• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
init_default_cache_policy(unsigned long pmd)118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
early_cachepolicy(char * p)141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
early_nocache(char * __unused)180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
early_nowrite(char * __unused)189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
early_cachepolicy(char * p)212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 	return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218 
noalign_setup(char * __unused)219 static int __init noalign_setup(char *__unused)
220 {
221 	pr_warn("noalign kernel parameter not supported without cp15\n");
222 	return 1;
223 }
224 __setup("noalign", noalign_setup);
225 
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 
228 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 
232 static struct mem_type mem_types[] __ro_after_init = {
233 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 				  L_PTE_SHARED,
236 		.prot_l1	= PMD_TYPE_TABLE,
237 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238 		.domain		= DOMAIN_IO,
239 	},
240 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 		.prot_l1	= PMD_TYPE_TABLE,
243 		.prot_sect	= PROT_SECT_DEVICE,
244 		.domain		= DOMAIN_IO,
245 	},
246 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 		.prot_l1	= PMD_TYPE_TABLE,
249 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250 		.domain		= DOMAIN_IO,
251 	},
252 	[MT_DEVICE_WC] = {	/* ioremap_wc */
253 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 		.prot_l1	= PMD_TYPE_TABLE,
255 		.prot_sect	= PROT_SECT_DEVICE,
256 		.domain		= DOMAIN_IO,
257 	},
258 	[MT_UNCACHED] = {
259 		.prot_pte	= PROT_PTE_DEVICE,
260 		.prot_l1	= PMD_TYPE_TABLE,
261 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain		= DOMAIN_IO,
263 	},
264 	[MT_CACHECLEAN] = {
265 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 		.domain    = DOMAIN_KERNEL,
267 	},
268 #ifndef CONFIG_ARM_LPAE
269 	[MT_MINICLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #endif
274 	[MT_LOW_VECTORS] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_RDONLY,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_VECTORS,
279 	},
280 	[MT_HIGH_VECTORS] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_USER | L_PTE_RDONLY,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.domain    = DOMAIN_VECTORS,
285 	},
286 	[MT_MEMORY_RWX] = {
287 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_RW] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 			     L_PTE_XN,
295 		.prot_l1   = PMD_TYPE_TABLE,
296 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_RO] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 			     L_PTE_XN | L_PTE_RDONLY,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 #ifdef CONFIG_ARM_LPAE
304 		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
305 #else
306 		.prot_sect = PMD_TYPE_SECT,
307 #endif
308 		.domain    = DOMAIN_KERNEL,
309 	},
310 	[MT_ROM] = {
311 		.prot_sect = PMD_TYPE_SECT,
312 		.domain    = DOMAIN_KERNEL,
313 	},
314 	[MT_MEMORY_RWX_NONCACHED] = {
315 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
316 				L_PTE_MT_BUFFERABLE,
317 		.prot_l1   = PMD_TYPE_TABLE,
318 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
319 		.domain    = DOMAIN_KERNEL,
320 	},
321 	[MT_MEMORY_RW_DTCM] = {
322 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323 				L_PTE_XN,
324 		.prot_l1   = PMD_TYPE_TABLE,
325 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
326 		.domain    = DOMAIN_KERNEL,
327 	},
328 	[MT_MEMORY_RWX_ITCM] = {
329 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
330 		.prot_l1   = PMD_TYPE_TABLE,
331 		.domain    = DOMAIN_KERNEL,
332 	},
333 	[MT_MEMORY_RW_SO] = {
334 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 				L_PTE_MT_UNCACHED | L_PTE_XN,
336 		.prot_l1   = PMD_TYPE_TABLE,
337 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
338 				PMD_SECT_UNCACHED | PMD_SECT_XN,
339 		.domain    = DOMAIN_KERNEL,
340 	},
341 	[MT_MEMORY_DMA_READY] = {
342 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 				L_PTE_XN,
344 		.prot_l1   = PMD_TYPE_TABLE,
345 		.domain    = DOMAIN_KERNEL,
346 	},
347 };
348 
get_mem_type(unsigned int type)349 const struct mem_type *get_mem_type(unsigned int type)
350 {
351 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
352 }
353 EXPORT_SYMBOL(get_mem_type);
354 
355 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
356 
357 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
358 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
359 
pte_offset_early_fixmap(pmd_t * dir,unsigned long addr)360 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
361 {
362 	return &bm_pte[pte_index(addr)];
363 }
364 
pte_offset_late_fixmap(pmd_t * dir,unsigned long addr)365 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
366 {
367 	return pte_offset_kernel(dir, addr);
368 }
369 
fixmap_pmd(unsigned long addr)370 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
371 {
372 	return pmd_off_k(addr);
373 }
374 
early_fixmap_init(void)375 void __init early_fixmap_init(void)
376 {
377 	pmd_t *pmd;
378 
379 	/*
380 	 * The early fixmap range spans multiple pmds, for which
381 	 * we are not prepared:
382 	 */
383 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
384 		     != FIXADDR_TOP >> PMD_SHIFT);
385 
386 	pmd = fixmap_pmd(FIXADDR_TOP);
387 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
388 
389 	pte_offset_fixmap = pte_offset_early_fixmap;
390 }
391 
392 /*
393  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
394  * As a result, this can only be called with preemption disabled, as under
395  * stop_machine().
396  */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)397 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
398 {
399 	unsigned long vaddr = __fix_to_virt(idx);
400 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
401 
402 	/* Make sure fixmap region does not exceed available allocation. */
403 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
404 	BUG_ON(idx >= __end_of_fixed_addresses);
405 
406 	/* We support only device mappings before pgprot_kernel is set. */
407 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
408 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
409 		return;
410 
411 	if (pgprot_val(prot))
412 		set_pte_at(NULL, vaddr, pte,
413 			pfn_pte(phys >> PAGE_SHIFT, prot));
414 	else
415 		pte_clear(NULL, vaddr, pte);
416 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
417 }
418 
419 /*
420  * Adjust the PMD section entries according to the CPU in use.
421  */
build_mem_type_table(void)422 static void __init build_mem_type_table(void)
423 {
424 	struct cachepolicy *cp;
425 	unsigned int cr = get_cr();
426 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
427 	int cpu_arch = cpu_architecture();
428 	int i;
429 
430 	if (cpu_arch < CPU_ARCH_ARMv6) {
431 #if defined(CONFIG_CPU_DCACHE_DISABLE)
432 		if (cachepolicy > CPOLICY_BUFFERED)
433 			cachepolicy = CPOLICY_BUFFERED;
434 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
435 		if (cachepolicy > CPOLICY_WRITETHROUGH)
436 			cachepolicy = CPOLICY_WRITETHROUGH;
437 #endif
438 	}
439 	if (cpu_arch < CPU_ARCH_ARMv5) {
440 		if (cachepolicy >= CPOLICY_WRITEALLOC)
441 			cachepolicy = CPOLICY_WRITEBACK;
442 		ecc_mask = 0;
443 	}
444 
445 	if (is_smp()) {
446 		if (cachepolicy != CPOLICY_WRITEALLOC) {
447 			pr_warn("Forcing write-allocate cache policy for SMP\n");
448 			cachepolicy = CPOLICY_WRITEALLOC;
449 		}
450 		if (!(initial_pmd_value & PMD_SECT_S)) {
451 			pr_warn("Forcing shared mappings for SMP\n");
452 			initial_pmd_value |= PMD_SECT_S;
453 		}
454 	}
455 
456 	/*
457 	 * Strip out features not present on earlier architectures.
458 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
459 	 * without extended page tables don't have the 'Shared' bit.
460 	 */
461 	if (cpu_arch < CPU_ARCH_ARMv5)
462 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
463 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
464 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
465 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
466 			mem_types[i].prot_sect &= ~PMD_SECT_S;
467 
468 	/*
469 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
470 	 * "update-able on write" bit on ARM610).  However, Xscale and
471 	 * Xscale3 require this bit to be cleared.
472 	 */
473 	if (cpu_is_xscale_family()) {
474 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
475 			mem_types[i].prot_sect &= ~PMD_BIT4;
476 			mem_types[i].prot_l1 &= ~PMD_BIT4;
477 		}
478 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
479 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
480 			if (mem_types[i].prot_l1)
481 				mem_types[i].prot_l1 |= PMD_BIT4;
482 			if (mem_types[i].prot_sect)
483 				mem_types[i].prot_sect |= PMD_BIT4;
484 		}
485 	}
486 
487 	/*
488 	 * Mark the device areas according to the CPU/architecture.
489 	 */
490 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
491 		if (!cpu_is_xsc3()) {
492 			/*
493 			 * Mark device regions on ARMv6+ as execute-never
494 			 * to prevent speculative instruction fetches.
495 			 */
496 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
497 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
498 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
499 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
500 
501 			/* Also setup NX memory mapping */
502 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
503 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
504 		}
505 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
506 			/*
507 			 * For ARMv7 with TEX remapping,
508 			 * - shared device is SXCB=1100
509 			 * - nonshared device is SXCB=0100
510 			 * - write combine device mem is SXCB=0001
511 			 * (Uncached Normal memory)
512 			 */
513 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
514 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
515 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
516 		} else if (cpu_is_xsc3()) {
517 			/*
518 			 * For Xscale3,
519 			 * - shared device is TEXCB=00101
520 			 * - nonshared device is TEXCB=01000
521 			 * - write combine device mem is TEXCB=00100
522 			 * (Inner/Outer Uncacheable in xsc3 parlance)
523 			 */
524 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
525 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
526 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
527 		} else {
528 			/*
529 			 * For ARMv6 and ARMv7 without TEX remapping,
530 			 * - shared device is TEXCB=00001
531 			 * - nonshared device is TEXCB=01000
532 			 * - write combine device mem is TEXCB=00100
533 			 * (Uncached Normal in ARMv6 parlance).
534 			 */
535 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
536 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
537 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
538 		}
539 	} else {
540 		/*
541 		 * On others, write combining is "Uncached/Buffered"
542 		 */
543 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
544 	}
545 
546 	/*
547 	 * Now deal with the memory-type mappings
548 	 */
549 	cp = &cache_policies[cachepolicy];
550 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
551 
552 #ifndef CONFIG_ARM_LPAE
553 	/*
554 	 * We don't use domains on ARMv6 (since this causes problems with
555 	 * v6/v7 kernels), so we must use a separate memory type for user
556 	 * r/o, kernel r/w to map the vectors page.
557 	 */
558 	if (cpu_arch == CPU_ARCH_ARMv6)
559 		vecs_pgprot |= L_PTE_MT_VECTORS;
560 
561 	/*
562 	 * Check is it with support for the PXN bit
563 	 * in the Short-descriptor translation table format descriptors.
564 	 */
565 	if (cpu_arch == CPU_ARCH_ARMv7 &&
566 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
567 		user_pmd_table |= PMD_PXNTABLE;
568 	}
569 #endif
570 
571 	/*
572 	 * ARMv6 and above have extended page tables.
573 	 */
574 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
575 #ifndef CONFIG_ARM_LPAE
576 		/*
577 		 * Mark cache clean areas and XIP ROM read only
578 		 * from SVC mode and no access from userspace.
579 		 */
580 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
581 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
582 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
583 		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
584 #endif
585 
586 		/*
587 		 * If the initial page tables were created with the S bit
588 		 * set, then we need to do the same here for the same
589 		 * reasons given in early_cachepolicy().
590 		 */
591 		if (initial_pmd_value & PMD_SECT_S) {
592 			user_pgprot |= L_PTE_SHARED;
593 			kern_pgprot |= L_PTE_SHARED;
594 			vecs_pgprot |= L_PTE_SHARED;
595 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
596 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
597 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
598 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
599 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
600 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
601 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
602 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
603 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
604 			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
605 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
606 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
607 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
608 		}
609 	}
610 
611 	/*
612 	 * Non-cacheable Normal - intended for memory areas that must
613 	 * not cause dirty cache line writebacks when used
614 	 */
615 	if (cpu_arch >= CPU_ARCH_ARMv6) {
616 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
617 			/* Non-cacheable Normal is XCB = 001 */
618 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
619 				PMD_SECT_BUFFERED;
620 		} else {
621 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
622 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
623 				PMD_SECT_TEX(1);
624 		}
625 	} else {
626 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
627 	}
628 
629 #ifdef CONFIG_ARM_LPAE
630 	/*
631 	 * Do not generate access flag faults for the kernel mappings.
632 	 */
633 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
634 		mem_types[i].prot_pte |= PTE_EXT_AF;
635 		if (mem_types[i].prot_sect)
636 			mem_types[i].prot_sect |= PMD_SECT_AF;
637 	}
638 	kern_pgprot |= PTE_EXT_AF;
639 	vecs_pgprot |= PTE_EXT_AF;
640 
641 	/*
642 	 * Set PXN for user mappings
643 	 */
644 	user_pgprot |= PTE_EXT_PXN;
645 #endif
646 
647 	for (i = 0; i < 16; i++) {
648 		pteval_t v = pgprot_val(protection_map[i]);
649 		protection_map[i] = __pgprot(v | user_pgprot);
650 	}
651 
652 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
653 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
654 
655 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
656 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
657 				 L_PTE_DIRTY | kern_pgprot);
658 
659 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
660 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
661 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
662 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
663 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
664 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
665 	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
666 	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
667 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
668 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
669 	mem_types[MT_ROM].prot_sect |= cp->pmd;
670 
671 	switch (cp->pmd) {
672 	case PMD_SECT_WT:
673 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
674 		break;
675 	case PMD_SECT_WB:
676 	case PMD_SECT_WBWA:
677 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
678 		break;
679 	}
680 	pr_info("Memory policy: %sData cache %s\n",
681 		ecc_mask ? "ECC enabled, " : "", cp->policy);
682 
683 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
684 		struct mem_type *t = &mem_types[i];
685 		if (t->prot_l1)
686 			t->prot_l1 |= PMD_DOMAIN(t->domain);
687 		if (t->prot_sect)
688 			t->prot_sect |= PMD_DOMAIN(t->domain);
689 	}
690 }
691 
692 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)693 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
694 			      unsigned long size, pgprot_t vma_prot)
695 {
696 	if (!pfn_valid(pfn))
697 		return pgprot_noncached(vma_prot);
698 	else if (file->f_flags & O_SYNC)
699 		return pgprot_writecombine(vma_prot);
700 	return vma_prot;
701 }
702 EXPORT_SYMBOL(phys_mem_access_prot);
703 #endif
704 
705 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
706 
early_alloc(unsigned long sz)707 static void __init *early_alloc(unsigned long sz)
708 {
709 	void *ptr = memblock_alloc(sz, sz);
710 
711 	if (!ptr)
712 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
713 		      __func__, sz, sz);
714 
715 	return ptr;
716 }
717 
late_alloc(unsigned long sz)718 static void *__init late_alloc(unsigned long sz)
719 {
720 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
721 
722 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
723 		BUG();
724 	return ptr;
725 }
726 
arm_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot,void * (* alloc)(unsigned long sz))727 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
728 				unsigned long prot,
729 				void *(*alloc)(unsigned long sz))
730 {
731 	if (pmd_none(*pmd)) {
732 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
733 		__pmd_populate(pmd, __pa(pte), prot);
734 	}
735 	BUG_ON(pmd_bad(*pmd));
736 	return pte_offset_kernel(pmd, addr);
737 }
738 
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)739 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
740 				      unsigned long prot)
741 {
742 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
743 }
744 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)745 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
746 				  unsigned long end, unsigned long pfn,
747 				  const struct mem_type *type,
748 				  void *(*alloc)(unsigned long sz),
749 				  bool ng)
750 {
751 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
752 	do {
753 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
754 			    ng ? PTE_EXT_NG : 0);
755 		pfn++;
756 	} while (pte++, addr += PAGE_SIZE, addr != end);
757 }
758 
__map_init_section(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,bool ng)759 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
760 			unsigned long end, phys_addr_t phys,
761 			const struct mem_type *type, bool ng)
762 {
763 	pmd_t *p = pmd;
764 
765 #ifndef CONFIG_ARM_LPAE
766 	/*
767 	 * In classic MMU format, puds and pmds are folded in to
768 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
769 	 * group of L1 entries making up one logical pointer to
770 	 * an L2 table (2MB), where as PMDs refer to the individual
771 	 * L1 entries (1MB). Hence increment to get the correct
772 	 * offset for odd 1MB sections.
773 	 * (See arch/arm/include/asm/pgtable-2level.h)
774 	 */
775 	if (addr & SECTION_SIZE)
776 		pmd++;
777 #endif
778 	do {
779 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
780 		phys += SECTION_SIZE;
781 	} while (pmd++, addr += SECTION_SIZE, addr != end);
782 
783 	flush_pmd_entry(p);
784 }
785 
alloc_init_pmd(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)786 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
787 				      unsigned long end, phys_addr_t phys,
788 				      const struct mem_type *type,
789 				      void *(*alloc)(unsigned long sz), bool ng)
790 {
791 	pmd_t *pmd = pmd_offset(pud, addr);
792 	unsigned long next;
793 
794 	do {
795 		/*
796 		 * With LPAE, we must loop over to map
797 		 * all the pmds for the given range.
798 		 */
799 		next = pmd_addr_end(addr, end);
800 
801 		/*
802 		 * Try a section mapping - addr, next and phys must all be
803 		 * aligned to a section boundary.
804 		 */
805 		if (type->prot_sect &&
806 				((addr | next | phys) & ~SECTION_MASK) == 0) {
807 			__map_init_section(pmd, addr, next, phys, type, ng);
808 		} else {
809 			alloc_init_pte(pmd, addr, next,
810 				       __phys_to_pfn(phys), type, alloc, ng);
811 		}
812 
813 		phys += next - addr;
814 
815 	} while (pmd++, addr = next, addr != end);
816 }
817 
alloc_init_pud(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)818 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
819 				  unsigned long end, phys_addr_t phys,
820 				  const struct mem_type *type,
821 				  void *(*alloc)(unsigned long sz), bool ng)
822 {
823 	pud_t *pud = pud_offset(p4d, addr);
824 	unsigned long next;
825 
826 	do {
827 		next = pud_addr_end(addr, end);
828 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
829 		phys += next - addr;
830 	} while (pud++, addr = next, addr != end);
831 }
832 
alloc_init_p4d(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)833 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
834 				  unsigned long end, phys_addr_t phys,
835 				  const struct mem_type *type,
836 				  void *(*alloc)(unsigned long sz), bool ng)
837 {
838 	p4d_t *p4d = p4d_offset(pgd, addr);
839 	unsigned long next;
840 
841 	do {
842 		next = p4d_addr_end(addr, end);
843 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
844 		phys += next - addr;
845 	} while (p4d++, addr = next, addr != end);
846 }
847 
848 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct mm_struct * mm,struct map_desc * md,const struct mem_type * type,bool ng)849 static void __init create_36bit_mapping(struct mm_struct *mm,
850 					struct map_desc *md,
851 					const struct mem_type *type,
852 					bool ng)
853 {
854 	unsigned long addr, length, end;
855 	phys_addr_t phys;
856 	pgd_t *pgd;
857 
858 	addr = md->virtual;
859 	phys = __pfn_to_phys(md->pfn);
860 	length = PAGE_ALIGN(md->length);
861 
862 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
863 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
864 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
865 		return;
866 	}
867 
868 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
869 	 *	Since domain assignments can in fact be arbitrary, the
870 	 *	'domain == 0' check below is required to insure that ARMv6
871 	 *	supersections are only allocated for domain 0 regardless
872 	 *	of the actual domain assignments in use.
873 	 */
874 	if (type->domain) {
875 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
876 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
877 		return;
878 	}
879 
880 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
881 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
882 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
883 		return;
884 	}
885 
886 	/*
887 	 * Shift bits [35:32] of address into bits [23:20] of PMD
888 	 * (See ARMv6 spec).
889 	 */
890 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
891 
892 	pgd = pgd_offset(mm, addr);
893 	end = addr + length;
894 	do {
895 		p4d_t *p4d = p4d_offset(pgd, addr);
896 		pud_t *pud = pud_offset(p4d, addr);
897 		pmd_t *pmd = pmd_offset(pud, addr);
898 		int i;
899 
900 		for (i = 0; i < 16; i++)
901 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
902 				       (ng ? PMD_SECT_nG : 0));
903 
904 		addr += SUPERSECTION_SIZE;
905 		phys += SUPERSECTION_SIZE;
906 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
907 	} while (addr != end);
908 }
909 #endif	/* !CONFIG_ARM_LPAE */
910 
__create_mapping(struct mm_struct * mm,struct map_desc * md,void * (* alloc)(unsigned long sz),bool ng)911 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
912 				    void *(*alloc)(unsigned long sz),
913 				    bool ng)
914 {
915 	unsigned long addr, length, end;
916 	phys_addr_t phys;
917 	const struct mem_type *type;
918 	pgd_t *pgd;
919 
920 	type = &mem_types[md->type];
921 
922 #ifndef CONFIG_ARM_LPAE
923 	/*
924 	 * Catch 36-bit addresses
925 	 */
926 	if (md->pfn >= 0x100000) {
927 		create_36bit_mapping(mm, md, type, ng);
928 		return;
929 	}
930 #endif
931 
932 	addr = md->virtual & PAGE_MASK;
933 	phys = __pfn_to_phys(md->pfn);
934 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
935 
936 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
937 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
938 			(long long)__pfn_to_phys(md->pfn), addr);
939 		return;
940 	}
941 
942 	pgd = pgd_offset(mm, addr);
943 	end = addr + length;
944 	do {
945 		unsigned long next = pgd_addr_end(addr, end);
946 
947 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
948 
949 		phys += next - addr;
950 		addr = next;
951 	} while (pgd++, addr != end);
952 }
953 
954 /*
955  * Create the page directory entries and any necessary
956  * page tables for the mapping specified by `md'.  We
957  * are able to cope here with varying sizes and address
958  * offsets, and we take full advantage of sections and
959  * supersections.
960  */
create_mapping(struct map_desc * md)961 static void __init create_mapping(struct map_desc *md)
962 {
963 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
964 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
965 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
966 		return;
967 	}
968 
969 	if (md->type == MT_DEVICE &&
970 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
971 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
972 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
973 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
974 	}
975 
976 	__create_mapping(&init_mm, md, early_alloc, false);
977 }
978 
create_mapping_late(struct mm_struct * mm,struct map_desc * md,bool ng)979 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
980 				bool ng)
981 {
982 #ifdef CONFIG_ARM_LPAE
983 	p4d_t *p4d;
984 	pud_t *pud;
985 
986 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
987 	if (WARN_ON(!p4d))
988 		return;
989 	pud = pud_alloc(mm, p4d, md->virtual);
990 	if (WARN_ON(!pud))
991 		return;
992 	pmd_alloc(mm, pud, 0);
993 #endif
994 	__create_mapping(mm, md, late_alloc, ng);
995 }
996 
997 /*
998  * Create the architecture specific mappings
999  */
iotable_init(struct map_desc * io_desc,int nr)1000 void __init iotable_init(struct map_desc *io_desc, int nr)
1001 {
1002 	struct map_desc *md;
1003 	struct vm_struct *vm;
1004 	struct static_vm *svm;
1005 
1006 	if (!nr)
1007 		return;
1008 
1009 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1010 	if (!svm)
1011 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1012 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1013 
1014 	for (md = io_desc; nr; md++, nr--) {
1015 		create_mapping(md);
1016 
1017 		vm = &svm->vm;
1018 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1019 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1020 		vm->phys_addr = __pfn_to_phys(md->pfn);
1021 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1022 		vm->flags |= VM_ARM_MTYPE(md->type);
1023 		vm->caller = iotable_init;
1024 		add_static_vm_early(svm++);
1025 	}
1026 }
1027 
vm_reserve_area_early(unsigned long addr,unsigned long size,void * caller)1028 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1029 				  void *caller)
1030 {
1031 	struct vm_struct *vm;
1032 	struct static_vm *svm;
1033 
1034 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1035 	if (!svm)
1036 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1037 		      __func__, sizeof(*svm), __alignof__(*svm));
1038 
1039 	vm = &svm->vm;
1040 	vm->addr = (void *)addr;
1041 	vm->size = size;
1042 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1043 	vm->caller = caller;
1044 	add_static_vm_early(svm);
1045 }
1046 
1047 #ifndef CONFIG_ARM_LPAE
1048 
1049 /*
1050  * The Linux PMD is made of two consecutive section entries covering 2MB
1051  * (see definition in include/asm/pgtable-2level.h).  However a call to
1052  * create_mapping() may optimize static mappings by using individual
1053  * 1MB section mappings.  This leaves the actual PMD potentially half
1054  * initialized if the top or bottom section entry isn't used, leaving it
1055  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1056  * the virtual space left free by that unused section entry.
1057  *
1058  * Let's avoid the issue by inserting dummy vm entries covering the unused
1059  * PMD halves once the static mappings are in place.
1060  */
1061 
pmd_empty_section_gap(unsigned long addr)1062 static void __init pmd_empty_section_gap(unsigned long addr)
1063 {
1064 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1065 }
1066 
fill_pmd_gaps(void)1067 static void __init fill_pmd_gaps(void)
1068 {
1069 	struct static_vm *svm;
1070 	struct vm_struct *vm;
1071 	unsigned long addr, next = 0;
1072 	pmd_t *pmd;
1073 
1074 	list_for_each_entry(svm, &static_vmlist, list) {
1075 		vm = &svm->vm;
1076 		addr = (unsigned long)vm->addr;
1077 		if (addr < next)
1078 			continue;
1079 
1080 		/*
1081 		 * Check if this vm starts on an odd section boundary.
1082 		 * If so and the first section entry for this PMD is free
1083 		 * then we block the corresponding virtual address.
1084 		 */
1085 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1086 			pmd = pmd_off_k(addr);
1087 			if (pmd_none(*pmd))
1088 				pmd_empty_section_gap(addr & PMD_MASK);
1089 		}
1090 
1091 		/*
1092 		 * Then check if this vm ends on an odd section boundary.
1093 		 * If so and the second section entry for this PMD is empty
1094 		 * then we block the corresponding virtual address.
1095 		 */
1096 		addr += vm->size;
1097 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1098 			pmd = pmd_off_k(addr) + 1;
1099 			if (pmd_none(*pmd))
1100 				pmd_empty_section_gap(addr);
1101 		}
1102 
1103 		/* no need to look at any vm entry until we hit the next PMD */
1104 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1105 	}
1106 }
1107 
1108 #else
1109 #define fill_pmd_gaps() do { } while (0)
1110 #endif
1111 
1112 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
pci_reserve_io(void)1113 static void __init pci_reserve_io(void)
1114 {
1115 	struct static_vm *svm;
1116 
1117 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1118 	if (svm)
1119 		return;
1120 
1121 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1122 }
1123 #else
1124 #define pci_reserve_io() do { } while (0)
1125 #endif
1126 
1127 #ifdef CONFIG_DEBUG_LL
debug_ll_io_init(void)1128 void __init debug_ll_io_init(void)
1129 {
1130 	struct map_desc map;
1131 
1132 	debug_ll_addr(&map.pfn, &map.virtual);
1133 	if (!map.pfn || !map.virtual)
1134 		return;
1135 	map.pfn = __phys_to_pfn(map.pfn);
1136 	map.virtual &= PAGE_MASK;
1137 	map.length = PAGE_SIZE;
1138 	map.type = MT_DEVICE;
1139 	iotable_init(&map, 1);
1140 }
1141 #endif
1142 
1143 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1144 
1145 /*
1146  * vmalloc=size forces the vmalloc area to be exactly 'size'
1147  * bytes. This can be used to increase (or decrease) the vmalloc
1148  * area - the default is 240MiB.
1149  */
early_vmalloc(char * arg)1150 static int __init early_vmalloc(char *arg)
1151 {
1152 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1153 	unsigned long vmalloc_max;
1154 
1155 	if (vmalloc_reserve < SZ_16M) {
1156 		vmalloc_reserve = SZ_16M;
1157 		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1158 			vmalloc_reserve >> 20);
1159 	}
1160 
1161 	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1162 	if (vmalloc_reserve > vmalloc_max) {
1163 		vmalloc_reserve = vmalloc_max;
1164 		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1165 			vmalloc_reserve >> 20);
1166 	}
1167 
1168 	vmalloc_size = vmalloc_reserve;
1169 	return 0;
1170 }
1171 early_param("vmalloc", early_vmalloc);
1172 
1173 phys_addr_t arm_lowmem_limit __initdata = 0;
1174 
adjust_lowmem_bounds(void)1175 void __init adjust_lowmem_bounds(void)
1176 {
1177 	phys_addr_t block_start, block_end, memblock_limit = 0;
1178 	u64 vmalloc_limit, i;
1179 	phys_addr_t lowmem_limit = 0;
1180 
1181 	/*
1182 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1183 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1184 	 * The result is used as the upper bound on physical memory address
1185 	 * and may itself be outside the valid range for which phys_addr_t
1186 	 * and therefore __pa() is defined.
1187 	 */
1188 	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1189 			PAGE_OFFSET + PHYS_OFFSET;
1190 
1191 	/*
1192 	 * The first usable region must be PMD aligned. Mark its start
1193 	 * as MEMBLOCK_NOMAP if it isn't
1194 	 */
1195 	for_each_mem_range(i, &block_start, &block_end) {
1196 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1197 			phys_addr_t len;
1198 
1199 			len = round_up(block_start, PMD_SIZE) - block_start;
1200 			memblock_mark_nomap(block_start, len);
1201 		}
1202 		break;
1203 	}
1204 
1205 	for_each_mem_range(i, &block_start, &block_end) {
1206 		if (block_start < vmalloc_limit) {
1207 			if (block_end > lowmem_limit)
1208 				/*
1209 				 * Compare as u64 to ensure vmalloc_limit does
1210 				 * not get truncated. block_end should always
1211 				 * fit in phys_addr_t so there should be no
1212 				 * issue with assignment.
1213 				 */
1214 				lowmem_limit = min_t(u64,
1215 							 vmalloc_limit,
1216 							 block_end);
1217 
1218 			/*
1219 			 * Find the first non-pmd-aligned page, and point
1220 			 * memblock_limit at it. This relies on rounding the
1221 			 * limit down to be pmd-aligned, which happens at the
1222 			 * end of this function.
1223 			 *
1224 			 * With this algorithm, the start or end of almost any
1225 			 * bank can be non-pmd-aligned. The only exception is
1226 			 * that the start of the bank 0 must be section-
1227 			 * aligned, since otherwise memory would need to be
1228 			 * allocated when mapping the start of bank 0, which
1229 			 * occurs before any free memory is mapped.
1230 			 */
1231 			if (!memblock_limit) {
1232 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1233 					memblock_limit = block_start;
1234 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1235 					memblock_limit = lowmem_limit;
1236 			}
1237 
1238 		}
1239 	}
1240 
1241 	arm_lowmem_limit = lowmem_limit;
1242 
1243 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1244 
1245 	if (!memblock_limit)
1246 		memblock_limit = arm_lowmem_limit;
1247 
1248 	/*
1249 	 * Round the memblock limit down to a pmd size.  This
1250 	 * helps to ensure that we will allocate memory from the
1251 	 * last full pmd, which should be mapped.
1252 	 */
1253 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1254 
1255 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1256 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1257 			phys_addr_t end = memblock_end_of_DRAM();
1258 
1259 			pr_notice("Ignoring RAM at %pa-%pa\n",
1260 				  &memblock_limit, &end);
1261 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1262 
1263 			memblock_remove(memblock_limit, end - memblock_limit);
1264 		}
1265 	}
1266 
1267 	memblock_set_current_limit(memblock_limit);
1268 }
1269 
prepare_page_table(void)1270 static __init void prepare_page_table(void)
1271 {
1272 	unsigned long addr;
1273 	phys_addr_t end;
1274 
1275 	/*
1276 	 * Clear out all the mappings below the kernel image.
1277 	 */
1278 #ifdef CONFIG_KASAN
1279 	/*
1280 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1281 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1282 	 */
1283 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1284 		pmd_clear(pmd_off_k(addr));
1285 	/*
1286 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1287 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1288 	 * are using a thumb-compiled kernel, there there will be 8MB more
1289 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1290 	 */
1291 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1292 		pmd_clear(pmd_off_k(addr));
1293 #else
1294 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1295 		pmd_clear(pmd_off_k(addr));
1296 #endif
1297 
1298 #ifdef CONFIG_XIP_KERNEL
1299 	/* The XIP kernel is mapped in the module area -- skip over it */
1300 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1301 #endif
1302 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1303 		pmd_clear(pmd_off_k(addr));
1304 
1305 	/*
1306 	 * Find the end of the first block of lowmem.
1307 	 */
1308 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1309 	if (end >= arm_lowmem_limit)
1310 		end = arm_lowmem_limit;
1311 
1312 	/*
1313 	 * Clear out all the kernel space mappings, except for the first
1314 	 * memory bank, up to the vmalloc region.
1315 	 */
1316 	for (addr = __phys_to_virt(end);
1317 	     addr < VMALLOC_START; addr += PMD_SIZE)
1318 		pmd_clear(pmd_off_k(addr));
1319 }
1320 
1321 #ifdef CONFIG_ARM_LPAE
1322 /* the first page is reserved for pgd */
1323 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1324 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1325 #else
1326 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1327 #endif
1328 
1329 /*
1330  * Reserve the special regions of memory
1331  */
arm_mm_memblock_reserve(void)1332 void __init arm_mm_memblock_reserve(void)
1333 {
1334 	/*
1335 	 * Reserve the page tables.  These are already in use,
1336 	 * and can only be in node 0.
1337 	 */
1338 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1339 
1340 #ifdef CONFIG_SA1111
1341 	/*
1342 	 * Because of the SA1111 DMA bug, we want to preserve our
1343 	 * precious DMA-able memory...
1344 	 */
1345 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1346 #endif
1347 }
1348 
1349 /*
1350  * Set up the device mappings.  Since we clear out the page tables for all
1351  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1352  * device mappings.  This means earlycon can be used to debug this function
1353  * Any other function or debugging method which may touch any device _will_
1354  * crash the kernel.
1355  */
devicemaps_init(const struct machine_desc * mdesc)1356 static void __init devicemaps_init(const struct machine_desc *mdesc)
1357 {
1358 	struct map_desc map;
1359 	unsigned long addr;
1360 	void *vectors;
1361 
1362 	/*
1363 	 * Allocate the vector page early.
1364 	 */
1365 	vectors = early_alloc(PAGE_SIZE * 2);
1366 
1367 	early_trap_init(vectors);
1368 
1369 	/*
1370 	 * Clear page table except top pmd used by early fixmaps
1371 	 */
1372 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1373 		pmd_clear(pmd_off_k(addr));
1374 
1375 	if (__atags_pointer) {
1376 		/* create a read-only mapping of the device tree */
1377 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1378 		map.virtual = FDT_FIXED_BASE;
1379 		map.length = FDT_FIXED_SIZE;
1380 		map.type = MT_MEMORY_RO;
1381 		create_mapping(&map);
1382 	}
1383 
1384 	/*
1385 	 * Map the kernel if it is XIP.
1386 	 * It is always first in the modulearea.
1387 	 */
1388 #ifdef CONFIG_XIP_KERNEL
1389 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1390 	map.virtual = MODULES_VADDR;
1391 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1392 	map.type = MT_ROM;
1393 	create_mapping(&map);
1394 #endif
1395 
1396 	/*
1397 	 * Map the cache flushing regions.
1398 	 */
1399 #ifdef FLUSH_BASE
1400 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1401 	map.virtual = FLUSH_BASE;
1402 	map.length = SZ_1M;
1403 	map.type = MT_CACHECLEAN;
1404 	create_mapping(&map);
1405 #endif
1406 #ifdef FLUSH_BASE_MINICACHE
1407 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1408 	map.virtual = FLUSH_BASE_MINICACHE;
1409 	map.length = SZ_1M;
1410 	map.type = MT_MINICLEAN;
1411 	create_mapping(&map);
1412 #endif
1413 
1414 	/*
1415 	 * Create a mapping for the machine vectors at the high-vectors
1416 	 * location (0xffff0000).  If we aren't using high-vectors, also
1417 	 * create a mapping at the low-vectors virtual address.
1418 	 */
1419 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1420 	map.virtual = 0xffff0000;
1421 	map.length = PAGE_SIZE;
1422 #ifdef CONFIG_KUSER_HELPERS
1423 	map.type = MT_HIGH_VECTORS;
1424 #else
1425 	map.type = MT_LOW_VECTORS;
1426 #endif
1427 	create_mapping(&map);
1428 
1429 	if (!vectors_high()) {
1430 		map.virtual = 0;
1431 		map.length = PAGE_SIZE * 2;
1432 		map.type = MT_LOW_VECTORS;
1433 		create_mapping(&map);
1434 	}
1435 
1436 	/* Now create a kernel read-only mapping */
1437 	map.pfn += 1;
1438 	map.virtual = 0xffff0000 + PAGE_SIZE;
1439 	map.length = PAGE_SIZE;
1440 	map.type = MT_LOW_VECTORS;
1441 	create_mapping(&map);
1442 
1443 	/*
1444 	 * Ask the machine support to map in the statically mapped devices.
1445 	 */
1446 	if (mdesc->map_io)
1447 		mdesc->map_io();
1448 	else
1449 		debug_ll_io_init();
1450 	fill_pmd_gaps();
1451 
1452 	/* Reserve fixed i/o space in VMALLOC region */
1453 	pci_reserve_io();
1454 
1455 	/*
1456 	 * Finally flush the caches and tlb to ensure that we're in a
1457 	 * consistent state wrt the writebuffer.  This also ensures that
1458 	 * any write-allocated cache lines in the vector page are written
1459 	 * back.  After this point, we can start to touch devices again.
1460 	 */
1461 	local_flush_tlb_all();
1462 	flush_cache_all();
1463 
1464 	/* Enable asynchronous aborts */
1465 	early_abt_enable();
1466 }
1467 
kmap_init(void)1468 static void __init kmap_init(void)
1469 {
1470 #ifdef CONFIG_HIGHMEM
1471 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1472 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1473 #endif
1474 
1475 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1476 			_PAGE_KERNEL_TABLE);
1477 }
1478 
map_lowmem(void)1479 static void __init map_lowmem(void)
1480 {
1481 	phys_addr_t start, end;
1482 	u64 i;
1483 
1484 	/* Map all the lowmem memory banks. */
1485 	for_each_mem_range(i, &start, &end) {
1486 		struct map_desc map;
1487 
1488 		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1489 			 (long long)start, (long long)end);
1490 		if (end > arm_lowmem_limit)
1491 			end = arm_lowmem_limit;
1492 		if (start >= end)
1493 			break;
1494 
1495 		/*
1496 		 * If our kernel image is in the VMALLOC area we need to remove
1497 		 * the kernel physical memory from lowmem since the kernel will
1498 		 * be mapped separately.
1499 		 *
1500 		 * The kernel will typically be at the very start of lowmem,
1501 		 * but any placement relative to memory ranges is possible.
1502 		 *
1503 		 * If the memblock contains the kernel, we have to chisel out
1504 		 * the kernel memory from it and map each part separately. We
1505 		 * get 6 different theoretical cases:
1506 		 *
1507 		 *                            +--------+ +--------+
1508 		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1509 		 *  |           |  | Kernel | | case 2 | | case 5 |
1510 		 *  |           |  | case 1 | +--------+ |        | +--------+
1511 		 *  |  Memory   |  +--------+            |        | | Kernel |
1512 		 *  |  range    |  +--------+            |        | | case 6 |
1513 		 *  |           |  | Kernel | +--------+ |        | +--------+
1514 		 *  |           |  | case 3 | | Kernel | |        |
1515 		 *  +-- end ----+  +--------+ | case 4 | |        |
1516 		 *                            +--------+ +--------+
1517 		 */
1518 
1519 		/* Case 5: kernel covers range, don't map anything, should be rare */
1520 		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1521 			break;
1522 
1523 		/* Cases where the kernel is starting inside the range */
1524 		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1525 			/* Case 6: kernel is embedded in the range, we need two mappings */
1526 			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1527 				/* Map memory below the kernel */
1528 				map.pfn = __phys_to_pfn(start);
1529 				map.virtual = __phys_to_virt(start);
1530 				map.length = kernel_sec_start - start;
1531 				map.type = MT_MEMORY_RW;
1532 				create_mapping(&map);
1533 				/* Map memory above the kernel */
1534 				map.pfn = __phys_to_pfn(kernel_sec_end);
1535 				map.virtual = __phys_to_virt(kernel_sec_end);
1536 				map.length = end - kernel_sec_end;
1537 				map.type = MT_MEMORY_RW;
1538 				create_mapping(&map);
1539 				break;
1540 			}
1541 			/* Case 1: kernel and range start at the same address, should be common */
1542 			if (kernel_sec_start == start)
1543 				start = kernel_sec_end;
1544 			/* Case 3: kernel and range end at the same address, should be rare */
1545 			if (kernel_sec_end == end)
1546 				end = kernel_sec_start;
1547 		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1548 			/* Case 2: kernel ends inside range, starts below it */
1549 			start = kernel_sec_end;
1550 		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1551 			/* Case 4: kernel starts inside range, ends above it */
1552 			end = kernel_sec_start;
1553 		}
1554 		map.pfn = __phys_to_pfn(start);
1555 		map.virtual = __phys_to_virt(start);
1556 		map.length = end - start;
1557 		map.type = MT_MEMORY_RW;
1558 		create_mapping(&map);
1559 	}
1560 }
1561 
map_kernel(void)1562 static void __init map_kernel(void)
1563 {
1564 	/*
1565 	 * We use the well known kernel section start and end and split the area in the
1566 	 * middle like this:
1567 	 *  .                .
1568 	 *  | RW memory      |
1569 	 *  +----------------+ kernel_x_start
1570 	 *  | Executable     |
1571 	 *  | kernel memory  |
1572 	 *  +----------------+ kernel_x_end / kernel_nx_start
1573 	 *  | Non-executable |
1574 	 *  | kernel memory  |
1575 	 *  +----------------+ kernel_nx_end
1576 	 *  | RW memory      |
1577 	 *  .                .
1578 	 *
1579 	 * Notice that we are dealing with section sized mappings here so all of this
1580 	 * will be bumped to the closest section boundary. This means that some of the
1581 	 * non-executable part of the kernel memory is actually mapped as executable.
1582 	 * This will only persist until we turn on proper memory management later on
1583 	 * and we remap the whole kernel with page granularity.
1584 	 */
1585 	phys_addr_t kernel_x_start = kernel_sec_start;
1586 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1587 	phys_addr_t kernel_nx_start = kernel_x_end;
1588 	phys_addr_t kernel_nx_end = kernel_sec_end;
1589 	struct map_desc map;
1590 
1591 	map.pfn = __phys_to_pfn(kernel_x_start);
1592 	map.virtual = __phys_to_virt(kernel_x_start);
1593 	map.length = kernel_x_end - kernel_x_start;
1594 	map.type = MT_MEMORY_RWX;
1595 	create_mapping(&map);
1596 
1597 	/* If the nx part is small it may end up covered by the tail of the RWX section */
1598 	if (kernel_x_end == kernel_nx_end)
1599 		return;
1600 
1601 	map.pfn = __phys_to_pfn(kernel_nx_start);
1602 	map.virtual = __phys_to_virt(kernel_nx_start);
1603 	map.length = kernel_nx_end - kernel_nx_start;
1604 	map.type = MT_MEMORY_RW;
1605 	create_mapping(&map);
1606 }
1607 
1608 #ifdef CONFIG_ARM_PV_FIXUP
1609 typedef void pgtables_remap(long long offset, unsigned long pgd);
1610 pgtables_remap lpae_pgtables_remap_asm;
1611 
1612 /*
1613  * early_paging_init() recreates boot time page table setup, allowing machines
1614  * to switch over to a high (>4G) address space on LPAE systems
1615  */
early_paging_init(const struct machine_desc * mdesc)1616 static void __init early_paging_init(const struct machine_desc *mdesc)
1617 {
1618 	pgtables_remap *lpae_pgtables_remap;
1619 	unsigned long pa_pgd;
1620 	unsigned int cr, ttbcr;
1621 	long long offset;
1622 
1623 	if (!mdesc->pv_fixup)
1624 		return;
1625 
1626 	offset = mdesc->pv_fixup();
1627 	if (offset == 0)
1628 		return;
1629 
1630 	/*
1631 	 * Offset the kernel section physical offsets so that the kernel
1632 	 * mapping will work out later on.
1633 	 */
1634 	kernel_sec_start += offset;
1635 	kernel_sec_end += offset;
1636 
1637 	/*
1638 	 * Get the address of the remap function in the 1:1 identity
1639 	 * mapping setup by the early page table assembly code.  We
1640 	 * must get this prior to the pv update.  The following barrier
1641 	 * ensures that this is complete before we fixup any P:V offsets.
1642 	 */
1643 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1644 	pa_pgd = __pa(swapper_pg_dir);
1645 	barrier();
1646 
1647 	pr_info("Switching physical address space to 0x%08llx\n",
1648 		(u64)PHYS_OFFSET + offset);
1649 
1650 	/* Re-set the phys pfn offset, and the pv offset */
1651 	__pv_offset += offset;
1652 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1653 
1654 	/* Run the patch stub to update the constants */
1655 	fixup_pv_table(&__pv_table_begin,
1656 		(&__pv_table_end - &__pv_table_begin) << 2);
1657 
1658 	/*
1659 	 * We changing not only the virtual to physical mapping, but also
1660 	 * the physical addresses used to access memory.  We need to flush
1661 	 * all levels of cache in the system with caching disabled to
1662 	 * ensure that all data is written back, and nothing is prefetched
1663 	 * into the caches.  We also need to prevent the TLB walkers
1664 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1665 	 * specific.
1666 	 */
1667 	cr = get_cr();
1668 	set_cr(cr & ~(CR_I | CR_C));
1669 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1670 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1671 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1672 	flush_cache_all();
1673 
1674 	/*
1675 	 * Fixup the page tables - this must be in the idmap region as
1676 	 * we need to disable the MMU to do this safely, and hence it
1677 	 * needs to be assembly.  It's fairly simple, as we're using the
1678 	 * temporary tables setup by the initial assembly code.
1679 	 */
1680 	lpae_pgtables_remap(offset, pa_pgd);
1681 
1682 	/* Re-enable the caches and cacheable TLB walks */
1683 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1684 	set_cr(cr);
1685 }
1686 
1687 #else
1688 
early_paging_init(const struct machine_desc * mdesc)1689 static void __init early_paging_init(const struct machine_desc *mdesc)
1690 {
1691 	long long offset;
1692 
1693 	if (!mdesc->pv_fixup)
1694 		return;
1695 
1696 	offset = mdesc->pv_fixup();
1697 	if (offset == 0)
1698 		return;
1699 
1700 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1701 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1702 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1703 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1704 }
1705 
1706 #endif
1707 
early_fixmap_shutdown(void)1708 static void __init early_fixmap_shutdown(void)
1709 {
1710 	int i;
1711 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1712 
1713 	pte_offset_fixmap = pte_offset_late_fixmap;
1714 	pmd_clear(fixmap_pmd(va));
1715 	local_flush_tlb_kernel_page(va);
1716 
1717 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1718 		pte_t *pte;
1719 		struct map_desc map;
1720 
1721 		map.virtual = fix_to_virt(i);
1722 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1723 
1724 		/* Only i/o device mappings are supported ATM */
1725 		if (pte_none(*pte) ||
1726 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1727 			continue;
1728 
1729 		map.pfn = pte_pfn(*pte);
1730 		map.type = MT_DEVICE;
1731 		map.length = PAGE_SIZE;
1732 
1733 		create_mapping(&map);
1734 	}
1735 }
1736 
1737 /*
1738  * paging_init() sets up the page tables, initialises the zone memory
1739  * maps, and sets up the zero page, bad page and bad page tables.
1740  */
paging_init(const struct machine_desc * mdesc)1741 void __init paging_init(const struct machine_desc *mdesc)
1742 {
1743 	void *zero_page;
1744 
1745 	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1746 		 kernel_sec_start, kernel_sec_end);
1747 
1748 	prepare_page_table();
1749 	map_lowmem();
1750 	memblock_set_current_limit(arm_lowmem_limit);
1751 	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1752 	/*
1753 	 * After this point early_alloc(), i.e. the memblock allocator, can
1754 	 * be used
1755 	 */
1756 	map_kernel();
1757 	dma_contiguous_remap();
1758 	early_fixmap_shutdown();
1759 	devicemaps_init(mdesc);
1760 	kmap_init();
1761 	tcm_init();
1762 
1763 	top_pmd = pmd_off_k(0xffff0000);
1764 
1765 	/* allocate the zero page. */
1766 	zero_page = early_alloc(PAGE_SIZE);
1767 
1768 	bootmem_init();
1769 
1770 	empty_zero_page = virt_to_page(zero_page);
1771 	__flush_dcache_page(NULL, empty_zero_page);
1772 }
1773 
early_mm_init(const struct machine_desc * mdesc)1774 void __init early_mm_init(const struct machine_desc *mdesc)
1775 {
1776 	build_mem_type_table();
1777 	early_paging_init(mdesc);
1778 }
1779 
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)1780 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1781 			      pte_t *ptep, pte_t pteval)
1782 {
1783 	unsigned long ext = 0;
1784 
1785 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1786 		if (!pte_special(pteval))
1787 			__sync_icache_dcache(pteval);
1788 		ext |= PTE_EXT_NG;
1789 	}
1790 
1791 	set_pte_ext(ptep, pteval, ext);
1792 }
1793