support resetting a single function.
5380  */
pci_reset_function(struct pci_dev * dev)5381 int pci_reset_function(struct pci_dev *dev)
5382 {
5383 	int rc;
5384 
5385 	if (!pci_reset_supported(dev))
5386 		return -ENOTTY;
5387 
5388 	pci_dev_lock(dev);
5389 	pci_dev_save_and_disable(dev);
5390 
5391 	rc = __pci_reset_function_locked(dev);
5392 
5393 	pci_dev_restore(dev);
5394 	pci_dev_unlock(dev);
5395 
5396 	return rc;
5397 }
5398 EXPORT_SYMBOL_GPL(pci_reset_function);
5399 
5400 /**
5401  * pci_reset_function_locked - quiesce and reset a PCI device function
5402  * @dev: PCI device to reset
5403  *
5404  * Some devices allow an individual function to be reset without affecting
5405  * other functions in the same device.  The PCI device must be responsive
5406  * to PCI config space in order to use this function.
5407  *
5408  * This function does not just reset the PCI portion of a device, but
5409  * clears all the state associated with the device.  This function differs
5410  * from __pci_reset_function_locked() in that it saves and restores device state
5411  * over the reset.  It also differs from pci_reset_function() in that it
5412  * requires the PCI device lock to be held.
5413  *
5414  * Returns 0 if the device function was successfully reset or negative if the
5415  * device doesn't support resetting a single function.
5416  */
pci_reset_function_locked(struct pci_dev * dev)5417 int pci_reset_function_locked(struct pci_dev *dev)
5418 {
5419 	int rc;
5420 
5421 	if (!pci_reset_supported(dev))
5422 		return -ENOTTY;
5423 
5424 	pci_dev_save_and_disable(dev);
5425 
5426 	rc = __pci_reset_function_locked(dev);
5427 
5428 	pci_dev_restore(dev);
5429 
5430 	return rc;
5431 }
5432 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5433 
5434 /**
5435  * pci_try_reset_function - quiesce and reset a PCI device function
5436  * @dev: PCI device to reset
5437  *
5438  * Same as above, except return -EAGAIN if unable to lock device.
5439  */
pci_try_reset_function(struct pci_dev * dev)5440 int pci_try_reset_function(struct pci_dev *dev)
5441 {
5442 	int rc;
5443 
5444 	if (!pci_reset_supported(dev))
5445 		return -ENOTTY;
5446 
5447 	if (!pci_dev_trylock(dev))
5448 		return -EAGAIN;
5449 
5450 	pci_dev_save_and_disable(dev);
5451 	rc = __pci_reset_function_locked(dev);
5452 	pci_dev_restore(dev);
5453 	pci_dev_unlock(dev);
5454 
5455 	return rc;
5456 }
5457 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5458 
5459 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5460 static bool pci_bus_resetable(struct pci_bus *bus)
5461 {
5462 	struct pci_dev *dev;
5463 
5464 
5465 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5466 		return false;
5467 
5468 	list_for_each_entry(dev, &bus->devices, bus_list) {
5469 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5470 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5471 			return false;
5472 	}
5473 
5474 	return true;
5475 }
5476 
5477 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5478 static void pci_bus_lock(struct pci_bus *bus)
5479 {
5480 	struct pci_dev *dev;
5481 
5482 	list_for_each_entry(dev, &bus->devices, bus_list) {
5483 		pci_dev_lock(dev);
5484 		if (dev->subordinate)
5485 			pci_bus_lock(dev->subordinate);
5486 	}
5487 }
5488 
5489 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5490 static void pci_bus_unlock(struct pci_bus *bus)
5491 {
5492 	struct pci_dev *dev;
5493 
5494 	list_for_each_entry(dev, &bus->devices, bus_list) {
5495 		if (dev->subordinate)
5496 			pci_bus_unlock(dev->subordinate);
5497 		pci_dev_unlock(dev);
5498 	}
5499 }
5500 
5501 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5502 static int pci_bus_trylock(struct pci_bus *bus)
5503 {
5504 	struct pci_dev *dev;
5505 
5506 	list_for_each_entry(dev, &bus->devices, bus_list) {
5507 		if (!pci_dev_trylock(dev))
5508 			goto unlock;
5509 		if (dev->subordinate) {
5510 			if (!pci_bus_trylock(dev->subordinate)) {
5511 				pci_dev_unlock(dev);
5512 				goto unlock;
5513 			}
5514 		}
5515 	}
5516 	return 1;
5517 
5518 unlock:
5519 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5520 		if (dev->subordinate)
5521 			pci_bus_unlock(dev->subordinate);
5522 		pci_dev_unlock(dev);
5523 	}
5524 	return 0;
5525 }
5526 
5527 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5528 static bool pci_slot_resetable(struct pci_slot *slot)
5529 {
5530 	struct pci_dev *dev;
5531 
5532 	if (slot->bus->self &&
5533 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5534 		return false;
5535 
5536 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5537 		if (!dev->slot || dev->slot != slot)
5538 			continue;
5539 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5540 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5541 			return false;
5542 	}
5543 
5544 	return true;
5545 }
5546 
5547 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5548 static void pci_slot_lock(struct pci_slot *slot)
5549 {
5550 	struct pci_dev *dev;
5551 
5552 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5553 		if (!dev->slot || dev->slot != slot)
5554 			continue;
5555 		pci_dev_lock(dev);
5556 		if (dev->subordinate)
5557 			pci_bus_lock(dev->subordinate);
5558 	}
5559 }
5560 
5561 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5562 static void pci_slot_unlock(struct pci_slot *slot)
5563 {
5564 	struct pci_dev *dev;
5565 
5566 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5567 		if (!dev->slot || dev->slot != slot)
5568 			continue;
5569 		if (dev->subordinate)
5570 			pci_bus_unlock(dev->subordinate);
5571 		pci_dev_unlock(dev);
5572 	}
5573 }
5574 
5575 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5576 static int pci_slot_trylock(struct pci_slot *slot)
5577 {
5578 	struct pci_dev *dev;
5579 
5580 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5581 		if (!dev->slot || dev->slot != slot)
5582 			continue;
5583 		if (!pci_dev_trylock(dev))
5584 			goto unlock;
5585 		if (dev->subordinate) {
5586 			if (!pci_bus_trylock(dev->subordinate)) {
5587 				pci_dev_unlock(dev);
5588 				goto unlock;
5589 			}
5590 		}
5591 	}
5592 	return 1;
5593 
5594 unlock:
5595 	list_for_each_entry_continue_reverse(dev,
5596 					     &slot->bus->devices, bus_list) {
5597 		if (!dev->slot || dev->slot != slot)
5598 			continue;
5599 		if (dev->subordinate)
5600 			pci_bus_unlock(dev->subordinate);
5601 		pci_dev_unlock(dev);
5602 	}
5603 	return 0;
5604 }
5605 
5606 /*
5607  * Save and disable devices from the top of the tree down while holding
5608  * the @dev mutex lock for the entire tree.
5609  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5610 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5611 {
5612 	struct pci_dev *dev;
5613 
5614 	list_for_each_entry(dev, &bus->devices, bus_list) {
5615 		pci_dev_save_and_disable(dev);
5616 		if (dev->subordinate)
5617 			pci_bus_save_and_disable_locked(dev->subordinate);
5618 	}
5619 }
5620 
5621 /*
5622  * Restore devices from top of the tree down while holding @dev mutex lock
5623  * for the entire tree.  Parent bridges need to be restored before we can
5624  * get to subordinate devices.
5625  */
pci_bus_restore_locked(struct pci_bus * bus)5626 static void pci_bus_restore_locked(struct pci_bus *bus)
5627 {
5628 	struct pci_dev *dev;
5629 
5630 	list_for_each_entry(dev, &bus->devices, bus_list) {
5631 		pci_dev_restore(dev);
5632 		if (dev->subordinate)
5633 			pci_bus_restore_locked(dev->subordinate);
5634 	}
5635 }
5636 
5637 /*
5638  * Save and disable devices from the top of the tree down while holding
5639  * the @dev mutex lock for the entire tree.
5640  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5641 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5642 {
5643 	struct pci_dev *dev;
5644 
5645 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5646 		if (!dev->slot || dev->slot != slot)
5647 			continue;
5648 		pci_dev_save_and_disable(dev);
5649 		if (dev->subordinate)
5650 			pci_bus_save_and_disable_locked(dev->subordinate);
5651 	}
5652 }
5653 
5654 /*
5655  * Restore devices from top of the tree down while holding @dev mutex lock
5656  * for the entire tree.  Parent bridges need to be restored before we can
5657  * get to subordinate devices.
5658  */
pci_slot_restore_locked(struct pci_slot * slot)5659 static void pci_slot_restore_locked(struct pci_slot *slot)
5660 {
5661 	struct pci_dev *dev;
5662 
5663 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5664 		if (!dev->slot || dev->slot != slot)
5665 			continue;
5666 		pci_dev_restore(dev);
5667 		if (dev->subordinate)
5668 			pci_bus_restore_locked(dev->subordinate);
5669 	}
5670 }
5671 
pci_slot_reset(struct pci_slot * slot,bool probe)5672 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5673 {
5674 	int rc;
5675 
5676 	if (!slot || !pci_slot_resetable(slot))
5677 		return -ENOTTY;
5678 
5679 	if (!probe)
5680 		pci_slot_lock(slot);
5681 
5682 	might_sleep();
5683 
5684 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5685 
5686 	if (!probe)
5687 		pci_slot_unlock(slot);
5688 
5689 	return rc;
5690 }
5691 
5692 /**
5693  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5694  * @slot: PCI slot to probe
5695  *
5696  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5697  */
pci_probe_reset_slot(struct pci_slot * slot)5698 int pci_probe_reset_slot(struct pci_slot *slot)
5699 {
5700 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5701 }
5702 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5703 
5704 /**
5705  * __pci_reset_slot - Try to reset a PCI slot
5706  * @slot: PCI slot to reset
5707  *
5708  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5709  * independent of other slots.  For instance, some slots may support slot power
5710  * control.  In the case of a 1:1 bus to slot architecture, this function may
5711  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5712  * Generally a slot reset should be attempted before a bus reset.  All of the
5713  * function of the slot and any subordinate buses behind the slot are reset
5714  * through this function.  PCI config space of all devices in the slot and
5715  * behind the slot is saved before and restored after reset.
5716  *
5717  * Same as above except return -EAGAIN if the slot cannot be locked
5718  */
__pci_reset_slot(struct pci_slot * slot)5719 static int __pci_reset_slot(struct pci_slot *slot)
5720 {
5721 	int rc;
5722 
5723 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5724 	if (rc)
5725 		return rc;
5726 
5727 	if (pci_slot_trylock(slot)) {
5728 		pci_slot_save_and_disable_locked(slot);
5729 		might_sleep();
5730 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5731 		pci_slot_restore_locked(slot);
5732 		pci_slot_unlock(slot);
5733 	} else
5734 		rc = -EAGAIN;
5735 
5736 	return rc;
5737 }
5738 
pci_bus_reset(struct pci_bus * bus,bool probe)5739 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5740 {
5741 	int ret;
5742 
5743 	if (!bus->self || !pci_bus_resetable(bus))
5744 		return -ENOTTY;
5745 
5746 	if (probe)
5747 		return 0;
5748 
5749 	pci_bus_lock(bus);
5750 
5751 	might_sleep();
5752 
5753 	ret = pci_bridge_secondary_bus_reset(bus->self);
5754 
5755 	pci_bus_unlock(bus);
5756 
5757 	return ret;
5758 }
5759 
5760 /**
5761  * pci_bus_error_reset - reset the bridge's subordinate bus
5762  * @bridge: The parent device that connects to the bus to reset
5763  *
5764  * This function will first try to reset the slots on this bus if the method is
5765  * available. If slot reset fails or is not available, this will fall back to a
5766  * secondary bus reset.
5767  */
pci_bus_error_reset(struct pci_dev * bridge)5768 int pci_bus_error_reset(struct pci_dev *bridge)
5769 {
5770 	struct pci_bus *bus = bridge->subordinate;
5771 	struct pci_slot *slot;
5772 
5773 	if (!bus)
5774 		return -ENOTTY;
5775 
5776 	mutex_lock(&pci_slot_mutex);
5777 	if (list_empty(&bus->slots))
5778 		goto bus_reset;
5779 
5780 	list_for_each_entry(slot, &bus->slots, list)
5781 		if (pci_probe_reset_slot(slot))
5782 			goto bus_reset;
5783 
5784 	list_for_each_entry(slot, &bus->slots, list)
5785 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5786 			goto bus_reset;
5787 
5788 	mutex_unlock(&pci_slot_mutex);
5789 	return 0;
5790 bus_reset:
5791 	mutex_unlock(&pci_slot_mutex);
5792 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5793 }
5794 
5795 /**
5796  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5797  * @bus: PCI bus to probe
5798  *
5799  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5800  */
pci_probe_reset_bus(struct pci_bus * bus)5801 int pci_probe_reset_bus(struct pci_bus *bus)
5802 {
5803 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5804 }
5805 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5806 
5807 /**
5808  * __pci_reset_bus - Try to reset a PCI bus
5809  * @bus: top level PCI bus to reset
5810  *
5811  * Same as above except return -EAGAIN if the bus cannot be locked
5812  */
__pci_reset_bus(struct pci_bus * bus)5813 static int __pci_reset_bus(struct pci_bus *bus)
5814 {
5815 	int rc;
5816 
5817 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5818 	if (rc)
5819 		return rc;
5820 
5821 	if (pci_bus_trylock(bus)) {
5822 		pci_bus_save_and_disable_locked(bus);
5823 		might_sleep();
5824 		rc = pci_bridge_secondary_bus_reset(bus->self);
5825 		pci_bus_restore_locked(bus);
5826 		pci_bus_unlock(bus);
5827 	} else
5828 		rc = -EAGAIN;
5829 
5830 	return rc;
5831 }
5832 
5833 /**
5834  * pci_reset_bus - Try to reset a PCI bus
5835  * @pdev: top level PCI device to reset via slot/bus
5836  *
5837  * Same as above except return -EAGAIN if the bus cannot be locked
5838  */
pci_reset_bus(struct pci_dev * pdev)5839 int pci_reset_bus(struct pci_dev *pdev)
5840 {
5841 	return (!pci_probe_reset_slot(pdev->slot)) ?
5842 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5843 }
5844 EXPORT_SYMBOL_GPL(pci_reset_bus);
5845 
5846 /**
5847  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5848  * @dev: PCI device to query
5849  *
5850  * Returns mmrbc: maximum designed memory read count in bytes or
5851  * appropriate error value.
5852  */
pcix_get_max_mmrbc(struct pci_dev * dev)5853 int pcix_get_max_mmrbc(struct pci_dev *dev)
5854 {
5855 	int cap;
5856 	u32 stat;
5857 
5858 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5859 	if (!cap)
5860 		return -EINVAL;
5861 
5862 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5863 		return -EINVAL;
5864 
5865 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5866 }
5867 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5868 
5869 /**
5870  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5871  * @dev: PCI device to query
5872  *
5873  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5874  * value.
5875  */
pcix_get_mmrbc(struct pci_dev * dev)5876 int pcix_get_mmrbc(struct pci_dev *dev)
5877 {
5878 	int cap;
5879 	u16 cmd;
5880 
5881 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5882 	if (!cap)
5883 		return -EINVAL;
5884 
5885 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5886 		return -EINVAL;
5887 
5888 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5889 }
5890 EXPORT_SYMBOL(pcix_get_mmrbc);
5891 
5892 /**
5893  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5894  * @dev: PCI device to query
5895  * @mmrbc: maximum memory read count in bytes
5896  *    valid values are 512, 1024, 2048, 4096
5897  *
5898  * If possible sets maximum memory read byte count, some bridges have errata
5899  * that prevent this.
5900  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5901 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5902 {
5903 	int cap;
5904 	u32 stat, v, o;
5905 	u16 cmd;
5906 
5907 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5908 		return -EINVAL;
5909 
5910 	v = ffs(mmrbc) - 10;
5911 
5912 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5913 	if (!cap)
5914 		return -EINVAL;
5915 
5916 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5917 		return -EINVAL;
5918 
5919 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5920 		return -E2BIG;
5921 
5922 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5923 		return -EINVAL;
5924 
5925 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5926 	if (o != v) {
5927 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5928 			return -EIO;
5929 
5930 		cmd &= ~PCI_X_CMD_MAX_READ;
5931 		cmd |= v << 2;
5932 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5933 			return -EIO;
5934 	}
5935 	return 0;
5936 }
5937 EXPORT_SYMBOL(pcix_set_mmrbc);
5938 
5939 /**
5940  * pcie_get_readrq - get PCI Express read request size
5941  * @dev: PCI device to query
5942  *
5943  * Returns maximum memory read request in bytes or appropriate error value.
5944  */
pcie_get_readrq(struct pci_dev * dev)5945 int pcie_get_readrq(struct pci_dev *dev)
5946 {
5947 	u16 ctl;
5948 
5949 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5950 
5951 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5952 }
5953 EXPORT_SYMBOL(pcie_get_readrq);
5954 
5955 /**
5956  * pcie_set_readrq - set PCI Express maximum memory read request
5957  * @dev: PCI device to query
5958  * @rq: maximum memory read count in bytes
5959  *    valid values are 128, 256, 512, 1024, 2048, 4096
5960  *
5961  * If possible sets maximum memory read request in bytes
5962  */
pcie_set_readrq(struct pci_dev * dev,int rq)5963 int pcie_set_readrq(struct pci_dev *dev, int rq)
5964 {
5965 	u16 v;
5966 	int ret;
5967 
5968 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5969 		return -EINVAL;
5970 
5971 	/*
5972 	 * If using the "performance" PCIe config, we clamp the read rq
5973 	 * size to the max packet size to keep the host bridge from
5974 	 * generating requests larger than we can cope with.
5975 	 */
5976 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5977 		int mps = pcie_get_mps(dev);
5978 
5979 		if (mps < rq)
5980 			rq = mps;
5981 	}
5982 
5983 	v = (ffs(rq) - 8) << 12;
5984 
5985 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5986 						  PCI_EXP_DEVCTL_READRQ, v);
5987 
5988 	return pcibios_err_to_errno(ret);
5989 }
5990 EXPORT_SYMBOL(pcie_set_readrq);
5991 
5992 /**
5993  * pcie_get_mps - get PCI Express maximum payload size
5994  * @dev: PCI device to query
5995  *
5996  * Returns maximum payload size in bytes
5997  */
pcie_get_mps(struct pci_dev * dev)5998 int pcie_get_mps(struct pci_dev *dev)
5999 {
6000 	u16 ctl;
6001 
6002 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6003 
6004 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6005 }
6006 EXPORT_SYMBOL(pcie_get_mps);
6007 
6008 /**
6009  * pcie_set_mps - set PCI Express maximum payload size
6010  * @dev: PCI device to query
6011  * @mps: maximum payload size in bytes
6012  *    valid values are 128, 256, 512, 1024, 2048, 4096
6013  *
6014  * If possible sets maximum payload size
6015  */
pcie_set_mps(struct pci_dev * dev,int mps)6016 int pcie_set_mps(struct pci_dev *dev, int mps)
6017 {
6018 	u16 v;
6019 	int ret;
6020 
6021 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6022 		return -EINVAL;
6023 
6024 	v = ffs(mps) - 8;
6025 	if (v > dev->pcie_mpss)
6026 		return -EINVAL;
6027 	v <<= 5;
6028 
6029 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6030 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6031 
6032 	return pcibios_err_to_errno(ret);
6033 }
6034 EXPORT_SYMBOL(pcie_set_mps);
6035 
6036 /**
6037  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6038  *			      device and its bandwidth limitation
6039  * @dev: PCI device to query
6040  * @limiting_dev: storage for device causing the bandwidth limitation
6041  * @speed: storage for speed of limiting device
6042  * @width: storage for width of limiting device
6043  *
6044  * Walk up the PCI device chain and find the point where the minimum
6045  * bandwidth is available.  Return the bandwidth available there and (if
6046  * limiting_dev, speed, and width pointers are supplied) information about
6047  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6048  * raw bandwidth.
6049  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6050 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6051 			     enum pci_bus_speed *speed,
6052 			     enum pcie_link_width *width)
6053 {
6054 	u16 lnksta;
6055 	enum pci_bus_speed next_speed;
6056 	enum pcie_link_width next_width;
6057 	u32 bw, next_bw;
6058 
6059 	if (speed)
6060 		*speed = PCI_SPEED_UNKNOWN;
6061 	if (width)
6062 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6063 
6064 	bw = 0;
6065 
6066 	while (dev) {
6067 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6068 
6069 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6070 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6071 
6072 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6073 
6074 		/* Check if current device limits the total bandwidth */
6075 		if (!bw || next_bw <= bw) {
6076 			bw = next_bw;
6077 
6078 			if (limiting_dev)
6079 				*limiting_dev = dev;
6080 			if (speed)
6081 				*speed = next_speed;
6082 			if (width)
6083 				*width = next_width;
6084 		}
6085 
6086 		dev = pci_upstream_bridge(dev);
6087 	}
6088 
6089 	return bw;
6090 }
6091 EXPORT_SYMBOL(pcie_bandwidth_available);
6092 
6093 /**
6094  * pcie_get_speed_cap - query for the PCI device's link speed capability
6095  * @dev: PCI device to query
6096  *
6097  * Query the PCI device speed capability.  Return the maximum link speed
6098  * supported by the device.
6099  */
pcie_get_speed_cap(struct pci_dev * dev)6100 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6101 {
6102 	u32 lnkcap2, lnkcap;
6103 
6104 	/*
6105 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6106 	 * implementation note there recommends using the Supported Link
6107 	 * Speeds Vector in Link Capabilities 2 when supported.
6108 	 *
6109 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6110 	 * should use the Supported Link Speeds field in Link Capabilities,
6111 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6112 	 */
6113 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6114 
6115 	/* PCIe r3.0-compliant */
6116 	if (lnkcap2)
6117 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6118 
6119 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6120 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6121 		return PCIE_SPEED_5_0GT;
6122 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6123 		return PCIE_SPEED_2_5GT;
6124 
6125 	return PCI_SPEED_UNKNOWN;
6126 }
6127 EXPORT_SYMBOL(pcie_get_speed_cap);
6128 
6129 /**
6130  * pcie_get_width_cap - query for the PCI device's link width capability
6131  * @dev: PCI device to query
6132  *
6133  * Query the PCI device width capability.  Return the maximum link width
6134  * supported by the device.
6135  */
pcie_get_width_cap(struct pci_dev * dev)6136 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6137 {
6138 	u32 lnkcap;
6139 
6140 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6141 	if (lnkcap)
6142 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6143 
6144 	return PCIE_LNK_WIDTH_UNKNOWN;
6145 }
6146 EXPORT_SYMBOL(pcie_get_width_cap);
6147 
6148 /**
6149  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6150  * @dev: PCI device
6151  * @speed: storage for link speed
6152  * @width: storage for link width
6153  *
6154  * Calculate a PCI device's link bandwidth by querying for its link speed
6155  * and width, multiplying them, and applying encoding overhead.  The result
6156  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6157  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6158 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6159 			   enum pcie_link_width *width)
6160 {
6161 	*speed = pcie_get_speed_cap(dev);
6162 	*width = pcie_get_width_cap(dev);
6163 
6164 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6165 		return 0;
6166 
6167 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6168 }
6169 
6170 /**
6171  * __pcie_print_link_status - Report the PCI device's link speed and width
6172  * @dev: PCI device to query
6173  * @verbose: Print info even when enough bandwidth is available
6174  *
6175  * If the available bandwidth at the device is less than the device is
6176  * capable of, report the device's maximum possible bandwidth and the
6177  * upstream link that limits its performance.  If @verbose, always print
6178  * the available bandwidth, even if the device isn't constrained.
6179  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6180 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6181 {
6182 	enum pcie_link_width width, width_cap;
6183 	enum pci_bus_speed speed, speed_cap;
6184 	struct pci_dev *limiting_dev = NULL;
6185 	u32 bw_avail, bw_cap;
6186 
6187 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6188 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6189 
6190 	if (bw_avail >= bw_cap && verbose)
6191 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6192 			 bw_cap / 1000, bw_cap % 1000,
6193 			 pci_speed_string(speed_cap), width_cap);
6194 	else if (bw_avail < bw_cap)
6195 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6196 			 bw_avail / 1000, bw_avail % 1000,
6197 			 pci_speed_string(speed), width,
6198 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6199 			 bw_cap / 1000, bw_cap % 1000,
6200 			 pci_speed_string(speed_cap), width_cap);
6201 }
6202 
6203 /**
6204  * pcie_print_link_status - Report the PCI device's link speed and width
6205  * @dev: PCI device to query
6206  *
6207  * Report the available bandwidth at the device.
6208  */
pcie_print_link_status(struct pci_dev * dev)6209 void pcie_print_link_status(struct pci_dev *dev)
6210 {
6211 	__pcie_print_link_status(dev, true);
6212 }
6213 EXPORT_SYMBOL(pcie_print_link_status);
6214 
6215 /**
6216  * pci_select_bars - Make BAR mask from the type of resource
6217  * @dev: the PCI device for which BAR mask is made
6218  * @flags: resource type mask to be selected
6219  *
6220  * This helper routine makes bar mask from the type of resource.
6221  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6222 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6223 {
6224 	int i, bars = 0;
6225 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6226 		if (pci_resource_flags(dev, i) & flags)
6227 			bars |= (1 << i);
6228 	return bars;
6229 }
6230 EXPORT_SYMBOL(pci_select_bars);
6231 
6232 /* Some architectures require additional programming to enable VGA */
6233 static arch_set_vga_state_t arch_set_vga_state;
6234 
pci_register_set_vga_state(arch_set_vga_state_t func)6235 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6236 {
6237 	arch_set_vga_state = func;	/* NULL disables */
6238 }
6239 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6240 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6241 				  unsigned int command_bits, u32 flags)
6242 {
6243 	if (arch_set_vga_state)
6244 		return arch_set_vga_state(dev, decode, command_bits,
6245 						flags);
6246 	return 0;
6247 }
6248 
6249 /**
6250  * pci_set_vga_state - set VGA decode state on device and parents if requested
6251  * @dev: the PCI device
6252  * @decode: true = enable decoding, false = disable decoding
6253  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6254  * @flags: traverse ancestors and change bridges
6255  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6256  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6257 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6258 		      unsigned int command_bits, u32 flags)
6259 {
6260 	struct pci_bus *bus;
6261 	struct pci_dev *bridge;
6262 	u16 cmd;
6263 	int rc;
6264 
6265 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6266 
6267 	/* ARCH specific VGA enables */
6268 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6269 	if (rc)
6270 		return rc;
6271 
6272 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6273 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6274 		if (decode)
6275 			cmd |= command_bits;
6276 		else
6277 			cmd &= ~command_bits;
6278 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6279 	}
6280 
6281 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6282 		return 0;
6283 
6284 	bus = dev->bus;
6285 	while (bus) {
6286 		bridge = bus->self;
6287 		if (bridge) {
6288 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6289 					     &cmd);
6290 			if (decode)
6291 				cmd |= PCI_BRIDGE_CTL_VGA;
6292 			else
6293 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6294 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6295 					      cmd);
6296 		}
6297 		bus = bus->parent;
6298 	}
6299 	return 0;
6300 }
6301 
6302 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6303 bool pci_pr3_present(struct pci_dev *pdev)
6304 {
6305 	struct acpi_device *adev;
6306 
6307 	if (acpi_disabled)
6308 		return false;
6309 
6310 	adev = ACPI_COMPANION(&pdev->dev);
6311 	if (!adev)
6312 		return false;
6313 
6314 	return adev->power.flags.power_resources &&
6315 		acpi_has_method(adev->handle, "_PR3");
6316 }
6317 EXPORT_SYMBOL_GPL(pci_pr3_present);
6318 #endif
6319 
6320 /**
6321  * pci_add_dma_alias - Add a DMA devfn alias for a device
6322  * @dev: the PCI device for which alias is added
6323  * @devfn_from: alias slot and function
6324  * @nr_devfns: number of subsequent devfns to alias
6325  *
6326  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6327  * which is used to program permissible bus-devfn source addresses for DMA
6328  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6329  * and are useful for devices generating DMA requests beyond or different
6330  * from their logical bus-devfn.  Examples include device quirks where the
6331  * device simply uses the wrong devfn, as well as non-transparent bridges
6332  * where the alias may be a proxy for devices in another domain.
6333  *
6334  * IOMMU group creation is performed during device discovery or addition,
6335  * prior to any potential DMA mapping and therefore prior to driver probing
6336  * (especially for userspace assigned devices where IOMMU group definition
6337  * cannot be left as a userspace activity).  DMA aliases should therefore
6338  * be configured via quirks, such as the PCI fixup header quirk.
6339  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6340 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6341 {
6342 	int devfn_to;
6343 
6344 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6345 	devfn_to = devfn_from + nr_devfns - 1;
6346 
6347 	if (!dev->dma_alias_mask)
6348 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6349 	if (!dev->dma_alias_mask) {
6350 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6351 		return;
6352 	}
6353 
6354 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6355 
6356 	if (nr_devfns == 1)
6357 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6358 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6359 	else if (nr_devfns > 1)
6360 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6361 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6362 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6363 }
6364 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6365 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6366 {
6367 	return (dev1->dma_alias_mask &&
6368 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6369 	       (dev2->dma_alias_mask &&
6370 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6371 	       pci_real_dma_dev(dev1) == dev2 ||
6372 	       pci_real_dma_dev(dev2) == dev1;
6373 }
6374 
pci_device_is_present(struct pci_dev * pdev)6375 bool pci_device_is_present(struct pci_dev *pdev)
6376 {
6377 	u32 v;
6378 
6379 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6380 	pdev = pci_physfn(pdev);
6381 	if (pci_dev_is_disconnected(pdev))
6382 		return false;
6383 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6384 }
6385 EXPORT_SYMBOL_GPL(pci_device_is_present);
6386 
pci_ignore_hotplug(struct pci_dev * dev)6387 void pci_ignore_hotplug(struct pci_dev *dev)
6388 {
6389 	struct pci_dev *bridge = dev->bus->self;
6390 
6391 	dev->ignore_hotplug = 1;
6392 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6393 	if (bridge)
6394 		bridge->ignore_hotplug = 1;
6395 }
6396 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6397 
6398 /**
6399  * pci_real_dma_dev - Get PCI DMA device for PCI device
6400  * @dev: the PCI device that may have a PCI DMA alias
6401  *
6402  * Permits the platform to provide architecture-specific functionality to
6403  * devices needing to alias DMA to another PCI device on another PCI bus. If
6404  * the PCI device is on the same bus, it is recommended to use
6405  * pci_add_dma_alias(). This is the default implementation. Architecture
6406  * implementations can override this.
6407  */
pci_real_dma_dev(struct pci_dev * dev)6408 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6409 {
6410 	return dev;
6411 }
6412 
pcibios_default_alignment(void)6413 resource_size_t __weak pcibios_default_alignment(void)
6414 {
6415 	return 0;
6416 }
6417 
6418 /*
6419  * Arches that don't want to expose struct resource to userland as-is in
6420  * sysfs and /proc can implement their own pci_resource_to_user().
6421  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6422 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6423 				 const struct resource *rsrc,
6424 				 resource_size_t *start, resource_size_t *end)
6425 {
6426 	*start = rsrc->start;
6427 	*end = rsrc->end;
6428 }
6429 
6430 static char *resource_alignment_param;
6431 static DEFINE_SPINLOCK(resource_alignment_lock);
6432 
6433 /**
6434  * pci_specified_resource_alignment - get resource alignment specified by user.
6435  * @dev: the PCI device to get
6436  * @resize: whether or not to change resources' size when reassigning alignment
6437  *
6438  * RETURNS: Resource alignment if it is specified.
6439  *          Zero if it is not specified.
6440  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6441 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6442 							bool *resize)
6443 {
6444 	int align_order, count;
6445 	resource_size_t align = pcibios_default_alignment();
6446 	const char *p;
6447 	int ret;
6448 
6449 	spin_lock(&resource_alignment_lock);
6450 	p = resource_alignment_param;
6451 	if (!p || !*p)
6452 		goto out;
6453 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6454 		align = 0;
6455 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6456 		goto out;
6457 	}
6458 
6459 	while (*p) {
6460 		count = 0;
6461 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6462 		    p[count] == '@') {
6463 			p += count + 1;
6464 			if (align_order > 63) {
6465 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6466 				       align_order);
6467 				align_order = PAGE_SHIFT;
6468 			}
6469 		} else {
6470 			align_order = PAGE_SHIFT;
6471 		}
6472 
6473 		ret = pci_dev_str_match(dev, p, &p);
6474 		if (ret == 1) {
6475 			*resize = true;
6476 			align = 1ULL << align_order;
6477 			break;
6478 		} else if (ret < 0) {
6479 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6480 			       p);
6481 			break;
6482 		}
6483 
6484 		if (*p != ';' && *p != ',') {
6485 			/* End of param or invalid format */
6486 			break;
6487 		}
6488 		p++;
6489 	}
6490 out:
6491 	spin_unlock(&resource_alignment_lock);
6492 	return align;
6493 }
6494 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6495 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6496 					   resource_size_t align, bool resize)
6497 {
6498 	struct resource *r = &dev->resource[bar];
6499 	resource_size_t size;
6500 
6501 	if (!(r->flags & IORESOURCE_MEM))
6502 		return;
6503 
6504 	if (r->flags & IORESOURCE_PCI_FIXED) {
6505 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6506 			 bar, r, (unsigned long long)align);
6507 		return;
6508 	}
6509 
6510 	size = resource_size(r);
6511 	if (size >= align)
6512 		return;
6513 
6514 	/*
6515 	 * Increase the alignment of the resource.  There are two ways we
6516 	 * can do this:
6517 	 *
6518 	 * 1) Increase the size of the resource.  BARs are aligned on their
6519 	 *    size, so when we reallocate space for this resource, we'll
6520 	 *    allocate it with the larger alignment.  This also prevents
6521 	 *    assignment of any other BARs inside the alignment region, so
6522 	 *    if we're requesting page alignment, this means no other BARs
6523 	 *    will share the page.
6524 	 *
6525 	 *    The disadvantage is that this makes the resource larger than
6526 	 *    the hardware BAR, which may break drivers that compute things
6527 	 *    based on the resource size, e.g., to find registers at a
6528 	 *    fixed offset before the end of the BAR.
6529 	 *
6530 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6531 	 *    set r->start to the desired alignment.  By itself this
6532 	 *    doesn't prevent other BARs being put inside the alignment
6533 	 *    region, but if we realign *every* resource of every device in
6534 	 *    the system, none of them will share an alignment region.
6535 	 *
6536 	 * When the user has requested alignment for only some devices via
6537 	 * the "pci=resource_alignment" argument, "resize" is true and we
6538 	 * use the first method.  Otherwise we assume we're aligning all
6539 	 * devices and we use the second.
6540 	 */
6541 
6542 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6543 		 bar, r, (unsigned long long)align);
6544 
6545 	if (resize) {
6546 		r->start = 0;
6547 		r->end = align - 1;
6548 	} else {
6549 		r->flags &= ~IORESOURCE_SIZEALIGN;
6550 		r->flags |= IORESOURCE_STARTALIGN;
6551 		r->start = align;
6552 		r->end = r->start + size - 1;
6553 	}
6554 	r->flags |= IORESOURCE_UNSET;
6555 }
6556 
6557 /*
6558  * This function disables memory decoding and releases memory resources
6559  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6560  * It also rounds up size to specified alignment.
6561  * Later on, the kernel will assign page-aligned memory resource back
6562  * to the device.
6563  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6564 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6565 {
6566 	int i;
6567 	struct resource *r;
6568 	resource_size_t align;
6569 	u16 command;
6570 	bool resize = false;
6571 
6572 	/*
6573 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6574 	 * 3.4.1.11.  Their resources are allocated from the space
6575 	 * described by the VF BARx register in the PF's SR-IOV capability.
6576 	 * We can't influence their alignment here.
6577 	 */
6578 	if (dev->is_virtfn)
6579 		return;
6580 
6581 	/* check if specified PCI is target device to reassign */
6582 	align = pci_specified_resource_alignment(dev, &resize);
6583 	if (!align)
6584 		return;
6585 
6586 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6587 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6588 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6589 		return;
6590 	}
6591 
6592 	pci_read_config_word(dev, PCI_COMMAND, &command);
6593 	command &= ~PCI_COMMAND_MEMORY;
6594 	pci_write_config_word(dev, PCI_COMMAND, command);
6595 
6596 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6597 		pci_request_resource_alignment(dev, i, align, resize);
6598 
6599 	/*
6600 	 * Need to disable bridge's resource window,
6601 	 * to enable the kernel to reassign new resource
6602 	 * window later on.
6603 	 */
6604 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6605 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6606 			r = &dev->resource[i];
6607 			if (!(r->flags & IORESOURCE_MEM))
6608 				continue;
6609 			r->flags |= IORESOURCE_UNSET;
6610 			r->end = resource_size(r) - 1;
6611 			r->start = 0;
6612 		}
6613 		pci_disable_bridge_window(dev);
6614 	}
6615 }
6616 
resource_alignment_show(struct bus_type * bus,char * buf)6617 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6618 {
6619 	size_t count = 0;
6620 
6621 	spin_lock(&resource_alignment_lock);
6622 	if (resource_alignment_param)
6623 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6624 	spin_unlock(&resource_alignment_lock);
6625 
6626 	return count;
6627 }
6628 
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6629 static ssize_t resource_alignment_store(struct bus_type *bus,
6630 					const char *buf, size_t count)
6631 {
6632 	char *param, *old, *end;
6633 
6634 	if (count >= (PAGE_SIZE - 1))
6635 		return -EINVAL;
6636 
6637 	param = kstrndup(buf, count, GFP_KERNEL);
6638 	if (!param)
6639 		return -ENOMEM;
6640 
6641 	end = strchr(param, '\n');
6642 	if (end)
6643 		*end = '\0';
6644 
6645 	spin_lock(&resource_alignment_lock);
6646 	old = resource_alignment_param;
6647 	if (strlen(param)) {
6648 		resource_alignment_param = param;
6649 	} else {
6650 		kfree(param);
6651 		resource_alignment_param = NULL;
6652 	}
6653 	spin_unlock(&resource_alignment_lock);
6654 
6655 	kfree(old);
6656 
6657 	return count;
6658 }
6659 
6660 static BUS_ATTR_RW(resource_alignment);
6661 
pci_resource_alignment_sysfs_init(void)6662 static int __init pci_resource_alignment_sysfs_init(void)
6663 {
6664 	return bus_create_file(&pci_bus_type,
6665 					&bus_attr_resource_alignment);
6666 }
6667 late_initcall(pci_resource_alignment_sysfs_init);
6668 
pci_no_domains(void)6669 static void pci_no_domains(void)
6670 {
6671 #ifdef CONFIG_PCI_DOMAINS
6672 	pci_domains_supported = 0;
6673 #endif
6674 }
6675 
6676 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6677 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6678 
pci_get_new_domain_nr(void)6679 static int pci_get_new_domain_nr(void)
6680 {
6681 	return atomic_inc_return(&__domain_nr);
6682 }
6683 
of_pci_bus_find_domain_nr(struct device * parent)6684 static int of_pci_bus_find_domain_nr(struct device *parent)
6685 {
6686 	static int use_dt_domains = -1;
6687 	int domain = -1;
6688 
6689 	if (parent)
6690 		domain = of_get_pci_domain_nr(parent->of_node);
6691 
6692 	/*
6693 	 * Check DT domain and use_dt_domains values.
6694 	 *
6695 	 * If DT domain property is valid (domain >= 0) and
6696 	 * use_dt_domains != 0, the DT assignment is valid since this means
6697 	 * we have not previously allocated a domain number by using
6698 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6699 	 * 1, to indicate that we have just assigned a domain number from
6700 	 * DT.
6701 	 *
6702 	 * If DT domain property value is not valid (ie domain < 0), and we
6703 	 * have not previously assigned a domain number from DT
6704 	 * (use_dt_domains != 1) we should assign a domain number by
6705 	 * using the:
6706 	 *
6707 	 * pci_get_new_domain_nr()
6708 	 *
6709 	 * API and update the use_dt_domains value to keep track of method we
6710 	 * are using to assign domain numbers (use_dt_domains = 0).
6711 	 *
6712 	 * All other combinations imply we have a platform that is trying
6713 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6714 	 * which is a recipe for domain mishandling and it is prevented by
6715 	 * invalidating the domain value (domain = -1) and printing a
6716 	 * corresponding error.
6717 	 */
6718 	if (domain >= 0 && use_dt_domains) {
6719 		use_dt_domains = 1;
6720 	} else if (domain < 0 && use_dt_domains != 1) {
6721 		use_dt_domains = 0;
6722 		domain = pci_get_new_domain_nr();
6723 	} else {
6724 		if (parent)
6725 			pr_err("Node %pOF has ", parent->of_node);
6726 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6727 		domain = -1;
6728 	}
6729 
6730 	return domain;
6731 }
6732 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6733 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6734 {
6735 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6736 			       acpi_pci_bus_find_domain_nr(bus);
6737 }
6738 #endif
6739 
6740 /**
6741  * pci_ext_cfg_avail - can we access extended PCI config space?
6742  *
6743  * Returns 1 if we can access PCI extended config space (offsets
6744  * greater than 0xff). This is the default implementation. Architecture
6745  * implementations can override this.
6746  */
pci_ext_cfg_avail(void)6747 int __weak pci_ext_cfg_avail(void)
6748 {
6749 	return 1;
6750 }
6751 
pci_fixup_cardbus(struct pci_bus * bus)6752 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6753 {
6754 }
6755 EXPORT_SYMBOL(pci_fixup_cardbus);
6756 
pci_setup(char * str)6757 static int __init pci_setup(char *str)
6758 {
6759 	while (str) {
6760 		char *k = strchr(str, ',');
6761 		if (k)
6762 			*k++ = 0;
6763 		if (*str && (str = pcibios_setup(str)) && *str) {
6764 			if (!strcmp(str, "nomsi")) {
6765 				pci_no_msi();
6766 			} else if (!strncmp(str, "noats", 5)) {
6767 				pr_info("PCIe: ATS is disabled\n");
6768 				pcie_ats_disabled = true;
6769 			} else if (!strcmp(str, "noaer")) {
6770 				pci_no_aer();
6771 			} else if (!strcmp(str, "earlydump")) {
6772 				pci_early_dump = true;
6773 			} else if (!strncmp(str, "realloc=", 8)) {
6774 				pci_realloc_get_opt(str + 8);
6775 			} else if (!strncmp(str, "realloc", 7)) {
6776 				pci_realloc_get_opt("on");
6777 			} else if (!strcmp(str, "nodomains")) {
6778 				pci_no_domains();
6779 			} else if (!strncmp(str, "noari", 5)) {
6780 				pcie_ari_disabled = true;
6781 			} else if (!strncmp(str, "cbiosize=", 9)) {
6782 				pci_cardbus_io_size = memparse(str + 9, &str);
6783 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6784 				pci_cardbus_mem_size = memparse(str + 10, &str);
6785 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6786 				resource_alignment_param = str + 19;
6787 			} else if (!strncmp(str, "ecrc=", 5)) {
6788 				pcie_ecrc_get_policy(str + 5);
6789 			} else if (!strncmp(str, "hpiosize=", 9)) {
6790 				pci_hotplug_io_size = memparse(str + 9, &str);
6791 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6792 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6793 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6794 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6795 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6796 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6797 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6798 			} else if (!strncmp(str, "hpbussize=", 10)) {
6799 				pci_hotplug_bus_size =
6800 					simple_strtoul(str + 10, &str, 0);
6801 				if (pci_hotplug_bus_size > 0xff)
6802 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6803 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6804 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6805 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6806 				pcie_bus_config = PCIE_BUS_SAFE;
6807 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6808 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6809 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6810 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6811 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6812 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6813 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6814 				disable_acs_redir_param = str + 18;
6815 			} else {
6816 				pr_err("PCI: Unknown option `%s'\n", str);
6817 			}
6818 		}
6819 		str = k;
6820 	}
6821 	return 0;
6822 }
6823 early_param("pci", pci_setup);
6824 
6825 /*
6826  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6827  * in pci_setup(), above, to point to data in the __initdata section which
6828  * will be freed after the init sequence is complete. We can't allocate memory
6829  * in pci_setup() because some architectures do not have any memory allocation
6830  * service available during an early_param() call. So we allocate memory and
6831  * copy the variable here before the init section is freed.
6832  *
6833  */
pci_realloc_setup_params(void)6834 static int __init pci_realloc_setup_params(void)
6835 {
6836 	resource_alignment_param = kstrdup(resource_alignment_param,
6837 					   GFP_KERNEL);
6838 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6839 
6840 	return 0;
6841 }
6842 pure_initcall(pci_realloc_setup_params);
6843