1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
4 * (C) Copyright 2007 Novell Inc.
5 */
6
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/device.h>
11 #include <linux/mempolicy.h>
12 #include <linux/string.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/isolation.h>
16 #include <linux/cpu.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/suspend.h>
19 #include <linux/kexec.h>
20 #include <linux/of_device.h>
21 #include <linux/acpi.h>
22 #include <linux/dma-map-ops.h>
23 #include "pci.h"
24 #include "pcie/portdrv.h"
25
26 struct pci_dynid {
27 struct list_head node;
28 struct pci_device_id id;
29 };
30
31 /**
32 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
33 * @drv: target pci driver
34 * @vendor: PCI vendor ID
35 * @device: PCI device ID
36 * @subvendor: PCI subvendor ID
37 * @subdevice: PCI subdevice ID
38 * @class: PCI class
39 * @class_mask: PCI class mask
40 * @driver_data: private driver data
41 *
42 * Adds a new dynamic pci device ID to this driver and causes the
43 * driver to probe for all devices again. @drv must have been
44 * registered prior to calling this function.
45 *
46 * CONTEXT:
47 * Does GFP_KERNEL allocation.
48 *
49 * RETURNS:
50 * 0 on success, -errno on failure.
51 */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)52 int pci_add_dynid(struct pci_driver *drv,
53 unsigned int vendor, unsigned int device,
54 unsigned int subvendor, unsigned int subdevice,
55 unsigned int class, unsigned int class_mask,
56 unsigned long driver_data)
57 {
58 struct pci_dynid *dynid;
59
60 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
61 if (!dynid)
62 return -ENOMEM;
63
64 dynid->id.vendor = vendor;
65 dynid->id.device = device;
66 dynid->id.subvendor = subvendor;
67 dynid->id.subdevice = subdevice;
68 dynid->id.class = class;
69 dynid->id.class_mask = class_mask;
70 dynid->id.driver_data = driver_data;
71
72 spin_lock(&drv->dynids.lock);
73 list_add_tail(&dynid->node, &drv->dynids.list);
74 spin_unlock(&drv->dynids.lock);
75
76 return driver_attach(&drv->driver);
77 }
78 EXPORT_SYMBOL_GPL(pci_add_dynid);
79
pci_free_dynids(struct pci_driver * drv)80 static void pci_free_dynids(struct pci_driver *drv)
81 {
82 struct pci_dynid *dynid, *n;
83
84 spin_lock(&drv->dynids.lock);
85 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
86 list_del(&dynid->node);
87 kfree(dynid);
88 }
89 spin_unlock(&drv->dynids.lock);
90 }
91
92 /**
93 * pci_match_id - See if a PCI device matches a given pci_id table
94 * @ids: array of PCI device ID structures to search in
95 * @dev: the PCI device structure to match against.
96 *
97 * Used by a driver to check whether a PCI device is in its list of
98 * supported devices. Returns the matching pci_device_id structure or
99 * %NULL if there is no match.
100 *
101 * Deprecated; don't use this as it will not catch any dynamic IDs
102 * that a driver might want to check for.
103 */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)104 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
105 struct pci_dev *dev)
106 {
107 if (ids) {
108 while (ids->vendor || ids->subvendor || ids->class_mask) {
109 if (pci_match_one_device(ids, dev))
110 return ids;
111 ids++;
112 }
113 }
114 return NULL;
115 }
116 EXPORT_SYMBOL(pci_match_id);
117
118 static const struct pci_device_id pci_device_id_any = {
119 .vendor = PCI_ANY_ID,
120 .device = PCI_ANY_ID,
121 .subvendor = PCI_ANY_ID,
122 .subdevice = PCI_ANY_ID,
123 };
124
125 /**
126 * pci_match_device - See if a device matches a driver's list of IDs
127 * @drv: the PCI driver to match against
128 * @dev: the PCI device structure to match against
129 *
130 * Used by a driver to check whether a PCI device is in its list of
131 * supported devices or in the dynids list, which may have been augmented
132 * via the sysfs "new_id" file. Returns the matching pci_device_id
133 * structure or %NULL if there is no match.
134 */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)135 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
136 struct pci_dev *dev)
137 {
138 struct pci_dynid *dynid;
139 const struct pci_device_id *found_id = NULL, *ids;
140
141 /* When driver_override is set, only bind to the matching driver */
142 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
143 return NULL;
144
145 /* Look at the dynamic ids first, before the static ones */
146 spin_lock(&drv->dynids.lock);
147 list_for_each_entry(dynid, &drv->dynids.list, node) {
148 if (pci_match_one_device(&dynid->id, dev)) {
149 found_id = &dynid->id;
150 break;
151 }
152 }
153 spin_unlock(&drv->dynids.lock);
154
155 if (found_id)
156 return found_id;
157
158 for (ids = drv->id_table; (found_id = pci_match_id(ids, dev));
159 ids = found_id + 1) {
160 /*
161 * The match table is split based on driver_override.
162 * In case override_only was set, enforce driver_override
163 * matching.
164 */
165 if (found_id->override_only) {
166 if (dev->driver_override)
167 return found_id;
168 } else {
169 return found_id;
170 }
171 }
172
173 /* driver_override will always match, send a dummy id */
174 if (dev->driver_override)
175 return &pci_device_id_any;
176 return NULL;
177 }
178
179 /**
180 * new_id_store - sysfs frontend to pci_add_dynid()
181 * @driver: target device driver
182 * @buf: buffer for scanning device ID data
183 * @count: input size
184 *
185 * Allow PCI IDs to be added to an existing driver via sysfs.
186 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)187 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
188 size_t count)
189 {
190 struct pci_driver *pdrv = to_pci_driver(driver);
191 const struct pci_device_id *ids = pdrv->id_table;
192 u32 vendor, device, subvendor = PCI_ANY_ID,
193 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
194 unsigned long driver_data = 0;
195 int fields = 0;
196 int retval = 0;
197
198 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
199 &vendor, &device, &subvendor, &subdevice,
200 &class, &class_mask, &driver_data);
201 if (fields < 2)
202 return -EINVAL;
203
204 if (fields != 7) {
205 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
206 if (!pdev)
207 return -ENOMEM;
208
209 pdev->vendor = vendor;
210 pdev->device = device;
211 pdev->subsystem_vendor = subvendor;
212 pdev->subsystem_device = subdevice;
213 pdev->class = class;
214
215 if (pci_match_device(pdrv, pdev))
216 retval = -EEXIST;
217
218 kfree(pdev);
219
220 if (retval)
221 return retval;
222 }
223
224 /* Only accept driver_data values that match an existing id_table
225 entry */
226 if (ids) {
227 retval = -EINVAL;
228 while (ids->vendor || ids->subvendor || ids->class_mask) {
229 if (driver_data == ids->driver_data) {
230 retval = 0;
231 break;
232 }
233 ids++;
234 }
235 if (retval) /* No match */
236 return retval;
237 }
238
239 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
240 class, class_mask, driver_data);
241 if (retval)
242 return retval;
243 return count;
244 }
245 static DRIVER_ATTR_WO(new_id);
246
247 /**
248 * remove_id_store - remove a PCI device ID from this driver
249 * @driver: target device driver
250 * @buf: buffer for scanning device ID data
251 * @count: input size
252 *
253 * Removes a dynamic pci device ID to this driver.
254 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)255 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
256 size_t count)
257 {
258 struct pci_dynid *dynid, *n;
259 struct pci_driver *pdrv = to_pci_driver(driver);
260 u32 vendor, device, subvendor = PCI_ANY_ID,
261 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
262 int fields = 0;
263 size_t retval = -ENODEV;
264
265 fields = sscanf(buf, "%x %x %x %x %x %x",
266 &vendor, &device, &subvendor, &subdevice,
267 &class, &class_mask);
268 if (fields < 2)
269 return -EINVAL;
270
271 spin_lock(&pdrv->dynids.lock);
272 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
273 struct pci_device_id *id = &dynid->id;
274 if ((id->vendor == vendor) &&
275 (id->device == device) &&
276 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
277 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
278 !((id->class ^ class) & class_mask)) {
279 list_del(&dynid->node);
280 kfree(dynid);
281 retval = count;
282 break;
283 }
284 }
285 spin_unlock(&pdrv->dynids.lock);
286
287 return retval;
288 }
289 static DRIVER_ATTR_WO(remove_id);
290
291 static struct attribute *pci_drv_attrs[] = {
292 &driver_attr_new_id.attr,
293 &driver_attr_remove_id.attr,
294 NULL,
295 };
296 ATTRIBUTE_GROUPS(pci_drv);
297
298 struct drv_dev_and_id {
299 struct pci_driver *drv;
300 struct pci_dev *dev;
301 const struct pci_device_id *id;
302 };
303
local_pci_probe(void * _ddi)304 static long local_pci_probe(void *_ddi)
305 {
306 struct drv_dev_and_id *ddi = _ddi;
307 struct pci_dev *pci_dev = ddi->dev;
308 struct pci_driver *pci_drv = ddi->drv;
309 struct device *dev = &pci_dev->dev;
310 int rc;
311
312 /*
313 * Unbound PCI devices are always put in D0, regardless of
314 * runtime PM status. During probe, the device is set to
315 * active and the usage count is incremented. If the driver
316 * supports runtime PM, it should call pm_runtime_put_noidle(),
317 * or any other runtime PM helper function decrementing the usage
318 * count, in its probe routine and pm_runtime_get_noresume() in
319 * its remove routine.
320 */
321 pm_runtime_get_sync(dev);
322 pci_dev->driver = pci_drv;
323 rc = pci_drv->probe(pci_dev, ddi->id);
324 if (!rc)
325 return rc;
326 if (rc < 0) {
327 pci_dev->driver = NULL;
328 pm_runtime_put_sync(dev);
329 return rc;
330 }
331 /*
332 * Probe function should return < 0 for failure, 0 for success
333 * Treat values > 0 as success, but warn.
334 */
335 pci_warn(pci_dev, "Driver probe function unexpectedly returned %d\n",
336 rc);
337 return 0;
338 }
339
pci_physfn_is_probed(struct pci_dev * dev)340 static bool pci_physfn_is_probed(struct pci_dev *dev)
341 {
342 #ifdef CONFIG_PCI_IOV
343 return dev->is_virtfn && dev->physfn->is_probed;
344 #else
345 return false;
346 #endif
347 }
348
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)349 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
350 const struct pci_device_id *id)
351 {
352 int error, node, cpu;
353 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
354 struct drv_dev_and_id ddi = { drv, dev, id };
355
356 /*
357 * Execute driver initialization on node where the device is
358 * attached. This way the driver likely allocates its local memory
359 * on the right node.
360 */
361 node = dev_to_node(&dev->dev);
362 dev->is_probed = 1;
363
364 cpu_hotplug_disable();
365
366 /*
367 * Prevent nesting work_on_cpu() for the case where a Virtual Function
368 * device is probed from work_on_cpu() of the Physical device.
369 */
370 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
371 pci_physfn_is_probed(dev))
372 cpu = nr_cpu_ids;
373 else
374 cpu = cpumask_any_and(cpumask_of_node(node),
375 housekeeping_cpumask(hk_flags));
376
377 if (cpu < nr_cpu_ids)
378 error = work_on_cpu(cpu, local_pci_probe, &ddi);
379 else
380 error = local_pci_probe(&ddi);
381
382 dev->is_probed = 0;
383 cpu_hotplug_enable();
384 return error;
385 }
386
387 /**
388 * __pci_device_probe - check if a driver wants to claim a specific PCI device
389 * @drv: driver to call to check if it wants the PCI device
390 * @pci_dev: PCI device being probed
391 *
392 * returns 0 on success, else error.
393 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
394 */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)395 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
396 {
397 const struct pci_device_id *id;
398 int error = 0;
399
400 if (!pci_dev->driver && drv->probe) {
401 error = -ENODEV;
402
403 id = pci_match_device(drv, pci_dev);
404 if (id)
405 error = pci_call_probe(drv, pci_dev, id);
406 }
407 return error;
408 }
409
pcibios_alloc_irq(struct pci_dev * dev)410 int __weak pcibios_alloc_irq(struct pci_dev *dev)
411 {
412 return 0;
413 }
414
pcibios_free_irq(struct pci_dev * dev)415 void __weak pcibios_free_irq(struct pci_dev *dev)
416 {
417 }
418
419 #ifdef CONFIG_PCI_IOV
pci_device_can_probe(struct pci_dev * pdev)420 static inline bool pci_device_can_probe(struct pci_dev *pdev)
421 {
422 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe ||
423 pdev->driver_override);
424 }
425 #else
pci_device_can_probe(struct pci_dev * pdev)426 static inline bool pci_device_can_probe(struct pci_dev *pdev)
427 {
428 return true;
429 }
430 #endif
431
pci_device_probe(struct device * dev)432 static int pci_device_probe(struct device *dev)
433 {
434 int error;
435 struct pci_dev *pci_dev = to_pci_dev(dev);
436 struct pci_driver *drv = to_pci_driver(dev->driver);
437
438 if (!pci_device_can_probe(pci_dev))
439 return -ENODEV;
440
441 pci_assign_irq(pci_dev);
442
443 error = pcibios_alloc_irq(pci_dev);
444 if (error < 0)
445 return error;
446
447 pci_dev_get(pci_dev);
448 error = __pci_device_probe(drv, pci_dev);
449 if (error) {
450 pcibios_free_irq(pci_dev);
451 pci_dev_put(pci_dev);
452 }
453
454 return error;
455 }
456
pci_device_remove(struct device * dev)457 static void pci_device_remove(struct device *dev)
458 {
459 struct pci_dev *pci_dev = to_pci_dev(dev);
460 struct pci_driver *drv = pci_dev->driver;
461
462 if (drv) {
463 if (drv->remove) {
464 pm_runtime_get_sync(dev);
465 drv->remove(pci_dev);
466 pm_runtime_put_noidle(dev);
467 }
468 pcibios_free_irq(pci_dev);
469 pci_dev->driver = NULL;
470 pci_iov_remove(pci_dev);
471 }
472
473 /* Undo the runtime PM settings in local_pci_probe() */
474 pm_runtime_put_sync(dev);
475
476 /*
477 * If the device is still on, set the power state as "unknown",
478 * since it might change by the next time we load the driver.
479 */
480 if (pci_dev->current_state == PCI_D0)
481 pci_dev->current_state = PCI_UNKNOWN;
482
483 /*
484 * We would love to complain here if pci_dev->is_enabled is set, that
485 * the driver should have called pci_disable_device(), but the
486 * unfortunate fact is there are too many odd BIOS and bridge setups
487 * that don't like drivers doing that all of the time.
488 * Oh well, we can dream of sane hardware when we sleep, no matter how
489 * horrible the crap we have to deal with is when we are awake...
490 */
491
492 pci_dev_put(pci_dev);
493 }
494
pci_device_shutdown(struct device * dev)495 static void pci_device_shutdown(struct device *dev)
496 {
497 struct pci_dev *pci_dev = to_pci_dev(dev);
498 struct pci_driver *drv = pci_dev->driver;
499
500 pm_runtime_resume(dev);
501
502 if (drv && drv->shutdown)
503 drv->shutdown(pci_dev);
504
505 /*
506 * If this is a kexec reboot, turn off Bus Master bit on the
507 * device to tell it to not continue to do DMA. Don't touch
508 * devices in D3cold or unknown states.
509 * If it is not a kexec reboot, firmware will hit the PCI
510 * devices with big hammer and stop their DMA any way.
511 */
512 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
513 pci_clear_master(pci_dev);
514 }
515
516 #ifdef CONFIG_PM
517
518 /* Auxiliary functions used for system resume and run-time resume. */
519
520 /**
521 * pci_restore_standard_config - restore standard config registers of PCI device
522 * @pci_dev: PCI device to handle
523 */
pci_restore_standard_config(struct pci_dev * pci_dev)524 static int pci_restore_standard_config(struct pci_dev *pci_dev)
525 {
526 pci_update_current_state(pci_dev, PCI_UNKNOWN);
527
528 if (pci_dev->current_state != PCI_D0) {
529 int error = pci_set_power_state(pci_dev, PCI_D0);
530 if (error)
531 return error;
532 }
533
534 pci_restore_state(pci_dev);
535 pci_pme_restore(pci_dev);
536 return 0;
537 }
538
pci_pm_default_resume(struct pci_dev * pci_dev)539 static void pci_pm_default_resume(struct pci_dev *pci_dev)
540 {
541 pci_fixup_device(pci_fixup_resume, pci_dev);
542 pci_enable_wake(pci_dev, PCI_D0, false);
543 }
544
545 #endif
546
547 #ifdef CONFIG_PM_SLEEP
548
pci_pm_default_resume_early(struct pci_dev * pci_dev)549 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
550 {
551 pci_power_up(pci_dev);
552 pci_update_current_state(pci_dev, PCI_D0);
553 pci_restore_state(pci_dev);
554 pci_pme_restore(pci_dev);
555 }
556
557 /*
558 * Default "suspend" method for devices that have no driver provided suspend,
559 * or not even a driver at all (second part).
560 */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)561 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
562 {
563 /*
564 * mark its power state as "unknown", since we don't know if
565 * e.g. the BIOS will change its device state when we suspend.
566 */
567 if (pci_dev->current_state == PCI_D0)
568 pci_dev->current_state = PCI_UNKNOWN;
569 }
570
571 /*
572 * Default "resume" method for devices that have no driver provided resume,
573 * or not even a driver at all (second part).
574 */
pci_pm_reenable_device(struct pci_dev * pci_dev)575 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
576 {
577 int retval;
578
579 /* if the device was enabled before suspend, reenable */
580 retval = pci_reenable_device(pci_dev);
581 /*
582 * if the device was busmaster before the suspend, make it busmaster
583 * again
584 */
585 if (pci_dev->is_busmaster)
586 pci_set_master(pci_dev);
587
588 return retval;
589 }
590
pci_legacy_suspend(struct device * dev,pm_message_t state)591 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
592 {
593 struct pci_dev *pci_dev = to_pci_dev(dev);
594 struct pci_driver *drv = pci_dev->driver;
595
596 if (drv && drv->suspend) {
597 pci_power_t prev = pci_dev->current_state;
598 int error;
599
600 error = drv->suspend(pci_dev, state);
601 suspend_report_result(drv->suspend, error);
602 if (error)
603 return error;
604
605 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
606 && pci_dev->current_state != PCI_UNKNOWN) {
607 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
608 "PCI PM: Device state not saved by %pS\n",
609 drv->suspend);
610 }
611 }
612
613 pci_fixup_device(pci_fixup_suspend, pci_dev);
614
615 return 0;
616 }
617
pci_legacy_suspend_late(struct device * dev,pm_message_t state)618 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
619 {
620 struct pci_dev *pci_dev = to_pci_dev(dev);
621
622 if (!pci_dev->state_saved)
623 pci_save_state(pci_dev);
624
625 pci_pm_set_unknown_state(pci_dev);
626
627 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
628
629 return 0;
630 }
631
pci_legacy_resume(struct device * dev)632 static int pci_legacy_resume(struct device *dev)
633 {
634 struct pci_dev *pci_dev = to_pci_dev(dev);
635 struct pci_driver *drv = pci_dev->driver;
636
637 pci_fixup_device(pci_fixup_resume, pci_dev);
638
639 return drv && drv->resume ?
640 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
641 }
642
643 /* Auxiliary functions used by the new power management framework */
644
pci_pm_default_suspend(struct pci_dev * pci_dev)645 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
646 {
647 /* Disable non-bridge devices without PM support */
648 if (!pci_has_subordinate(pci_dev))
649 pci_disable_enabled_device(pci_dev);
650 }
651
pci_has_legacy_pm_support(struct pci_dev * pci_dev)652 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
653 {
654 struct pci_driver *drv = pci_dev->driver;
655 bool ret = drv && (drv->suspend || drv->resume);
656
657 /*
658 * Legacy PM support is used by default, so warn if the new framework is
659 * supported as well. Drivers are supposed to support either the
660 * former, or the latter, but not both at the same time.
661 */
662 pci_WARN(pci_dev, ret && drv->driver.pm, "device %04x:%04x\n",
663 pci_dev->vendor, pci_dev->device);
664
665 return ret;
666 }
667
668 /* New power management framework */
669
pci_pm_prepare(struct device * dev)670 static int pci_pm_prepare(struct device *dev)
671 {
672 struct pci_dev *pci_dev = to_pci_dev(dev);
673 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
674
675 if (pm && pm->prepare) {
676 int error = pm->prepare(dev);
677 if (error < 0)
678 return error;
679
680 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
681 return 0;
682 }
683 if (pci_dev_need_resume(pci_dev))
684 return 0;
685
686 /*
687 * The PME setting needs to be adjusted here in case the direct-complete
688 * optimization is used with respect to this device.
689 */
690 pci_dev_adjust_pme(pci_dev);
691 return 1;
692 }
693
pci_pm_complete(struct device * dev)694 static void pci_pm_complete(struct device *dev)
695 {
696 struct pci_dev *pci_dev = to_pci_dev(dev);
697
698 pci_dev_complete_resume(pci_dev);
699 pm_generic_complete(dev);
700
701 /* Resume device if platform firmware has put it in reset-power-on */
702 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) {
703 pci_power_t pre_sleep_state = pci_dev->current_state;
704
705 pci_refresh_power_state(pci_dev);
706 /*
707 * On platforms with ACPI this check may also trigger for
708 * devices sharing power resources if one of those power
709 * resources has been activated as a result of a change of the
710 * power state of another device sharing it. However, in that
711 * case it is also better to resume the device, in general.
712 */
713 if (pci_dev->current_state < pre_sleep_state)
714 pm_request_resume(dev);
715 }
716 }
717
718 #else /* !CONFIG_PM_SLEEP */
719
720 #define pci_pm_prepare NULL
721 #define pci_pm_complete NULL
722
723 #endif /* !CONFIG_PM_SLEEP */
724
725 #ifdef CONFIG_SUSPEND
pcie_pme_root_status_cleanup(struct pci_dev * pci_dev)726 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev)
727 {
728 /*
729 * Some BIOSes forget to clear Root PME Status bits after system
730 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express.
731 * Clear those bits now just in case (shouldn't hurt).
732 */
733 if (pci_is_pcie(pci_dev) &&
734 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT ||
735 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC))
736 pcie_clear_root_pme_status(pci_dev);
737 }
738
pci_pm_suspend(struct device * dev)739 static int pci_pm_suspend(struct device *dev)
740 {
741 struct pci_dev *pci_dev = to_pci_dev(dev);
742 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
743
744 pci_dev->skip_bus_pm = false;
745
746 if (pci_has_legacy_pm_support(pci_dev))
747 return pci_legacy_suspend(dev, PMSG_SUSPEND);
748
749 if (!pm) {
750 pci_pm_default_suspend(pci_dev);
751 return 0;
752 }
753
754 /*
755 * PCI devices suspended at run time may need to be resumed at this
756 * point, because in general it may be necessary to reconfigure them for
757 * system suspend. Namely, if the device is expected to wake up the
758 * system from the sleep state, it may have to be reconfigured for this
759 * purpose, or if the device is not expected to wake up the system from
760 * the sleep state, it should be prevented from signaling wakeup events
761 * going forward.
762 *
763 * Also if the driver of the device does not indicate that its system
764 * suspend callbacks can cope with runtime-suspended devices, it is
765 * better to resume the device from runtime suspend here.
766 */
767 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
768 pci_dev_need_resume(pci_dev)) {
769 pm_runtime_resume(dev);
770 pci_dev->state_saved = false;
771 } else {
772 pci_dev_adjust_pme(pci_dev);
773 }
774
775 if (pm->suspend) {
776 pci_power_t prev = pci_dev->current_state;
777 int error;
778
779 error = pm->suspend(dev);
780 suspend_report_result(pm->suspend, error);
781 if (error)
782 return error;
783
784 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
785 && pci_dev->current_state != PCI_UNKNOWN) {
786 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
787 "PCI PM: State of device not saved by %pS\n",
788 pm->suspend);
789 }
790 }
791
792 return 0;
793 }
794
pci_pm_suspend_late(struct device * dev)795 static int pci_pm_suspend_late(struct device *dev)
796 {
797 if (dev_pm_skip_suspend(dev))
798 return 0;
799
800 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
801
802 return pm_generic_suspend_late(dev);
803 }
804
pci_pm_suspend_noirq(struct device * dev)805 static int pci_pm_suspend_noirq(struct device *dev)
806 {
807 struct pci_dev *pci_dev = to_pci_dev(dev);
808 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
809
810 if (dev_pm_skip_suspend(dev))
811 return 0;
812
813 if (pci_has_legacy_pm_support(pci_dev))
814 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
815
816 if (!pm) {
817 pci_save_state(pci_dev);
818 goto Fixup;
819 }
820
821 if (pm->suspend_noirq) {
822 pci_power_t prev = pci_dev->current_state;
823 int error;
824
825 error = pm->suspend_noirq(dev);
826 suspend_report_result(pm->suspend_noirq, error);
827 if (error)
828 return error;
829
830 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
831 && pci_dev->current_state != PCI_UNKNOWN) {
832 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
833 "PCI PM: State of device not saved by %pS\n",
834 pm->suspend_noirq);
835 goto Fixup;
836 }
837 }
838
839 if (pci_dev->skip_bus_pm) {
840 /*
841 * Either the device is a bridge with a child in D0 below it, or
842 * the function is running for the second time in a row without
843 * going through full resume, which is possible only during
844 * suspend-to-idle in a spurious wakeup case. The device should
845 * be in D0 at this point, but if it is a bridge, it may be
846 * necessary to save its state.
847 */
848 if (!pci_dev->state_saved)
849 pci_save_state(pci_dev);
850 } else if (!pci_dev->state_saved) {
851 pci_save_state(pci_dev);
852 if (pci_power_manageable(pci_dev))
853 pci_prepare_to_sleep(pci_dev);
854 }
855
856 pci_dbg(pci_dev, "PCI PM: Suspend power state: %s\n",
857 pci_power_name(pci_dev->current_state));
858
859 if (pci_dev->current_state == PCI_D0) {
860 pci_dev->skip_bus_pm = true;
861 /*
862 * Per PCI PM r1.2, table 6-1, a bridge must be in D0 if any
863 * downstream device is in D0, so avoid changing the power state
864 * of the parent bridge by setting the skip_bus_pm flag for it.
865 */
866 if (pci_dev->bus->self)
867 pci_dev->bus->self->skip_bus_pm = true;
868 }
869
870 if (pci_dev->skip_bus_pm && pm_suspend_no_platform()) {
871 pci_dbg(pci_dev, "PCI PM: Skipped\n");
872 goto Fixup;
873 }
874
875 pci_pm_set_unknown_state(pci_dev);
876
877 /*
878 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
879 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
880 * hasn't been quiesced and tries to turn it off. If the controller
881 * is already in D3, this can hang or cause memory corruption.
882 *
883 * Since the value of the COMMAND register doesn't matter once the
884 * device has been suspended, we can safely set it to 0 here.
885 */
886 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
887 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
888
889 Fixup:
890 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
891
892 /*
893 * If the target system sleep state is suspend-to-idle, it is sufficient
894 * to check whether or not the device's wakeup settings are good for
895 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
896 * pci_pm_complete() to take care of fixing up the device's state
897 * anyway, if need be.
898 */
899 if (device_can_wakeup(dev) && !device_may_wakeup(dev))
900 dev->power.may_skip_resume = false;
901
902 return 0;
903 }
904
pci_pm_resume_noirq(struct device * dev)905 static int pci_pm_resume_noirq(struct device *dev)
906 {
907 struct pci_dev *pci_dev = to_pci_dev(dev);
908 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
909 pci_power_t prev_state = pci_dev->current_state;
910 bool skip_bus_pm = pci_dev->skip_bus_pm;
911
912 if (dev_pm_skip_resume(dev))
913 return 0;
914
915 /*
916 * In the suspend-to-idle case, devices left in D0 during suspend will
917 * stay in D0, so it is not necessary to restore or update their
918 * configuration here and attempting to put them into D0 again is
919 * pointless, so avoid doing that.
920 */
921 if (!(skip_bus_pm && pm_suspend_no_platform()))
922 pci_pm_default_resume_early(pci_dev);
923
924 pci_fixup_device(pci_fixup_resume_early, pci_dev);
925 pcie_pme_root_status_cleanup(pci_dev);
926
927 if (!skip_bus_pm && prev_state == PCI_D3cold)
928 pci_bridge_wait_for_secondary_bus(pci_dev, "resume", PCI_RESET_WAIT);
929
930 if (pci_has_legacy_pm_support(pci_dev))
931 return 0;
932
933 if (pm && pm->resume_noirq)
934 return pm->resume_noirq(dev);
935
936 return 0;
937 }
938
pci_pm_resume_early(struct device * dev)939 static int pci_pm_resume_early(struct device *dev)
940 {
941 if (dev_pm_skip_resume(dev))
942 return 0;
943
944 return pm_generic_resume_early(dev);
945 }
946
pci_pm_resume(struct device * dev)947 static int pci_pm_resume(struct device *dev)
948 {
949 struct pci_dev *pci_dev = to_pci_dev(dev);
950 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
951
952 /*
953 * This is necessary for the suspend error path in which resume is
954 * called without restoring the standard config registers of the device.
955 */
956 if (pci_dev->state_saved)
957 pci_restore_standard_config(pci_dev);
958
959 if (pci_has_legacy_pm_support(pci_dev))
960 return pci_legacy_resume(dev);
961
962 pci_pm_default_resume(pci_dev);
963
964 if (pm) {
965 if (pm->resume)
966 return pm->resume(dev);
967 } else {
968 pci_pm_reenable_device(pci_dev);
969 }
970
971 return 0;
972 }
973
974 #else /* !CONFIG_SUSPEND */
975
976 #define pci_pm_suspend NULL
977 #define pci_pm_suspend_late NULL
978 #define pci_pm_suspend_noirq NULL
979 #define pci_pm_resume NULL
980 #define pci_pm_resume_early NULL
981 #define pci_pm_resume_noirq NULL
982
983 #endif /* !CONFIG_SUSPEND */
984
985 #ifdef CONFIG_HIBERNATE_CALLBACKS
986
pci_pm_freeze(struct device * dev)987 static int pci_pm_freeze(struct device *dev)
988 {
989 struct pci_dev *pci_dev = to_pci_dev(dev);
990 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
991
992 if (pci_has_legacy_pm_support(pci_dev))
993 return pci_legacy_suspend(dev, PMSG_FREEZE);
994
995 if (!pm) {
996 pci_pm_default_suspend(pci_dev);
997 return 0;
998 }
999
1000 /*
1001 * Resume all runtime-suspended devices before creating a snapshot
1002 * image of system memory, because the restore kernel generally cannot
1003 * be expected to always handle them consistently and they need to be
1004 * put into the runtime-active metastate during system resume anyway,
1005 * so it is better to ensure that the state saved in the image will be
1006 * always consistent with that.
1007 */
1008 pm_runtime_resume(dev);
1009 pci_dev->state_saved = false;
1010
1011 if (pm->freeze) {
1012 int error;
1013
1014 error = pm->freeze(dev);
1015 suspend_report_result(pm->freeze, error);
1016 if (error)
1017 return error;
1018 }
1019
1020 return 0;
1021 }
1022
pci_pm_freeze_noirq(struct device * dev)1023 static int pci_pm_freeze_noirq(struct device *dev)
1024 {
1025 struct pci_dev *pci_dev = to_pci_dev(dev);
1026 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1027
1028 if (pci_has_legacy_pm_support(pci_dev))
1029 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
1030
1031 if (pm && pm->freeze_noirq) {
1032 int error;
1033
1034 error = pm->freeze_noirq(dev);
1035 suspend_report_result(pm->freeze_noirq, error);
1036 if (error)
1037 return error;
1038 }
1039
1040 if (!pci_dev->state_saved)
1041 pci_save_state(pci_dev);
1042
1043 pci_pm_set_unknown_state(pci_dev);
1044
1045 return 0;
1046 }
1047
pci_pm_thaw_noirq(struct device * dev)1048 static int pci_pm_thaw_noirq(struct device *dev)
1049 {
1050 struct pci_dev *pci_dev = to_pci_dev(dev);
1051 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1052
1053 /*
1054 * The pm->thaw_noirq() callback assumes the device has been
1055 * returned to D0 and its config state has been restored.
1056 *
1057 * In addition, pci_restore_state() restores MSI-X state in MMIO
1058 * space, which requires the device to be in D0, so return it to D0
1059 * in case the driver's "freeze" callbacks put it into a low-power
1060 * state.
1061 */
1062 pci_set_power_state(pci_dev, PCI_D0);
1063 pci_restore_state(pci_dev);
1064
1065 if (pci_has_legacy_pm_support(pci_dev))
1066 return 0;
1067
1068 if (pm && pm->thaw_noirq)
1069 return pm->thaw_noirq(dev);
1070
1071 return 0;
1072 }
1073
pci_pm_thaw(struct device * dev)1074 static int pci_pm_thaw(struct device *dev)
1075 {
1076 struct pci_dev *pci_dev = to_pci_dev(dev);
1077 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1078 int error = 0;
1079
1080 if (pci_has_legacy_pm_support(pci_dev))
1081 return pci_legacy_resume(dev);
1082
1083 if (pm) {
1084 if (pm->thaw)
1085 error = pm->thaw(dev);
1086 } else {
1087 pci_pm_reenable_device(pci_dev);
1088 }
1089
1090 pci_dev->state_saved = false;
1091
1092 return error;
1093 }
1094
pci_pm_poweroff(struct device * dev)1095 static int pci_pm_poweroff(struct device *dev)
1096 {
1097 struct pci_dev *pci_dev = to_pci_dev(dev);
1098 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1099
1100 if (pci_has_legacy_pm_support(pci_dev))
1101 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1102
1103 if (!pm) {
1104 pci_pm_default_suspend(pci_dev);
1105 return 0;
1106 }
1107
1108 /* The reason to do that is the same as in pci_pm_suspend(). */
1109 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1110 pci_dev_need_resume(pci_dev)) {
1111 pm_runtime_resume(dev);
1112 pci_dev->state_saved = false;
1113 } else {
1114 pci_dev_adjust_pme(pci_dev);
1115 }
1116
1117 if (pm->poweroff) {
1118 int error;
1119
1120 error = pm->poweroff(dev);
1121 suspend_report_result(pm->poweroff, error);
1122 if (error)
1123 return error;
1124 }
1125
1126 return 0;
1127 }
1128
pci_pm_poweroff_late(struct device * dev)1129 static int pci_pm_poweroff_late(struct device *dev)
1130 {
1131 if (dev_pm_skip_suspend(dev))
1132 return 0;
1133
1134 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1135
1136 return pm_generic_poweroff_late(dev);
1137 }
1138
pci_pm_poweroff_noirq(struct device * dev)1139 static int pci_pm_poweroff_noirq(struct device *dev)
1140 {
1141 struct pci_dev *pci_dev = to_pci_dev(dev);
1142 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1143
1144 if (dev_pm_skip_suspend(dev))
1145 return 0;
1146
1147 if (pci_has_legacy_pm_support(pci_dev))
1148 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1149
1150 if (!pm) {
1151 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1152 return 0;
1153 }
1154
1155 if (pm->poweroff_noirq) {
1156 int error;
1157
1158 error = pm->poweroff_noirq(dev);
1159 suspend_report_result(pm->poweroff_noirq, error);
1160 if (error)
1161 return error;
1162 }
1163
1164 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1165 pci_prepare_to_sleep(pci_dev);
1166
1167 /*
1168 * The reason for doing this here is the same as for the analogous code
1169 * in pci_pm_suspend_noirq().
1170 */
1171 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1172 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1173
1174 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1175
1176 return 0;
1177 }
1178
pci_pm_restore_noirq(struct device * dev)1179 static int pci_pm_restore_noirq(struct device *dev)
1180 {
1181 struct pci_dev *pci_dev = to_pci_dev(dev);
1182 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1183
1184 pci_pm_default_resume_early(pci_dev);
1185 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1186
1187 if (pci_has_legacy_pm_support(pci_dev))
1188 return 0;
1189
1190 if (pm && pm->restore_noirq)
1191 return pm->restore_noirq(dev);
1192
1193 return 0;
1194 }
1195
pci_pm_restore(struct device * dev)1196 static int pci_pm_restore(struct device *dev)
1197 {
1198 struct pci_dev *pci_dev = to_pci_dev(dev);
1199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1200
1201 /*
1202 * This is necessary for the hibernation error path in which restore is
1203 * called without restoring the standard config registers of the device.
1204 */
1205 if (pci_dev->state_saved)
1206 pci_restore_standard_config(pci_dev);
1207
1208 if (pci_has_legacy_pm_support(pci_dev))
1209 return pci_legacy_resume(dev);
1210
1211 pci_pm_default_resume(pci_dev);
1212
1213 if (pm) {
1214 if (pm->restore)
1215 return pm->restore(dev);
1216 } else {
1217 pci_pm_reenable_device(pci_dev);
1218 }
1219
1220 return 0;
1221 }
1222
1223 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1224
1225 #define pci_pm_freeze NULL
1226 #define pci_pm_freeze_noirq NULL
1227 #define pci_pm_thaw NULL
1228 #define pci_pm_thaw_noirq NULL
1229 #define pci_pm_poweroff NULL
1230 #define pci_pm_poweroff_late NULL
1231 #define pci_pm_poweroff_noirq NULL
1232 #define pci_pm_restore NULL
1233 #define pci_pm_restore_noirq NULL
1234
1235 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1236
1237 #ifdef CONFIG_PM
1238
pci_pm_runtime_suspend(struct device * dev)1239 static int pci_pm_runtime_suspend(struct device *dev)
1240 {
1241 struct pci_dev *pci_dev = to_pci_dev(dev);
1242 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1243 pci_power_t prev = pci_dev->current_state;
1244 int error;
1245
1246 /*
1247 * If pci_dev->driver is not set (unbound), we leave the device in D0,
1248 * but it may go to D3cold when the bridge above it runtime suspends.
1249 * Save its config space in case that happens.
1250 */
1251 if (!pci_dev->driver) {
1252 pci_save_state(pci_dev);
1253 return 0;
1254 }
1255
1256 pci_dev->state_saved = false;
1257 if (pm && pm->runtime_suspend) {
1258 error = pm->runtime_suspend(dev);
1259 /*
1260 * -EBUSY and -EAGAIN is used to request the runtime PM core
1261 * to schedule a new suspend, so log the event only with debug
1262 * log level.
1263 */
1264 if (error == -EBUSY || error == -EAGAIN) {
1265 pci_dbg(pci_dev, "can't suspend now (%ps returned %d)\n",
1266 pm->runtime_suspend, error);
1267 return error;
1268 } else if (error) {
1269 pci_err(pci_dev, "can't suspend (%ps returned %d)\n",
1270 pm->runtime_suspend, error);
1271 return error;
1272 }
1273 }
1274
1275 pci_fixup_device(pci_fixup_suspend, pci_dev);
1276
1277 if (pm && pm->runtime_suspend
1278 && !pci_dev->state_saved && pci_dev->current_state != PCI_D0
1279 && pci_dev->current_state != PCI_UNKNOWN) {
1280 pci_WARN_ONCE(pci_dev, pci_dev->current_state != prev,
1281 "PCI PM: State of device not saved by %pS\n",
1282 pm->runtime_suspend);
1283 return 0;
1284 }
1285
1286 if (!pci_dev->state_saved) {
1287 pci_save_state(pci_dev);
1288 pci_finish_runtime_suspend(pci_dev);
1289 }
1290
1291 return 0;
1292 }
1293
pci_pm_runtime_resume(struct device * dev)1294 static int pci_pm_runtime_resume(struct device *dev)
1295 {
1296 struct pci_dev *pci_dev = to_pci_dev(dev);
1297 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1298 pci_power_t prev_state = pci_dev->current_state;
1299 int error = 0;
1300
1301 /*
1302 * Restoring config space is necessary even if the device is not bound
1303 * to a driver because although we left it in D0, it may have gone to
1304 * D3cold when the bridge above it runtime suspended.
1305 */
1306 pci_restore_standard_config(pci_dev);
1307
1308 if (!pci_dev->driver)
1309 return 0;
1310
1311 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1312 pci_pm_default_resume(pci_dev);
1313
1314 if (prev_state == PCI_D3cold)
1315 pci_bridge_wait_for_secondary_bus(pci_dev, "resume", PCI_RESET_WAIT);
1316
1317 if (pm && pm->runtime_resume)
1318 error = pm->runtime_resume(dev);
1319
1320 pci_dev->runtime_d3cold = false;
1321
1322 return error;
1323 }
1324
pci_pm_runtime_idle(struct device * dev)1325 static int pci_pm_runtime_idle(struct device *dev)
1326 {
1327 struct pci_dev *pci_dev = to_pci_dev(dev);
1328 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1329
1330 /*
1331 * If pci_dev->driver is not set (unbound), the device should
1332 * always remain in D0 regardless of the runtime PM status
1333 */
1334 if (!pci_dev->driver)
1335 return 0;
1336
1337 if (!pm)
1338 return -ENOSYS;
1339
1340 if (pm->runtime_idle)
1341 return pm->runtime_idle(dev);
1342
1343 return 0;
1344 }
1345
1346 static const struct dev_pm_ops pci_dev_pm_ops = {
1347 .prepare = pci_pm_prepare,
1348 .complete = pci_pm_complete,
1349 .suspend = pci_pm_suspend,
1350 .suspend_late = pci_pm_suspend_late,
1351 .resume = pci_pm_resume,
1352 .resume_early = pci_pm_resume_early,
1353 .freeze = pci_pm_freeze,
1354 .thaw = pci_pm_thaw,
1355 .poweroff = pci_pm_poweroff,
1356 .poweroff_late = pci_pm_poweroff_late,
1357 .restore = pci_pm_restore,
1358 .suspend_noirq = pci_pm_suspend_noirq,
1359 .resume_noirq = pci_pm_resume_noirq,
1360 .freeze_noirq = pci_pm_freeze_noirq,
1361 .thaw_noirq = pci_pm_thaw_noirq,
1362 .poweroff_noirq = pci_pm_poweroff_noirq,
1363 .restore_noirq = pci_pm_restore_noirq,
1364 .runtime_suspend = pci_pm_runtime_suspend,
1365 .runtime_resume = pci_pm_runtime_resume,
1366 .runtime_idle = pci_pm_runtime_idle,
1367 };
1368
1369 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1370
1371 #else /* !CONFIG_PM */
1372
1373 #define pci_pm_runtime_suspend NULL
1374 #define pci_pm_runtime_resume NULL
1375 #define pci_pm_runtime_idle NULL
1376
1377 #define PCI_PM_OPS_PTR NULL
1378
1379 #endif /* !CONFIG_PM */
1380
1381 /**
1382 * __pci_register_driver - register a new pci driver
1383 * @drv: the driver structure to register
1384 * @owner: owner module of drv
1385 * @mod_name: module name string
1386 *
1387 * Adds the driver structure to the list of registered drivers.
1388 * Returns a negative value on error, otherwise 0.
1389 * If no error occurred, the driver remains registered even if
1390 * no device was claimed during registration.
1391 */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1392 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1393 const char *mod_name)
1394 {
1395 /* initialize common driver fields */
1396 drv->driver.name = drv->name;
1397 drv->driver.bus = &pci_bus_type;
1398 drv->driver.owner = owner;
1399 drv->driver.mod_name = mod_name;
1400 drv->driver.groups = drv->groups;
1401 drv->driver.dev_groups = drv->dev_groups;
1402
1403 spin_lock_init(&drv->dynids.lock);
1404 INIT_LIST_HEAD(&drv->dynids.list);
1405
1406 /* register with core */
1407 return driver_register(&drv->driver);
1408 }
1409 EXPORT_SYMBOL(__pci_register_driver);
1410
1411 /**
1412 * pci_unregister_driver - unregister a pci driver
1413 * @drv: the driver structure to unregister
1414 *
1415 * Deletes the driver structure from the list of registered PCI drivers,
1416 * gives it a chance to clean up by calling its remove() function for
1417 * each device it was responsible for, and marks those devices as
1418 * driverless.
1419 */
1420
pci_unregister_driver(struct pci_driver * drv)1421 void pci_unregister_driver(struct pci_driver *drv)
1422 {
1423 driver_unregister(&drv->driver);
1424 pci_free_dynids(drv);
1425 }
1426 EXPORT_SYMBOL(pci_unregister_driver);
1427
1428 static struct pci_driver pci_compat_driver = {
1429 .name = "compat"
1430 };
1431
1432 /**
1433 * pci_dev_driver - get the pci_driver of a device
1434 * @dev: the device to query
1435 *
1436 * Returns the appropriate pci_driver structure or %NULL if there is no
1437 * registered driver for the device.
1438 */
pci_dev_driver(const struct pci_dev * dev)1439 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1440 {
1441 if (dev->driver)
1442 return dev->driver;
1443 else {
1444 int i;
1445 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1446 if (dev->resource[i].flags & IORESOURCE_BUSY)
1447 return &pci_compat_driver;
1448 }
1449 return NULL;
1450 }
1451 EXPORT_SYMBOL(pci_dev_driver);
1452
1453 /**
1454 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1455 * @dev: the PCI device structure to match against
1456 * @drv: the device driver to search for matching PCI device id structures
1457 *
1458 * Used by a driver to check whether a PCI device present in the
1459 * system is in its list of supported devices. Returns the matching
1460 * pci_device_id structure or %NULL if there is no match.
1461 */
pci_bus_match(struct device * dev,struct device_driver * drv)1462 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1463 {
1464 struct pci_dev *pci_dev = to_pci_dev(dev);
1465 struct pci_driver *pci_drv;
1466 const struct pci_device_id *found_id;
1467
1468 if (!pci_dev->match_driver)
1469 return 0;
1470
1471 pci_drv = to_pci_driver(drv);
1472 found_id = pci_match_device(pci_drv, pci_dev);
1473 if (found_id)
1474 return 1;
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * pci_dev_get - increments the reference count of the pci device structure
1481 * @dev: the device being referenced
1482 *
1483 * Each live reference to a device should be refcounted.
1484 *
1485 * Drivers for PCI devices should normally record such references in
1486 * their probe() methods, when they bind to a device, and release
1487 * them by calling pci_dev_put(), in their disconnect() methods.
1488 *
1489 * A pointer to the device with the incremented reference counter is returned.
1490 */
pci_dev_get(struct pci_dev * dev)1491 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1492 {
1493 if (dev)
1494 get_device(&dev->dev);
1495 return dev;
1496 }
1497 EXPORT_SYMBOL(pci_dev_get);
1498
1499 /**
1500 * pci_dev_put - release a use of the pci device structure
1501 * @dev: device that's been disconnected
1502 *
1503 * Must be called when a user of a device is finished with it. When the last
1504 * user of the device calls this function, the memory of the device is freed.
1505 */
pci_dev_put(struct pci_dev * dev)1506 void pci_dev_put(struct pci_dev *dev)
1507 {
1508 if (dev)
1509 put_device(&dev->dev);
1510 }
1511 EXPORT_SYMBOL(pci_dev_put);
1512
pci_uevent(struct device * dev,struct kobj_uevent_env * env)1513 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1514 {
1515 struct pci_dev *pdev;
1516
1517 if (!dev)
1518 return -ENODEV;
1519
1520 pdev = to_pci_dev(dev);
1521
1522 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1523 return -ENOMEM;
1524
1525 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1526 return -ENOMEM;
1527
1528 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1529 pdev->subsystem_device))
1530 return -ENOMEM;
1531
1532 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1533 return -ENOMEM;
1534
1535 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1536 pdev->vendor, pdev->device,
1537 pdev->subsystem_vendor, pdev->subsystem_device,
1538 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1539 (u8)(pdev->class)))
1540 return -ENOMEM;
1541
1542 return 0;
1543 }
1544
1545 #if defined(CONFIG_PCIEPORTBUS) || defined(CONFIG_EEH)
1546 /**
1547 * pci_uevent_ers - emit a uevent during recovery path of PCI device
1548 * @pdev: PCI device undergoing error recovery
1549 * @err_type: type of error event
1550 */
pci_uevent_ers(struct pci_dev * pdev,enum pci_ers_result err_type)1551 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type)
1552 {
1553 int idx = 0;
1554 char *envp[3];
1555
1556 switch (err_type) {
1557 case PCI_ERS_RESULT_NONE:
1558 case PCI_ERS_RESULT_CAN_RECOVER:
1559 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY";
1560 envp[idx++] = "DEVICE_ONLINE=0";
1561 break;
1562 case PCI_ERS_RESULT_RECOVERED:
1563 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY";
1564 envp[idx++] = "DEVICE_ONLINE=1";
1565 break;
1566 case PCI_ERS_RESULT_DISCONNECT:
1567 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY";
1568 envp[idx++] = "DEVICE_ONLINE=0";
1569 break;
1570 default:
1571 break;
1572 }
1573
1574 if (idx > 0) {
1575 envp[idx++] = NULL;
1576 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp);
1577 }
1578 }
1579 #endif
1580
pci_bus_num_vf(struct device * dev)1581 static int pci_bus_num_vf(struct device *dev)
1582 {
1583 return pci_num_vf(to_pci_dev(dev));
1584 }
1585
1586 /**
1587 * pci_dma_configure - Setup DMA configuration
1588 * @dev: ptr to dev structure
1589 *
1590 * Function to update PCI devices's DMA configuration using the same
1591 * info from the OF node or ACPI node of host bridge's parent (if any).
1592 */
pci_dma_configure(struct device * dev)1593 static int pci_dma_configure(struct device *dev)
1594 {
1595 struct device *bridge;
1596 int ret = 0;
1597
1598 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
1599
1600 if (IS_ENABLED(CONFIG_OF) && bridge->parent &&
1601 bridge->parent->of_node) {
1602 ret = of_dma_configure(dev, bridge->parent->of_node, true);
1603 } else if (has_acpi_companion(bridge)) {
1604 struct acpi_device *adev = to_acpi_device_node(bridge->fwnode);
1605
1606 ret = acpi_dma_configure(dev, acpi_get_dma_attr(adev));
1607 }
1608
1609 pci_put_host_bridge_device(bridge);
1610 return ret;
1611 }
1612
1613 struct bus_type pci_bus_type = {
1614 .name = "pci",
1615 .match = pci_bus_match,
1616 .uevent = pci_uevent,
1617 .probe = pci_device_probe,
1618 .remove = pci_device_remove,
1619 .shutdown = pci_device_shutdown,
1620 .dev_groups = pci_dev_groups,
1621 .bus_groups = pci_bus_groups,
1622 .drv_groups = pci_drv_groups,
1623 .pm = PCI_PM_OPS_PTR,
1624 .num_vf = pci_bus_num_vf,
1625 .dma_configure = pci_dma_configure,
1626 };
1627 EXPORT_SYMBOL(pci_bus_type);
1628
1629 #ifdef CONFIG_PCIEPORTBUS
pcie_port_bus_match(struct device * dev,struct device_driver * drv)1630 static int pcie_port_bus_match(struct device *dev, struct device_driver *drv)
1631 {
1632 struct pcie_device *pciedev;
1633 struct pcie_port_service_driver *driver;
1634
1635 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type)
1636 return 0;
1637
1638 pciedev = to_pcie_device(dev);
1639 driver = to_service_driver(drv);
1640
1641 if (driver->service != pciedev->service)
1642 return 0;
1643
1644 if (driver->port_type != PCIE_ANY_PORT &&
1645 driver->port_type != pci_pcie_type(pciedev->port))
1646 return 0;
1647
1648 return 1;
1649 }
1650
1651 struct bus_type pcie_port_bus_type = {
1652 .name = "pci_express",
1653 .match = pcie_port_bus_match,
1654 };
1655 EXPORT_SYMBOL_GPL(pcie_port_bus_type);
1656 #endif
1657
pci_driver_init(void)1658 static int __init pci_driver_init(void)
1659 {
1660 int ret;
1661
1662 ret = bus_register(&pci_bus_type);
1663 if (ret)
1664 return ret;
1665
1666 #ifdef CONFIG_PCIEPORTBUS
1667 ret = bus_register(&pcie_port_bus_type);
1668 if (ret)
1669 return ret;
1670 #endif
1671 dma_debug_add_bus(&pci_bus_type);
1672 return 0;
1673 }
1674 postcore_initcall(pci_driver_init);
1675