1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41
42 extern unsigned long __atags_pointer;
43
44 /*
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
47 */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50
51 /*
52 * The pmd table for the upper-most set of pages.
53 */
54 pmd_t *top_pmd;
55
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57
58 #define CPOLICY_UNCACHED 0
59 #define CPOLICY_BUFFERED 1
60 #define CPOLICY_WRITETHROUGH 2
61 #define CPOLICY_WRITEBACK 3
62 #define CPOLICY_WRITEALLOC 4
63
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71
72 struct cachepolicy {
73 const char policy[16];
74 unsigned int cr_mask;
75 pmdval_t pmd;
76 pteval_t pte;
77 };
78
79 static struct cachepolicy cache_policies[] __initdata = {
80 {
81 .policy = "uncached",
82 .cr_mask = CR_W|CR_C,
83 .pmd = PMD_SECT_UNCACHED,
84 .pte = L_PTE_MT_UNCACHED,
85 }, {
86 .policy = "buffered",
87 .cr_mask = CR_C,
88 .pmd = PMD_SECT_BUFFERED,
89 .pte = L_PTE_MT_BUFFERABLE,
90 }, {
91 .policy = "writethrough",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WT,
94 .pte = L_PTE_MT_WRITETHROUGH,
95 }, {
96 .policy = "writeback",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WB,
99 .pte = L_PTE_MT_WRITEBACK,
100 }, {
101 .policy = "writealloc",
102 .cr_mask = 0,
103 .pmd = PMD_SECT_WBWA,
104 .pte = L_PTE_MT_WRITEALLOC,
105 }
106 };
107
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110
111 /*
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused. See comments in early_cachepolicy() for more information.
117 */
init_default_cache_policy(unsigned long pmd)118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 int i;
121
122 initial_pmd_value = pmd;
123
124 pmd &= PMD_SECT_CACHE_MASK;
125
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 if (cache_policies[i].pmd == pmd) {
128 cachepolicy = i;
129 break;
130 }
131
132 if (i == ARRAY_SIZE(cache_policies))
133 pr_err("ERROR: could not find cache policy\n");
134 }
135
136 /*
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off. (Note: the
139 * write buffer should not be on and the cache off).
140 */
early_cachepolicy(char * p)141 static int __init early_cachepolicy(char *p)
142 {
143 int i, selected = -1;
144
145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 int len = strlen(cache_policies[i].policy);
147
148 if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 selected = i;
150 break;
151 }
152 }
153
154 if (selected == -1)
155 pr_err("ERROR: unknown or unsupported cache policy\n");
156
157 /*
158 * This restriction is partly to do with the way we boot; it is
159 * unpredictable to have memory mapped using two different sets of
160 * memory attributes (shared, type, and cache attribs). We can not
161 * change these attributes once the initial assembly has setup the
162 * page tables.
163 */
164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 cache_policies[cachepolicy].policy);
167 return 0;
168 }
169
170 if (selected != cachepolicy) {
171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 cachepolicy = selected;
173 flush_cache_all();
174 set_cr(cr);
175 }
176 return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179
early_nocache(char * __unused)180 static int __init early_nocache(char *__unused)
181 {
182 char *p = "buffered";
183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 early_cachepolicy(p);
185 return 0;
186 }
187 early_param("nocache", early_nocache);
188
early_nowrite(char * __unused)189 static int __init early_nowrite(char *__unused)
190 {
191 char *p = "uncached";
192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 early_cachepolicy(p);
194 return 0;
195 }
196 early_param("nowb", early_nowrite);
197
198 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)199 static int __init early_ecc(char *p)
200 {
201 if (memcmp(p, "on", 2) == 0)
202 ecc_mask = PMD_PROTECTION;
203 else if (memcmp(p, "off", 3) == 0)
204 ecc_mask = 0;
205 return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209
210 #else /* ifdef CONFIG_CPU_CP15 */
211
early_cachepolicy(char * p)212 static int __init early_cachepolicy(char *p)
213 {
214 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218
noalign_setup(char * __unused)219 static int __init noalign_setup(char *__unused)
220 {
221 pr_warn("noalign kernel parameter not supported without cp15\n");
222 return 1;
223 }
224 __setup("noalign", noalign_setup);
225
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227
228 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231
232 static struct mem_type mem_types[] __ro_after_init = {
233 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
234 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 L_PTE_SHARED,
236 .prot_l1 = PMD_TYPE_TABLE,
237 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
238 .domain = DOMAIN_IO,
239 },
240 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 .prot_l1 = PMD_TYPE_TABLE,
243 .prot_sect = PROT_SECT_DEVICE,
244 .domain = DOMAIN_IO,
245 },
246 [MT_DEVICE_CACHED] = { /* ioremap_cache */
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 .prot_l1 = PMD_TYPE_TABLE,
249 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
250 .domain = DOMAIN_IO,
251 },
252 [MT_DEVICE_WC] = { /* ioremap_wc */
253 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 .prot_l1 = PMD_TYPE_TABLE,
255 .prot_sect = PROT_SECT_DEVICE,
256 .domain = DOMAIN_IO,
257 },
258 [MT_UNCACHED] = {
259 .prot_pte = PROT_PTE_DEVICE,
260 .prot_l1 = PMD_TYPE_TABLE,
261 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
262 .domain = DOMAIN_IO,
263 },
264 [MT_CACHECLEAN] = {
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 .domain = DOMAIN_KERNEL,
267 },
268 #ifndef CONFIG_ARM_LPAE
269 [MT_MINICLEAN] = {
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 .domain = DOMAIN_KERNEL,
272 },
273 #endif
274 [MT_LOW_VECTORS] = {
275 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 L_PTE_RDONLY,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .domain = DOMAIN_VECTORS,
279 },
280 [MT_HIGH_VECTORS] = {
281 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 L_PTE_USER | L_PTE_RDONLY,
283 .prot_l1 = PMD_TYPE_TABLE,
284 .domain = DOMAIN_VECTORS,
285 },
286 [MT_MEMORY_RWX] = {
287 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 .prot_l1 = PMD_TYPE_TABLE,
289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 .domain = DOMAIN_KERNEL,
291 },
292 [MT_MEMORY_RW] = {
293 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 L_PTE_XN,
295 .prot_l1 = PMD_TYPE_TABLE,
296 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 .domain = DOMAIN_KERNEL,
298 },
299 [MT_MEMORY_RO] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 L_PTE_XN | L_PTE_RDONLY,
302 .prot_l1 = PMD_TYPE_TABLE,
303 #ifdef CONFIG_ARM_LPAE
304 .prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
305 #else
306 .prot_sect = PMD_TYPE_SECT,
307 #endif
308 .domain = DOMAIN_KERNEL,
309 },
310 [MT_ROM] = {
311 .prot_sect = PMD_TYPE_SECT,
312 .domain = DOMAIN_KERNEL,
313 },
314 [MT_MEMORY_RWX_NONCACHED] = {
315 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
316 L_PTE_MT_BUFFERABLE,
317 .prot_l1 = PMD_TYPE_TABLE,
318 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
319 .domain = DOMAIN_KERNEL,
320 },
321 [MT_MEMORY_RW_DTCM] = {
322 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323 L_PTE_XN,
324 .prot_l1 = PMD_TYPE_TABLE,
325 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
326 .domain = DOMAIN_KERNEL,
327 },
328 [MT_MEMORY_RWX_ITCM] = {
329 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
330 .prot_l1 = PMD_TYPE_TABLE,
331 .domain = DOMAIN_KERNEL,
332 },
333 [MT_MEMORY_RW_SO] = {
334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 L_PTE_MT_UNCACHED | L_PTE_XN,
336 .prot_l1 = PMD_TYPE_TABLE,
337 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
338 PMD_SECT_UNCACHED | PMD_SECT_XN,
339 .domain = DOMAIN_KERNEL,
340 },
341 [MT_MEMORY_DMA_READY] = {
342 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 L_PTE_XN,
344 .prot_l1 = PMD_TYPE_TABLE,
345 .domain = DOMAIN_KERNEL,
346 },
347 };
348
get_mem_type(unsigned int type)349 const struct mem_type *get_mem_type(unsigned int type)
350 {
351 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
352 }
353 EXPORT_SYMBOL(get_mem_type);
354
355 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
356
357 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
358 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
359
pte_offset_early_fixmap(pmd_t * dir,unsigned long addr)360 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
361 {
362 return &bm_pte[pte_index(addr)];
363 }
364
pte_offset_late_fixmap(pmd_t * dir,unsigned long addr)365 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
366 {
367 return pte_offset_kernel(dir, addr);
368 }
369
fixmap_pmd(unsigned long addr)370 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
371 {
372 return pmd_off_k(addr);
373 }
374
early_fixmap_init(void)375 void __init early_fixmap_init(void)
376 {
377 pmd_t *pmd;
378
379 /*
380 * The early fixmap range spans multiple pmds, for which
381 * we are not prepared:
382 */
383 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
384 != FIXADDR_TOP >> PMD_SHIFT);
385
386 pmd = fixmap_pmd(FIXADDR_TOP);
387 pmd_populate_kernel(&init_mm, pmd, bm_pte);
388
389 pte_offset_fixmap = pte_offset_early_fixmap;
390 }
391
392 /*
393 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
394 * As a result, this can only be called with preemption disabled, as under
395 * stop_machine().
396 */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)397 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
398 {
399 unsigned long vaddr = __fix_to_virt(idx);
400 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
401
402 /* Make sure fixmap region does not exceed available allocation. */
403 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
404 BUG_ON(idx >= __end_of_fixed_addresses);
405
406 /* We support only device mappings before pgprot_kernel is set. */
407 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
408 pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
409 return;
410
411 if (pgprot_val(prot))
412 set_pte_at(NULL, vaddr, pte,
413 pfn_pte(phys >> PAGE_SHIFT, prot));
414 else
415 pte_clear(NULL, vaddr, pte);
416 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
417 }
418
419 /*
420 * Adjust the PMD section entries according to the CPU in use.
421 */
build_mem_type_table(void)422 static void __init build_mem_type_table(void)
423 {
424 struct cachepolicy *cp;
425 unsigned int cr = get_cr();
426 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
427 int cpu_arch = cpu_architecture();
428 int i;
429
430 if (cpu_arch < CPU_ARCH_ARMv6) {
431 #if defined(CONFIG_CPU_DCACHE_DISABLE)
432 if (cachepolicy > CPOLICY_BUFFERED)
433 cachepolicy = CPOLICY_BUFFERED;
434 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
435 if (cachepolicy > CPOLICY_WRITETHROUGH)
436 cachepolicy = CPOLICY_WRITETHROUGH;
437 #endif
438 }
439 if (cpu_arch < CPU_ARCH_ARMv5) {
440 if (cachepolicy >= CPOLICY_WRITEALLOC)
441 cachepolicy = CPOLICY_WRITEBACK;
442 ecc_mask = 0;
443 }
444
445 if (is_smp()) {
446 if (cachepolicy != CPOLICY_WRITEALLOC) {
447 pr_warn("Forcing write-allocate cache policy for SMP\n");
448 cachepolicy = CPOLICY_WRITEALLOC;
449 }
450 if (!(initial_pmd_value & PMD_SECT_S)) {
451 pr_warn("Forcing shared mappings for SMP\n");
452 initial_pmd_value |= PMD_SECT_S;
453 }
454 }
455
456 /*
457 * Strip out features not present on earlier architectures.
458 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
459 * without extended page tables don't have the 'Shared' bit.
460 */
461 if (cpu_arch < CPU_ARCH_ARMv5)
462 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
463 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
464 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
465 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
466 mem_types[i].prot_sect &= ~PMD_SECT_S;
467
468 /*
469 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
470 * "update-able on write" bit on ARM610). However, Xscale and
471 * Xscale3 require this bit to be cleared.
472 */
473 if (cpu_is_xscale_family()) {
474 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
475 mem_types[i].prot_sect &= ~PMD_BIT4;
476 mem_types[i].prot_l1 &= ~PMD_BIT4;
477 }
478 } else if (cpu_arch < CPU_ARCH_ARMv6) {
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
480 if (mem_types[i].prot_l1)
481 mem_types[i].prot_l1 |= PMD_BIT4;
482 if (mem_types[i].prot_sect)
483 mem_types[i].prot_sect |= PMD_BIT4;
484 }
485 }
486
487 /*
488 * Mark the device areas according to the CPU/architecture.
489 */
490 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
491 if (!cpu_is_xsc3()) {
492 /*
493 * Mark device regions on ARMv6+ as execute-never
494 * to prevent speculative instruction fetches.
495 */
496 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
497 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
498 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
499 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
500
501 /* Also setup NX memory mapping */
502 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
503 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
504 }
505 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
506 /*
507 * For ARMv7 with TEX remapping,
508 * - shared device is SXCB=1100
509 * - nonshared device is SXCB=0100
510 * - write combine device mem is SXCB=0001
511 * (Uncached Normal memory)
512 */
513 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
514 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
515 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
516 } else if (cpu_is_xsc3()) {
517 /*
518 * For Xscale3,
519 * - shared device is TEXCB=00101
520 * - nonshared device is TEXCB=01000
521 * - write combine device mem is TEXCB=00100
522 * (Inner/Outer Uncacheable in xsc3 parlance)
523 */
524 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
525 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
526 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
527 } else {
528 /*
529 * For ARMv6 and ARMv7 without TEX remapping,
530 * - shared device is TEXCB=00001
531 * - nonshared device is TEXCB=01000
532 * - write combine device mem is TEXCB=00100
533 * (Uncached Normal in ARMv6 parlance).
534 */
535 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
536 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
537 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
538 }
539 } else {
540 /*
541 * On others, write combining is "Uncached/Buffered"
542 */
543 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
544 }
545
546 /*
547 * Now deal with the memory-type mappings
548 */
549 cp = &cache_policies[cachepolicy];
550 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
551
552 #ifndef CONFIG_ARM_LPAE
553 /*
554 * We don't use domains on ARMv6 (since this causes problems with
555 * v6/v7 kernels), so we must use a separate memory type for user
556 * r/o, kernel r/w to map the vectors page.
557 */
558 if (cpu_arch == CPU_ARCH_ARMv6)
559 vecs_pgprot |= L_PTE_MT_VECTORS;
560
561 /*
562 * Check is it with support for the PXN bit
563 * in the Short-descriptor translation table format descriptors.
564 */
565 if (cpu_arch == CPU_ARCH_ARMv7 &&
566 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
567 user_pmd_table |= PMD_PXNTABLE;
568 }
569 #endif
570
571 /*
572 * ARMv6 and above have extended page tables.
573 */
574 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
575 #ifndef CONFIG_ARM_LPAE
576 /*
577 * Mark cache clean areas and XIP ROM read only
578 * from SVC mode and no access from userspace.
579 */
580 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
581 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
582 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
583 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
584 #endif
585
586 /*
587 * If the initial page tables were created with the S bit
588 * set, then we need to do the same here for the same
589 * reasons given in early_cachepolicy().
590 */
591 if (initial_pmd_value & PMD_SECT_S) {
592 user_pgprot |= L_PTE_SHARED;
593 kern_pgprot |= L_PTE_SHARED;
594 vecs_pgprot |= L_PTE_SHARED;
595 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
596 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
597 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
598 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
599 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
600 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
601 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
602 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
603 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
604 mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
605 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
606 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
607 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
608 }
609 }
610
611 /*
612 * Non-cacheable Normal - intended for memory areas that must
613 * not cause dirty cache line writebacks when used
614 */
615 if (cpu_arch >= CPU_ARCH_ARMv6) {
616 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
617 /* Non-cacheable Normal is XCB = 001 */
618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
619 PMD_SECT_BUFFERED;
620 } else {
621 /* For both ARMv6 and non-TEX-remapping ARMv7 */
622 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
623 PMD_SECT_TEX(1);
624 }
625 } else {
626 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
627 }
628
629 #ifdef CONFIG_ARM_LPAE
630 /*
631 * Do not generate access flag faults for the kernel mappings.
632 */
633 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
634 mem_types[i].prot_pte |= PTE_EXT_AF;
635 if (mem_types[i].prot_sect)
636 mem_types[i].prot_sect |= PMD_SECT_AF;
637 }
638 kern_pgprot |= PTE_EXT_AF;
639 vecs_pgprot |= PTE_EXT_AF;
640
641 /*
642 * Set PXN for user mappings
643 */
644 user_pgprot |= PTE_EXT_PXN;
645 #endif
646
647 for (i = 0; i < 16; i++) {
648 pteval_t v = pgprot_val(protection_map[i]);
649 protection_map[i] = __pgprot(v | user_pgprot);
650 }
651
652 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
653 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
654
655 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
656 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
657 L_PTE_DIRTY | kern_pgprot);
658
659 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
660 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
661 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
662 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
663 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
664 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
665 mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
666 mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
667 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
668 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
669 mem_types[MT_ROM].prot_sect |= cp->pmd;
670
671 switch (cp->pmd) {
672 case PMD_SECT_WT:
673 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
674 break;
675 case PMD_SECT_WB:
676 case PMD_SECT_WBWA:
677 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
678 break;
679 }
680 pr_info("Memory policy: %sData cache %s\n",
681 ecc_mask ? "ECC enabled, " : "", cp->policy);
682
683 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
684 struct mem_type *t = &mem_types[i];
685 if (t->prot_l1)
686 t->prot_l1 |= PMD_DOMAIN(t->domain);
687 if (t->prot_sect)
688 t->prot_sect |= PMD_DOMAIN(t->domain);
689 }
690 }
691
692 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)693 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
694 unsigned long size, pgprot_t vma_prot)
695 {
696 if (!pfn_valid(pfn))
697 return pgprot_noncached(vma_prot);
698 else if (file->f_flags & O_SYNC)
699 return pgprot_writecombine(vma_prot);
700 return vma_prot;
701 }
702 EXPORT_SYMBOL(phys_mem_access_prot);
703 #endif
704
705 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
706
early_alloc(unsigned long sz)707 static void __init *early_alloc(unsigned long sz)
708 {
709 void *ptr = memblock_alloc(sz, sz);
710
711 if (!ptr)
712 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
713 __func__, sz, sz);
714
715 return ptr;
716 }
717
late_alloc(unsigned long sz)718 static void *__init late_alloc(unsigned long sz)
719 {
720 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
721
722 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
723 BUG();
724 return ptr;
725 }
726
arm_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot,void * (* alloc)(unsigned long sz))727 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
728 unsigned long prot,
729 void *(*alloc)(unsigned long sz))
730 {
731 if (pmd_none(*pmd)) {
732 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
733 __pmd_populate(pmd, __pa(pte), prot);
734 }
735 BUG_ON(pmd_bad(*pmd));
736 return pte_offset_kernel(pmd, addr);
737 }
738
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)739 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
740 unsigned long prot)
741 {
742 return arm_pte_alloc(pmd, addr, prot, early_alloc);
743 }
744
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)745 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
746 unsigned long end, unsigned long pfn,
747 const struct mem_type *type,
748 void *(*alloc)(unsigned long sz),
749 bool ng)
750 {
751 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
752 do {
753 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
754 ng ? PTE_EXT_NG : 0);
755 pfn++;
756 } while (pte++, addr += PAGE_SIZE, addr != end);
757 }
758
__map_init_section(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,bool ng)759 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
760 unsigned long end, phys_addr_t phys,
761 const struct mem_type *type, bool ng)
762 {
763 pmd_t *p = pmd;
764
765 #ifndef CONFIG_ARM_LPAE
766 /*
767 * In classic MMU format, puds and pmds are folded in to
768 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
769 * group of L1 entries making up one logical pointer to
770 * an L2 table (2MB), where as PMDs refer to the individual
771 * L1 entries (1MB). Hence increment to get the correct
772 * offset for odd 1MB sections.
773 * (See arch/arm/include/asm/pgtable-2level.h)
774 */
775 if (addr & SECTION_SIZE)
776 pmd++;
777 #endif
778 do {
779 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
780 phys += SECTION_SIZE;
781 } while (pmd++, addr += SECTION_SIZE, addr != end);
782
783 flush_pmd_entry(p);
784 }
785
alloc_init_pmd(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)786 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
787 unsigned long end, phys_addr_t phys,
788 const struct mem_type *type,
789 void *(*alloc)(unsigned long sz), bool ng)
790 {
791 pmd_t *pmd = pmd_offset(pud, addr);
792 unsigned long next;
793
794 do {
795 /*
796 * With LPAE, we must loop over to map
797 * all the pmds for the given range.
798 */
799 next = pmd_addr_end(addr, end);
800
801 /*
802 * Try a section mapping - addr, next and phys must all be
803 * aligned to a section boundary.
804 */
805 if (type->prot_sect &&
806 ((addr | next | phys) & ~SECTION_MASK) == 0) {
807 __map_init_section(pmd, addr, next, phys, type, ng);
808 } else {
809 alloc_init_pte(pmd, addr, next,
810 __phys_to_pfn(phys), type, alloc, ng);
811 }
812
813 phys += next - addr;
814
815 } while (pmd++, addr = next, addr != end);
816 }
817
alloc_init_pud(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)818 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
819 unsigned long end, phys_addr_t phys,
820 const struct mem_type *type,
821 void *(*alloc)(unsigned long sz), bool ng)
822 {
823 pud_t *pud = pud_offset(p4d, addr);
824 unsigned long next;
825
826 do {
827 next = pud_addr_end(addr, end);
828 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
829 phys += next - addr;
830 } while (pud++, addr = next, addr != end);
831 }
832
alloc_init_p4d(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)833 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
834 unsigned long end, phys_addr_t phys,
835 const struct mem_type *type,
836 void *(*alloc)(unsigned long sz), bool ng)
837 {
838 p4d_t *p4d = p4d_offset(pgd, addr);
839 unsigned long next;
840
841 do {
842 next = p4d_addr_end(addr, end);
843 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
844 phys += next - addr;
845 } while (p4d++, addr = next, addr != end);
846 }
847
848 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct mm_struct * mm,struct map_desc * md,const struct mem_type * type,bool ng)849 static void __init create_36bit_mapping(struct mm_struct *mm,
850 struct map_desc *md,
851 const struct mem_type *type,
852 bool ng)
853 {
854 unsigned long addr, length, end;
855 phys_addr_t phys;
856 pgd_t *pgd;
857
858 addr = md->virtual;
859 phys = __pfn_to_phys(md->pfn);
860 length = PAGE_ALIGN(md->length);
861
862 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
863 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
864 (long long)__pfn_to_phys((u64)md->pfn), addr);
865 return;
866 }
867
868 /* N.B. ARMv6 supersections are only defined to work with domain 0.
869 * Since domain assignments can in fact be arbitrary, the
870 * 'domain == 0' check below is required to insure that ARMv6
871 * supersections are only allocated for domain 0 regardless
872 * of the actual domain assignments in use.
873 */
874 if (type->domain) {
875 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
876 (long long)__pfn_to_phys((u64)md->pfn), addr);
877 return;
878 }
879
880 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
881 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
882 (long long)__pfn_to_phys((u64)md->pfn), addr);
883 return;
884 }
885
886 /*
887 * Shift bits [35:32] of address into bits [23:20] of PMD
888 * (See ARMv6 spec).
889 */
890 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
891
892 pgd = pgd_offset(mm, addr);
893 end = addr + length;
894 do {
895 p4d_t *p4d = p4d_offset(pgd, addr);
896 pud_t *pud = pud_offset(p4d, addr);
897 pmd_t *pmd = pmd_offset(pud, addr);
898 int i;
899
900 for (i = 0; i < 16; i++)
901 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
902 (ng ? PMD_SECT_nG : 0));
903
904 addr += SUPERSECTION_SIZE;
905 phys += SUPERSECTION_SIZE;
906 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
907 } while (addr != end);
908 }
909 #endif /* !CONFIG_ARM_LPAE */
910
__create_mapping(struct mm_struct * mm,struct map_desc * md,void * (* alloc)(unsigned long sz),bool ng)911 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
912 void *(*alloc)(unsigned long sz),
913 bool ng)
914 {
915 unsigned long addr, length, end;
916 phys_addr_t phys;
917 const struct mem_type *type;
918 pgd_t *pgd;
919
920 type = &mem_types[md->type];
921
922 #ifndef CONFIG_ARM_LPAE
923 /*
924 * Catch 36-bit addresses
925 */
926 if (md->pfn >= 0x100000) {
927 create_36bit_mapping(mm, md, type, ng);
928 return;
929 }
930 #endif
931
932 addr = md->virtual & PAGE_MASK;
933 phys = __pfn_to_phys(md->pfn);
934 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
935
936 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
937 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
938 (long long)__pfn_to_phys(md->pfn), addr);
939 return;
940 }
941
942 pgd = pgd_offset(mm, addr);
943 end = addr + length;
944 do {
945 unsigned long next = pgd_addr_end(addr, end);
946
947 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
948
949 phys += next - addr;
950 addr = next;
951 } while (pgd++, addr != end);
952 }
953
954 /*
955 * Create the page directory entries and any necessary
956 * page tables for the mapping specified by `md'. We
957 * are able to cope here with varying sizes and address
958 * offsets, and we take full advantage of sections and
959 * supersections.
960 */
create_mapping(struct map_desc * md)961 static void __init create_mapping(struct map_desc *md)
962 {
963 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
964 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
965 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
966 return;
967 }
968
969 if (md->type == MT_DEVICE &&
970 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
971 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
972 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
973 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
974 }
975
976 __create_mapping(&init_mm, md, early_alloc, false);
977 }
978
create_mapping_late(struct mm_struct * mm,struct map_desc * md,bool ng)979 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
980 bool ng)
981 {
982 #ifdef CONFIG_ARM_LPAE
983 p4d_t *p4d;
984 pud_t *pud;
985
986 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
987 if (WARN_ON(!p4d))
988 return;
989 pud = pud_alloc(mm, p4d, md->virtual);
990 if (WARN_ON(!pud))
991 return;
992 pmd_alloc(mm, pud, 0);
993 #endif
994 __create_mapping(mm, md, late_alloc, ng);
995 }
996
997 /*
998 * Create the architecture specific mappings
999 */
iotable_init(struct map_desc * io_desc,int nr)1000 void __init iotable_init(struct map_desc *io_desc, int nr)
1001 {
1002 struct map_desc *md;
1003 struct vm_struct *vm;
1004 struct static_vm *svm;
1005
1006 if (!nr)
1007 return;
1008
1009 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1010 if (!svm)
1011 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1012 __func__, sizeof(*svm) * nr, __alignof__(*svm));
1013
1014 for (md = io_desc; nr; md++, nr--) {
1015 create_mapping(md);
1016
1017 vm = &svm->vm;
1018 vm->addr = (void *)(md->virtual & PAGE_MASK);
1019 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1020 vm->phys_addr = __pfn_to_phys(md->pfn);
1021 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1022 vm->flags |= VM_ARM_MTYPE(md->type);
1023 vm->caller = iotable_init;
1024 add_static_vm_early(svm++);
1025 }
1026 }
1027
vm_reserve_area_early(unsigned long addr,unsigned long size,void * caller)1028 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1029 void *caller)
1030 {
1031 struct vm_struct *vm;
1032 struct static_vm *svm;
1033
1034 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1035 if (!svm)
1036 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1037 __func__, sizeof(*svm), __alignof__(*svm));
1038
1039 vm = &svm->vm;
1040 vm->addr = (void *)addr;
1041 vm->size = size;
1042 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1043 vm->caller = caller;
1044 add_static_vm_early(svm);
1045 }
1046
1047 #ifndef CONFIG_ARM_LPAE
1048
1049 /*
1050 * The Linux PMD is made of two consecutive section entries covering 2MB
1051 * (see definition in include/asm/pgtable-2level.h). However a call to
1052 * create_mapping() may optimize static mappings by using individual
1053 * 1MB section mappings. This leaves the actual PMD potentially half
1054 * initialized if the top or bottom section entry isn't used, leaving it
1055 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1056 * the virtual space left free by that unused section entry.
1057 *
1058 * Let's avoid the issue by inserting dummy vm entries covering the unused
1059 * PMD halves once the static mappings are in place.
1060 */
1061
pmd_empty_section_gap(unsigned long addr)1062 static void __init pmd_empty_section_gap(unsigned long addr)
1063 {
1064 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1065 }
1066
fill_pmd_gaps(void)1067 static void __init fill_pmd_gaps(void)
1068 {
1069 struct static_vm *svm;
1070 struct vm_struct *vm;
1071 unsigned long addr, next = 0;
1072 pmd_t *pmd;
1073
1074 list_for_each_entry(svm, &static_vmlist, list) {
1075 vm = &svm->vm;
1076 addr = (unsigned long)vm->addr;
1077 if (addr < next)
1078 continue;
1079
1080 /*
1081 * Check if this vm starts on an odd section boundary.
1082 * If so and the first section entry for this PMD is free
1083 * then we block the corresponding virtual address.
1084 */
1085 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086 pmd = pmd_off_k(addr);
1087 if (pmd_none(*pmd))
1088 pmd_empty_section_gap(addr & PMD_MASK);
1089 }
1090
1091 /*
1092 * Then check if this vm ends on an odd section boundary.
1093 * If so and the second section entry for this PMD is empty
1094 * then we block the corresponding virtual address.
1095 */
1096 addr += vm->size;
1097 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1098 pmd = pmd_off_k(addr) + 1;
1099 if (pmd_none(*pmd))
1100 pmd_empty_section_gap(addr);
1101 }
1102
1103 /* no need to look at any vm entry until we hit the next PMD */
1104 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1105 }
1106 }
1107
1108 #else
1109 #define fill_pmd_gaps() do { } while (0)
1110 #endif
1111
1112 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
pci_reserve_io(void)1113 static void __init pci_reserve_io(void)
1114 {
1115 struct static_vm *svm;
1116
1117 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1118 if (svm)
1119 return;
1120
1121 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1122 }
1123 #else
1124 #define pci_reserve_io() do { } while (0)
1125 #endif
1126
1127 #ifdef CONFIG_DEBUG_LL
debug_ll_io_init(void)1128 void __init debug_ll_io_init(void)
1129 {
1130 struct map_desc map;
1131
1132 debug_ll_addr(&map.pfn, &map.virtual);
1133 if (!map.pfn || !map.virtual)
1134 return;
1135 map.pfn = __phys_to_pfn(map.pfn);
1136 map.virtual &= PAGE_MASK;
1137 map.length = PAGE_SIZE;
1138 map.type = MT_DEVICE;
1139 iotable_init(&map, 1);
1140 }
1141 #endif
1142
1143 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1144
1145 /*
1146 * vmalloc=size forces the vmalloc area to be exactly 'size'
1147 * bytes. This can be used to increase (or decrease) the vmalloc
1148 * area - the default is 240MiB.
1149 */
early_vmalloc(char * arg)1150 static int __init early_vmalloc(char *arg)
1151 {
1152 unsigned long vmalloc_reserve = memparse(arg, NULL);
1153 unsigned long vmalloc_max;
1154
1155 if (vmalloc_reserve < SZ_16M) {
1156 vmalloc_reserve = SZ_16M;
1157 pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1158 vmalloc_reserve >> 20);
1159 }
1160
1161 vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1162 if (vmalloc_reserve > vmalloc_max) {
1163 vmalloc_reserve = vmalloc_max;
1164 pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1165 vmalloc_reserve >> 20);
1166 }
1167
1168 vmalloc_size = vmalloc_reserve;
1169 return 0;
1170 }
1171 early_param("vmalloc", early_vmalloc);
1172
1173 phys_addr_t arm_lowmem_limit __initdata = 0;
1174
adjust_lowmem_bounds(void)1175 void __init adjust_lowmem_bounds(void)
1176 {
1177 phys_addr_t block_start, block_end, memblock_limit = 0;
1178 u64 vmalloc_limit, i;
1179 phys_addr_t lowmem_limit = 0;
1180
1181 /*
1182 * Let's use our own (unoptimized) equivalent of __pa() that is
1183 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1184 * The result is used as the upper bound on physical memory address
1185 * and may itself be outside the valid range for which phys_addr_t
1186 * and therefore __pa() is defined.
1187 */
1188 vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1189 PAGE_OFFSET + PHYS_OFFSET;
1190
1191 /*
1192 * The first usable region must be PMD aligned. Mark its start
1193 * as MEMBLOCK_NOMAP if it isn't
1194 */
1195 for_each_mem_range(i, &block_start, &block_end) {
1196 if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1197 phys_addr_t len;
1198
1199 len = round_up(block_start, PMD_SIZE) - block_start;
1200 memblock_mark_nomap(block_start, len);
1201 }
1202 break;
1203 }
1204
1205 for_each_mem_range(i, &block_start, &block_end) {
1206 if (block_start < vmalloc_limit) {
1207 if (block_end > lowmem_limit)
1208 /*
1209 * Compare as u64 to ensure vmalloc_limit does
1210 * not get truncated. block_end should always
1211 * fit in phys_addr_t so there should be no
1212 * issue with assignment.
1213 */
1214 lowmem_limit = min_t(u64,
1215 vmalloc_limit,
1216 block_end);
1217
1218 /*
1219 * Find the first non-pmd-aligned page, and point
1220 * memblock_limit at it. This relies on rounding the
1221 * limit down to be pmd-aligned, which happens at the
1222 * end of this function.
1223 *
1224 * With this algorithm, the start or end of almost any
1225 * bank can be non-pmd-aligned. The only exception is
1226 * that the start of the bank 0 must be section-
1227 * aligned, since otherwise memory would need to be
1228 * allocated when mapping the start of bank 0, which
1229 * occurs before any free memory is mapped.
1230 */
1231 if (!memblock_limit) {
1232 if (!IS_ALIGNED(block_start, PMD_SIZE))
1233 memblock_limit = block_start;
1234 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1235 memblock_limit = lowmem_limit;
1236 }
1237
1238 }
1239 }
1240
1241 arm_lowmem_limit = lowmem_limit;
1242
1243 high_memory = __va(arm_lowmem_limit - 1) + 1;
1244
1245 if (!memblock_limit)
1246 memblock_limit = arm_lowmem_limit;
1247
1248 /*
1249 * Round the memblock limit down to a pmd size. This
1250 * helps to ensure that we will allocate memory from the
1251 * last full pmd, which should be mapped.
1252 */
1253 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1254
1255 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1256 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1257 phys_addr_t end = memblock_end_of_DRAM();
1258
1259 pr_notice("Ignoring RAM at %pa-%pa\n",
1260 &memblock_limit, &end);
1261 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1262
1263 memblock_remove(memblock_limit, end - memblock_limit);
1264 }
1265 }
1266
1267 memblock_set_current_limit(memblock_limit);
1268 }
1269
prepare_page_table(void)1270 static __init void prepare_page_table(void)
1271 {
1272 unsigned long addr;
1273 phys_addr_t end;
1274
1275 /*
1276 * Clear out all the mappings below the kernel image.
1277 */
1278 #ifdef CONFIG_KASAN
1279 /*
1280 * KASan's shadow memory inserts itself between the TASK_SIZE
1281 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1282 */
1283 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1284 pmd_clear(pmd_off_k(addr));
1285 /*
1286 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1287 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1288 * are using a thumb-compiled kernel, there there will be 8MB more
1289 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1290 */
1291 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1292 pmd_clear(pmd_off_k(addr));
1293 #else
1294 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1295 pmd_clear(pmd_off_k(addr));
1296 #endif
1297
1298 #ifdef CONFIG_XIP_KERNEL
1299 /* The XIP kernel is mapped in the module area -- skip over it */
1300 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1301 #endif
1302 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1303 pmd_clear(pmd_off_k(addr));
1304
1305 /*
1306 * Find the end of the first block of lowmem.
1307 */
1308 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1309 if (end >= arm_lowmem_limit)
1310 end = arm_lowmem_limit;
1311
1312 /*
1313 * Clear out all the kernel space mappings, except for the first
1314 * memory bank, up to the vmalloc region.
1315 */
1316 for (addr = __phys_to_virt(end);
1317 addr < VMALLOC_START; addr += PMD_SIZE)
1318 pmd_clear(pmd_off_k(addr));
1319 }
1320
1321 #ifdef CONFIG_ARM_LPAE
1322 /* the first page is reserved for pgd */
1323 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1324 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1325 #else
1326 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1327 #endif
1328
1329 /*
1330 * Reserve the special regions of memory
1331 */
arm_mm_memblock_reserve(void)1332 void __init arm_mm_memblock_reserve(void)
1333 {
1334 /*
1335 * Reserve the page tables. These are already in use,
1336 * and can only be in node 0.
1337 */
1338 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1339
1340 #ifdef CONFIG_SA1111
1341 /*
1342 * Because of the SA1111 DMA bug, we want to preserve our
1343 * precious DMA-able memory...
1344 */
1345 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1346 #endif
1347 }
1348
1349 /*
1350 * Set up the device mappings. Since we clear out the page tables for all
1351 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1352 * device mappings. This means earlycon can be used to debug this function
1353 * Any other function or debugging method which may touch any device _will_
1354 * crash the kernel.
1355 */
devicemaps_init(const struct machine_desc * mdesc)1356 static void __init devicemaps_init(const struct machine_desc *mdesc)
1357 {
1358 struct map_desc map;
1359 unsigned long addr;
1360 void *vectors;
1361
1362 /*
1363 * Allocate the vector page early.
1364 */
1365 vectors = early_alloc(PAGE_SIZE * 2);
1366
1367 early_trap_init(vectors);
1368
1369 /*
1370 * Clear page table except top pmd used by early fixmaps
1371 */
1372 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1373 pmd_clear(pmd_off_k(addr));
1374
1375 if (__atags_pointer) {
1376 /* create a read-only mapping of the device tree */
1377 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1378 map.virtual = FDT_FIXED_BASE;
1379 map.length = FDT_FIXED_SIZE;
1380 map.type = MT_MEMORY_RO;
1381 create_mapping(&map);
1382 }
1383
1384 /*
1385 * Map the kernel if it is XIP.
1386 * It is always first in the modulearea.
1387 */
1388 #ifdef CONFIG_XIP_KERNEL
1389 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1390 map.virtual = MODULES_VADDR;
1391 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1392 map.type = MT_ROM;
1393 create_mapping(&map);
1394 #endif
1395
1396 /*
1397 * Map the cache flushing regions.
1398 */
1399 #ifdef FLUSH_BASE
1400 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1401 map.virtual = FLUSH_BASE;
1402 map.length = SZ_1M;
1403 map.type = MT_CACHECLEAN;
1404 create_mapping(&map);
1405 #endif
1406 #ifdef FLUSH_BASE_MINICACHE
1407 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1408 map.virtual = FLUSH_BASE_MINICACHE;
1409 map.length = SZ_1M;
1410 map.type = MT_MINICLEAN;
1411 create_mapping(&map);
1412 #endif
1413
1414 /*
1415 * Create a mapping for the machine vectors at the high-vectors
1416 * location (0xffff0000). If we aren't using high-vectors, also
1417 * create a mapping at the low-vectors virtual address.
1418 */
1419 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1420 map.virtual = 0xffff0000;
1421 map.length = PAGE_SIZE;
1422 #ifdef CONFIG_KUSER_HELPERS
1423 map.type = MT_HIGH_VECTORS;
1424 #else
1425 map.type = MT_LOW_VECTORS;
1426 #endif
1427 create_mapping(&map);
1428
1429 if (!vectors_high()) {
1430 map.virtual = 0;
1431 map.length = PAGE_SIZE * 2;
1432 map.type = MT_LOW_VECTORS;
1433 create_mapping(&map);
1434 }
1435
1436 /* Now create a kernel read-only mapping */
1437 map.pfn += 1;
1438 map.virtual = 0xffff0000 + PAGE_SIZE;
1439 map.length = PAGE_SIZE;
1440 map.type = MT_LOW_VECTORS;
1441 create_mapping(&map);
1442
1443 /*
1444 * Ask the machine support to map in the statically mapped devices.
1445 */
1446 if (mdesc->map_io)
1447 mdesc->map_io();
1448 else
1449 debug_ll_io_init();
1450 fill_pmd_gaps();
1451
1452 /* Reserve fixed i/o space in VMALLOC region */
1453 pci_reserve_io();
1454
1455 /*
1456 * Finally flush the caches and tlb to ensure that we're in a
1457 * consistent state wrt the writebuffer. This also ensures that
1458 * any write-allocated cache lines in the vector page are written
1459 * back. After this point, we can start to touch devices again.
1460 */
1461 local_flush_tlb_all();
1462 flush_cache_all();
1463
1464 /* Enable asynchronous aborts */
1465 early_abt_enable();
1466 }
1467
kmap_init(void)1468 static void __init kmap_init(void)
1469 {
1470 #ifdef CONFIG_HIGHMEM
1471 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1472 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1473 #endif
1474
1475 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1476 _PAGE_KERNEL_TABLE);
1477 }
1478
map_lowmem(void)1479 static void __init map_lowmem(void)
1480 {
1481 phys_addr_t start, end;
1482 u64 i;
1483
1484 /* Map all the lowmem memory banks. */
1485 for_each_mem_range(i, &start, &end) {
1486 struct map_desc map;
1487
1488 pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1489 (long long)start, (long long)end);
1490 if (end > arm_lowmem_limit)
1491 end = arm_lowmem_limit;
1492 if (start >= end)
1493 break;
1494
1495 /*
1496 * If our kernel image is in the VMALLOC area we need to remove
1497 * the kernel physical memory from lowmem since the kernel will
1498 * be mapped separately.
1499 *
1500 * The kernel will typically be at the very start of lowmem,
1501 * but any placement relative to memory ranges is possible.
1502 *
1503 * If the memblock contains the kernel, we have to chisel out
1504 * the kernel memory from it and map each part separately. We
1505 * get 6 different theoretical cases:
1506 *
1507 * +--------+ +--------+
1508 * +-- start --+ +--------+ | Kernel | | Kernel |
1509 * | | | Kernel | | case 2 | | case 5 |
1510 * | | | case 1 | +--------+ | | +--------+
1511 * | Memory | +--------+ | | | Kernel |
1512 * | range | +--------+ | | | case 6 |
1513 * | | | Kernel | +--------+ | | +--------+
1514 * | | | case 3 | | Kernel | | |
1515 * +-- end ----+ +--------+ | case 4 | | |
1516 * +--------+ +--------+
1517 */
1518
1519 /* Case 5: kernel covers range, don't map anything, should be rare */
1520 if ((start > kernel_sec_start) && (end < kernel_sec_end))
1521 break;
1522
1523 /* Cases where the kernel is starting inside the range */
1524 if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1525 /* Case 6: kernel is embedded in the range, we need two mappings */
1526 if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1527 /* Map memory below the kernel */
1528 map.pfn = __phys_to_pfn(start);
1529 map.virtual = __phys_to_virt(start);
1530 map.length = kernel_sec_start - start;
1531 map.type = MT_MEMORY_RW;
1532 create_mapping(&map);
1533 /* Map memory above the kernel */
1534 map.pfn = __phys_to_pfn(kernel_sec_end);
1535 map.virtual = __phys_to_virt(kernel_sec_end);
1536 map.length = end - kernel_sec_end;
1537 map.type = MT_MEMORY_RW;
1538 create_mapping(&map);
1539 break;
1540 }
1541 /* Case 1: kernel and range start at the same address, should be common */
1542 if (kernel_sec_start == start)
1543 start = kernel_sec_end;
1544 /* Case 3: kernel and range end at the same address, should be rare */
1545 if (kernel_sec_end == end)
1546 end = kernel_sec_start;
1547 } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1548 /* Case 2: kernel ends inside range, starts below it */
1549 start = kernel_sec_end;
1550 } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1551 /* Case 4: kernel starts inside range, ends above it */
1552 end = kernel_sec_start;
1553 }
1554 map.pfn = __phys_to_pfn(start);
1555 map.virtual = __phys_to_virt(start);
1556 map.length = end - start;
1557 map.type = MT_MEMORY_RW;
1558 create_mapping(&map);
1559 }
1560 }
1561
map_kernel(void)1562 static void __init map_kernel(void)
1563 {
1564 /*
1565 * We use the well known kernel section start and end and split the area in the
1566 * middle like this:
1567 * . .
1568 * | RW memory |
1569 * +----------------+ kernel_x_start
1570 * | Executable |
1571 * | kernel memory |
1572 * +----------------+ kernel_x_end / kernel_nx_start
1573 * | Non-executable |
1574 * | kernel memory |
1575 * +----------------+ kernel_nx_end
1576 * | RW memory |
1577 * . .
1578 *
1579 * Notice that we are dealing with section sized mappings here so all of this
1580 * will be bumped to the closest section boundary. This means that some of the
1581 * non-executable part of the kernel memory is actually mapped as executable.
1582 * This will only persist until we turn on proper memory management later on
1583 * and we remap the whole kernel with page granularity.
1584 */
1585 phys_addr_t kernel_x_start = kernel_sec_start;
1586 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1587 phys_addr_t kernel_nx_start = kernel_x_end;
1588 phys_addr_t kernel_nx_end = kernel_sec_end;
1589 struct map_desc map;
1590
1591 map.pfn = __phys_to_pfn(kernel_x_start);
1592 map.virtual = __phys_to_virt(kernel_x_start);
1593 map.length = kernel_x_end - kernel_x_start;
1594 map.type = MT_MEMORY_RWX;
1595 create_mapping(&map);
1596
1597 /* If the nx part is small it may end up covered by the tail of the RWX section */
1598 if (kernel_x_end == kernel_nx_end)
1599 return;
1600
1601 map.pfn = __phys_to_pfn(kernel_nx_start);
1602 map.virtual = __phys_to_virt(kernel_nx_start);
1603 map.length = kernel_nx_end - kernel_nx_start;
1604 map.type = MT_MEMORY_RW;
1605 create_mapping(&map);
1606 }
1607
1608 #ifdef CONFIG_ARM_PV_FIXUP
1609 typedef void pgtables_remap(long long offset, unsigned long pgd);
1610 pgtables_remap lpae_pgtables_remap_asm;
1611
1612 /*
1613 * early_paging_init() recreates boot time page table setup, allowing machines
1614 * to switch over to a high (>4G) address space on LPAE systems
1615 */
early_paging_init(const struct machine_desc * mdesc)1616 static void __init early_paging_init(const struct machine_desc *mdesc)
1617 {
1618 pgtables_remap *lpae_pgtables_remap;
1619 unsigned long pa_pgd;
1620 unsigned int cr, ttbcr;
1621 long long offset;
1622
1623 if (!mdesc->pv_fixup)
1624 return;
1625
1626 offset = mdesc->pv_fixup();
1627 if (offset == 0)
1628 return;
1629
1630 /*
1631 * Offset the kernel section physical offsets so that the kernel
1632 * mapping will work out later on.
1633 */
1634 kernel_sec_start += offset;
1635 kernel_sec_end += offset;
1636
1637 /*
1638 * Get the address of the remap function in the 1:1 identity
1639 * mapping setup by the early page table assembly code. We
1640 * must get this prior to the pv update. The following barrier
1641 * ensures that this is complete before we fixup any P:V offsets.
1642 */
1643 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1644 pa_pgd = __pa(swapper_pg_dir);
1645 barrier();
1646
1647 pr_info("Switching physical address space to 0x%08llx\n",
1648 (u64)PHYS_OFFSET + offset);
1649
1650 /* Re-set the phys pfn offset, and the pv offset */
1651 __pv_offset += offset;
1652 __pv_phys_pfn_offset += PFN_DOWN(offset);
1653
1654 /* Run the patch stub to update the constants */
1655 fixup_pv_table(&__pv_table_begin,
1656 (&__pv_table_end - &__pv_table_begin) << 2);
1657
1658 /*
1659 * We changing not only the virtual to physical mapping, but also
1660 * the physical addresses used to access memory. We need to flush
1661 * all levels of cache in the system with caching disabled to
1662 * ensure that all data is written back, and nothing is prefetched
1663 * into the caches. We also need to prevent the TLB walkers
1664 * allocating into the caches too. Note that this is ARMv7 LPAE
1665 * specific.
1666 */
1667 cr = get_cr();
1668 set_cr(cr & ~(CR_I | CR_C));
1669 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1670 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1671 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1672 flush_cache_all();
1673
1674 /*
1675 * Fixup the page tables - this must be in the idmap region as
1676 * we need to disable the MMU to do this safely, and hence it
1677 * needs to be assembly. It's fairly simple, as we're using the
1678 * temporary tables setup by the initial assembly code.
1679 */
1680 lpae_pgtables_remap(offset, pa_pgd);
1681
1682 /* Re-enable the caches and cacheable TLB walks */
1683 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1684 set_cr(cr);
1685 }
1686
1687 #else
1688
early_paging_init(const struct machine_desc * mdesc)1689 static void __init early_paging_init(const struct machine_desc *mdesc)
1690 {
1691 long long offset;
1692
1693 if (!mdesc->pv_fixup)
1694 return;
1695
1696 offset = mdesc->pv_fixup();
1697 if (offset == 0)
1698 return;
1699
1700 pr_crit("Physical address space modification is only to support Keystone2.\n");
1701 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1702 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1703 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1704 }
1705
1706 #endif
1707
early_fixmap_shutdown(void)1708 static void __init early_fixmap_shutdown(void)
1709 {
1710 int i;
1711 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1712
1713 pte_offset_fixmap = pte_offset_late_fixmap;
1714 pmd_clear(fixmap_pmd(va));
1715 local_flush_tlb_kernel_page(va);
1716
1717 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1718 pte_t *pte;
1719 struct map_desc map;
1720
1721 map.virtual = fix_to_virt(i);
1722 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1723
1724 /* Only i/o device mappings are supported ATM */
1725 if (pte_none(*pte) ||
1726 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1727 continue;
1728
1729 map.pfn = pte_pfn(*pte);
1730 map.type = MT_DEVICE;
1731 map.length = PAGE_SIZE;
1732
1733 create_mapping(&map);
1734 }
1735 }
1736
1737 /*
1738 * paging_init() sets up the page tables, initialises the zone memory
1739 * maps, and sets up the zero page, bad page and bad page tables.
1740 */
paging_init(const struct machine_desc * mdesc)1741 void __init paging_init(const struct machine_desc *mdesc)
1742 {
1743 void *zero_page;
1744
1745 pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1746 kernel_sec_start, kernel_sec_end);
1747
1748 prepare_page_table();
1749 map_lowmem();
1750 memblock_set_current_limit(arm_lowmem_limit);
1751 pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1752 /*
1753 * After this point early_alloc(), i.e. the memblock allocator, can
1754 * be used
1755 */
1756 map_kernel();
1757 dma_contiguous_remap();
1758 early_fixmap_shutdown();
1759 devicemaps_init(mdesc);
1760 kmap_init();
1761 tcm_init();
1762
1763 top_pmd = pmd_off_k(0xffff0000);
1764
1765 /* allocate the zero page. */
1766 zero_page = early_alloc(PAGE_SIZE);
1767
1768 bootmem_init();
1769
1770 empty_zero_page = virt_to_page(zero_page);
1771 __flush_dcache_page(NULL, empty_zero_page);
1772 }
1773
early_mm_init(const struct machine_desc * mdesc)1774 void __init early_mm_init(const struct machine_desc *mdesc)
1775 {
1776 build_mem_type_table();
1777 early_paging_init(mdesc);
1778 }
1779
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)1780 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1781 pte_t *ptep, pte_t pteval)
1782 {
1783 unsigned long ext = 0;
1784
1785 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1786 if (!pte_special(pteval))
1787 __sync_icache_dcache(pteval);
1788 ext |= PTE_EXT_NG;
1789 }
1790
1791 set_pte_ext(ptep, pteval, ext);
1792 }
1793