• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
remote_function(void * data)71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
cpu_function_call(int cpu,remote_function_f func,void * info)143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
is_kernel_event(struct perf_event * event)181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
event_function(void * info)214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
event_function_call(struct perf_event * event,event_f func,void * data)260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
event_function_local(struct perf_event * event,event_f func,void * data)313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
update_perf_cpu_limits(void)438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
perf_duration_warn(struct irq_work * w)508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
perf_sample_event_took(u64 sample_len_ns)519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
perf_event_print_debug(void)583 void __weak perf_event_print_debug(void)	{ }
584 
perf_clock(void)585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
perf_event_clock(struct perf_event * event)590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
perf_event_update_time(struct perf_event * event)643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
perf_event_update_sibling_time(struct perf_event * leader)652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 /*
678  * UP store-release, load-acquire
679  */
680 
681 #define __store_release(ptr, val)					\
682 do {									\
683 	barrier();							\
684 	WRITE_ONCE(*(ptr), (val));					\
685 } while (0)
686 
687 #define __load_acquire(ptr)						\
688 ({									\
689 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
690 	barrier();							\
691 	___p;								\
692 })
693 
694 #ifdef CONFIG_CGROUP_PERF
695 
696 static inline bool
perf_cgroup_match(struct perf_event * event)697 perf_cgroup_match(struct perf_event *event)
698 {
699 	struct perf_event_context *ctx = event->ctx;
700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701 
702 	/* @event doesn't care about cgroup */
703 	if (!event->cgrp)
704 		return true;
705 
706 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
707 	if (!cpuctx->cgrp)
708 		return false;
709 
710 	/*
711 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
712 	 * also enabled for all its descendant cgroups.  If @cpuctx's
713 	 * cgroup is a descendant of @event's (the test covers identity
714 	 * case), it's a match.
715 	 */
716 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717 				    event->cgrp->css.cgroup);
718 }
719 
perf_detach_cgroup(struct perf_event * event)720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722 	css_put(&event->cgrp->css);
723 	event->cgrp = NULL;
724 }
725 
is_cgroup_event(struct perf_event * event)726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728 	return event->cgrp != NULL;
729 }
730 
perf_cgroup_event_time(struct perf_event * event)731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	struct perf_cgroup_info *t;
734 
735 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
736 	return t->time;
737 }
738 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741 	struct perf_cgroup_info *t;
742 
743 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
744 	if (!__load_acquire(&t->active))
745 		return t->time;
746 	now += READ_ONCE(t->timeoffset);
747 	return now;
748 }
749 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752 	if (adv)
753 		info->time += now - info->timestamp;
754 	info->timestamp = now;
755 	/*
756 	 * see update_context_time()
757 	 */
758 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763 	struct perf_cgroup *cgrp = cpuctx->cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct perf_cgroup_info *info;
766 
767 	if (cgrp) {
768 		u64 now = perf_clock();
769 
770 		for (css = &cgrp->css; css; css = css->parent) {
771 			cgrp = container_of(css, struct perf_cgroup, css);
772 			info = this_cpu_ptr(cgrp->info);
773 
774 			__update_cgrp_time(info, now, true);
775 			if (final)
776 				__store_release(&info->active, 0);
777 		}
778 	}
779 }
780 
update_cgrp_time_from_event(struct perf_event * event)781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783 	struct perf_cgroup_info *info;
784 	struct perf_cgroup *cgrp;
785 
786 	/*
787 	 * ensure we access cgroup data only when needed and
788 	 * when we know the cgroup is pinned (css_get)
789 	 */
790 	if (!is_cgroup_event(event))
791 		return;
792 
793 	cgrp = perf_cgroup_from_task(current, event->ctx);
794 	/*
795 	 * Do not update time when cgroup is not active
796 	 */
797 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798 		info = this_cpu_ptr(event->cgrp->info);
799 		__update_cgrp_time(info, perf_clock(), true);
800 	}
801 }
802 
803 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)804 perf_cgroup_set_timestamp(struct task_struct *task,
805 			  struct perf_event_context *ctx)
806 {
807 	struct perf_cgroup *cgrp;
808 	struct perf_cgroup_info *info;
809 	struct cgroup_subsys_state *css;
810 
811 	/*
812 	 * ctx->lock held by caller
813 	 * ensure we do not access cgroup data
814 	 * unless we have the cgroup pinned (css_get)
815 	 */
816 	if (!task || !ctx->nr_cgroups)
817 		return;
818 
819 	cgrp = perf_cgroup_from_task(task, ctx);
820 
821 	for (css = &cgrp->css; css; css = css->parent) {
822 		cgrp = container_of(css, struct perf_cgroup, css);
823 		info = this_cpu_ptr(cgrp->info);
824 		__update_cgrp_time(info, ctx->timestamp, false);
825 		__store_release(&info->active, 1);
826 	}
827 }
828 
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830 
831 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
833 
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
perf_cgroup_switch(struct task_struct * task,int mode)840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842 	struct perf_cpu_context *cpuctx, *tmp;
843 	struct list_head *list;
844 	unsigned long flags;
845 
846 	/*
847 	 * Disable interrupts and preemption to avoid this CPU's
848 	 * cgrp_cpuctx_entry to change under us.
849 	 */
850 	local_irq_save(flags);
851 
852 	list = this_cpu_ptr(&cgrp_cpuctx_list);
853 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
854 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855 
856 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857 		perf_pmu_disable(cpuctx->ctx.pmu);
858 
859 		if (mode & PERF_CGROUP_SWOUT) {
860 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861 			/*
862 			 * must not be done before ctxswout due
863 			 * to event_filter_match() in event_sched_out()
864 			 */
865 			cpuctx->cgrp = NULL;
866 		}
867 
868 		if (mode & PERF_CGROUP_SWIN) {
869 			WARN_ON_ONCE(cpuctx->cgrp);
870 			/*
871 			 * set cgrp before ctxsw in to allow
872 			 * event_filter_match() to not have to pass
873 			 * task around
874 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
875 			 * because cgorup events are only per-cpu
876 			 */
877 			cpuctx->cgrp = perf_cgroup_from_task(task,
878 							     &cpuctx->ctx);
879 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880 		}
881 		perf_pmu_enable(cpuctx->ctx.pmu);
882 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883 	}
884 
885 	local_irq_restore(flags);
886 }
887 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889 					 struct task_struct *next)
890 {
891 	struct perf_cgroup *cgrp1;
892 	struct perf_cgroup *cgrp2 = NULL;
893 
894 	rcu_read_lock();
895 	/*
896 	 * we come here when we know perf_cgroup_events > 0
897 	 * we do not need to pass the ctx here because we know
898 	 * we are holding the rcu lock
899 	 */
900 	cgrp1 = perf_cgroup_from_task(task, NULL);
901 	cgrp2 = perf_cgroup_from_task(next, NULL);
902 
903 	/*
904 	 * only schedule out current cgroup events if we know
905 	 * that we are switching to a different cgroup. Otherwise,
906 	 * do no touch the cgroup events.
907 	 */
908 	if (cgrp1 != cgrp2)
909 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910 
911 	rcu_read_unlock();
912 }
913 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915 					struct task_struct *task)
916 {
917 	struct perf_cgroup *cgrp1;
918 	struct perf_cgroup *cgrp2 = NULL;
919 
920 	rcu_read_lock();
921 	/*
922 	 * we come here when we know perf_cgroup_events > 0
923 	 * we do not need to pass the ctx here because we know
924 	 * we are holding the rcu lock
925 	 */
926 	cgrp1 = perf_cgroup_from_task(task, NULL);
927 	cgrp2 = perf_cgroup_from_task(prev, NULL);
928 
929 	/*
930 	 * only need to schedule in cgroup events if we are changing
931 	 * cgroup during ctxsw. Cgroup events were not scheduled
932 	 * out of ctxsw out if that was not the case.
933 	 */
934 	if (cgrp1 != cgrp2)
935 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936 
937 	rcu_read_unlock();
938 }
939 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941 				struct cgroup_subsys_state *css)
942 {
943 	struct perf_cpu_context *cpuctx;
944 	struct perf_event **storage;
945 	int cpu, heap_size, ret = 0;
946 
947 	/*
948 	 * Allow storage to have sufficent space for an iterator for each
949 	 * possibly nested cgroup plus an iterator for events with no cgroup.
950 	 */
951 	for (heap_size = 1; css; css = css->parent)
952 		heap_size++;
953 
954 	for_each_possible_cpu(cpu) {
955 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956 		if (heap_size <= cpuctx->heap_size)
957 			continue;
958 
959 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960 				       GFP_KERNEL, cpu_to_node(cpu));
961 		if (!storage) {
962 			ret = -ENOMEM;
963 			break;
964 		}
965 
966 		raw_spin_lock_irq(&cpuctx->ctx.lock);
967 		if (cpuctx->heap_size < heap_size) {
968 			swap(cpuctx->heap, storage);
969 			if (storage == cpuctx->heap_default)
970 				storage = NULL;
971 			cpuctx->heap_size = heap_size;
972 		}
973 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
974 
975 		kfree(storage);
976 	}
977 
978 	return ret;
979 }
980 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982 				      struct perf_event_attr *attr,
983 				      struct perf_event *group_leader)
984 {
985 	struct perf_cgroup *cgrp;
986 	struct cgroup_subsys_state *css;
987 	struct fd f = fdget(fd);
988 	int ret = 0;
989 
990 	if (!f.file)
991 		return -EBADF;
992 
993 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
994 					 &perf_event_cgrp_subsys);
995 	if (IS_ERR(css)) {
996 		ret = PTR_ERR(css);
997 		goto out;
998 	}
999 
1000 	ret = perf_cgroup_ensure_storage(event, css);
1001 	if (ret)
1002 		goto out;
1003 
1004 	cgrp = container_of(css, struct perf_cgroup, css);
1005 	event->cgrp = cgrp;
1006 
1007 	/*
1008 	 * all events in a group must monitor
1009 	 * the same cgroup because a task belongs
1010 	 * to only one perf cgroup at a time
1011 	 */
1012 	if (group_leader && group_leader->cgrp != cgrp) {
1013 		perf_detach_cgroup(event);
1014 		ret = -EINVAL;
1015 	}
1016 out:
1017 	fdput(f);
1018 	return ret;
1019 }
1020 
1021 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	/*
1030 	 * Because cgroup events are always per-cpu events,
1031 	 * @ctx == &cpuctx->ctx.
1032 	 */
1033 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034 
1035 	/*
1036 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037 	 * matching the event's cgroup, we must do this for every new event,
1038 	 * because if the first would mismatch, the second would not try again
1039 	 * and we would leave cpuctx->cgrp unset.
1040 	 */
1041 	if (ctx->is_active && !cpuctx->cgrp) {
1042 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043 
1044 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045 			cpuctx->cgrp = cgrp;
1046 	}
1047 
1048 	if (ctx->nr_cgroups++)
1049 		return;
1050 
1051 	list_add(&cpuctx->cgrp_cpuctx_entry,
1052 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054 
1055 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058 	struct perf_cpu_context *cpuctx;
1059 
1060 	if (!is_cgroup_event(event))
1061 		return;
1062 
1063 	/*
1064 	 * Because cgroup events are always per-cpu events,
1065 	 * @ctx == &cpuctx->ctx.
1066 	 */
1067 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068 
1069 	if (--ctx->nr_cgroups)
1070 		return;
1071 
1072 	if (ctx->is_active && cpuctx->cgrp)
1073 		cpuctx->cgrp = NULL;
1074 
1075 	list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077 
1078 #else /* !CONFIG_CGROUP_PERF */
1079 
1080 static inline bool
perf_cgroup_match(struct perf_event * event)1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083 	return true;
1084 }
1085 
perf_detach_cgroup(struct perf_event * event)1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088 
is_cgroup_event(struct perf_event * event)1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091 	return 0;
1092 }
1093 
update_cgrp_time_from_event(struct perf_event * event)1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099 						bool final)
1100 {
1101 }
1102 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104 					 struct task_struct *next)
1105 {
1106 }
1107 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109 					struct task_struct *task)
1110 {
1111 }
1112 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114 				      struct perf_event_attr *attr,
1115 				      struct perf_event *group_leader)
1116 {
1117 	return -EINVAL;
1118 }
1119 
1120 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122 			  struct perf_event_context *ctx)
1123 {
1124 }
1125 
1126 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130 
perf_cgroup_event_time(struct perf_event * event)1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133 	return 0;
1134 }
1135 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151 
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162 	struct perf_cpu_context *cpuctx;
1163 	bool rotations;
1164 
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168 	rotations = perf_rotate_context(cpuctx);
1169 
1170 	raw_spin_lock(&cpuctx->hrtimer_lock);
1171 	if (rotations)
1172 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173 	else
1174 		cpuctx->hrtimer_active = 0;
1175 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1176 
1177 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182 	struct hrtimer *timer = &cpuctx->hrtimer;
1183 	struct pmu *pmu = cpuctx->ctx.pmu;
1184 	u64 interval;
1185 
1186 	/* no multiplexing needed for SW PMU */
1187 	if (pmu->task_ctx_nr == perf_sw_context)
1188 		return;
1189 
1190 	/*
1191 	 * check default is sane, if not set then force to
1192 	 * default interval (1/tick)
1193 	 */
1194 	interval = pmu->hrtimer_interval_ms;
1195 	if (interval < 1)
1196 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197 
1198 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199 
1200 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202 	timer->function = perf_mux_hrtimer_handler;
1203 }
1204 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207 	struct hrtimer *timer = &cpuctx->hrtimer;
1208 	struct pmu *pmu = cpuctx->ctx.pmu;
1209 	unsigned long flags;
1210 
1211 	/* not for SW PMU */
1212 	if (pmu->task_ctx_nr == perf_sw_context)
1213 		return 0;
1214 
1215 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216 	if (!cpuctx->hrtimer_active) {
1217 		cpuctx->hrtimer_active = 1;
1218 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220 	}
1221 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222 
1223 	return 0;
1224 }
1225 
perf_mux_hrtimer_restart_ipi(void * arg)1226 static int perf_mux_hrtimer_restart_ipi(void *arg)
1227 {
1228 	return perf_mux_hrtimer_restart(arg);
1229 }
1230 
perf_pmu_disable(struct pmu * pmu)1231 void perf_pmu_disable(struct pmu *pmu)
1232 {
1233 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1234 	if (!(*count)++)
1235 		pmu->pmu_disable(pmu);
1236 }
1237 
perf_pmu_enable(struct pmu * pmu)1238 void perf_pmu_enable(struct pmu *pmu)
1239 {
1240 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1241 	if (!--(*count))
1242 		pmu->pmu_enable(pmu);
1243 }
1244 
1245 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1246 
1247 /*
1248  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1249  * perf_event_task_tick() are fully serialized because they're strictly cpu
1250  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1251  * disabled, while perf_event_task_tick is called from IRQ context.
1252  */
perf_event_ctx_activate(struct perf_event_context * ctx)1253 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1254 {
1255 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1256 
1257 	lockdep_assert_irqs_disabled();
1258 
1259 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1260 
1261 	list_add(&ctx->active_ctx_list, head);
1262 }
1263 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1264 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1265 {
1266 	lockdep_assert_irqs_disabled();
1267 
1268 	WARN_ON(list_empty(&ctx->active_ctx_list));
1269 
1270 	list_del_init(&ctx->active_ctx_list);
1271 }
1272 
get_ctx(struct perf_event_context * ctx)1273 static void get_ctx(struct perf_event_context *ctx)
1274 {
1275 	refcount_inc(&ctx->refcount);
1276 }
1277 
alloc_task_ctx_data(struct pmu * pmu)1278 static void *alloc_task_ctx_data(struct pmu *pmu)
1279 {
1280 	if (pmu->task_ctx_cache)
1281 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1282 
1283 	return NULL;
1284 }
1285 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1286 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1287 {
1288 	if (pmu->task_ctx_cache && task_ctx_data)
1289 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1290 }
1291 
free_ctx(struct rcu_head * head)1292 static void free_ctx(struct rcu_head *head)
1293 {
1294 	struct perf_event_context *ctx;
1295 
1296 	ctx = container_of(head, struct perf_event_context, rcu_head);
1297 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1298 	kfree(ctx);
1299 }
1300 
put_ctx(struct perf_event_context * ctx)1301 static void put_ctx(struct perf_event_context *ctx)
1302 {
1303 	if (refcount_dec_and_test(&ctx->refcount)) {
1304 		if (ctx->parent_ctx)
1305 			put_ctx(ctx->parent_ctx);
1306 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1307 			put_task_struct(ctx->task);
1308 		call_rcu(&ctx->rcu_head, free_ctx);
1309 	}
1310 }
1311 
1312 /*
1313  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1314  * perf_pmu_migrate_context() we need some magic.
1315  *
1316  * Those places that change perf_event::ctx will hold both
1317  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1318  *
1319  * Lock ordering is by mutex address. There are two other sites where
1320  * perf_event_context::mutex nests and those are:
1321  *
1322  *  - perf_event_exit_task_context()	[ child , 0 ]
1323  *      perf_event_exit_event()
1324  *        put_event()			[ parent, 1 ]
1325  *
1326  *  - perf_event_init_context()		[ parent, 0 ]
1327  *      inherit_task_group()
1328  *        inherit_group()
1329  *          inherit_event()
1330  *            perf_event_alloc()
1331  *              perf_init_event()
1332  *                perf_try_init_event()	[ child , 1 ]
1333  *
1334  * While it appears there is an obvious deadlock here -- the parent and child
1335  * nesting levels are inverted between the two. This is in fact safe because
1336  * life-time rules separate them. That is an exiting task cannot fork, and a
1337  * spawning task cannot (yet) exit.
1338  *
1339  * But remember that these are parent<->child context relations, and
1340  * migration does not affect children, therefore these two orderings should not
1341  * interact.
1342  *
1343  * The change in perf_event::ctx does not affect children (as claimed above)
1344  * because the sys_perf_event_open() case will install a new event and break
1345  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1346  * concerned with cpuctx and that doesn't have children.
1347  *
1348  * The places that change perf_event::ctx will issue:
1349  *
1350  *   perf_remove_from_context();
1351  *   synchronize_rcu();
1352  *   perf_install_in_context();
1353  *
1354  * to affect the change. The remove_from_context() + synchronize_rcu() should
1355  * quiesce the event, after which we can install it in the new location. This
1356  * means that only external vectors (perf_fops, prctl) can perturb the event
1357  * while in transit. Therefore all such accessors should also acquire
1358  * perf_event_context::mutex to serialize against this.
1359  *
1360  * However; because event->ctx can change while we're waiting to acquire
1361  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1362  * function.
1363  *
1364  * Lock order:
1365  *    exec_update_lock
1366  *	task_struct::perf_event_mutex
1367  *	  perf_event_context::mutex
1368  *	    perf_event::child_mutex;
1369  *	      perf_event_context::lock
1370  *	    perf_event::mmap_mutex
1371  *	    mmap_lock
1372  *	      perf_addr_filters_head::lock
1373  *
1374  *    cpu_hotplug_lock
1375  *      pmus_lock
1376  *	  cpuctx->mutex / perf_event_context::mutex
1377  */
1378 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1379 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1380 {
1381 	struct perf_event_context *ctx;
1382 
1383 again:
1384 	rcu_read_lock();
1385 	ctx = READ_ONCE(event->ctx);
1386 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1387 		rcu_read_unlock();
1388 		goto again;
1389 	}
1390 	rcu_read_unlock();
1391 
1392 	mutex_lock_nested(&ctx->mutex, nesting);
1393 	if (event->ctx != ctx) {
1394 		mutex_unlock(&ctx->mutex);
1395 		put_ctx(ctx);
1396 		goto again;
1397 	}
1398 
1399 	return ctx;
1400 }
1401 
1402 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1403 perf_event_ctx_lock(struct perf_event *event)
1404 {
1405 	return perf_event_ctx_lock_nested(event, 0);
1406 }
1407 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1408 static void perf_event_ctx_unlock(struct perf_event *event,
1409 				  struct perf_event_context *ctx)
1410 {
1411 	mutex_unlock(&ctx->mutex);
1412 	put_ctx(ctx);
1413 }
1414 
1415 /*
1416  * This must be done under the ctx->lock, such as to serialize against
1417  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1418  * calling scheduler related locks and ctx->lock nests inside those.
1419  */
1420 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1421 unclone_ctx(struct perf_event_context *ctx)
1422 {
1423 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1424 
1425 	lockdep_assert_held(&ctx->lock);
1426 
1427 	if (parent_ctx)
1428 		ctx->parent_ctx = NULL;
1429 	ctx->generation++;
1430 
1431 	return parent_ctx;
1432 }
1433 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1434 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1435 				enum pid_type type)
1436 {
1437 	u32 nr;
1438 	/*
1439 	 * only top level events have the pid namespace they were created in
1440 	 */
1441 	if (event->parent)
1442 		event = event->parent;
1443 
1444 	nr = __task_pid_nr_ns(p, type, event->ns);
1445 	/* avoid -1 if it is idle thread or runs in another ns */
1446 	if (!nr && !pid_alive(p))
1447 		nr = -1;
1448 	return nr;
1449 }
1450 
perf_event_pid(struct perf_event * event,struct task_struct * p)1451 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1452 {
1453 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1454 }
1455 
perf_event_tid(struct perf_event * event,struct task_struct * p)1456 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1457 {
1458 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1459 }
1460 
1461 /*
1462  * If we inherit events we want to return the parent event id
1463  * to userspace.
1464  */
primary_event_id(struct perf_event * event)1465 static u64 primary_event_id(struct perf_event *event)
1466 {
1467 	u64 id = event->id;
1468 
1469 	if (event->parent)
1470 		id = event->parent->id;
1471 
1472 	return id;
1473 }
1474 
1475 /*
1476  * Get the perf_event_context for a task and lock it.
1477  *
1478  * This has to cope with the fact that until it is locked,
1479  * the context could get moved to another task.
1480  */
1481 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1482 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1483 {
1484 	struct perf_event_context *ctx;
1485 
1486 retry:
1487 	/*
1488 	 * One of the few rules of preemptible RCU is that one cannot do
1489 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1490 	 * part of the read side critical section was irqs-enabled -- see
1491 	 * rcu_read_unlock_special().
1492 	 *
1493 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1494 	 * side critical section has interrupts disabled.
1495 	 */
1496 	local_irq_save(*flags);
1497 	rcu_read_lock();
1498 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1499 	if (ctx) {
1500 		/*
1501 		 * If this context is a clone of another, it might
1502 		 * get swapped for another underneath us by
1503 		 * perf_event_task_sched_out, though the
1504 		 * rcu_read_lock() protects us from any context
1505 		 * getting freed.  Lock the context and check if it
1506 		 * got swapped before we could get the lock, and retry
1507 		 * if so.  If we locked the right context, then it
1508 		 * can't get swapped on us any more.
1509 		 */
1510 		raw_spin_lock(&ctx->lock);
1511 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1512 			raw_spin_unlock(&ctx->lock);
1513 			rcu_read_unlock();
1514 			local_irq_restore(*flags);
1515 			goto retry;
1516 		}
1517 
1518 		if (ctx->task == TASK_TOMBSTONE ||
1519 		    !refcount_inc_not_zero(&ctx->refcount)) {
1520 			raw_spin_unlock(&ctx->lock);
1521 			ctx = NULL;
1522 		} else {
1523 			WARN_ON_ONCE(ctx->task != task);
1524 		}
1525 	}
1526 	rcu_read_unlock();
1527 	if (!ctx)
1528 		local_irq_restore(*flags);
1529 	return ctx;
1530 }
1531 
1532 /*
1533  * Get the context for a task and increment its pin_count so it
1534  * can't get swapped to another task.  This also increments its
1535  * reference count so that the context can't get freed.
1536  */
1537 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1538 perf_pin_task_context(struct task_struct *task, int ctxn)
1539 {
1540 	struct perf_event_context *ctx;
1541 	unsigned long flags;
1542 
1543 	ctx = perf_lock_task_context(task, ctxn, &flags);
1544 	if (ctx) {
1545 		++ctx->pin_count;
1546 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1547 	}
1548 	return ctx;
1549 }
1550 
perf_unpin_context(struct perf_event_context * ctx)1551 static void perf_unpin_context(struct perf_event_context *ctx)
1552 {
1553 	unsigned long flags;
1554 
1555 	raw_spin_lock_irqsave(&ctx->lock, flags);
1556 	--ctx->pin_count;
1557 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1558 }
1559 
1560 /*
1561  * Update the record of the current time in a context.
1562  */
__update_context_time(struct perf_event_context * ctx,bool adv)1563 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1564 {
1565 	u64 now = perf_clock();
1566 
1567 	if (adv)
1568 		ctx->time += now - ctx->timestamp;
1569 	ctx->timestamp = now;
1570 
1571 	/*
1572 	 * The above: time' = time + (now - timestamp), can be re-arranged
1573 	 * into: time` = now + (time - timestamp), which gives a single value
1574 	 * offset to compute future time without locks on.
1575 	 *
1576 	 * See perf_event_time_now(), which can be used from NMI context where
1577 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1578 	 * both the above values in a consistent manner.
1579 	 */
1580 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1581 }
1582 
update_context_time(struct perf_event_context * ctx)1583 static void update_context_time(struct perf_event_context *ctx)
1584 {
1585 	__update_context_time(ctx, true);
1586 }
1587 
perf_event_time(struct perf_event * event)1588 static u64 perf_event_time(struct perf_event *event)
1589 {
1590 	struct perf_event_context *ctx = event->ctx;
1591 
1592 	if (unlikely(!ctx))
1593 		return 0;
1594 
1595 	if (is_cgroup_event(event))
1596 		return perf_cgroup_event_time(event);
1597 
1598 	return ctx->time;
1599 }
1600 
perf_event_time_now(struct perf_event * event,u64 now)1601 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1602 {
1603 	struct perf_event_context *ctx = event->ctx;
1604 
1605 	if (unlikely(!ctx))
1606 		return 0;
1607 
1608 	if (is_cgroup_event(event))
1609 		return perf_cgroup_event_time_now(event, now);
1610 
1611 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1612 		return ctx->time;
1613 
1614 	now += READ_ONCE(ctx->timeoffset);
1615 	return now;
1616 }
1617 
get_event_type(struct perf_event * event)1618 static enum event_type_t get_event_type(struct perf_event *event)
1619 {
1620 	struct perf_event_context *ctx = event->ctx;
1621 	enum event_type_t event_type;
1622 
1623 	lockdep_assert_held(&ctx->lock);
1624 
1625 	/*
1626 	 * It's 'group type', really, because if our group leader is
1627 	 * pinned, so are we.
1628 	 */
1629 	if (event->group_leader != event)
1630 		event = event->group_leader;
1631 
1632 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1633 	if (!ctx->task)
1634 		event_type |= EVENT_CPU;
1635 
1636 	return event_type;
1637 }
1638 
1639 /*
1640  * Helper function to initialize event group nodes.
1641  */
init_event_group(struct perf_event * event)1642 static void init_event_group(struct perf_event *event)
1643 {
1644 	RB_CLEAR_NODE(&event->group_node);
1645 	event->group_index = 0;
1646 }
1647 
1648 /*
1649  * Extract pinned or flexible groups from the context
1650  * based on event attrs bits.
1651  */
1652 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1653 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1654 {
1655 	if (event->attr.pinned)
1656 		return &ctx->pinned_groups;
1657 	else
1658 		return &ctx->flexible_groups;
1659 }
1660 
1661 /*
1662  * Helper function to initializes perf_event_group trees.
1663  */
perf_event_groups_init(struct perf_event_groups * groups)1664 static void perf_event_groups_init(struct perf_event_groups *groups)
1665 {
1666 	groups->tree = RB_ROOT;
1667 	groups->index = 0;
1668 }
1669 
event_cgroup(const struct perf_event * event)1670 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1671 {
1672 	struct cgroup *cgroup = NULL;
1673 
1674 #ifdef CONFIG_CGROUP_PERF
1675 	if (event->cgrp)
1676 		cgroup = event->cgrp->css.cgroup;
1677 #endif
1678 
1679 	return cgroup;
1680 }
1681 
1682 /*
1683  * Compare function for event groups;
1684  *
1685  * Implements complex key that first sorts by CPU and then by virtual index
1686  * which provides ordering when rotating groups for the same CPU.
1687  */
1688 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1689 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1690 		      const u64 left_group_index, const struct perf_event *right)
1691 {
1692 	if (left_cpu < right->cpu)
1693 		return -1;
1694 	if (left_cpu > right->cpu)
1695 		return 1;
1696 
1697 #ifdef CONFIG_CGROUP_PERF
1698 	{
1699 		const struct cgroup *right_cgroup = event_cgroup(right);
1700 
1701 		if (left_cgroup != right_cgroup) {
1702 			if (!left_cgroup) {
1703 				/*
1704 				 * Left has no cgroup but right does, no
1705 				 * cgroups come first.
1706 				 */
1707 				return -1;
1708 			}
1709 			if (!right_cgroup) {
1710 				/*
1711 				 * Right has no cgroup but left does, no
1712 				 * cgroups come first.
1713 				 */
1714 				return 1;
1715 			}
1716 			/* Two dissimilar cgroups, order by id. */
1717 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1718 				return -1;
1719 
1720 			return 1;
1721 		}
1722 	}
1723 #endif
1724 
1725 	if (left_group_index < right->group_index)
1726 		return -1;
1727 	if (left_group_index > right->group_index)
1728 		return 1;
1729 
1730 	return 0;
1731 }
1732 
1733 #define __node_2_pe(node) \
1734 	rb_entry((node), struct perf_event, group_node)
1735 
__group_less(struct rb_node * a,const struct rb_node * b)1736 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1737 {
1738 	struct perf_event *e = __node_2_pe(a);
1739 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1740 				     __node_2_pe(b)) < 0;
1741 }
1742 
1743 struct __group_key {
1744 	int cpu;
1745 	struct cgroup *cgroup;
1746 };
1747 
__group_cmp(const void * key,const struct rb_node * node)1748 static inline int __group_cmp(const void *key, const struct rb_node *node)
1749 {
1750 	const struct __group_key *a = key;
1751 	const struct perf_event *b = __node_2_pe(node);
1752 
1753 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1754 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1755 }
1756 
1757 /*
1758  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1759  * key (see perf_event_groups_less). This places it last inside the CPU
1760  * subtree.
1761  */
1762 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1763 perf_event_groups_insert(struct perf_event_groups *groups,
1764 			 struct perf_event *event)
1765 {
1766 	event->group_index = ++groups->index;
1767 
1768 	rb_add(&event->group_node, &groups->tree, __group_less);
1769 }
1770 
1771 /*
1772  * Helper function to insert event into the pinned or flexible groups.
1773  */
1774 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1775 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	struct perf_event_groups *groups;
1778 
1779 	groups = get_event_groups(event, ctx);
1780 	perf_event_groups_insert(groups, event);
1781 }
1782 
1783 /*
1784  * Delete a group from a tree.
1785  */
1786 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1787 perf_event_groups_delete(struct perf_event_groups *groups,
1788 			 struct perf_event *event)
1789 {
1790 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1791 		     RB_EMPTY_ROOT(&groups->tree));
1792 
1793 	rb_erase(&event->group_node, &groups->tree);
1794 	init_event_group(event);
1795 }
1796 
1797 /*
1798  * Helper function to delete event from its groups.
1799  */
1800 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1801 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1802 {
1803 	struct perf_event_groups *groups;
1804 
1805 	groups = get_event_groups(event, ctx);
1806 	perf_event_groups_delete(groups, event);
1807 }
1808 
1809 /*
1810  * Get the leftmost event in the cpu/cgroup subtree.
1811  */
1812 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1813 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1814 			struct cgroup *cgrp)
1815 {
1816 	struct __group_key key = {
1817 		.cpu = cpu,
1818 		.cgroup = cgrp,
1819 	};
1820 	struct rb_node *node;
1821 
1822 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1823 	if (node)
1824 		return __node_2_pe(node);
1825 
1826 	return NULL;
1827 }
1828 
1829 /*
1830  * Like rb_entry_next_safe() for the @cpu subtree.
1831  */
1832 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1833 perf_event_groups_next(struct perf_event *event)
1834 {
1835 	struct __group_key key = {
1836 		.cpu = event->cpu,
1837 		.cgroup = event_cgroup(event),
1838 	};
1839 	struct rb_node *next;
1840 
1841 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1842 	if (next)
1843 		return __node_2_pe(next);
1844 
1845 	return NULL;
1846 }
1847 
1848 /*
1849  * Iterate through the whole groups tree.
1850  */
1851 #define perf_event_groups_for_each(event, groups)			\
1852 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1853 				typeof(*event), group_node); event;	\
1854 		event = rb_entry_safe(rb_next(&event->group_node),	\
1855 				typeof(*event), group_node))
1856 
1857 /*
1858  * Add an event from the lists for its context.
1859  * Must be called with ctx->mutex and ctx->lock held.
1860  */
1861 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1862 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1863 {
1864 	lockdep_assert_held(&ctx->lock);
1865 
1866 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1867 	event->attach_state |= PERF_ATTACH_CONTEXT;
1868 
1869 	event->tstamp = perf_event_time(event);
1870 
1871 	/*
1872 	 * If we're a stand alone event or group leader, we go to the context
1873 	 * list, group events are kept attached to the group so that
1874 	 * perf_group_detach can, at all times, locate all siblings.
1875 	 */
1876 	if (event->group_leader == event) {
1877 		event->group_caps = event->event_caps;
1878 		add_event_to_groups(event, ctx);
1879 	}
1880 
1881 	list_add_rcu(&event->event_entry, &ctx->event_list);
1882 	ctx->nr_events++;
1883 	if (event->attr.inherit_stat)
1884 		ctx->nr_stat++;
1885 
1886 	if (event->state > PERF_EVENT_STATE_OFF)
1887 		perf_cgroup_event_enable(event, ctx);
1888 
1889 	ctx->generation++;
1890 }
1891 
1892 /*
1893  * Initialize event state based on the perf_event_attr::disabled.
1894  */
perf_event__state_init(struct perf_event * event)1895 static inline void perf_event__state_init(struct perf_event *event)
1896 {
1897 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1898 					      PERF_EVENT_STATE_INACTIVE;
1899 }
1900 
__perf_event_read_size(u64 read_format,int nr_siblings)1901 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1902 {
1903 	int entry = sizeof(u64); /* value */
1904 	int size = 0;
1905 	int nr = 1;
1906 
1907 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1908 		size += sizeof(u64);
1909 
1910 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1911 		size += sizeof(u64);
1912 
1913 	if (read_format & PERF_FORMAT_ID)
1914 		entry += sizeof(u64);
1915 
1916 	if (read_format & PERF_FORMAT_GROUP) {
1917 		nr += nr_siblings;
1918 		size += sizeof(u64);
1919 	}
1920 
1921 	/*
1922 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1923 	 * adding more siblings, this will never overflow.
1924 	 */
1925 	return size + nr * entry;
1926 }
1927 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1928 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1929 {
1930 	struct perf_sample_data *data;
1931 	u16 size = 0;
1932 
1933 	if (sample_type & PERF_SAMPLE_IP)
1934 		size += sizeof(data->ip);
1935 
1936 	if (sample_type & PERF_SAMPLE_ADDR)
1937 		size += sizeof(data->addr);
1938 
1939 	if (sample_type & PERF_SAMPLE_PERIOD)
1940 		size += sizeof(data->period);
1941 
1942 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1943 		size += sizeof(data->weight.full);
1944 
1945 	if (sample_type & PERF_SAMPLE_READ)
1946 		size += event->read_size;
1947 
1948 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1949 		size += sizeof(data->data_src.val);
1950 
1951 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1952 		size += sizeof(data->txn);
1953 
1954 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1955 		size += sizeof(data->phys_addr);
1956 
1957 	if (sample_type & PERF_SAMPLE_CGROUP)
1958 		size += sizeof(data->cgroup);
1959 
1960 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1961 		size += sizeof(data->data_page_size);
1962 
1963 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1964 		size += sizeof(data->code_page_size);
1965 
1966 	event->header_size = size;
1967 }
1968 
1969 /*
1970  * Called at perf_event creation and when events are attached/detached from a
1971  * group.
1972  */
perf_event__header_size(struct perf_event * event)1973 static void perf_event__header_size(struct perf_event *event)
1974 {
1975 	event->read_size =
1976 		__perf_event_read_size(event->attr.read_format,
1977 				       event->group_leader->nr_siblings);
1978 	__perf_event_header_size(event, event->attr.sample_type);
1979 }
1980 
perf_event__id_header_size(struct perf_event * event)1981 static void perf_event__id_header_size(struct perf_event *event)
1982 {
1983 	struct perf_sample_data *data;
1984 	u64 sample_type = event->attr.sample_type;
1985 	u16 size = 0;
1986 
1987 	if (sample_type & PERF_SAMPLE_TID)
1988 		size += sizeof(data->tid_entry);
1989 
1990 	if (sample_type & PERF_SAMPLE_TIME)
1991 		size += sizeof(data->time);
1992 
1993 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1994 		size += sizeof(data->id);
1995 
1996 	if (sample_type & PERF_SAMPLE_ID)
1997 		size += sizeof(data->id);
1998 
1999 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2000 		size += sizeof(data->stream_id);
2001 
2002 	if (sample_type & PERF_SAMPLE_CPU)
2003 		size += sizeof(data->cpu_entry);
2004 
2005 	event->id_header_size = size;
2006 }
2007 
2008 /*
2009  * Check that adding an event to the group does not result in anybody
2010  * overflowing the 64k event limit imposed by the output buffer.
2011  *
2012  * Specifically, check that the read_size for the event does not exceed 16k,
2013  * read_size being the one term that grows with groups size. Since read_size
2014  * depends on per-event read_format, also (re)check the existing events.
2015  *
2016  * This leaves 48k for the constant size fields and things like callchains,
2017  * branch stacks and register sets.
2018  */
perf_event_validate_size(struct perf_event * event)2019 static bool perf_event_validate_size(struct perf_event *event)
2020 {
2021 	struct perf_event *sibling, *group_leader = event->group_leader;
2022 
2023 	if (__perf_event_read_size(event->attr.read_format,
2024 				   group_leader->nr_siblings + 1) > 16*1024)
2025 		return false;
2026 
2027 	if (__perf_event_read_size(group_leader->attr.read_format,
2028 				   group_leader->nr_siblings + 1) > 16*1024)
2029 		return false;
2030 
2031 	for_each_sibling_event(sibling, group_leader) {
2032 		if (__perf_event_read_size(sibling->attr.read_format,
2033 					   group_leader->nr_siblings + 1) > 16*1024)
2034 			return false;
2035 	}
2036 
2037 	return true;
2038 }
2039 
perf_group_attach(struct perf_event * event)2040 static void perf_group_attach(struct perf_event *event)
2041 {
2042 	struct perf_event *group_leader = event->group_leader, *pos;
2043 
2044 	lockdep_assert_held(&event->ctx->lock);
2045 
2046 	/*
2047 	 * We can have double attach due to group movement in perf_event_open.
2048 	 */
2049 	if (event->attach_state & PERF_ATTACH_GROUP)
2050 		return;
2051 
2052 	event->attach_state |= PERF_ATTACH_GROUP;
2053 
2054 	if (group_leader == event)
2055 		return;
2056 
2057 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2058 
2059 	group_leader->group_caps &= event->event_caps;
2060 
2061 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2062 	group_leader->nr_siblings++;
2063 	group_leader->group_generation++;
2064 
2065 	perf_event__header_size(group_leader);
2066 
2067 	for_each_sibling_event(pos, group_leader)
2068 		perf_event__header_size(pos);
2069 }
2070 
2071 /*
2072  * Remove an event from the lists for its context.
2073  * Must be called with ctx->mutex and ctx->lock held.
2074  */
2075 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2076 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2077 {
2078 	WARN_ON_ONCE(event->ctx != ctx);
2079 	lockdep_assert_held(&ctx->lock);
2080 
2081 	/*
2082 	 * We can have double detach due to exit/hot-unplug + close.
2083 	 */
2084 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2085 		return;
2086 
2087 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2088 
2089 	ctx->nr_events--;
2090 	if (event->attr.inherit_stat)
2091 		ctx->nr_stat--;
2092 
2093 	list_del_rcu(&event->event_entry);
2094 
2095 	if (event->group_leader == event)
2096 		del_event_from_groups(event, ctx);
2097 
2098 	/*
2099 	 * If event was in error state, then keep it
2100 	 * that way, otherwise bogus counts will be
2101 	 * returned on read(). The only way to get out
2102 	 * of error state is by explicit re-enabling
2103 	 * of the event
2104 	 */
2105 	if (event->state > PERF_EVENT_STATE_OFF) {
2106 		perf_cgroup_event_disable(event, ctx);
2107 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2108 	}
2109 
2110 	ctx->generation++;
2111 }
2112 
2113 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2114 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2115 {
2116 	if (!has_aux(aux_event))
2117 		return 0;
2118 
2119 	if (!event->pmu->aux_output_match)
2120 		return 0;
2121 
2122 	return event->pmu->aux_output_match(aux_event);
2123 }
2124 
2125 static void put_event(struct perf_event *event);
2126 static void event_sched_out(struct perf_event *event,
2127 			    struct perf_cpu_context *cpuctx,
2128 			    struct perf_event_context *ctx);
2129 
perf_put_aux_event(struct perf_event * event)2130 static void perf_put_aux_event(struct perf_event *event)
2131 {
2132 	struct perf_event_context *ctx = event->ctx;
2133 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2134 	struct perf_event *iter;
2135 
2136 	/*
2137 	 * If event uses aux_event tear down the link
2138 	 */
2139 	if (event->aux_event) {
2140 		iter = event->aux_event;
2141 		event->aux_event = NULL;
2142 		put_event(iter);
2143 		return;
2144 	}
2145 
2146 	/*
2147 	 * If the event is an aux_event, tear down all links to
2148 	 * it from other events.
2149 	 */
2150 	for_each_sibling_event(iter, event->group_leader) {
2151 		if (iter->aux_event != event)
2152 			continue;
2153 
2154 		iter->aux_event = NULL;
2155 		put_event(event);
2156 
2157 		/*
2158 		 * If it's ACTIVE, schedule it out and put it into ERROR
2159 		 * state so that we don't try to schedule it again. Note
2160 		 * that perf_event_enable() will clear the ERROR status.
2161 		 */
2162 		event_sched_out(iter, cpuctx, ctx);
2163 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2164 	}
2165 }
2166 
perf_need_aux_event(struct perf_event * event)2167 static bool perf_need_aux_event(struct perf_event *event)
2168 {
2169 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2170 }
2171 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2172 static int perf_get_aux_event(struct perf_event *event,
2173 			      struct perf_event *group_leader)
2174 {
2175 	/*
2176 	 * Our group leader must be an aux event if we want to be
2177 	 * an aux_output. This way, the aux event will precede its
2178 	 * aux_output events in the group, and therefore will always
2179 	 * schedule first.
2180 	 */
2181 	if (!group_leader)
2182 		return 0;
2183 
2184 	/*
2185 	 * aux_output and aux_sample_size are mutually exclusive.
2186 	 */
2187 	if (event->attr.aux_output && event->attr.aux_sample_size)
2188 		return 0;
2189 
2190 	if (event->attr.aux_output &&
2191 	    !perf_aux_output_match(event, group_leader))
2192 		return 0;
2193 
2194 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2195 		return 0;
2196 
2197 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2198 		return 0;
2199 
2200 	/*
2201 	 * Link aux_outputs to their aux event; this is undone in
2202 	 * perf_group_detach() by perf_put_aux_event(). When the
2203 	 * group in torn down, the aux_output events loose their
2204 	 * link to the aux_event and can't schedule any more.
2205 	 */
2206 	event->aux_event = group_leader;
2207 
2208 	return 1;
2209 }
2210 
get_event_list(struct perf_event * event)2211 static inline struct list_head *get_event_list(struct perf_event *event)
2212 {
2213 	struct perf_event_context *ctx = event->ctx;
2214 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2215 }
2216 
2217 /*
2218  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2219  * cannot exist on their own, schedule them out and move them into the ERROR
2220  * state. Also see _perf_event_enable(), it will not be able to recover
2221  * this ERROR state.
2222  */
perf_remove_sibling_event(struct perf_event * event)2223 static inline void perf_remove_sibling_event(struct perf_event *event)
2224 {
2225 	struct perf_event_context *ctx = event->ctx;
2226 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2227 
2228 	event_sched_out(event, cpuctx, ctx);
2229 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2230 }
2231 
perf_group_detach(struct perf_event * event)2232 static void perf_group_detach(struct perf_event *event)
2233 {
2234 	struct perf_event *leader = event->group_leader;
2235 	struct perf_event *sibling, *tmp;
2236 	struct perf_event_context *ctx = event->ctx;
2237 
2238 	lockdep_assert_held(&ctx->lock);
2239 
2240 	/*
2241 	 * We can have double detach due to exit/hot-unplug + close.
2242 	 */
2243 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2244 		return;
2245 
2246 	event->attach_state &= ~PERF_ATTACH_GROUP;
2247 
2248 	perf_put_aux_event(event);
2249 
2250 	/*
2251 	 * If this is a sibling, remove it from its group.
2252 	 */
2253 	if (leader != event) {
2254 		list_del_init(&event->sibling_list);
2255 		event->group_leader->nr_siblings--;
2256 		event->group_leader->group_generation++;
2257 		goto out;
2258 	}
2259 
2260 	/*
2261 	 * If this was a group event with sibling events then
2262 	 * upgrade the siblings to singleton events by adding them
2263 	 * to whatever list we are on.
2264 	 */
2265 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2266 
2267 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2268 			perf_remove_sibling_event(sibling);
2269 
2270 		sibling->group_leader = sibling;
2271 		list_del_init(&sibling->sibling_list);
2272 
2273 		/* Inherit group flags from the previous leader */
2274 		sibling->group_caps = event->group_caps;
2275 
2276 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2277 			add_event_to_groups(sibling, event->ctx);
2278 
2279 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2280 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2281 		}
2282 
2283 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2284 	}
2285 
2286 out:
2287 	for_each_sibling_event(tmp, leader)
2288 		perf_event__header_size(tmp);
2289 
2290 	perf_event__header_size(leader);
2291 }
2292 
2293 static void sync_child_event(struct perf_event *child_event);
2294 
perf_child_detach(struct perf_event * event)2295 static void perf_child_detach(struct perf_event *event)
2296 {
2297 	struct perf_event *parent_event = event->parent;
2298 
2299 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2300 		return;
2301 
2302 	event->attach_state &= ~PERF_ATTACH_CHILD;
2303 
2304 	if (WARN_ON_ONCE(!parent_event))
2305 		return;
2306 
2307 	lockdep_assert_held(&parent_event->child_mutex);
2308 
2309 	sync_child_event(event);
2310 	list_del_init(&event->child_list);
2311 }
2312 
is_orphaned_event(struct perf_event * event)2313 static bool is_orphaned_event(struct perf_event *event)
2314 {
2315 	return event->state == PERF_EVENT_STATE_DEAD;
2316 }
2317 
__pmu_filter_match(struct perf_event * event)2318 static inline int __pmu_filter_match(struct perf_event *event)
2319 {
2320 	struct pmu *pmu = event->pmu;
2321 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2322 }
2323 
2324 /*
2325  * Check whether we should attempt to schedule an event group based on
2326  * PMU-specific filtering. An event group can consist of HW and SW events,
2327  * potentially with a SW leader, so we must check all the filters, to
2328  * determine whether a group is schedulable:
2329  */
pmu_filter_match(struct perf_event * event)2330 static inline int pmu_filter_match(struct perf_event *event)
2331 {
2332 	struct perf_event *sibling;
2333 
2334 	if (!__pmu_filter_match(event))
2335 		return 0;
2336 
2337 	for_each_sibling_event(sibling, event) {
2338 		if (!__pmu_filter_match(sibling))
2339 			return 0;
2340 	}
2341 
2342 	return 1;
2343 }
2344 
2345 static inline int
event_filter_match(struct perf_event * event)2346 event_filter_match(struct perf_event *event)
2347 {
2348 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2349 	       perf_cgroup_match(event) && pmu_filter_match(event);
2350 }
2351 
2352 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2353 event_sched_out(struct perf_event *event,
2354 		  struct perf_cpu_context *cpuctx,
2355 		  struct perf_event_context *ctx)
2356 {
2357 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2358 
2359 	WARN_ON_ONCE(event->ctx != ctx);
2360 	lockdep_assert_held(&ctx->lock);
2361 
2362 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2363 		return;
2364 
2365 	/*
2366 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2367 	 * we can schedule events _OUT_ individually through things like
2368 	 * __perf_remove_from_context().
2369 	 */
2370 	list_del_init(&event->active_list);
2371 
2372 	perf_pmu_disable(event->pmu);
2373 
2374 	event->pmu->del(event, 0);
2375 	event->oncpu = -1;
2376 
2377 	if (READ_ONCE(event->pending_disable) >= 0) {
2378 		WRITE_ONCE(event->pending_disable, -1);
2379 		perf_cgroup_event_disable(event, ctx);
2380 		state = PERF_EVENT_STATE_OFF;
2381 	}
2382 	perf_event_set_state(event, state);
2383 
2384 	if (!is_software_event(event))
2385 		cpuctx->active_oncpu--;
2386 	if (!--ctx->nr_active)
2387 		perf_event_ctx_deactivate(ctx);
2388 	if (event->attr.freq && event->attr.sample_freq)
2389 		ctx->nr_freq--;
2390 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2391 		cpuctx->exclusive = 0;
2392 
2393 	perf_pmu_enable(event->pmu);
2394 }
2395 
2396 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2397 group_sched_out(struct perf_event *group_event,
2398 		struct perf_cpu_context *cpuctx,
2399 		struct perf_event_context *ctx)
2400 {
2401 	struct perf_event *event;
2402 
2403 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2404 		return;
2405 
2406 	perf_pmu_disable(ctx->pmu);
2407 
2408 	event_sched_out(group_event, cpuctx, ctx);
2409 
2410 	/*
2411 	 * Schedule out siblings (if any):
2412 	 */
2413 	for_each_sibling_event(event, group_event)
2414 		event_sched_out(event, cpuctx, ctx);
2415 
2416 	perf_pmu_enable(ctx->pmu);
2417 }
2418 
2419 #define DETACH_GROUP	0x01UL
2420 #define DETACH_CHILD	0x02UL
2421 #define DETACH_DEAD	0x04UL
2422 
2423 /*
2424  * Cross CPU call to remove a performance event
2425  *
2426  * We disable the event on the hardware level first. After that we
2427  * remove it from the context list.
2428  */
2429 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2430 __perf_remove_from_context(struct perf_event *event,
2431 			   struct perf_cpu_context *cpuctx,
2432 			   struct perf_event_context *ctx,
2433 			   void *info)
2434 {
2435 	unsigned long flags = (unsigned long)info;
2436 
2437 	if (ctx->is_active & EVENT_TIME) {
2438 		update_context_time(ctx);
2439 		update_cgrp_time_from_cpuctx(cpuctx, false);
2440 	}
2441 
2442 	/*
2443 	 * Ensure event_sched_out() switches to OFF, at the very least
2444 	 * this avoids raising perf_pending_task() at this time.
2445 	 */
2446 	if (flags & DETACH_DEAD)
2447 		event->pending_disable = 1;
2448 	event_sched_out(event, cpuctx, ctx);
2449 	if (flags & DETACH_GROUP)
2450 		perf_group_detach(event);
2451 	if (flags & DETACH_CHILD)
2452 		perf_child_detach(event);
2453 	list_del_event(event, ctx);
2454 	if (flags & DETACH_DEAD)
2455 		event->state = PERF_EVENT_STATE_DEAD;
2456 
2457 	if (!ctx->nr_events && ctx->is_active) {
2458 		if (ctx == &cpuctx->ctx)
2459 			update_cgrp_time_from_cpuctx(cpuctx, true);
2460 
2461 		ctx->is_active = 0;
2462 		ctx->rotate_necessary = 0;
2463 		if (ctx->task) {
2464 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2465 			cpuctx->task_ctx = NULL;
2466 		}
2467 	}
2468 }
2469 
2470 /*
2471  * Remove the event from a task's (or a CPU's) list of events.
2472  *
2473  * If event->ctx is a cloned context, callers must make sure that
2474  * every task struct that event->ctx->task could possibly point to
2475  * remains valid.  This is OK when called from perf_release since
2476  * that only calls us on the top-level context, which can't be a clone.
2477  * When called from perf_event_exit_task, it's OK because the
2478  * context has been detached from its task.
2479  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2480 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2481 {
2482 	struct perf_event_context *ctx = event->ctx;
2483 
2484 	lockdep_assert_held(&ctx->mutex);
2485 
2486 	/*
2487 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2488 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2489 	 * event_function_call() user.
2490 	 */
2491 	raw_spin_lock_irq(&ctx->lock);
2492 	/*
2493 	 * Cgroup events are per-cpu events, and must IPI because of
2494 	 * cgrp_cpuctx_list.
2495 	 */
2496 	if (!ctx->is_active && !is_cgroup_event(event)) {
2497 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2498 					   ctx, (void *)flags);
2499 		raw_spin_unlock_irq(&ctx->lock);
2500 		return;
2501 	}
2502 	raw_spin_unlock_irq(&ctx->lock);
2503 
2504 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2505 }
2506 
2507 /*
2508  * Cross CPU call to disable a performance event
2509  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2510 static void __perf_event_disable(struct perf_event *event,
2511 				 struct perf_cpu_context *cpuctx,
2512 				 struct perf_event_context *ctx,
2513 				 void *info)
2514 {
2515 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2516 		return;
2517 
2518 	if (ctx->is_active & EVENT_TIME) {
2519 		update_context_time(ctx);
2520 		update_cgrp_time_from_event(event);
2521 	}
2522 
2523 	if (event == event->group_leader)
2524 		group_sched_out(event, cpuctx, ctx);
2525 	else
2526 		event_sched_out(event, cpuctx, ctx);
2527 
2528 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2529 	perf_cgroup_event_disable(event, ctx);
2530 }
2531 
2532 /*
2533  * Disable an event.
2534  *
2535  * If event->ctx is a cloned context, callers must make sure that
2536  * every task struct that event->ctx->task could possibly point to
2537  * remains valid.  This condition is satisfied when called through
2538  * perf_event_for_each_child or perf_event_for_each because they
2539  * hold the top-level event's child_mutex, so any descendant that
2540  * goes to exit will block in perf_event_exit_event().
2541  *
2542  * When called from perf_pending_event it's OK because event->ctx
2543  * is the current context on this CPU and preemption is disabled,
2544  * hence we can't get into perf_event_task_sched_out for this context.
2545  */
_perf_event_disable(struct perf_event * event)2546 static void _perf_event_disable(struct perf_event *event)
2547 {
2548 	struct perf_event_context *ctx = event->ctx;
2549 
2550 	raw_spin_lock_irq(&ctx->lock);
2551 	if (event->state <= PERF_EVENT_STATE_OFF) {
2552 		raw_spin_unlock_irq(&ctx->lock);
2553 		return;
2554 	}
2555 	raw_spin_unlock_irq(&ctx->lock);
2556 
2557 	event_function_call(event, __perf_event_disable, NULL);
2558 }
2559 
perf_event_disable_local(struct perf_event * event)2560 void perf_event_disable_local(struct perf_event *event)
2561 {
2562 	event_function_local(event, __perf_event_disable, NULL);
2563 }
2564 
2565 /*
2566  * Strictly speaking kernel users cannot create groups and therefore this
2567  * interface does not need the perf_event_ctx_lock() magic.
2568  */
perf_event_disable(struct perf_event * event)2569 void perf_event_disable(struct perf_event *event)
2570 {
2571 	struct perf_event_context *ctx;
2572 
2573 	ctx = perf_event_ctx_lock(event);
2574 	_perf_event_disable(event);
2575 	perf_event_ctx_unlock(event, ctx);
2576 }
2577 EXPORT_SYMBOL_GPL(perf_event_disable);
2578 
perf_event_disable_inatomic(struct perf_event * event)2579 void perf_event_disable_inatomic(struct perf_event *event)
2580 {
2581 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2582 	/* can fail, see perf_pending_event_disable() */
2583 	irq_work_queue(&event->pending);
2584 }
2585 
2586 #define MAX_INTERRUPTS (~0ULL)
2587 
2588 static void perf_log_throttle(struct perf_event *event, int enable);
2589 static void perf_log_itrace_start(struct perf_event *event);
2590 
2591 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2592 event_sched_in(struct perf_event *event,
2593 		 struct perf_cpu_context *cpuctx,
2594 		 struct perf_event_context *ctx)
2595 {
2596 	int ret = 0;
2597 
2598 	WARN_ON_ONCE(event->ctx != ctx);
2599 
2600 	lockdep_assert_held(&ctx->lock);
2601 
2602 	if (event->state <= PERF_EVENT_STATE_OFF)
2603 		return 0;
2604 
2605 	WRITE_ONCE(event->oncpu, smp_processor_id());
2606 	/*
2607 	 * Order event::oncpu write to happen before the ACTIVE state is
2608 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2609 	 * ->oncpu if it sees ACTIVE.
2610 	 */
2611 	smp_wmb();
2612 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2613 
2614 	/*
2615 	 * Unthrottle events, since we scheduled we might have missed several
2616 	 * ticks already, also for a heavily scheduling task there is little
2617 	 * guarantee it'll get a tick in a timely manner.
2618 	 */
2619 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2620 		perf_log_throttle(event, 1);
2621 		event->hw.interrupts = 0;
2622 	}
2623 
2624 	perf_pmu_disable(event->pmu);
2625 
2626 	perf_log_itrace_start(event);
2627 
2628 	if (event->pmu->add(event, PERF_EF_START)) {
2629 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2630 		event->oncpu = -1;
2631 		ret = -EAGAIN;
2632 		goto out;
2633 	}
2634 
2635 	if (!is_software_event(event))
2636 		cpuctx->active_oncpu++;
2637 	if (!ctx->nr_active++)
2638 		perf_event_ctx_activate(ctx);
2639 	if (event->attr.freq && event->attr.sample_freq)
2640 		ctx->nr_freq++;
2641 
2642 	if (event->attr.exclusive)
2643 		cpuctx->exclusive = 1;
2644 
2645 out:
2646 	perf_pmu_enable(event->pmu);
2647 
2648 	return ret;
2649 }
2650 
2651 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2652 group_sched_in(struct perf_event *group_event,
2653 	       struct perf_cpu_context *cpuctx,
2654 	       struct perf_event_context *ctx)
2655 {
2656 	struct perf_event *event, *partial_group = NULL;
2657 	struct pmu *pmu = ctx->pmu;
2658 
2659 	if (group_event->state == PERF_EVENT_STATE_OFF)
2660 		return 0;
2661 
2662 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2663 
2664 	if (event_sched_in(group_event, cpuctx, ctx))
2665 		goto error;
2666 
2667 	/*
2668 	 * Schedule in siblings as one group (if any):
2669 	 */
2670 	for_each_sibling_event(event, group_event) {
2671 		if (event_sched_in(event, cpuctx, ctx)) {
2672 			partial_group = event;
2673 			goto group_error;
2674 		}
2675 	}
2676 
2677 	if (!pmu->commit_txn(pmu))
2678 		return 0;
2679 
2680 group_error:
2681 	/*
2682 	 * Groups can be scheduled in as one unit only, so undo any
2683 	 * partial group before returning:
2684 	 * The events up to the failed event are scheduled out normally.
2685 	 */
2686 	for_each_sibling_event(event, group_event) {
2687 		if (event == partial_group)
2688 			break;
2689 
2690 		event_sched_out(event, cpuctx, ctx);
2691 	}
2692 	event_sched_out(group_event, cpuctx, ctx);
2693 
2694 error:
2695 	pmu->cancel_txn(pmu);
2696 	return -EAGAIN;
2697 }
2698 
2699 /*
2700  * Work out whether we can put this event group on the CPU now.
2701  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2702 static int group_can_go_on(struct perf_event *event,
2703 			   struct perf_cpu_context *cpuctx,
2704 			   int can_add_hw)
2705 {
2706 	/*
2707 	 * Groups consisting entirely of software events can always go on.
2708 	 */
2709 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2710 		return 1;
2711 	/*
2712 	 * If an exclusive group is already on, no other hardware
2713 	 * events can go on.
2714 	 */
2715 	if (cpuctx->exclusive)
2716 		return 0;
2717 	/*
2718 	 * If this group is exclusive and there are already
2719 	 * events on the CPU, it can't go on.
2720 	 */
2721 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2722 		return 0;
2723 	/*
2724 	 * Otherwise, try to add it if all previous groups were able
2725 	 * to go on.
2726 	 */
2727 	return can_add_hw;
2728 }
2729 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2730 static void add_event_to_ctx(struct perf_event *event,
2731 			       struct perf_event_context *ctx)
2732 {
2733 	list_add_event(event, ctx);
2734 	perf_group_attach(event);
2735 }
2736 
2737 static void ctx_sched_out(struct perf_event_context *ctx,
2738 			  struct perf_cpu_context *cpuctx,
2739 			  enum event_type_t event_type);
2740 static void
2741 ctx_sched_in(struct perf_event_context *ctx,
2742 	     struct perf_cpu_context *cpuctx,
2743 	     enum event_type_t event_type,
2744 	     struct task_struct *task);
2745 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2746 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2747 			       struct perf_event_context *ctx,
2748 			       enum event_type_t event_type)
2749 {
2750 	if (!cpuctx->task_ctx)
2751 		return;
2752 
2753 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2754 		return;
2755 
2756 	ctx_sched_out(ctx, cpuctx, event_type);
2757 }
2758 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2759 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2760 				struct perf_event_context *ctx,
2761 				struct task_struct *task)
2762 {
2763 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2764 	if (ctx)
2765 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2766 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2767 	if (ctx)
2768 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2769 }
2770 
2771 /*
2772  * We want to maintain the following priority of scheduling:
2773  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2774  *  - task pinned (EVENT_PINNED)
2775  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2776  *  - task flexible (EVENT_FLEXIBLE).
2777  *
2778  * In order to avoid unscheduling and scheduling back in everything every
2779  * time an event is added, only do it for the groups of equal priority and
2780  * below.
2781  *
2782  * This can be called after a batch operation on task events, in which case
2783  * event_type is a bit mask of the types of events involved. For CPU events,
2784  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2785  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2786 static void ctx_resched(struct perf_cpu_context *cpuctx,
2787 			struct perf_event_context *task_ctx,
2788 			enum event_type_t event_type)
2789 {
2790 	enum event_type_t ctx_event_type;
2791 	bool cpu_event = !!(event_type & EVENT_CPU);
2792 
2793 	/*
2794 	 * If pinned groups are involved, flexible groups also need to be
2795 	 * scheduled out.
2796 	 */
2797 	if (event_type & EVENT_PINNED)
2798 		event_type |= EVENT_FLEXIBLE;
2799 
2800 	ctx_event_type = event_type & EVENT_ALL;
2801 
2802 	perf_pmu_disable(cpuctx->ctx.pmu);
2803 	if (task_ctx)
2804 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2805 
2806 	/*
2807 	 * Decide which cpu ctx groups to schedule out based on the types
2808 	 * of events that caused rescheduling:
2809 	 *  - EVENT_CPU: schedule out corresponding groups;
2810 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2811 	 *  - otherwise, do nothing more.
2812 	 */
2813 	if (cpu_event)
2814 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2815 	else if (ctx_event_type & EVENT_PINNED)
2816 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2817 
2818 	perf_event_sched_in(cpuctx, task_ctx, current);
2819 	perf_pmu_enable(cpuctx->ctx.pmu);
2820 }
2821 
perf_pmu_resched(struct pmu * pmu)2822 void perf_pmu_resched(struct pmu *pmu)
2823 {
2824 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2825 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2826 
2827 	perf_ctx_lock(cpuctx, task_ctx);
2828 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2829 	perf_ctx_unlock(cpuctx, task_ctx);
2830 }
2831 
2832 /*
2833  * Cross CPU call to install and enable a performance event
2834  *
2835  * Very similar to remote_function() + event_function() but cannot assume that
2836  * things like ctx->is_active and cpuctx->task_ctx are set.
2837  */
__perf_install_in_context(void * info)2838 static int  __perf_install_in_context(void *info)
2839 {
2840 	struct perf_event *event = info;
2841 	struct perf_event_context *ctx = event->ctx;
2842 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2843 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2844 	bool reprogram = true;
2845 	int ret = 0;
2846 
2847 	raw_spin_lock(&cpuctx->ctx.lock);
2848 	if (ctx->task) {
2849 		raw_spin_lock(&ctx->lock);
2850 		task_ctx = ctx;
2851 
2852 		reprogram = (ctx->task == current);
2853 
2854 		/*
2855 		 * If the task is running, it must be running on this CPU,
2856 		 * otherwise we cannot reprogram things.
2857 		 *
2858 		 * If its not running, we don't care, ctx->lock will
2859 		 * serialize against it becoming runnable.
2860 		 */
2861 		if (task_curr(ctx->task) && !reprogram) {
2862 			ret = -ESRCH;
2863 			goto unlock;
2864 		}
2865 
2866 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2867 	} else if (task_ctx) {
2868 		raw_spin_lock(&task_ctx->lock);
2869 	}
2870 
2871 #ifdef CONFIG_CGROUP_PERF
2872 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2873 		/*
2874 		 * If the current cgroup doesn't match the event's
2875 		 * cgroup, we should not try to schedule it.
2876 		 */
2877 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2878 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2879 					event->cgrp->css.cgroup);
2880 	}
2881 #endif
2882 
2883 	if (reprogram) {
2884 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2885 		add_event_to_ctx(event, ctx);
2886 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2887 	} else {
2888 		add_event_to_ctx(event, ctx);
2889 	}
2890 
2891 unlock:
2892 	perf_ctx_unlock(cpuctx, task_ctx);
2893 
2894 	return ret;
2895 }
2896 
2897 static bool exclusive_event_installable(struct perf_event *event,
2898 					struct perf_event_context *ctx);
2899 
2900 /*
2901  * Attach a performance event to a context.
2902  *
2903  * Very similar to event_function_call, see comment there.
2904  */
2905 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2906 perf_install_in_context(struct perf_event_context *ctx,
2907 			struct perf_event *event,
2908 			int cpu)
2909 {
2910 	struct task_struct *task = READ_ONCE(ctx->task);
2911 
2912 	lockdep_assert_held(&ctx->mutex);
2913 
2914 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2915 
2916 	if (event->cpu != -1)
2917 		event->cpu = cpu;
2918 
2919 	/*
2920 	 * Ensures that if we can observe event->ctx, both the event and ctx
2921 	 * will be 'complete'. See perf_iterate_sb_cpu().
2922 	 */
2923 	smp_store_release(&event->ctx, ctx);
2924 
2925 	/*
2926 	 * perf_event_attr::disabled events will not run and can be initialized
2927 	 * without IPI. Except when this is the first event for the context, in
2928 	 * that case we need the magic of the IPI to set ctx->is_active.
2929 	 * Similarly, cgroup events for the context also needs the IPI to
2930 	 * manipulate the cgrp_cpuctx_list.
2931 	 *
2932 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2933 	 * event will issue the IPI and reprogram the hardware.
2934 	 */
2935 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2936 	    ctx->nr_events && !is_cgroup_event(event)) {
2937 		raw_spin_lock_irq(&ctx->lock);
2938 		if (ctx->task == TASK_TOMBSTONE) {
2939 			raw_spin_unlock_irq(&ctx->lock);
2940 			return;
2941 		}
2942 		add_event_to_ctx(event, ctx);
2943 		raw_spin_unlock_irq(&ctx->lock);
2944 		return;
2945 	}
2946 
2947 	if (!task) {
2948 		cpu_function_call(cpu, __perf_install_in_context, event);
2949 		return;
2950 	}
2951 
2952 	/*
2953 	 * Should not happen, we validate the ctx is still alive before calling.
2954 	 */
2955 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2956 		return;
2957 
2958 	/*
2959 	 * Installing events is tricky because we cannot rely on ctx->is_active
2960 	 * to be set in case this is the nr_events 0 -> 1 transition.
2961 	 *
2962 	 * Instead we use task_curr(), which tells us if the task is running.
2963 	 * However, since we use task_curr() outside of rq::lock, we can race
2964 	 * against the actual state. This means the result can be wrong.
2965 	 *
2966 	 * If we get a false positive, we retry, this is harmless.
2967 	 *
2968 	 * If we get a false negative, things are complicated. If we are after
2969 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2970 	 * value must be correct. If we're before, it doesn't matter since
2971 	 * perf_event_context_sched_in() will program the counter.
2972 	 *
2973 	 * However, this hinges on the remote context switch having observed
2974 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2975 	 * ctx::lock in perf_event_context_sched_in().
2976 	 *
2977 	 * We do this by task_function_call(), if the IPI fails to hit the task
2978 	 * we know any future context switch of task must see the
2979 	 * perf_event_ctpx[] store.
2980 	 */
2981 
2982 	/*
2983 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2984 	 * task_cpu() load, such that if the IPI then does not find the task
2985 	 * running, a future context switch of that task must observe the
2986 	 * store.
2987 	 */
2988 	smp_mb();
2989 again:
2990 	if (!task_function_call(task, __perf_install_in_context, event))
2991 		return;
2992 
2993 	raw_spin_lock_irq(&ctx->lock);
2994 	task = ctx->task;
2995 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2996 		/*
2997 		 * Cannot happen because we already checked above (which also
2998 		 * cannot happen), and we hold ctx->mutex, which serializes us
2999 		 * against perf_event_exit_task_context().
3000 		 */
3001 		raw_spin_unlock_irq(&ctx->lock);
3002 		return;
3003 	}
3004 	/*
3005 	 * If the task is not running, ctx->lock will avoid it becoming so,
3006 	 * thus we can safely install the event.
3007 	 */
3008 	if (task_curr(task)) {
3009 		raw_spin_unlock_irq(&ctx->lock);
3010 		goto again;
3011 	}
3012 	add_event_to_ctx(event, ctx);
3013 	raw_spin_unlock_irq(&ctx->lock);
3014 }
3015 
3016 /*
3017  * Cross CPU call to enable a performance event
3018  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3019 static void __perf_event_enable(struct perf_event *event,
3020 				struct perf_cpu_context *cpuctx,
3021 				struct perf_event_context *ctx,
3022 				void *info)
3023 {
3024 	struct perf_event *leader = event->group_leader;
3025 	struct perf_event_context *task_ctx;
3026 
3027 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3028 	    event->state <= PERF_EVENT_STATE_ERROR)
3029 		return;
3030 
3031 	if (ctx->is_active)
3032 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3033 
3034 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3035 	perf_cgroup_event_enable(event, ctx);
3036 
3037 	if (!ctx->is_active)
3038 		return;
3039 
3040 	if (!event_filter_match(event)) {
3041 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3042 		return;
3043 	}
3044 
3045 	/*
3046 	 * If the event is in a group and isn't the group leader,
3047 	 * then don't put it on unless the group is on.
3048 	 */
3049 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3050 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3051 		return;
3052 	}
3053 
3054 	task_ctx = cpuctx->task_ctx;
3055 	if (ctx->task)
3056 		WARN_ON_ONCE(task_ctx != ctx);
3057 
3058 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3059 }
3060 
3061 /*
3062  * Enable an event.
3063  *
3064  * If event->ctx is a cloned context, callers must make sure that
3065  * every task struct that event->ctx->task could possibly point to
3066  * remains valid.  This condition is satisfied when called through
3067  * perf_event_for_each_child or perf_event_for_each as described
3068  * for perf_event_disable.
3069  */
_perf_event_enable(struct perf_event * event)3070 static void _perf_event_enable(struct perf_event *event)
3071 {
3072 	struct perf_event_context *ctx = event->ctx;
3073 
3074 	raw_spin_lock_irq(&ctx->lock);
3075 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3076 	    event->state <  PERF_EVENT_STATE_ERROR) {
3077 out:
3078 		raw_spin_unlock_irq(&ctx->lock);
3079 		return;
3080 	}
3081 
3082 	/*
3083 	 * If the event is in error state, clear that first.
3084 	 *
3085 	 * That way, if we see the event in error state below, we know that it
3086 	 * has gone back into error state, as distinct from the task having
3087 	 * been scheduled away before the cross-call arrived.
3088 	 */
3089 	if (event->state == PERF_EVENT_STATE_ERROR) {
3090 		/*
3091 		 * Detached SIBLING events cannot leave ERROR state.
3092 		 */
3093 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3094 		    event->group_leader == event)
3095 			goto out;
3096 
3097 		event->state = PERF_EVENT_STATE_OFF;
3098 	}
3099 	raw_spin_unlock_irq(&ctx->lock);
3100 
3101 	event_function_call(event, __perf_event_enable, NULL);
3102 }
3103 
3104 /*
3105  * See perf_event_disable();
3106  */
perf_event_enable(struct perf_event * event)3107 void perf_event_enable(struct perf_event *event)
3108 {
3109 	struct perf_event_context *ctx;
3110 
3111 	ctx = perf_event_ctx_lock(event);
3112 	_perf_event_enable(event);
3113 	perf_event_ctx_unlock(event, ctx);
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_enable);
3116 
3117 struct stop_event_data {
3118 	struct perf_event	*event;
3119 	unsigned int		restart;
3120 };
3121 
__perf_event_stop(void * info)3122 static int __perf_event_stop(void *info)
3123 {
3124 	struct stop_event_data *sd = info;
3125 	struct perf_event *event = sd->event;
3126 
3127 	/* if it's already INACTIVE, do nothing */
3128 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3129 		return 0;
3130 
3131 	/* matches smp_wmb() in event_sched_in() */
3132 	smp_rmb();
3133 
3134 	/*
3135 	 * There is a window with interrupts enabled before we get here,
3136 	 * so we need to check again lest we try to stop another CPU's event.
3137 	 */
3138 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3139 		return -EAGAIN;
3140 
3141 	event->pmu->stop(event, PERF_EF_UPDATE);
3142 
3143 	/*
3144 	 * May race with the actual stop (through perf_pmu_output_stop()),
3145 	 * but it is only used for events with AUX ring buffer, and such
3146 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3147 	 * see comments in perf_aux_output_begin().
3148 	 *
3149 	 * Since this is happening on an event-local CPU, no trace is lost
3150 	 * while restarting.
3151 	 */
3152 	if (sd->restart)
3153 		event->pmu->start(event, 0);
3154 
3155 	return 0;
3156 }
3157 
perf_event_stop(struct perf_event * event,int restart)3158 static int perf_event_stop(struct perf_event *event, int restart)
3159 {
3160 	struct stop_event_data sd = {
3161 		.event		= event,
3162 		.restart	= restart,
3163 	};
3164 	int ret = 0;
3165 
3166 	do {
3167 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3168 			return 0;
3169 
3170 		/* matches smp_wmb() in event_sched_in() */
3171 		smp_rmb();
3172 
3173 		/*
3174 		 * We only want to restart ACTIVE events, so if the event goes
3175 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3176 		 * fall through with ret==-ENXIO.
3177 		 */
3178 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3179 					__perf_event_stop, &sd);
3180 	} while (ret == -EAGAIN);
3181 
3182 	return ret;
3183 }
3184 
3185 /*
3186  * In order to contain the amount of racy and tricky in the address filter
3187  * configuration management, it is a two part process:
3188  *
3189  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3190  *      we update the addresses of corresponding vmas in
3191  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3192  * (p2) when an event is scheduled in (pmu::add), it calls
3193  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3194  *      if the generation has changed since the previous call.
3195  *
3196  * If (p1) happens while the event is active, we restart it to force (p2).
3197  *
3198  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3199  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3200  *     ioctl;
3201  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3202  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3203  *     for reading;
3204  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3205  *     of exec.
3206  */
perf_event_addr_filters_sync(struct perf_event * event)3207 void perf_event_addr_filters_sync(struct perf_event *event)
3208 {
3209 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3210 
3211 	if (!has_addr_filter(event))
3212 		return;
3213 
3214 	raw_spin_lock(&ifh->lock);
3215 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3216 		event->pmu->addr_filters_sync(event);
3217 		event->hw.addr_filters_gen = event->addr_filters_gen;
3218 	}
3219 	raw_spin_unlock(&ifh->lock);
3220 }
3221 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3222 
_perf_event_refresh(struct perf_event * event,int refresh)3223 static int _perf_event_refresh(struct perf_event *event, int refresh)
3224 {
3225 	/*
3226 	 * not supported on inherited events
3227 	 */
3228 	if (event->attr.inherit || !is_sampling_event(event))
3229 		return -EINVAL;
3230 
3231 	atomic_add(refresh, &event->event_limit);
3232 	_perf_event_enable(event);
3233 
3234 	return 0;
3235 }
3236 
3237 /*
3238  * See perf_event_disable()
3239  */
perf_event_refresh(struct perf_event * event,int refresh)3240 int perf_event_refresh(struct perf_event *event, int refresh)
3241 {
3242 	struct perf_event_context *ctx;
3243 	int ret;
3244 
3245 	ctx = perf_event_ctx_lock(event);
3246 	ret = _perf_event_refresh(event, refresh);
3247 	perf_event_ctx_unlock(event, ctx);
3248 
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(perf_event_refresh);
3252 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3253 static int perf_event_modify_breakpoint(struct perf_event *bp,
3254 					 struct perf_event_attr *attr)
3255 {
3256 	int err;
3257 
3258 	_perf_event_disable(bp);
3259 
3260 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3261 
3262 	if (!bp->attr.disabled)
3263 		_perf_event_enable(bp);
3264 
3265 	return err;
3266 }
3267 
3268 /*
3269  * Copy event-type-independent attributes that may be modified.
3270  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3271 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3272 					const struct perf_event_attr *from)
3273 {
3274 	to->sig_data = from->sig_data;
3275 }
3276 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3277 static int perf_event_modify_attr(struct perf_event *event,
3278 				  struct perf_event_attr *attr)
3279 {
3280 	int (*func)(struct perf_event *, struct perf_event_attr *);
3281 	struct perf_event *child;
3282 	int err;
3283 
3284 	if (event->attr.type != attr->type)
3285 		return -EINVAL;
3286 
3287 	switch (event->attr.type) {
3288 	case PERF_TYPE_BREAKPOINT:
3289 		func = perf_event_modify_breakpoint;
3290 		break;
3291 	default:
3292 		/* Place holder for future additions. */
3293 		return -EOPNOTSUPP;
3294 	}
3295 
3296 	WARN_ON_ONCE(event->ctx->parent_ctx);
3297 
3298 	mutex_lock(&event->child_mutex);
3299 	/*
3300 	 * Event-type-independent attributes must be copied before event-type
3301 	 * modification, which will validate that final attributes match the
3302 	 * source attributes after all relevant attributes have been copied.
3303 	 */
3304 	perf_event_modify_copy_attr(&event->attr, attr);
3305 	err = func(event, attr);
3306 	if (err)
3307 		goto out;
3308 	list_for_each_entry(child, &event->child_list, child_list) {
3309 		perf_event_modify_copy_attr(&child->attr, attr);
3310 		err = func(child, attr);
3311 		if (err)
3312 			goto out;
3313 	}
3314 out:
3315 	mutex_unlock(&event->child_mutex);
3316 	return err;
3317 }
3318 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3319 static void ctx_sched_out(struct perf_event_context *ctx,
3320 			  struct perf_cpu_context *cpuctx,
3321 			  enum event_type_t event_type)
3322 {
3323 	struct perf_event *event, *tmp;
3324 	int is_active = ctx->is_active;
3325 
3326 	lockdep_assert_held(&ctx->lock);
3327 
3328 	if (likely(!ctx->nr_events)) {
3329 		/*
3330 		 * See __perf_remove_from_context().
3331 		 */
3332 		WARN_ON_ONCE(ctx->is_active);
3333 		if (ctx->task)
3334 			WARN_ON_ONCE(cpuctx->task_ctx);
3335 		return;
3336 	}
3337 
3338 	/*
3339 	 * Always update time if it was set; not only when it changes.
3340 	 * Otherwise we can 'forget' to update time for any but the last
3341 	 * context we sched out. For example:
3342 	 *
3343 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3344 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3345 	 *
3346 	 * would only update time for the pinned events.
3347 	 */
3348 	if (is_active & EVENT_TIME) {
3349 		/* update (and stop) ctx time */
3350 		update_context_time(ctx);
3351 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3352 		/*
3353 		 * CPU-release for the below ->is_active store,
3354 		 * see __load_acquire() in perf_event_time_now()
3355 		 */
3356 		barrier();
3357 	}
3358 
3359 	ctx->is_active &= ~event_type;
3360 	if (!(ctx->is_active & EVENT_ALL))
3361 		ctx->is_active = 0;
3362 
3363 	if (ctx->task) {
3364 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3365 		if (!ctx->is_active)
3366 			cpuctx->task_ctx = NULL;
3367 	}
3368 
3369 	is_active ^= ctx->is_active; /* changed bits */
3370 
3371 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3372 		return;
3373 
3374 	perf_pmu_disable(ctx->pmu);
3375 	if (is_active & EVENT_PINNED) {
3376 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3377 			group_sched_out(event, cpuctx, ctx);
3378 	}
3379 
3380 	if (is_active & EVENT_FLEXIBLE) {
3381 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3382 			group_sched_out(event, cpuctx, ctx);
3383 
3384 		/*
3385 		 * Since we cleared EVENT_FLEXIBLE, also clear
3386 		 * rotate_necessary, is will be reset by
3387 		 * ctx_flexible_sched_in() when needed.
3388 		 */
3389 		ctx->rotate_necessary = 0;
3390 	}
3391 	perf_pmu_enable(ctx->pmu);
3392 }
3393 
3394 /*
3395  * Test whether two contexts are equivalent, i.e. whether they have both been
3396  * cloned from the same version of the same context.
3397  *
3398  * Equivalence is measured using a generation number in the context that is
3399  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3400  * and list_del_event().
3401  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3402 static int context_equiv(struct perf_event_context *ctx1,
3403 			 struct perf_event_context *ctx2)
3404 {
3405 	lockdep_assert_held(&ctx1->lock);
3406 	lockdep_assert_held(&ctx2->lock);
3407 
3408 	/* Pinning disables the swap optimization */
3409 	if (ctx1->pin_count || ctx2->pin_count)
3410 		return 0;
3411 
3412 	/* If ctx1 is the parent of ctx2 */
3413 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3414 		return 1;
3415 
3416 	/* If ctx2 is the parent of ctx1 */
3417 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3418 		return 1;
3419 
3420 	/*
3421 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3422 	 * hierarchy, see perf_event_init_context().
3423 	 */
3424 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3425 			ctx1->parent_gen == ctx2->parent_gen)
3426 		return 1;
3427 
3428 	/* Unmatched */
3429 	return 0;
3430 }
3431 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3432 static void __perf_event_sync_stat(struct perf_event *event,
3433 				     struct perf_event *next_event)
3434 {
3435 	u64 value;
3436 
3437 	if (!event->attr.inherit_stat)
3438 		return;
3439 
3440 	/*
3441 	 * Update the event value, we cannot use perf_event_read()
3442 	 * because we're in the middle of a context switch and have IRQs
3443 	 * disabled, which upsets smp_call_function_single(), however
3444 	 * we know the event must be on the current CPU, therefore we
3445 	 * don't need to use it.
3446 	 */
3447 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3448 		event->pmu->read(event);
3449 
3450 	perf_event_update_time(event);
3451 
3452 	/*
3453 	 * In order to keep per-task stats reliable we need to flip the event
3454 	 * values when we flip the contexts.
3455 	 */
3456 	value = local64_read(&next_event->count);
3457 	value = local64_xchg(&event->count, value);
3458 	local64_set(&next_event->count, value);
3459 
3460 	swap(event->total_time_enabled, next_event->total_time_enabled);
3461 	swap(event->total_time_running, next_event->total_time_running);
3462 
3463 	/*
3464 	 * Since we swizzled the values, update the user visible data too.
3465 	 */
3466 	perf_event_update_userpage(event);
3467 	perf_event_update_userpage(next_event);
3468 }
3469 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3470 static void perf_event_sync_stat(struct perf_event_context *ctx,
3471 				   struct perf_event_context *next_ctx)
3472 {
3473 	struct perf_event *event, *next_event;
3474 
3475 	if (!ctx->nr_stat)
3476 		return;
3477 
3478 	update_context_time(ctx);
3479 
3480 	event = list_first_entry(&ctx->event_list,
3481 				   struct perf_event, event_entry);
3482 
3483 	next_event = list_first_entry(&next_ctx->event_list,
3484 					struct perf_event, event_entry);
3485 
3486 	while (&event->event_entry != &ctx->event_list &&
3487 	       &next_event->event_entry != &next_ctx->event_list) {
3488 
3489 		__perf_event_sync_stat(event, next_event);
3490 
3491 		event = list_next_entry(event, event_entry);
3492 		next_event = list_next_entry(next_event, event_entry);
3493 	}
3494 }
3495 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3496 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3497 					 struct task_struct *next)
3498 {
3499 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3500 	struct perf_event_context *next_ctx;
3501 	struct perf_event_context *parent, *next_parent;
3502 	struct perf_cpu_context *cpuctx;
3503 	int do_switch = 1;
3504 	struct pmu *pmu;
3505 
3506 	if (likely(!ctx))
3507 		return;
3508 
3509 	pmu = ctx->pmu;
3510 	cpuctx = __get_cpu_context(ctx);
3511 	if (!cpuctx->task_ctx)
3512 		return;
3513 
3514 	rcu_read_lock();
3515 	next_ctx = next->perf_event_ctxp[ctxn];
3516 	if (!next_ctx)
3517 		goto unlock;
3518 
3519 	parent = rcu_dereference(ctx->parent_ctx);
3520 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3521 
3522 	/* If neither context have a parent context; they cannot be clones. */
3523 	if (!parent && !next_parent)
3524 		goto unlock;
3525 
3526 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3527 		/*
3528 		 * Looks like the two contexts are clones, so we might be
3529 		 * able to optimize the context switch.  We lock both
3530 		 * contexts and check that they are clones under the
3531 		 * lock (including re-checking that neither has been
3532 		 * uncloned in the meantime).  It doesn't matter which
3533 		 * order we take the locks because no other cpu could
3534 		 * be trying to lock both of these tasks.
3535 		 */
3536 		raw_spin_lock(&ctx->lock);
3537 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3538 		if (context_equiv(ctx, next_ctx)) {
3539 
3540 			WRITE_ONCE(ctx->task, next);
3541 			WRITE_ONCE(next_ctx->task, task);
3542 
3543 			perf_pmu_disable(pmu);
3544 
3545 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3546 				pmu->sched_task(ctx, false);
3547 
3548 			/*
3549 			 * PMU specific parts of task perf context can require
3550 			 * additional synchronization. As an example of such
3551 			 * synchronization see implementation details of Intel
3552 			 * LBR call stack data profiling;
3553 			 */
3554 			if (pmu->swap_task_ctx)
3555 				pmu->swap_task_ctx(ctx, next_ctx);
3556 			else
3557 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3558 
3559 			perf_pmu_enable(pmu);
3560 
3561 			/*
3562 			 * RCU_INIT_POINTER here is safe because we've not
3563 			 * modified the ctx and the above modification of
3564 			 * ctx->task and ctx->task_ctx_data are immaterial
3565 			 * since those values are always verified under
3566 			 * ctx->lock which we're now holding.
3567 			 */
3568 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3569 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3570 
3571 			do_switch = 0;
3572 
3573 			perf_event_sync_stat(ctx, next_ctx);
3574 		}
3575 		raw_spin_unlock(&next_ctx->lock);
3576 		raw_spin_unlock(&ctx->lock);
3577 	}
3578 unlock:
3579 	rcu_read_unlock();
3580 
3581 	if (do_switch) {
3582 		raw_spin_lock(&ctx->lock);
3583 		perf_pmu_disable(pmu);
3584 
3585 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3586 			pmu->sched_task(ctx, false);
3587 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3588 
3589 		perf_pmu_enable(pmu);
3590 		raw_spin_unlock(&ctx->lock);
3591 	}
3592 }
3593 
3594 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3595 
perf_sched_cb_dec(struct pmu * pmu)3596 void perf_sched_cb_dec(struct pmu *pmu)
3597 {
3598 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3599 
3600 	this_cpu_dec(perf_sched_cb_usages);
3601 
3602 	if (!--cpuctx->sched_cb_usage)
3603 		list_del(&cpuctx->sched_cb_entry);
3604 }
3605 
3606 
perf_sched_cb_inc(struct pmu * pmu)3607 void perf_sched_cb_inc(struct pmu *pmu)
3608 {
3609 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3610 
3611 	if (!cpuctx->sched_cb_usage++)
3612 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3613 
3614 	this_cpu_inc(perf_sched_cb_usages);
3615 }
3616 
3617 /*
3618  * This function provides the context switch callback to the lower code
3619  * layer. It is invoked ONLY when the context switch callback is enabled.
3620  *
3621  * This callback is relevant even to per-cpu events; for example multi event
3622  * PEBS requires this to provide PID/TID information. This requires we flush
3623  * all queued PEBS records before we context switch to a new task.
3624  */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3625 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3626 {
3627 	struct pmu *pmu;
3628 
3629 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3630 
3631 	if (WARN_ON_ONCE(!pmu->sched_task))
3632 		return;
3633 
3634 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3635 	perf_pmu_disable(pmu);
3636 
3637 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3638 
3639 	perf_pmu_enable(pmu);
3640 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3641 }
3642 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3643 static void perf_pmu_sched_task(struct task_struct *prev,
3644 				struct task_struct *next,
3645 				bool sched_in)
3646 {
3647 	struct perf_cpu_context *cpuctx;
3648 
3649 	if (prev == next)
3650 		return;
3651 
3652 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3653 		/* will be handled in perf_event_context_sched_in/out */
3654 		if (cpuctx->task_ctx)
3655 			continue;
3656 
3657 		__perf_pmu_sched_task(cpuctx, sched_in);
3658 	}
3659 }
3660 
3661 static void perf_event_switch(struct task_struct *task,
3662 			      struct task_struct *next_prev, bool sched_in);
3663 
3664 #define for_each_task_context_nr(ctxn)					\
3665 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3666 
3667 /*
3668  * Called from scheduler to remove the events of the current task,
3669  * with interrupts disabled.
3670  *
3671  * We stop each event and update the event value in event->count.
3672  *
3673  * This does not protect us against NMI, but disable()
3674  * sets the disabled bit in the control field of event _before_
3675  * accessing the event control register. If a NMI hits, then it will
3676  * not restart the event.
3677  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3678 void __perf_event_task_sched_out(struct task_struct *task,
3679 				 struct task_struct *next)
3680 {
3681 	int ctxn;
3682 
3683 	if (__this_cpu_read(perf_sched_cb_usages))
3684 		perf_pmu_sched_task(task, next, false);
3685 
3686 	if (atomic_read(&nr_switch_events))
3687 		perf_event_switch(task, next, false);
3688 
3689 	for_each_task_context_nr(ctxn)
3690 		perf_event_context_sched_out(task, ctxn, next);
3691 
3692 	/*
3693 	 * if cgroup events exist on this CPU, then we need
3694 	 * to check if we have to switch out PMU state.
3695 	 * cgroup event are system-wide mode only
3696 	 */
3697 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3698 		perf_cgroup_sched_out(task, next);
3699 }
3700 
3701 /*
3702  * Called with IRQs disabled
3703  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3704 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3705 			      enum event_type_t event_type)
3706 {
3707 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3708 }
3709 
perf_less_group_idx(const void * l,const void * r)3710 static bool perf_less_group_idx(const void *l, const void *r)
3711 {
3712 	const struct perf_event *le = *(const struct perf_event **)l;
3713 	const struct perf_event *re = *(const struct perf_event **)r;
3714 
3715 	return le->group_index < re->group_index;
3716 }
3717 
swap_ptr(void * l,void * r)3718 static void swap_ptr(void *l, void *r)
3719 {
3720 	void **lp = l, **rp = r;
3721 
3722 	swap(*lp, *rp);
3723 }
3724 
3725 static const struct min_heap_callbacks perf_min_heap = {
3726 	.elem_size = sizeof(struct perf_event *),
3727 	.less = perf_less_group_idx,
3728 	.swp = swap_ptr,
3729 };
3730 
__heap_add(struct min_heap * heap,struct perf_event * event)3731 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3732 {
3733 	struct perf_event **itrs = heap->data;
3734 
3735 	if (event) {
3736 		itrs[heap->nr] = event;
3737 		heap->nr++;
3738 	}
3739 }
3740 
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3741 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3742 				struct perf_event_groups *groups, int cpu,
3743 				int (*func)(struct perf_event *, void *),
3744 				void *data)
3745 {
3746 #ifdef CONFIG_CGROUP_PERF
3747 	struct cgroup_subsys_state *css = NULL;
3748 #endif
3749 	/* Space for per CPU and/or any CPU event iterators. */
3750 	struct perf_event *itrs[2];
3751 	struct min_heap event_heap;
3752 	struct perf_event **evt;
3753 	int ret;
3754 
3755 	if (cpuctx) {
3756 		event_heap = (struct min_heap){
3757 			.data = cpuctx->heap,
3758 			.nr = 0,
3759 			.size = cpuctx->heap_size,
3760 		};
3761 
3762 		lockdep_assert_held(&cpuctx->ctx.lock);
3763 
3764 #ifdef CONFIG_CGROUP_PERF
3765 		if (cpuctx->cgrp)
3766 			css = &cpuctx->cgrp->css;
3767 #endif
3768 	} else {
3769 		event_heap = (struct min_heap){
3770 			.data = itrs,
3771 			.nr = 0,
3772 			.size = ARRAY_SIZE(itrs),
3773 		};
3774 		/* Events not within a CPU context may be on any CPU. */
3775 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3776 	}
3777 	evt = event_heap.data;
3778 
3779 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3780 
3781 #ifdef CONFIG_CGROUP_PERF
3782 	for (; css; css = css->parent)
3783 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3784 #endif
3785 
3786 	min_heapify_all(&event_heap, &perf_min_heap);
3787 
3788 	while (event_heap.nr) {
3789 		ret = func(*evt, data);
3790 		if (ret)
3791 			return ret;
3792 
3793 		*evt = perf_event_groups_next(*evt);
3794 		if (*evt)
3795 			min_heapify(&event_heap, 0, &perf_min_heap);
3796 		else
3797 			min_heap_pop(&event_heap, &perf_min_heap);
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 /*
3804  * Because the userpage is strictly per-event (there is no concept of context,
3805  * so there cannot be a context indirection), every userpage must be updated
3806  * when context time starts :-(
3807  *
3808  * IOW, we must not miss EVENT_TIME edges.
3809  */
event_update_userpage(struct perf_event * event)3810 static inline bool event_update_userpage(struct perf_event *event)
3811 {
3812 	if (likely(!atomic_read(&event->mmap_count)))
3813 		return false;
3814 
3815 	perf_event_update_time(event);
3816 	perf_event_update_userpage(event);
3817 
3818 	return true;
3819 }
3820 
group_update_userpage(struct perf_event * group_event)3821 static inline void group_update_userpage(struct perf_event *group_event)
3822 {
3823 	struct perf_event *event;
3824 
3825 	if (!event_update_userpage(group_event))
3826 		return;
3827 
3828 	for_each_sibling_event(event, group_event)
3829 		event_update_userpage(event);
3830 }
3831 
merge_sched_in(struct perf_event * event,void * data)3832 static int merge_sched_in(struct perf_event *event, void *data)
3833 {
3834 	struct perf_event_context *ctx = event->ctx;
3835 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3836 	int *can_add_hw = data;
3837 
3838 	if (event->state <= PERF_EVENT_STATE_OFF)
3839 		return 0;
3840 
3841 	if (!event_filter_match(event))
3842 		return 0;
3843 
3844 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3845 		if (!group_sched_in(event, cpuctx, ctx))
3846 			list_add_tail(&event->active_list, get_event_list(event));
3847 	}
3848 
3849 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3850 		*can_add_hw = 0;
3851 		if (event->attr.pinned) {
3852 			perf_cgroup_event_disable(event, ctx);
3853 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3854 		} else {
3855 			ctx->rotate_necessary = 1;
3856 			perf_mux_hrtimer_restart(cpuctx);
3857 			group_update_userpage(event);
3858 		}
3859 	}
3860 
3861 	return 0;
3862 }
3863 
3864 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3865 ctx_pinned_sched_in(struct perf_event_context *ctx,
3866 		    struct perf_cpu_context *cpuctx)
3867 {
3868 	int can_add_hw = 1;
3869 
3870 	if (ctx != &cpuctx->ctx)
3871 		cpuctx = NULL;
3872 
3873 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3874 			   smp_processor_id(),
3875 			   merge_sched_in, &can_add_hw);
3876 }
3877 
3878 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3879 ctx_flexible_sched_in(struct perf_event_context *ctx,
3880 		      struct perf_cpu_context *cpuctx)
3881 {
3882 	int can_add_hw = 1;
3883 
3884 	if (ctx != &cpuctx->ctx)
3885 		cpuctx = NULL;
3886 
3887 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3888 			   smp_processor_id(),
3889 			   merge_sched_in, &can_add_hw);
3890 }
3891 
3892 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3893 ctx_sched_in(struct perf_event_context *ctx,
3894 	     struct perf_cpu_context *cpuctx,
3895 	     enum event_type_t event_type,
3896 	     struct task_struct *task)
3897 {
3898 	int is_active = ctx->is_active;
3899 
3900 	lockdep_assert_held(&ctx->lock);
3901 
3902 	if (likely(!ctx->nr_events))
3903 		return;
3904 
3905 	if (!(is_active & EVENT_TIME)) {
3906 		/* start ctx time */
3907 		__update_context_time(ctx, false);
3908 		perf_cgroup_set_timestamp(task, ctx);
3909 		/*
3910 		 * CPU-release for the below ->is_active store,
3911 		 * see __load_acquire() in perf_event_time_now()
3912 		 */
3913 		barrier();
3914 	}
3915 
3916 	ctx->is_active |= (event_type | EVENT_TIME);
3917 	if (ctx->task) {
3918 		if (!is_active)
3919 			cpuctx->task_ctx = ctx;
3920 		else
3921 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3922 	}
3923 
3924 	is_active ^= ctx->is_active; /* changed bits */
3925 
3926 	/*
3927 	 * First go through the list and put on any pinned groups
3928 	 * in order to give them the best chance of going on.
3929 	 */
3930 	if (is_active & EVENT_PINNED)
3931 		ctx_pinned_sched_in(ctx, cpuctx);
3932 
3933 	/* Then walk through the lower prio flexible groups */
3934 	if (is_active & EVENT_FLEXIBLE)
3935 		ctx_flexible_sched_in(ctx, cpuctx);
3936 }
3937 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3938 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3939 			     enum event_type_t event_type,
3940 			     struct task_struct *task)
3941 {
3942 	struct perf_event_context *ctx = &cpuctx->ctx;
3943 
3944 	ctx_sched_in(ctx, cpuctx, event_type, task);
3945 }
3946 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3947 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3948 					struct task_struct *task)
3949 {
3950 	struct perf_cpu_context *cpuctx;
3951 	struct pmu *pmu;
3952 
3953 	cpuctx = __get_cpu_context(ctx);
3954 
3955 	/*
3956 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3957 	 * different PMU, force (re)set the context,
3958 	 */
3959 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3960 
3961 	if (cpuctx->task_ctx == ctx) {
3962 		if (cpuctx->sched_cb_usage)
3963 			__perf_pmu_sched_task(cpuctx, true);
3964 		return;
3965 	}
3966 
3967 	perf_ctx_lock(cpuctx, ctx);
3968 	/*
3969 	 * We must check ctx->nr_events while holding ctx->lock, such
3970 	 * that we serialize against perf_install_in_context().
3971 	 */
3972 	if (!ctx->nr_events)
3973 		goto unlock;
3974 
3975 	perf_pmu_disable(pmu);
3976 	/*
3977 	 * We want to keep the following priority order:
3978 	 * cpu pinned (that don't need to move), task pinned,
3979 	 * cpu flexible, task flexible.
3980 	 *
3981 	 * However, if task's ctx is not carrying any pinned
3982 	 * events, no need to flip the cpuctx's events around.
3983 	 */
3984 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3985 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3986 	perf_event_sched_in(cpuctx, ctx, task);
3987 
3988 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3989 		pmu->sched_task(cpuctx->task_ctx, true);
3990 
3991 	perf_pmu_enable(pmu);
3992 
3993 unlock:
3994 	perf_ctx_unlock(cpuctx, ctx);
3995 }
3996 
3997 /*
3998  * Called from scheduler to add the events of the current task
3999  * with interrupts disabled.
4000  *
4001  * We restore the event value and then enable it.
4002  *
4003  * This does not protect us against NMI, but enable()
4004  * sets the enabled bit in the control field of event _before_
4005  * accessing the event control register. If a NMI hits, then it will
4006  * keep the event running.
4007  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4008 void __perf_event_task_sched_in(struct task_struct *prev,
4009 				struct task_struct *task)
4010 {
4011 	struct perf_event_context *ctx;
4012 	int ctxn;
4013 
4014 	/*
4015 	 * If cgroup events exist on this CPU, then we need to check if we have
4016 	 * to switch in PMU state; cgroup event are system-wide mode only.
4017 	 *
4018 	 * Since cgroup events are CPU events, we must schedule these in before
4019 	 * we schedule in the task events.
4020 	 */
4021 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
4022 		perf_cgroup_sched_in(prev, task);
4023 
4024 	for_each_task_context_nr(ctxn) {
4025 		ctx = task->perf_event_ctxp[ctxn];
4026 		if (likely(!ctx))
4027 			continue;
4028 
4029 		perf_event_context_sched_in(ctx, task);
4030 	}
4031 
4032 	if (atomic_read(&nr_switch_events))
4033 		perf_event_switch(task, prev, true);
4034 
4035 	if (__this_cpu_read(perf_sched_cb_usages))
4036 		perf_pmu_sched_task(prev, task, true);
4037 }
4038 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4039 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4040 {
4041 	u64 frequency = event->attr.sample_freq;
4042 	u64 sec = NSEC_PER_SEC;
4043 	u64 divisor, dividend;
4044 
4045 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4046 
4047 	count_fls = fls64(count);
4048 	nsec_fls = fls64(nsec);
4049 	frequency_fls = fls64(frequency);
4050 	sec_fls = 30;
4051 
4052 	/*
4053 	 * We got @count in @nsec, with a target of sample_freq HZ
4054 	 * the target period becomes:
4055 	 *
4056 	 *             @count * 10^9
4057 	 * period = -------------------
4058 	 *          @nsec * sample_freq
4059 	 *
4060 	 */
4061 
4062 	/*
4063 	 * Reduce accuracy by one bit such that @a and @b converge
4064 	 * to a similar magnitude.
4065 	 */
4066 #define REDUCE_FLS(a, b)		\
4067 do {					\
4068 	if (a##_fls > b##_fls) {	\
4069 		a >>= 1;		\
4070 		a##_fls--;		\
4071 	} else {			\
4072 		b >>= 1;		\
4073 		b##_fls--;		\
4074 	}				\
4075 } while (0)
4076 
4077 	/*
4078 	 * Reduce accuracy until either term fits in a u64, then proceed with
4079 	 * the other, so that finally we can do a u64/u64 division.
4080 	 */
4081 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4082 		REDUCE_FLS(nsec, frequency);
4083 		REDUCE_FLS(sec, count);
4084 	}
4085 
4086 	if (count_fls + sec_fls > 64) {
4087 		divisor = nsec * frequency;
4088 
4089 		while (count_fls + sec_fls > 64) {
4090 			REDUCE_FLS(count, sec);
4091 			divisor >>= 1;
4092 		}
4093 
4094 		dividend = count * sec;
4095 	} else {
4096 		dividend = count * sec;
4097 
4098 		while (nsec_fls + frequency_fls > 64) {
4099 			REDUCE_FLS(nsec, frequency);
4100 			dividend >>= 1;
4101 		}
4102 
4103 		divisor = nsec * frequency;
4104 	}
4105 
4106 	if (!divisor)
4107 		return dividend;
4108 
4109 	return div64_u64(dividend, divisor);
4110 }
4111 
4112 static DEFINE_PER_CPU(int, perf_throttled_count);
4113 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4114 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4115 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4116 {
4117 	struct hw_perf_event *hwc = &event->hw;
4118 	s64 period, sample_period;
4119 	s64 delta;
4120 
4121 	period = perf_calculate_period(event, nsec, count);
4122 
4123 	delta = (s64)(period - hwc->sample_period);
4124 	delta = (delta + 7) / 8; /* low pass filter */
4125 
4126 	sample_period = hwc->sample_period + delta;
4127 
4128 	if (!sample_period)
4129 		sample_period = 1;
4130 
4131 	hwc->sample_period = sample_period;
4132 
4133 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4134 		if (disable)
4135 			event->pmu->stop(event, PERF_EF_UPDATE);
4136 
4137 		local64_set(&hwc->period_left, 0);
4138 
4139 		if (disable)
4140 			event->pmu->start(event, PERF_EF_RELOAD);
4141 	}
4142 }
4143 
4144 /*
4145  * combine freq adjustment with unthrottling to avoid two passes over the
4146  * events. At the same time, make sure, having freq events does not change
4147  * the rate of unthrottling as that would introduce bias.
4148  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)4149 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4150 					   int needs_unthr)
4151 {
4152 	struct perf_event *event;
4153 	struct hw_perf_event *hwc;
4154 	u64 now, period = TICK_NSEC;
4155 	s64 delta;
4156 
4157 	/*
4158 	 * only need to iterate over all events iff:
4159 	 * - context have events in frequency mode (needs freq adjust)
4160 	 * - there are events to unthrottle on this cpu
4161 	 */
4162 	if (!(ctx->nr_freq || needs_unthr))
4163 		return;
4164 
4165 	raw_spin_lock(&ctx->lock);
4166 	perf_pmu_disable(ctx->pmu);
4167 
4168 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4169 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4170 			continue;
4171 
4172 		if (!event_filter_match(event))
4173 			continue;
4174 
4175 		perf_pmu_disable(event->pmu);
4176 
4177 		hwc = &event->hw;
4178 
4179 		if (hwc->interrupts == MAX_INTERRUPTS) {
4180 			hwc->interrupts = 0;
4181 			perf_log_throttle(event, 1);
4182 			event->pmu->start(event, 0);
4183 		}
4184 
4185 		if (!event->attr.freq || !event->attr.sample_freq)
4186 			goto next;
4187 
4188 		/*
4189 		 * stop the event and update event->count
4190 		 */
4191 		event->pmu->stop(event, PERF_EF_UPDATE);
4192 
4193 		now = local64_read(&event->count);
4194 		delta = now - hwc->freq_count_stamp;
4195 		hwc->freq_count_stamp = now;
4196 
4197 		/*
4198 		 * restart the event
4199 		 * reload only if value has changed
4200 		 * we have stopped the event so tell that
4201 		 * to perf_adjust_period() to avoid stopping it
4202 		 * twice.
4203 		 */
4204 		if (delta > 0)
4205 			perf_adjust_period(event, period, delta, false);
4206 
4207 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4208 	next:
4209 		perf_pmu_enable(event->pmu);
4210 	}
4211 
4212 	perf_pmu_enable(ctx->pmu);
4213 	raw_spin_unlock(&ctx->lock);
4214 }
4215 
4216 /*
4217  * Move @event to the tail of the @ctx's elegible events.
4218  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4220 {
4221 	/*
4222 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4223 	 * disabled by the inheritance code.
4224 	 */
4225 	if (ctx->rotate_disable)
4226 		return;
4227 
4228 	perf_event_groups_delete(&ctx->flexible_groups, event);
4229 	perf_event_groups_insert(&ctx->flexible_groups, event);
4230 }
4231 
4232 /* pick an event from the flexible_groups to rotate */
4233 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4234 ctx_event_to_rotate(struct perf_event_context *ctx)
4235 {
4236 	struct perf_event *event;
4237 
4238 	/* pick the first active flexible event */
4239 	event = list_first_entry_or_null(&ctx->flexible_active,
4240 					 struct perf_event, active_list);
4241 
4242 	/* if no active flexible event, pick the first event */
4243 	if (!event) {
4244 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4245 				      typeof(*event), group_node);
4246 	}
4247 
4248 	/*
4249 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4250 	 * finds there are unschedulable events, it will set it again.
4251 	 */
4252 	ctx->rotate_necessary = 0;
4253 
4254 	return event;
4255 }
4256 
perf_rotate_context(struct perf_cpu_context * cpuctx)4257 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4258 {
4259 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4260 	struct perf_event_context *task_ctx = NULL;
4261 	int cpu_rotate, task_rotate;
4262 
4263 	/*
4264 	 * Since we run this from IRQ context, nobody can install new
4265 	 * events, thus the event count values are stable.
4266 	 */
4267 
4268 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4269 	task_ctx = cpuctx->task_ctx;
4270 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4271 
4272 	if (!(cpu_rotate || task_rotate))
4273 		return false;
4274 
4275 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4276 	perf_pmu_disable(cpuctx->ctx.pmu);
4277 
4278 	if (task_rotate)
4279 		task_event = ctx_event_to_rotate(task_ctx);
4280 	if (cpu_rotate)
4281 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4282 
4283 	/*
4284 	 * As per the order given at ctx_resched() first 'pop' task flexible
4285 	 * and then, if needed CPU flexible.
4286 	 */
4287 	if (task_event || (task_ctx && cpu_event))
4288 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4289 	if (cpu_event)
4290 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4291 
4292 	if (task_event)
4293 		rotate_ctx(task_ctx, task_event);
4294 	if (cpu_event)
4295 		rotate_ctx(&cpuctx->ctx, cpu_event);
4296 
4297 	perf_event_sched_in(cpuctx, task_ctx, current);
4298 
4299 	perf_pmu_enable(cpuctx->ctx.pmu);
4300 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4301 
4302 	return true;
4303 }
4304 
perf_event_task_tick(void)4305 void perf_event_task_tick(void)
4306 {
4307 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4308 	struct perf_event_context *ctx, *tmp;
4309 	int throttled;
4310 
4311 	lockdep_assert_irqs_disabled();
4312 
4313 	__this_cpu_inc(perf_throttled_seq);
4314 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4315 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4316 
4317 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4318 		perf_adjust_freq_unthr_context(ctx, throttled);
4319 }
4320 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4321 static int event_enable_on_exec(struct perf_event *event,
4322 				struct perf_event_context *ctx)
4323 {
4324 	if (!event->attr.enable_on_exec)
4325 		return 0;
4326 
4327 	event->attr.enable_on_exec = 0;
4328 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4329 		return 0;
4330 
4331 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4332 
4333 	return 1;
4334 }
4335 
4336 /*
4337  * Enable all of a task's events that have been marked enable-on-exec.
4338  * This expects task == current.
4339  */
perf_event_enable_on_exec(int ctxn)4340 static void perf_event_enable_on_exec(int ctxn)
4341 {
4342 	struct perf_event_context *ctx, *clone_ctx = NULL;
4343 	enum event_type_t event_type = 0;
4344 	struct perf_cpu_context *cpuctx;
4345 	struct perf_event *event;
4346 	unsigned long flags;
4347 	int enabled = 0;
4348 
4349 	local_irq_save(flags);
4350 	ctx = current->perf_event_ctxp[ctxn];
4351 	if (!ctx || !ctx->nr_events)
4352 		goto out;
4353 
4354 	cpuctx = __get_cpu_context(ctx);
4355 	perf_ctx_lock(cpuctx, ctx);
4356 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4357 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4358 		enabled |= event_enable_on_exec(event, ctx);
4359 		event_type |= get_event_type(event);
4360 	}
4361 
4362 	/*
4363 	 * Unclone and reschedule this context if we enabled any event.
4364 	 */
4365 	if (enabled) {
4366 		clone_ctx = unclone_ctx(ctx);
4367 		ctx_resched(cpuctx, ctx, event_type);
4368 	} else {
4369 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4370 	}
4371 	perf_ctx_unlock(cpuctx, ctx);
4372 
4373 out:
4374 	local_irq_restore(flags);
4375 
4376 	if (clone_ctx)
4377 		put_ctx(clone_ctx);
4378 }
4379 
4380 static void perf_remove_from_owner(struct perf_event *event);
4381 static void perf_event_exit_event(struct perf_event *event,
4382 				  struct perf_event_context *ctx);
4383 
4384 /*
4385  * Removes all events from the current task that have been marked
4386  * remove-on-exec, and feeds their values back to parent events.
4387  */
perf_event_remove_on_exec(int ctxn)4388 static void perf_event_remove_on_exec(int ctxn)
4389 {
4390 	struct perf_event_context *ctx, *clone_ctx = NULL;
4391 	struct perf_event *event, *next;
4392 	LIST_HEAD(free_list);
4393 	unsigned long flags;
4394 	bool modified = false;
4395 
4396 	ctx = perf_pin_task_context(current, ctxn);
4397 	if (!ctx)
4398 		return;
4399 
4400 	mutex_lock(&ctx->mutex);
4401 
4402 	if (WARN_ON_ONCE(ctx->task != current))
4403 		goto unlock;
4404 
4405 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4406 		if (!event->attr.remove_on_exec)
4407 			continue;
4408 
4409 		if (!is_kernel_event(event))
4410 			perf_remove_from_owner(event);
4411 
4412 		modified = true;
4413 
4414 		perf_event_exit_event(event, ctx);
4415 	}
4416 
4417 	raw_spin_lock_irqsave(&ctx->lock, flags);
4418 	if (modified)
4419 		clone_ctx = unclone_ctx(ctx);
4420 	--ctx->pin_count;
4421 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4422 
4423 unlock:
4424 	mutex_unlock(&ctx->mutex);
4425 
4426 	put_ctx(ctx);
4427 	if (clone_ctx)
4428 		put_ctx(clone_ctx);
4429 }
4430 
4431 struct perf_read_data {
4432 	struct perf_event *event;
4433 	bool group;
4434 	int ret;
4435 };
4436 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4437 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4438 {
4439 	u16 local_pkg, event_pkg;
4440 
4441 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4442 		int local_cpu = smp_processor_id();
4443 
4444 		event_pkg = topology_physical_package_id(event_cpu);
4445 		local_pkg = topology_physical_package_id(local_cpu);
4446 
4447 		if (event_pkg == local_pkg)
4448 			return local_cpu;
4449 	}
4450 
4451 	return event_cpu;
4452 }
4453 
4454 /*
4455  * Cross CPU call to read the hardware event
4456  */
__perf_event_read(void * info)4457 static void __perf_event_read(void *info)
4458 {
4459 	struct perf_read_data *data = info;
4460 	struct perf_event *sub, *event = data->event;
4461 	struct perf_event_context *ctx = event->ctx;
4462 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4463 	struct pmu *pmu = event->pmu;
4464 
4465 	/*
4466 	 * If this is a task context, we need to check whether it is
4467 	 * the current task context of this cpu.  If not it has been
4468 	 * scheduled out before the smp call arrived.  In that case
4469 	 * event->count would have been updated to a recent sample
4470 	 * when the event was scheduled out.
4471 	 */
4472 	if (ctx->task && cpuctx->task_ctx != ctx)
4473 		return;
4474 
4475 	raw_spin_lock(&ctx->lock);
4476 	if (ctx->is_active & EVENT_TIME) {
4477 		update_context_time(ctx);
4478 		update_cgrp_time_from_event(event);
4479 	}
4480 
4481 	perf_event_update_time(event);
4482 	if (data->group)
4483 		perf_event_update_sibling_time(event);
4484 
4485 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4486 		goto unlock;
4487 
4488 	if (!data->group) {
4489 		pmu->read(event);
4490 		data->ret = 0;
4491 		goto unlock;
4492 	}
4493 
4494 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4495 
4496 	pmu->read(event);
4497 
4498 	for_each_sibling_event(sub, event) {
4499 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4500 			/*
4501 			 * Use sibling's PMU rather than @event's since
4502 			 * sibling could be on different (eg: software) PMU.
4503 			 */
4504 			sub->pmu->read(sub);
4505 		}
4506 	}
4507 
4508 	data->ret = pmu->commit_txn(pmu);
4509 
4510 unlock:
4511 	raw_spin_unlock(&ctx->lock);
4512 }
4513 
perf_event_count(struct perf_event * event)4514 static inline u64 perf_event_count(struct perf_event *event)
4515 {
4516 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4517 }
4518 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4519 static void calc_timer_values(struct perf_event *event,
4520 				u64 *now,
4521 				u64 *enabled,
4522 				u64 *running)
4523 {
4524 	u64 ctx_time;
4525 
4526 	*now = perf_clock();
4527 	ctx_time = perf_event_time_now(event, *now);
4528 	__perf_update_times(event, ctx_time, enabled, running);
4529 }
4530 
4531 /*
4532  * NMI-safe method to read a local event, that is an event that
4533  * is:
4534  *   - either for the current task, or for this CPU
4535  *   - does not have inherit set, for inherited task events
4536  *     will not be local and we cannot read them atomically
4537  *   - must not have a pmu::count method
4538  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4539 int perf_event_read_local(struct perf_event *event, u64 *value,
4540 			  u64 *enabled, u64 *running)
4541 {
4542 	unsigned long flags;
4543 	int ret = 0;
4544 
4545 	/*
4546 	 * Disabling interrupts avoids all counter scheduling (context
4547 	 * switches, timer based rotation and IPIs).
4548 	 */
4549 	local_irq_save(flags);
4550 
4551 	/*
4552 	 * It must not be an event with inherit set, we cannot read
4553 	 * all child counters from atomic context.
4554 	 */
4555 	if (event->attr.inherit) {
4556 		ret = -EOPNOTSUPP;
4557 		goto out;
4558 	}
4559 
4560 	/* If this is a per-task event, it must be for current */
4561 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4562 	    event->hw.target != current) {
4563 		ret = -EINVAL;
4564 		goto out;
4565 	}
4566 
4567 	/* If this is a per-CPU event, it must be for this CPU */
4568 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4569 	    event->cpu != smp_processor_id()) {
4570 		ret = -EINVAL;
4571 		goto out;
4572 	}
4573 
4574 	/* If this is a pinned event it must be running on this CPU */
4575 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4576 		ret = -EBUSY;
4577 		goto out;
4578 	}
4579 
4580 	/*
4581 	 * If the event is currently on this CPU, its either a per-task event,
4582 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4583 	 * oncpu == -1).
4584 	 */
4585 	if (event->oncpu == smp_processor_id())
4586 		event->pmu->read(event);
4587 
4588 	*value = local64_read(&event->count);
4589 	if (enabled || running) {
4590 		u64 __enabled, __running, __now;;
4591 
4592 		calc_timer_values(event, &__now, &__enabled, &__running);
4593 		if (enabled)
4594 			*enabled = __enabled;
4595 		if (running)
4596 			*running = __running;
4597 	}
4598 out:
4599 	local_irq_restore(flags);
4600 
4601 	return ret;
4602 }
4603 EXPORT_SYMBOL_GPL(perf_event_read_local);
4604 
perf_event_read(struct perf_event * event,bool group)4605 static int perf_event_read(struct perf_event *event, bool group)
4606 {
4607 	enum perf_event_state state = READ_ONCE(event->state);
4608 	int event_cpu, ret = 0;
4609 
4610 	/*
4611 	 * If event is enabled and currently active on a CPU, update the
4612 	 * value in the event structure:
4613 	 */
4614 again:
4615 	if (state == PERF_EVENT_STATE_ACTIVE) {
4616 		struct perf_read_data data;
4617 
4618 		/*
4619 		 * Orders the ->state and ->oncpu loads such that if we see
4620 		 * ACTIVE we must also see the right ->oncpu.
4621 		 *
4622 		 * Matches the smp_wmb() from event_sched_in().
4623 		 */
4624 		smp_rmb();
4625 
4626 		event_cpu = READ_ONCE(event->oncpu);
4627 		if ((unsigned)event_cpu >= nr_cpu_ids)
4628 			return 0;
4629 
4630 		data = (struct perf_read_data){
4631 			.event = event,
4632 			.group = group,
4633 			.ret = 0,
4634 		};
4635 
4636 		preempt_disable();
4637 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4638 
4639 		/*
4640 		 * Purposely ignore the smp_call_function_single() return
4641 		 * value.
4642 		 *
4643 		 * If event_cpu isn't a valid CPU it means the event got
4644 		 * scheduled out and that will have updated the event count.
4645 		 *
4646 		 * Therefore, either way, we'll have an up-to-date event count
4647 		 * after this.
4648 		 */
4649 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4650 		preempt_enable();
4651 		ret = data.ret;
4652 
4653 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4654 		struct perf_event_context *ctx = event->ctx;
4655 		unsigned long flags;
4656 
4657 		raw_spin_lock_irqsave(&ctx->lock, flags);
4658 		state = event->state;
4659 		if (state != PERF_EVENT_STATE_INACTIVE) {
4660 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4661 			goto again;
4662 		}
4663 
4664 		/*
4665 		 * May read while context is not active (e.g., thread is
4666 		 * blocked), in that case we cannot update context time
4667 		 */
4668 		if (ctx->is_active & EVENT_TIME) {
4669 			update_context_time(ctx);
4670 			update_cgrp_time_from_event(event);
4671 		}
4672 
4673 		perf_event_update_time(event);
4674 		if (group)
4675 			perf_event_update_sibling_time(event);
4676 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4677 	}
4678 
4679 	return ret;
4680 }
4681 
4682 /*
4683  * Initialize the perf_event context in a task_struct:
4684  */
__perf_event_init_context(struct perf_event_context * ctx)4685 static void __perf_event_init_context(struct perf_event_context *ctx)
4686 {
4687 	raw_spin_lock_init(&ctx->lock);
4688 	mutex_init(&ctx->mutex);
4689 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4690 	perf_event_groups_init(&ctx->pinned_groups);
4691 	perf_event_groups_init(&ctx->flexible_groups);
4692 	INIT_LIST_HEAD(&ctx->event_list);
4693 	INIT_LIST_HEAD(&ctx->pinned_active);
4694 	INIT_LIST_HEAD(&ctx->flexible_active);
4695 	refcount_set(&ctx->refcount, 1);
4696 }
4697 
4698 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4699 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4700 {
4701 	struct perf_event_context *ctx;
4702 
4703 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4704 	if (!ctx)
4705 		return NULL;
4706 
4707 	__perf_event_init_context(ctx);
4708 	if (task)
4709 		ctx->task = get_task_struct(task);
4710 	ctx->pmu = pmu;
4711 
4712 	return ctx;
4713 }
4714 
4715 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4716 find_lively_task_by_vpid(pid_t vpid)
4717 {
4718 	struct task_struct *task;
4719 
4720 	rcu_read_lock();
4721 	if (!vpid)
4722 		task = current;
4723 	else
4724 		task = find_task_by_vpid(vpid);
4725 	if (task)
4726 		get_task_struct(task);
4727 	rcu_read_unlock();
4728 
4729 	if (!task)
4730 		return ERR_PTR(-ESRCH);
4731 
4732 	return task;
4733 }
4734 
4735 /*
4736  * Returns a matching context with refcount and pincount.
4737  */
4738 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4739 find_get_context(struct pmu *pmu, struct task_struct *task,
4740 		struct perf_event *event)
4741 {
4742 	struct perf_event_context *ctx, *clone_ctx = NULL;
4743 	struct perf_cpu_context *cpuctx;
4744 	void *task_ctx_data = NULL;
4745 	unsigned long flags;
4746 	int ctxn, err;
4747 	int cpu = event->cpu;
4748 
4749 	if (!task) {
4750 		/* Must be root to operate on a CPU event: */
4751 		err = perf_allow_cpu(&event->attr);
4752 		if (err)
4753 			return ERR_PTR(err);
4754 
4755 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4756 		ctx = &cpuctx->ctx;
4757 		get_ctx(ctx);
4758 		raw_spin_lock_irqsave(&ctx->lock, flags);
4759 		++ctx->pin_count;
4760 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4761 
4762 		return ctx;
4763 	}
4764 
4765 	err = -EINVAL;
4766 	ctxn = pmu->task_ctx_nr;
4767 	if (ctxn < 0)
4768 		goto errout;
4769 
4770 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4771 		task_ctx_data = alloc_task_ctx_data(pmu);
4772 		if (!task_ctx_data) {
4773 			err = -ENOMEM;
4774 			goto errout;
4775 		}
4776 	}
4777 
4778 retry:
4779 	ctx = perf_lock_task_context(task, ctxn, &flags);
4780 	if (ctx) {
4781 		clone_ctx = unclone_ctx(ctx);
4782 		++ctx->pin_count;
4783 
4784 		if (task_ctx_data && !ctx->task_ctx_data) {
4785 			ctx->task_ctx_data = task_ctx_data;
4786 			task_ctx_data = NULL;
4787 		}
4788 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4789 
4790 		if (clone_ctx)
4791 			put_ctx(clone_ctx);
4792 	} else {
4793 		ctx = alloc_perf_context(pmu, task);
4794 		err = -ENOMEM;
4795 		if (!ctx)
4796 			goto errout;
4797 
4798 		if (task_ctx_data) {
4799 			ctx->task_ctx_data = task_ctx_data;
4800 			task_ctx_data = NULL;
4801 		}
4802 
4803 		err = 0;
4804 		mutex_lock(&task->perf_event_mutex);
4805 		/*
4806 		 * If it has already passed perf_event_exit_task().
4807 		 * we must see PF_EXITING, it takes this mutex too.
4808 		 */
4809 		if (task->flags & PF_EXITING)
4810 			err = -ESRCH;
4811 		else if (task->perf_event_ctxp[ctxn])
4812 			err = -EAGAIN;
4813 		else {
4814 			get_ctx(ctx);
4815 			++ctx->pin_count;
4816 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4817 		}
4818 		mutex_unlock(&task->perf_event_mutex);
4819 
4820 		if (unlikely(err)) {
4821 			put_ctx(ctx);
4822 
4823 			if (err == -EAGAIN)
4824 				goto retry;
4825 			goto errout;
4826 		}
4827 	}
4828 
4829 	free_task_ctx_data(pmu, task_ctx_data);
4830 	return ctx;
4831 
4832 errout:
4833 	free_task_ctx_data(pmu, task_ctx_data);
4834 	return ERR_PTR(err);
4835 }
4836 
4837 static void perf_event_free_filter(struct perf_event *event);
4838 
free_event_rcu(struct rcu_head * head)4839 static void free_event_rcu(struct rcu_head *head)
4840 {
4841 	struct perf_event *event;
4842 
4843 	event = container_of(head, struct perf_event, rcu_head);
4844 	if (event->ns)
4845 		put_pid_ns(event->ns);
4846 	perf_event_free_filter(event);
4847 	kmem_cache_free(perf_event_cache, event);
4848 }
4849 
4850 static void ring_buffer_attach(struct perf_event *event,
4851 			       struct perf_buffer *rb);
4852 
detach_sb_event(struct perf_event * event)4853 static void detach_sb_event(struct perf_event *event)
4854 {
4855 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4856 
4857 	raw_spin_lock(&pel->lock);
4858 	list_del_rcu(&event->sb_list);
4859 	raw_spin_unlock(&pel->lock);
4860 }
4861 
is_sb_event(struct perf_event * event)4862 static bool is_sb_event(struct perf_event *event)
4863 {
4864 	struct perf_event_attr *attr = &event->attr;
4865 
4866 	if (event->parent)
4867 		return false;
4868 
4869 	if (event->attach_state & PERF_ATTACH_TASK)
4870 		return false;
4871 
4872 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4873 	    attr->comm || attr->comm_exec ||
4874 	    attr->task || attr->ksymbol ||
4875 	    attr->context_switch || attr->text_poke ||
4876 	    attr->bpf_event)
4877 		return true;
4878 	return false;
4879 }
4880 
unaccount_pmu_sb_event(struct perf_event * event)4881 static void unaccount_pmu_sb_event(struct perf_event *event)
4882 {
4883 	if (is_sb_event(event))
4884 		detach_sb_event(event);
4885 }
4886 
unaccount_event_cpu(struct perf_event * event,int cpu)4887 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4888 {
4889 	if (event->parent)
4890 		return;
4891 
4892 	if (is_cgroup_event(event))
4893 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4894 }
4895 
4896 #ifdef CONFIG_NO_HZ_FULL
4897 static DEFINE_SPINLOCK(nr_freq_lock);
4898 #endif
4899 
unaccount_freq_event_nohz(void)4900 static void unaccount_freq_event_nohz(void)
4901 {
4902 #ifdef CONFIG_NO_HZ_FULL
4903 	spin_lock(&nr_freq_lock);
4904 	if (atomic_dec_and_test(&nr_freq_events))
4905 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4906 	spin_unlock(&nr_freq_lock);
4907 #endif
4908 }
4909 
unaccount_freq_event(void)4910 static void unaccount_freq_event(void)
4911 {
4912 	if (tick_nohz_full_enabled())
4913 		unaccount_freq_event_nohz();
4914 	else
4915 		atomic_dec(&nr_freq_events);
4916 }
4917 
unaccount_event(struct perf_event * event)4918 static void unaccount_event(struct perf_event *event)
4919 {
4920 	bool dec = false;
4921 
4922 	if (event->parent)
4923 		return;
4924 
4925 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4926 		dec = true;
4927 	if (event->attr.mmap || event->attr.mmap_data)
4928 		atomic_dec(&nr_mmap_events);
4929 	if (event->attr.build_id)
4930 		atomic_dec(&nr_build_id_events);
4931 	if (event->attr.comm)
4932 		atomic_dec(&nr_comm_events);
4933 	if (event->attr.namespaces)
4934 		atomic_dec(&nr_namespaces_events);
4935 	if (event->attr.cgroup)
4936 		atomic_dec(&nr_cgroup_events);
4937 	if (event->attr.task)
4938 		atomic_dec(&nr_task_events);
4939 	if (event->attr.freq)
4940 		unaccount_freq_event();
4941 	if (event->attr.context_switch) {
4942 		dec = true;
4943 		atomic_dec(&nr_switch_events);
4944 	}
4945 	if (is_cgroup_event(event))
4946 		dec = true;
4947 	if (has_branch_stack(event))
4948 		dec = true;
4949 	if (event->attr.ksymbol)
4950 		atomic_dec(&nr_ksymbol_events);
4951 	if (event->attr.bpf_event)
4952 		atomic_dec(&nr_bpf_events);
4953 	if (event->attr.text_poke)
4954 		atomic_dec(&nr_text_poke_events);
4955 
4956 	if (dec) {
4957 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4958 			schedule_delayed_work(&perf_sched_work, HZ);
4959 	}
4960 
4961 	unaccount_event_cpu(event, event->cpu);
4962 
4963 	unaccount_pmu_sb_event(event);
4964 }
4965 
perf_sched_delayed(struct work_struct * work)4966 static void perf_sched_delayed(struct work_struct *work)
4967 {
4968 	mutex_lock(&perf_sched_mutex);
4969 	if (atomic_dec_and_test(&perf_sched_count))
4970 		static_branch_disable(&perf_sched_events);
4971 	mutex_unlock(&perf_sched_mutex);
4972 }
4973 
4974 /*
4975  * The following implement mutual exclusion of events on "exclusive" pmus
4976  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4977  * at a time, so we disallow creating events that might conflict, namely:
4978  *
4979  *  1) cpu-wide events in the presence of per-task events,
4980  *  2) per-task events in the presence of cpu-wide events,
4981  *  3) two matching events on the same context.
4982  *
4983  * The former two cases are handled in the allocation path (perf_event_alloc(),
4984  * _free_event()), the latter -- before the first perf_install_in_context().
4985  */
exclusive_event_init(struct perf_event * event)4986 static int exclusive_event_init(struct perf_event *event)
4987 {
4988 	struct pmu *pmu = event->pmu;
4989 
4990 	if (!is_exclusive_pmu(pmu))
4991 		return 0;
4992 
4993 	/*
4994 	 * Prevent co-existence of per-task and cpu-wide events on the
4995 	 * same exclusive pmu.
4996 	 *
4997 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4998 	 * events on this "exclusive" pmu, positive means there are
4999 	 * per-task events.
5000 	 *
5001 	 * Since this is called in perf_event_alloc() path, event::ctx
5002 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5003 	 * to mean "per-task event", because unlike other attach states it
5004 	 * never gets cleared.
5005 	 */
5006 	if (event->attach_state & PERF_ATTACH_TASK) {
5007 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5008 			return -EBUSY;
5009 	} else {
5010 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5011 			return -EBUSY;
5012 	}
5013 
5014 	return 0;
5015 }
5016 
exclusive_event_destroy(struct perf_event * event)5017 static void exclusive_event_destroy(struct perf_event *event)
5018 {
5019 	struct pmu *pmu = event->pmu;
5020 
5021 	if (!is_exclusive_pmu(pmu))
5022 		return;
5023 
5024 	/* see comment in exclusive_event_init() */
5025 	if (event->attach_state & PERF_ATTACH_TASK)
5026 		atomic_dec(&pmu->exclusive_cnt);
5027 	else
5028 		atomic_inc(&pmu->exclusive_cnt);
5029 }
5030 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5031 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5032 {
5033 	if ((e1->pmu == e2->pmu) &&
5034 	    (e1->cpu == e2->cpu ||
5035 	     e1->cpu == -1 ||
5036 	     e2->cpu == -1))
5037 		return true;
5038 	return false;
5039 }
5040 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5041 static bool exclusive_event_installable(struct perf_event *event,
5042 					struct perf_event_context *ctx)
5043 {
5044 	struct perf_event *iter_event;
5045 	struct pmu *pmu = event->pmu;
5046 
5047 	lockdep_assert_held(&ctx->mutex);
5048 
5049 	if (!is_exclusive_pmu(pmu))
5050 		return true;
5051 
5052 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5053 		if (exclusive_event_match(iter_event, event))
5054 			return false;
5055 	}
5056 
5057 	return true;
5058 }
5059 
5060 static void perf_addr_filters_splice(struct perf_event *event,
5061 				       struct list_head *head);
5062 
_free_event(struct perf_event * event)5063 static void _free_event(struct perf_event *event)
5064 {
5065 	irq_work_sync(&event->pending);
5066 
5067 	unaccount_event(event);
5068 
5069 	security_perf_event_free(event);
5070 
5071 	if (event->rb) {
5072 		/*
5073 		 * Can happen when we close an event with re-directed output.
5074 		 *
5075 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5076 		 * over us; possibly making our ring_buffer_put() the last.
5077 		 */
5078 		mutex_lock(&event->mmap_mutex);
5079 		ring_buffer_attach(event, NULL);
5080 		mutex_unlock(&event->mmap_mutex);
5081 	}
5082 
5083 	if (is_cgroup_event(event))
5084 		perf_detach_cgroup(event);
5085 
5086 	if (!event->parent) {
5087 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5088 			put_callchain_buffers();
5089 	}
5090 
5091 	perf_event_free_bpf_prog(event);
5092 	perf_addr_filters_splice(event, NULL);
5093 	kfree(event->addr_filter_ranges);
5094 
5095 	if (event->destroy)
5096 		event->destroy(event);
5097 
5098 	/*
5099 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5100 	 * hw.target.
5101 	 */
5102 	if (event->hw.target)
5103 		put_task_struct(event->hw.target);
5104 
5105 	/*
5106 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5107 	 * all task references must be cleaned up.
5108 	 */
5109 	if (event->ctx)
5110 		put_ctx(event->ctx);
5111 
5112 	exclusive_event_destroy(event);
5113 	module_put(event->pmu->module);
5114 
5115 	call_rcu(&event->rcu_head, free_event_rcu);
5116 }
5117 
5118 /*
5119  * Used to free events which have a known refcount of 1, such as in error paths
5120  * where the event isn't exposed yet and inherited events.
5121  */
free_event(struct perf_event * event)5122 static void free_event(struct perf_event *event)
5123 {
5124 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5125 				"unexpected event refcount: %ld; ptr=%p\n",
5126 				atomic_long_read(&event->refcount), event)) {
5127 		/* leak to avoid use-after-free */
5128 		return;
5129 	}
5130 
5131 	_free_event(event);
5132 }
5133 
5134 /*
5135  * Remove user event from the owner task.
5136  */
perf_remove_from_owner(struct perf_event * event)5137 static void perf_remove_from_owner(struct perf_event *event)
5138 {
5139 	struct task_struct *owner;
5140 
5141 	rcu_read_lock();
5142 	/*
5143 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5144 	 * observe !owner it means the list deletion is complete and we can
5145 	 * indeed free this event, otherwise we need to serialize on
5146 	 * owner->perf_event_mutex.
5147 	 */
5148 	owner = READ_ONCE(event->owner);
5149 	if (owner) {
5150 		/*
5151 		 * Since delayed_put_task_struct() also drops the last
5152 		 * task reference we can safely take a new reference
5153 		 * while holding the rcu_read_lock().
5154 		 */
5155 		get_task_struct(owner);
5156 	}
5157 	rcu_read_unlock();
5158 
5159 	if (owner) {
5160 		/*
5161 		 * If we're here through perf_event_exit_task() we're already
5162 		 * holding ctx->mutex which would be an inversion wrt. the
5163 		 * normal lock order.
5164 		 *
5165 		 * However we can safely take this lock because its the child
5166 		 * ctx->mutex.
5167 		 */
5168 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5169 
5170 		/*
5171 		 * We have to re-check the event->owner field, if it is cleared
5172 		 * we raced with perf_event_exit_task(), acquiring the mutex
5173 		 * ensured they're done, and we can proceed with freeing the
5174 		 * event.
5175 		 */
5176 		if (event->owner) {
5177 			list_del_init(&event->owner_entry);
5178 			smp_store_release(&event->owner, NULL);
5179 		}
5180 		mutex_unlock(&owner->perf_event_mutex);
5181 		put_task_struct(owner);
5182 	}
5183 }
5184 
put_event(struct perf_event * event)5185 static void put_event(struct perf_event *event)
5186 {
5187 	if (!atomic_long_dec_and_test(&event->refcount))
5188 		return;
5189 
5190 	_free_event(event);
5191 }
5192 
5193 /*
5194  * Kill an event dead; while event:refcount will preserve the event
5195  * object, it will not preserve its functionality. Once the last 'user'
5196  * gives up the object, we'll destroy the thing.
5197  */
perf_event_release_kernel(struct perf_event * event)5198 int perf_event_release_kernel(struct perf_event *event)
5199 {
5200 	struct perf_event_context *ctx = event->ctx;
5201 	struct perf_event *child, *tmp;
5202 	LIST_HEAD(free_list);
5203 
5204 	/*
5205 	 * If we got here through err_file: fput(event_file); we will not have
5206 	 * attached to a context yet.
5207 	 */
5208 	if (!ctx) {
5209 		WARN_ON_ONCE(event->attach_state &
5210 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5211 		goto no_ctx;
5212 	}
5213 
5214 	if (!is_kernel_event(event))
5215 		perf_remove_from_owner(event);
5216 
5217 	ctx = perf_event_ctx_lock(event);
5218 	WARN_ON_ONCE(ctx->parent_ctx);
5219 
5220 	/*
5221 	 * Mark this event as STATE_DEAD, there is no external reference to it
5222 	 * anymore.
5223 	 *
5224 	 * Anybody acquiring event->child_mutex after the below loop _must_
5225 	 * also see this, most importantly inherit_event() which will avoid
5226 	 * placing more children on the list.
5227 	 *
5228 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5229 	 * child events.
5230 	 */
5231 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5232 
5233 	perf_event_ctx_unlock(event, ctx);
5234 
5235 again:
5236 	mutex_lock(&event->child_mutex);
5237 	list_for_each_entry(child, &event->child_list, child_list) {
5238 
5239 		/*
5240 		 * Cannot change, child events are not migrated, see the
5241 		 * comment with perf_event_ctx_lock_nested().
5242 		 */
5243 		ctx = READ_ONCE(child->ctx);
5244 		/*
5245 		 * Since child_mutex nests inside ctx::mutex, we must jump
5246 		 * through hoops. We start by grabbing a reference on the ctx.
5247 		 *
5248 		 * Since the event cannot get freed while we hold the
5249 		 * child_mutex, the context must also exist and have a !0
5250 		 * reference count.
5251 		 */
5252 		get_ctx(ctx);
5253 
5254 		/*
5255 		 * Now that we have a ctx ref, we can drop child_mutex, and
5256 		 * acquire ctx::mutex without fear of it going away. Then we
5257 		 * can re-acquire child_mutex.
5258 		 */
5259 		mutex_unlock(&event->child_mutex);
5260 		mutex_lock(&ctx->mutex);
5261 		mutex_lock(&event->child_mutex);
5262 
5263 		/*
5264 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5265 		 * state, if child is still the first entry, it didn't get freed
5266 		 * and we can continue doing so.
5267 		 */
5268 		tmp = list_first_entry_or_null(&event->child_list,
5269 					       struct perf_event, child_list);
5270 		if (tmp == child) {
5271 			perf_remove_from_context(child, DETACH_GROUP);
5272 			list_move(&child->child_list, &free_list);
5273 			/*
5274 			 * This matches the refcount bump in inherit_event();
5275 			 * this can't be the last reference.
5276 			 */
5277 			put_event(event);
5278 		}
5279 
5280 		mutex_unlock(&event->child_mutex);
5281 		mutex_unlock(&ctx->mutex);
5282 		put_ctx(ctx);
5283 		goto again;
5284 	}
5285 	mutex_unlock(&event->child_mutex);
5286 
5287 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5288 		void *var = &child->ctx->refcount;
5289 
5290 		list_del(&child->child_list);
5291 		free_event(child);
5292 
5293 		/*
5294 		 * Wake any perf_event_free_task() waiting for this event to be
5295 		 * freed.
5296 		 */
5297 		smp_mb(); /* pairs with wait_var_event() */
5298 		wake_up_var(var);
5299 	}
5300 
5301 no_ctx:
5302 	put_event(event); /* Must be the 'last' reference */
5303 	return 0;
5304 }
5305 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5306 
5307 /*
5308  * Called when the last reference to the file is gone.
5309  */
perf_release(struct inode * inode,struct file * file)5310 static int perf_release(struct inode *inode, struct file *file)
5311 {
5312 	perf_event_release_kernel(file->private_data);
5313 	return 0;
5314 }
5315 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5316 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5317 {
5318 	struct perf_event *child;
5319 	u64 total = 0;
5320 
5321 	*enabled = 0;
5322 	*running = 0;
5323 
5324 	mutex_lock(&event->child_mutex);
5325 
5326 	(void)perf_event_read(event, false);
5327 	total += perf_event_count(event);
5328 
5329 	*enabled += event->total_time_enabled +
5330 			atomic64_read(&event->child_total_time_enabled);
5331 	*running += event->total_time_running +
5332 			atomic64_read(&event->child_total_time_running);
5333 
5334 	list_for_each_entry(child, &event->child_list, child_list) {
5335 		(void)perf_event_read(child, false);
5336 		total += perf_event_count(child);
5337 		*enabled += child->total_time_enabled;
5338 		*running += child->total_time_running;
5339 	}
5340 	mutex_unlock(&event->child_mutex);
5341 
5342 	return total;
5343 }
5344 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5345 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5346 {
5347 	struct perf_event_context *ctx;
5348 	u64 count;
5349 
5350 	ctx = perf_event_ctx_lock(event);
5351 	count = __perf_event_read_value(event, enabled, running);
5352 	perf_event_ctx_unlock(event, ctx);
5353 
5354 	return count;
5355 }
5356 EXPORT_SYMBOL_GPL(perf_event_read_value);
5357 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5358 static int __perf_read_group_add(struct perf_event *leader,
5359 					u64 read_format, u64 *values)
5360 {
5361 	struct perf_event_context *ctx = leader->ctx;
5362 	struct perf_event *sub, *parent;
5363 	unsigned long flags;
5364 	int n = 1; /* skip @nr */
5365 	int ret;
5366 
5367 	ret = perf_event_read(leader, true);
5368 	if (ret)
5369 		return ret;
5370 
5371 	raw_spin_lock_irqsave(&ctx->lock, flags);
5372 	/*
5373 	 * Verify the grouping between the parent and child (inherited)
5374 	 * events is still in tact.
5375 	 *
5376 	 * Specifically:
5377 	 *  - leader->ctx->lock pins leader->sibling_list
5378 	 *  - parent->child_mutex pins parent->child_list
5379 	 *  - parent->ctx->mutex pins parent->sibling_list
5380 	 *
5381 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5382 	 * ctx->mutex), group destruction is not atomic between children, also
5383 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5384 	 * group.
5385 	 *
5386 	 * Therefore it is possible to have parent and child groups in a
5387 	 * different configuration and summing over such a beast makes no sense
5388 	 * what so ever.
5389 	 *
5390 	 * Reject this.
5391 	 */
5392 	parent = leader->parent;
5393 	if (parent &&
5394 	    (parent->group_generation != leader->group_generation ||
5395 	     parent->nr_siblings != leader->nr_siblings)) {
5396 		ret = -ECHILD;
5397 		goto unlock;
5398 	}
5399 
5400 	/*
5401 	 * Since we co-schedule groups, {enabled,running} times of siblings
5402 	 * will be identical to those of the leader, so we only publish one
5403 	 * set.
5404 	 */
5405 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5406 		values[n++] += leader->total_time_enabled +
5407 			atomic64_read(&leader->child_total_time_enabled);
5408 	}
5409 
5410 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5411 		values[n++] += leader->total_time_running +
5412 			atomic64_read(&leader->child_total_time_running);
5413 	}
5414 
5415 	/*
5416 	 * Write {count,id} tuples for every sibling.
5417 	 */
5418 	values[n++] += perf_event_count(leader);
5419 	if (read_format & PERF_FORMAT_ID)
5420 		values[n++] = primary_event_id(leader);
5421 
5422 	for_each_sibling_event(sub, leader) {
5423 		values[n++] += perf_event_count(sub);
5424 		if (read_format & PERF_FORMAT_ID)
5425 			values[n++] = primary_event_id(sub);
5426 	}
5427 
5428 unlock:
5429 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5430 	return ret;
5431 }
5432 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5433 static int perf_read_group(struct perf_event *event,
5434 				   u64 read_format, char __user *buf)
5435 {
5436 	struct perf_event *leader = event->group_leader, *child;
5437 	struct perf_event_context *ctx = leader->ctx;
5438 	int ret;
5439 	u64 *values;
5440 
5441 	lockdep_assert_held(&ctx->mutex);
5442 
5443 	values = kzalloc(event->read_size, GFP_KERNEL);
5444 	if (!values)
5445 		return -ENOMEM;
5446 
5447 	values[0] = 1 + leader->nr_siblings;
5448 
5449 	mutex_lock(&leader->child_mutex);
5450 
5451 	ret = __perf_read_group_add(leader, read_format, values);
5452 	if (ret)
5453 		goto unlock;
5454 
5455 	list_for_each_entry(child, &leader->child_list, child_list) {
5456 		ret = __perf_read_group_add(child, read_format, values);
5457 		if (ret)
5458 			goto unlock;
5459 	}
5460 
5461 	mutex_unlock(&leader->child_mutex);
5462 
5463 	ret = event->read_size;
5464 	if (copy_to_user(buf, values, event->read_size))
5465 		ret = -EFAULT;
5466 	goto out;
5467 
5468 unlock:
5469 	mutex_unlock(&leader->child_mutex);
5470 out:
5471 	kfree(values);
5472 	return ret;
5473 }
5474 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5475 static int perf_read_one(struct perf_event *event,
5476 				 u64 read_format, char __user *buf)
5477 {
5478 	u64 enabled, running;
5479 	u64 values[4];
5480 	int n = 0;
5481 
5482 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5483 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5484 		values[n++] = enabled;
5485 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5486 		values[n++] = running;
5487 	if (read_format & PERF_FORMAT_ID)
5488 		values[n++] = primary_event_id(event);
5489 
5490 	if (copy_to_user(buf, values, n * sizeof(u64)))
5491 		return -EFAULT;
5492 
5493 	return n * sizeof(u64);
5494 }
5495 
is_event_hup(struct perf_event * event)5496 static bool is_event_hup(struct perf_event *event)
5497 {
5498 	bool no_children;
5499 
5500 	if (event->state > PERF_EVENT_STATE_EXIT)
5501 		return false;
5502 
5503 	mutex_lock(&event->child_mutex);
5504 	no_children = list_empty(&event->child_list);
5505 	mutex_unlock(&event->child_mutex);
5506 	return no_children;
5507 }
5508 
5509 /*
5510  * Read the performance event - simple non blocking version for now
5511  */
5512 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5513 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5514 {
5515 	u64 read_format = event->attr.read_format;
5516 	int ret;
5517 
5518 	/*
5519 	 * Return end-of-file for a read on an event that is in
5520 	 * error state (i.e. because it was pinned but it couldn't be
5521 	 * scheduled on to the CPU at some point).
5522 	 */
5523 	if (event->state == PERF_EVENT_STATE_ERROR)
5524 		return 0;
5525 
5526 	if (count < event->read_size)
5527 		return -ENOSPC;
5528 
5529 	WARN_ON_ONCE(event->ctx->parent_ctx);
5530 	if (read_format & PERF_FORMAT_GROUP)
5531 		ret = perf_read_group(event, read_format, buf);
5532 	else
5533 		ret = perf_read_one(event, read_format, buf);
5534 
5535 	return ret;
5536 }
5537 
5538 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5539 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5540 {
5541 	struct perf_event *event = file->private_data;
5542 	struct perf_event_context *ctx;
5543 	int ret;
5544 
5545 	ret = security_perf_event_read(event);
5546 	if (ret)
5547 		return ret;
5548 
5549 	ctx = perf_event_ctx_lock(event);
5550 	ret = __perf_read(event, buf, count);
5551 	perf_event_ctx_unlock(event, ctx);
5552 
5553 	return ret;
5554 }
5555 
perf_poll(struct file * file,poll_table * wait)5556 static __poll_t perf_poll(struct file *file, poll_table *wait)
5557 {
5558 	struct perf_event *event = file->private_data;
5559 	struct perf_buffer *rb;
5560 	__poll_t events = EPOLLHUP;
5561 
5562 	poll_wait(file, &event->waitq, wait);
5563 
5564 	if (is_event_hup(event))
5565 		return events;
5566 
5567 	/*
5568 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5569 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5570 	 */
5571 	mutex_lock(&event->mmap_mutex);
5572 	rb = event->rb;
5573 	if (rb)
5574 		events = atomic_xchg(&rb->poll, 0);
5575 	mutex_unlock(&event->mmap_mutex);
5576 	return events;
5577 }
5578 
_perf_event_reset(struct perf_event * event)5579 static void _perf_event_reset(struct perf_event *event)
5580 {
5581 	(void)perf_event_read(event, false);
5582 	local64_set(&event->count, 0);
5583 	perf_event_update_userpage(event);
5584 }
5585 
5586 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5587 u64 perf_event_pause(struct perf_event *event, bool reset)
5588 {
5589 	struct perf_event_context *ctx;
5590 	u64 count;
5591 
5592 	ctx = perf_event_ctx_lock(event);
5593 	WARN_ON_ONCE(event->attr.inherit);
5594 	_perf_event_disable(event);
5595 	count = local64_read(&event->count);
5596 	if (reset)
5597 		local64_set(&event->count, 0);
5598 	perf_event_ctx_unlock(event, ctx);
5599 
5600 	return count;
5601 }
5602 EXPORT_SYMBOL_GPL(perf_event_pause);
5603 
5604 /*
5605  * Holding the top-level event's child_mutex means that any
5606  * descendant process that has inherited this event will block
5607  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5608  * task existence requirements of perf_event_enable/disable.
5609  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5610 static void perf_event_for_each_child(struct perf_event *event,
5611 					void (*func)(struct perf_event *))
5612 {
5613 	struct perf_event *child;
5614 
5615 	WARN_ON_ONCE(event->ctx->parent_ctx);
5616 
5617 	mutex_lock(&event->child_mutex);
5618 	func(event);
5619 	list_for_each_entry(child, &event->child_list, child_list)
5620 		func(child);
5621 	mutex_unlock(&event->child_mutex);
5622 }
5623 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5624 static void perf_event_for_each(struct perf_event *event,
5625 				  void (*func)(struct perf_event *))
5626 {
5627 	struct perf_event_context *ctx = event->ctx;
5628 	struct perf_event *sibling;
5629 
5630 	lockdep_assert_held(&ctx->mutex);
5631 
5632 	event = event->group_leader;
5633 
5634 	perf_event_for_each_child(event, func);
5635 	for_each_sibling_event(sibling, event)
5636 		perf_event_for_each_child(sibling, func);
5637 }
5638 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5639 static void __perf_event_period(struct perf_event *event,
5640 				struct perf_cpu_context *cpuctx,
5641 				struct perf_event_context *ctx,
5642 				void *info)
5643 {
5644 	u64 value = *((u64 *)info);
5645 	bool active;
5646 
5647 	if (event->attr.freq) {
5648 		event->attr.sample_freq = value;
5649 	} else {
5650 		event->attr.sample_period = value;
5651 		event->hw.sample_period = value;
5652 	}
5653 
5654 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5655 	if (active) {
5656 		perf_pmu_disable(ctx->pmu);
5657 		/*
5658 		 * We could be throttled; unthrottle now to avoid the tick
5659 		 * trying to unthrottle while we already re-started the event.
5660 		 */
5661 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5662 			event->hw.interrupts = 0;
5663 			perf_log_throttle(event, 1);
5664 		}
5665 		event->pmu->stop(event, PERF_EF_UPDATE);
5666 	}
5667 
5668 	local64_set(&event->hw.period_left, 0);
5669 
5670 	if (active) {
5671 		event->pmu->start(event, PERF_EF_RELOAD);
5672 		perf_pmu_enable(ctx->pmu);
5673 	}
5674 }
5675 
perf_event_check_period(struct perf_event * event,u64 value)5676 static int perf_event_check_period(struct perf_event *event, u64 value)
5677 {
5678 	return event->pmu->check_period(event, value);
5679 }
5680 
_perf_event_period(struct perf_event * event,u64 value)5681 static int _perf_event_period(struct perf_event *event, u64 value)
5682 {
5683 	if (!is_sampling_event(event))
5684 		return -EINVAL;
5685 
5686 	if (!value)
5687 		return -EINVAL;
5688 
5689 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5690 		return -EINVAL;
5691 
5692 	if (perf_event_check_period(event, value))
5693 		return -EINVAL;
5694 
5695 	if (!event->attr.freq && (value & (1ULL << 63)))
5696 		return -EINVAL;
5697 
5698 	event_function_call(event, __perf_event_period, &value);
5699 
5700 	return 0;
5701 }
5702 
perf_event_period(struct perf_event * event,u64 value)5703 int perf_event_period(struct perf_event *event, u64 value)
5704 {
5705 	struct perf_event_context *ctx;
5706 	int ret;
5707 
5708 	ctx = perf_event_ctx_lock(event);
5709 	ret = _perf_event_period(event, value);
5710 	perf_event_ctx_unlock(event, ctx);
5711 
5712 	return ret;
5713 }
5714 EXPORT_SYMBOL_GPL(perf_event_period);
5715 
5716 static const struct file_operations perf_fops;
5717 
perf_fget_light(int fd,struct fd * p)5718 static inline int perf_fget_light(int fd, struct fd *p)
5719 {
5720 	struct fd f = fdget(fd);
5721 	if (!f.file)
5722 		return -EBADF;
5723 
5724 	if (f.file->f_op != &perf_fops) {
5725 		fdput(f);
5726 		return -EBADF;
5727 	}
5728 	*p = f;
5729 	return 0;
5730 }
5731 
5732 static int perf_event_set_output(struct perf_event *event,
5733 				 struct perf_event *output_event);
5734 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5735 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5736 			  struct perf_event_attr *attr);
5737 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5738 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5739 {
5740 	void (*func)(struct perf_event *);
5741 	u32 flags = arg;
5742 
5743 	switch (cmd) {
5744 	case PERF_EVENT_IOC_ENABLE:
5745 		func = _perf_event_enable;
5746 		break;
5747 	case PERF_EVENT_IOC_DISABLE:
5748 		func = _perf_event_disable;
5749 		break;
5750 	case PERF_EVENT_IOC_RESET:
5751 		func = _perf_event_reset;
5752 		break;
5753 
5754 	case PERF_EVENT_IOC_REFRESH:
5755 		return _perf_event_refresh(event, arg);
5756 
5757 	case PERF_EVENT_IOC_PERIOD:
5758 	{
5759 		u64 value;
5760 
5761 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5762 			return -EFAULT;
5763 
5764 		return _perf_event_period(event, value);
5765 	}
5766 	case PERF_EVENT_IOC_ID:
5767 	{
5768 		u64 id = primary_event_id(event);
5769 
5770 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5771 			return -EFAULT;
5772 		return 0;
5773 	}
5774 
5775 	case PERF_EVENT_IOC_SET_OUTPUT:
5776 	{
5777 		int ret;
5778 		if (arg != -1) {
5779 			struct perf_event *output_event;
5780 			struct fd output;
5781 			ret = perf_fget_light(arg, &output);
5782 			if (ret)
5783 				return ret;
5784 			output_event = output.file->private_data;
5785 			ret = perf_event_set_output(event, output_event);
5786 			fdput(output);
5787 		} else {
5788 			ret = perf_event_set_output(event, NULL);
5789 		}
5790 		return ret;
5791 	}
5792 
5793 	case PERF_EVENT_IOC_SET_FILTER:
5794 		return perf_event_set_filter(event, (void __user *)arg);
5795 
5796 	case PERF_EVENT_IOC_SET_BPF:
5797 	{
5798 		struct bpf_prog *prog;
5799 		int err;
5800 
5801 		prog = bpf_prog_get(arg);
5802 		if (IS_ERR(prog))
5803 			return PTR_ERR(prog);
5804 
5805 		err = perf_event_set_bpf_prog(event, prog, 0);
5806 		if (err) {
5807 			bpf_prog_put(prog);
5808 			return err;
5809 		}
5810 
5811 		return 0;
5812 	}
5813 
5814 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5815 		struct perf_buffer *rb;
5816 
5817 		rcu_read_lock();
5818 		rb = rcu_dereference(event->rb);
5819 		if (!rb || !rb->nr_pages) {
5820 			rcu_read_unlock();
5821 			return -EINVAL;
5822 		}
5823 		rb_toggle_paused(rb, !!arg);
5824 		rcu_read_unlock();
5825 		return 0;
5826 	}
5827 
5828 	case PERF_EVENT_IOC_QUERY_BPF:
5829 		return perf_event_query_prog_array(event, (void __user *)arg);
5830 
5831 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5832 		struct perf_event_attr new_attr;
5833 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5834 					 &new_attr);
5835 
5836 		if (err)
5837 			return err;
5838 
5839 		return perf_event_modify_attr(event,  &new_attr);
5840 	}
5841 	default:
5842 		return -ENOTTY;
5843 	}
5844 
5845 	if (flags & PERF_IOC_FLAG_GROUP)
5846 		perf_event_for_each(event, func);
5847 	else
5848 		perf_event_for_each_child(event, func);
5849 
5850 	return 0;
5851 }
5852 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5853 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5854 {
5855 	struct perf_event *event = file->private_data;
5856 	struct perf_event_context *ctx;
5857 	long ret;
5858 
5859 	/* Treat ioctl like writes as it is likely a mutating operation. */
5860 	ret = security_perf_event_write(event);
5861 	if (ret)
5862 		return ret;
5863 
5864 	ctx = perf_event_ctx_lock(event);
5865 	ret = _perf_ioctl(event, cmd, arg);
5866 	perf_event_ctx_unlock(event, ctx);
5867 
5868 	return ret;
5869 }
5870 
5871 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5872 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5873 				unsigned long arg)
5874 {
5875 	switch (_IOC_NR(cmd)) {
5876 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5877 	case _IOC_NR(PERF_EVENT_IOC_ID):
5878 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5879 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5880 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5881 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5882 			cmd &= ~IOCSIZE_MASK;
5883 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5884 		}
5885 		break;
5886 	}
5887 	return perf_ioctl(file, cmd, arg);
5888 }
5889 #else
5890 # define perf_compat_ioctl NULL
5891 #endif
5892 
perf_event_task_enable(void)5893 int perf_event_task_enable(void)
5894 {
5895 	struct perf_event_context *ctx;
5896 	struct perf_event *event;
5897 
5898 	mutex_lock(&current->perf_event_mutex);
5899 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5900 		ctx = perf_event_ctx_lock(event);
5901 		perf_event_for_each_child(event, _perf_event_enable);
5902 		perf_event_ctx_unlock(event, ctx);
5903 	}
5904 	mutex_unlock(&current->perf_event_mutex);
5905 
5906 	return 0;
5907 }
5908 
perf_event_task_disable(void)5909 int perf_event_task_disable(void)
5910 {
5911 	struct perf_event_context *ctx;
5912 	struct perf_event *event;
5913 
5914 	mutex_lock(&current->perf_event_mutex);
5915 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5916 		ctx = perf_event_ctx_lock(event);
5917 		perf_event_for_each_child(event, _perf_event_disable);
5918 		perf_event_ctx_unlock(event, ctx);
5919 	}
5920 	mutex_unlock(&current->perf_event_mutex);
5921 
5922 	return 0;
5923 }
5924 
perf_event_index(struct perf_event * event)5925 static int perf_event_index(struct perf_event *event)
5926 {
5927 	if (event->hw.state & PERF_HES_STOPPED)
5928 		return 0;
5929 
5930 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5931 		return 0;
5932 
5933 	return event->pmu->event_idx(event);
5934 }
5935 
perf_event_init_userpage(struct perf_event * event)5936 static void perf_event_init_userpage(struct perf_event *event)
5937 {
5938 	struct perf_event_mmap_page *userpg;
5939 	struct perf_buffer *rb;
5940 
5941 	rcu_read_lock();
5942 	rb = rcu_dereference(event->rb);
5943 	if (!rb)
5944 		goto unlock;
5945 
5946 	userpg = rb->user_page;
5947 
5948 	/* Allow new userspace to detect that bit 0 is deprecated */
5949 	userpg->cap_bit0_is_deprecated = 1;
5950 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5951 	userpg->data_offset = PAGE_SIZE;
5952 	userpg->data_size = perf_data_size(rb);
5953 
5954 unlock:
5955 	rcu_read_unlock();
5956 }
5957 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5958 void __weak arch_perf_update_userpage(
5959 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5960 {
5961 }
5962 
5963 /*
5964  * Callers need to ensure there can be no nesting of this function, otherwise
5965  * the seqlock logic goes bad. We can not serialize this because the arch
5966  * code calls this from NMI context.
5967  */
perf_event_update_userpage(struct perf_event * event)5968 void perf_event_update_userpage(struct perf_event *event)
5969 {
5970 	struct perf_event_mmap_page *userpg;
5971 	struct perf_buffer *rb;
5972 	u64 enabled, running, now;
5973 
5974 	rcu_read_lock();
5975 	rb = rcu_dereference(event->rb);
5976 	if (!rb)
5977 		goto unlock;
5978 
5979 	/*
5980 	 * compute total_time_enabled, total_time_running
5981 	 * based on snapshot values taken when the event
5982 	 * was last scheduled in.
5983 	 *
5984 	 * we cannot simply called update_context_time()
5985 	 * because of locking issue as we can be called in
5986 	 * NMI context
5987 	 */
5988 	calc_timer_values(event, &now, &enabled, &running);
5989 
5990 	userpg = rb->user_page;
5991 	/*
5992 	 * Disable preemption to guarantee consistent time stamps are stored to
5993 	 * the user page.
5994 	 */
5995 	preempt_disable();
5996 	++userpg->lock;
5997 	barrier();
5998 	userpg->index = perf_event_index(event);
5999 	userpg->offset = perf_event_count(event);
6000 	if (userpg->index)
6001 		userpg->offset -= local64_read(&event->hw.prev_count);
6002 
6003 	userpg->time_enabled = enabled +
6004 			atomic64_read(&event->child_total_time_enabled);
6005 
6006 	userpg->time_running = running +
6007 			atomic64_read(&event->child_total_time_running);
6008 
6009 	arch_perf_update_userpage(event, userpg, now);
6010 
6011 	barrier();
6012 	++userpg->lock;
6013 	preempt_enable();
6014 unlock:
6015 	rcu_read_unlock();
6016 }
6017 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6018 
perf_mmap_fault(struct vm_fault * vmf)6019 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6020 {
6021 	struct perf_event *event = vmf->vma->vm_file->private_data;
6022 	struct perf_buffer *rb;
6023 	vm_fault_t ret = VM_FAULT_SIGBUS;
6024 
6025 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6026 		if (vmf->pgoff == 0)
6027 			ret = 0;
6028 		return ret;
6029 	}
6030 
6031 	rcu_read_lock();
6032 	rb = rcu_dereference(event->rb);
6033 	if (!rb)
6034 		goto unlock;
6035 
6036 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6037 		goto unlock;
6038 
6039 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6040 	if (!vmf->page)
6041 		goto unlock;
6042 
6043 	get_page(vmf->page);
6044 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6045 	vmf->page->index   = vmf->pgoff;
6046 
6047 	ret = 0;
6048 unlock:
6049 	rcu_read_unlock();
6050 
6051 	return ret;
6052 }
6053 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6054 static void ring_buffer_attach(struct perf_event *event,
6055 			       struct perf_buffer *rb)
6056 {
6057 	struct perf_buffer *old_rb = NULL;
6058 	unsigned long flags;
6059 
6060 	WARN_ON_ONCE(event->parent);
6061 
6062 	if (event->rb) {
6063 		/*
6064 		 * Should be impossible, we set this when removing
6065 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6066 		 */
6067 		WARN_ON_ONCE(event->rcu_pending);
6068 
6069 		old_rb = event->rb;
6070 		spin_lock_irqsave(&old_rb->event_lock, flags);
6071 		list_del_rcu(&event->rb_entry);
6072 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6073 
6074 		event->rcu_batches = get_state_synchronize_rcu();
6075 		event->rcu_pending = 1;
6076 	}
6077 
6078 	if (rb) {
6079 		if (event->rcu_pending) {
6080 			cond_synchronize_rcu(event->rcu_batches);
6081 			event->rcu_pending = 0;
6082 		}
6083 
6084 		spin_lock_irqsave(&rb->event_lock, flags);
6085 		list_add_rcu(&event->rb_entry, &rb->event_list);
6086 		spin_unlock_irqrestore(&rb->event_lock, flags);
6087 	}
6088 
6089 	/*
6090 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6091 	 * before swizzling the event::rb pointer; if it's getting
6092 	 * unmapped, its aux_mmap_count will be 0 and it won't
6093 	 * restart. See the comment in __perf_pmu_output_stop().
6094 	 *
6095 	 * Data will inevitably be lost when set_output is done in
6096 	 * mid-air, but then again, whoever does it like this is
6097 	 * not in for the data anyway.
6098 	 */
6099 	if (has_aux(event))
6100 		perf_event_stop(event, 0);
6101 
6102 	rcu_assign_pointer(event->rb, rb);
6103 
6104 	if (old_rb) {
6105 		ring_buffer_put(old_rb);
6106 		/*
6107 		 * Since we detached before setting the new rb, so that we
6108 		 * could attach the new rb, we could have missed a wakeup.
6109 		 * Provide it now.
6110 		 */
6111 		wake_up_all(&event->waitq);
6112 	}
6113 }
6114 
ring_buffer_wakeup(struct perf_event * event)6115 static void ring_buffer_wakeup(struct perf_event *event)
6116 {
6117 	struct perf_buffer *rb;
6118 
6119 	if (event->parent)
6120 		event = event->parent;
6121 
6122 	rcu_read_lock();
6123 	rb = rcu_dereference(event->rb);
6124 	if (rb) {
6125 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6126 			wake_up_all(&event->waitq);
6127 	}
6128 	rcu_read_unlock();
6129 }
6130 
ring_buffer_get(struct perf_event * event)6131 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6132 {
6133 	struct perf_buffer *rb;
6134 
6135 	if (event->parent)
6136 		event = event->parent;
6137 
6138 	rcu_read_lock();
6139 	rb = rcu_dereference(event->rb);
6140 	if (rb) {
6141 		if (!refcount_inc_not_zero(&rb->refcount))
6142 			rb = NULL;
6143 	}
6144 	rcu_read_unlock();
6145 
6146 	return rb;
6147 }
6148 
ring_buffer_put(struct perf_buffer * rb)6149 void ring_buffer_put(struct perf_buffer *rb)
6150 {
6151 	if (!refcount_dec_and_test(&rb->refcount))
6152 		return;
6153 
6154 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6155 
6156 	call_rcu(&rb->rcu_head, rb_free_rcu);
6157 }
6158 
perf_mmap_open(struct vm_area_struct * vma)6159 static void perf_mmap_open(struct vm_area_struct *vma)
6160 {
6161 	struct perf_event *event = vma->vm_file->private_data;
6162 
6163 	atomic_inc(&event->mmap_count);
6164 	atomic_inc(&event->rb->mmap_count);
6165 
6166 	if (vma->vm_pgoff)
6167 		atomic_inc(&event->rb->aux_mmap_count);
6168 
6169 	if (event->pmu->event_mapped)
6170 		event->pmu->event_mapped(event, vma->vm_mm);
6171 }
6172 
6173 static void perf_pmu_output_stop(struct perf_event *event);
6174 
6175 /*
6176  * A buffer can be mmap()ed multiple times; either directly through the same
6177  * event, or through other events by use of perf_event_set_output().
6178  *
6179  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6180  * the buffer here, where we still have a VM context. This means we need
6181  * to detach all events redirecting to us.
6182  */
perf_mmap_close(struct vm_area_struct * vma)6183 static void perf_mmap_close(struct vm_area_struct *vma)
6184 {
6185 	struct perf_event *event = vma->vm_file->private_data;
6186 	struct perf_buffer *rb = ring_buffer_get(event);
6187 	struct user_struct *mmap_user = rb->mmap_user;
6188 	int mmap_locked = rb->mmap_locked;
6189 	unsigned long size = perf_data_size(rb);
6190 	bool detach_rest = false;
6191 
6192 	if (event->pmu->event_unmapped)
6193 		event->pmu->event_unmapped(event, vma->vm_mm);
6194 
6195 	/*
6196 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6197 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6198 	 * serialize with perf_mmap here.
6199 	 */
6200 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6201 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6202 		/*
6203 		 * Stop all AUX events that are writing to this buffer,
6204 		 * so that we can free its AUX pages and corresponding PMU
6205 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6206 		 * they won't start any more (see perf_aux_output_begin()).
6207 		 */
6208 		perf_pmu_output_stop(event);
6209 
6210 		/* now it's safe to free the pages */
6211 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6212 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6213 
6214 		/* this has to be the last one */
6215 		rb_free_aux(rb);
6216 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6217 
6218 		mutex_unlock(&event->mmap_mutex);
6219 	}
6220 
6221 	if (atomic_dec_and_test(&rb->mmap_count))
6222 		detach_rest = true;
6223 
6224 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6225 		goto out_put;
6226 
6227 	ring_buffer_attach(event, NULL);
6228 	mutex_unlock(&event->mmap_mutex);
6229 
6230 	/* If there's still other mmap()s of this buffer, we're done. */
6231 	if (!detach_rest)
6232 		goto out_put;
6233 
6234 	/*
6235 	 * No other mmap()s, detach from all other events that might redirect
6236 	 * into the now unreachable buffer. Somewhat complicated by the
6237 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6238 	 */
6239 again:
6240 	rcu_read_lock();
6241 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6242 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6243 			/*
6244 			 * This event is en-route to free_event() which will
6245 			 * detach it and remove it from the list.
6246 			 */
6247 			continue;
6248 		}
6249 		rcu_read_unlock();
6250 
6251 		mutex_lock(&event->mmap_mutex);
6252 		/*
6253 		 * Check we didn't race with perf_event_set_output() which can
6254 		 * swizzle the rb from under us while we were waiting to
6255 		 * acquire mmap_mutex.
6256 		 *
6257 		 * If we find a different rb; ignore this event, a next
6258 		 * iteration will no longer find it on the list. We have to
6259 		 * still restart the iteration to make sure we're not now
6260 		 * iterating the wrong list.
6261 		 */
6262 		if (event->rb == rb)
6263 			ring_buffer_attach(event, NULL);
6264 
6265 		mutex_unlock(&event->mmap_mutex);
6266 		put_event(event);
6267 
6268 		/*
6269 		 * Restart the iteration; either we're on the wrong list or
6270 		 * destroyed its integrity by doing a deletion.
6271 		 */
6272 		goto again;
6273 	}
6274 	rcu_read_unlock();
6275 
6276 	/*
6277 	 * It could be there's still a few 0-ref events on the list; they'll
6278 	 * get cleaned up by free_event() -- they'll also still have their
6279 	 * ref on the rb and will free it whenever they are done with it.
6280 	 *
6281 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6282 	 * undo the VM accounting.
6283 	 */
6284 
6285 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6286 			&mmap_user->locked_vm);
6287 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6288 	free_uid(mmap_user);
6289 
6290 out_put:
6291 	ring_buffer_put(rb); /* could be last */
6292 }
6293 
6294 static const struct vm_operations_struct perf_mmap_vmops = {
6295 	.open		= perf_mmap_open,
6296 	.close		= perf_mmap_close, /* non mergeable */
6297 	.fault		= perf_mmap_fault,
6298 	.page_mkwrite	= perf_mmap_fault,
6299 };
6300 
perf_mmap(struct file * file,struct vm_area_struct * vma)6301 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6302 {
6303 	struct perf_event *event = file->private_data;
6304 	unsigned long user_locked, user_lock_limit;
6305 	struct user_struct *user = current_user();
6306 	struct perf_buffer *rb = NULL;
6307 	unsigned long locked, lock_limit;
6308 	unsigned long vma_size;
6309 	unsigned long nr_pages;
6310 	long user_extra = 0, extra = 0;
6311 	int ret = 0, flags = 0;
6312 
6313 	/*
6314 	 * Don't allow mmap() of inherited per-task counters. This would
6315 	 * create a performance issue due to all children writing to the
6316 	 * same rb.
6317 	 */
6318 	if (event->cpu == -1 && event->attr.inherit)
6319 		return -EINVAL;
6320 
6321 	if (!(vma->vm_flags & VM_SHARED))
6322 		return -EINVAL;
6323 
6324 	ret = security_perf_event_read(event);
6325 	if (ret)
6326 		return ret;
6327 
6328 	vma_size = vma->vm_end - vma->vm_start;
6329 
6330 	if (vma->vm_pgoff == 0) {
6331 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6332 	} else {
6333 		/*
6334 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6335 		 * mapped, all subsequent mappings should have the same size
6336 		 * and offset. Must be above the normal perf buffer.
6337 		 */
6338 		u64 aux_offset, aux_size;
6339 
6340 		if (!event->rb)
6341 			return -EINVAL;
6342 
6343 		nr_pages = vma_size / PAGE_SIZE;
6344 
6345 		mutex_lock(&event->mmap_mutex);
6346 		ret = -EINVAL;
6347 
6348 		rb = event->rb;
6349 		if (!rb)
6350 			goto aux_unlock;
6351 
6352 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6353 		aux_size = READ_ONCE(rb->user_page->aux_size);
6354 
6355 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6356 			goto aux_unlock;
6357 
6358 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6359 			goto aux_unlock;
6360 
6361 		/* already mapped with a different offset */
6362 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6363 			goto aux_unlock;
6364 
6365 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6366 			goto aux_unlock;
6367 
6368 		/* already mapped with a different size */
6369 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6370 			goto aux_unlock;
6371 
6372 		if (!is_power_of_2(nr_pages))
6373 			goto aux_unlock;
6374 
6375 		if (!atomic_inc_not_zero(&rb->mmap_count))
6376 			goto aux_unlock;
6377 
6378 		if (rb_has_aux(rb)) {
6379 			atomic_inc(&rb->aux_mmap_count);
6380 			ret = 0;
6381 			goto unlock;
6382 		}
6383 
6384 		atomic_set(&rb->aux_mmap_count, 1);
6385 		user_extra = nr_pages;
6386 
6387 		goto accounting;
6388 	}
6389 
6390 	/*
6391 	 * If we have rb pages ensure they're a power-of-two number, so we
6392 	 * can do bitmasks instead of modulo.
6393 	 */
6394 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6395 		return -EINVAL;
6396 
6397 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6398 		return -EINVAL;
6399 
6400 	WARN_ON_ONCE(event->ctx->parent_ctx);
6401 again:
6402 	mutex_lock(&event->mmap_mutex);
6403 	if (event->rb) {
6404 		if (data_page_nr(event->rb) != nr_pages) {
6405 			ret = -EINVAL;
6406 			goto unlock;
6407 		}
6408 
6409 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6410 			/*
6411 			 * Raced against perf_mmap_close(); remove the
6412 			 * event and try again.
6413 			 */
6414 			ring_buffer_attach(event, NULL);
6415 			mutex_unlock(&event->mmap_mutex);
6416 			goto again;
6417 		}
6418 
6419 		goto unlock;
6420 	}
6421 
6422 	user_extra = nr_pages + 1;
6423 
6424 accounting:
6425 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6426 
6427 	/*
6428 	 * Increase the limit linearly with more CPUs:
6429 	 */
6430 	user_lock_limit *= num_online_cpus();
6431 
6432 	user_locked = atomic_long_read(&user->locked_vm);
6433 
6434 	/*
6435 	 * sysctl_perf_event_mlock may have changed, so that
6436 	 *     user->locked_vm > user_lock_limit
6437 	 */
6438 	if (user_locked > user_lock_limit)
6439 		user_locked = user_lock_limit;
6440 	user_locked += user_extra;
6441 
6442 	if (user_locked > user_lock_limit) {
6443 		/*
6444 		 * charge locked_vm until it hits user_lock_limit;
6445 		 * charge the rest from pinned_vm
6446 		 */
6447 		extra = user_locked - user_lock_limit;
6448 		user_extra -= extra;
6449 	}
6450 
6451 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6452 	lock_limit >>= PAGE_SHIFT;
6453 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6454 
6455 	if ((locked > lock_limit) && perf_is_paranoid() &&
6456 		!capable(CAP_IPC_LOCK)) {
6457 		ret = -EPERM;
6458 		goto unlock;
6459 	}
6460 
6461 	WARN_ON(!rb && event->rb);
6462 
6463 	if (vma->vm_flags & VM_WRITE)
6464 		flags |= RING_BUFFER_WRITABLE;
6465 
6466 	if (!rb) {
6467 		rb = rb_alloc(nr_pages,
6468 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6469 			      event->cpu, flags);
6470 
6471 		if (!rb) {
6472 			ret = -ENOMEM;
6473 			goto unlock;
6474 		}
6475 
6476 		atomic_set(&rb->mmap_count, 1);
6477 		rb->mmap_user = get_current_user();
6478 		rb->mmap_locked = extra;
6479 
6480 		ring_buffer_attach(event, rb);
6481 
6482 		perf_event_update_time(event);
6483 		perf_event_init_userpage(event);
6484 		perf_event_update_userpage(event);
6485 	} else {
6486 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6487 				   event->attr.aux_watermark, flags);
6488 		if (!ret)
6489 			rb->aux_mmap_locked = extra;
6490 	}
6491 
6492 unlock:
6493 	if (!ret) {
6494 		atomic_long_add(user_extra, &user->locked_vm);
6495 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6496 
6497 		atomic_inc(&event->mmap_count);
6498 	} else if (rb) {
6499 		atomic_dec(&rb->mmap_count);
6500 	}
6501 aux_unlock:
6502 	mutex_unlock(&event->mmap_mutex);
6503 
6504 	/*
6505 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6506 	 * vma.
6507 	 */
6508 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6509 	vma->vm_ops = &perf_mmap_vmops;
6510 
6511 	if (event->pmu->event_mapped)
6512 		event->pmu->event_mapped(event, vma->vm_mm);
6513 
6514 	return ret;
6515 }
6516 
perf_fasync(int fd,struct file * filp,int on)6517 static int perf_fasync(int fd, struct file *filp, int on)
6518 {
6519 	struct inode *inode = file_inode(filp);
6520 	struct perf_event *event = filp->private_data;
6521 	int retval;
6522 
6523 	inode_lock(inode);
6524 	retval = fasync_helper(fd, filp, on, &event->fasync);
6525 	inode_unlock(inode);
6526 
6527 	if (retval < 0)
6528 		return retval;
6529 
6530 	return 0;
6531 }
6532 
6533 static const struct file_operations perf_fops = {
6534 	.llseek			= no_llseek,
6535 	.release		= perf_release,
6536 	.read			= perf_read,
6537 	.poll			= perf_poll,
6538 	.unlocked_ioctl		= perf_ioctl,
6539 	.compat_ioctl		= perf_compat_ioctl,
6540 	.mmap			= perf_mmap,
6541 	.fasync			= perf_fasync,
6542 };
6543 
6544 /*
6545  * Perf event wakeup
6546  *
6547  * If there's data, ensure we set the poll() state and publish everything
6548  * to user-space before waking everybody up.
6549  */
6550 
perf_event_fasync(struct perf_event * event)6551 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6552 {
6553 	/* only the parent has fasync state */
6554 	if (event->parent)
6555 		event = event->parent;
6556 	return &event->fasync;
6557 }
6558 
perf_event_wakeup(struct perf_event * event)6559 void perf_event_wakeup(struct perf_event *event)
6560 {
6561 	ring_buffer_wakeup(event);
6562 
6563 	if (event->pending_kill) {
6564 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6565 		event->pending_kill = 0;
6566 	}
6567 }
6568 
perf_sigtrap(struct perf_event * event)6569 static void perf_sigtrap(struct perf_event *event)
6570 {
6571 	/*
6572 	 * We'd expect this to only occur if the irq_work is delayed and either
6573 	 * ctx->task or current has changed in the meantime. This can be the
6574 	 * case on architectures that do not implement arch_irq_work_raise().
6575 	 */
6576 	if (WARN_ON_ONCE(event->ctx->task != current))
6577 		return;
6578 
6579 	/*
6580 	 * perf_pending_event() can race with the task exiting.
6581 	 */
6582 	if (current->flags & PF_EXITING)
6583 		return;
6584 
6585 	force_sig_perf((void __user *)event->pending_addr,
6586 		       event->attr.type, event->attr.sig_data);
6587 }
6588 
perf_pending_event_disable(struct perf_event * event)6589 static void perf_pending_event_disable(struct perf_event *event)
6590 {
6591 	int cpu = READ_ONCE(event->pending_disable);
6592 
6593 	if (cpu < 0)
6594 		return;
6595 
6596 	if (cpu == smp_processor_id()) {
6597 		WRITE_ONCE(event->pending_disable, -1);
6598 
6599 		if (event->attr.sigtrap) {
6600 			perf_sigtrap(event);
6601 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6602 			return;
6603 		}
6604 
6605 		perf_event_disable_local(event);
6606 		return;
6607 	}
6608 
6609 	/*
6610 	 *  CPU-A			CPU-B
6611 	 *
6612 	 *  perf_event_disable_inatomic()
6613 	 *    @pending_disable = CPU-A;
6614 	 *    irq_work_queue();
6615 	 *
6616 	 *  sched-out
6617 	 *    @pending_disable = -1;
6618 	 *
6619 	 *				sched-in
6620 	 *				perf_event_disable_inatomic()
6621 	 *				  @pending_disable = CPU-B;
6622 	 *				  irq_work_queue(); // FAILS
6623 	 *
6624 	 *  irq_work_run()
6625 	 *    perf_pending_event()
6626 	 *
6627 	 * But the event runs on CPU-B and wants disabling there.
6628 	 */
6629 	irq_work_queue_on(&event->pending, cpu);
6630 }
6631 
perf_pending_event(struct irq_work * entry)6632 static void perf_pending_event(struct irq_work *entry)
6633 {
6634 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6635 	int rctx;
6636 
6637 	rctx = perf_swevent_get_recursion_context();
6638 	/*
6639 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6640 	 * and we won't recurse 'further'.
6641 	 */
6642 
6643 	perf_pending_event_disable(event);
6644 
6645 	if (event->pending_wakeup) {
6646 		event->pending_wakeup = 0;
6647 		perf_event_wakeup(event);
6648 	}
6649 
6650 	if (rctx >= 0)
6651 		perf_swevent_put_recursion_context(rctx);
6652 }
6653 
6654 /*
6655  * We assume there is only KVM supporting the callbacks.
6656  * Later on, we might change it to a list if there is
6657  * another virtualization implementation supporting the callbacks.
6658  */
6659 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6660 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6661 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6662 {
6663 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6664 		return -EBUSY;
6665 
6666 	rcu_assign_pointer(perf_guest_cbs, cbs);
6667 	return 0;
6668 }
6669 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6670 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6671 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6672 {
6673 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6674 		return -EINVAL;
6675 
6676 	rcu_assign_pointer(perf_guest_cbs, NULL);
6677 	synchronize_rcu();
6678 	return 0;
6679 }
6680 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6681 
6682 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6683 perf_output_sample_regs(struct perf_output_handle *handle,
6684 			struct pt_regs *regs, u64 mask)
6685 {
6686 	int bit;
6687 	DECLARE_BITMAP(_mask, 64);
6688 
6689 	bitmap_from_u64(_mask, mask);
6690 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6691 		u64 val;
6692 
6693 		val = perf_reg_value(regs, bit);
6694 		perf_output_put(handle, val);
6695 	}
6696 }
6697 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6698 static void perf_sample_regs_user(struct perf_regs *regs_user,
6699 				  struct pt_regs *regs)
6700 {
6701 	if (user_mode(regs)) {
6702 		regs_user->abi = perf_reg_abi(current);
6703 		regs_user->regs = regs;
6704 	} else if (!(current->flags & PF_KTHREAD)) {
6705 		perf_get_regs_user(regs_user, regs);
6706 	} else {
6707 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6708 		regs_user->regs = NULL;
6709 	}
6710 }
6711 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6712 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6713 				  struct pt_regs *regs)
6714 {
6715 	regs_intr->regs = regs;
6716 	regs_intr->abi  = perf_reg_abi(current);
6717 }
6718 
6719 
6720 /*
6721  * Get remaining task size from user stack pointer.
6722  *
6723  * It'd be better to take stack vma map and limit this more
6724  * precisely, but there's no way to get it safely under interrupt,
6725  * so using TASK_SIZE as limit.
6726  */
perf_ustack_task_size(struct pt_regs * regs)6727 static u64 perf_ustack_task_size(struct pt_regs *regs)
6728 {
6729 	unsigned long addr = perf_user_stack_pointer(regs);
6730 
6731 	if (!addr || addr >= TASK_SIZE)
6732 		return 0;
6733 
6734 	return TASK_SIZE - addr;
6735 }
6736 
6737 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6738 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6739 			struct pt_regs *regs)
6740 {
6741 	u64 task_size;
6742 
6743 	/* No regs, no stack pointer, no dump. */
6744 	if (!regs)
6745 		return 0;
6746 
6747 	/*
6748 	 * Check if we fit in with the requested stack size into the:
6749 	 * - TASK_SIZE
6750 	 *   If we don't, we limit the size to the TASK_SIZE.
6751 	 *
6752 	 * - remaining sample size
6753 	 *   If we don't, we customize the stack size to
6754 	 *   fit in to the remaining sample size.
6755 	 */
6756 
6757 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6758 	stack_size = min(stack_size, (u16) task_size);
6759 
6760 	/* Current header size plus static size and dynamic size. */
6761 	header_size += 2 * sizeof(u64);
6762 
6763 	/* Do we fit in with the current stack dump size? */
6764 	if ((u16) (header_size + stack_size) < header_size) {
6765 		/*
6766 		 * If we overflow the maximum size for the sample,
6767 		 * we customize the stack dump size to fit in.
6768 		 */
6769 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6770 		stack_size = round_up(stack_size, sizeof(u64));
6771 	}
6772 
6773 	return stack_size;
6774 }
6775 
6776 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6777 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6778 			  struct pt_regs *regs)
6779 {
6780 	/* Case of a kernel thread, nothing to dump */
6781 	if (!regs) {
6782 		u64 size = 0;
6783 		perf_output_put(handle, size);
6784 	} else {
6785 		unsigned long sp;
6786 		unsigned int rem;
6787 		u64 dyn_size;
6788 		mm_segment_t fs;
6789 
6790 		/*
6791 		 * We dump:
6792 		 * static size
6793 		 *   - the size requested by user or the best one we can fit
6794 		 *     in to the sample max size
6795 		 * data
6796 		 *   - user stack dump data
6797 		 * dynamic size
6798 		 *   - the actual dumped size
6799 		 */
6800 
6801 		/* Static size. */
6802 		perf_output_put(handle, dump_size);
6803 
6804 		/* Data. */
6805 		sp = perf_user_stack_pointer(regs);
6806 		fs = force_uaccess_begin();
6807 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6808 		force_uaccess_end(fs);
6809 		dyn_size = dump_size - rem;
6810 
6811 		perf_output_skip(handle, rem);
6812 
6813 		/* Dynamic size. */
6814 		perf_output_put(handle, dyn_size);
6815 	}
6816 }
6817 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6818 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6819 					  struct perf_sample_data *data,
6820 					  size_t size)
6821 {
6822 	struct perf_event *sampler = event->aux_event;
6823 	struct perf_buffer *rb;
6824 
6825 	data->aux_size = 0;
6826 
6827 	if (!sampler)
6828 		goto out;
6829 
6830 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6831 		goto out;
6832 
6833 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6834 		goto out;
6835 
6836 	rb = ring_buffer_get(sampler);
6837 	if (!rb)
6838 		goto out;
6839 
6840 	/*
6841 	 * If this is an NMI hit inside sampling code, don't take
6842 	 * the sample. See also perf_aux_sample_output().
6843 	 */
6844 	if (READ_ONCE(rb->aux_in_sampling)) {
6845 		data->aux_size = 0;
6846 	} else {
6847 		size = min_t(size_t, size, perf_aux_size(rb));
6848 		data->aux_size = ALIGN(size, sizeof(u64));
6849 	}
6850 	ring_buffer_put(rb);
6851 
6852 out:
6853 	return data->aux_size;
6854 }
6855 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6856 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6857                                  struct perf_event *event,
6858                                  struct perf_output_handle *handle,
6859                                  unsigned long size)
6860 {
6861 	unsigned long flags;
6862 	long ret;
6863 
6864 	/*
6865 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6866 	 * paths. If we start calling them in NMI context, they may race with
6867 	 * the IRQ ones, that is, for example, re-starting an event that's just
6868 	 * been stopped, which is why we're using a separate callback that
6869 	 * doesn't change the event state.
6870 	 *
6871 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6872 	 */
6873 	local_irq_save(flags);
6874 	/*
6875 	 * Guard against NMI hits inside the critical section;
6876 	 * see also perf_prepare_sample_aux().
6877 	 */
6878 	WRITE_ONCE(rb->aux_in_sampling, 1);
6879 	barrier();
6880 
6881 	ret = event->pmu->snapshot_aux(event, handle, size);
6882 
6883 	barrier();
6884 	WRITE_ONCE(rb->aux_in_sampling, 0);
6885 	local_irq_restore(flags);
6886 
6887 	return ret;
6888 }
6889 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6890 static void perf_aux_sample_output(struct perf_event *event,
6891 				   struct perf_output_handle *handle,
6892 				   struct perf_sample_data *data)
6893 {
6894 	struct perf_event *sampler = event->aux_event;
6895 	struct perf_buffer *rb;
6896 	unsigned long pad;
6897 	long size;
6898 
6899 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6900 		return;
6901 
6902 	rb = ring_buffer_get(sampler);
6903 	if (!rb)
6904 		return;
6905 
6906 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6907 
6908 	/*
6909 	 * An error here means that perf_output_copy() failed (returned a
6910 	 * non-zero surplus that it didn't copy), which in its current
6911 	 * enlightened implementation is not possible. If that changes, we'd
6912 	 * like to know.
6913 	 */
6914 	if (WARN_ON_ONCE(size < 0))
6915 		goto out_put;
6916 
6917 	/*
6918 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6919 	 * perf_prepare_sample_aux(), so should not be more than that.
6920 	 */
6921 	pad = data->aux_size - size;
6922 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6923 		pad = 8;
6924 
6925 	if (pad) {
6926 		u64 zero = 0;
6927 		perf_output_copy(handle, &zero, pad);
6928 	}
6929 
6930 out_put:
6931 	ring_buffer_put(rb);
6932 }
6933 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6934 static void __perf_event_header__init_id(struct perf_event_header *header,
6935 					 struct perf_sample_data *data,
6936 					 struct perf_event *event)
6937 {
6938 	u64 sample_type = event->attr.sample_type;
6939 
6940 	data->type = sample_type;
6941 	header->size += event->id_header_size;
6942 
6943 	if (sample_type & PERF_SAMPLE_TID) {
6944 		/* namespace issues */
6945 		data->tid_entry.pid = perf_event_pid(event, current);
6946 		data->tid_entry.tid = perf_event_tid(event, current);
6947 	}
6948 
6949 	if (sample_type & PERF_SAMPLE_TIME)
6950 		data->time = perf_event_clock(event);
6951 
6952 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6953 		data->id = primary_event_id(event);
6954 
6955 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6956 		data->stream_id = event->id;
6957 
6958 	if (sample_type & PERF_SAMPLE_CPU) {
6959 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6960 		data->cpu_entry.reserved = 0;
6961 	}
6962 }
6963 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6964 void perf_event_header__init_id(struct perf_event_header *header,
6965 				struct perf_sample_data *data,
6966 				struct perf_event *event)
6967 {
6968 	if (event->attr.sample_id_all)
6969 		__perf_event_header__init_id(header, data, event);
6970 }
6971 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6972 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6973 					   struct perf_sample_data *data)
6974 {
6975 	u64 sample_type = data->type;
6976 
6977 	if (sample_type & PERF_SAMPLE_TID)
6978 		perf_output_put(handle, data->tid_entry);
6979 
6980 	if (sample_type & PERF_SAMPLE_TIME)
6981 		perf_output_put(handle, data->time);
6982 
6983 	if (sample_type & PERF_SAMPLE_ID)
6984 		perf_output_put(handle, data->id);
6985 
6986 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6987 		perf_output_put(handle, data->stream_id);
6988 
6989 	if (sample_type & PERF_SAMPLE_CPU)
6990 		perf_output_put(handle, data->cpu_entry);
6991 
6992 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6993 		perf_output_put(handle, data->id);
6994 }
6995 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6996 void perf_event__output_id_sample(struct perf_event *event,
6997 				  struct perf_output_handle *handle,
6998 				  struct perf_sample_data *sample)
6999 {
7000 	if (event->attr.sample_id_all)
7001 		__perf_event__output_id_sample(handle, sample);
7002 }
7003 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7004 static void perf_output_read_one(struct perf_output_handle *handle,
7005 				 struct perf_event *event,
7006 				 u64 enabled, u64 running)
7007 {
7008 	u64 read_format = event->attr.read_format;
7009 	u64 values[4];
7010 	int n = 0;
7011 
7012 	values[n++] = perf_event_count(event);
7013 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7014 		values[n++] = enabled +
7015 			atomic64_read(&event->child_total_time_enabled);
7016 	}
7017 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7018 		values[n++] = running +
7019 			atomic64_read(&event->child_total_time_running);
7020 	}
7021 	if (read_format & PERF_FORMAT_ID)
7022 		values[n++] = primary_event_id(event);
7023 
7024 	__output_copy(handle, values, n * sizeof(u64));
7025 }
7026 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7027 static void perf_output_read_group(struct perf_output_handle *handle,
7028 			    struct perf_event *event,
7029 			    u64 enabled, u64 running)
7030 {
7031 	struct perf_event *leader = event->group_leader, *sub;
7032 	u64 read_format = event->attr.read_format;
7033 	u64 values[5];
7034 	int n = 0;
7035 
7036 	values[n++] = 1 + leader->nr_siblings;
7037 
7038 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7039 		values[n++] = enabled;
7040 
7041 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7042 		values[n++] = running;
7043 
7044 	if ((leader != event) &&
7045 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7046 		leader->pmu->read(leader);
7047 
7048 	values[n++] = perf_event_count(leader);
7049 	if (read_format & PERF_FORMAT_ID)
7050 		values[n++] = primary_event_id(leader);
7051 
7052 	__output_copy(handle, values, n * sizeof(u64));
7053 
7054 	for_each_sibling_event(sub, leader) {
7055 		n = 0;
7056 
7057 		if ((sub != event) &&
7058 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7059 			sub->pmu->read(sub);
7060 
7061 		values[n++] = perf_event_count(sub);
7062 		if (read_format & PERF_FORMAT_ID)
7063 			values[n++] = primary_event_id(sub);
7064 
7065 		__output_copy(handle, values, n * sizeof(u64));
7066 	}
7067 }
7068 
7069 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7070 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7071 
7072 /*
7073  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7074  *
7075  * The problem is that its both hard and excessively expensive to iterate the
7076  * child list, not to mention that its impossible to IPI the children running
7077  * on another CPU, from interrupt/NMI context.
7078  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7079 static void perf_output_read(struct perf_output_handle *handle,
7080 			     struct perf_event *event)
7081 {
7082 	u64 enabled = 0, running = 0, now;
7083 	u64 read_format = event->attr.read_format;
7084 
7085 	/*
7086 	 * compute total_time_enabled, total_time_running
7087 	 * based on snapshot values taken when the event
7088 	 * was last scheduled in.
7089 	 *
7090 	 * we cannot simply called update_context_time()
7091 	 * because of locking issue as we are called in
7092 	 * NMI context
7093 	 */
7094 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7095 		calc_timer_values(event, &now, &enabled, &running);
7096 
7097 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7098 		perf_output_read_group(handle, event, enabled, running);
7099 	else
7100 		perf_output_read_one(handle, event, enabled, running);
7101 }
7102 
perf_sample_save_hw_index(struct perf_event * event)7103 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7104 {
7105 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7106 }
7107 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7108 void perf_output_sample(struct perf_output_handle *handle,
7109 			struct perf_event_header *header,
7110 			struct perf_sample_data *data,
7111 			struct perf_event *event)
7112 {
7113 	u64 sample_type = data->type;
7114 
7115 	perf_output_put(handle, *header);
7116 
7117 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7118 		perf_output_put(handle, data->id);
7119 
7120 	if (sample_type & PERF_SAMPLE_IP)
7121 		perf_output_put(handle, data->ip);
7122 
7123 	if (sample_type & PERF_SAMPLE_TID)
7124 		perf_output_put(handle, data->tid_entry);
7125 
7126 	if (sample_type & PERF_SAMPLE_TIME)
7127 		perf_output_put(handle, data->time);
7128 
7129 	if (sample_type & PERF_SAMPLE_ADDR)
7130 		perf_output_put(handle, data->addr);
7131 
7132 	if (sample_type & PERF_SAMPLE_ID)
7133 		perf_output_put(handle, data->id);
7134 
7135 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7136 		perf_output_put(handle, data->stream_id);
7137 
7138 	if (sample_type & PERF_SAMPLE_CPU)
7139 		perf_output_put(handle, data->cpu_entry);
7140 
7141 	if (sample_type & PERF_SAMPLE_PERIOD)
7142 		perf_output_put(handle, data->period);
7143 
7144 	if (sample_type & PERF_SAMPLE_READ)
7145 		perf_output_read(handle, event);
7146 
7147 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7148 		int size = 1;
7149 
7150 		size += data->callchain->nr;
7151 		size *= sizeof(u64);
7152 		__output_copy(handle, data->callchain, size);
7153 	}
7154 
7155 	if (sample_type & PERF_SAMPLE_RAW) {
7156 		struct perf_raw_record *raw = data->raw;
7157 
7158 		if (raw) {
7159 			struct perf_raw_frag *frag = &raw->frag;
7160 
7161 			perf_output_put(handle, raw->size);
7162 			do {
7163 				if (frag->copy) {
7164 					__output_custom(handle, frag->copy,
7165 							frag->data, frag->size);
7166 				} else {
7167 					__output_copy(handle, frag->data,
7168 						      frag->size);
7169 				}
7170 				if (perf_raw_frag_last(frag))
7171 					break;
7172 				frag = frag->next;
7173 			} while (1);
7174 			if (frag->pad)
7175 				__output_skip(handle, NULL, frag->pad);
7176 		} else {
7177 			struct {
7178 				u32	size;
7179 				u32	data;
7180 			} raw = {
7181 				.size = sizeof(u32),
7182 				.data = 0,
7183 			};
7184 			perf_output_put(handle, raw);
7185 		}
7186 	}
7187 
7188 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7189 		if (data->br_stack) {
7190 			size_t size;
7191 
7192 			size = data->br_stack->nr
7193 			     * sizeof(struct perf_branch_entry);
7194 
7195 			perf_output_put(handle, data->br_stack->nr);
7196 			if (perf_sample_save_hw_index(event))
7197 				perf_output_put(handle, data->br_stack->hw_idx);
7198 			perf_output_copy(handle, data->br_stack->entries, size);
7199 		} else {
7200 			/*
7201 			 * we always store at least the value of nr
7202 			 */
7203 			u64 nr = 0;
7204 			perf_output_put(handle, nr);
7205 		}
7206 	}
7207 
7208 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7209 		u64 abi = data->regs_user.abi;
7210 
7211 		/*
7212 		 * If there are no regs to dump, notice it through
7213 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7214 		 */
7215 		perf_output_put(handle, abi);
7216 
7217 		if (abi) {
7218 			u64 mask = event->attr.sample_regs_user;
7219 			perf_output_sample_regs(handle,
7220 						data->regs_user.regs,
7221 						mask);
7222 		}
7223 	}
7224 
7225 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7226 		perf_output_sample_ustack(handle,
7227 					  data->stack_user_size,
7228 					  data->regs_user.regs);
7229 	}
7230 
7231 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7232 		perf_output_put(handle, data->weight.full);
7233 
7234 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7235 		perf_output_put(handle, data->data_src.val);
7236 
7237 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7238 		perf_output_put(handle, data->txn);
7239 
7240 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7241 		u64 abi = data->regs_intr.abi;
7242 		/*
7243 		 * If there are no regs to dump, notice it through
7244 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7245 		 */
7246 		perf_output_put(handle, abi);
7247 
7248 		if (abi) {
7249 			u64 mask = event->attr.sample_regs_intr;
7250 
7251 			perf_output_sample_regs(handle,
7252 						data->regs_intr.regs,
7253 						mask);
7254 		}
7255 	}
7256 
7257 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7258 		perf_output_put(handle, data->phys_addr);
7259 
7260 	if (sample_type & PERF_SAMPLE_CGROUP)
7261 		perf_output_put(handle, data->cgroup);
7262 
7263 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7264 		perf_output_put(handle, data->data_page_size);
7265 
7266 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7267 		perf_output_put(handle, data->code_page_size);
7268 
7269 	if (sample_type & PERF_SAMPLE_AUX) {
7270 		perf_output_put(handle, data->aux_size);
7271 
7272 		if (data->aux_size)
7273 			perf_aux_sample_output(event, handle, data);
7274 	}
7275 
7276 	if (!event->attr.watermark) {
7277 		int wakeup_events = event->attr.wakeup_events;
7278 
7279 		if (wakeup_events) {
7280 			struct perf_buffer *rb = handle->rb;
7281 			int events = local_inc_return(&rb->events);
7282 
7283 			if (events >= wakeup_events) {
7284 				local_sub(wakeup_events, &rb->events);
7285 				local_inc(&rb->wakeup);
7286 			}
7287 		}
7288 	}
7289 }
7290 
perf_virt_to_phys(u64 virt)7291 static u64 perf_virt_to_phys(u64 virt)
7292 {
7293 	u64 phys_addr = 0;
7294 
7295 	if (!virt)
7296 		return 0;
7297 
7298 	if (virt >= TASK_SIZE) {
7299 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7300 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7301 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7302 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7303 	} else {
7304 		/*
7305 		 * Walking the pages tables for user address.
7306 		 * Interrupts are disabled, so it prevents any tear down
7307 		 * of the page tables.
7308 		 * Try IRQ-safe get_user_page_fast_only first.
7309 		 * If failed, leave phys_addr as 0.
7310 		 */
7311 		if (current->mm != NULL) {
7312 			struct page *p;
7313 
7314 			pagefault_disable();
7315 			if (get_user_page_fast_only(virt, 0, &p)) {
7316 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7317 				put_page(p);
7318 			}
7319 			pagefault_enable();
7320 		}
7321 	}
7322 
7323 	return phys_addr;
7324 }
7325 
7326 /*
7327  * Return the pagetable size of a given virtual address.
7328  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7329 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7330 {
7331 	u64 size = 0;
7332 
7333 #ifdef CONFIG_HAVE_FAST_GUP
7334 	pgd_t *pgdp, pgd;
7335 	p4d_t *p4dp, p4d;
7336 	pud_t *pudp, pud;
7337 	pmd_t *pmdp, pmd;
7338 	pte_t *ptep, pte;
7339 
7340 	pgdp = pgd_offset(mm, addr);
7341 	pgd = READ_ONCE(*pgdp);
7342 	if (pgd_none(pgd))
7343 		return 0;
7344 
7345 	if (pgd_leaf(pgd))
7346 		return pgd_leaf_size(pgd);
7347 
7348 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7349 	p4d = READ_ONCE(*p4dp);
7350 	if (!p4d_present(p4d))
7351 		return 0;
7352 
7353 	if (p4d_leaf(p4d))
7354 		return p4d_leaf_size(p4d);
7355 
7356 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7357 	pud = READ_ONCE(*pudp);
7358 	if (!pud_present(pud))
7359 		return 0;
7360 
7361 	if (pud_leaf(pud))
7362 		return pud_leaf_size(pud);
7363 
7364 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7365 	pmd = READ_ONCE(*pmdp);
7366 	if (!pmd_present(pmd))
7367 		return 0;
7368 
7369 	if (pmd_leaf(pmd))
7370 		return pmd_leaf_size(pmd);
7371 
7372 	ptep = pte_offset_map(&pmd, addr);
7373 	pte = ptep_get_lockless(ptep);
7374 	if (pte_present(pte))
7375 		size = pte_leaf_size(pte);
7376 	pte_unmap(ptep);
7377 #endif /* CONFIG_HAVE_FAST_GUP */
7378 
7379 	return size;
7380 }
7381 
perf_get_page_size(unsigned long addr)7382 static u64 perf_get_page_size(unsigned long addr)
7383 {
7384 	struct mm_struct *mm;
7385 	unsigned long flags;
7386 	u64 size;
7387 
7388 	if (!addr)
7389 		return 0;
7390 
7391 	/*
7392 	 * Software page-table walkers must disable IRQs,
7393 	 * which prevents any tear down of the page tables.
7394 	 */
7395 	local_irq_save(flags);
7396 
7397 	mm = current->mm;
7398 	if (!mm) {
7399 		/*
7400 		 * For kernel threads and the like, use init_mm so that
7401 		 * we can find kernel memory.
7402 		 */
7403 		mm = &init_mm;
7404 	}
7405 
7406 	size = perf_get_pgtable_size(mm, addr);
7407 
7408 	local_irq_restore(flags);
7409 
7410 	return size;
7411 }
7412 
7413 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7414 
7415 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7416 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7417 {
7418 	bool kernel = !event->attr.exclude_callchain_kernel;
7419 	bool user   = !event->attr.exclude_callchain_user;
7420 	/* Disallow cross-task user callchains. */
7421 	bool crosstask = event->ctx->task && event->ctx->task != current;
7422 	const u32 max_stack = event->attr.sample_max_stack;
7423 	struct perf_callchain_entry *callchain;
7424 
7425 	if (!kernel && !user)
7426 		return &__empty_callchain;
7427 
7428 	callchain = get_perf_callchain(regs, 0, kernel, user,
7429 				       max_stack, crosstask, true);
7430 	return callchain ?: &__empty_callchain;
7431 }
7432 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7433 void perf_prepare_sample(struct perf_event_header *header,
7434 			 struct perf_sample_data *data,
7435 			 struct perf_event *event,
7436 			 struct pt_regs *regs)
7437 {
7438 	u64 sample_type = event->attr.sample_type;
7439 
7440 	header->type = PERF_RECORD_SAMPLE;
7441 	header->size = sizeof(*header) + event->header_size;
7442 
7443 	header->misc = 0;
7444 	header->misc |= perf_misc_flags(regs);
7445 
7446 	__perf_event_header__init_id(header, data, event);
7447 
7448 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7449 		data->ip = perf_instruction_pointer(regs);
7450 
7451 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7452 		int size = 1;
7453 
7454 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7455 			data->callchain = perf_callchain(event, regs);
7456 
7457 		size += data->callchain->nr;
7458 
7459 		header->size += size * sizeof(u64);
7460 	}
7461 
7462 	if (sample_type & PERF_SAMPLE_RAW) {
7463 		struct perf_raw_record *raw = data->raw;
7464 		int size;
7465 
7466 		if (raw) {
7467 			struct perf_raw_frag *frag = &raw->frag;
7468 			u32 sum = 0;
7469 
7470 			do {
7471 				sum += frag->size;
7472 				if (perf_raw_frag_last(frag))
7473 					break;
7474 				frag = frag->next;
7475 			} while (1);
7476 
7477 			size = round_up(sum + sizeof(u32), sizeof(u64));
7478 			raw->size = size - sizeof(u32);
7479 			frag->pad = raw->size - sum;
7480 		} else {
7481 			size = sizeof(u64);
7482 		}
7483 
7484 		header->size += size;
7485 	}
7486 
7487 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7488 		int size = sizeof(u64); /* nr */
7489 		if (data->br_stack) {
7490 			if (perf_sample_save_hw_index(event))
7491 				size += sizeof(u64);
7492 
7493 			size += data->br_stack->nr
7494 			      * sizeof(struct perf_branch_entry);
7495 		}
7496 		header->size += size;
7497 	}
7498 
7499 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7500 		perf_sample_regs_user(&data->regs_user, regs);
7501 
7502 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7503 		/* regs dump ABI info */
7504 		int size = sizeof(u64);
7505 
7506 		if (data->regs_user.regs) {
7507 			u64 mask = event->attr.sample_regs_user;
7508 			size += hweight64(mask) * sizeof(u64);
7509 		}
7510 
7511 		header->size += size;
7512 	}
7513 
7514 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7515 		/*
7516 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7517 		 * processed as the last one or have additional check added
7518 		 * in case new sample type is added, because we could eat
7519 		 * up the rest of the sample size.
7520 		 */
7521 		u16 stack_size = event->attr.sample_stack_user;
7522 		u16 size = sizeof(u64);
7523 
7524 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7525 						     data->regs_user.regs);
7526 
7527 		/*
7528 		 * If there is something to dump, add space for the dump
7529 		 * itself and for the field that tells the dynamic size,
7530 		 * which is how many have been actually dumped.
7531 		 */
7532 		if (stack_size)
7533 			size += sizeof(u64) + stack_size;
7534 
7535 		data->stack_user_size = stack_size;
7536 		header->size += size;
7537 	}
7538 
7539 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7540 		/* regs dump ABI info */
7541 		int size = sizeof(u64);
7542 
7543 		perf_sample_regs_intr(&data->regs_intr, regs);
7544 
7545 		if (data->regs_intr.regs) {
7546 			u64 mask = event->attr.sample_regs_intr;
7547 
7548 			size += hweight64(mask) * sizeof(u64);
7549 		}
7550 
7551 		header->size += size;
7552 	}
7553 
7554 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7555 		data->phys_addr = perf_virt_to_phys(data->addr);
7556 
7557 #ifdef CONFIG_CGROUP_PERF
7558 	if (sample_type & PERF_SAMPLE_CGROUP) {
7559 		struct cgroup *cgrp;
7560 
7561 		/* protected by RCU */
7562 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7563 		data->cgroup = cgroup_id(cgrp);
7564 	}
7565 #endif
7566 
7567 	/*
7568 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7569 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7570 	 * but the value will not dump to the userspace.
7571 	 */
7572 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7573 		data->data_page_size = perf_get_page_size(data->addr);
7574 
7575 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7576 		data->code_page_size = perf_get_page_size(data->ip);
7577 
7578 	if (sample_type & PERF_SAMPLE_AUX) {
7579 		u64 size;
7580 
7581 		header->size += sizeof(u64); /* size */
7582 
7583 		/*
7584 		 * Given the 16bit nature of header::size, an AUX sample can
7585 		 * easily overflow it, what with all the preceding sample bits.
7586 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7587 		 * per sample in total (rounded down to 8 byte boundary).
7588 		 */
7589 		size = min_t(size_t, U16_MAX - header->size,
7590 			     event->attr.aux_sample_size);
7591 		size = rounddown(size, 8);
7592 		size = perf_prepare_sample_aux(event, data, size);
7593 
7594 		WARN_ON_ONCE(size + header->size > U16_MAX);
7595 		header->size += size;
7596 	}
7597 	/*
7598 	 * If you're adding more sample types here, you likely need to do
7599 	 * something about the overflowing header::size, like repurpose the
7600 	 * lowest 3 bits of size, which should be always zero at the moment.
7601 	 * This raises a more important question, do we really need 512k sized
7602 	 * samples and why, so good argumentation is in order for whatever you
7603 	 * do here next.
7604 	 */
7605 	WARN_ON_ONCE(header->size & 7);
7606 }
7607 
7608 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7609 __perf_event_output(struct perf_event *event,
7610 		    struct perf_sample_data *data,
7611 		    struct pt_regs *regs,
7612 		    int (*output_begin)(struct perf_output_handle *,
7613 					struct perf_sample_data *,
7614 					struct perf_event *,
7615 					unsigned int))
7616 {
7617 	struct perf_output_handle handle;
7618 	struct perf_event_header header;
7619 	int err;
7620 
7621 	/* protect the callchain buffers */
7622 	rcu_read_lock();
7623 
7624 	perf_prepare_sample(&header, data, event, regs);
7625 
7626 	err = output_begin(&handle, data, event, header.size);
7627 	if (err)
7628 		goto exit;
7629 
7630 	perf_output_sample(&handle, &header, data, event);
7631 
7632 	perf_output_end(&handle);
7633 
7634 exit:
7635 	rcu_read_unlock();
7636 	return err;
7637 }
7638 
7639 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7640 perf_event_output_forward(struct perf_event *event,
7641 			 struct perf_sample_data *data,
7642 			 struct pt_regs *regs)
7643 {
7644 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7645 }
7646 
7647 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7648 perf_event_output_backward(struct perf_event *event,
7649 			   struct perf_sample_data *data,
7650 			   struct pt_regs *regs)
7651 {
7652 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7653 }
7654 
7655 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7656 perf_event_output(struct perf_event *event,
7657 		  struct perf_sample_data *data,
7658 		  struct pt_regs *regs)
7659 {
7660 	return __perf_event_output(event, data, regs, perf_output_begin);
7661 }
7662 
7663 /*
7664  * read event_id
7665  */
7666 
7667 struct perf_read_event {
7668 	struct perf_event_header	header;
7669 
7670 	u32				pid;
7671 	u32				tid;
7672 };
7673 
7674 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7675 perf_event_read_event(struct perf_event *event,
7676 			struct task_struct *task)
7677 {
7678 	struct perf_output_handle handle;
7679 	struct perf_sample_data sample;
7680 	struct perf_read_event read_event = {
7681 		.header = {
7682 			.type = PERF_RECORD_READ,
7683 			.misc = 0,
7684 			.size = sizeof(read_event) + event->read_size,
7685 		},
7686 		.pid = perf_event_pid(event, task),
7687 		.tid = perf_event_tid(event, task),
7688 	};
7689 	int ret;
7690 
7691 	perf_event_header__init_id(&read_event.header, &sample, event);
7692 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7693 	if (ret)
7694 		return;
7695 
7696 	perf_output_put(&handle, read_event);
7697 	perf_output_read(&handle, event);
7698 	perf_event__output_id_sample(event, &handle, &sample);
7699 
7700 	perf_output_end(&handle);
7701 }
7702 
7703 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7704 
7705 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7706 perf_iterate_ctx(struct perf_event_context *ctx,
7707 		   perf_iterate_f output,
7708 		   void *data, bool all)
7709 {
7710 	struct perf_event *event;
7711 
7712 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7713 		if (!all) {
7714 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7715 				continue;
7716 			if (!event_filter_match(event))
7717 				continue;
7718 		}
7719 
7720 		output(event, data);
7721 	}
7722 }
7723 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7724 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7725 {
7726 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7727 	struct perf_event *event;
7728 
7729 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7730 		/*
7731 		 * Skip events that are not fully formed yet; ensure that
7732 		 * if we observe event->ctx, both event and ctx will be
7733 		 * complete enough. See perf_install_in_context().
7734 		 */
7735 		if (!smp_load_acquire(&event->ctx))
7736 			continue;
7737 
7738 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7739 			continue;
7740 		if (!event_filter_match(event))
7741 			continue;
7742 		output(event, data);
7743 	}
7744 }
7745 
7746 /*
7747  * Iterate all events that need to receive side-band events.
7748  *
7749  * For new callers; ensure that account_pmu_sb_event() includes
7750  * your event, otherwise it might not get delivered.
7751  */
7752 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7753 perf_iterate_sb(perf_iterate_f output, void *data,
7754 	       struct perf_event_context *task_ctx)
7755 {
7756 	struct perf_event_context *ctx;
7757 	int ctxn;
7758 
7759 	rcu_read_lock();
7760 	preempt_disable();
7761 
7762 	/*
7763 	 * If we have task_ctx != NULL we only notify the task context itself.
7764 	 * The task_ctx is set only for EXIT events before releasing task
7765 	 * context.
7766 	 */
7767 	if (task_ctx) {
7768 		perf_iterate_ctx(task_ctx, output, data, false);
7769 		goto done;
7770 	}
7771 
7772 	perf_iterate_sb_cpu(output, data);
7773 
7774 	for_each_task_context_nr(ctxn) {
7775 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7776 		if (ctx)
7777 			perf_iterate_ctx(ctx, output, data, false);
7778 	}
7779 done:
7780 	preempt_enable();
7781 	rcu_read_unlock();
7782 }
7783 
7784 /*
7785  * Clear all file-based filters at exec, they'll have to be
7786  * re-instated when/if these objects are mmapped again.
7787  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7788 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7789 {
7790 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7791 	struct perf_addr_filter *filter;
7792 	unsigned int restart = 0, count = 0;
7793 	unsigned long flags;
7794 
7795 	if (!has_addr_filter(event))
7796 		return;
7797 
7798 	raw_spin_lock_irqsave(&ifh->lock, flags);
7799 	list_for_each_entry(filter, &ifh->list, entry) {
7800 		if (filter->path.dentry) {
7801 			event->addr_filter_ranges[count].start = 0;
7802 			event->addr_filter_ranges[count].size = 0;
7803 			restart++;
7804 		}
7805 
7806 		count++;
7807 	}
7808 
7809 	if (restart)
7810 		event->addr_filters_gen++;
7811 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7812 
7813 	if (restart)
7814 		perf_event_stop(event, 1);
7815 }
7816 
perf_event_exec(void)7817 void perf_event_exec(void)
7818 {
7819 	struct perf_event_context *ctx;
7820 	int ctxn;
7821 
7822 	for_each_task_context_nr(ctxn) {
7823 		perf_event_enable_on_exec(ctxn);
7824 		perf_event_remove_on_exec(ctxn);
7825 
7826 		rcu_read_lock();
7827 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7828 		if (ctx) {
7829 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7830 					 NULL, true);
7831 		}
7832 		rcu_read_unlock();
7833 	}
7834 }
7835 
7836 struct remote_output {
7837 	struct perf_buffer	*rb;
7838 	int			err;
7839 };
7840 
__perf_event_output_stop(struct perf_event * event,void * data)7841 static void __perf_event_output_stop(struct perf_event *event, void *data)
7842 {
7843 	struct perf_event *parent = event->parent;
7844 	struct remote_output *ro = data;
7845 	struct perf_buffer *rb = ro->rb;
7846 	struct stop_event_data sd = {
7847 		.event	= event,
7848 	};
7849 
7850 	if (!has_aux(event))
7851 		return;
7852 
7853 	if (!parent)
7854 		parent = event;
7855 
7856 	/*
7857 	 * In case of inheritance, it will be the parent that links to the
7858 	 * ring-buffer, but it will be the child that's actually using it.
7859 	 *
7860 	 * We are using event::rb to determine if the event should be stopped,
7861 	 * however this may race with ring_buffer_attach() (through set_output),
7862 	 * which will make us skip the event that actually needs to be stopped.
7863 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7864 	 * its rb pointer.
7865 	 */
7866 	if (rcu_dereference(parent->rb) == rb)
7867 		ro->err = __perf_event_stop(&sd);
7868 }
7869 
__perf_pmu_output_stop(void * info)7870 static int __perf_pmu_output_stop(void *info)
7871 {
7872 	struct perf_event *event = info;
7873 	struct pmu *pmu = event->ctx->pmu;
7874 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7875 	struct remote_output ro = {
7876 		.rb	= event->rb,
7877 	};
7878 
7879 	rcu_read_lock();
7880 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7881 	if (cpuctx->task_ctx)
7882 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7883 				   &ro, false);
7884 	rcu_read_unlock();
7885 
7886 	return ro.err;
7887 }
7888 
perf_pmu_output_stop(struct perf_event * event)7889 static void perf_pmu_output_stop(struct perf_event *event)
7890 {
7891 	struct perf_event *iter;
7892 	int err, cpu;
7893 
7894 restart:
7895 	rcu_read_lock();
7896 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7897 		/*
7898 		 * For per-CPU events, we need to make sure that neither they
7899 		 * nor their children are running; for cpu==-1 events it's
7900 		 * sufficient to stop the event itself if it's active, since
7901 		 * it can't have children.
7902 		 */
7903 		cpu = iter->cpu;
7904 		if (cpu == -1)
7905 			cpu = READ_ONCE(iter->oncpu);
7906 
7907 		if (cpu == -1)
7908 			continue;
7909 
7910 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7911 		if (err == -EAGAIN) {
7912 			rcu_read_unlock();
7913 			goto restart;
7914 		}
7915 	}
7916 	rcu_read_unlock();
7917 }
7918 
7919 /*
7920  * task tracking -- fork/exit
7921  *
7922  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7923  */
7924 
7925 struct perf_task_event {
7926 	struct task_struct		*task;
7927 	struct perf_event_context	*task_ctx;
7928 
7929 	struct {
7930 		struct perf_event_header	header;
7931 
7932 		u32				pid;
7933 		u32				ppid;
7934 		u32				tid;
7935 		u32				ptid;
7936 		u64				time;
7937 	} event_id;
7938 };
7939 
perf_event_task_match(struct perf_event * event)7940 static int perf_event_task_match(struct perf_event *event)
7941 {
7942 	return event->attr.comm  || event->attr.mmap ||
7943 	       event->attr.mmap2 || event->attr.mmap_data ||
7944 	       event->attr.task;
7945 }
7946 
perf_event_task_output(struct perf_event * event,void * data)7947 static void perf_event_task_output(struct perf_event *event,
7948 				   void *data)
7949 {
7950 	struct perf_task_event *task_event = data;
7951 	struct perf_output_handle handle;
7952 	struct perf_sample_data	sample;
7953 	struct task_struct *task = task_event->task;
7954 	int ret, size = task_event->event_id.header.size;
7955 
7956 	if (!perf_event_task_match(event))
7957 		return;
7958 
7959 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7960 
7961 	ret = perf_output_begin(&handle, &sample, event,
7962 				task_event->event_id.header.size);
7963 	if (ret)
7964 		goto out;
7965 
7966 	task_event->event_id.pid = perf_event_pid(event, task);
7967 	task_event->event_id.tid = perf_event_tid(event, task);
7968 
7969 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7970 		task_event->event_id.ppid = perf_event_pid(event,
7971 							task->real_parent);
7972 		task_event->event_id.ptid = perf_event_pid(event,
7973 							task->real_parent);
7974 	} else {  /* PERF_RECORD_FORK */
7975 		task_event->event_id.ppid = perf_event_pid(event, current);
7976 		task_event->event_id.ptid = perf_event_tid(event, current);
7977 	}
7978 
7979 	task_event->event_id.time = perf_event_clock(event);
7980 
7981 	perf_output_put(&handle, task_event->event_id);
7982 
7983 	perf_event__output_id_sample(event, &handle, &sample);
7984 
7985 	perf_output_end(&handle);
7986 out:
7987 	task_event->event_id.header.size = size;
7988 }
7989 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7990 static void perf_event_task(struct task_struct *task,
7991 			      struct perf_event_context *task_ctx,
7992 			      int new)
7993 {
7994 	struct perf_task_event task_event;
7995 
7996 	if (!atomic_read(&nr_comm_events) &&
7997 	    !atomic_read(&nr_mmap_events) &&
7998 	    !atomic_read(&nr_task_events))
7999 		return;
8000 
8001 	task_event = (struct perf_task_event){
8002 		.task	  = task,
8003 		.task_ctx = task_ctx,
8004 		.event_id    = {
8005 			.header = {
8006 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8007 				.misc = 0,
8008 				.size = sizeof(task_event.event_id),
8009 			},
8010 			/* .pid  */
8011 			/* .ppid */
8012 			/* .tid  */
8013 			/* .ptid */
8014 			/* .time */
8015 		},
8016 	};
8017 
8018 	perf_iterate_sb(perf_event_task_output,
8019 		       &task_event,
8020 		       task_ctx);
8021 }
8022 
perf_event_fork(struct task_struct * task)8023 void perf_event_fork(struct task_struct *task)
8024 {
8025 	perf_event_task(task, NULL, 1);
8026 	perf_event_namespaces(task);
8027 }
8028 
8029 /*
8030  * comm tracking
8031  */
8032 
8033 struct perf_comm_event {
8034 	struct task_struct	*task;
8035 	char			*comm;
8036 	int			comm_size;
8037 
8038 	struct {
8039 		struct perf_event_header	header;
8040 
8041 		u32				pid;
8042 		u32				tid;
8043 	} event_id;
8044 };
8045 
perf_event_comm_match(struct perf_event * event)8046 static int perf_event_comm_match(struct perf_event *event)
8047 {
8048 	return event->attr.comm;
8049 }
8050 
perf_event_comm_output(struct perf_event * event,void * data)8051 static void perf_event_comm_output(struct perf_event *event,
8052 				   void *data)
8053 {
8054 	struct perf_comm_event *comm_event = data;
8055 	struct perf_output_handle handle;
8056 	struct perf_sample_data sample;
8057 	int size = comm_event->event_id.header.size;
8058 	int ret;
8059 
8060 	if (!perf_event_comm_match(event))
8061 		return;
8062 
8063 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8064 	ret = perf_output_begin(&handle, &sample, event,
8065 				comm_event->event_id.header.size);
8066 
8067 	if (ret)
8068 		goto out;
8069 
8070 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8071 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8072 
8073 	perf_output_put(&handle, comm_event->event_id);
8074 	__output_copy(&handle, comm_event->comm,
8075 				   comm_event->comm_size);
8076 
8077 	perf_event__output_id_sample(event, &handle, &sample);
8078 
8079 	perf_output_end(&handle);
8080 out:
8081 	comm_event->event_id.header.size = size;
8082 }
8083 
perf_event_comm_event(struct perf_comm_event * comm_event)8084 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8085 {
8086 	char comm[TASK_COMM_LEN];
8087 	unsigned int size;
8088 
8089 	memset(comm, 0, sizeof(comm));
8090 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8091 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8092 
8093 	comm_event->comm = comm;
8094 	comm_event->comm_size = size;
8095 
8096 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8097 
8098 	perf_iterate_sb(perf_event_comm_output,
8099 		       comm_event,
8100 		       NULL);
8101 }
8102 
perf_event_comm(struct task_struct * task,bool exec)8103 void perf_event_comm(struct task_struct *task, bool exec)
8104 {
8105 	struct perf_comm_event comm_event;
8106 
8107 	if (!atomic_read(&nr_comm_events))
8108 		return;
8109 
8110 	comm_event = (struct perf_comm_event){
8111 		.task	= task,
8112 		/* .comm      */
8113 		/* .comm_size */
8114 		.event_id  = {
8115 			.header = {
8116 				.type = PERF_RECORD_COMM,
8117 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8118 				/* .size */
8119 			},
8120 			/* .pid */
8121 			/* .tid */
8122 		},
8123 	};
8124 
8125 	perf_event_comm_event(&comm_event);
8126 }
8127 
8128 /*
8129  * namespaces tracking
8130  */
8131 
8132 struct perf_namespaces_event {
8133 	struct task_struct		*task;
8134 
8135 	struct {
8136 		struct perf_event_header	header;
8137 
8138 		u32				pid;
8139 		u32				tid;
8140 		u64				nr_namespaces;
8141 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8142 	} event_id;
8143 };
8144 
perf_event_namespaces_match(struct perf_event * event)8145 static int perf_event_namespaces_match(struct perf_event *event)
8146 {
8147 	return event->attr.namespaces;
8148 }
8149 
perf_event_namespaces_output(struct perf_event * event,void * data)8150 static void perf_event_namespaces_output(struct perf_event *event,
8151 					 void *data)
8152 {
8153 	struct perf_namespaces_event *namespaces_event = data;
8154 	struct perf_output_handle handle;
8155 	struct perf_sample_data sample;
8156 	u16 header_size = namespaces_event->event_id.header.size;
8157 	int ret;
8158 
8159 	if (!perf_event_namespaces_match(event))
8160 		return;
8161 
8162 	perf_event_header__init_id(&namespaces_event->event_id.header,
8163 				   &sample, event);
8164 	ret = perf_output_begin(&handle, &sample, event,
8165 				namespaces_event->event_id.header.size);
8166 	if (ret)
8167 		goto out;
8168 
8169 	namespaces_event->event_id.pid = perf_event_pid(event,
8170 							namespaces_event->task);
8171 	namespaces_event->event_id.tid = perf_event_tid(event,
8172 							namespaces_event->task);
8173 
8174 	perf_output_put(&handle, namespaces_event->event_id);
8175 
8176 	perf_event__output_id_sample(event, &handle, &sample);
8177 
8178 	perf_output_end(&handle);
8179 out:
8180 	namespaces_event->event_id.header.size = header_size;
8181 }
8182 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8183 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8184 				   struct task_struct *task,
8185 				   const struct proc_ns_operations *ns_ops)
8186 {
8187 	struct path ns_path;
8188 	struct inode *ns_inode;
8189 	int error;
8190 
8191 	error = ns_get_path(&ns_path, task, ns_ops);
8192 	if (!error) {
8193 		ns_inode = ns_path.dentry->d_inode;
8194 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8195 		ns_link_info->ino = ns_inode->i_ino;
8196 		path_put(&ns_path);
8197 	}
8198 }
8199 
perf_event_namespaces(struct task_struct * task)8200 void perf_event_namespaces(struct task_struct *task)
8201 {
8202 	struct perf_namespaces_event namespaces_event;
8203 	struct perf_ns_link_info *ns_link_info;
8204 
8205 	if (!atomic_read(&nr_namespaces_events))
8206 		return;
8207 
8208 	namespaces_event = (struct perf_namespaces_event){
8209 		.task	= task,
8210 		.event_id  = {
8211 			.header = {
8212 				.type = PERF_RECORD_NAMESPACES,
8213 				.misc = 0,
8214 				.size = sizeof(namespaces_event.event_id),
8215 			},
8216 			/* .pid */
8217 			/* .tid */
8218 			.nr_namespaces = NR_NAMESPACES,
8219 			/* .link_info[NR_NAMESPACES] */
8220 		},
8221 	};
8222 
8223 	ns_link_info = namespaces_event.event_id.link_info;
8224 
8225 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8226 			       task, &mntns_operations);
8227 
8228 #ifdef CONFIG_USER_NS
8229 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8230 			       task, &userns_operations);
8231 #endif
8232 #ifdef CONFIG_NET_NS
8233 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8234 			       task, &netns_operations);
8235 #endif
8236 #ifdef CONFIG_UTS_NS
8237 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8238 			       task, &utsns_operations);
8239 #endif
8240 #ifdef CONFIG_IPC_NS
8241 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8242 			       task, &ipcns_operations);
8243 #endif
8244 #ifdef CONFIG_PID_NS
8245 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8246 			       task, &pidns_operations);
8247 #endif
8248 #ifdef CONFIG_CGROUPS
8249 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8250 			       task, &cgroupns_operations);
8251 #endif
8252 
8253 	perf_iterate_sb(perf_event_namespaces_output,
8254 			&namespaces_event,
8255 			NULL);
8256 }
8257 
8258 /*
8259  * cgroup tracking
8260  */
8261 #ifdef CONFIG_CGROUP_PERF
8262 
8263 struct perf_cgroup_event {
8264 	char				*path;
8265 	int				path_size;
8266 	struct {
8267 		struct perf_event_header	header;
8268 		u64				id;
8269 		char				path[];
8270 	} event_id;
8271 };
8272 
perf_event_cgroup_match(struct perf_event * event)8273 static int perf_event_cgroup_match(struct perf_event *event)
8274 {
8275 	return event->attr.cgroup;
8276 }
8277 
perf_event_cgroup_output(struct perf_event * event,void * data)8278 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8279 {
8280 	struct perf_cgroup_event *cgroup_event = data;
8281 	struct perf_output_handle handle;
8282 	struct perf_sample_data sample;
8283 	u16 header_size = cgroup_event->event_id.header.size;
8284 	int ret;
8285 
8286 	if (!perf_event_cgroup_match(event))
8287 		return;
8288 
8289 	perf_event_header__init_id(&cgroup_event->event_id.header,
8290 				   &sample, event);
8291 	ret = perf_output_begin(&handle, &sample, event,
8292 				cgroup_event->event_id.header.size);
8293 	if (ret)
8294 		goto out;
8295 
8296 	perf_output_put(&handle, cgroup_event->event_id);
8297 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8298 
8299 	perf_event__output_id_sample(event, &handle, &sample);
8300 
8301 	perf_output_end(&handle);
8302 out:
8303 	cgroup_event->event_id.header.size = header_size;
8304 }
8305 
perf_event_cgroup(struct cgroup * cgrp)8306 static void perf_event_cgroup(struct cgroup *cgrp)
8307 {
8308 	struct perf_cgroup_event cgroup_event;
8309 	char path_enomem[16] = "//enomem";
8310 	char *pathname;
8311 	size_t size;
8312 
8313 	if (!atomic_read(&nr_cgroup_events))
8314 		return;
8315 
8316 	cgroup_event = (struct perf_cgroup_event){
8317 		.event_id  = {
8318 			.header = {
8319 				.type = PERF_RECORD_CGROUP,
8320 				.misc = 0,
8321 				.size = sizeof(cgroup_event.event_id),
8322 			},
8323 			.id = cgroup_id(cgrp),
8324 		},
8325 	};
8326 
8327 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8328 	if (pathname == NULL) {
8329 		cgroup_event.path = path_enomem;
8330 	} else {
8331 		/* just to be sure to have enough space for alignment */
8332 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8333 		cgroup_event.path = pathname;
8334 	}
8335 
8336 	/*
8337 	 * Since our buffer works in 8 byte units we need to align our string
8338 	 * size to a multiple of 8. However, we must guarantee the tail end is
8339 	 * zero'd out to avoid leaking random bits to userspace.
8340 	 */
8341 	size = strlen(cgroup_event.path) + 1;
8342 	while (!IS_ALIGNED(size, sizeof(u64)))
8343 		cgroup_event.path[size++] = '\0';
8344 
8345 	cgroup_event.event_id.header.size += size;
8346 	cgroup_event.path_size = size;
8347 
8348 	perf_iterate_sb(perf_event_cgroup_output,
8349 			&cgroup_event,
8350 			NULL);
8351 
8352 	kfree(pathname);
8353 }
8354 
8355 #endif
8356 
8357 /*
8358  * mmap tracking
8359  */
8360 
8361 struct perf_mmap_event {
8362 	struct vm_area_struct	*vma;
8363 
8364 	const char		*file_name;
8365 	int			file_size;
8366 	int			maj, min;
8367 	u64			ino;
8368 	u64			ino_generation;
8369 	u32			prot, flags;
8370 	u8			build_id[BUILD_ID_SIZE_MAX];
8371 	u32			build_id_size;
8372 
8373 	struct {
8374 		struct perf_event_header	header;
8375 
8376 		u32				pid;
8377 		u32				tid;
8378 		u64				start;
8379 		u64				len;
8380 		u64				pgoff;
8381 	} event_id;
8382 };
8383 
perf_event_mmap_match(struct perf_event * event,void * data)8384 static int perf_event_mmap_match(struct perf_event *event,
8385 				 void *data)
8386 {
8387 	struct perf_mmap_event *mmap_event = data;
8388 	struct vm_area_struct *vma = mmap_event->vma;
8389 	int executable = vma->vm_flags & VM_EXEC;
8390 
8391 	return (!executable && event->attr.mmap_data) ||
8392 	       (executable && (event->attr.mmap || event->attr.mmap2));
8393 }
8394 
perf_event_mmap_output(struct perf_event * event,void * data)8395 static void perf_event_mmap_output(struct perf_event *event,
8396 				   void *data)
8397 {
8398 	struct perf_mmap_event *mmap_event = data;
8399 	struct perf_output_handle handle;
8400 	struct perf_sample_data sample;
8401 	int size = mmap_event->event_id.header.size;
8402 	u32 type = mmap_event->event_id.header.type;
8403 	bool use_build_id;
8404 	int ret;
8405 
8406 	if (!perf_event_mmap_match(event, data))
8407 		return;
8408 
8409 	if (event->attr.mmap2) {
8410 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8411 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8412 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8413 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8414 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8415 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8416 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8417 	}
8418 
8419 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8420 	ret = perf_output_begin(&handle, &sample, event,
8421 				mmap_event->event_id.header.size);
8422 	if (ret)
8423 		goto out;
8424 
8425 	mmap_event->event_id.pid = perf_event_pid(event, current);
8426 	mmap_event->event_id.tid = perf_event_tid(event, current);
8427 
8428 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8429 
8430 	if (event->attr.mmap2 && use_build_id)
8431 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8432 
8433 	perf_output_put(&handle, mmap_event->event_id);
8434 
8435 	if (event->attr.mmap2) {
8436 		if (use_build_id) {
8437 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8438 
8439 			__output_copy(&handle, size, 4);
8440 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8441 		} else {
8442 			perf_output_put(&handle, mmap_event->maj);
8443 			perf_output_put(&handle, mmap_event->min);
8444 			perf_output_put(&handle, mmap_event->ino);
8445 			perf_output_put(&handle, mmap_event->ino_generation);
8446 		}
8447 		perf_output_put(&handle, mmap_event->prot);
8448 		perf_output_put(&handle, mmap_event->flags);
8449 	}
8450 
8451 	__output_copy(&handle, mmap_event->file_name,
8452 				   mmap_event->file_size);
8453 
8454 	perf_event__output_id_sample(event, &handle, &sample);
8455 
8456 	perf_output_end(&handle);
8457 out:
8458 	mmap_event->event_id.header.size = size;
8459 	mmap_event->event_id.header.type = type;
8460 }
8461 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8462 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8463 {
8464 	struct vm_area_struct *vma = mmap_event->vma;
8465 	struct file *file = vma->vm_file;
8466 	int maj = 0, min = 0;
8467 	u64 ino = 0, gen = 0;
8468 	u32 prot = 0, flags = 0;
8469 	unsigned int size;
8470 	char tmp[16];
8471 	char *buf = NULL;
8472 	char *name;
8473 
8474 	if (vma->vm_flags & VM_READ)
8475 		prot |= PROT_READ;
8476 	if (vma->vm_flags & VM_WRITE)
8477 		prot |= PROT_WRITE;
8478 	if (vma->vm_flags & VM_EXEC)
8479 		prot |= PROT_EXEC;
8480 
8481 	if (vma->vm_flags & VM_MAYSHARE)
8482 		flags = MAP_SHARED;
8483 	else
8484 		flags = MAP_PRIVATE;
8485 
8486 	if (vma->vm_flags & VM_LOCKED)
8487 		flags |= MAP_LOCKED;
8488 	if (is_vm_hugetlb_page(vma))
8489 		flags |= MAP_HUGETLB;
8490 
8491 	if (file) {
8492 		struct inode *inode;
8493 		dev_t dev;
8494 
8495 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8496 		if (!buf) {
8497 			name = "//enomem";
8498 			goto cpy_name;
8499 		}
8500 		/*
8501 		 * d_path() works from the end of the rb backwards, so we
8502 		 * need to add enough zero bytes after the string to handle
8503 		 * the 64bit alignment we do later.
8504 		 */
8505 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8506 		if (IS_ERR(name)) {
8507 			name = "//toolong";
8508 			goto cpy_name;
8509 		}
8510 		inode = file_inode(vma->vm_file);
8511 		dev = inode->i_sb->s_dev;
8512 		ino = inode->i_ino;
8513 		gen = inode->i_generation;
8514 		maj = MAJOR(dev);
8515 		min = MINOR(dev);
8516 
8517 		goto got_name;
8518 	} else {
8519 		if (vma->vm_ops && vma->vm_ops->name) {
8520 			name = (char *) vma->vm_ops->name(vma);
8521 			if (name)
8522 				goto cpy_name;
8523 		}
8524 
8525 		name = (char *)arch_vma_name(vma);
8526 		if (name)
8527 			goto cpy_name;
8528 
8529 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8530 				vma->vm_end >= vma->vm_mm->brk) {
8531 			name = "[heap]";
8532 			goto cpy_name;
8533 		}
8534 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8535 				vma->vm_end >= vma->vm_mm->start_stack) {
8536 			name = "[stack]";
8537 			goto cpy_name;
8538 		}
8539 
8540 		name = "//anon";
8541 		goto cpy_name;
8542 	}
8543 
8544 cpy_name:
8545 	strlcpy(tmp, name, sizeof(tmp));
8546 	name = tmp;
8547 got_name:
8548 	/*
8549 	 * Since our buffer works in 8 byte units we need to align our string
8550 	 * size to a multiple of 8. However, we must guarantee the tail end is
8551 	 * zero'd out to avoid leaking random bits to userspace.
8552 	 */
8553 	size = strlen(name)+1;
8554 	while (!IS_ALIGNED(size, sizeof(u64)))
8555 		name[size++] = '\0';
8556 
8557 	mmap_event->file_name = name;
8558 	mmap_event->file_size = size;
8559 	mmap_event->maj = maj;
8560 	mmap_event->min = min;
8561 	mmap_event->ino = ino;
8562 	mmap_event->ino_generation = gen;
8563 	mmap_event->prot = prot;
8564 	mmap_event->flags = flags;
8565 
8566 	if (!(vma->vm_flags & VM_EXEC))
8567 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8568 
8569 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8570 
8571 	if (atomic_read(&nr_build_id_events))
8572 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8573 
8574 	perf_iterate_sb(perf_event_mmap_output,
8575 		       mmap_event,
8576 		       NULL);
8577 
8578 	kfree(buf);
8579 }
8580 
8581 /*
8582  * Check whether inode and address range match filter criteria.
8583  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8584 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8585 				     struct file *file, unsigned long offset,
8586 				     unsigned long size)
8587 {
8588 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8589 	if (!filter->path.dentry)
8590 		return false;
8591 
8592 	if (d_inode(filter->path.dentry) != file_inode(file))
8593 		return false;
8594 
8595 	if (filter->offset > offset + size)
8596 		return false;
8597 
8598 	if (filter->offset + filter->size < offset)
8599 		return false;
8600 
8601 	return true;
8602 }
8603 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8604 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8605 					struct vm_area_struct *vma,
8606 					struct perf_addr_filter_range *fr)
8607 {
8608 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8609 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8610 	struct file *file = vma->vm_file;
8611 
8612 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8613 		return false;
8614 
8615 	if (filter->offset < off) {
8616 		fr->start = vma->vm_start;
8617 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8618 	} else {
8619 		fr->start = vma->vm_start + filter->offset - off;
8620 		fr->size = min(vma->vm_end - fr->start, filter->size);
8621 	}
8622 
8623 	return true;
8624 }
8625 
__perf_addr_filters_adjust(struct perf_event * event,void * data)8626 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8627 {
8628 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8629 	struct vm_area_struct *vma = data;
8630 	struct perf_addr_filter *filter;
8631 	unsigned int restart = 0, count = 0;
8632 	unsigned long flags;
8633 
8634 	if (!has_addr_filter(event))
8635 		return;
8636 
8637 	if (!vma->vm_file)
8638 		return;
8639 
8640 	raw_spin_lock_irqsave(&ifh->lock, flags);
8641 	list_for_each_entry(filter, &ifh->list, entry) {
8642 		if (perf_addr_filter_vma_adjust(filter, vma,
8643 						&event->addr_filter_ranges[count]))
8644 			restart++;
8645 
8646 		count++;
8647 	}
8648 
8649 	if (restart)
8650 		event->addr_filters_gen++;
8651 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8652 
8653 	if (restart)
8654 		perf_event_stop(event, 1);
8655 }
8656 
8657 /*
8658  * Adjust all task's events' filters to the new vma
8659  */
perf_addr_filters_adjust(struct vm_area_struct * vma)8660 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8661 {
8662 	struct perf_event_context *ctx;
8663 	int ctxn;
8664 
8665 	/*
8666 	 * Data tracing isn't supported yet and as such there is no need
8667 	 * to keep track of anything that isn't related to executable code:
8668 	 */
8669 	if (!(vma->vm_flags & VM_EXEC))
8670 		return;
8671 
8672 	rcu_read_lock();
8673 	for_each_task_context_nr(ctxn) {
8674 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8675 		if (!ctx)
8676 			continue;
8677 
8678 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8679 	}
8680 	rcu_read_unlock();
8681 }
8682 
perf_event_mmap(struct vm_area_struct * vma)8683 void perf_event_mmap(struct vm_area_struct *vma)
8684 {
8685 	struct perf_mmap_event mmap_event;
8686 
8687 	if (!atomic_read(&nr_mmap_events))
8688 		return;
8689 
8690 	mmap_event = (struct perf_mmap_event){
8691 		.vma	= vma,
8692 		/* .file_name */
8693 		/* .file_size */
8694 		.event_id  = {
8695 			.header = {
8696 				.type = PERF_RECORD_MMAP,
8697 				.misc = PERF_RECORD_MISC_USER,
8698 				/* .size */
8699 			},
8700 			/* .pid */
8701 			/* .tid */
8702 			.start  = vma->vm_start,
8703 			.len    = vma->vm_end - vma->vm_start,
8704 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8705 		},
8706 		/* .maj (attr_mmap2 only) */
8707 		/* .min (attr_mmap2 only) */
8708 		/* .ino (attr_mmap2 only) */
8709 		/* .ino_generation (attr_mmap2 only) */
8710 		/* .prot (attr_mmap2 only) */
8711 		/* .flags (attr_mmap2 only) */
8712 	};
8713 
8714 	perf_addr_filters_adjust(vma);
8715 	perf_event_mmap_event(&mmap_event);
8716 }
8717 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8718 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8719 			  unsigned long size, u64 flags)
8720 {
8721 	struct perf_output_handle handle;
8722 	struct perf_sample_data sample;
8723 	struct perf_aux_event {
8724 		struct perf_event_header	header;
8725 		u64				offset;
8726 		u64				size;
8727 		u64				flags;
8728 	} rec = {
8729 		.header = {
8730 			.type = PERF_RECORD_AUX,
8731 			.misc = 0,
8732 			.size = sizeof(rec),
8733 		},
8734 		.offset		= head,
8735 		.size		= size,
8736 		.flags		= flags,
8737 	};
8738 	int ret;
8739 
8740 	perf_event_header__init_id(&rec.header, &sample, event);
8741 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8742 
8743 	if (ret)
8744 		return;
8745 
8746 	perf_output_put(&handle, rec);
8747 	perf_event__output_id_sample(event, &handle, &sample);
8748 
8749 	perf_output_end(&handle);
8750 }
8751 
8752 /*
8753  * Lost/dropped samples logging
8754  */
perf_log_lost_samples(struct perf_event * event,u64 lost)8755 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8756 {
8757 	struct perf_output_handle handle;
8758 	struct perf_sample_data sample;
8759 	int ret;
8760 
8761 	struct {
8762 		struct perf_event_header	header;
8763 		u64				lost;
8764 	} lost_samples_event = {
8765 		.header = {
8766 			.type = PERF_RECORD_LOST_SAMPLES,
8767 			.misc = 0,
8768 			.size = sizeof(lost_samples_event),
8769 		},
8770 		.lost		= lost,
8771 	};
8772 
8773 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8774 
8775 	ret = perf_output_begin(&handle, &sample, event,
8776 				lost_samples_event.header.size);
8777 	if (ret)
8778 		return;
8779 
8780 	perf_output_put(&handle, lost_samples_event);
8781 	perf_event__output_id_sample(event, &handle, &sample);
8782 	perf_output_end(&handle);
8783 }
8784 
8785 /*
8786  * context_switch tracking
8787  */
8788 
8789 struct perf_switch_event {
8790 	struct task_struct	*task;
8791 	struct task_struct	*next_prev;
8792 
8793 	struct {
8794 		struct perf_event_header	header;
8795 		u32				next_prev_pid;
8796 		u32				next_prev_tid;
8797 	} event_id;
8798 };
8799 
perf_event_switch_match(struct perf_event * event)8800 static int perf_event_switch_match(struct perf_event *event)
8801 {
8802 	return event->attr.context_switch;
8803 }
8804 
perf_event_switch_output(struct perf_event * event,void * data)8805 static void perf_event_switch_output(struct perf_event *event, void *data)
8806 {
8807 	struct perf_switch_event *se = data;
8808 	struct perf_output_handle handle;
8809 	struct perf_sample_data sample;
8810 	int ret;
8811 
8812 	if (!perf_event_switch_match(event))
8813 		return;
8814 
8815 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8816 	if (event->ctx->task) {
8817 		se->event_id.header.type = PERF_RECORD_SWITCH;
8818 		se->event_id.header.size = sizeof(se->event_id.header);
8819 	} else {
8820 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8821 		se->event_id.header.size = sizeof(se->event_id);
8822 		se->event_id.next_prev_pid =
8823 					perf_event_pid(event, se->next_prev);
8824 		se->event_id.next_prev_tid =
8825 					perf_event_tid(event, se->next_prev);
8826 	}
8827 
8828 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8829 
8830 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8831 	if (ret)
8832 		return;
8833 
8834 	if (event->ctx->task)
8835 		perf_output_put(&handle, se->event_id.header);
8836 	else
8837 		perf_output_put(&handle, se->event_id);
8838 
8839 	perf_event__output_id_sample(event, &handle, &sample);
8840 
8841 	perf_output_end(&handle);
8842 }
8843 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8844 static void perf_event_switch(struct task_struct *task,
8845 			      struct task_struct *next_prev, bool sched_in)
8846 {
8847 	struct perf_switch_event switch_event;
8848 
8849 	/* N.B. caller checks nr_switch_events != 0 */
8850 
8851 	switch_event = (struct perf_switch_event){
8852 		.task		= task,
8853 		.next_prev	= next_prev,
8854 		.event_id	= {
8855 			.header = {
8856 				/* .type */
8857 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8858 				/* .size */
8859 			},
8860 			/* .next_prev_pid */
8861 			/* .next_prev_tid */
8862 		},
8863 	};
8864 
8865 	if (!sched_in && task->on_rq) {
8866 		switch_event.event_id.header.misc |=
8867 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8868 	}
8869 
8870 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8871 }
8872 
8873 /*
8874  * IRQ throttle logging
8875  */
8876 
perf_log_throttle(struct perf_event * event,int enable)8877 static void perf_log_throttle(struct perf_event *event, int enable)
8878 {
8879 	struct perf_output_handle handle;
8880 	struct perf_sample_data sample;
8881 	int ret;
8882 
8883 	struct {
8884 		struct perf_event_header	header;
8885 		u64				time;
8886 		u64				id;
8887 		u64				stream_id;
8888 	} throttle_event = {
8889 		.header = {
8890 			.type = PERF_RECORD_THROTTLE,
8891 			.misc = 0,
8892 			.size = sizeof(throttle_event),
8893 		},
8894 		.time		= perf_event_clock(event),
8895 		.id		= primary_event_id(event),
8896 		.stream_id	= event->id,
8897 	};
8898 
8899 	if (enable)
8900 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8901 
8902 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8903 
8904 	ret = perf_output_begin(&handle, &sample, event,
8905 				throttle_event.header.size);
8906 	if (ret)
8907 		return;
8908 
8909 	perf_output_put(&handle, throttle_event);
8910 	perf_event__output_id_sample(event, &handle, &sample);
8911 	perf_output_end(&handle);
8912 }
8913 
8914 /*
8915  * ksymbol register/unregister tracking
8916  */
8917 
8918 struct perf_ksymbol_event {
8919 	const char	*name;
8920 	int		name_len;
8921 	struct {
8922 		struct perf_event_header        header;
8923 		u64				addr;
8924 		u32				len;
8925 		u16				ksym_type;
8926 		u16				flags;
8927 	} event_id;
8928 };
8929 
perf_event_ksymbol_match(struct perf_event * event)8930 static int perf_event_ksymbol_match(struct perf_event *event)
8931 {
8932 	return event->attr.ksymbol;
8933 }
8934 
perf_event_ksymbol_output(struct perf_event * event,void * data)8935 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8936 {
8937 	struct perf_ksymbol_event *ksymbol_event = data;
8938 	struct perf_output_handle handle;
8939 	struct perf_sample_data sample;
8940 	int ret;
8941 
8942 	if (!perf_event_ksymbol_match(event))
8943 		return;
8944 
8945 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8946 				   &sample, event);
8947 	ret = perf_output_begin(&handle, &sample, event,
8948 				ksymbol_event->event_id.header.size);
8949 	if (ret)
8950 		return;
8951 
8952 	perf_output_put(&handle, ksymbol_event->event_id);
8953 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8954 	perf_event__output_id_sample(event, &handle, &sample);
8955 
8956 	perf_output_end(&handle);
8957 }
8958 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8959 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8960 			const char *sym)
8961 {
8962 	struct perf_ksymbol_event ksymbol_event;
8963 	char name[KSYM_NAME_LEN];
8964 	u16 flags = 0;
8965 	int name_len;
8966 
8967 	if (!atomic_read(&nr_ksymbol_events))
8968 		return;
8969 
8970 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8971 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8972 		goto err;
8973 
8974 	strlcpy(name, sym, KSYM_NAME_LEN);
8975 	name_len = strlen(name) + 1;
8976 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8977 		name[name_len++] = '\0';
8978 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8979 
8980 	if (unregister)
8981 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8982 
8983 	ksymbol_event = (struct perf_ksymbol_event){
8984 		.name = name,
8985 		.name_len = name_len,
8986 		.event_id = {
8987 			.header = {
8988 				.type = PERF_RECORD_KSYMBOL,
8989 				.size = sizeof(ksymbol_event.event_id) +
8990 					name_len,
8991 			},
8992 			.addr = addr,
8993 			.len = len,
8994 			.ksym_type = ksym_type,
8995 			.flags = flags,
8996 		},
8997 	};
8998 
8999 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9000 	return;
9001 err:
9002 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9003 }
9004 
9005 /*
9006  * bpf program load/unload tracking
9007  */
9008 
9009 struct perf_bpf_event {
9010 	struct bpf_prog	*prog;
9011 	struct {
9012 		struct perf_event_header        header;
9013 		u16				type;
9014 		u16				flags;
9015 		u32				id;
9016 		u8				tag[BPF_TAG_SIZE];
9017 	} event_id;
9018 };
9019 
perf_event_bpf_match(struct perf_event * event)9020 static int perf_event_bpf_match(struct perf_event *event)
9021 {
9022 	return event->attr.bpf_event;
9023 }
9024 
perf_event_bpf_output(struct perf_event * event,void * data)9025 static void perf_event_bpf_output(struct perf_event *event, void *data)
9026 {
9027 	struct perf_bpf_event *bpf_event = data;
9028 	struct perf_output_handle handle;
9029 	struct perf_sample_data sample;
9030 	int ret;
9031 
9032 	if (!perf_event_bpf_match(event))
9033 		return;
9034 
9035 	perf_event_header__init_id(&bpf_event->event_id.header,
9036 				   &sample, event);
9037 	ret = perf_output_begin(&handle, &sample, event,
9038 				bpf_event->event_id.header.size);
9039 	if (ret)
9040 		return;
9041 
9042 	perf_output_put(&handle, bpf_event->event_id);
9043 	perf_event__output_id_sample(event, &handle, &sample);
9044 
9045 	perf_output_end(&handle);
9046 }
9047 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9048 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9049 					 enum perf_bpf_event_type type)
9050 {
9051 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9052 	int i;
9053 
9054 	if (prog->aux->func_cnt == 0) {
9055 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9056 				   (u64)(unsigned long)prog->bpf_func,
9057 				   prog->jited_len, unregister,
9058 				   prog->aux->ksym.name);
9059 	} else {
9060 		for (i = 0; i < prog->aux->func_cnt; i++) {
9061 			struct bpf_prog *subprog = prog->aux->func[i];
9062 
9063 			perf_event_ksymbol(
9064 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9065 				(u64)(unsigned long)subprog->bpf_func,
9066 				subprog->jited_len, unregister,
9067 				subprog->aux->ksym.name);
9068 		}
9069 	}
9070 }
9071 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9072 void perf_event_bpf_event(struct bpf_prog *prog,
9073 			  enum perf_bpf_event_type type,
9074 			  u16 flags)
9075 {
9076 	struct perf_bpf_event bpf_event;
9077 
9078 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9079 	    type >= PERF_BPF_EVENT_MAX)
9080 		return;
9081 
9082 	switch (type) {
9083 	case PERF_BPF_EVENT_PROG_LOAD:
9084 	case PERF_BPF_EVENT_PROG_UNLOAD:
9085 		if (atomic_read(&nr_ksymbol_events))
9086 			perf_event_bpf_emit_ksymbols(prog, type);
9087 		break;
9088 	default:
9089 		break;
9090 	}
9091 
9092 	if (!atomic_read(&nr_bpf_events))
9093 		return;
9094 
9095 	bpf_event = (struct perf_bpf_event){
9096 		.prog = prog,
9097 		.event_id = {
9098 			.header = {
9099 				.type = PERF_RECORD_BPF_EVENT,
9100 				.size = sizeof(bpf_event.event_id),
9101 			},
9102 			.type = type,
9103 			.flags = flags,
9104 			.id = prog->aux->id,
9105 		},
9106 	};
9107 
9108 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9109 
9110 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9111 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9112 }
9113 
9114 struct perf_text_poke_event {
9115 	const void		*old_bytes;
9116 	const void		*new_bytes;
9117 	size_t			pad;
9118 	u16			old_len;
9119 	u16			new_len;
9120 
9121 	struct {
9122 		struct perf_event_header	header;
9123 
9124 		u64				addr;
9125 	} event_id;
9126 };
9127 
perf_event_text_poke_match(struct perf_event * event)9128 static int perf_event_text_poke_match(struct perf_event *event)
9129 {
9130 	return event->attr.text_poke;
9131 }
9132 
perf_event_text_poke_output(struct perf_event * event,void * data)9133 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9134 {
9135 	struct perf_text_poke_event *text_poke_event = data;
9136 	struct perf_output_handle handle;
9137 	struct perf_sample_data sample;
9138 	u64 padding = 0;
9139 	int ret;
9140 
9141 	if (!perf_event_text_poke_match(event))
9142 		return;
9143 
9144 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9145 
9146 	ret = perf_output_begin(&handle, &sample, event,
9147 				text_poke_event->event_id.header.size);
9148 	if (ret)
9149 		return;
9150 
9151 	perf_output_put(&handle, text_poke_event->event_id);
9152 	perf_output_put(&handle, text_poke_event->old_len);
9153 	perf_output_put(&handle, text_poke_event->new_len);
9154 
9155 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9156 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9157 
9158 	if (text_poke_event->pad)
9159 		__output_copy(&handle, &padding, text_poke_event->pad);
9160 
9161 	perf_event__output_id_sample(event, &handle, &sample);
9162 
9163 	perf_output_end(&handle);
9164 }
9165 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9166 void perf_event_text_poke(const void *addr, const void *old_bytes,
9167 			  size_t old_len, const void *new_bytes, size_t new_len)
9168 {
9169 	struct perf_text_poke_event text_poke_event;
9170 	size_t tot, pad;
9171 
9172 	if (!atomic_read(&nr_text_poke_events))
9173 		return;
9174 
9175 	tot  = sizeof(text_poke_event.old_len) + old_len;
9176 	tot += sizeof(text_poke_event.new_len) + new_len;
9177 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9178 
9179 	text_poke_event = (struct perf_text_poke_event){
9180 		.old_bytes    = old_bytes,
9181 		.new_bytes    = new_bytes,
9182 		.pad          = pad,
9183 		.old_len      = old_len,
9184 		.new_len      = new_len,
9185 		.event_id  = {
9186 			.header = {
9187 				.type = PERF_RECORD_TEXT_POKE,
9188 				.misc = PERF_RECORD_MISC_KERNEL,
9189 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9190 			},
9191 			.addr = (unsigned long)addr,
9192 		},
9193 	};
9194 
9195 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9196 }
9197 
perf_event_itrace_started(struct perf_event * event)9198 void perf_event_itrace_started(struct perf_event *event)
9199 {
9200 	event->attach_state |= PERF_ATTACH_ITRACE;
9201 }
9202 
perf_log_itrace_start(struct perf_event * event)9203 static void perf_log_itrace_start(struct perf_event *event)
9204 {
9205 	struct perf_output_handle handle;
9206 	struct perf_sample_data sample;
9207 	struct perf_aux_event {
9208 		struct perf_event_header        header;
9209 		u32				pid;
9210 		u32				tid;
9211 	} rec;
9212 	int ret;
9213 
9214 	if (event->parent)
9215 		event = event->parent;
9216 
9217 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9218 	    event->attach_state & PERF_ATTACH_ITRACE)
9219 		return;
9220 
9221 	rec.header.type	= PERF_RECORD_ITRACE_START;
9222 	rec.header.misc	= 0;
9223 	rec.header.size	= sizeof(rec);
9224 	rec.pid	= perf_event_pid(event, current);
9225 	rec.tid	= perf_event_tid(event, current);
9226 
9227 	perf_event_header__init_id(&rec.header, &sample, event);
9228 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9229 
9230 	if (ret)
9231 		return;
9232 
9233 	perf_output_put(&handle, rec);
9234 	perf_event__output_id_sample(event, &handle, &sample);
9235 
9236 	perf_output_end(&handle);
9237 }
9238 
9239 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9240 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9241 {
9242 	struct hw_perf_event *hwc = &event->hw;
9243 	int ret = 0;
9244 	u64 seq;
9245 
9246 	seq = __this_cpu_read(perf_throttled_seq);
9247 	if (seq != hwc->interrupts_seq) {
9248 		hwc->interrupts_seq = seq;
9249 		hwc->interrupts = 1;
9250 	} else {
9251 		hwc->interrupts++;
9252 		if (unlikely(throttle &&
9253 			     hwc->interrupts > max_samples_per_tick)) {
9254 			__this_cpu_inc(perf_throttled_count);
9255 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9256 			hwc->interrupts = MAX_INTERRUPTS;
9257 			perf_log_throttle(event, 0);
9258 			ret = 1;
9259 		}
9260 	}
9261 
9262 	if (event->attr.freq) {
9263 		u64 now = perf_clock();
9264 		s64 delta = now - hwc->freq_time_stamp;
9265 
9266 		hwc->freq_time_stamp = now;
9267 
9268 		if (delta > 0 && delta < 2*TICK_NSEC)
9269 			perf_adjust_period(event, delta, hwc->last_period, true);
9270 	}
9271 
9272 	return ret;
9273 }
9274 
perf_event_account_interrupt(struct perf_event * event)9275 int perf_event_account_interrupt(struct perf_event *event)
9276 {
9277 	return __perf_event_account_interrupt(event, 1);
9278 }
9279 
9280 /*
9281  * Generic event overflow handling, sampling.
9282  */
9283 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9284 static int __perf_event_overflow(struct perf_event *event,
9285 				   int throttle, struct perf_sample_data *data,
9286 				   struct pt_regs *regs)
9287 {
9288 	int events = atomic_read(&event->event_limit);
9289 	int ret = 0;
9290 
9291 	/*
9292 	 * Non-sampling counters might still use the PMI to fold short
9293 	 * hardware counters, ignore those.
9294 	 */
9295 	if (unlikely(!is_sampling_event(event)))
9296 		return 0;
9297 
9298 	ret = __perf_event_account_interrupt(event, throttle);
9299 
9300 	/*
9301 	 * XXX event_limit might not quite work as expected on inherited
9302 	 * events
9303 	 */
9304 
9305 	event->pending_kill = POLL_IN;
9306 	if (events && atomic_dec_and_test(&event->event_limit)) {
9307 		ret = 1;
9308 		event->pending_kill = POLL_HUP;
9309 		event->pending_addr = data->addr;
9310 
9311 		perf_event_disable_inatomic(event);
9312 	}
9313 
9314 	READ_ONCE(event->overflow_handler)(event, data, regs);
9315 
9316 	if (*perf_event_fasync(event) && event->pending_kill) {
9317 		event->pending_wakeup = 1;
9318 		irq_work_queue(&event->pending);
9319 	}
9320 
9321 	return ret;
9322 }
9323 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9324 int perf_event_overflow(struct perf_event *event,
9325 			  struct perf_sample_data *data,
9326 			  struct pt_regs *regs)
9327 {
9328 	return __perf_event_overflow(event, 1, data, regs);
9329 }
9330 
9331 /*
9332  * Generic software event infrastructure
9333  */
9334 
9335 struct swevent_htable {
9336 	struct swevent_hlist		*swevent_hlist;
9337 	struct mutex			hlist_mutex;
9338 	int				hlist_refcount;
9339 
9340 	/* Recursion avoidance in each contexts */
9341 	int				recursion[PERF_NR_CONTEXTS];
9342 };
9343 
9344 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9345 
9346 /*
9347  * We directly increment event->count and keep a second value in
9348  * event->hw.period_left to count intervals. This period event
9349  * is kept in the range [-sample_period, 0] so that we can use the
9350  * sign as trigger.
9351  */
9352 
perf_swevent_set_period(struct perf_event * event)9353 u64 perf_swevent_set_period(struct perf_event *event)
9354 {
9355 	struct hw_perf_event *hwc = &event->hw;
9356 	u64 period = hwc->last_period;
9357 	u64 nr, offset;
9358 	s64 old, val;
9359 
9360 	hwc->last_period = hwc->sample_period;
9361 
9362 again:
9363 	old = val = local64_read(&hwc->period_left);
9364 	if (val < 0)
9365 		return 0;
9366 
9367 	nr = div64_u64(period + val, period);
9368 	offset = nr * period;
9369 	val -= offset;
9370 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9371 		goto again;
9372 
9373 	return nr;
9374 }
9375 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9376 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9377 				    struct perf_sample_data *data,
9378 				    struct pt_regs *regs)
9379 {
9380 	struct hw_perf_event *hwc = &event->hw;
9381 	int throttle = 0;
9382 
9383 	if (!overflow)
9384 		overflow = perf_swevent_set_period(event);
9385 
9386 	if (hwc->interrupts == MAX_INTERRUPTS)
9387 		return;
9388 
9389 	for (; overflow; overflow--) {
9390 		if (__perf_event_overflow(event, throttle,
9391 					    data, regs)) {
9392 			/*
9393 			 * We inhibit the overflow from happening when
9394 			 * hwc->interrupts == MAX_INTERRUPTS.
9395 			 */
9396 			break;
9397 		}
9398 		throttle = 1;
9399 	}
9400 }
9401 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9402 static void perf_swevent_event(struct perf_event *event, u64 nr,
9403 			       struct perf_sample_data *data,
9404 			       struct pt_regs *regs)
9405 {
9406 	struct hw_perf_event *hwc = &event->hw;
9407 
9408 	local64_add(nr, &event->count);
9409 
9410 	if (!regs)
9411 		return;
9412 
9413 	if (!is_sampling_event(event))
9414 		return;
9415 
9416 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9417 		data->period = nr;
9418 		return perf_swevent_overflow(event, 1, data, regs);
9419 	} else
9420 		data->period = event->hw.last_period;
9421 
9422 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9423 		return perf_swevent_overflow(event, 1, data, regs);
9424 
9425 	if (local64_add_negative(nr, &hwc->period_left))
9426 		return;
9427 
9428 	perf_swevent_overflow(event, 0, data, regs);
9429 }
9430 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9431 static int perf_exclude_event(struct perf_event *event,
9432 			      struct pt_regs *regs)
9433 {
9434 	if (event->hw.state & PERF_HES_STOPPED)
9435 		return 1;
9436 
9437 	if (regs) {
9438 		if (event->attr.exclude_user && user_mode(regs))
9439 			return 1;
9440 
9441 		if (event->attr.exclude_kernel && !user_mode(regs))
9442 			return 1;
9443 	}
9444 
9445 	return 0;
9446 }
9447 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9448 static int perf_swevent_match(struct perf_event *event,
9449 				enum perf_type_id type,
9450 				u32 event_id,
9451 				struct perf_sample_data *data,
9452 				struct pt_regs *regs)
9453 {
9454 	if (event->attr.type != type)
9455 		return 0;
9456 
9457 	if (event->attr.config != event_id)
9458 		return 0;
9459 
9460 	if (perf_exclude_event(event, regs))
9461 		return 0;
9462 
9463 	return 1;
9464 }
9465 
swevent_hash(u64 type,u32 event_id)9466 static inline u64 swevent_hash(u64 type, u32 event_id)
9467 {
9468 	u64 val = event_id | (type << 32);
9469 
9470 	return hash_64(val, SWEVENT_HLIST_BITS);
9471 }
9472 
9473 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9474 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9475 {
9476 	u64 hash = swevent_hash(type, event_id);
9477 
9478 	return &hlist->heads[hash];
9479 }
9480 
9481 /* For the read side: events when they trigger */
9482 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9483 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9484 {
9485 	struct swevent_hlist *hlist;
9486 
9487 	hlist = rcu_dereference(swhash->swevent_hlist);
9488 	if (!hlist)
9489 		return NULL;
9490 
9491 	return __find_swevent_head(hlist, type, event_id);
9492 }
9493 
9494 /* For the event head insertion and removal in the hlist */
9495 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9496 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9497 {
9498 	struct swevent_hlist *hlist;
9499 	u32 event_id = event->attr.config;
9500 	u64 type = event->attr.type;
9501 
9502 	/*
9503 	 * Event scheduling is always serialized against hlist allocation
9504 	 * and release. Which makes the protected version suitable here.
9505 	 * The context lock guarantees that.
9506 	 */
9507 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9508 					  lockdep_is_held(&event->ctx->lock));
9509 	if (!hlist)
9510 		return NULL;
9511 
9512 	return __find_swevent_head(hlist, type, event_id);
9513 }
9514 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9515 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9516 				    u64 nr,
9517 				    struct perf_sample_data *data,
9518 				    struct pt_regs *regs)
9519 {
9520 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9521 	struct perf_event *event;
9522 	struct hlist_head *head;
9523 
9524 	rcu_read_lock();
9525 	head = find_swevent_head_rcu(swhash, type, event_id);
9526 	if (!head)
9527 		goto end;
9528 
9529 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9530 		if (perf_swevent_match(event, type, event_id, data, regs))
9531 			perf_swevent_event(event, nr, data, regs);
9532 	}
9533 end:
9534 	rcu_read_unlock();
9535 }
9536 
9537 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9538 
perf_swevent_get_recursion_context(void)9539 int perf_swevent_get_recursion_context(void)
9540 {
9541 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9542 
9543 	return get_recursion_context(swhash->recursion);
9544 }
9545 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9546 
perf_swevent_put_recursion_context(int rctx)9547 void perf_swevent_put_recursion_context(int rctx)
9548 {
9549 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9550 
9551 	put_recursion_context(swhash->recursion, rctx);
9552 }
9553 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9554 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9555 {
9556 	struct perf_sample_data data;
9557 
9558 	if (WARN_ON_ONCE(!regs))
9559 		return;
9560 
9561 	perf_sample_data_init(&data, addr, 0);
9562 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9563 }
9564 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9565 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9566 {
9567 	int rctx;
9568 
9569 	preempt_disable_notrace();
9570 	rctx = perf_swevent_get_recursion_context();
9571 	if (unlikely(rctx < 0))
9572 		goto fail;
9573 
9574 	___perf_sw_event(event_id, nr, regs, addr);
9575 
9576 	perf_swevent_put_recursion_context(rctx);
9577 fail:
9578 	preempt_enable_notrace();
9579 }
9580 
perf_swevent_read(struct perf_event * event)9581 static void perf_swevent_read(struct perf_event *event)
9582 {
9583 }
9584 
perf_swevent_add(struct perf_event * event,int flags)9585 static int perf_swevent_add(struct perf_event *event, int flags)
9586 {
9587 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9588 	struct hw_perf_event *hwc = &event->hw;
9589 	struct hlist_head *head;
9590 
9591 	if (is_sampling_event(event)) {
9592 		hwc->last_period = hwc->sample_period;
9593 		perf_swevent_set_period(event);
9594 	}
9595 
9596 	hwc->state = !(flags & PERF_EF_START);
9597 
9598 	head = find_swevent_head(swhash, event);
9599 	if (WARN_ON_ONCE(!head))
9600 		return -EINVAL;
9601 
9602 	hlist_add_head_rcu(&event->hlist_entry, head);
9603 	perf_event_update_userpage(event);
9604 
9605 	return 0;
9606 }
9607 
perf_swevent_del(struct perf_event * event,int flags)9608 static void perf_swevent_del(struct perf_event *event, int flags)
9609 {
9610 	hlist_del_rcu(&event->hlist_entry);
9611 }
9612 
perf_swevent_start(struct perf_event * event,int flags)9613 static void perf_swevent_start(struct perf_event *event, int flags)
9614 {
9615 	event->hw.state = 0;
9616 }
9617 
perf_swevent_stop(struct perf_event * event,int flags)9618 static void perf_swevent_stop(struct perf_event *event, int flags)
9619 {
9620 	event->hw.state = PERF_HES_STOPPED;
9621 }
9622 
9623 /* Deref the hlist from the update side */
9624 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9625 swevent_hlist_deref(struct swevent_htable *swhash)
9626 {
9627 	return rcu_dereference_protected(swhash->swevent_hlist,
9628 					 lockdep_is_held(&swhash->hlist_mutex));
9629 }
9630 
swevent_hlist_release(struct swevent_htable * swhash)9631 static void swevent_hlist_release(struct swevent_htable *swhash)
9632 {
9633 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9634 
9635 	if (!hlist)
9636 		return;
9637 
9638 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9639 	kfree_rcu(hlist, rcu_head);
9640 }
9641 
swevent_hlist_put_cpu(int cpu)9642 static void swevent_hlist_put_cpu(int cpu)
9643 {
9644 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9645 
9646 	mutex_lock(&swhash->hlist_mutex);
9647 
9648 	if (!--swhash->hlist_refcount)
9649 		swevent_hlist_release(swhash);
9650 
9651 	mutex_unlock(&swhash->hlist_mutex);
9652 }
9653 
swevent_hlist_put(void)9654 static void swevent_hlist_put(void)
9655 {
9656 	int cpu;
9657 
9658 	for_each_possible_cpu(cpu)
9659 		swevent_hlist_put_cpu(cpu);
9660 }
9661 
swevent_hlist_get_cpu(int cpu)9662 static int swevent_hlist_get_cpu(int cpu)
9663 {
9664 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9665 	int err = 0;
9666 
9667 	mutex_lock(&swhash->hlist_mutex);
9668 	if (!swevent_hlist_deref(swhash) &&
9669 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9670 		struct swevent_hlist *hlist;
9671 
9672 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9673 		if (!hlist) {
9674 			err = -ENOMEM;
9675 			goto exit;
9676 		}
9677 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9678 	}
9679 	swhash->hlist_refcount++;
9680 exit:
9681 	mutex_unlock(&swhash->hlist_mutex);
9682 
9683 	return err;
9684 }
9685 
swevent_hlist_get(void)9686 static int swevent_hlist_get(void)
9687 {
9688 	int err, cpu, failed_cpu;
9689 
9690 	mutex_lock(&pmus_lock);
9691 	for_each_possible_cpu(cpu) {
9692 		err = swevent_hlist_get_cpu(cpu);
9693 		if (err) {
9694 			failed_cpu = cpu;
9695 			goto fail;
9696 		}
9697 	}
9698 	mutex_unlock(&pmus_lock);
9699 	return 0;
9700 fail:
9701 	for_each_possible_cpu(cpu) {
9702 		if (cpu == failed_cpu)
9703 			break;
9704 		swevent_hlist_put_cpu(cpu);
9705 	}
9706 	mutex_unlock(&pmus_lock);
9707 	return err;
9708 }
9709 
9710 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9711 
sw_perf_event_destroy(struct perf_event * event)9712 static void sw_perf_event_destroy(struct perf_event *event)
9713 {
9714 	u64 event_id = event->attr.config;
9715 
9716 	WARN_ON(event->parent);
9717 
9718 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9719 	swevent_hlist_put();
9720 }
9721 
perf_swevent_init(struct perf_event * event)9722 static int perf_swevent_init(struct perf_event *event)
9723 {
9724 	u64 event_id = event->attr.config;
9725 
9726 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9727 		return -ENOENT;
9728 
9729 	/*
9730 	 * no branch sampling for software events
9731 	 */
9732 	if (has_branch_stack(event))
9733 		return -EOPNOTSUPP;
9734 
9735 	switch (event_id) {
9736 	case PERF_COUNT_SW_CPU_CLOCK:
9737 	case PERF_COUNT_SW_TASK_CLOCK:
9738 		return -ENOENT;
9739 
9740 	default:
9741 		break;
9742 	}
9743 
9744 	if (event_id >= PERF_COUNT_SW_MAX)
9745 		return -ENOENT;
9746 
9747 	if (!event->parent) {
9748 		int err;
9749 
9750 		err = swevent_hlist_get();
9751 		if (err)
9752 			return err;
9753 
9754 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9755 		event->destroy = sw_perf_event_destroy;
9756 	}
9757 
9758 	return 0;
9759 }
9760 
9761 static struct pmu perf_swevent = {
9762 	.task_ctx_nr	= perf_sw_context,
9763 
9764 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9765 
9766 	.event_init	= perf_swevent_init,
9767 	.add		= perf_swevent_add,
9768 	.del		= perf_swevent_del,
9769 	.start		= perf_swevent_start,
9770 	.stop		= perf_swevent_stop,
9771 	.read		= perf_swevent_read,
9772 };
9773 
9774 #ifdef CONFIG_EVENT_TRACING
9775 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9776 static int perf_tp_filter_match(struct perf_event *event,
9777 				struct perf_sample_data *data)
9778 {
9779 	void *record = data->raw->frag.data;
9780 
9781 	/* only top level events have filters set */
9782 	if (event->parent)
9783 		event = event->parent;
9784 
9785 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9786 		return 1;
9787 	return 0;
9788 }
9789 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9790 static int perf_tp_event_match(struct perf_event *event,
9791 				struct perf_sample_data *data,
9792 				struct pt_regs *regs)
9793 {
9794 	if (event->hw.state & PERF_HES_STOPPED)
9795 		return 0;
9796 	/*
9797 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9798 	 */
9799 	if (event->attr.exclude_kernel && !user_mode(regs))
9800 		return 0;
9801 
9802 	if (!perf_tp_filter_match(event, data))
9803 		return 0;
9804 
9805 	return 1;
9806 }
9807 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9808 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9809 			       struct trace_event_call *call, u64 count,
9810 			       struct pt_regs *regs, struct hlist_head *head,
9811 			       struct task_struct *task)
9812 {
9813 	if (bpf_prog_array_valid(call)) {
9814 		*(struct pt_regs **)raw_data = regs;
9815 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9816 			perf_swevent_put_recursion_context(rctx);
9817 			return;
9818 		}
9819 	}
9820 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9821 		      rctx, task);
9822 }
9823 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9824 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9825 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9826 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9827 		   struct task_struct *task)
9828 {
9829 	struct perf_sample_data data;
9830 	struct perf_event *event;
9831 
9832 	struct perf_raw_record raw = {
9833 		.frag = {
9834 			.size = entry_size,
9835 			.data = record,
9836 		},
9837 	};
9838 
9839 	perf_sample_data_init(&data, 0, 0);
9840 	data.raw = &raw;
9841 
9842 	perf_trace_buf_update(record, event_type);
9843 
9844 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9845 		if (perf_tp_event_match(event, &data, regs))
9846 			perf_swevent_event(event, count, &data, regs);
9847 	}
9848 
9849 	/*
9850 	 * If we got specified a target task, also iterate its context and
9851 	 * deliver this event there too.
9852 	 */
9853 	if (task && task != current) {
9854 		struct perf_event_context *ctx;
9855 		struct trace_entry *entry = record;
9856 
9857 		rcu_read_lock();
9858 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9859 		if (!ctx)
9860 			goto unlock;
9861 
9862 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9863 			if (event->cpu != smp_processor_id())
9864 				continue;
9865 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9866 				continue;
9867 			if (event->attr.config != entry->type)
9868 				continue;
9869 			/* Cannot deliver synchronous signal to other task. */
9870 			if (event->attr.sigtrap)
9871 				continue;
9872 			if (perf_tp_event_match(event, &data, regs))
9873 				perf_swevent_event(event, count, &data, regs);
9874 		}
9875 unlock:
9876 		rcu_read_unlock();
9877 	}
9878 
9879 	perf_swevent_put_recursion_context(rctx);
9880 }
9881 EXPORT_SYMBOL_GPL(perf_tp_event);
9882 
tp_perf_event_destroy(struct perf_event * event)9883 static void tp_perf_event_destroy(struct perf_event *event)
9884 {
9885 	perf_trace_destroy(event);
9886 }
9887 
perf_tp_event_init(struct perf_event * event)9888 static int perf_tp_event_init(struct perf_event *event)
9889 {
9890 	int err;
9891 
9892 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9893 		return -ENOENT;
9894 
9895 	/*
9896 	 * no branch sampling for tracepoint events
9897 	 */
9898 	if (has_branch_stack(event))
9899 		return -EOPNOTSUPP;
9900 
9901 	err = perf_trace_init(event);
9902 	if (err)
9903 		return err;
9904 
9905 	event->destroy = tp_perf_event_destroy;
9906 
9907 	return 0;
9908 }
9909 
9910 static struct pmu perf_tracepoint = {
9911 	.task_ctx_nr	= perf_sw_context,
9912 
9913 	.event_init	= perf_tp_event_init,
9914 	.add		= perf_trace_add,
9915 	.del		= perf_trace_del,
9916 	.start		= perf_swevent_start,
9917 	.stop		= perf_swevent_stop,
9918 	.read		= perf_swevent_read,
9919 };
9920 
9921 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9922 /*
9923  * Flags in config, used by dynamic PMU kprobe and uprobe
9924  * The flags should match following PMU_FORMAT_ATTR().
9925  *
9926  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9927  *                               if not set, create kprobe/uprobe
9928  *
9929  * The following values specify a reference counter (or semaphore in the
9930  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9931  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9932  *
9933  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9934  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9935  */
9936 enum perf_probe_config {
9937 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9938 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9939 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9940 };
9941 
9942 PMU_FORMAT_ATTR(retprobe, "config:0");
9943 #endif
9944 
9945 #ifdef CONFIG_KPROBE_EVENTS
9946 static struct attribute *kprobe_attrs[] = {
9947 	&format_attr_retprobe.attr,
9948 	NULL,
9949 };
9950 
9951 static struct attribute_group kprobe_format_group = {
9952 	.name = "format",
9953 	.attrs = kprobe_attrs,
9954 };
9955 
9956 static const struct attribute_group *kprobe_attr_groups[] = {
9957 	&kprobe_format_group,
9958 	NULL,
9959 };
9960 
9961 static int perf_kprobe_event_init(struct perf_event *event);
9962 static struct pmu perf_kprobe = {
9963 	.task_ctx_nr	= perf_sw_context,
9964 	.event_init	= perf_kprobe_event_init,
9965 	.add		= perf_trace_add,
9966 	.del		= perf_trace_del,
9967 	.start		= perf_swevent_start,
9968 	.stop		= perf_swevent_stop,
9969 	.read		= perf_swevent_read,
9970 	.attr_groups	= kprobe_attr_groups,
9971 };
9972 
perf_kprobe_event_init(struct perf_event * event)9973 static int perf_kprobe_event_init(struct perf_event *event)
9974 {
9975 	int err;
9976 	bool is_retprobe;
9977 
9978 	if (event->attr.type != perf_kprobe.type)
9979 		return -ENOENT;
9980 
9981 	if (!perfmon_capable())
9982 		return -EACCES;
9983 
9984 	/*
9985 	 * no branch sampling for probe events
9986 	 */
9987 	if (has_branch_stack(event))
9988 		return -EOPNOTSUPP;
9989 
9990 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9991 	err = perf_kprobe_init(event, is_retprobe);
9992 	if (err)
9993 		return err;
9994 
9995 	event->destroy = perf_kprobe_destroy;
9996 
9997 	return 0;
9998 }
9999 #endif /* CONFIG_KPROBE_EVENTS */
10000 
10001 #ifdef CONFIG_UPROBE_EVENTS
10002 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10003 
10004 static struct attribute *uprobe_attrs[] = {
10005 	&format_attr_retprobe.attr,
10006 	&format_attr_ref_ctr_offset.attr,
10007 	NULL,
10008 };
10009 
10010 static struct attribute_group uprobe_format_group = {
10011 	.name = "format",
10012 	.attrs = uprobe_attrs,
10013 };
10014 
10015 static const struct attribute_group *uprobe_attr_groups[] = {
10016 	&uprobe_format_group,
10017 	NULL,
10018 };
10019 
10020 static int perf_uprobe_event_init(struct perf_event *event);
10021 static struct pmu perf_uprobe = {
10022 	.task_ctx_nr	= perf_sw_context,
10023 	.event_init	= perf_uprobe_event_init,
10024 	.add		= perf_trace_add,
10025 	.del		= perf_trace_del,
10026 	.start		= perf_swevent_start,
10027 	.stop		= perf_swevent_stop,
10028 	.read		= perf_swevent_read,
10029 	.attr_groups	= uprobe_attr_groups,
10030 };
10031 
perf_uprobe_event_init(struct perf_event * event)10032 static int perf_uprobe_event_init(struct perf_event *event)
10033 {
10034 	int err;
10035 	unsigned long ref_ctr_offset;
10036 	bool is_retprobe;
10037 
10038 	if (event->attr.type != perf_uprobe.type)
10039 		return -ENOENT;
10040 
10041 	if (!perfmon_capable())
10042 		return -EACCES;
10043 
10044 	/*
10045 	 * no branch sampling for probe events
10046 	 */
10047 	if (has_branch_stack(event))
10048 		return -EOPNOTSUPP;
10049 
10050 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10051 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10052 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10053 	if (err)
10054 		return err;
10055 
10056 	event->destroy = perf_uprobe_destroy;
10057 
10058 	return 0;
10059 }
10060 #endif /* CONFIG_UPROBE_EVENTS */
10061 
perf_tp_register(void)10062 static inline void perf_tp_register(void)
10063 {
10064 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10065 #ifdef CONFIG_KPROBE_EVENTS
10066 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10067 #endif
10068 #ifdef CONFIG_UPROBE_EVENTS
10069 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10070 #endif
10071 }
10072 
perf_event_free_filter(struct perf_event * event)10073 static void perf_event_free_filter(struct perf_event *event)
10074 {
10075 	ftrace_profile_free_filter(event);
10076 }
10077 
10078 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10079 static void bpf_overflow_handler(struct perf_event *event,
10080 				 struct perf_sample_data *data,
10081 				 struct pt_regs *regs)
10082 {
10083 	struct bpf_perf_event_data_kern ctx = {
10084 		.data = data,
10085 		.event = event,
10086 	};
10087 	struct bpf_prog *prog;
10088 	int ret = 0;
10089 
10090 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10091 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10092 		goto out;
10093 	rcu_read_lock();
10094 	prog = READ_ONCE(event->prog);
10095 	if (prog)
10096 		ret = bpf_prog_run(prog, &ctx);
10097 	rcu_read_unlock();
10098 out:
10099 	__this_cpu_dec(bpf_prog_active);
10100 	if (!ret)
10101 		return;
10102 
10103 	event->orig_overflow_handler(event, data, regs);
10104 }
10105 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10106 static int perf_event_set_bpf_handler(struct perf_event *event,
10107 				      struct bpf_prog *prog,
10108 				      u64 bpf_cookie)
10109 {
10110 	if (event->overflow_handler_context)
10111 		/* hw breakpoint or kernel counter */
10112 		return -EINVAL;
10113 
10114 	if (event->prog)
10115 		return -EEXIST;
10116 
10117 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10118 		return -EINVAL;
10119 
10120 	if (event->attr.precise_ip &&
10121 	    prog->call_get_stack &&
10122 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10123 	     event->attr.exclude_callchain_kernel ||
10124 	     event->attr.exclude_callchain_user)) {
10125 		/*
10126 		 * On perf_event with precise_ip, calling bpf_get_stack()
10127 		 * may trigger unwinder warnings and occasional crashes.
10128 		 * bpf_get_[stack|stackid] works around this issue by using
10129 		 * callchain attached to perf_sample_data. If the
10130 		 * perf_event does not full (kernel and user) callchain
10131 		 * attached to perf_sample_data, do not allow attaching BPF
10132 		 * program that calls bpf_get_[stack|stackid].
10133 		 */
10134 		return -EPROTO;
10135 	}
10136 
10137 	event->prog = prog;
10138 	event->bpf_cookie = bpf_cookie;
10139 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10140 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10141 	return 0;
10142 }
10143 
perf_event_free_bpf_handler(struct perf_event * event)10144 static void perf_event_free_bpf_handler(struct perf_event *event)
10145 {
10146 	struct bpf_prog *prog = event->prog;
10147 
10148 	if (!prog)
10149 		return;
10150 
10151 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10152 	event->prog = NULL;
10153 	bpf_prog_put(prog);
10154 }
10155 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10156 static int perf_event_set_bpf_handler(struct perf_event *event,
10157 				      struct bpf_prog *prog,
10158 				      u64 bpf_cookie)
10159 {
10160 	return -EOPNOTSUPP;
10161 }
perf_event_free_bpf_handler(struct perf_event * event)10162 static void perf_event_free_bpf_handler(struct perf_event *event)
10163 {
10164 }
10165 #endif
10166 
10167 /*
10168  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10169  * with perf_event_open()
10170  */
perf_event_is_tracing(struct perf_event * event)10171 static inline bool perf_event_is_tracing(struct perf_event *event)
10172 {
10173 	if (event->pmu == &perf_tracepoint)
10174 		return true;
10175 #ifdef CONFIG_KPROBE_EVENTS
10176 	if (event->pmu == &perf_kprobe)
10177 		return true;
10178 #endif
10179 #ifdef CONFIG_UPROBE_EVENTS
10180 	if (event->pmu == &perf_uprobe)
10181 		return true;
10182 #endif
10183 	return false;
10184 }
10185 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10186 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10187 			    u64 bpf_cookie)
10188 {
10189 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10190 
10191 	if (!perf_event_is_tracing(event))
10192 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10193 
10194 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10195 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10196 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10197 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10198 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10199 		return -EINVAL;
10200 
10201 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10202 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10203 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10204 		return -EINVAL;
10205 
10206 	/* Kprobe override only works for kprobes, not uprobes. */
10207 	if (prog->kprobe_override &&
10208 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10209 		return -EINVAL;
10210 
10211 	if (is_tracepoint || is_syscall_tp) {
10212 		int off = trace_event_get_offsets(event->tp_event);
10213 
10214 		if (prog->aux->max_ctx_offset > off)
10215 			return -EACCES;
10216 	}
10217 
10218 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10219 }
10220 
perf_event_free_bpf_prog(struct perf_event * event)10221 void perf_event_free_bpf_prog(struct perf_event *event)
10222 {
10223 	if (!perf_event_is_tracing(event)) {
10224 		perf_event_free_bpf_handler(event);
10225 		return;
10226 	}
10227 	perf_event_detach_bpf_prog(event);
10228 }
10229 
10230 #else
10231 
perf_tp_register(void)10232 static inline void perf_tp_register(void)
10233 {
10234 }
10235 
perf_event_free_filter(struct perf_event * event)10236 static void perf_event_free_filter(struct perf_event *event)
10237 {
10238 }
10239 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10240 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10241 			    u64 bpf_cookie)
10242 {
10243 	return -ENOENT;
10244 }
10245 
perf_event_free_bpf_prog(struct perf_event * event)10246 void perf_event_free_bpf_prog(struct perf_event *event)
10247 {
10248 }
10249 #endif /* CONFIG_EVENT_TRACING */
10250 
10251 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10252 void perf_bp_event(struct perf_event *bp, void *data)
10253 {
10254 	struct perf_sample_data sample;
10255 	struct pt_regs *regs = data;
10256 
10257 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10258 
10259 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10260 		perf_swevent_event(bp, 1, &sample, regs);
10261 }
10262 #endif
10263 
10264 /*
10265  * Allocate a new address filter
10266  */
10267 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10268 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10269 {
10270 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10271 	struct perf_addr_filter *filter;
10272 
10273 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10274 	if (!filter)
10275 		return NULL;
10276 
10277 	INIT_LIST_HEAD(&filter->entry);
10278 	list_add_tail(&filter->entry, filters);
10279 
10280 	return filter;
10281 }
10282 
free_filters_list(struct list_head * filters)10283 static void free_filters_list(struct list_head *filters)
10284 {
10285 	struct perf_addr_filter *filter, *iter;
10286 
10287 	list_for_each_entry_safe(filter, iter, filters, entry) {
10288 		path_put(&filter->path);
10289 		list_del(&filter->entry);
10290 		kfree(filter);
10291 	}
10292 }
10293 
10294 /*
10295  * Free existing address filters and optionally install new ones
10296  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10297 static void perf_addr_filters_splice(struct perf_event *event,
10298 				     struct list_head *head)
10299 {
10300 	unsigned long flags;
10301 	LIST_HEAD(list);
10302 
10303 	if (!has_addr_filter(event))
10304 		return;
10305 
10306 	/* don't bother with children, they don't have their own filters */
10307 	if (event->parent)
10308 		return;
10309 
10310 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10311 
10312 	list_splice_init(&event->addr_filters.list, &list);
10313 	if (head)
10314 		list_splice(head, &event->addr_filters.list);
10315 
10316 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10317 
10318 	free_filters_list(&list);
10319 }
10320 
10321 /*
10322  * Scan through mm's vmas and see if one of them matches the
10323  * @filter; if so, adjust filter's address range.
10324  * Called with mm::mmap_lock down for reading.
10325  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10326 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10327 				   struct mm_struct *mm,
10328 				   struct perf_addr_filter_range *fr)
10329 {
10330 	struct vm_area_struct *vma;
10331 
10332 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10333 		if (!vma->vm_file)
10334 			continue;
10335 
10336 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10337 			return;
10338 	}
10339 }
10340 
10341 /*
10342  * Update event's address range filters based on the
10343  * task's existing mappings, if any.
10344  */
perf_event_addr_filters_apply(struct perf_event * event)10345 static void perf_event_addr_filters_apply(struct perf_event *event)
10346 {
10347 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10348 	struct task_struct *task = READ_ONCE(event->ctx->task);
10349 	struct perf_addr_filter *filter;
10350 	struct mm_struct *mm = NULL;
10351 	unsigned int count = 0;
10352 	unsigned long flags;
10353 
10354 	/*
10355 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10356 	 * will stop on the parent's child_mutex that our caller is also holding
10357 	 */
10358 	if (task == TASK_TOMBSTONE)
10359 		return;
10360 
10361 	if (ifh->nr_file_filters) {
10362 		mm = get_task_mm(task);
10363 		if (!mm)
10364 			goto restart;
10365 
10366 		mmap_read_lock(mm);
10367 	}
10368 
10369 	raw_spin_lock_irqsave(&ifh->lock, flags);
10370 	list_for_each_entry(filter, &ifh->list, entry) {
10371 		if (filter->path.dentry) {
10372 			/*
10373 			 * Adjust base offset if the filter is associated to a
10374 			 * binary that needs to be mapped:
10375 			 */
10376 			event->addr_filter_ranges[count].start = 0;
10377 			event->addr_filter_ranges[count].size = 0;
10378 
10379 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10380 		} else {
10381 			event->addr_filter_ranges[count].start = filter->offset;
10382 			event->addr_filter_ranges[count].size  = filter->size;
10383 		}
10384 
10385 		count++;
10386 	}
10387 
10388 	event->addr_filters_gen++;
10389 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10390 
10391 	if (ifh->nr_file_filters) {
10392 		mmap_read_unlock(mm);
10393 
10394 		mmput(mm);
10395 	}
10396 
10397 restart:
10398 	perf_event_stop(event, 1);
10399 }
10400 
10401 /*
10402  * Address range filtering: limiting the data to certain
10403  * instruction address ranges. Filters are ioctl()ed to us from
10404  * userspace as ascii strings.
10405  *
10406  * Filter string format:
10407  *
10408  * ACTION RANGE_SPEC
10409  * where ACTION is one of the
10410  *  * "filter": limit the trace to this region
10411  *  * "start": start tracing from this address
10412  *  * "stop": stop tracing at this address/region;
10413  * RANGE_SPEC is
10414  *  * for kernel addresses: <start address>[/<size>]
10415  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10416  *
10417  * if <size> is not specified or is zero, the range is treated as a single
10418  * address; not valid for ACTION=="filter".
10419  */
10420 enum {
10421 	IF_ACT_NONE = -1,
10422 	IF_ACT_FILTER,
10423 	IF_ACT_START,
10424 	IF_ACT_STOP,
10425 	IF_SRC_FILE,
10426 	IF_SRC_KERNEL,
10427 	IF_SRC_FILEADDR,
10428 	IF_SRC_KERNELADDR,
10429 };
10430 
10431 enum {
10432 	IF_STATE_ACTION = 0,
10433 	IF_STATE_SOURCE,
10434 	IF_STATE_END,
10435 };
10436 
10437 static const match_table_t if_tokens = {
10438 	{ IF_ACT_FILTER,	"filter" },
10439 	{ IF_ACT_START,		"start" },
10440 	{ IF_ACT_STOP,		"stop" },
10441 	{ IF_SRC_FILE,		"%u/%u@%s" },
10442 	{ IF_SRC_KERNEL,	"%u/%u" },
10443 	{ IF_SRC_FILEADDR,	"%u@%s" },
10444 	{ IF_SRC_KERNELADDR,	"%u" },
10445 	{ IF_ACT_NONE,		NULL },
10446 };
10447 
10448 /*
10449  * Address filter string parser
10450  */
10451 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10452 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10453 			     struct list_head *filters)
10454 {
10455 	struct perf_addr_filter *filter = NULL;
10456 	char *start, *orig, *filename = NULL;
10457 	substring_t args[MAX_OPT_ARGS];
10458 	int state = IF_STATE_ACTION, token;
10459 	unsigned int kernel = 0;
10460 	int ret = -EINVAL;
10461 
10462 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10463 	if (!fstr)
10464 		return -ENOMEM;
10465 
10466 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10467 		static const enum perf_addr_filter_action_t actions[] = {
10468 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10469 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10470 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10471 		};
10472 		ret = -EINVAL;
10473 
10474 		if (!*start)
10475 			continue;
10476 
10477 		/* filter definition begins */
10478 		if (state == IF_STATE_ACTION) {
10479 			filter = perf_addr_filter_new(event, filters);
10480 			if (!filter)
10481 				goto fail;
10482 		}
10483 
10484 		token = match_token(start, if_tokens, args);
10485 		switch (token) {
10486 		case IF_ACT_FILTER:
10487 		case IF_ACT_START:
10488 		case IF_ACT_STOP:
10489 			if (state != IF_STATE_ACTION)
10490 				goto fail;
10491 
10492 			filter->action = actions[token];
10493 			state = IF_STATE_SOURCE;
10494 			break;
10495 
10496 		case IF_SRC_KERNELADDR:
10497 		case IF_SRC_KERNEL:
10498 			kernel = 1;
10499 			fallthrough;
10500 
10501 		case IF_SRC_FILEADDR:
10502 		case IF_SRC_FILE:
10503 			if (state != IF_STATE_SOURCE)
10504 				goto fail;
10505 
10506 			*args[0].to = 0;
10507 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10508 			if (ret)
10509 				goto fail;
10510 
10511 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10512 				*args[1].to = 0;
10513 				ret = kstrtoul(args[1].from, 0, &filter->size);
10514 				if (ret)
10515 					goto fail;
10516 			}
10517 
10518 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10519 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10520 
10521 				kfree(filename);
10522 				filename = match_strdup(&args[fpos]);
10523 				if (!filename) {
10524 					ret = -ENOMEM;
10525 					goto fail;
10526 				}
10527 			}
10528 
10529 			state = IF_STATE_END;
10530 			break;
10531 
10532 		default:
10533 			goto fail;
10534 		}
10535 
10536 		/*
10537 		 * Filter definition is fully parsed, validate and install it.
10538 		 * Make sure that it doesn't contradict itself or the event's
10539 		 * attribute.
10540 		 */
10541 		if (state == IF_STATE_END) {
10542 			ret = -EINVAL;
10543 			if (kernel && event->attr.exclude_kernel)
10544 				goto fail;
10545 
10546 			/*
10547 			 * ACTION "filter" must have a non-zero length region
10548 			 * specified.
10549 			 */
10550 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10551 			    !filter->size)
10552 				goto fail;
10553 
10554 			if (!kernel) {
10555 				if (!filename)
10556 					goto fail;
10557 
10558 				/*
10559 				 * For now, we only support file-based filters
10560 				 * in per-task events; doing so for CPU-wide
10561 				 * events requires additional context switching
10562 				 * trickery, since same object code will be
10563 				 * mapped at different virtual addresses in
10564 				 * different processes.
10565 				 */
10566 				ret = -EOPNOTSUPP;
10567 				if (!event->ctx->task)
10568 					goto fail;
10569 
10570 				/* look up the path and grab its inode */
10571 				ret = kern_path(filename, LOOKUP_FOLLOW,
10572 						&filter->path);
10573 				if (ret)
10574 					goto fail;
10575 
10576 				ret = -EINVAL;
10577 				if (!filter->path.dentry ||
10578 				    !S_ISREG(d_inode(filter->path.dentry)
10579 					     ->i_mode))
10580 					goto fail;
10581 
10582 				event->addr_filters.nr_file_filters++;
10583 			}
10584 
10585 			/* ready to consume more filters */
10586 			kfree(filename);
10587 			filename = NULL;
10588 			state = IF_STATE_ACTION;
10589 			filter = NULL;
10590 			kernel = 0;
10591 		}
10592 	}
10593 
10594 	if (state != IF_STATE_ACTION)
10595 		goto fail;
10596 
10597 	kfree(filename);
10598 	kfree(orig);
10599 
10600 	return 0;
10601 
10602 fail:
10603 	kfree(filename);
10604 	free_filters_list(filters);
10605 	kfree(orig);
10606 
10607 	return ret;
10608 }
10609 
10610 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10611 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10612 {
10613 	LIST_HEAD(filters);
10614 	int ret;
10615 
10616 	/*
10617 	 * Since this is called in perf_ioctl() path, we're already holding
10618 	 * ctx::mutex.
10619 	 */
10620 	lockdep_assert_held(&event->ctx->mutex);
10621 
10622 	if (WARN_ON_ONCE(event->parent))
10623 		return -EINVAL;
10624 
10625 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10626 	if (ret)
10627 		goto fail_clear_files;
10628 
10629 	ret = event->pmu->addr_filters_validate(&filters);
10630 	if (ret)
10631 		goto fail_free_filters;
10632 
10633 	/* remove existing filters, if any */
10634 	perf_addr_filters_splice(event, &filters);
10635 
10636 	/* install new filters */
10637 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10638 
10639 	return ret;
10640 
10641 fail_free_filters:
10642 	free_filters_list(&filters);
10643 
10644 fail_clear_files:
10645 	event->addr_filters.nr_file_filters = 0;
10646 
10647 	return ret;
10648 }
10649 
perf_event_set_filter(struct perf_event * event,void __user * arg)10650 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10651 {
10652 	int ret = -EINVAL;
10653 	char *filter_str;
10654 
10655 	filter_str = strndup_user(arg, PAGE_SIZE);
10656 	if (IS_ERR(filter_str))
10657 		return PTR_ERR(filter_str);
10658 
10659 #ifdef CONFIG_EVENT_TRACING
10660 	if (perf_event_is_tracing(event)) {
10661 		struct perf_event_context *ctx = event->ctx;
10662 
10663 		/*
10664 		 * Beware, here be dragons!!
10665 		 *
10666 		 * the tracepoint muck will deadlock against ctx->mutex, but
10667 		 * the tracepoint stuff does not actually need it. So
10668 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10669 		 * already have a reference on ctx.
10670 		 *
10671 		 * This can result in event getting moved to a different ctx,
10672 		 * but that does not affect the tracepoint state.
10673 		 */
10674 		mutex_unlock(&ctx->mutex);
10675 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10676 		mutex_lock(&ctx->mutex);
10677 	} else
10678 #endif
10679 	if (has_addr_filter(event))
10680 		ret = perf_event_set_addr_filter(event, filter_str);
10681 
10682 	kfree(filter_str);
10683 	return ret;
10684 }
10685 
10686 /*
10687  * hrtimer based swevent callback
10688  */
10689 
perf_swevent_hrtimer(struct hrtimer * hrtimer)10690 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10691 {
10692 	enum hrtimer_restart ret = HRTIMER_RESTART;
10693 	struct perf_sample_data data;
10694 	struct pt_regs *regs;
10695 	struct perf_event *event;
10696 	u64 period;
10697 
10698 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10699 
10700 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10701 		return HRTIMER_NORESTART;
10702 
10703 	event->pmu->read(event);
10704 
10705 	perf_sample_data_init(&data, 0, event->hw.last_period);
10706 	regs = get_irq_regs();
10707 
10708 	if (regs && !perf_exclude_event(event, regs)) {
10709 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10710 			if (__perf_event_overflow(event, 1, &data, regs))
10711 				ret = HRTIMER_NORESTART;
10712 	}
10713 
10714 	period = max_t(u64, 10000, event->hw.sample_period);
10715 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10716 
10717 	return ret;
10718 }
10719 
perf_swevent_start_hrtimer(struct perf_event * event)10720 static void perf_swevent_start_hrtimer(struct perf_event *event)
10721 {
10722 	struct hw_perf_event *hwc = &event->hw;
10723 	s64 period;
10724 
10725 	if (!is_sampling_event(event))
10726 		return;
10727 
10728 	period = local64_read(&hwc->period_left);
10729 	if (period) {
10730 		if (period < 0)
10731 			period = 10000;
10732 
10733 		local64_set(&hwc->period_left, 0);
10734 	} else {
10735 		period = max_t(u64, 10000, hwc->sample_period);
10736 	}
10737 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10738 		      HRTIMER_MODE_REL_PINNED_HARD);
10739 }
10740 
perf_swevent_cancel_hrtimer(struct perf_event * event)10741 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10742 {
10743 	struct hw_perf_event *hwc = &event->hw;
10744 
10745 	if (is_sampling_event(event)) {
10746 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10747 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10748 
10749 		hrtimer_cancel(&hwc->hrtimer);
10750 	}
10751 }
10752 
perf_swevent_init_hrtimer(struct perf_event * event)10753 static void perf_swevent_init_hrtimer(struct perf_event *event)
10754 {
10755 	struct hw_perf_event *hwc = &event->hw;
10756 
10757 	if (!is_sampling_event(event))
10758 		return;
10759 
10760 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10761 	hwc->hrtimer.function = perf_swevent_hrtimer;
10762 
10763 	/*
10764 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10765 	 * mapping and avoid the whole period adjust feedback stuff.
10766 	 */
10767 	if (event->attr.freq) {
10768 		long freq = event->attr.sample_freq;
10769 
10770 		event->attr.sample_period = NSEC_PER_SEC / freq;
10771 		hwc->sample_period = event->attr.sample_period;
10772 		local64_set(&hwc->period_left, hwc->sample_period);
10773 		hwc->last_period = hwc->sample_period;
10774 		event->attr.freq = 0;
10775 	}
10776 }
10777 
10778 /*
10779  * Software event: cpu wall time clock
10780  */
10781 
cpu_clock_event_update(struct perf_event * event)10782 static void cpu_clock_event_update(struct perf_event *event)
10783 {
10784 	s64 prev;
10785 	u64 now;
10786 
10787 	now = local_clock();
10788 	prev = local64_xchg(&event->hw.prev_count, now);
10789 	local64_add(now - prev, &event->count);
10790 }
10791 
cpu_clock_event_start(struct perf_event * event,int flags)10792 static void cpu_clock_event_start(struct perf_event *event, int flags)
10793 {
10794 	local64_set(&event->hw.prev_count, local_clock());
10795 	perf_swevent_start_hrtimer(event);
10796 }
10797 
cpu_clock_event_stop(struct perf_event * event,int flags)10798 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10799 {
10800 	perf_swevent_cancel_hrtimer(event);
10801 	cpu_clock_event_update(event);
10802 }
10803 
cpu_clock_event_add(struct perf_event * event,int flags)10804 static int cpu_clock_event_add(struct perf_event *event, int flags)
10805 {
10806 	if (flags & PERF_EF_START)
10807 		cpu_clock_event_start(event, flags);
10808 	perf_event_update_userpage(event);
10809 
10810 	return 0;
10811 }
10812 
cpu_clock_event_del(struct perf_event * event,int flags)10813 static void cpu_clock_event_del(struct perf_event *event, int flags)
10814 {
10815 	cpu_clock_event_stop(event, flags);
10816 }
10817 
cpu_clock_event_read(struct perf_event * event)10818 static void cpu_clock_event_read(struct perf_event *event)
10819 {
10820 	cpu_clock_event_update(event);
10821 }
10822 
cpu_clock_event_init(struct perf_event * event)10823 static int cpu_clock_event_init(struct perf_event *event)
10824 {
10825 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10826 		return -ENOENT;
10827 
10828 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10829 		return -ENOENT;
10830 
10831 	/*
10832 	 * no branch sampling for software events
10833 	 */
10834 	if (has_branch_stack(event))
10835 		return -EOPNOTSUPP;
10836 
10837 	perf_swevent_init_hrtimer(event);
10838 
10839 	return 0;
10840 }
10841 
10842 static struct pmu perf_cpu_clock = {
10843 	.task_ctx_nr	= perf_sw_context,
10844 
10845 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10846 
10847 	.event_init	= cpu_clock_event_init,
10848 	.add		= cpu_clock_event_add,
10849 	.del		= cpu_clock_event_del,
10850 	.start		= cpu_clock_event_start,
10851 	.stop		= cpu_clock_event_stop,
10852 	.read		= cpu_clock_event_read,
10853 };
10854 
10855 /*
10856  * Software event: task time clock
10857  */
10858 
task_clock_event_update(struct perf_event * event,u64 now)10859 static void task_clock_event_update(struct perf_event *event, u64 now)
10860 {
10861 	u64 prev;
10862 	s64 delta;
10863 
10864 	prev = local64_xchg(&event->hw.prev_count, now);
10865 	delta = now - prev;
10866 	local64_add(delta, &event->count);
10867 }
10868 
task_clock_event_start(struct perf_event * event,int flags)10869 static void task_clock_event_start(struct perf_event *event, int flags)
10870 {
10871 	local64_set(&event->hw.prev_count, event->ctx->time);
10872 	perf_swevent_start_hrtimer(event);
10873 }
10874 
task_clock_event_stop(struct perf_event * event,int flags)10875 static void task_clock_event_stop(struct perf_event *event, int flags)
10876 {
10877 	perf_swevent_cancel_hrtimer(event);
10878 	task_clock_event_update(event, event->ctx->time);
10879 }
10880 
task_clock_event_add(struct perf_event * event,int flags)10881 static int task_clock_event_add(struct perf_event *event, int flags)
10882 {
10883 	if (flags & PERF_EF_START)
10884 		task_clock_event_start(event, flags);
10885 	perf_event_update_userpage(event);
10886 
10887 	return 0;
10888 }
10889 
task_clock_event_del(struct perf_event * event,int flags)10890 static void task_clock_event_del(struct perf_event *event, int flags)
10891 {
10892 	task_clock_event_stop(event, PERF_EF_UPDATE);
10893 }
10894 
task_clock_event_read(struct perf_event * event)10895 static void task_clock_event_read(struct perf_event *event)
10896 {
10897 	u64 now = perf_clock();
10898 	u64 delta = now - event->ctx->timestamp;
10899 	u64 time = event->ctx->time + delta;
10900 
10901 	task_clock_event_update(event, time);
10902 }
10903 
task_clock_event_init(struct perf_event * event)10904 static int task_clock_event_init(struct perf_event *event)
10905 {
10906 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10907 		return -ENOENT;
10908 
10909 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10910 		return -ENOENT;
10911 
10912 	/*
10913 	 * no branch sampling for software events
10914 	 */
10915 	if (has_branch_stack(event))
10916 		return -EOPNOTSUPP;
10917 
10918 	perf_swevent_init_hrtimer(event);
10919 
10920 	return 0;
10921 }
10922 
10923 static struct pmu perf_task_clock = {
10924 	.task_ctx_nr	= perf_sw_context,
10925 
10926 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10927 
10928 	.event_init	= task_clock_event_init,
10929 	.add		= task_clock_event_add,
10930 	.del		= task_clock_event_del,
10931 	.start		= task_clock_event_start,
10932 	.stop		= task_clock_event_stop,
10933 	.read		= task_clock_event_read,
10934 };
10935 
perf_pmu_nop_void(struct pmu * pmu)10936 static void perf_pmu_nop_void(struct pmu *pmu)
10937 {
10938 }
10939 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)10940 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10941 {
10942 }
10943 
perf_pmu_nop_int(struct pmu * pmu)10944 static int perf_pmu_nop_int(struct pmu *pmu)
10945 {
10946 	return 0;
10947 }
10948 
perf_event_nop_int(struct perf_event * event,u64 value)10949 static int perf_event_nop_int(struct perf_event *event, u64 value)
10950 {
10951 	return 0;
10952 }
10953 
10954 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10955 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)10956 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10957 {
10958 	__this_cpu_write(nop_txn_flags, flags);
10959 
10960 	if (flags & ~PERF_PMU_TXN_ADD)
10961 		return;
10962 
10963 	perf_pmu_disable(pmu);
10964 }
10965 
perf_pmu_commit_txn(struct pmu * pmu)10966 static int perf_pmu_commit_txn(struct pmu *pmu)
10967 {
10968 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10969 
10970 	__this_cpu_write(nop_txn_flags, 0);
10971 
10972 	if (flags & ~PERF_PMU_TXN_ADD)
10973 		return 0;
10974 
10975 	perf_pmu_enable(pmu);
10976 	return 0;
10977 }
10978 
perf_pmu_cancel_txn(struct pmu * pmu)10979 static void perf_pmu_cancel_txn(struct pmu *pmu)
10980 {
10981 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10982 
10983 	__this_cpu_write(nop_txn_flags, 0);
10984 
10985 	if (flags & ~PERF_PMU_TXN_ADD)
10986 		return;
10987 
10988 	perf_pmu_enable(pmu);
10989 }
10990 
perf_event_idx_default(struct perf_event * event)10991 static int perf_event_idx_default(struct perf_event *event)
10992 {
10993 	return 0;
10994 }
10995 
10996 /*
10997  * Ensures all contexts with the same task_ctx_nr have the same
10998  * pmu_cpu_context too.
10999  */
find_pmu_context(int ctxn)11000 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
11001 {
11002 	struct pmu *pmu;
11003 
11004 	if (ctxn < 0)
11005 		return NULL;
11006 
11007 	list_for_each_entry(pmu, &pmus, entry) {
11008 		if (pmu->task_ctx_nr == ctxn)
11009 			return pmu->pmu_cpu_context;
11010 	}
11011 
11012 	return NULL;
11013 }
11014 
free_pmu_context(struct pmu * pmu)11015 static void free_pmu_context(struct pmu *pmu)
11016 {
11017 	/*
11018 	 * Static contexts such as perf_sw_context have a global lifetime
11019 	 * and may be shared between different PMUs. Avoid freeing them
11020 	 * when a single PMU is going away.
11021 	 */
11022 	if (pmu->task_ctx_nr > perf_invalid_context)
11023 		return;
11024 
11025 	free_percpu(pmu->pmu_cpu_context);
11026 }
11027 
11028 /*
11029  * Let userspace know that this PMU supports address range filtering:
11030  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11031 static ssize_t nr_addr_filters_show(struct device *dev,
11032 				    struct device_attribute *attr,
11033 				    char *page)
11034 {
11035 	struct pmu *pmu = dev_get_drvdata(dev);
11036 
11037 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11038 }
11039 DEVICE_ATTR_RO(nr_addr_filters);
11040 
11041 static struct idr pmu_idr;
11042 
11043 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11044 type_show(struct device *dev, struct device_attribute *attr, char *page)
11045 {
11046 	struct pmu *pmu = dev_get_drvdata(dev);
11047 
11048 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11049 }
11050 static DEVICE_ATTR_RO(type);
11051 
11052 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11053 perf_event_mux_interval_ms_show(struct device *dev,
11054 				struct device_attribute *attr,
11055 				char *page)
11056 {
11057 	struct pmu *pmu = dev_get_drvdata(dev);
11058 
11059 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11060 }
11061 
11062 static DEFINE_MUTEX(mux_interval_mutex);
11063 
11064 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11065 perf_event_mux_interval_ms_store(struct device *dev,
11066 				 struct device_attribute *attr,
11067 				 const char *buf, size_t count)
11068 {
11069 	struct pmu *pmu = dev_get_drvdata(dev);
11070 	int timer, cpu, ret;
11071 
11072 	ret = kstrtoint(buf, 0, &timer);
11073 	if (ret)
11074 		return ret;
11075 
11076 	if (timer < 1)
11077 		return -EINVAL;
11078 
11079 	/* same value, noting to do */
11080 	if (timer == pmu->hrtimer_interval_ms)
11081 		return count;
11082 
11083 	mutex_lock(&mux_interval_mutex);
11084 	pmu->hrtimer_interval_ms = timer;
11085 
11086 	/* update all cpuctx for this PMU */
11087 	cpus_read_lock();
11088 	for_each_online_cpu(cpu) {
11089 		struct perf_cpu_context *cpuctx;
11090 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11091 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11092 
11093 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpuctx);
11094 	}
11095 	cpus_read_unlock();
11096 	mutex_unlock(&mux_interval_mutex);
11097 
11098 	return count;
11099 }
11100 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11101 
11102 static struct attribute *pmu_dev_attrs[] = {
11103 	&dev_attr_type.attr,
11104 	&dev_attr_perf_event_mux_interval_ms.attr,
11105 	&dev_attr_nr_addr_filters.attr,
11106 	NULL,
11107 };
11108 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11109 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11110 {
11111 	struct device *dev = kobj_to_dev(kobj);
11112 	struct pmu *pmu = dev_get_drvdata(dev);
11113 
11114 	if (n == 2 && !pmu->nr_addr_filters)
11115 		return 0;
11116 
11117 	return a->mode;
11118 }
11119 
11120 static struct attribute_group pmu_dev_attr_group = {
11121 	.is_visible = pmu_dev_is_visible,
11122 	.attrs = pmu_dev_attrs,
11123 };
11124 
11125 static const struct attribute_group *pmu_dev_groups[] = {
11126 	&pmu_dev_attr_group,
11127 	NULL,
11128 };
11129 
11130 static int pmu_bus_running;
11131 static struct bus_type pmu_bus = {
11132 	.name		= "event_source",
11133 	.dev_groups	= pmu_dev_groups,
11134 };
11135 
pmu_dev_release(struct device * dev)11136 static void pmu_dev_release(struct device *dev)
11137 {
11138 	kfree(dev);
11139 }
11140 
pmu_dev_alloc(struct pmu * pmu)11141 static int pmu_dev_alloc(struct pmu *pmu)
11142 {
11143 	int ret = -ENOMEM;
11144 
11145 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11146 	if (!pmu->dev)
11147 		goto out;
11148 
11149 	pmu->dev->groups = pmu->attr_groups;
11150 	device_initialize(pmu->dev);
11151 
11152 	dev_set_drvdata(pmu->dev, pmu);
11153 	pmu->dev->bus = &pmu_bus;
11154 	pmu->dev->release = pmu_dev_release;
11155 
11156 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11157 	if (ret)
11158 		goto free_dev;
11159 
11160 	ret = device_add(pmu->dev);
11161 	if (ret)
11162 		goto free_dev;
11163 
11164 	if (pmu->attr_update) {
11165 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11166 		if (ret)
11167 			goto del_dev;
11168 	}
11169 
11170 out:
11171 	return ret;
11172 
11173 del_dev:
11174 	device_del(pmu->dev);
11175 
11176 free_dev:
11177 	put_device(pmu->dev);
11178 	goto out;
11179 }
11180 
11181 static struct lock_class_key cpuctx_mutex;
11182 static struct lock_class_key cpuctx_lock;
11183 
perf_pmu_register(struct pmu * pmu,const char * name,int type)11184 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11185 {
11186 	int cpu, ret, max = PERF_TYPE_MAX;
11187 
11188 	mutex_lock(&pmus_lock);
11189 	ret = -ENOMEM;
11190 	pmu->pmu_disable_count = alloc_percpu(int);
11191 	if (!pmu->pmu_disable_count)
11192 		goto unlock;
11193 
11194 	pmu->type = -1;
11195 	if (!name)
11196 		goto skip_type;
11197 	pmu->name = name;
11198 
11199 	if (type != PERF_TYPE_SOFTWARE) {
11200 		if (type >= 0)
11201 			max = type;
11202 
11203 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11204 		if (ret < 0)
11205 			goto free_pdc;
11206 
11207 		WARN_ON(type >= 0 && ret != type);
11208 
11209 		type = ret;
11210 	}
11211 	pmu->type = type;
11212 
11213 	if (pmu_bus_running) {
11214 		ret = pmu_dev_alloc(pmu);
11215 		if (ret)
11216 			goto free_idr;
11217 	}
11218 
11219 skip_type:
11220 	if (pmu->task_ctx_nr == perf_hw_context) {
11221 		static int hw_context_taken = 0;
11222 
11223 		/*
11224 		 * Other than systems with heterogeneous CPUs, it never makes
11225 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11226 		 * uncore must use perf_invalid_context.
11227 		 */
11228 		if (WARN_ON_ONCE(hw_context_taken &&
11229 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11230 			pmu->task_ctx_nr = perf_invalid_context;
11231 
11232 		hw_context_taken = 1;
11233 	}
11234 
11235 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11236 	if (pmu->pmu_cpu_context)
11237 		goto got_cpu_context;
11238 
11239 	ret = -ENOMEM;
11240 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11241 	if (!pmu->pmu_cpu_context)
11242 		goto free_dev;
11243 
11244 	for_each_possible_cpu(cpu) {
11245 		struct perf_cpu_context *cpuctx;
11246 
11247 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11248 		__perf_event_init_context(&cpuctx->ctx);
11249 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11250 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11251 		cpuctx->ctx.pmu = pmu;
11252 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11253 
11254 		__perf_mux_hrtimer_init(cpuctx, cpu);
11255 
11256 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11257 		cpuctx->heap = cpuctx->heap_default;
11258 	}
11259 
11260 got_cpu_context:
11261 	if (!pmu->start_txn) {
11262 		if (pmu->pmu_enable) {
11263 			/*
11264 			 * If we have pmu_enable/pmu_disable calls, install
11265 			 * transaction stubs that use that to try and batch
11266 			 * hardware accesses.
11267 			 */
11268 			pmu->start_txn  = perf_pmu_start_txn;
11269 			pmu->commit_txn = perf_pmu_commit_txn;
11270 			pmu->cancel_txn = perf_pmu_cancel_txn;
11271 		} else {
11272 			pmu->start_txn  = perf_pmu_nop_txn;
11273 			pmu->commit_txn = perf_pmu_nop_int;
11274 			pmu->cancel_txn = perf_pmu_nop_void;
11275 		}
11276 	}
11277 
11278 	if (!pmu->pmu_enable) {
11279 		pmu->pmu_enable  = perf_pmu_nop_void;
11280 		pmu->pmu_disable = perf_pmu_nop_void;
11281 	}
11282 
11283 	if (!pmu->check_period)
11284 		pmu->check_period = perf_event_nop_int;
11285 
11286 	if (!pmu->event_idx)
11287 		pmu->event_idx = perf_event_idx_default;
11288 
11289 	/*
11290 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11291 	 * since these cannot be in the IDR. This way the linear search
11292 	 * is fast, provided a valid software event is provided.
11293 	 */
11294 	if (type == PERF_TYPE_SOFTWARE || !name)
11295 		list_add_rcu(&pmu->entry, &pmus);
11296 	else
11297 		list_add_tail_rcu(&pmu->entry, &pmus);
11298 
11299 	atomic_set(&pmu->exclusive_cnt, 0);
11300 	ret = 0;
11301 unlock:
11302 	mutex_unlock(&pmus_lock);
11303 
11304 	return ret;
11305 
11306 free_dev:
11307 	device_del(pmu->dev);
11308 	put_device(pmu->dev);
11309 
11310 free_idr:
11311 	if (pmu->type != PERF_TYPE_SOFTWARE)
11312 		idr_remove(&pmu_idr, pmu->type);
11313 
11314 free_pdc:
11315 	free_percpu(pmu->pmu_disable_count);
11316 	goto unlock;
11317 }
11318 EXPORT_SYMBOL_GPL(perf_pmu_register);
11319 
perf_pmu_unregister(struct pmu * pmu)11320 void perf_pmu_unregister(struct pmu *pmu)
11321 {
11322 	mutex_lock(&pmus_lock);
11323 	list_del_rcu(&pmu->entry);
11324 
11325 	/*
11326 	 * We dereference the pmu list under both SRCU and regular RCU, so
11327 	 * synchronize against both of those.
11328 	 */
11329 	synchronize_srcu(&pmus_srcu);
11330 	synchronize_rcu();
11331 
11332 	free_percpu(pmu->pmu_disable_count);
11333 	if (pmu->type != PERF_TYPE_SOFTWARE)
11334 		idr_remove(&pmu_idr, pmu->type);
11335 	if (pmu_bus_running) {
11336 		if (pmu->nr_addr_filters)
11337 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11338 		device_del(pmu->dev);
11339 		put_device(pmu->dev);
11340 	}
11341 	free_pmu_context(pmu);
11342 	mutex_unlock(&pmus_lock);
11343 }
11344 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11345 
has_extended_regs(struct perf_event * event)11346 static inline bool has_extended_regs(struct perf_event *event)
11347 {
11348 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11349 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11350 }
11351 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11352 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11353 {
11354 	struct perf_event_context *ctx = NULL;
11355 	int ret;
11356 
11357 	if (!try_module_get(pmu->module))
11358 		return -ENODEV;
11359 
11360 	/*
11361 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11362 	 * for example, validate if the group fits on the PMU. Therefore,
11363 	 * if this is a sibling event, acquire the ctx->mutex to protect
11364 	 * the sibling_list.
11365 	 */
11366 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11367 		/*
11368 		 * This ctx->mutex can nest when we're called through
11369 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11370 		 */
11371 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11372 						 SINGLE_DEPTH_NESTING);
11373 		BUG_ON(!ctx);
11374 	}
11375 
11376 	event->pmu = pmu;
11377 	ret = pmu->event_init(event);
11378 
11379 	if (ctx)
11380 		perf_event_ctx_unlock(event->group_leader, ctx);
11381 
11382 	if (!ret) {
11383 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11384 		    has_extended_regs(event))
11385 			ret = -EOPNOTSUPP;
11386 
11387 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11388 		    event_has_any_exclude_flag(event))
11389 			ret = -EINVAL;
11390 
11391 		if (ret && event->destroy)
11392 			event->destroy(event);
11393 	}
11394 
11395 	if (ret)
11396 		module_put(pmu->module);
11397 
11398 	return ret;
11399 }
11400 
perf_init_event(struct perf_event * event)11401 static struct pmu *perf_init_event(struct perf_event *event)
11402 {
11403 	bool extended_type = false;
11404 	int idx, type, ret;
11405 	struct pmu *pmu;
11406 
11407 	idx = srcu_read_lock(&pmus_srcu);
11408 
11409 	/* Try parent's PMU first: */
11410 	if (event->parent && event->parent->pmu) {
11411 		pmu = event->parent->pmu;
11412 		ret = perf_try_init_event(pmu, event);
11413 		if (!ret)
11414 			goto unlock;
11415 	}
11416 
11417 	/*
11418 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11419 	 * are often aliases for PERF_TYPE_RAW.
11420 	 */
11421 	type = event->attr.type;
11422 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11423 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11424 		if (!type) {
11425 			type = PERF_TYPE_RAW;
11426 		} else {
11427 			extended_type = true;
11428 			event->attr.config &= PERF_HW_EVENT_MASK;
11429 		}
11430 	}
11431 
11432 again:
11433 	rcu_read_lock();
11434 	pmu = idr_find(&pmu_idr, type);
11435 	rcu_read_unlock();
11436 	if (pmu) {
11437 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11438 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11439 			goto fail;
11440 
11441 		ret = perf_try_init_event(pmu, event);
11442 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11443 			type = event->attr.type;
11444 			goto again;
11445 		}
11446 
11447 		if (ret)
11448 			pmu = ERR_PTR(ret);
11449 
11450 		goto unlock;
11451 	}
11452 
11453 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11454 		ret = perf_try_init_event(pmu, event);
11455 		if (!ret)
11456 			goto unlock;
11457 
11458 		if (ret != -ENOENT) {
11459 			pmu = ERR_PTR(ret);
11460 			goto unlock;
11461 		}
11462 	}
11463 fail:
11464 	pmu = ERR_PTR(-ENOENT);
11465 unlock:
11466 	srcu_read_unlock(&pmus_srcu, idx);
11467 
11468 	return pmu;
11469 }
11470 
attach_sb_event(struct perf_event * event)11471 static void attach_sb_event(struct perf_event *event)
11472 {
11473 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11474 
11475 	raw_spin_lock(&pel->lock);
11476 	list_add_rcu(&event->sb_list, &pel->list);
11477 	raw_spin_unlock(&pel->lock);
11478 }
11479 
11480 /*
11481  * We keep a list of all !task (and therefore per-cpu) events
11482  * that need to receive side-band records.
11483  *
11484  * This avoids having to scan all the various PMU per-cpu contexts
11485  * looking for them.
11486  */
account_pmu_sb_event(struct perf_event * event)11487 static void account_pmu_sb_event(struct perf_event *event)
11488 {
11489 	if (is_sb_event(event))
11490 		attach_sb_event(event);
11491 }
11492 
account_event_cpu(struct perf_event * event,int cpu)11493 static void account_event_cpu(struct perf_event *event, int cpu)
11494 {
11495 	if (event->parent)
11496 		return;
11497 
11498 	if (is_cgroup_event(event))
11499 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11500 }
11501 
11502 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11503 static void account_freq_event_nohz(void)
11504 {
11505 #ifdef CONFIG_NO_HZ_FULL
11506 	/* Lock so we don't race with concurrent unaccount */
11507 	spin_lock(&nr_freq_lock);
11508 	if (atomic_inc_return(&nr_freq_events) == 1)
11509 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11510 	spin_unlock(&nr_freq_lock);
11511 #endif
11512 }
11513 
account_freq_event(void)11514 static void account_freq_event(void)
11515 {
11516 	if (tick_nohz_full_enabled())
11517 		account_freq_event_nohz();
11518 	else
11519 		atomic_inc(&nr_freq_events);
11520 }
11521 
11522 
account_event(struct perf_event * event)11523 static void account_event(struct perf_event *event)
11524 {
11525 	bool inc = false;
11526 
11527 	if (event->parent)
11528 		return;
11529 
11530 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11531 		inc = true;
11532 	if (event->attr.mmap || event->attr.mmap_data)
11533 		atomic_inc(&nr_mmap_events);
11534 	if (event->attr.build_id)
11535 		atomic_inc(&nr_build_id_events);
11536 	if (event->attr.comm)
11537 		atomic_inc(&nr_comm_events);
11538 	if (event->attr.namespaces)
11539 		atomic_inc(&nr_namespaces_events);
11540 	if (event->attr.cgroup)
11541 		atomic_inc(&nr_cgroup_events);
11542 	if (event->attr.task)
11543 		atomic_inc(&nr_task_events);
11544 	if (event->attr.freq)
11545 		account_freq_event();
11546 	if (event->attr.context_switch) {
11547 		atomic_inc(&nr_switch_events);
11548 		inc = true;
11549 	}
11550 	if (has_branch_stack(event))
11551 		inc = true;
11552 	if (is_cgroup_event(event))
11553 		inc = true;
11554 	if (event->attr.ksymbol)
11555 		atomic_inc(&nr_ksymbol_events);
11556 	if (event->attr.bpf_event)
11557 		atomic_inc(&nr_bpf_events);
11558 	if (event->attr.text_poke)
11559 		atomic_inc(&nr_text_poke_events);
11560 
11561 	if (inc) {
11562 		/*
11563 		 * We need the mutex here because static_branch_enable()
11564 		 * must complete *before* the perf_sched_count increment
11565 		 * becomes visible.
11566 		 */
11567 		if (atomic_inc_not_zero(&perf_sched_count))
11568 			goto enabled;
11569 
11570 		mutex_lock(&perf_sched_mutex);
11571 		if (!atomic_read(&perf_sched_count)) {
11572 			static_branch_enable(&perf_sched_events);
11573 			/*
11574 			 * Guarantee that all CPUs observe they key change and
11575 			 * call the perf scheduling hooks before proceeding to
11576 			 * install events that need them.
11577 			 */
11578 			synchronize_rcu();
11579 		}
11580 		/*
11581 		 * Now that we have waited for the sync_sched(), allow further
11582 		 * increments to by-pass the mutex.
11583 		 */
11584 		atomic_inc(&perf_sched_count);
11585 		mutex_unlock(&perf_sched_mutex);
11586 	}
11587 enabled:
11588 
11589 	account_event_cpu(event, event->cpu);
11590 
11591 	account_pmu_sb_event(event);
11592 }
11593 
11594 /*
11595  * Allocate and initialize an event structure
11596  */
11597 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11598 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11599 		 struct task_struct *task,
11600 		 struct perf_event *group_leader,
11601 		 struct perf_event *parent_event,
11602 		 perf_overflow_handler_t overflow_handler,
11603 		 void *context, int cgroup_fd)
11604 {
11605 	struct pmu *pmu;
11606 	struct perf_event *event;
11607 	struct hw_perf_event *hwc;
11608 	long err = -EINVAL;
11609 	int node;
11610 
11611 	if ((unsigned)cpu >= nr_cpu_ids) {
11612 		if (!task || cpu != -1)
11613 			return ERR_PTR(-EINVAL);
11614 	}
11615 	if (attr->sigtrap && !task) {
11616 		/* Requires a task: avoid signalling random tasks. */
11617 		return ERR_PTR(-EINVAL);
11618 	}
11619 
11620 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11621 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11622 				      node);
11623 	if (!event)
11624 		return ERR_PTR(-ENOMEM);
11625 
11626 	/*
11627 	 * Single events are their own group leaders, with an
11628 	 * empty sibling list:
11629 	 */
11630 	if (!group_leader)
11631 		group_leader = event;
11632 
11633 	mutex_init(&event->child_mutex);
11634 	INIT_LIST_HEAD(&event->child_list);
11635 
11636 	INIT_LIST_HEAD(&event->event_entry);
11637 	INIT_LIST_HEAD(&event->sibling_list);
11638 	INIT_LIST_HEAD(&event->active_list);
11639 	init_event_group(event);
11640 	INIT_LIST_HEAD(&event->rb_entry);
11641 	INIT_LIST_HEAD(&event->active_entry);
11642 	INIT_LIST_HEAD(&event->addr_filters.list);
11643 	INIT_HLIST_NODE(&event->hlist_entry);
11644 
11645 
11646 	init_waitqueue_head(&event->waitq);
11647 	event->pending_disable = -1;
11648 	init_irq_work(&event->pending, perf_pending_event);
11649 
11650 	mutex_init(&event->mmap_mutex);
11651 	raw_spin_lock_init(&event->addr_filters.lock);
11652 
11653 	atomic_long_set(&event->refcount, 1);
11654 	event->cpu		= cpu;
11655 	event->attr		= *attr;
11656 	event->group_leader	= group_leader;
11657 	event->pmu		= NULL;
11658 	event->oncpu		= -1;
11659 
11660 	event->parent		= parent_event;
11661 
11662 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11663 	event->id		= atomic64_inc_return(&perf_event_id);
11664 
11665 	event->state		= PERF_EVENT_STATE_INACTIVE;
11666 
11667 	if (parent_event)
11668 		event->event_caps = parent_event->event_caps;
11669 
11670 	if (event->attr.sigtrap)
11671 		atomic_set(&event->event_limit, 1);
11672 
11673 	if (task) {
11674 		event->attach_state = PERF_ATTACH_TASK;
11675 		/*
11676 		 * XXX pmu::event_init needs to know what task to account to
11677 		 * and we cannot use the ctx information because we need the
11678 		 * pmu before we get a ctx.
11679 		 */
11680 		event->hw.target = get_task_struct(task);
11681 	}
11682 
11683 	event->clock = &local_clock;
11684 	if (parent_event)
11685 		event->clock = parent_event->clock;
11686 
11687 	if (!overflow_handler && parent_event) {
11688 		overflow_handler = parent_event->overflow_handler;
11689 		context = parent_event->overflow_handler_context;
11690 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11691 		if (overflow_handler == bpf_overflow_handler) {
11692 			struct bpf_prog *prog = parent_event->prog;
11693 
11694 			bpf_prog_inc(prog);
11695 			event->prog = prog;
11696 			event->orig_overflow_handler =
11697 				parent_event->orig_overflow_handler;
11698 		}
11699 #endif
11700 	}
11701 
11702 	if (overflow_handler) {
11703 		event->overflow_handler	= overflow_handler;
11704 		event->overflow_handler_context = context;
11705 	} else if (is_write_backward(event)){
11706 		event->overflow_handler = perf_event_output_backward;
11707 		event->overflow_handler_context = NULL;
11708 	} else {
11709 		event->overflow_handler = perf_event_output_forward;
11710 		event->overflow_handler_context = NULL;
11711 	}
11712 
11713 	perf_event__state_init(event);
11714 
11715 	pmu = NULL;
11716 
11717 	hwc = &event->hw;
11718 	hwc->sample_period = attr->sample_period;
11719 	if (attr->freq && attr->sample_freq)
11720 		hwc->sample_period = 1;
11721 	hwc->last_period = hwc->sample_period;
11722 
11723 	local64_set(&hwc->period_left, hwc->sample_period);
11724 
11725 	/*
11726 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11727 	 * See perf_output_read().
11728 	 */
11729 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11730 		goto err_ns;
11731 
11732 	if (!has_branch_stack(event))
11733 		event->attr.branch_sample_type = 0;
11734 
11735 	pmu = perf_init_event(event);
11736 	if (IS_ERR(pmu)) {
11737 		err = PTR_ERR(pmu);
11738 		goto err_ns;
11739 	}
11740 
11741 	/*
11742 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11743 	 * be different on other CPUs in the uncore mask.
11744 	 */
11745 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11746 		err = -EINVAL;
11747 		goto err_pmu;
11748 	}
11749 
11750 	if (event->attr.aux_output &&
11751 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11752 		err = -EOPNOTSUPP;
11753 		goto err_pmu;
11754 	}
11755 
11756 	if (cgroup_fd != -1) {
11757 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11758 		if (err)
11759 			goto err_pmu;
11760 	}
11761 
11762 	err = exclusive_event_init(event);
11763 	if (err)
11764 		goto err_pmu;
11765 
11766 	if (has_addr_filter(event)) {
11767 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11768 						    sizeof(struct perf_addr_filter_range),
11769 						    GFP_KERNEL);
11770 		if (!event->addr_filter_ranges) {
11771 			err = -ENOMEM;
11772 			goto err_per_task;
11773 		}
11774 
11775 		/*
11776 		 * Clone the parent's vma offsets: they are valid until exec()
11777 		 * even if the mm is not shared with the parent.
11778 		 */
11779 		if (event->parent) {
11780 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11781 
11782 			raw_spin_lock_irq(&ifh->lock);
11783 			memcpy(event->addr_filter_ranges,
11784 			       event->parent->addr_filter_ranges,
11785 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11786 			raw_spin_unlock_irq(&ifh->lock);
11787 		}
11788 
11789 		/* force hw sync on the address filters */
11790 		event->addr_filters_gen = 1;
11791 	}
11792 
11793 	if (!event->parent) {
11794 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11795 			err = get_callchain_buffers(attr->sample_max_stack);
11796 			if (err)
11797 				goto err_addr_filters;
11798 		}
11799 	}
11800 
11801 	err = security_perf_event_alloc(event);
11802 	if (err)
11803 		goto err_callchain_buffer;
11804 
11805 	/* symmetric to unaccount_event() in _free_event() */
11806 	account_event(event);
11807 
11808 	return event;
11809 
11810 err_callchain_buffer:
11811 	if (!event->parent) {
11812 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11813 			put_callchain_buffers();
11814 	}
11815 err_addr_filters:
11816 	kfree(event->addr_filter_ranges);
11817 
11818 err_per_task:
11819 	exclusive_event_destroy(event);
11820 
11821 err_pmu:
11822 	if (is_cgroup_event(event))
11823 		perf_detach_cgroup(event);
11824 	if (event->destroy)
11825 		event->destroy(event);
11826 	module_put(pmu->module);
11827 err_ns:
11828 	if (event->ns)
11829 		put_pid_ns(event->ns);
11830 	if (event->hw.target)
11831 		put_task_struct(event->hw.target);
11832 	kmem_cache_free(perf_event_cache, event);
11833 
11834 	return ERR_PTR(err);
11835 }
11836 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11837 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11838 			  struct perf_event_attr *attr)
11839 {
11840 	u32 size;
11841 	int ret;
11842 
11843 	/* Zero the full structure, so that a short copy will be nice. */
11844 	memset(attr, 0, sizeof(*attr));
11845 
11846 	ret = get_user(size, &uattr->size);
11847 	if (ret)
11848 		return ret;
11849 
11850 	/* ABI compatibility quirk: */
11851 	if (!size)
11852 		size = PERF_ATTR_SIZE_VER0;
11853 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11854 		goto err_size;
11855 
11856 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11857 	if (ret) {
11858 		if (ret == -E2BIG)
11859 			goto err_size;
11860 		return ret;
11861 	}
11862 
11863 	attr->size = size;
11864 
11865 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11866 		return -EINVAL;
11867 
11868 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11869 		return -EINVAL;
11870 
11871 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11872 		return -EINVAL;
11873 
11874 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11875 		u64 mask = attr->branch_sample_type;
11876 
11877 		/* only using defined bits */
11878 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11879 			return -EINVAL;
11880 
11881 		/* at least one branch bit must be set */
11882 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11883 			return -EINVAL;
11884 
11885 		/* propagate priv level, when not set for branch */
11886 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11887 
11888 			/* exclude_kernel checked on syscall entry */
11889 			if (!attr->exclude_kernel)
11890 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11891 
11892 			if (!attr->exclude_user)
11893 				mask |= PERF_SAMPLE_BRANCH_USER;
11894 
11895 			if (!attr->exclude_hv)
11896 				mask |= PERF_SAMPLE_BRANCH_HV;
11897 			/*
11898 			 * adjust user setting (for HW filter setup)
11899 			 */
11900 			attr->branch_sample_type = mask;
11901 		}
11902 		/* privileged levels capture (kernel, hv): check permissions */
11903 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11904 			ret = perf_allow_kernel(attr);
11905 			if (ret)
11906 				return ret;
11907 		}
11908 	}
11909 
11910 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11911 		ret = perf_reg_validate(attr->sample_regs_user);
11912 		if (ret)
11913 			return ret;
11914 	}
11915 
11916 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11917 		if (!arch_perf_have_user_stack_dump())
11918 			return -ENOSYS;
11919 
11920 		/*
11921 		 * We have __u32 type for the size, but so far
11922 		 * we can only use __u16 as maximum due to the
11923 		 * __u16 sample size limit.
11924 		 */
11925 		if (attr->sample_stack_user >= USHRT_MAX)
11926 			return -EINVAL;
11927 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11928 			return -EINVAL;
11929 	}
11930 
11931 	if (!attr->sample_max_stack)
11932 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11933 
11934 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11935 		ret = perf_reg_validate(attr->sample_regs_intr);
11936 
11937 #ifndef CONFIG_CGROUP_PERF
11938 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11939 		return -EINVAL;
11940 #endif
11941 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11942 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11943 		return -EINVAL;
11944 
11945 	if (!attr->inherit && attr->inherit_thread)
11946 		return -EINVAL;
11947 
11948 	if (attr->remove_on_exec && attr->enable_on_exec)
11949 		return -EINVAL;
11950 
11951 	if (attr->sigtrap && !attr->remove_on_exec)
11952 		return -EINVAL;
11953 
11954 out:
11955 	return ret;
11956 
11957 err_size:
11958 	put_user(sizeof(*attr), &uattr->size);
11959 	ret = -E2BIG;
11960 	goto out;
11961 }
11962 
mutex_lock_double(struct mutex * a,struct mutex * b)11963 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11964 {
11965 	if (b < a)
11966 		swap(a, b);
11967 
11968 	mutex_lock(a);
11969 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11970 }
11971 
11972 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)11973 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11974 {
11975 	struct perf_buffer *rb = NULL;
11976 	int ret = -EINVAL;
11977 
11978 	if (!output_event) {
11979 		mutex_lock(&event->mmap_mutex);
11980 		goto set;
11981 	}
11982 
11983 	/* don't allow circular references */
11984 	if (event == output_event)
11985 		goto out;
11986 
11987 	/*
11988 	 * Don't allow cross-cpu buffers
11989 	 */
11990 	if (output_event->cpu != event->cpu)
11991 		goto out;
11992 
11993 	/*
11994 	 * If its not a per-cpu rb, it must be the same task.
11995 	 */
11996 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
11997 		goto out;
11998 
11999 	/*
12000 	 * Mixing clocks in the same buffer is trouble you don't need.
12001 	 */
12002 	if (output_event->clock != event->clock)
12003 		goto out;
12004 
12005 	/*
12006 	 * Either writing ring buffer from beginning or from end.
12007 	 * Mixing is not allowed.
12008 	 */
12009 	if (is_write_backward(output_event) != is_write_backward(event))
12010 		goto out;
12011 
12012 	/*
12013 	 * If both events generate aux data, they must be on the same PMU
12014 	 */
12015 	if (has_aux(event) && has_aux(output_event) &&
12016 	    event->pmu != output_event->pmu)
12017 		goto out;
12018 
12019 	/*
12020 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12021 	 * output_event is already on rb->event_list, and the list iteration
12022 	 * restarts after every removal, it is guaranteed this new event is
12023 	 * observed *OR* if output_event is already removed, it's guaranteed we
12024 	 * observe !rb->mmap_count.
12025 	 */
12026 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12027 set:
12028 	/* Can't redirect output if we've got an active mmap() */
12029 	if (atomic_read(&event->mmap_count))
12030 		goto unlock;
12031 
12032 	if (output_event) {
12033 		/* get the rb we want to redirect to */
12034 		rb = ring_buffer_get(output_event);
12035 		if (!rb)
12036 			goto unlock;
12037 
12038 		/* did we race against perf_mmap_close() */
12039 		if (!atomic_read(&rb->mmap_count)) {
12040 			ring_buffer_put(rb);
12041 			goto unlock;
12042 		}
12043 	}
12044 
12045 	ring_buffer_attach(event, rb);
12046 
12047 	ret = 0;
12048 unlock:
12049 	mutex_unlock(&event->mmap_mutex);
12050 	if (output_event)
12051 		mutex_unlock(&output_event->mmap_mutex);
12052 
12053 out:
12054 	return ret;
12055 }
12056 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12057 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12058 {
12059 	bool nmi_safe = false;
12060 
12061 	switch (clk_id) {
12062 	case CLOCK_MONOTONIC:
12063 		event->clock = &ktime_get_mono_fast_ns;
12064 		nmi_safe = true;
12065 		break;
12066 
12067 	case CLOCK_MONOTONIC_RAW:
12068 		event->clock = &ktime_get_raw_fast_ns;
12069 		nmi_safe = true;
12070 		break;
12071 
12072 	case CLOCK_REALTIME:
12073 		event->clock = &ktime_get_real_ns;
12074 		break;
12075 
12076 	case CLOCK_BOOTTIME:
12077 		event->clock = &ktime_get_boottime_ns;
12078 		break;
12079 
12080 	case CLOCK_TAI:
12081 		event->clock = &ktime_get_clocktai_ns;
12082 		break;
12083 
12084 	default:
12085 		return -EINVAL;
12086 	}
12087 
12088 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12089 		return -EINVAL;
12090 
12091 	return 0;
12092 }
12093 
12094 /*
12095  * Variation on perf_event_ctx_lock_nested(), except we take two context
12096  * mutexes.
12097  */
12098 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)12099 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12100 			     struct perf_event_context *ctx)
12101 {
12102 	struct perf_event_context *gctx;
12103 
12104 again:
12105 	rcu_read_lock();
12106 	gctx = READ_ONCE(group_leader->ctx);
12107 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12108 		rcu_read_unlock();
12109 		goto again;
12110 	}
12111 	rcu_read_unlock();
12112 
12113 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12114 
12115 	if (group_leader->ctx != gctx) {
12116 		mutex_unlock(&ctx->mutex);
12117 		mutex_unlock(&gctx->mutex);
12118 		put_ctx(gctx);
12119 		goto again;
12120 	}
12121 
12122 	return gctx;
12123 }
12124 
12125 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12126 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12127 {
12128 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12129 	bool is_capable = perfmon_capable();
12130 
12131 	if (attr->sigtrap) {
12132 		/*
12133 		 * perf_event_attr::sigtrap sends signals to the other task.
12134 		 * Require the current task to also have CAP_KILL.
12135 		 */
12136 		rcu_read_lock();
12137 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12138 		rcu_read_unlock();
12139 
12140 		/*
12141 		 * If the required capabilities aren't available, checks for
12142 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12143 		 * can effectively change the target task.
12144 		 */
12145 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12146 	}
12147 
12148 	/*
12149 	 * Preserve ptrace permission check for backwards compatibility. The
12150 	 * ptrace check also includes checks that the current task and other
12151 	 * task have matching uids, and is therefore not done here explicitly.
12152 	 */
12153 	return is_capable || ptrace_may_access(task, ptrace_mode);
12154 }
12155 
12156 /**
12157  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12158  *
12159  * @attr_uptr:	event_id type attributes for monitoring/sampling
12160  * @pid:		target pid
12161  * @cpu:		target cpu
12162  * @group_fd:		group leader event fd
12163  * @flags:		perf event open flags
12164  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12165 SYSCALL_DEFINE5(perf_event_open,
12166 		struct perf_event_attr __user *, attr_uptr,
12167 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12168 {
12169 	struct perf_event *group_leader = NULL, *output_event = NULL;
12170 	struct perf_event *event, *sibling;
12171 	struct perf_event_attr attr;
12172 	struct perf_event_context *ctx, *gctx;
12173 	struct file *event_file = NULL;
12174 	struct fd group = {NULL, 0};
12175 	struct task_struct *task = NULL;
12176 	struct pmu *pmu;
12177 	int event_fd;
12178 	int move_group = 0;
12179 	int err;
12180 	int f_flags = O_RDWR;
12181 	int cgroup_fd = -1;
12182 
12183 	/* for future expandability... */
12184 	if (flags & ~PERF_FLAG_ALL)
12185 		return -EINVAL;
12186 
12187 	err = perf_copy_attr(attr_uptr, &attr);
12188 	if (err)
12189 		return err;
12190 
12191 	/* Do we allow access to perf_event_open(2) ? */
12192 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12193 	if (err)
12194 		return err;
12195 
12196 	if (!attr.exclude_kernel) {
12197 		err = perf_allow_kernel(&attr);
12198 		if (err)
12199 			return err;
12200 	}
12201 
12202 	if (attr.namespaces) {
12203 		if (!perfmon_capable())
12204 			return -EACCES;
12205 	}
12206 
12207 	if (attr.freq) {
12208 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12209 			return -EINVAL;
12210 	} else {
12211 		if (attr.sample_period & (1ULL << 63))
12212 			return -EINVAL;
12213 	}
12214 
12215 	/* Only privileged users can get physical addresses */
12216 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12217 		err = perf_allow_kernel(&attr);
12218 		if (err)
12219 			return err;
12220 	}
12221 
12222 	/* REGS_INTR can leak data, lockdown must prevent this */
12223 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12224 		err = security_locked_down(LOCKDOWN_PERF);
12225 		if (err)
12226 			return err;
12227 	}
12228 
12229 	/*
12230 	 * In cgroup mode, the pid argument is used to pass the fd
12231 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12232 	 * designates the cpu on which to monitor threads from that
12233 	 * cgroup.
12234 	 */
12235 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12236 		return -EINVAL;
12237 
12238 	if (flags & PERF_FLAG_FD_CLOEXEC)
12239 		f_flags |= O_CLOEXEC;
12240 
12241 	event_fd = get_unused_fd_flags(f_flags);
12242 	if (event_fd < 0)
12243 		return event_fd;
12244 
12245 	if (group_fd != -1) {
12246 		err = perf_fget_light(group_fd, &group);
12247 		if (err)
12248 			goto err_fd;
12249 		group_leader = group.file->private_data;
12250 		if (flags & PERF_FLAG_FD_OUTPUT)
12251 			output_event = group_leader;
12252 		if (flags & PERF_FLAG_FD_NO_GROUP)
12253 			group_leader = NULL;
12254 	}
12255 
12256 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12257 		task = find_lively_task_by_vpid(pid);
12258 		if (IS_ERR(task)) {
12259 			err = PTR_ERR(task);
12260 			goto err_group_fd;
12261 		}
12262 	}
12263 
12264 	if (task && group_leader &&
12265 	    group_leader->attr.inherit != attr.inherit) {
12266 		err = -EINVAL;
12267 		goto err_task;
12268 	}
12269 
12270 	if (flags & PERF_FLAG_PID_CGROUP)
12271 		cgroup_fd = pid;
12272 
12273 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12274 				 NULL, NULL, cgroup_fd);
12275 	if (IS_ERR(event)) {
12276 		err = PTR_ERR(event);
12277 		goto err_task;
12278 	}
12279 
12280 	if (is_sampling_event(event)) {
12281 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12282 			err = -EOPNOTSUPP;
12283 			goto err_alloc;
12284 		}
12285 	}
12286 
12287 	/*
12288 	 * Special case software events and allow them to be part of
12289 	 * any hardware group.
12290 	 */
12291 	pmu = event->pmu;
12292 
12293 	if (attr.use_clockid) {
12294 		err = perf_event_set_clock(event, attr.clockid);
12295 		if (err)
12296 			goto err_alloc;
12297 	}
12298 
12299 	if (pmu->task_ctx_nr == perf_sw_context)
12300 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12301 
12302 	if (group_leader) {
12303 		if (is_software_event(event) &&
12304 		    !in_software_context(group_leader)) {
12305 			/*
12306 			 * If the event is a sw event, but the group_leader
12307 			 * is on hw context.
12308 			 *
12309 			 * Allow the addition of software events to hw
12310 			 * groups, this is safe because software events
12311 			 * never fail to schedule.
12312 			 */
12313 			pmu = group_leader->ctx->pmu;
12314 		} else if (!is_software_event(event) &&
12315 			   is_software_event(group_leader) &&
12316 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12317 			/*
12318 			 * In case the group is a pure software group, and we
12319 			 * try to add a hardware event, move the whole group to
12320 			 * the hardware context.
12321 			 */
12322 			move_group = 1;
12323 		}
12324 	}
12325 
12326 	/*
12327 	 * Get the target context (task or percpu):
12328 	 */
12329 	ctx = find_get_context(pmu, task, event);
12330 	if (IS_ERR(ctx)) {
12331 		err = PTR_ERR(ctx);
12332 		goto err_alloc;
12333 	}
12334 
12335 	/*
12336 	 * Look up the group leader (we will attach this event to it):
12337 	 */
12338 	if (group_leader) {
12339 		err = -EINVAL;
12340 
12341 		/*
12342 		 * Do not allow a recursive hierarchy (this new sibling
12343 		 * becoming part of another group-sibling):
12344 		 */
12345 		if (group_leader->group_leader != group_leader)
12346 			goto err_context;
12347 
12348 		/* All events in a group should have the same clock */
12349 		if (group_leader->clock != event->clock)
12350 			goto err_context;
12351 
12352 		/*
12353 		 * Make sure we're both events for the same CPU;
12354 		 * grouping events for different CPUs is broken; since
12355 		 * you can never concurrently schedule them anyhow.
12356 		 */
12357 		if (group_leader->cpu != event->cpu)
12358 			goto err_context;
12359 
12360 		/*
12361 		 * Make sure we're both on the same task, or both
12362 		 * per-CPU events.
12363 		 */
12364 		if (group_leader->ctx->task != ctx->task)
12365 			goto err_context;
12366 
12367 		/*
12368 		 * Do not allow to attach to a group in a different task
12369 		 * or CPU context. If we're moving SW events, we'll fix
12370 		 * this up later, so allow that.
12371 		 *
12372 		 * Racy, not holding group_leader->ctx->mutex, see comment with
12373 		 * perf_event_ctx_lock().
12374 		 */
12375 		if (!move_group && group_leader->ctx != ctx)
12376 			goto err_context;
12377 
12378 		/*
12379 		 * Only a group leader can be exclusive or pinned
12380 		 */
12381 		if (attr.exclusive || attr.pinned)
12382 			goto err_context;
12383 	}
12384 
12385 	if (output_event) {
12386 		err = perf_event_set_output(event, output_event);
12387 		if (err)
12388 			goto err_context;
12389 	}
12390 
12391 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12392 					f_flags);
12393 	if (IS_ERR(event_file)) {
12394 		err = PTR_ERR(event_file);
12395 		event_file = NULL;
12396 		goto err_context;
12397 	}
12398 
12399 	if (task) {
12400 		err = down_read_interruptible(&task->signal->exec_update_lock);
12401 		if (err)
12402 			goto err_file;
12403 
12404 		/*
12405 		 * We must hold exec_update_lock across this and any potential
12406 		 * perf_install_in_context() call for this new event to
12407 		 * serialize against exec() altering our credentials (and the
12408 		 * perf_event_exit_task() that could imply).
12409 		 */
12410 		err = -EACCES;
12411 		if (!perf_check_permission(&attr, task))
12412 			goto err_cred;
12413 	}
12414 
12415 	if (move_group) {
12416 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12417 
12418 		if (gctx->task == TASK_TOMBSTONE) {
12419 			err = -ESRCH;
12420 			goto err_locked;
12421 		}
12422 
12423 		/*
12424 		 * Check if we raced against another sys_perf_event_open() call
12425 		 * moving the software group underneath us.
12426 		 */
12427 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12428 			/*
12429 			 * If someone moved the group out from under us, check
12430 			 * if this new event wound up on the same ctx, if so
12431 			 * its the regular !move_group case, otherwise fail.
12432 			 */
12433 			if (gctx != ctx) {
12434 				err = -EINVAL;
12435 				goto err_locked;
12436 			} else {
12437 				perf_event_ctx_unlock(group_leader, gctx);
12438 				move_group = 0;
12439 				goto not_move_group;
12440 			}
12441 		}
12442 
12443 		/*
12444 		 * Failure to create exclusive events returns -EBUSY.
12445 		 */
12446 		err = -EBUSY;
12447 		if (!exclusive_event_installable(group_leader, ctx))
12448 			goto err_locked;
12449 
12450 		for_each_sibling_event(sibling, group_leader) {
12451 			if (!exclusive_event_installable(sibling, ctx))
12452 				goto err_locked;
12453 		}
12454 	} else {
12455 		mutex_lock(&ctx->mutex);
12456 
12457 		/*
12458 		 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12459 		 * see the group_leader && !move_group test earlier.
12460 		 */
12461 		if (group_leader && group_leader->ctx != ctx) {
12462 			err = -EINVAL;
12463 			goto err_locked;
12464 		}
12465 	}
12466 not_move_group:
12467 
12468 	if (ctx->task == TASK_TOMBSTONE) {
12469 		err = -ESRCH;
12470 		goto err_locked;
12471 	}
12472 
12473 	if (!perf_event_validate_size(event)) {
12474 		err = -E2BIG;
12475 		goto err_locked;
12476 	}
12477 
12478 	if (!task) {
12479 		/*
12480 		 * Check if the @cpu we're creating an event for is online.
12481 		 *
12482 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12483 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12484 		 */
12485 		struct perf_cpu_context *cpuctx =
12486 			container_of(ctx, struct perf_cpu_context, ctx);
12487 
12488 		if (!cpuctx->online) {
12489 			err = -ENODEV;
12490 			goto err_locked;
12491 		}
12492 	}
12493 
12494 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12495 		err = -EINVAL;
12496 		goto err_locked;
12497 	}
12498 
12499 	/*
12500 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12501 	 * because we need to serialize with concurrent event creation.
12502 	 */
12503 	if (!exclusive_event_installable(event, ctx)) {
12504 		err = -EBUSY;
12505 		goto err_locked;
12506 	}
12507 
12508 	WARN_ON_ONCE(ctx->parent_ctx);
12509 
12510 	/*
12511 	 * This is the point on no return; we cannot fail hereafter. This is
12512 	 * where we start modifying current state.
12513 	 */
12514 
12515 	if (move_group) {
12516 		/*
12517 		 * See perf_event_ctx_lock() for comments on the details
12518 		 * of swizzling perf_event::ctx.
12519 		 */
12520 		perf_remove_from_context(group_leader, 0);
12521 		put_ctx(gctx);
12522 
12523 		for_each_sibling_event(sibling, group_leader) {
12524 			perf_remove_from_context(sibling, 0);
12525 			put_ctx(gctx);
12526 		}
12527 
12528 		/*
12529 		 * Wait for everybody to stop referencing the events through
12530 		 * the old lists, before installing it on new lists.
12531 		 */
12532 		synchronize_rcu();
12533 
12534 		/*
12535 		 * Install the group siblings before the group leader.
12536 		 *
12537 		 * Because a group leader will try and install the entire group
12538 		 * (through the sibling list, which is still in-tact), we can
12539 		 * end up with siblings installed in the wrong context.
12540 		 *
12541 		 * By installing siblings first we NO-OP because they're not
12542 		 * reachable through the group lists.
12543 		 */
12544 		for_each_sibling_event(sibling, group_leader) {
12545 			perf_event__state_init(sibling);
12546 			perf_install_in_context(ctx, sibling, sibling->cpu);
12547 			get_ctx(ctx);
12548 		}
12549 
12550 		/*
12551 		 * Removing from the context ends up with disabled
12552 		 * event. What we want here is event in the initial
12553 		 * startup state, ready to be add into new context.
12554 		 */
12555 		perf_event__state_init(group_leader);
12556 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12557 		get_ctx(ctx);
12558 	}
12559 
12560 	/*
12561 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12562 	 * that we're serialized against further additions and before
12563 	 * perf_install_in_context() which is the point the event is active and
12564 	 * can use these values.
12565 	 */
12566 	perf_event__header_size(event);
12567 	perf_event__id_header_size(event);
12568 
12569 	event->owner = current;
12570 
12571 	perf_install_in_context(ctx, event, event->cpu);
12572 	perf_unpin_context(ctx);
12573 
12574 	if (move_group)
12575 		perf_event_ctx_unlock(group_leader, gctx);
12576 	mutex_unlock(&ctx->mutex);
12577 
12578 	if (task) {
12579 		up_read(&task->signal->exec_update_lock);
12580 		put_task_struct(task);
12581 	}
12582 
12583 	mutex_lock(&current->perf_event_mutex);
12584 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12585 	mutex_unlock(&current->perf_event_mutex);
12586 
12587 	/*
12588 	 * Drop the reference on the group_event after placing the
12589 	 * new event on the sibling_list. This ensures destruction
12590 	 * of the group leader will find the pointer to itself in
12591 	 * perf_group_detach().
12592 	 */
12593 	fdput(group);
12594 	fd_install(event_fd, event_file);
12595 	return event_fd;
12596 
12597 err_locked:
12598 	if (move_group)
12599 		perf_event_ctx_unlock(group_leader, gctx);
12600 	mutex_unlock(&ctx->mutex);
12601 err_cred:
12602 	if (task)
12603 		up_read(&task->signal->exec_update_lock);
12604 err_file:
12605 	fput(event_file);
12606 err_context:
12607 	perf_unpin_context(ctx);
12608 	put_ctx(ctx);
12609 err_alloc:
12610 	/*
12611 	 * If event_file is set, the fput() above will have called ->release()
12612 	 * and that will take care of freeing the event.
12613 	 */
12614 	if (!event_file)
12615 		free_event(event);
12616 err_task:
12617 	if (task)
12618 		put_task_struct(task);
12619 err_group_fd:
12620 	fdput(group);
12621 err_fd:
12622 	put_unused_fd(event_fd);
12623 	return err;
12624 }
12625 
12626 /**
12627  * perf_event_create_kernel_counter
12628  *
12629  * @attr: attributes of the counter to create
12630  * @cpu: cpu in which the counter is bound
12631  * @task: task to profile (NULL for percpu)
12632  * @overflow_handler: callback to trigger when we hit the event
12633  * @context: context data could be used in overflow_handler callback
12634  */
12635 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12636 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12637 				 struct task_struct *task,
12638 				 perf_overflow_handler_t overflow_handler,
12639 				 void *context)
12640 {
12641 	struct perf_event_context *ctx;
12642 	struct perf_event *event;
12643 	int err;
12644 
12645 	/*
12646 	 * Grouping is not supported for kernel events, neither is 'AUX',
12647 	 * make sure the caller's intentions are adjusted.
12648 	 */
12649 	if (attr->aux_output)
12650 		return ERR_PTR(-EINVAL);
12651 
12652 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12653 				 overflow_handler, context, -1);
12654 	if (IS_ERR(event)) {
12655 		err = PTR_ERR(event);
12656 		goto err;
12657 	}
12658 
12659 	/* Mark owner so we could distinguish it from user events. */
12660 	event->owner = TASK_TOMBSTONE;
12661 
12662 	/*
12663 	 * Get the target context (task or percpu):
12664 	 */
12665 	ctx = find_get_context(event->pmu, task, event);
12666 	if (IS_ERR(ctx)) {
12667 		err = PTR_ERR(ctx);
12668 		goto err_free;
12669 	}
12670 
12671 	WARN_ON_ONCE(ctx->parent_ctx);
12672 	mutex_lock(&ctx->mutex);
12673 	if (ctx->task == TASK_TOMBSTONE) {
12674 		err = -ESRCH;
12675 		goto err_unlock;
12676 	}
12677 
12678 	if (!task) {
12679 		/*
12680 		 * Check if the @cpu we're creating an event for is online.
12681 		 *
12682 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12683 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12684 		 */
12685 		struct perf_cpu_context *cpuctx =
12686 			container_of(ctx, struct perf_cpu_context, ctx);
12687 		if (!cpuctx->online) {
12688 			err = -ENODEV;
12689 			goto err_unlock;
12690 		}
12691 	}
12692 
12693 	if (!exclusive_event_installable(event, ctx)) {
12694 		err = -EBUSY;
12695 		goto err_unlock;
12696 	}
12697 
12698 	perf_install_in_context(ctx, event, event->cpu);
12699 	perf_unpin_context(ctx);
12700 	mutex_unlock(&ctx->mutex);
12701 
12702 	return event;
12703 
12704 err_unlock:
12705 	mutex_unlock(&ctx->mutex);
12706 	perf_unpin_context(ctx);
12707 	put_ctx(ctx);
12708 err_free:
12709 	free_event(event);
12710 err:
12711 	return ERR_PTR(err);
12712 }
12713 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12714 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12715 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12716 {
12717 	struct perf_event_context *src_ctx;
12718 	struct perf_event_context *dst_ctx;
12719 	struct perf_event *event, *tmp;
12720 	LIST_HEAD(events);
12721 
12722 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12723 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12724 
12725 	/*
12726 	 * See perf_event_ctx_lock() for comments on the details
12727 	 * of swizzling perf_event::ctx.
12728 	 */
12729 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12730 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12731 				 event_entry) {
12732 		perf_remove_from_context(event, 0);
12733 		unaccount_event_cpu(event, src_cpu);
12734 		put_ctx(src_ctx);
12735 		list_add(&event->migrate_entry, &events);
12736 	}
12737 
12738 	/*
12739 	 * Wait for the events to quiesce before re-instating them.
12740 	 */
12741 	synchronize_rcu();
12742 
12743 	/*
12744 	 * Re-instate events in 2 passes.
12745 	 *
12746 	 * Skip over group leaders and only install siblings on this first
12747 	 * pass, siblings will not get enabled without a leader, however a
12748 	 * leader will enable its siblings, even if those are still on the old
12749 	 * context.
12750 	 */
12751 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12752 		if (event->group_leader == event)
12753 			continue;
12754 
12755 		list_del(&event->migrate_entry);
12756 		if (event->state >= PERF_EVENT_STATE_OFF)
12757 			event->state = PERF_EVENT_STATE_INACTIVE;
12758 		account_event_cpu(event, dst_cpu);
12759 		perf_install_in_context(dst_ctx, event, dst_cpu);
12760 		get_ctx(dst_ctx);
12761 	}
12762 
12763 	/*
12764 	 * Once all the siblings are setup properly, install the group leaders
12765 	 * to make it go.
12766 	 */
12767 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12768 		list_del(&event->migrate_entry);
12769 		if (event->state >= PERF_EVENT_STATE_OFF)
12770 			event->state = PERF_EVENT_STATE_INACTIVE;
12771 		account_event_cpu(event, dst_cpu);
12772 		perf_install_in_context(dst_ctx, event, dst_cpu);
12773 		get_ctx(dst_ctx);
12774 	}
12775 	mutex_unlock(&dst_ctx->mutex);
12776 	mutex_unlock(&src_ctx->mutex);
12777 }
12778 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12779 
sync_child_event(struct perf_event * child_event)12780 static void sync_child_event(struct perf_event *child_event)
12781 {
12782 	struct perf_event *parent_event = child_event->parent;
12783 	u64 child_val;
12784 
12785 	if (child_event->attr.inherit_stat) {
12786 		struct task_struct *task = child_event->ctx->task;
12787 
12788 		if (task && task != TASK_TOMBSTONE)
12789 			perf_event_read_event(child_event, task);
12790 	}
12791 
12792 	child_val = perf_event_count(child_event);
12793 
12794 	/*
12795 	 * Add back the child's count to the parent's count:
12796 	 */
12797 	atomic64_add(child_val, &parent_event->child_count);
12798 	atomic64_add(child_event->total_time_enabled,
12799 		     &parent_event->child_total_time_enabled);
12800 	atomic64_add(child_event->total_time_running,
12801 		     &parent_event->child_total_time_running);
12802 }
12803 
12804 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)12805 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12806 {
12807 	struct perf_event *parent_event = event->parent;
12808 	unsigned long detach_flags = 0;
12809 
12810 	if (parent_event) {
12811 		/*
12812 		 * Do not destroy the 'original' grouping; because of the
12813 		 * context switch optimization the original events could've
12814 		 * ended up in a random child task.
12815 		 *
12816 		 * If we were to destroy the original group, all group related
12817 		 * operations would cease to function properly after this
12818 		 * random child dies.
12819 		 *
12820 		 * Do destroy all inherited groups, we don't care about those
12821 		 * and being thorough is better.
12822 		 */
12823 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12824 		mutex_lock(&parent_event->child_mutex);
12825 	}
12826 
12827 	perf_remove_from_context(event, detach_flags);
12828 
12829 	raw_spin_lock_irq(&ctx->lock);
12830 	if (event->state > PERF_EVENT_STATE_EXIT)
12831 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12832 	raw_spin_unlock_irq(&ctx->lock);
12833 
12834 	/*
12835 	 * Child events can be freed.
12836 	 */
12837 	if (parent_event) {
12838 		mutex_unlock(&parent_event->child_mutex);
12839 		/*
12840 		 * Kick perf_poll() for is_event_hup();
12841 		 */
12842 		perf_event_wakeup(parent_event);
12843 		free_event(event);
12844 		put_event(parent_event);
12845 		return;
12846 	}
12847 
12848 	/*
12849 	 * Parent events are governed by their filedesc, retain them.
12850 	 */
12851 	perf_event_wakeup(event);
12852 }
12853 
perf_event_exit_task_context(struct task_struct * child,int ctxn)12854 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12855 {
12856 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12857 	struct perf_event *child_event, *next;
12858 
12859 	WARN_ON_ONCE(child != current);
12860 
12861 	child_ctx = perf_pin_task_context(child, ctxn);
12862 	if (!child_ctx)
12863 		return;
12864 
12865 	/*
12866 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12867 	 * ctx::mutex over the entire thing. This serializes against almost
12868 	 * everything that wants to access the ctx.
12869 	 *
12870 	 * The exception is sys_perf_event_open() /
12871 	 * perf_event_create_kernel_count() which does find_get_context()
12872 	 * without ctx::mutex (it cannot because of the move_group double mutex
12873 	 * lock thing). See the comments in perf_install_in_context().
12874 	 */
12875 	mutex_lock(&child_ctx->mutex);
12876 
12877 	/*
12878 	 * In a single ctx::lock section, de-schedule the events and detach the
12879 	 * context from the task such that we cannot ever get it scheduled back
12880 	 * in.
12881 	 */
12882 	raw_spin_lock_irq(&child_ctx->lock);
12883 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12884 
12885 	/*
12886 	 * Now that the context is inactive, destroy the task <-> ctx relation
12887 	 * and mark the context dead.
12888 	 */
12889 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12890 	put_ctx(child_ctx); /* cannot be last */
12891 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12892 	put_task_struct(current); /* cannot be last */
12893 
12894 	clone_ctx = unclone_ctx(child_ctx);
12895 	raw_spin_unlock_irq(&child_ctx->lock);
12896 
12897 	if (clone_ctx)
12898 		put_ctx(clone_ctx);
12899 
12900 	/*
12901 	 * Report the task dead after unscheduling the events so that we
12902 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12903 	 * get a few PERF_RECORD_READ events.
12904 	 */
12905 	perf_event_task(child, child_ctx, 0);
12906 
12907 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12908 		perf_event_exit_event(child_event, child_ctx);
12909 
12910 	mutex_unlock(&child_ctx->mutex);
12911 
12912 	put_ctx(child_ctx);
12913 }
12914 
12915 /*
12916  * When a child task exits, feed back event values to parent events.
12917  *
12918  * Can be called with exec_update_lock held when called from
12919  * setup_new_exec().
12920  */
perf_event_exit_task(struct task_struct * child)12921 void perf_event_exit_task(struct task_struct *child)
12922 {
12923 	struct perf_event *event, *tmp;
12924 	int ctxn;
12925 
12926 	mutex_lock(&child->perf_event_mutex);
12927 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12928 				 owner_entry) {
12929 		list_del_init(&event->owner_entry);
12930 
12931 		/*
12932 		 * Ensure the list deletion is visible before we clear
12933 		 * the owner, closes a race against perf_release() where
12934 		 * we need to serialize on the owner->perf_event_mutex.
12935 		 */
12936 		smp_store_release(&event->owner, NULL);
12937 	}
12938 	mutex_unlock(&child->perf_event_mutex);
12939 
12940 	for_each_task_context_nr(ctxn)
12941 		perf_event_exit_task_context(child, ctxn);
12942 
12943 	/*
12944 	 * The perf_event_exit_task_context calls perf_event_task
12945 	 * with child's task_ctx, which generates EXIT events for
12946 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12947 	 * At this point we need to send EXIT events to cpu contexts.
12948 	 */
12949 	perf_event_task(child, NULL, 0);
12950 }
12951 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)12952 static void perf_free_event(struct perf_event *event,
12953 			    struct perf_event_context *ctx)
12954 {
12955 	struct perf_event *parent = event->parent;
12956 
12957 	if (WARN_ON_ONCE(!parent))
12958 		return;
12959 
12960 	mutex_lock(&parent->child_mutex);
12961 	list_del_init(&event->child_list);
12962 	mutex_unlock(&parent->child_mutex);
12963 
12964 	put_event(parent);
12965 
12966 	raw_spin_lock_irq(&ctx->lock);
12967 	perf_group_detach(event);
12968 	list_del_event(event, ctx);
12969 	raw_spin_unlock_irq(&ctx->lock);
12970 	free_event(event);
12971 }
12972 
12973 /*
12974  * Free a context as created by inheritance by perf_event_init_task() below,
12975  * used by fork() in case of fail.
12976  *
12977  * Even though the task has never lived, the context and events have been
12978  * exposed through the child_list, so we must take care tearing it all down.
12979  */
perf_event_free_task(struct task_struct * task)12980 void perf_event_free_task(struct task_struct *task)
12981 {
12982 	struct perf_event_context *ctx;
12983 	struct perf_event *event, *tmp;
12984 	int ctxn;
12985 
12986 	for_each_task_context_nr(ctxn) {
12987 		ctx = task->perf_event_ctxp[ctxn];
12988 		if (!ctx)
12989 			continue;
12990 
12991 		mutex_lock(&ctx->mutex);
12992 		raw_spin_lock_irq(&ctx->lock);
12993 		/*
12994 		 * Destroy the task <-> ctx relation and mark the context dead.
12995 		 *
12996 		 * This is important because even though the task hasn't been
12997 		 * exposed yet the context has been (through child_list).
12998 		 */
12999 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
13000 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13001 		put_task_struct(task); /* cannot be last */
13002 		raw_spin_unlock_irq(&ctx->lock);
13003 
13004 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13005 			perf_free_event(event, ctx);
13006 
13007 		mutex_unlock(&ctx->mutex);
13008 
13009 		/*
13010 		 * perf_event_release_kernel() could've stolen some of our
13011 		 * child events and still have them on its free_list. In that
13012 		 * case we must wait for these events to have been freed (in
13013 		 * particular all their references to this task must've been
13014 		 * dropped).
13015 		 *
13016 		 * Without this copy_process() will unconditionally free this
13017 		 * task (irrespective of its reference count) and
13018 		 * _free_event()'s put_task_struct(event->hw.target) will be a
13019 		 * use-after-free.
13020 		 *
13021 		 * Wait for all events to drop their context reference.
13022 		 */
13023 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13024 		put_ctx(ctx); /* must be last */
13025 	}
13026 }
13027 
perf_event_delayed_put(struct task_struct * task)13028 void perf_event_delayed_put(struct task_struct *task)
13029 {
13030 	int ctxn;
13031 
13032 	for_each_task_context_nr(ctxn)
13033 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
13034 }
13035 
perf_event_get(unsigned int fd)13036 struct file *perf_event_get(unsigned int fd)
13037 {
13038 	struct file *file = fget(fd);
13039 	if (!file)
13040 		return ERR_PTR(-EBADF);
13041 
13042 	if (file->f_op != &perf_fops) {
13043 		fput(file);
13044 		return ERR_PTR(-EBADF);
13045 	}
13046 
13047 	return file;
13048 }
13049 
perf_get_event(struct file * file)13050 const struct perf_event *perf_get_event(struct file *file)
13051 {
13052 	if (file->f_op != &perf_fops)
13053 		return ERR_PTR(-EINVAL);
13054 
13055 	return file->private_data;
13056 }
13057 
perf_event_attrs(struct perf_event * event)13058 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13059 {
13060 	if (!event)
13061 		return ERR_PTR(-EINVAL);
13062 
13063 	return &event->attr;
13064 }
13065 
13066 /*
13067  * Inherit an event from parent task to child task.
13068  *
13069  * Returns:
13070  *  - valid pointer on success
13071  *  - NULL for orphaned events
13072  *  - IS_ERR() on error
13073  */
13074 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13075 inherit_event(struct perf_event *parent_event,
13076 	      struct task_struct *parent,
13077 	      struct perf_event_context *parent_ctx,
13078 	      struct task_struct *child,
13079 	      struct perf_event *group_leader,
13080 	      struct perf_event_context *child_ctx)
13081 {
13082 	enum perf_event_state parent_state = parent_event->state;
13083 	struct perf_event *child_event;
13084 	unsigned long flags;
13085 
13086 	/*
13087 	 * Instead of creating recursive hierarchies of events,
13088 	 * we link inherited events back to the original parent,
13089 	 * which has a filp for sure, which we use as the reference
13090 	 * count:
13091 	 */
13092 	if (parent_event->parent)
13093 		parent_event = parent_event->parent;
13094 
13095 	child_event = perf_event_alloc(&parent_event->attr,
13096 					   parent_event->cpu,
13097 					   child,
13098 					   group_leader, parent_event,
13099 					   NULL, NULL, -1);
13100 	if (IS_ERR(child_event))
13101 		return child_event;
13102 
13103 
13104 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13105 	    !child_ctx->task_ctx_data) {
13106 		struct pmu *pmu = child_event->pmu;
13107 
13108 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13109 		if (!child_ctx->task_ctx_data) {
13110 			free_event(child_event);
13111 			return ERR_PTR(-ENOMEM);
13112 		}
13113 	}
13114 
13115 	/*
13116 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13117 	 * must be under the same lock in order to serialize against
13118 	 * perf_event_release_kernel(), such that either we must observe
13119 	 * is_orphaned_event() or they will observe us on the child_list.
13120 	 */
13121 	mutex_lock(&parent_event->child_mutex);
13122 	if (is_orphaned_event(parent_event) ||
13123 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13124 		mutex_unlock(&parent_event->child_mutex);
13125 		/* task_ctx_data is freed with child_ctx */
13126 		free_event(child_event);
13127 		return NULL;
13128 	}
13129 
13130 	get_ctx(child_ctx);
13131 
13132 	/*
13133 	 * Make the child state follow the state of the parent event,
13134 	 * not its attr.disabled bit.  We hold the parent's mutex,
13135 	 * so we won't race with perf_event_{en, dis}able_family.
13136 	 */
13137 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13138 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13139 	else
13140 		child_event->state = PERF_EVENT_STATE_OFF;
13141 
13142 	if (parent_event->attr.freq) {
13143 		u64 sample_period = parent_event->hw.sample_period;
13144 		struct hw_perf_event *hwc = &child_event->hw;
13145 
13146 		hwc->sample_period = sample_period;
13147 		hwc->last_period   = sample_period;
13148 
13149 		local64_set(&hwc->period_left, sample_period);
13150 	}
13151 
13152 	child_event->ctx = child_ctx;
13153 	child_event->overflow_handler = parent_event->overflow_handler;
13154 	child_event->overflow_handler_context
13155 		= parent_event->overflow_handler_context;
13156 
13157 	/*
13158 	 * Precalculate sample_data sizes
13159 	 */
13160 	perf_event__header_size(child_event);
13161 	perf_event__id_header_size(child_event);
13162 
13163 	/*
13164 	 * Link it up in the child's context:
13165 	 */
13166 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13167 	add_event_to_ctx(child_event, child_ctx);
13168 	child_event->attach_state |= PERF_ATTACH_CHILD;
13169 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13170 
13171 	/*
13172 	 * Link this into the parent event's child list
13173 	 */
13174 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13175 	mutex_unlock(&parent_event->child_mutex);
13176 
13177 	return child_event;
13178 }
13179 
13180 /*
13181  * Inherits an event group.
13182  *
13183  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13184  * This matches with perf_event_release_kernel() removing all child events.
13185  *
13186  * Returns:
13187  *  - 0 on success
13188  *  - <0 on error
13189  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13190 static int inherit_group(struct perf_event *parent_event,
13191 	      struct task_struct *parent,
13192 	      struct perf_event_context *parent_ctx,
13193 	      struct task_struct *child,
13194 	      struct perf_event_context *child_ctx)
13195 {
13196 	struct perf_event *leader;
13197 	struct perf_event *sub;
13198 	struct perf_event *child_ctr;
13199 
13200 	leader = inherit_event(parent_event, parent, parent_ctx,
13201 				 child, NULL, child_ctx);
13202 	if (IS_ERR(leader))
13203 		return PTR_ERR(leader);
13204 	/*
13205 	 * @leader can be NULL here because of is_orphaned_event(). In this
13206 	 * case inherit_event() will create individual events, similar to what
13207 	 * perf_group_detach() would do anyway.
13208 	 */
13209 	for_each_sibling_event(sub, parent_event) {
13210 		child_ctr = inherit_event(sub, parent, parent_ctx,
13211 					    child, leader, child_ctx);
13212 		if (IS_ERR(child_ctr))
13213 			return PTR_ERR(child_ctr);
13214 
13215 		if (sub->aux_event == parent_event && child_ctr &&
13216 		    !perf_get_aux_event(child_ctr, leader))
13217 			return -EINVAL;
13218 	}
13219 	leader->group_generation = parent_event->group_generation;
13220 	return 0;
13221 }
13222 
13223 /*
13224  * Creates the child task context and tries to inherit the event-group.
13225  *
13226  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13227  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13228  * consistent with perf_event_release_kernel() removing all child events.
13229  *
13230  * Returns:
13231  *  - 0 on success
13232  *  - <0 on error
13233  */
13234 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,u64 clone_flags,int * inherited_all)13235 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13236 		   struct perf_event_context *parent_ctx,
13237 		   struct task_struct *child, int ctxn,
13238 		   u64 clone_flags, int *inherited_all)
13239 {
13240 	int ret;
13241 	struct perf_event_context *child_ctx;
13242 
13243 	if (!event->attr.inherit ||
13244 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13245 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13246 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13247 		*inherited_all = 0;
13248 		return 0;
13249 	}
13250 
13251 	child_ctx = child->perf_event_ctxp[ctxn];
13252 	if (!child_ctx) {
13253 		/*
13254 		 * This is executed from the parent task context, so
13255 		 * inherit events that have been marked for cloning.
13256 		 * First allocate and initialize a context for the
13257 		 * child.
13258 		 */
13259 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13260 		if (!child_ctx)
13261 			return -ENOMEM;
13262 
13263 		child->perf_event_ctxp[ctxn] = child_ctx;
13264 	}
13265 
13266 	ret = inherit_group(event, parent, parent_ctx,
13267 			    child, child_ctx);
13268 
13269 	if (ret)
13270 		*inherited_all = 0;
13271 
13272 	return ret;
13273 }
13274 
13275 /*
13276  * Initialize the perf_event context in task_struct
13277  */
perf_event_init_context(struct task_struct * child,int ctxn,u64 clone_flags)13278 static int perf_event_init_context(struct task_struct *child, int ctxn,
13279 				   u64 clone_flags)
13280 {
13281 	struct perf_event_context *child_ctx, *parent_ctx;
13282 	struct perf_event_context *cloned_ctx;
13283 	struct perf_event *event;
13284 	struct task_struct *parent = current;
13285 	int inherited_all = 1;
13286 	unsigned long flags;
13287 	int ret = 0;
13288 
13289 	if (likely(!parent->perf_event_ctxp[ctxn]))
13290 		return 0;
13291 
13292 	/*
13293 	 * If the parent's context is a clone, pin it so it won't get
13294 	 * swapped under us.
13295 	 */
13296 	parent_ctx = perf_pin_task_context(parent, ctxn);
13297 	if (!parent_ctx)
13298 		return 0;
13299 
13300 	/*
13301 	 * No need to check if parent_ctx != NULL here; since we saw
13302 	 * it non-NULL earlier, the only reason for it to become NULL
13303 	 * is if we exit, and since we're currently in the middle of
13304 	 * a fork we can't be exiting at the same time.
13305 	 */
13306 
13307 	/*
13308 	 * Lock the parent list. No need to lock the child - not PID
13309 	 * hashed yet and not running, so nobody can access it.
13310 	 */
13311 	mutex_lock(&parent_ctx->mutex);
13312 
13313 	/*
13314 	 * We dont have to disable NMIs - we are only looking at
13315 	 * the list, not manipulating it:
13316 	 */
13317 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13318 		ret = inherit_task_group(event, parent, parent_ctx,
13319 					 child, ctxn, clone_flags,
13320 					 &inherited_all);
13321 		if (ret)
13322 			goto out_unlock;
13323 	}
13324 
13325 	/*
13326 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13327 	 * to allocations, but we need to prevent rotation because
13328 	 * rotate_ctx() will change the list from interrupt context.
13329 	 */
13330 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13331 	parent_ctx->rotate_disable = 1;
13332 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13333 
13334 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13335 		ret = inherit_task_group(event, parent, parent_ctx,
13336 					 child, ctxn, clone_flags,
13337 					 &inherited_all);
13338 		if (ret)
13339 			goto out_unlock;
13340 	}
13341 
13342 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13343 	parent_ctx->rotate_disable = 0;
13344 
13345 	child_ctx = child->perf_event_ctxp[ctxn];
13346 
13347 	if (child_ctx && inherited_all) {
13348 		/*
13349 		 * Mark the child context as a clone of the parent
13350 		 * context, or of whatever the parent is a clone of.
13351 		 *
13352 		 * Note that if the parent is a clone, the holding of
13353 		 * parent_ctx->lock avoids it from being uncloned.
13354 		 */
13355 		cloned_ctx = parent_ctx->parent_ctx;
13356 		if (cloned_ctx) {
13357 			child_ctx->parent_ctx = cloned_ctx;
13358 			child_ctx->parent_gen = parent_ctx->parent_gen;
13359 		} else {
13360 			child_ctx->parent_ctx = parent_ctx;
13361 			child_ctx->parent_gen = parent_ctx->generation;
13362 		}
13363 		get_ctx(child_ctx->parent_ctx);
13364 	}
13365 
13366 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13367 out_unlock:
13368 	mutex_unlock(&parent_ctx->mutex);
13369 
13370 	perf_unpin_context(parent_ctx);
13371 	put_ctx(parent_ctx);
13372 
13373 	return ret;
13374 }
13375 
13376 /*
13377  * Initialize the perf_event context in task_struct
13378  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13379 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13380 {
13381 	int ctxn, ret;
13382 
13383 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13384 	mutex_init(&child->perf_event_mutex);
13385 	INIT_LIST_HEAD(&child->perf_event_list);
13386 
13387 	for_each_task_context_nr(ctxn) {
13388 		ret = perf_event_init_context(child, ctxn, clone_flags);
13389 		if (ret) {
13390 			perf_event_free_task(child);
13391 			return ret;
13392 		}
13393 	}
13394 
13395 	return 0;
13396 }
13397 
perf_event_init_all_cpus(void)13398 static void __init perf_event_init_all_cpus(void)
13399 {
13400 	struct swevent_htable *swhash;
13401 	int cpu;
13402 
13403 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13404 
13405 	for_each_possible_cpu(cpu) {
13406 		swhash = &per_cpu(swevent_htable, cpu);
13407 		mutex_init(&swhash->hlist_mutex);
13408 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13409 
13410 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13411 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13412 
13413 #ifdef CONFIG_CGROUP_PERF
13414 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13415 #endif
13416 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13417 	}
13418 }
13419 
perf_swevent_init_cpu(unsigned int cpu)13420 static void perf_swevent_init_cpu(unsigned int cpu)
13421 {
13422 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13423 
13424 	mutex_lock(&swhash->hlist_mutex);
13425 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13426 		struct swevent_hlist *hlist;
13427 
13428 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13429 		WARN_ON(!hlist);
13430 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13431 	}
13432 	mutex_unlock(&swhash->hlist_mutex);
13433 }
13434 
13435 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13436 static void __perf_event_exit_context(void *__info)
13437 {
13438 	struct perf_event_context *ctx = __info;
13439 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13440 	struct perf_event *event;
13441 
13442 	raw_spin_lock(&ctx->lock);
13443 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13444 	list_for_each_entry(event, &ctx->event_list, event_entry)
13445 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13446 	raw_spin_unlock(&ctx->lock);
13447 }
13448 
perf_event_exit_cpu_context(int cpu)13449 static void perf_event_exit_cpu_context(int cpu)
13450 {
13451 	struct perf_cpu_context *cpuctx;
13452 	struct perf_event_context *ctx;
13453 	struct pmu *pmu;
13454 
13455 	mutex_lock(&pmus_lock);
13456 	list_for_each_entry(pmu, &pmus, entry) {
13457 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13458 		ctx = &cpuctx->ctx;
13459 
13460 		mutex_lock(&ctx->mutex);
13461 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13462 		cpuctx->online = 0;
13463 		mutex_unlock(&ctx->mutex);
13464 	}
13465 	cpumask_clear_cpu(cpu, perf_online_mask);
13466 	mutex_unlock(&pmus_lock);
13467 }
13468 #else
13469 
perf_event_exit_cpu_context(int cpu)13470 static void perf_event_exit_cpu_context(int cpu) { }
13471 
13472 #endif
13473 
perf_event_init_cpu(unsigned int cpu)13474 int perf_event_init_cpu(unsigned int cpu)
13475 {
13476 	struct perf_cpu_context *cpuctx;
13477 	struct perf_event_context *ctx;
13478 	struct pmu *pmu;
13479 
13480 	perf_swevent_init_cpu(cpu);
13481 
13482 	mutex_lock(&pmus_lock);
13483 	cpumask_set_cpu(cpu, perf_online_mask);
13484 	list_for_each_entry(pmu, &pmus, entry) {
13485 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13486 		ctx = &cpuctx->ctx;
13487 
13488 		mutex_lock(&ctx->mutex);
13489 		cpuctx->online = 1;
13490 		mutex_unlock(&ctx->mutex);
13491 	}
13492 	mutex_unlock(&pmus_lock);
13493 
13494 	return 0;
13495 }
13496 
perf_event_exit_cpu(unsigned int cpu)13497 int perf_event_exit_cpu(unsigned int cpu)
13498 {
13499 	perf_event_exit_cpu_context(cpu);
13500 	return 0;
13501 }
13502 
13503 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13504 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13505 {
13506 	int cpu;
13507 
13508 	for_each_online_cpu(cpu)
13509 		perf_event_exit_cpu(cpu);
13510 
13511 	return NOTIFY_OK;
13512 }
13513 
13514 /*
13515  * Run the perf reboot notifier at the very last possible moment so that
13516  * the generic watchdog code runs as long as possible.
13517  */
13518 static struct notifier_block perf_reboot_notifier = {
13519 	.notifier_call = perf_reboot,
13520 	.priority = INT_MIN,
13521 };
13522 
perf_event_init(void)13523 void __init perf_event_init(void)
13524 {
13525 	int ret;
13526 
13527 	idr_init(&pmu_idr);
13528 
13529 	perf_event_init_all_cpus();
13530 	init_srcu_struct(&pmus_srcu);
13531 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13532 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13533 	perf_pmu_register(&perf_task_clock, NULL, -1);
13534 	perf_tp_register();
13535 	perf_event_init_cpu(smp_processor_id());
13536 	register_reboot_notifier(&perf_reboot_notifier);
13537 
13538 	ret = init_hw_breakpoint();
13539 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13540 
13541 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13542 
13543 	/*
13544 	 * Build time assertion that we keep the data_head at the intended
13545 	 * location.  IOW, validation we got the __reserved[] size right.
13546 	 */
13547 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13548 		     != 1024);
13549 }
13550 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13551 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13552 			      char *page)
13553 {
13554 	struct perf_pmu_events_attr *pmu_attr =
13555 		container_of(attr, struct perf_pmu_events_attr, attr);
13556 
13557 	if (pmu_attr->event_str)
13558 		return sprintf(page, "%s\n", pmu_attr->event_str);
13559 
13560 	return 0;
13561 }
13562 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13563 
perf_event_sysfs_init(void)13564 static int __init perf_event_sysfs_init(void)
13565 {
13566 	struct pmu *pmu;
13567 	int ret;
13568 
13569 	mutex_lock(&pmus_lock);
13570 
13571 	ret = bus_register(&pmu_bus);
13572 	if (ret)
13573 		goto unlock;
13574 
13575 	list_for_each_entry(pmu, &pmus, entry) {
13576 		if (!pmu->name || pmu->type < 0)
13577 			continue;
13578 
13579 		ret = pmu_dev_alloc(pmu);
13580 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13581 	}
13582 	pmu_bus_running = 1;
13583 	ret = 0;
13584 
13585 unlock:
13586 	mutex_unlock(&pmus_lock);
13587 
13588 	return ret;
13589 }
13590 device_initcall(perf_event_sysfs_init);
13591 
13592 #ifdef CONFIG_CGROUP_PERF
13593 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13594 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13595 {
13596 	struct perf_cgroup *jc;
13597 
13598 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13599 	if (!jc)
13600 		return ERR_PTR(-ENOMEM);
13601 
13602 	jc->info = alloc_percpu(struct perf_cgroup_info);
13603 	if (!jc->info) {
13604 		kfree(jc);
13605 		return ERR_PTR(-ENOMEM);
13606 	}
13607 
13608 	return &jc->css;
13609 }
13610 
perf_cgroup_css_free(struct cgroup_subsys_state * css)13611 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13612 {
13613 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13614 
13615 	free_percpu(jc->info);
13616 	kfree(jc);
13617 }
13618 
perf_cgroup_css_online(struct cgroup_subsys_state * css)13619 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13620 {
13621 	perf_event_cgroup(css->cgroup);
13622 	return 0;
13623 }
13624 
__perf_cgroup_move(void * info)13625 static int __perf_cgroup_move(void *info)
13626 {
13627 	struct task_struct *task = info;
13628 	rcu_read_lock();
13629 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13630 	rcu_read_unlock();
13631 	return 0;
13632 }
13633 
perf_cgroup_attach(struct cgroup_taskset * tset)13634 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13635 {
13636 	struct task_struct *task;
13637 	struct cgroup_subsys_state *css;
13638 
13639 	cgroup_taskset_for_each(task, css, tset)
13640 		task_function_call(task, __perf_cgroup_move, task);
13641 }
13642 
13643 struct cgroup_subsys perf_event_cgrp_subsys = {
13644 	.css_alloc	= perf_cgroup_css_alloc,
13645 	.css_free	= perf_cgroup_css_free,
13646 	.css_online	= perf_cgroup_css_online,
13647 	.attach		= perf_cgroup_attach,
13648 	/*
13649 	 * Implicitly enable on dfl hierarchy so that perf events can
13650 	 * always be filtered by cgroup2 path as long as perf_event
13651 	 * controller is not mounted on a legacy hierarchy.
13652 	 */
13653 	.implicit_on_dfl = true,
13654 	.threaded	= true,
13655 };
13656 #endif /* CONFIG_CGROUP_PERF */
13657